123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
- #include "MarlinConfig.h"
-
- #if ENABLED(AUTO_BED_LEVELING_UBL)
-
- #include "Marlin.h"
- #include "ubl.h"
- #include "planner.h"
- #include <avr/io.h>
- #include <math.h>
-
- extern float destination[XYZE];
- extern void set_current_to_destination();
-
- static void debug_echo_axis(const AxisEnum axis) {
- if (current_position[axis] == destination[axis])
- SERIAL_ECHOPGM("-------------");
- else
- SERIAL_ECHO_F(destination[X_AXIS], 6);
- }
-
- void debug_current_and_destination(const char *title) {
-
- // if the title message starts with a '!' it is so important, we are going to
- // ignore the status of the g26_debug_flag
- if (*title != '!' && !ubl.g26_debug_flag) return;
-
- const float de = destination[E_AXIS] - current_position[E_AXIS];
-
- if (de == 0.0) return;
-
- const float dx = current_position[X_AXIS] - destination[X_AXIS],
- dy = current_position[Y_AXIS] - destination[Y_AXIS],
- xy_dist = HYPOT(dx, dy);
-
- if (xy_dist == 0.0) {
- return;
- //SERIAL_ECHOPGM(" FPMM=");
- //const float fpmm = de / xy_dist;
- //SERIAL_PROTOCOL_F(fpmm, 6);
- }
- else {
- SERIAL_ECHOPGM(" fpmm=");
- const float fpmm = de / xy_dist;
- SERIAL_ECHO_F(fpmm, 6);
- }
-
- SERIAL_ECHOPGM(" current=( ");
- SERIAL_ECHO_F(current_position[X_AXIS], 6);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO_F(current_position[Y_AXIS], 6);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO_F(current_position[Z_AXIS], 6);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO_F(current_position[E_AXIS], 6);
- SERIAL_ECHOPGM(" ) destination=( ");
- debug_echo_axis(X_AXIS);
- SERIAL_ECHOPGM(", ");
- debug_echo_axis(Y_AXIS);
- SERIAL_ECHOPGM(", ");
- debug_echo_axis(Z_AXIS);
- SERIAL_ECHOPGM(", ");
- debug_echo_axis(E_AXIS);
- SERIAL_ECHOPGM(" ) ");
- SERIAL_ECHO(title);
- SERIAL_EOL;
-
- }
-
- void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) {
- /**
- * Much of the nozzle movement will be within the same cell. So we will do as little computation
- * as possible to determine if this is the case. If this move is within the same cell, we will
- * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
- */
- const float start[XYZE] = {
- current_position[X_AXIS],
- current_position[Y_AXIS],
- current_position[Z_AXIS],
- current_position[E_AXIS]
- },
- end[XYZE] = {
- destination[X_AXIS],
- destination[Y_AXIS],
- destination[Z_AXIS],
- destination[E_AXIS]
- };
-
- const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
- cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
- cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
- cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
-
- if (ubl.g26_debug_flag) {
- SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
- SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
- SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
- SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
- SERIAL_CHAR(')');
- SERIAL_EOL;
- debug_current_and_destination(PSTR("Start of ubl_line_to_destination()"));
- }
-
- if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
- /**
- * we don't need to break up the move
- *
- * If we are moving off the print bed, we are going to allow the move at this level.
- * But we detect it and isolate it. For now, we just pass along the request.
- */
-
- if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
-
- // Note: There is no Z Correction in this case. We are off the grid and don't know what
- // a reasonable correction would be.
-
- planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
- set_current_to_destination();
-
- if (ubl.g26_debug_flag)
- debug_current_and_destination(PSTR("out of bounds in ubl_line_to_destination()"));
-
- return;
- }
-
- FINAL_MOVE:
-
- /**
- * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
- * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
- * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
- * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
- * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
- * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
- */
-
- const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&ubl.mesh_index_to_xpos[cell_dest_xi])) * (1.0 / (MESH_X_DIST)),
- z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
- (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
- z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
- (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
-
- // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
- // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
-
- const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&ubl.mesh_index_to_ypos[cell_dest_yi])) * (1.0 / (MESH_Y_DIST));
-
- float z0 = z1 + (z2 - z1) * yratio;
-
- z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
-
- if (ubl.g26_debug_flag)
- debug_current_and_destination(PSTR("FINAL_MOVE in ubl_line_to_destination()"));
-
- set_current_to_destination();
- return;
- }
-
- /**
- * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
- * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
- * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
- * computation and in fact most lines are of this nature. We will check for that in the following
- * blocks of code:
- */
-
- const float dx = end[X_AXIS] - start[X_AXIS],
- dy = end[Y_AXIS] - start[Y_AXIS];
-
- const int left_flag = dx < 0.0 ? 1 : 0,
- down_flag = dy < 0.0 ? 1 : 0;
-
- const float adx = left_flag ? -dx : dx,
- ady = down_flag ? -dy : dy;
-
- const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
- dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
-
- /**
- * Compute the scaling factor for the extruder for each partial move.
- * We need to watch out for zero length moves because it will cause us to
- * have an infinate scaling factor. We are stuck doing a floating point
- * divide to get our scaling factor, but after that, we just multiply by this
- * number. We also pick our scaling factor based on whether the X or Y
- * component is larger. We use the biggest of the two to preserve precision.
- */
-
- const bool use_x_dist = adx > ady;
-
- float on_axis_distance = use_x_dist ? dx : dy,
- e_position = end[E_AXIS] - start[E_AXIS],
- z_position = end[Z_AXIS] - start[Z_AXIS];
-
- const float e_normalized_dist = e_position / on_axis_distance,
- z_normalized_dist = z_position / on_axis_distance;
-
- int current_xi = cell_start_xi, current_yi = cell_start_yi;
-
- const float m = dy / dx,
- c = start[Y_AXIS] - m * start[X_AXIS];
-
- const bool inf_normalized_flag = isinf(e_normalized_dist),
- inf_m_flag = isinf(m);
- /**
- * This block handles vertical lines. These are lines that stay within the same
- * X Cell column. They do not need to be perfectly vertical. They just can
- * not cross into another X Cell column.
- */
- if (dxi == 0) { // Check for a vertical line
- current_yi += down_flag; // Line is heading down, we just want to go to the bottom
- while (current_yi != cell_dest_yi + down_flag) {
- current_yi += dyi;
- const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
-
- /**
- * if the slope of the line is infinite, we won't do the calculations
- * else, we know the next X is the same so we can recover and continue!
- * Calculate X at the next Y mesh line
- */
- const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
-
- float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
-
- z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- const float y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
-
- /**
- * Without this check, it is possible for the algorithm to generate a zero length move in the case
- * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
- * happens, it might be best to remove the check and always 'schedule' the move because
- * the planner.buffer_line() routine will filter it if that happens.
- */
- if (y != start[Y_AXIS]) {
- if (!inf_normalized_flag) {
-
- //on_axis_distance = y - start[Y_AXIS];
- on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
-
- //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
- //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
-
- //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
- //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
-
- e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
- z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
- }
- else {
- e_position = end[E_AXIS];
- z_position = end[Z_AXIS];
- }
-
- planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
- } //else printf("FIRST MOVE PRUNED ");
- }
-
- if (ubl.g26_debug_flag)
- debug_current_and_destination(PSTR("vertical move done in ubl_line_to_destination()"));
-
- //
- // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
- //
- if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
- goto FINAL_MOVE;
-
- set_current_to_destination();
- return;
- }
-
- /**
- *
- * This block handles horizontal lines. These are lines that stay within the same
- * Y Cell row. They do not need to be perfectly horizontal. They just can
- * not cross into another Y Cell row.
- *
- */
-
- if (dyi == 0) { // Check for a horizontal line
- current_xi += left_flag; // Line is heading left, we just want to go to the left
- // edge of this cell for the first move.
- while (current_xi != cell_dest_xi + left_flag) {
- current_xi += dxi;
- const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi])),
- y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
-
- float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
-
- z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- const float x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi]));
-
- /**
- * Without this check, it is possible for the algorithm to generate a zero length move in the case
- * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
- * that happens, it might be best to remove the check and always 'schedule' the move because
- * the planner.buffer_line() routine will filter it if that happens.
- */
- if (x != start[X_AXIS]) {
- if (!inf_normalized_flag) {
-
- //on_axis_distance = x - start[X_AXIS];
- on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
-
- //on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
- //on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
-
- e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
- z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
- }
- else {
- e_position = end[E_AXIS];
- z_position = end[Z_AXIS];
- }
-
- planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
- } //else printf("FIRST MOVE PRUNED ");
- }
-
- if (ubl.g26_debug_flag)
- debug_current_and_destination(PSTR("horizontal move done in ubl_line_to_destination()"));
-
- if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
- goto FINAL_MOVE;
-
- set_current_to_destination();
- return;
- }
-
- /**
- *
- * This block handles the generic case of a line crossing both X and Y Mesh lines.
- *
- */
-
- int xi_cnt = cell_start_xi - cell_dest_xi,
- yi_cnt = cell_start_yi - cell_dest_yi;
-
- if (xi_cnt < 0) xi_cnt = -xi_cnt;
- if (yi_cnt < 0) yi_cnt = -yi_cnt;
-
- current_xi += left_flag;
- current_yi += down_flag;
-
- while (xi_cnt > 0 || yi_cnt > 0) {
-
- const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi + dxi])),
- next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi + dyi])),
- y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
- x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
- // (No need to worry about m being zero.
- // If that was the case, it was already detected
- // as a vertical line move above.)
-
- if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
- //
- // Yes! Crossing a Y Mesh Line next
- //
- float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
-
- z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- if (!inf_normalized_flag) {
- on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
- e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
- z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
- }
- else {
- e_position = end[E_AXIS];
- z_position = end[Z_AXIS];
- }
- planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
- current_yi += dyi;
- yi_cnt--;
- }
- else {
- //
- // Yes! Crossing a X Mesh Line next
- //
- float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
-
- z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- if (!inf_normalized_flag) {
- on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
- e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
- z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
- }
- else {
- e_position = end[E_AXIS];
- z_position = end[Z_AXIS];
- }
-
- planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
- current_xi += dxi;
- xi_cnt--;
- }
- }
-
- if (ubl.g26_debug_flag)
- debug_current_and_destination(PSTR("generic move done in ubl_line_to_destination()"));
-
- if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
- goto FINAL_MOVE;
-
- set_current_to_destination();
- }
-
- #endif
|