My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 180KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #include "ultralcd.h"
  32. #include "planner.h"
  33. #include "stepper.h"
  34. #include "temperature.h"
  35. #include "motion_control.h"
  36. #include "cardreader.h"
  37. #include "watchdog.h"
  38. #include "ConfigurationStore.h"
  39. #include "language.h"
  40. #include "pins_arduino.h"
  41. #include "math.h"
  42. #ifdef BLINKM
  43. #include "BlinkM.h"
  44. #include "Wire.h"
  45. #endif
  46. #if NUM_SERVOS > 0
  47. #include "Servo.h"
  48. #endif
  49. #if HAS_DIGIPOTSS
  50. #include <SPI.h>
  51. #endif
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M120 - Enable endstop detection
  114. // M121 - Disable endstop detection
  115. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  116. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  117. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  118. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  119. // M140 - Set bed target temp
  120. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  121. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  122. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  123. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  124. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  125. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  126. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  127. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  128. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  129. // M206 - Set additional homing offset
  130. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  131. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  132. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  133. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  134. // M220 S<factor in percent>- set speed factor override percentage
  135. // M221 S<factor in percent>- set extrude factor override percentage
  136. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  137. // M240 - Trigger a camera to take a photograph
  138. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  139. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  140. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  141. // M301 - Set PID parameters P I and D
  142. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  143. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  144. // M304 - Set bed PID parameters P I and D
  145. // M380 - Activate solenoid on active extruder
  146. // M381 - Disable all solenoids
  147. // M400 - Finish all moves
  148. // M401 - Lower z-probe if present
  149. // M402 - Raise z-probe if present
  150. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  151. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  152. // M406 - Turn off Filament Sensor extrusion control
  153. // M407 - Displays measured filament diameter
  154. // M500 - Store parameters in EEPROM
  155. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  156. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  157. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  158. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  159. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  160. // M665 - Set delta configurations
  161. // M666 - Set delta endstop adjustment
  162. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  163. // M907 - Set digital trimpot motor current using axis codes.
  164. // M908 - Control digital trimpot directly.
  165. // M350 - Set microstepping mode.
  166. // M351 - Toggle MS1 MS2 pins directly.
  167. // ************ SCARA Specific - This can change to suit future G-code regulations
  168. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  169. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  170. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  171. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  172. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  173. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  174. //************* SCARA End ***************
  175. // M928 - Start SD logging (M928 filename.g) - ended by M29
  176. // M999 - Restart after being stopped by error
  177. #ifdef SDSUPPORT
  178. CardReader card;
  179. #endif
  180. float homing_feedrate[] = HOMING_FEEDRATE;
  181. #ifdef ENABLE_AUTO_BED_LEVELING
  182. int xy_travel_speed = XY_TRAVEL_SPEED;
  183. #endif
  184. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  185. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  186. int feedmultiply = 100; //100->1 200->2
  187. int saved_feedmultiply;
  188. int extrudemultiply = 100; //100->1 200->2
  189. int extruder_multiply[EXTRUDERS] = { 100
  190. #if EXTRUDERS > 1
  191. , 100
  192. #if EXTRUDERS > 2
  193. , 100
  194. #if EXTRUDERS > 3
  195. , 100
  196. #endif
  197. #endif
  198. #endif
  199. };
  200. bool volumetric_enabled = false;
  201. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  202. #if EXTRUDERS > 1
  203. , DEFAULT_NOMINAL_FILAMENT_DIA
  204. #if EXTRUDERS > 2
  205. , DEFAULT_NOMINAL_FILAMENT_DIA
  206. #if EXTRUDERS > 3
  207. , DEFAULT_NOMINAL_FILAMENT_DIA
  208. #endif
  209. #endif
  210. #endif
  211. };
  212. float volumetric_multiplier[EXTRUDERS] = {1.0
  213. #if EXTRUDERS > 1
  214. , 1.0
  215. #if EXTRUDERS > 2
  216. , 1.0
  217. #if EXTRUDERS > 3
  218. , 1.0
  219. #endif
  220. #endif
  221. #endif
  222. };
  223. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  224. float add_homing[3] = { 0, 0, 0 };
  225. #ifdef DELTA
  226. float endstop_adj[3] = { 0, 0, 0 };
  227. #endif
  228. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  229. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  230. bool axis_known_position[3] = { false, false, false };
  231. float zprobe_zoffset;
  232. // Extruder offset
  233. #if EXTRUDERS > 1
  234. #ifndef DUAL_X_CARRIAGE
  235. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  236. #else
  237. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  238. #endif
  239. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  240. #if defined(EXTRUDER_OFFSET_X)
  241. EXTRUDER_OFFSET_X
  242. #else
  243. 0
  244. #endif
  245. ,
  246. #if defined(EXTRUDER_OFFSET_Y)
  247. EXTRUDER_OFFSET_Y
  248. #else
  249. 0
  250. #endif
  251. };
  252. #endif
  253. uint8_t active_extruder = 0;
  254. int fanSpeed = 0;
  255. #ifdef SERVO_ENDSTOPS
  256. int servo_endstops[] = SERVO_ENDSTOPS;
  257. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  258. #endif
  259. #ifdef BARICUDA
  260. int ValvePressure = 0;
  261. int EtoPPressure = 0;
  262. #endif
  263. #ifdef FWRETRACT
  264. bool autoretract_enabled = false;
  265. bool retracted[EXTRUDERS] = { false
  266. #if EXTRUDERS > 1
  267. , false
  268. #if EXTRUDERS > 2
  269. , false
  270. #if EXTRUDERS > 3
  271. , false
  272. #endif
  273. #endif
  274. #endif
  275. };
  276. bool retracted_swap[EXTRUDERS] = { false
  277. #if EXTRUDERS > 1
  278. , false
  279. #if EXTRUDERS > 2
  280. , false
  281. #if EXTRUDERS > 3
  282. , false
  283. #endif
  284. #endif
  285. #endif
  286. };
  287. float retract_length = RETRACT_LENGTH;
  288. float retract_length_swap = RETRACT_LENGTH_SWAP;
  289. float retract_feedrate = RETRACT_FEEDRATE;
  290. float retract_zlift = RETRACT_ZLIFT;
  291. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  292. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  293. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  294. #endif // FWRETRACT
  295. #ifdef ULTIPANEL
  296. bool powersupply =
  297. #ifdef PS_DEFAULT_OFF
  298. false
  299. #else
  300. true
  301. #endif
  302. ;
  303. #endif
  304. #ifdef DELTA
  305. float delta[3] = { 0, 0, 0 };
  306. #define SIN_60 0.8660254037844386
  307. #define COS_60 0.5
  308. // these are the default values, can be overriden with M665
  309. float delta_radius = DELTA_RADIUS;
  310. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  311. float delta_tower1_y = -COS_60 * delta_radius;
  312. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  313. float delta_tower2_y = -COS_60 * delta_radius;
  314. float delta_tower3_x = 0; // back middle tower
  315. float delta_tower3_y = delta_radius;
  316. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  317. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  318. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  319. #ifdef ENABLE_AUTO_BED_LEVELING
  320. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  321. #endif
  322. #endif
  323. #ifdef SCARA
  324. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  325. static float delta[3] = { 0, 0, 0 };
  326. #endif
  327. bool cancel_heatup = false;
  328. #ifdef FILAMENT_SENSOR
  329. //Variables for Filament Sensor input
  330. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  331. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  332. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  333. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  334. int delay_index1=0; //index into ring buffer
  335. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  336. float delay_dist=0; //delay distance counter
  337. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  338. #endif
  339. #ifdef FILAMENT_RUNOUT_SENSOR
  340. static bool filrunoutEnqued = false;
  341. #endif
  342. const char errormagic[] PROGMEM = "Error:";
  343. const char echomagic[] PROGMEM = "echo:";
  344. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  345. static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
  346. static float offset[3] = { 0, 0, 0 };
  347. static bool home_all_axis = true;
  348. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  349. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  350. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  351. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  352. static bool fromsd[BUFSIZE];
  353. static int bufindr = 0;
  354. static int bufindw = 0;
  355. static int buflen = 0;
  356. static char serial_char;
  357. static int serial_count = 0;
  358. static boolean comment_mode = false;
  359. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  360. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  361. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  362. // Inactivity shutdown
  363. static unsigned long previous_millis_cmd = 0;
  364. static unsigned long max_inactive_time = 0;
  365. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  366. unsigned long starttime = 0; ///< Print job start time
  367. unsigned long stoptime = 0; ///< Print job stop time
  368. static uint8_t tmp_extruder;
  369. bool Stopped = false;
  370. #if NUM_SERVOS > 0
  371. Servo servos[NUM_SERVOS];
  372. #endif
  373. bool CooldownNoWait = true;
  374. bool target_direction;
  375. #ifdef CHDK
  376. unsigned long chdkHigh = 0;
  377. boolean chdkActive = false;
  378. #endif
  379. //===========================================================================
  380. //=============================Routines======================================
  381. //===========================================================================
  382. void get_arc_coordinates();
  383. bool setTargetedHotend(int code);
  384. void serial_echopair_P(const char *s_P, float v)
  385. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  386. void serial_echopair_P(const char *s_P, double v)
  387. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  388. void serial_echopair_P(const char *s_P, unsigned long v)
  389. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  390. #ifdef SDSUPPORT
  391. #include "SdFatUtil.h"
  392. int freeMemory() { return SdFatUtil::FreeRam(); }
  393. #else
  394. extern "C" {
  395. extern unsigned int __bss_end;
  396. extern unsigned int __heap_start;
  397. extern void *__brkval;
  398. int freeMemory() {
  399. int free_memory;
  400. if ((int)__brkval == 0)
  401. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  402. else
  403. free_memory = ((int)&free_memory) - ((int)__brkval);
  404. return free_memory;
  405. }
  406. }
  407. #endif //!SDSUPPORT
  408. //Injects the next command from the pending sequence of commands, when possible
  409. //Return false if and only if no command was pending
  410. static bool drain_queued_commands_P()
  411. {
  412. char cmd[30];
  413. if(!queued_commands_P)
  414. return false;
  415. // Get the next 30 chars from the sequence of gcodes to run
  416. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  417. cmd[sizeof(cmd)-1]= 0;
  418. // Look for the end of line, or the end of sequence
  419. size_t i= 0;
  420. char c;
  421. while( (c= cmd[i]) && c!='\n' )
  422. ++i; // look for the end of this gcode command
  423. cmd[i]= 0;
  424. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  425. {
  426. if(c)
  427. queued_commands_P+= i+1; // move to next command
  428. else
  429. queued_commands_P= NULL; // will have no more commands in the sequence
  430. }
  431. return true;
  432. }
  433. //Record one or many commands to run from program memory.
  434. //Aborts the current queue, if any.
  435. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  436. void enquecommands_P(const char* pgcode)
  437. {
  438. queued_commands_P= pgcode;
  439. drain_queued_commands_P(); // first command exectuted asap (when possible)
  440. }
  441. //adds a single command to the main command buffer, from RAM
  442. //that is really done in a non-safe way.
  443. //needs overworking someday
  444. //Returns false if it failed to do so
  445. bool enquecommand(const char *cmd)
  446. {
  447. if(*cmd==';')
  448. return false;
  449. if(buflen >= BUFSIZE)
  450. return false;
  451. //this is dangerous if a mixing of serial and this happens
  452. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  453. SERIAL_ECHO_START;
  454. SERIAL_ECHOPGM(MSG_Enqueing);
  455. SERIAL_ECHO(cmdbuffer[bufindw]);
  456. SERIAL_ECHOLNPGM("\"");
  457. bufindw= (bufindw + 1)%BUFSIZE;
  458. buflen += 1;
  459. return true;
  460. }
  461. void setup_killpin()
  462. {
  463. #if defined(KILL_PIN) && KILL_PIN > -1
  464. SET_INPUT(KILL_PIN);
  465. WRITE(KILL_PIN,HIGH);
  466. #endif
  467. }
  468. void setup_filrunoutpin()
  469. {
  470. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  471. pinMode(FILRUNOUT_PIN,INPUT);
  472. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  473. WRITE(FILLRUNOUT_PIN,HIGH);
  474. #endif
  475. #endif
  476. }
  477. // Set home pin
  478. void setup_homepin(void)
  479. {
  480. #if defined(HOME_PIN) && HOME_PIN > -1
  481. SET_INPUT(HOME_PIN);
  482. WRITE(HOME_PIN,HIGH);
  483. #endif
  484. }
  485. void setup_photpin()
  486. {
  487. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  488. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  489. #endif
  490. }
  491. void setup_powerhold()
  492. {
  493. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  494. OUT_WRITE(SUICIDE_PIN, HIGH);
  495. #endif
  496. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  497. #if defined(PS_DEFAULT_OFF)
  498. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  499. #else
  500. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  501. #endif
  502. #endif
  503. }
  504. void suicide()
  505. {
  506. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  507. OUT_WRITE(SUICIDE_PIN, LOW);
  508. #endif
  509. }
  510. void servo_init()
  511. {
  512. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  513. servos[0].attach(SERVO0_PIN);
  514. #endif
  515. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  516. servos[1].attach(SERVO1_PIN);
  517. #endif
  518. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  519. servos[2].attach(SERVO2_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  522. servos[3].attach(SERVO3_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 5)
  525. #error "TODO: enter initalisation code for more servos"
  526. #endif
  527. // Set position of Servo Endstops that are defined
  528. #ifdef SERVO_ENDSTOPS
  529. for(int8_t i = 0; i < 3; i++)
  530. {
  531. if(servo_endstops[i] > -1) {
  532. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  533. }
  534. }
  535. #endif
  536. #if SERVO_LEVELING
  537. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  538. servos[servo_endstops[Z_AXIS]].detach();
  539. #endif
  540. }
  541. void setup()
  542. {
  543. setup_killpin();
  544. setup_filrunoutpin();
  545. setup_powerhold();
  546. MYSERIAL.begin(BAUDRATE);
  547. SERIAL_PROTOCOLLNPGM("start");
  548. SERIAL_ECHO_START;
  549. // Check startup - does nothing if bootloader sets MCUSR to 0
  550. byte mcu = MCUSR;
  551. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  552. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  553. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  554. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  555. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  556. MCUSR=0;
  557. SERIAL_ECHOPGM(MSG_MARLIN);
  558. SERIAL_ECHOLNPGM(STRING_VERSION);
  559. #ifdef STRING_VERSION_CONFIG_H
  560. #ifdef STRING_CONFIG_H_AUTHOR
  561. SERIAL_ECHO_START;
  562. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  563. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  564. SERIAL_ECHOPGM(MSG_AUTHOR);
  565. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  566. SERIAL_ECHOPGM("Compiled: ");
  567. SERIAL_ECHOLNPGM(__DATE__);
  568. #endif // STRING_CONFIG_H_AUTHOR
  569. #endif // STRING_VERSION_CONFIG_H
  570. SERIAL_ECHO_START;
  571. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  572. SERIAL_ECHO(freeMemory());
  573. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  574. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  575. for(int8_t i = 0; i < BUFSIZE; i++)
  576. {
  577. fromsd[i] = false;
  578. }
  579. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  580. Config_RetrieveSettings();
  581. tp_init(); // Initialize temperature loop
  582. plan_init(); // Initialize planner;
  583. watchdog_init();
  584. st_init(); // Initialize stepper, this enables interrupts!
  585. setup_photpin();
  586. servo_init();
  587. lcd_init();
  588. _delay_ms(1000); // wait 1sec to display the splash screen
  589. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  590. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  591. #endif
  592. #ifdef DIGIPOT_I2C
  593. digipot_i2c_init();
  594. #endif
  595. #ifdef Z_PROBE_SLED
  596. pinMode(SERVO0_PIN, OUTPUT);
  597. digitalWrite(SERVO0_PIN, LOW); // turn it off
  598. #endif // Z_PROBE_SLED
  599. setup_homepin();
  600. #ifdef STAT_LED_RED
  601. pinMode(STAT_LED_RED, OUTPUT);
  602. digitalWrite(STAT_LED_RED, LOW); // turn it off
  603. #endif
  604. #ifdef STAT_LED_BLUE
  605. pinMode(STAT_LED_BLUE, OUTPUT);
  606. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  607. #endif
  608. }
  609. void loop()
  610. {
  611. if(buflen < (BUFSIZE-1))
  612. get_command();
  613. #ifdef SDSUPPORT
  614. card.checkautostart(false);
  615. #endif
  616. if(buflen)
  617. {
  618. #ifdef SDSUPPORT
  619. if(card.saving)
  620. {
  621. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  622. {
  623. card.write_command(cmdbuffer[bufindr]);
  624. if(card.logging)
  625. {
  626. process_commands();
  627. }
  628. else
  629. {
  630. SERIAL_PROTOCOLLNPGM(MSG_OK);
  631. }
  632. }
  633. else
  634. {
  635. card.closefile();
  636. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  637. }
  638. }
  639. else
  640. {
  641. process_commands();
  642. }
  643. #else
  644. process_commands();
  645. #endif //SDSUPPORT
  646. buflen = (buflen-1);
  647. bufindr = (bufindr + 1)%BUFSIZE;
  648. }
  649. //check heater every n milliseconds
  650. manage_heater();
  651. manage_inactivity();
  652. checkHitEndstops();
  653. lcd_update();
  654. }
  655. void get_command()
  656. {
  657. if(drain_queued_commands_P()) // priority is given to non-serial commands
  658. return;
  659. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  660. serial_char = MYSERIAL.read();
  661. if(serial_char == '\n' ||
  662. serial_char == '\r' ||
  663. serial_count >= (MAX_CMD_SIZE - 1) )
  664. {
  665. // end of line == end of comment
  666. comment_mode = false;
  667. if(!serial_count) {
  668. // short cut for empty lines
  669. return;
  670. }
  671. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  672. fromsd[bufindw] = false;
  673. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  674. {
  675. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  676. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  677. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  678. SERIAL_ERROR_START;
  679. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  680. SERIAL_ERRORLN(gcode_LastN);
  681. //Serial.println(gcode_N);
  682. FlushSerialRequestResend();
  683. serial_count = 0;
  684. return;
  685. }
  686. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  687. {
  688. byte checksum = 0;
  689. byte count = 0;
  690. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  691. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  692. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  693. SERIAL_ERROR_START;
  694. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  695. SERIAL_ERRORLN(gcode_LastN);
  696. FlushSerialRequestResend();
  697. serial_count = 0;
  698. return;
  699. }
  700. //if no errors, continue parsing
  701. }
  702. else
  703. {
  704. SERIAL_ERROR_START;
  705. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  706. SERIAL_ERRORLN(gcode_LastN);
  707. FlushSerialRequestResend();
  708. serial_count = 0;
  709. return;
  710. }
  711. gcode_LastN = gcode_N;
  712. //if no errors, continue parsing
  713. }
  714. else // if we don't receive 'N' but still see '*'
  715. {
  716. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  717. {
  718. SERIAL_ERROR_START;
  719. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  720. SERIAL_ERRORLN(gcode_LastN);
  721. serial_count = 0;
  722. return;
  723. }
  724. }
  725. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  726. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  727. switch(strtol(strchr_pointer + 1, NULL, 10)){
  728. case 0:
  729. case 1:
  730. case 2:
  731. case 3:
  732. if (Stopped == true) {
  733. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  734. LCD_MESSAGEPGM(MSG_STOPPED);
  735. }
  736. break;
  737. default:
  738. break;
  739. }
  740. }
  741. //If command was e-stop process now
  742. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  743. kill();
  744. bufindw = (bufindw + 1)%BUFSIZE;
  745. buflen += 1;
  746. serial_count = 0; //clear buffer
  747. }
  748. else if(serial_char == '\\') { //Handle escapes
  749. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  750. // if we have one more character, copy it over
  751. serial_char = MYSERIAL.read();
  752. cmdbuffer[bufindw][serial_count++] = serial_char;
  753. }
  754. //otherwise do nothing
  755. }
  756. else { // its not a newline, carriage return or escape char
  757. if(serial_char == ';') comment_mode = true;
  758. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  759. }
  760. }
  761. #ifdef SDSUPPORT
  762. if(!card.sdprinting || serial_count!=0){
  763. return;
  764. }
  765. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  766. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  767. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  768. static bool stop_buffering=false;
  769. if(buflen==0) stop_buffering=false;
  770. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  771. int16_t n=card.get();
  772. serial_char = (char)n;
  773. if(serial_char == '\n' ||
  774. serial_char == '\r' ||
  775. (serial_char == '#' && comment_mode == false) ||
  776. (serial_char == ':' && comment_mode == false) ||
  777. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  778. {
  779. if(card.eof()){
  780. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  781. stoptime=millis();
  782. char time[30];
  783. unsigned long t=(stoptime-starttime)/1000;
  784. int hours, minutes;
  785. minutes=(t/60)%60;
  786. hours=t/60/60;
  787. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  788. SERIAL_ECHO_START;
  789. SERIAL_ECHOLN(time);
  790. lcd_setstatus(time);
  791. card.printingHasFinished();
  792. card.checkautostart(true);
  793. }
  794. if(serial_char=='#')
  795. stop_buffering=true;
  796. if(!serial_count)
  797. {
  798. comment_mode = false; //for new command
  799. return; //if empty line
  800. }
  801. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  802. // if(!comment_mode){
  803. fromsd[bufindw] = true;
  804. buflen += 1;
  805. bufindw = (bufindw + 1)%BUFSIZE;
  806. // }
  807. comment_mode = false; //for new command
  808. serial_count = 0; //clear buffer
  809. }
  810. else
  811. {
  812. if(serial_char == ';') comment_mode = true;
  813. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  814. }
  815. }
  816. #endif //SDSUPPORT
  817. }
  818. float code_value()
  819. {
  820. return (strtod(strchr_pointer + 1, NULL));
  821. }
  822. long code_value_long()
  823. {
  824. return (strtol(strchr_pointer + 1, NULL, 10));
  825. }
  826. bool code_seen(char code)
  827. {
  828. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  829. return (strchr_pointer != NULL); //Return True if a character was found
  830. }
  831. #define DEFINE_PGM_READ_ANY(type, reader) \
  832. static inline type pgm_read_any(const type *p) \
  833. { return pgm_read_##reader##_near(p); }
  834. DEFINE_PGM_READ_ANY(float, float);
  835. DEFINE_PGM_READ_ANY(signed char, byte);
  836. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  837. static const PROGMEM type array##_P[3] = \
  838. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  839. static inline type array(int axis) \
  840. { return pgm_read_any(&array##_P[axis]); }
  841. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  842. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  843. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  844. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  845. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  846. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  847. #ifdef DUAL_X_CARRIAGE
  848. #define DXC_FULL_CONTROL_MODE 0
  849. #define DXC_AUTO_PARK_MODE 1
  850. #define DXC_DUPLICATION_MODE 2
  851. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  852. static float x_home_pos(int extruder) {
  853. if (extruder == 0)
  854. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  855. else
  856. // In dual carriage mode the extruder offset provides an override of the
  857. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  858. // This allow soft recalibration of the second extruder offset position without firmware reflash
  859. // (through the M218 command).
  860. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  861. }
  862. static int x_home_dir(int extruder) {
  863. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  864. }
  865. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  866. static bool active_extruder_parked = false; // used in mode 1 & 2
  867. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  868. static unsigned long delayed_move_time = 0; // used in mode 1
  869. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  870. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  871. bool extruder_duplication_enabled = false; // used in mode 2
  872. #endif //DUAL_X_CARRIAGE
  873. static void axis_is_at_home(int axis) {
  874. #ifdef DUAL_X_CARRIAGE
  875. if (axis == X_AXIS) {
  876. if (active_extruder != 0) {
  877. current_position[X_AXIS] = x_home_pos(active_extruder);
  878. min_pos[X_AXIS] = X2_MIN_POS;
  879. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  880. return;
  881. }
  882. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  883. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  884. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  885. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  886. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  887. return;
  888. }
  889. }
  890. #endif
  891. #ifdef SCARA
  892. float homeposition[3];
  893. char i;
  894. if (axis < 2)
  895. {
  896. for (i=0; i<3; i++)
  897. {
  898. homeposition[i] = base_home_pos(i);
  899. }
  900. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  901. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  902. // Works out real Homeposition angles using inverse kinematics,
  903. // and calculates homing offset using forward kinematics
  904. calculate_delta(homeposition);
  905. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  906. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  907. for (i=0; i<2; i++)
  908. {
  909. delta[i] -= add_homing[i];
  910. }
  911. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  912. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  913. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  914. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  915. calculate_SCARA_forward_Transform(delta);
  916. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  917. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  918. current_position[axis] = delta[axis];
  919. // SCARA home positions are based on configuration since the actual limits are determined by the
  920. // inverse kinematic transform.
  921. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  922. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  923. }
  924. else
  925. {
  926. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  927. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  928. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  929. }
  930. #else
  931. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  932. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  933. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  934. #endif
  935. }
  936. #ifdef ENABLE_AUTO_BED_LEVELING
  937. #ifdef AUTO_BED_LEVELING_GRID
  938. #ifndef DELTA
  939. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  940. {
  941. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  942. planeNormal.debug("planeNormal");
  943. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  944. //bedLevel.debug("bedLevel");
  945. //plan_bed_level_matrix.debug("bed level before");
  946. //vector_3 uncorrected_position = plan_get_position_mm();
  947. //uncorrected_position.debug("position before");
  948. vector_3 corrected_position = plan_get_position();
  949. // corrected_position.debug("position after");
  950. current_position[X_AXIS] = corrected_position.x;
  951. current_position[Y_AXIS] = corrected_position.y;
  952. current_position[Z_AXIS] = corrected_position.z;
  953. // put the bed at 0 so we don't go below it.
  954. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  955. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  956. }
  957. #endif
  958. #else // not AUTO_BED_LEVELING_GRID
  959. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  960. plan_bed_level_matrix.set_to_identity();
  961. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  962. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  963. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  964. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  965. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  966. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  967. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  968. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  969. vector_3 corrected_position = plan_get_position();
  970. current_position[X_AXIS] = corrected_position.x;
  971. current_position[Y_AXIS] = corrected_position.y;
  972. current_position[Z_AXIS] = corrected_position.z;
  973. // put the bed at 0 so we don't go below it.
  974. current_position[Z_AXIS] = zprobe_zoffset;
  975. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  976. }
  977. #endif // AUTO_BED_LEVELING_GRID
  978. static void run_z_probe() {
  979. #ifdef DELTA
  980. float start_z = current_position[Z_AXIS];
  981. long start_steps = st_get_position(Z_AXIS);
  982. // move down slowly until you find the bed
  983. feedrate = homing_feedrate[Z_AXIS] / 4;
  984. destination[Z_AXIS] = -10;
  985. prepare_move_raw();
  986. st_synchronize();
  987. endstops_hit_on_purpose();
  988. // we have to let the planner know where we are right now as it is not where we said to go.
  989. long stop_steps = st_get_position(Z_AXIS);
  990. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  991. current_position[Z_AXIS] = mm;
  992. calculate_delta(current_position);
  993. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  994. #else
  995. plan_bed_level_matrix.set_to_identity();
  996. feedrate = homing_feedrate[Z_AXIS];
  997. // move down until you find the bed
  998. float zPosition = -10;
  999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1000. st_synchronize();
  1001. // we have to let the planner know where we are right now as it is not where we said to go.
  1002. zPosition = st_get_position_mm(Z_AXIS);
  1003. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1004. // move up the retract distance
  1005. zPosition += home_retract_mm(Z_AXIS);
  1006. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1007. st_synchronize();
  1008. // move back down slowly to find bed
  1009. if (homing_bump_divisor[Z_AXIS] >= 1)
  1010. {
  1011. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  1012. }
  1013. else
  1014. {
  1015. feedrate = homing_feedrate[Z_AXIS]/10;
  1016. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1017. }
  1018. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1020. st_synchronize();
  1021. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1022. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1023. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1024. #endif
  1025. }
  1026. static void do_blocking_move_to(float x, float y, float z) {
  1027. float oldFeedRate = feedrate;
  1028. #ifdef DELTA
  1029. feedrate = XY_TRAVEL_SPEED;
  1030. destination[X_AXIS] = x;
  1031. destination[Y_AXIS] = y;
  1032. destination[Z_AXIS] = z;
  1033. prepare_move_raw();
  1034. st_synchronize();
  1035. #else
  1036. feedrate = homing_feedrate[Z_AXIS];
  1037. current_position[Z_AXIS] = z;
  1038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1039. st_synchronize();
  1040. feedrate = xy_travel_speed;
  1041. current_position[X_AXIS] = x;
  1042. current_position[Y_AXIS] = y;
  1043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1044. st_synchronize();
  1045. #endif
  1046. feedrate = oldFeedRate;
  1047. }
  1048. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1049. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1050. }
  1051. static void setup_for_endstop_move() {
  1052. saved_feedrate = feedrate;
  1053. saved_feedmultiply = feedmultiply;
  1054. feedmultiply = 100;
  1055. previous_millis_cmd = millis();
  1056. enable_endstops(true);
  1057. }
  1058. static void clean_up_after_endstop_move() {
  1059. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1060. enable_endstops(false);
  1061. #endif
  1062. feedrate = saved_feedrate;
  1063. feedmultiply = saved_feedmultiply;
  1064. previous_millis_cmd = millis();
  1065. }
  1066. static void engage_z_probe() {
  1067. // Engage Z Servo endstop if enabled
  1068. #ifdef SERVO_ENDSTOPS
  1069. if (servo_endstops[Z_AXIS] > -1) {
  1070. #if SERVO_LEVELING
  1071. servos[servo_endstops[Z_AXIS]].attach(0);
  1072. #endif
  1073. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1074. #if SERVO_LEVELING
  1075. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1076. servos[servo_endstops[Z_AXIS]].detach();
  1077. #endif
  1078. }
  1079. #elif defined(Z_PROBE_ALLEN_KEY)
  1080. feedrate = homing_feedrate[X_AXIS];
  1081. // Move to the start position to initiate deployment
  1082. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1083. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1084. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1085. prepare_move_raw();
  1086. // Home X to touch the belt
  1087. feedrate = homing_feedrate[X_AXIS]/10;
  1088. destination[X_AXIS] = 0;
  1089. prepare_move_raw();
  1090. // Home Y for safety
  1091. feedrate = homing_feedrate[X_AXIS]/2;
  1092. destination[Y_AXIS] = 0;
  1093. prepare_move_raw();
  1094. st_synchronize();
  1095. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1096. if (z_min_endstop)
  1097. {
  1098. if (!Stopped)
  1099. {
  1100. SERIAL_ERROR_START;
  1101. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1102. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1103. }
  1104. Stop();
  1105. }
  1106. #endif
  1107. }
  1108. static void retract_z_probe() {
  1109. // Retract Z Servo endstop if enabled
  1110. #ifdef SERVO_ENDSTOPS
  1111. if (servo_endstops[Z_AXIS] > -1) {
  1112. #if SERVO_LEVELING
  1113. servos[servo_endstops[Z_AXIS]].attach(0);
  1114. #endif
  1115. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1116. #if SERVO_LEVELING
  1117. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1118. servos[servo_endstops[Z_AXIS]].detach();
  1119. #endif
  1120. }
  1121. #elif defined(Z_PROBE_ALLEN_KEY)
  1122. // Move up for safety
  1123. feedrate = homing_feedrate[X_AXIS];
  1124. destination[Z_AXIS] = current_position[Z_AXIS] + 20;
  1125. prepare_move_raw();
  1126. // Move to the start position to initiate retraction
  1127. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1128. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1129. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1130. prepare_move_raw();
  1131. // Move the nozzle down to push the probe into retracted position
  1132. feedrate = homing_feedrate[Z_AXIS]/10;
  1133. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1134. prepare_move_raw();
  1135. // Move up for safety
  1136. feedrate = homing_feedrate[Z_AXIS]/2;
  1137. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1138. prepare_move_raw();
  1139. // Home XY for safety
  1140. feedrate = homing_feedrate[X_AXIS]/2;
  1141. destination[X_AXIS] = 0;
  1142. destination[Y_AXIS] = 0;
  1143. prepare_move_raw();
  1144. st_synchronize();
  1145. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1146. if (!z_min_endstop)
  1147. {
  1148. if (!Stopped)
  1149. {
  1150. SERIAL_ERROR_START;
  1151. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1152. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1153. }
  1154. Stop();
  1155. }
  1156. #endif
  1157. }
  1158. enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
  1159. /// Probe bed height at position (x,y), returns the measured z value
  1160. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract, int verbose_level=1) {
  1161. // move to right place
  1162. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1163. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1164. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1165. if (retract_action & ProbeEngage) engage_z_probe();
  1166. #endif
  1167. run_z_probe();
  1168. float measured_z = current_position[Z_AXIS];
  1169. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1170. if (retract_action & ProbeRetract) retract_z_probe();
  1171. #endif
  1172. if (verbose_level > 2) {
  1173. SERIAL_PROTOCOLPGM(MSG_BED);
  1174. SERIAL_PROTOCOLPGM(" X: ");
  1175. SERIAL_PROTOCOL(x + 0.0001);
  1176. SERIAL_PROTOCOLPGM(" Y: ");
  1177. SERIAL_PROTOCOL(y + 0.0001);
  1178. SERIAL_PROTOCOLPGM(" Z: ");
  1179. SERIAL_PROTOCOL(measured_z + 0.0001);
  1180. SERIAL_EOL;
  1181. }
  1182. return measured_z;
  1183. }
  1184. #ifdef DELTA
  1185. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1186. if (bed_level[x][y] != 0.0) {
  1187. return; // Don't overwrite good values.
  1188. }
  1189. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1190. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1191. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1192. float median = c; // Median is robust (ignores outliers).
  1193. if (a < b) {
  1194. if (b < c) median = b;
  1195. if (c < a) median = a;
  1196. } else { // b <= a
  1197. if (c < b) median = b;
  1198. if (a < c) median = a;
  1199. }
  1200. bed_level[x][y] = median;
  1201. }
  1202. // Fill in the unprobed points (corners of circular print surface)
  1203. // using linear extrapolation, away from the center.
  1204. static void extrapolate_unprobed_bed_level() {
  1205. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1206. for (int y = 0; y <= half; y++) {
  1207. for (int x = 0; x <= half; x++) {
  1208. if (x + y < 3) continue;
  1209. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1210. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1211. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1212. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1213. }
  1214. }
  1215. }
  1216. // Print calibration results for plotting or manual frame adjustment.
  1217. static void print_bed_level() {
  1218. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1219. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1220. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1221. SERIAL_PROTOCOLPGM(" ");
  1222. }
  1223. SERIAL_ECHOLN("");
  1224. }
  1225. }
  1226. // Reset calibration results to zero.
  1227. void reset_bed_level() {
  1228. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1229. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1230. bed_level[x][y] = 0.0;
  1231. }
  1232. }
  1233. }
  1234. #endif // DELTA
  1235. #endif // ENABLE_AUTO_BED_LEVELING
  1236. static void homeaxis(int axis) {
  1237. #define HOMEAXIS_DO(LETTER) \
  1238. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1239. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1240. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1241. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1242. 0) {
  1243. int axis_home_dir = home_dir(axis);
  1244. #ifdef DUAL_X_CARRIAGE
  1245. if (axis == X_AXIS)
  1246. axis_home_dir = x_home_dir(active_extruder);
  1247. #endif
  1248. current_position[axis] = 0;
  1249. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1250. #ifndef Z_PROBE_SLED
  1251. // Engage Servo endstop if enabled
  1252. #ifdef SERVO_ENDSTOPS
  1253. #if SERVO_LEVELING
  1254. if (axis==Z_AXIS) {
  1255. engage_z_probe();
  1256. }
  1257. else
  1258. #endif
  1259. if (servo_endstops[axis] > -1) {
  1260. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1261. }
  1262. #endif
  1263. #endif // Z_PROBE_SLED
  1264. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1265. feedrate = homing_feedrate[axis];
  1266. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1267. st_synchronize();
  1268. current_position[axis] = 0;
  1269. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1270. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1271. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1272. st_synchronize();
  1273. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1274. if (homing_bump_divisor[axis] >= 1)
  1275. {
  1276. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1277. }
  1278. else
  1279. {
  1280. feedrate = homing_feedrate[axis]/10;
  1281. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1282. }
  1283. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1284. st_synchronize();
  1285. #ifdef DELTA
  1286. // retrace by the amount specified in endstop_adj
  1287. if (endstop_adj[axis] * axis_home_dir < 0) {
  1288. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1289. destination[axis] = endstop_adj[axis];
  1290. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1291. st_synchronize();
  1292. }
  1293. #endif
  1294. axis_is_at_home(axis);
  1295. destination[axis] = current_position[axis];
  1296. feedrate = 0.0;
  1297. endstops_hit_on_purpose();
  1298. axis_known_position[axis] = true;
  1299. // Retract Servo endstop if enabled
  1300. #ifdef SERVO_ENDSTOPS
  1301. if (servo_endstops[axis] > -1) {
  1302. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1303. }
  1304. #endif
  1305. #if SERVO_LEVELING
  1306. #ifndef Z_PROBE_SLED
  1307. if (axis==Z_AXIS) retract_z_probe();
  1308. #endif
  1309. #endif
  1310. }
  1311. }
  1312. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1313. void refresh_cmd_timeout(void)
  1314. {
  1315. previous_millis_cmd = millis();
  1316. }
  1317. #ifdef FWRETRACT
  1318. void retract(bool retracting, bool swapretract = false) {
  1319. if(retracting && !retracted[active_extruder]) {
  1320. destination[X_AXIS]=current_position[X_AXIS];
  1321. destination[Y_AXIS]=current_position[Y_AXIS];
  1322. destination[Z_AXIS]=current_position[Z_AXIS];
  1323. destination[E_AXIS]=current_position[E_AXIS];
  1324. if (swapretract) {
  1325. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1326. } else {
  1327. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1328. }
  1329. plan_set_e_position(current_position[E_AXIS]);
  1330. float oldFeedrate = feedrate;
  1331. feedrate=retract_feedrate*60;
  1332. retracted[active_extruder]=true;
  1333. prepare_move();
  1334. if(retract_zlift > 0.01) {
  1335. current_position[Z_AXIS]-=retract_zlift;
  1336. #ifdef DELTA
  1337. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1338. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1339. #else
  1340. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1341. #endif
  1342. prepare_move();
  1343. }
  1344. feedrate = oldFeedrate;
  1345. } else if(!retracting && retracted[active_extruder]) {
  1346. destination[X_AXIS]=current_position[X_AXIS];
  1347. destination[Y_AXIS]=current_position[Y_AXIS];
  1348. destination[Z_AXIS]=current_position[Z_AXIS];
  1349. destination[E_AXIS]=current_position[E_AXIS];
  1350. if(retract_zlift > 0.01) {
  1351. current_position[Z_AXIS]+=retract_zlift;
  1352. #ifdef DELTA
  1353. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1354. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1355. #else
  1356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1357. #endif
  1358. //prepare_move();
  1359. }
  1360. if (swapretract) {
  1361. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1362. } else {
  1363. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1364. }
  1365. plan_set_e_position(current_position[E_AXIS]);
  1366. float oldFeedrate = feedrate;
  1367. feedrate=retract_recover_feedrate*60;
  1368. retracted[active_extruder]=false;
  1369. prepare_move();
  1370. feedrate = oldFeedrate;
  1371. }
  1372. } //retract
  1373. #endif //FWRETRACT
  1374. #ifdef Z_PROBE_SLED
  1375. #ifndef SLED_DOCKING_OFFSET
  1376. #define SLED_DOCKING_OFFSET 0
  1377. #endif
  1378. //
  1379. // Method to dock/undock a sled designed by Charles Bell.
  1380. //
  1381. // dock[in] If true, move to MAX_X and engage the electromagnet
  1382. // offset[in] The additional distance to move to adjust docking location
  1383. //
  1384. static void dock_sled(bool dock, int offset=0) {
  1385. int z_loc;
  1386. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1387. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1388. SERIAL_ECHO_START;
  1389. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1390. return;
  1391. }
  1392. if (dock) {
  1393. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1394. current_position[Y_AXIS],
  1395. current_position[Z_AXIS]);
  1396. // turn off magnet
  1397. digitalWrite(SERVO0_PIN, LOW);
  1398. } else {
  1399. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1400. z_loc = Z_RAISE_BEFORE_PROBING;
  1401. else
  1402. z_loc = current_position[Z_AXIS];
  1403. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1404. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1405. // turn on magnet
  1406. digitalWrite(SERVO0_PIN, HIGH);
  1407. }
  1408. }
  1409. #endif
  1410. /**
  1411. *
  1412. * G-Code Handler functions
  1413. *
  1414. */
  1415. /**
  1416. * G0, G1: Coordinated movement of X Y Z E axes
  1417. */
  1418. inline void gcode_G0_G1() {
  1419. if (!Stopped) {
  1420. get_coordinates(); // For X Y Z E F
  1421. #ifdef FWRETRACT
  1422. if (autoretract_enabled)
  1423. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1424. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1425. // Is this move an attempt to retract or recover?
  1426. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1427. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1428. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1429. retract(!retracted[active_extruder]);
  1430. return;
  1431. }
  1432. }
  1433. #endif //FWRETRACT
  1434. prepare_move();
  1435. //ClearToSend();
  1436. }
  1437. }
  1438. /**
  1439. * G2: Clockwise Arc
  1440. * G3: Counterclockwise Arc
  1441. */
  1442. inline void gcode_G2_G3(bool clockwise) {
  1443. if (!Stopped) {
  1444. get_arc_coordinates();
  1445. prepare_arc_move(clockwise);
  1446. }
  1447. }
  1448. /**
  1449. * G4: Dwell S<seconds> or P<milliseconds>
  1450. */
  1451. inline void gcode_G4() {
  1452. unsigned long codenum=0;
  1453. LCD_MESSAGEPGM(MSG_DWELL);
  1454. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1455. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1456. st_synchronize();
  1457. previous_millis_cmd = millis();
  1458. codenum += previous_millis_cmd; // keep track of when we started waiting
  1459. while(millis() < codenum) {
  1460. manage_heater();
  1461. manage_inactivity();
  1462. lcd_update();
  1463. }
  1464. }
  1465. #ifdef FWRETRACT
  1466. /**
  1467. * G10 - Retract filament according to settings of M207
  1468. * G11 - Recover filament according to settings of M208
  1469. */
  1470. inline void gcode_G10_G11(bool doRetract=false) {
  1471. #if EXTRUDERS > 1
  1472. if (doRetract) {
  1473. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1474. }
  1475. #endif
  1476. retract(doRetract
  1477. #if EXTRUDERS > 1
  1478. , retracted_swap[active_extruder]
  1479. #endif
  1480. );
  1481. }
  1482. #endif //FWRETRACT
  1483. /**
  1484. * G28: Home all axes, one at a time
  1485. */
  1486. inline void gcode_G28() {
  1487. #ifdef ENABLE_AUTO_BED_LEVELING
  1488. #ifdef DELTA
  1489. reset_bed_level();
  1490. #else
  1491. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1492. #endif
  1493. #endif
  1494. saved_feedrate = feedrate;
  1495. saved_feedmultiply = feedmultiply;
  1496. feedmultiply = 100;
  1497. previous_millis_cmd = millis();
  1498. enable_endstops(true);
  1499. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
  1500. feedrate = 0.0;
  1501. #ifdef DELTA
  1502. // A delta can only safely home all axis at the same time
  1503. // all axis have to home at the same time
  1504. // Move all carriages up together until the first endstop is hit.
  1505. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1506. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1507. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1508. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1509. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1510. st_synchronize();
  1511. endstops_hit_on_purpose();
  1512. // Destination reached
  1513. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1514. // take care of back off and rehome now we are all at the top
  1515. HOMEAXIS(X);
  1516. HOMEAXIS(Y);
  1517. HOMEAXIS(Z);
  1518. calculate_delta(current_position);
  1519. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1520. #else // NOT DELTA
  1521. home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
  1522. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1523. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1524. HOMEAXIS(Z);
  1525. }
  1526. #endif
  1527. #ifdef QUICK_HOME
  1528. if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
  1529. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1530. #ifndef DUAL_X_CARRIAGE
  1531. int x_axis_home_dir = home_dir(X_AXIS);
  1532. #else
  1533. int x_axis_home_dir = x_home_dir(active_extruder);
  1534. extruder_duplication_enabled = false;
  1535. #endif
  1536. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1537. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1538. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1539. feedrate = homing_feedrate[X_AXIS];
  1540. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1541. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1542. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1543. } else {
  1544. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1545. }
  1546. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1547. st_synchronize();
  1548. axis_is_at_home(X_AXIS);
  1549. axis_is_at_home(Y_AXIS);
  1550. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1551. destination[X_AXIS] = current_position[X_AXIS];
  1552. destination[Y_AXIS] = current_position[Y_AXIS];
  1553. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1554. feedrate = 0.0;
  1555. st_synchronize();
  1556. endstops_hit_on_purpose();
  1557. current_position[X_AXIS] = destination[X_AXIS];
  1558. current_position[Y_AXIS] = destination[Y_AXIS];
  1559. #ifndef SCARA
  1560. current_position[Z_AXIS] = destination[Z_AXIS];
  1561. #endif
  1562. }
  1563. #endif //QUICK_HOME
  1564. if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
  1565. #ifdef DUAL_X_CARRIAGE
  1566. int tmp_extruder = active_extruder;
  1567. extruder_duplication_enabled = false;
  1568. active_extruder = !active_extruder;
  1569. HOMEAXIS(X);
  1570. inactive_extruder_x_pos = current_position[X_AXIS];
  1571. active_extruder = tmp_extruder;
  1572. HOMEAXIS(X);
  1573. // reset state used by the different modes
  1574. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1575. delayed_move_time = 0;
  1576. active_extruder_parked = true;
  1577. #else
  1578. HOMEAXIS(X);
  1579. #endif
  1580. }
  1581. if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
  1582. if (code_seen(axis_codes[X_AXIS])) {
  1583. if (code_value_long() != 0) {
  1584. current_position[X_AXIS] = code_value()
  1585. #ifndef SCARA
  1586. + add_homing[X_AXIS]
  1587. #endif
  1588. ;
  1589. }
  1590. }
  1591. if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
  1592. current_position[Y_AXIS] = code_value()
  1593. #ifndef SCARA
  1594. + add_homing[Y_AXIS]
  1595. #endif
  1596. ;
  1597. }
  1598. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1599. #ifndef Z_SAFE_HOMING
  1600. if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
  1601. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1602. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1603. feedrate = max_feedrate[Z_AXIS];
  1604. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1605. st_synchronize();
  1606. #endif
  1607. HOMEAXIS(Z);
  1608. }
  1609. #else // Z_SAFE_HOMING
  1610. if (home_all_axis) {
  1611. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1612. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1613. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1614. feedrate = XY_TRAVEL_SPEED / 60;
  1615. current_position[Z_AXIS] = 0;
  1616. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1617. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1618. st_synchronize();
  1619. current_position[X_AXIS] = destination[X_AXIS];
  1620. current_position[Y_AXIS] = destination[Y_AXIS];
  1621. HOMEAXIS(Z);
  1622. }
  1623. // Let's see if X and Y are homed and probe is inside bed area.
  1624. if (code_seen(axis_codes[Z_AXIS])) {
  1625. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1626. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1627. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1628. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1629. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1630. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1631. current_position[Z_AXIS] = 0;
  1632. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1633. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1634. feedrate = max_feedrate[Z_AXIS];
  1635. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1636. st_synchronize();
  1637. HOMEAXIS(Z);
  1638. }
  1639. else {
  1640. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1641. SERIAL_ECHO_START;
  1642. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1643. }
  1644. }
  1645. else {
  1646. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1647. SERIAL_ECHO_START;
  1648. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1649. }
  1650. }
  1651. #endif // Z_SAFE_HOMING
  1652. #endif // Z_HOME_DIR < 0
  1653. if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  1654. current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
  1655. #ifdef ENABLE_AUTO_BED_LEVELING
  1656. if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
  1657. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1658. #endif
  1659. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1660. #endif // else DELTA
  1661. #ifdef SCARA
  1662. calculate_delta(current_position);
  1663. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1664. #endif
  1665. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1666. enable_endstops(false);
  1667. #endif
  1668. feedrate = saved_feedrate;
  1669. feedmultiply = saved_feedmultiply;
  1670. previous_millis_cmd = millis();
  1671. endstops_hit_on_purpose();
  1672. }
  1673. #ifdef ENABLE_AUTO_BED_LEVELING
  1674. /**
  1675. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1676. * Will fail if the printer has not been homed with G28.
  1677. *
  1678. * Enhanced G29 Auto Bed Leveling Probe Routine
  1679. *
  1680. * Parameters With AUTO_BED_LEVELING_GRID:
  1681. *
  1682. * P Set the size of the grid that will be probed (P x P points).
  1683. * Not supported by non-linear delta printer bed leveling.
  1684. * Example: "G29 P4"
  1685. *
  1686. * S Set the XY travel speed between probe points (in mm/min)
  1687. *
  1688. * V Set the verbose level (0-4). Example: "G29 V3"
  1689. *
  1690. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1691. * This is useful for manual bed leveling and finding flaws in the bed (to
  1692. * assist with part placement).
  1693. * Not supported by non-linear delta printer bed leveling.
  1694. *
  1695. * F Set the Front limit of the probing grid
  1696. * B Set the Back limit of the probing grid
  1697. * L Set the Left limit of the probing grid
  1698. * R Set the Right limit of the probing grid
  1699. *
  1700. * Global Parameters:
  1701. *
  1702. * E/e By default G29 engages / disengages the probe for each point.
  1703. * Include "E" to engage and disengage the probe just once.
  1704. * There's no extra effect if you have a fixed probe.
  1705. * Usage: "G29 E" or "G29 e"
  1706. *
  1707. */
  1708. inline void gcode_G29() {
  1709. // Prevent user from running a G29 without first homing in X and Y
  1710. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1711. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1712. SERIAL_ECHO_START;
  1713. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1714. return;
  1715. }
  1716. int verbose_level = 1;
  1717. float x_tmp, y_tmp, z_tmp, real_z;
  1718. if (code_seen('V') || code_seen('v')) {
  1719. verbose_level = code_value_long();
  1720. if (verbose_level < 0 || verbose_level > 4) {
  1721. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1722. return;
  1723. }
  1724. }
  1725. bool enhanced_g29 = code_seen('E') || code_seen('e');
  1726. #ifdef AUTO_BED_LEVELING_GRID
  1727. #ifndef DELTA
  1728. bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t');
  1729. #endif
  1730. if (verbose_level > 0)
  1731. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1732. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1733. #ifndef DELTA
  1734. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1735. if (auto_bed_leveling_grid_points < 2) {
  1736. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1737. return;
  1738. }
  1739. #endif
  1740. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1741. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1742. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1743. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1744. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1745. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1746. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1747. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1748. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1749. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1750. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1751. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1752. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1753. if (left_out || right_out || front_out || back_out) {
  1754. if (left_out) {
  1755. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1756. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1757. }
  1758. if (right_out) {
  1759. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1760. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1761. }
  1762. if (front_out) {
  1763. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1764. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1765. }
  1766. if (back_out) {
  1767. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1768. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1769. }
  1770. return;
  1771. }
  1772. #endif // AUTO_BED_LEVELING_GRID
  1773. #ifdef Z_PROBE_SLED
  1774. dock_sled(false); // engage (un-dock) the probe
  1775. #elif not defined(SERVO_ENDSTOPS)
  1776. engage_z_probe();
  1777. #endif
  1778. st_synchronize();
  1779. #ifdef DELTA
  1780. reset_bed_level();
  1781. #else
  1782. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1783. //vector_3 corrected_position = plan_get_position_mm();
  1784. //corrected_position.debug("position before G29");
  1785. plan_bed_level_matrix.set_to_identity();
  1786. vector_3 uncorrected_position = plan_get_position();
  1787. //uncorrected_position.debug("position during G29");
  1788. current_position[X_AXIS] = uncorrected_position.x;
  1789. current_position[Y_AXIS] = uncorrected_position.y;
  1790. current_position[Z_AXIS] = uncorrected_position.z;
  1791. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1792. #endif
  1793. setup_for_endstop_move();
  1794. feedrate = homing_feedrate[Z_AXIS];
  1795. #ifdef AUTO_BED_LEVELING_GRID
  1796. // probe at the points of a lattice grid
  1797. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1798. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1799. #ifndef DELTA
  1800. // solve the plane equation ax + by + d = z
  1801. // A is the matrix with rows [x y 1] for all the probed points
  1802. // B is the vector of the Z positions
  1803. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1804. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1805. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1806. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1807. eqnBVector[abl2], // "B" vector of Z points
  1808. mean = 0.0;
  1809. #else
  1810. delta_grid_spacing[0] = xGridSpacing;
  1811. delta_grid_spacing[1] = yGridSpacing;
  1812. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1813. if (code_seen(axis_codes[Z_AXIS])) {
  1814. z_offset += code_value();
  1815. }
  1816. #endif
  1817. int probePointCounter = 0;
  1818. bool zig = true;
  1819. for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++)
  1820. {
  1821. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1822. int xStart, xStop, xInc;
  1823. if (zig)
  1824. {
  1825. xStart = 0;
  1826. xStop = auto_bed_leveling_grid_points;
  1827. xInc = 1;
  1828. zig = false;
  1829. }
  1830. else
  1831. {
  1832. xStart = auto_bed_leveling_grid_points - 1;
  1833. xStop = -1;
  1834. xInc = -1;
  1835. zig = true;
  1836. }
  1837. #ifndef DELTA
  1838. // If topo_flag is set then don't zig-zag. Just scan in one direction.
  1839. // This gets the probe points in more readable order.
  1840. if (!topo_flag) zig = !zig;
  1841. #endif
  1842. for (int xCount=xStart; xCount != xStop; xCount += xInc)
  1843. {
  1844. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1845. // raise extruder
  1846. float measured_z,
  1847. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1848. #ifdef DELTA
  1849. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1850. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1851. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1852. continue;
  1853. #endif //DELTA
  1854. // Enhanced G29 - Do not retract servo between probes
  1855. ProbeAction act;
  1856. if (enhanced_g29) {
  1857. if (yProbe == front_probe_bed_position && xCount == 0)
  1858. act = ProbeEngage;
  1859. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1860. act = ProbeRetract;
  1861. else
  1862. act = ProbeStay;
  1863. }
  1864. else
  1865. act = ProbeEngageRetract;
  1866. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1867. #ifndef DELTA
  1868. mean += measured_z;
  1869. eqnBVector[probePointCounter] = measured_z;
  1870. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1871. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1872. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1873. #else
  1874. bed_level[xCount][yCount] = measured_z + z_offset;
  1875. #endif
  1876. probePointCounter++;
  1877. } //xProbe
  1878. } //yProbe
  1879. clean_up_after_endstop_move();
  1880. #ifndef DELTA
  1881. // solve lsq problem
  1882. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1883. mean /= abl2;
  1884. if (verbose_level) {
  1885. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1886. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1887. SERIAL_PROTOCOLPGM(" b: ");
  1888. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1889. SERIAL_PROTOCOLPGM(" d: ");
  1890. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1891. SERIAL_EOL;
  1892. if (verbose_level > 2) {
  1893. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1894. SERIAL_PROTOCOL_F(mean, 8);
  1895. SERIAL_EOL;
  1896. }
  1897. }
  1898. if (topo_flag) {
  1899. int xx, yy;
  1900. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  1901. #if TOPO_ORIGIN == OriginFrontLeft
  1902. SERIAL_PROTOCOLPGM("+-----------+\n");
  1903. SERIAL_PROTOCOLPGM("|...Back....|\n");
  1904. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  1905. SERIAL_PROTOCOLPGM("|...Front...|\n");
  1906. SERIAL_PROTOCOLPGM("+-----------+\n");
  1907. for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
  1908. #else
  1909. for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
  1910. #endif
  1911. {
  1912. #if TOPO_ORIGIN == OriginBackRight
  1913. for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
  1914. #else
  1915. for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
  1916. #endif
  1917. {
  1918. int ind =
  1919. #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
  1920. yy * auto_bed_leveling_grid_points + xx
  1921. #elif TOPO_ORIGIN == OriginBackLeft
  1922. xx * auto_bed_leveling_grid_points + yy
  1923. #elif TOPO_ORIGIN == OriginFrontRight
  1924. abl2 - xx * auto_bed_leveling_grid_points - yy - 1
  1925. #endif
  1926. ;
  1927. float diff = eqnBVector[ind] - mean;
  1928. if (diff >= 0.0)
  1929. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  1930. else
  1931. SERIAL_PROTOCOLPGM(" ");
  1932. SERIAL_PROTOCOL_F(diff, 5);
  1933. } // xx
  1934. SERIAL_EOL;
  1935. } // yy
  1936. SERIAL_EOL;
  1937. } //topo_flag
  1938. set_bed_level_equation_lsq(plane_equation_coefficients);
  1939. free(plane_equation_coefficients);
  1940. #else
  1941. extrapolate_unprobed_bed_level();
  1942. print_bed_level();
  1943. #endif
  1944. #else // !AUTO_BED_LEVELING_GRID
  1945. // Probe at 3 arbitrary points
  1946. float z_at_pt_1, z_at_pt_2, z_at_pt_3;
  1947. if (enhanced_g29) {
  1948. // Basic Enhanced G29
  1949. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage, verbose_level);
  1950. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay, verbose_level);
  1951. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract, verbose_level);
  1952. }
  1953. else {
  1954. z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, verbose_level=verbose_level);
  1955. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
  1956. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, verbose_level=verbose_level);
  1957. }
  1958. clean_up_after_endstop_move();
  1959. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1960. #endif // !AUTO_BED_LEVELING_GRID
  1961. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1962. st_synchronize();
  1963. #ifndef DELTA
  1964. if (verbose_level > 0)
  1965. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  1966. // Correct the Z height difference from z-probe position and hotend tip position.
  1967. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1968. // When the bed is uneven, this height must be corrected.
  1969. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1970. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1971. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1972. z_tmp = current_position[Z_AXIS];
  1973. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1974. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1975. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1976. #endif
  1977. #ifdef Z_PROBE_SLED
  1978. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  1979. #elif not defined(SERVO_ENDSTOPS)
  1980. retract_z_probe();
  1981. #endif
  1982. #ifdef Z_PROBE_END_SCRIPT
  1983. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  1984. st_synchronize();
  1985. #endif
  1986. }
  1987. #ifndef Z_PROBE_SLED
  1988. inline void gcode_G30() {
  1989. engage_z_probe(); // Engage Z Servo endstop if available
  1990. st_synchronize();
  1991. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1992. setup_for_endstop_move();
  1993. feedrate = homing_feedrate[Z_AXIS];
  1994. run_z_probe();
  1995. SERIAL_PROTOCOLPGM(MSG_BED);
  1996. SERIAL_PROTOCOLPGM(" X: ");
  1997. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  1998. SERIAL_PROTOCOLPGM(" Y: ");
  1999. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2000. SERIAL_PROTOCOLPGM(" Z: ");
  2001. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2002. SERIAL_EOL;
  2003. clean_up_after_endstop_move();
  2004. retract_z_probe(); // Retract Z Servo endstop if available
  2005. }
  2006. #endif //!Z_PROBE_SLED
  2007. #endif //ENABLE_AUTO_BED_LEVELING
  2008. /**
  2009. * G92: Set current position to given X Y Z E
  2010. */
  2011. inline void gcode_G92() {
  2012. if (!code_seen(axis_codes[E_AXIS]))
  2013. st_synchronize();
  2014. for (int i=0;i<NUM_AXIS;i++) {
  2015. if (code_seen(axis_codes[i])) {
  2016. if (i == E_AXIS) {
  2017. current_position[i] = code_value();
  2018. plan_set_e_position(current_position[E_AXIS]);
  2019. }
  2020. else {
  2021. current_position[i] = code_value() +
  2022. #ifdef SCARA
  2023. ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
  2024. #else
  2025. add_homing[i]
  2026. #endif
  2027. ;
  2028. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2029. }
  2030. }
  2031. }
  2032. }
  2033. #ifdef ULTIPANEL
  2034. /**
  2035. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2036. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2037. */
  2038. inline void gcode_M0_M1() {
  2039. char *src = strchr_pointer + 2;
  2040. unsigned long codenum = 0;
  2041. bool hasP = false, hasS = false;
  2042. if (code_seen('P')) {
  2043. codenum = code_value(); // milliseconds to wait
  2044. hasP = codenum > 0;
  2045. }
  2046. if (code_seen('S')) {
  2047. codenum = code_value() * 1000; // seconds to wait
  2048. hasS = codenum > 0;
  2049. }
  2050. char* starpos = strchr(src, '*');
  2051. if (starpos != NULL) *(starpos) = '\0';
  2052. while (*src == ' ') ++src;
  2053. if (!hasP && !hasS && *src != '\0')
  2054. lcd_setstatus(src);
  2055. else
  2056. LCD_MESSAGEPGM(MSG_USERWAIT);
  2057. lcd_ignore_click();
  2058. st_synchronize();
  2059. previous_millis_cmd = millis();
  2060. if (codenum > 0) {
  2061. codenum += previous_millis_cmd; // keep track of when we started waiting
  2062. while(millis() < codenum && !lcd_clicked()) {
  2063. manage_heater();
  2064. manage_inactivity();
  2065. lcd_update();
  2066. }
  2067. lcd_ignore_click(false);
  2068. }
  2069. else {
  2070. if (!lcd_detected()) return;
  2071. while (!lcd_clicked()) {
  2072. manage_heater();
  2073. manage_inactivity();
  2074. lcd_update();
  2075. }
  2076. }
  2077. if (IS_SD_PRINTING)
  2078. LCD_MESSAGEPGM(MSG_RESUMING);
  2079. else
  2080. LCD_MESSAGEPGM(WELCOME_MSG);
  2081. }
  2082. #endif // ULTIPANEL
  2083. /**
  2084. * M17: Enable power on all stepper motors
  2085. */
  2086. inline void gcode_M17() {
  2087. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2088. enable_x();
  2089. enable_y();
  2090. enable_z();
  2091. enable_e0();
  2092. enable_e1();
  2093. enable_e2();
  2094. enable_e3();
  2095. }
  2096. #ifdef SDSUPPORT
  2097. /**
  2098. * M20: List SD card to serial output
  2099. */
  2100. inline void gcode_M20() {
  2101. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2102. card.ls();
  2103. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2104. }
  2105. /**
  2106. * M21: Init SD Card
  2107. */
  2108. inline void gcode_M21() {
  2109. card.initsd();
  2110. }
  2111. /**
  2112. * M22: Release SD Card
  2113. */
  2114. inline void gcode_M22() {
  2115. card.release();
  2116. }
  2117. /**
  2118. * M23: Select a file
  2119. */
  2120. inline void gcode_M23() {
  2121. char* codepos = strchr_pointer + 4;
  2122. char* starpos = strchr(codepos, '*');
  2123. if (starpos) *starpos = '\0';
  2124. card.openFile(codepos, true);
  2125. }
  2126. /**
  2127. * M24: Start SD Print
  2128. */
  2129. inline void gcode_M24() {
  2130. card.startFileprint();
  2131. starttime = millis();
  2132. }
  2133. /**
  2134. * M25: Pause SD Print
  2135. */
  2136. inline void gcode_M25() {
  2137. card.pauseSDPrint();
  2138. }
  2139. /**
  2140. * M26: Set SD Card file index
  2141. */
  2142. inline void gcode_M26() {
  2143. if (card.cardOK && code_seen('S'))
  2144. card.setIndex(code_value_long());
  2145. }
  2146. /**
  2147. * M27: Get SD Card status
  2148. */
  2149. inline void gcode_M27() {
  2150. card.getStatus();
  2151. }
  2152. /**
  2153. * M28: Start SD Write
  2154. */
  2155. inline void gcode_M28() {
  2156. char* codepos = strchr_pointer + 4;
  2157. char* starpos = strchr(codepos, '*');
  2158. if (starpos) {
  2159. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2160. strchr_pointer = strchr(npos, ' ') + 1;
  2161. *(starpos) = '\0';
  2162. }
  2163. card.openFile(codepos, false);
  2164. }
  2165. /**
  2166. * M29: Stop SD Write
  2167. * Processed in write to file routine above
  2168. */
  2169. inline void gcode_M29() {
  2170. // card.saving = false;
  2171. }
  2172. /**
  2173. * M30 <filename>: Delete SD Card file
  2174. */
  2175. inline void gcode_M30() {
  2176. if (card.cardOK) {
  2177. card.closefile();
  2178. char* starpos = strchr(strchr_pointer + 4, '*');
  2179. if (starpos) {
  2180. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2181. strchr_pointer = strchr(npos, ' ') + 1;
  2182. *(starpos) = '\0';
  2183. }
  2184. card.removeFile(strchr_pointer + 4);
  2185. }
  2186. }
  2187. #endif
  2188. /**
  2189. * M31: Get the time since the start of SD Print (or last M109)
  2190. */
  2191. inline void gcode_M31() {
  2192. stoptime = millis();
  2193. unsigned long t = (stoptime - starttime) / 1000;
  2194. int min = t / 60, sec = t % 60;
  2195. char time[30];
  2196. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2197. SERIAL_ECHO_START;
  2198. SERIAL_ECHOLN(time);
  2199. lcd_setstatus(time);
  2200. autotempShutdown();
  2201. }
  2202. #ifdef SDSUPPORT
  2203. /**
  2204. * M32: Select file and start SD Print
  2205. */
  2206. inline void gcode_M32() {
  2207. if (card.sdprinting)
  2208. st_synchronize();
  2209. char* codepos = strchr_pointer + 4;
  2210. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2211. if (! namestartpos)
  2212. namestartpos = codepos; //default name position, 4 letters after the M
  2213. else
  2214. namestartpos++; //to skip the '!'
  2215. char* starpos = strchr(codepos, '*');
  2216. if (starpos) *(starpos) = '\0';
  2217. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2218. if (card.cardOK) {
  2219. card.openFile(namestartpos, true, !call_procedure);
  2220. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2221. card.setIndex(code_value_long());
  2222. card.startFileprint();
  2223. if (!call_procedure)
  2224. starttime = millis(); //procedure calls count as normal print time.
  2225. }
  2226. }
  2227. /**
  2228. * M928: Start SD Write
  2229. */
  2230. inline void gcode_M928() {
  2231. char* starpos = strchr(strchr_pointer + 5, '*');
  2232. if (starpos) {
  2233. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2234. strchr_pointer = strchr(npos, ' ') + 1;
  2235. *(starpos) = '\0';
  2236. }
  2237. card.openLogFile(strchr_pointer + 5);
  2238. }
  2239. #endif // SDSUPPORT
  2240. /**
  2241. * M42: Change pin status via GCode
  2242. */
  2243. inline void gcode_M42() {
  2244. if (code_seen('S')) {
  2245. int pin_status = code_value(),
  2246. pin_number = LED_PIN;
  2247. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2248. pin_number = code_value();
  2249. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2250. if (sensitive_pins[i] == pin_number) {
  2251. pin_number = -1;
  2252. break;
  2253. }
  2254. }
  2255. #if defined(FAN_PIN) && FAN_PIN > -1
  2256. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2257. #endif
  2258. if (pin_number > -1) {
  2259. pinMode(pin_number, OUTPUT);
  2260. digitalWrite(pin_number, pin_status);
  2261. analogWrite(pin_number, pin_status);
  2262. }
  2263. } // code_seen('S')
  2264. }
  2265. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2266. #if Z_MIN_PIN == -1
  2267. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2268. #endif
  2269. /**
  2270. * M48: Z-Probe repeatability measurement function.
  2271. *
  2272. * Usage:
  2273. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2274. * n = Number of samples (4-50, default 10)
  2275. * X = Sample X position
  2276. * Y = Sample Y position
  2277. * V = Verbose level (0-4, default=1)
  2278. * E = Engage probe for each reading
  2279. * L = Number of legs of movement before probe
  2280. *
  2281. * This function assumes the bed has been homed. Specificaly, that a G28 command
  2282. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2283. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2284. * regenerated.
  2285. *
  2286. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2287. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2288. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2289. */
  2290. inline void gcode_M48() {
  2291. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2292. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2293. double X_current, Y_current, Z_current;
  2294. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2295. if (code_seen('V') || code_seen('v')) {
  2296. verbose_level = code_value();
  2297. if (verbose_level < 0 || verbose_level > 4 ) {
  2298. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2299. return;
  2300. }
  2301. }
  2302. if (verbose_level > 0)
  2303. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2304. if (code_seen('n')) {
  2305. n_samples = code_value();
  2306. if (n_samples < 4 || n_samples > 50) {
  2307. SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
  2308. return;
  2309. }
  2310. }
  2311. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2312. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2313. Z_current = st_get_position_mm(Z_AXIS);
  2314. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2315. ext_position = st_get_position_mm(E_AXIS);
  2316. if (code_seen('E') || code_seen('e'))
  2317. engage_probe_for_each_reading++;
  2318. if (code_seen('X') || code_seen('x')) {
  2319. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2320. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2321. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2322. return;
  2323. }
  2324. }
  2325. if (code_seen('Y') || code_seen('y')) {
  2326. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2327. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2328. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2329. return;
  2330. }
  2331. }
  2332. if (code_seen('L') || code_seen('l')) {
  2333. n_legs = code_value();
  2334. if (n_legs == 1) n_legs = 2;
  2335. if (n_legs < 0 || n_legs > 15) {
  2336. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
  2337. return;
  2338. }
  2339. }
  2340. //
  2341. // Do all the preliminary setup work. First raise the probe.
  2342. //
  2343. st_synchronize();
  2344. plan_bed_level_matrix.set_to_identity();
  2345. plan_buffer_line(X_current, Y_current, Z_start_location,
  2346. ext_position,
  2347. homing_feedrate[Z_AXIS] / 60,
  2348. active_extruder);
  2349. st_synchronize();
  2350. //
  2351. // Now get everything to the specified probe point So we can safely do a probe to
  2352. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2353. // use that as a starting point for each probe.
  2354. //
  2355. if (verbose_level > 2)
  2356. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2357. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2358. ext_position,
  2359. homing_feedrate[X_AXIS]/60,
  2360. active_extruder);
  2361. st_synchronize();
  2362. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2363. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2364. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2365. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2366. //
  2367. // OK, do the inital probe to get us close to the bed.
  2368. // Then retrace the right amount and use that in subsequent probes
  2369. //
  2370. engage_z_probe();
  2371. setup_for_endstop_move();
  2372. run_z_probe();
  2373. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2374. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2375. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2376. ext_position,
  2377. homing_feedrate[X_AXIS]/60,
  2378. active_extruder);
  2379. st_synchronize();
  2380. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2381. if (engage_probe_for_each_reading) retract_z_probe();
  2382. for (n=0; n < n_samples; n++) {
  2383. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2384. if (n_legs) {
  2385. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2386. int l;
  2387. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2388. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2389. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2390. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2391. //SERIAL_ECHOPAIR(" theta: ",theta);
  2392. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2393. //SERIAL_PROTOCOLLNPGM("");
  2394. float dir = rotational_direction ? 1 : -1;
  2395. for (l = 0; l < n_legs - 1; l++) {
  2396. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2397. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2398. if (radius < 0.0) radius = -radius;
  2399. X_current = X_probe_location + cos(theta) * radius;
  2400. Y_current = Y_probe_location + sin(theta) * radius;
  2401. // Make sure our X & Y are sane
  2402. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2403. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2404. if (verbose_level > 3) {
  2405. SERIAL_ECHOPAIR("x: ", X_current);
  2406. SERIAL_ECHOPAIR("y: ", Y_current);
  2407. SERIAL_PROTOCOLLNPGM("");
  2408. }
  2409. do_blocking_move_to( X_current, Y_current, Z_current );
  2410. }
  2411. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2412. }
  2413. if (engage_probe_for_each_reading) {
  2414. engage_z_probe();
  2415. delay(1000);
  2416. }
  2417. setup_for_endstop_move();
  2418. run_z_probe();
  2419. sample_set[n] = current_position[Z_AXIS];
  2420. //
  2421. // Get the current mean for the data points we have so far
  2422. //
  2423. sum = 0.0;
  2424. for (j=0; j<=n; j++) sum += sample_set[j];
  2425. mean = sum / (double (n+1));
  2426. //
  2427. // Now, use that mean to calculate the standard deviation for the
  2428. // data points we have so far
  2429. //
  2430. sum = 0.0;
  2431. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2432. sigma = sqrt( sum / (double (n+1)) );
  2433. if (verbose_level > 1) {
  2434. SERIAL_PROTOCOL(n+1);
  2435. SERIAL_PROTOCOL(" of ");
  2436. SERIAL_PROTOCOL(n_samples);
  2437. SERIAL_PROTOCOLPGM(" z: ");
  2438. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2439. }
  2440. if (verbose_level > 2) {
  2441. SERIAL_PROTOCOL(" mean: ");
  2442. SERIAL_PROTOCOL_F(mean,6);
  2443. SERIAL_PROTOCOL(" sigma: ");
  2444. SERIAL_PROTOCOL_F(sigma,6);
  2445. }
  2446. if (verbose_level > 0) SERIAL_EOL;
  2447. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2448. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2449. st_synchronize();
  2450. if (engage_probe_for_each_reading) {
  2451. retract_z_probe();
  2452. delay(1000);
  2453. }
  2454. }
  2455. retract_z_probe();
  2456. delay(1000);
  2457. clean_up_after_endstop_move();
  2458. // enable_endstops(true);
  2459. if (verbose_level > 0) {
  2460. SERIAL_PROTOCOLPGM("Mean: ");
  2461. SERIAL_PROTOCOL_F(mean, 6);
  2462. SERIAL_EOL;
  2463. }
  2464. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2465. SERIAL_PROTOCOL_F(sigma, 6);
  2466. SERIAL_EOL; SERIAL_EOL;
  2467. }
  2468. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2469. /**
  2470. * M104: Set hot end temperature
  2471. */
  2472. inline void gcode_M104() {
  2473. if (setTargetedHotend(104)) return;
  2474. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2475. #ifdef DUAL_X_CARRIAGE
  2476. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2477. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2478. #endif
  2479. setWatch();
  2480. }
  2481. /**
  2482. * M105: Read hot end and bed temperature
  2483. */
  2484. inline void gcode_M105() {
  2485. if (setTargetedHotend(105)) return;
  2486. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2487. SERIAL_PROTOCOLPGM("ok T:");
  2488. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2489. SERIAL_PROTOCOLPGM(" /");
  2490. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2491. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2492. SERIAL_PROTOCOLPGM(" B:");
  2493. SERIAL_PROTOCOL_F(degBed(),1);
  2494. SERIAL_PROTOCOLPGM(" /");
  2495. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2496. #endif //TEMP_BED_PIN
  2497. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2498. SERIAL_PROTOCOLPGM(" T");
  2499. SERIAL_PROTOCOL(cur_extruder);
  2500. SERIAL_PROTOCOLPGM(":");
  2501. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2502. SERIAL_PROTOCOLPGM(" /");
  2503. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2504. }
  2505. #else
  2506. SERIAL_ERROR_START;
  2507. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2508. #endif
  2509. SERIAL_PROTOCOLPGM(" @:");
  2510. #ifdef EXTRUDER_WATTS
  2511. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2512. SERIAL_PROTOCOLPGM("W");
  2513. #else
  2514. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2515. #endif
  2516. SERIAL_PROTOCOLPGM(" B@:");
  2517. #ifdef BED_WATTS
  2518. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2519. SERIAL_PROTOCOLPGM("W");
  2520. #else
  2521. SERIAL_PROTOCOL(getHeaterPower(-1));
  2522. #endif
  2523. #ifdef SHOW_TEMP_ADC_VALUES
  2524. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2525. SERIAL_PROTOCOLPGM(" ADC B:");
  2526. SERIAL_PROTOCOL_F(degBed(),1);
  2527. SERIAL_PROTOCOLPGM("C->");
  2528. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2529. #endif
  2530. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2531. SERIAL_PROTOCOLPGM(" T");
  2532. SERIAL_PROTOCOL(cur_extruder);
  2533. SERIAL_PROTOCOLPGM(":");
  2534. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2535. SERIAL_PROTOCOLPGM("C->");
  2536. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2537. }
  2538. #endif
  2539. SERIAL_PROTOCOLLN("");
  2540. }
  2541. #if defined(FAN_PIN) && FAN_PIN > -1
  2542. /**
  2543. * M106: Set Fan Speed
  2544. */
  2545. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2546. /**
  2547. * M107: Fan Off
  2548. */
  2549. inline void gcode_M107() { fanSpeed = 0; }
  2550. #endif //FAN_PIN
  2551. /**
  2552. * M109: Wait for extruder(s) to reach temperature
  2553. */
  2554. inline void gcode_M109() {
  2555. if (setTargetedHotend(109)) return;
  2556. LCD_MESSAGEPGM(MSG_HEATING);
  2557. CooldownNoWait = code_seen('S');
  2558. if (CooldownNoWait || code_seen('R')) {
  2559. setTargetHotend(code_value(), tmp_extruder);
  2560. #ifdef DUAL_X_CARRIAGE
  2561. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2562. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2563. #endif
  2564. }
  2565. #ifdef AUTOTEMP
  2566. autotemp_enabled = code_seen('F');
  2567. if (autotemp_enabled) autotemp_factor = code_value();
  2568. if (code_seen('S')) autotemp_min = code_value();
  2569. if (code_seen('B')) autotemp_max = code_value();
  2570. #endif
  2571. setWatch();
  2572. unsigned long timetemp = millis();
  2573. /* See if we are heating up or cooling down */
  2574. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2575. cancel_heatup = false;
  2576. #ifdef TEMP_RESIDENCY_TIME
  2577. long residencyStart = -1;
  2578. /* continue to loop until we have reached the target temp
  2579. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2580. while((!cancel_heatup)&&((residencyStart == -1) ||
  2581. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2582. #else
  2583. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2584. #endif //TEMP_RESIDENCY_TIME
  2585. { // while loop
  2586. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2587. SERIAL_PROTOCOLPGM("T:");
  2588. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2589. SERIAL_PROTOCOLPGM(" E:");
  2590. SERIAL_PROTOCOL((int)tmp_extruder);
  2591. #ifdef TEMP_RESIDENCY_TIME
  2592. SERIAL_PROTOCOLPGM(" W:");
  2593. if (residencyStart > -1) {
  2594. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2595. SERIAL_PROTOCOLLN( timetemp );
  2596. }
  2597. else {
  2598. SERIAL_PROTOCOLLN( "?" );
  2599. }
  2600. #else
  2601. SERIAL_PROTOCOLLN("");
  2602. #endif
  2603. timetemp = millis();
  2604. }
  2605. manage_heater();
  2606. manage_inactivity();
  2607. lcd_update();
  2608. #ifdef TEMP_RESIDENCY_TIME
  2609. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2610. // or when current temp falls outside the hysteresis after target temp was reached
  2611. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2612. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2613. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2614. {
  2615. residencyStart = millis();
  2616. }
  2617. #endif //TEMP_RESIDENCY_TIME
  2618. }
  2619. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2620. starttime = previous_millis_cmd = millis();
  2621. }
  2622. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2623. /**
  2624. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2625. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2626. */
  2627. inline void gcode_M190() {
  2628. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2629. CooldownNoWait = code_seen('S');
  2630. if (CooldownNoWait || code_seen('R'))
  2631. setTargetBed(code_value());
  2632. unsigned long timetemp = millis();
  2633. cancel_heatup = false;
  2634. target_direction = isHeatingBed(); // true if heating, false if cooling
  2635. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2636. unsigned long ms = millis();
  2637. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2638. timetemp = ms;
  2639. float tt = degHotend(active_extruder);
  2640. SERIAL_PROTOCOLPGM("T:");
  2641. SERIAL_PROTOCOL(tt);
  2642. SERIAL_PROTOCOLPGM(" E:");
  2643. SERIAL_PROTOCOL((int)active_extruder);
  2644. SERIAL_PROTOCOLPGM(" B:");
  2645. SERIAL_PROTOCOL_F(degBed(), 1);
  2646. SERIAL_PROTOCOLLN("");
  2647. }
  2648. manage_heater();
  2649. manage_inactivity();
  2650. lcd_update();
  2651. }
  2652. LCD_MESSAGEPGM(MSG_BED_DONE);
  2653. previous_millis_cmd = millis();
  2654. }
  2655. #endif // TEMP_BED_PIN > -1
  2656. /**
  2657. * M112: Emergency Stop
  2658. */
  2659. inline void gcode_M112() {
  2660. kill();
  2661. }
  2662. #ifdef BARICUDA
  2663. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2664. /**
  2665. * M126: Heater 1 valve open
  2666. */
  2667. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2668. /**
  2669. * M127: Heater 1 valve close
  2670. */
  2671. inline void gcode_M127() { ValvePressure = 0; }
  2672. #endif
  2673. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2674. /**
  2675. * M128: Heater 2 valve open
  2676. */
  2677. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2678. /**
  2679. * M129: Heater 2 valve close
  2680. */
  2681. inline void gcode_M129() { EtoPPressure = 0; }
  2682. #endif
  2683. #endif //BARICUDA
  2684. /**
  2685. * M140: Set bed temperature
  2686. */
  2687. inline void gcode_M140() {
  2688. if (code_seen('S')) setTargetBed(code_value());
  2689. }
  2690. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2691. /**
  2692. * M80: Turn on Power Supply
  2693. */
  2694. inline void gcode_M80() {
  2695. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2696. // If you have a switch on suicide pin, this is useful
  2697. // if you want to start another print with suicide feature after
  2698. // a print without suicide...
  2699. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2700. OUT_WRITE(SUICIDE_PIN, HIGH);
  2701. #endif
  2702. #ifdef ULTIPANEL
  2703. powersupply = true;
  2704. LCD_MESSAGEPGM(WELCOME_MSG);
  2705. lcd_update();
  2706. #endif
  2707. }
  2708. #endif // PS_ON_PIN
  2709. /**
  2710. * M81: Turn off Power Supply
  2711. */
  2712. inline void gcode_M81() {
  2713. disable_heater();
  2714. st_synchronize();
  2715. disable_e0();
  2716. disable_e1();
  2717. disable_e2();
  2718. disable_e3();
  2719. finishAndDisableSteppers();
  2720. fanSpeed = 0;
  2721. delay(1000); // Wait 1 second before switching off
  2722. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2723. st_synchronize();
  2724. suicide();
  2725. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2726. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2727. #endif
  2728. #ifdef ULTIPANEL
  2729. powersupply = false;
  2730. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2731. lcd_update();
  2732. #endif
  2733. }
  2734. /**
  2735. * M82: Set E codes absolute (default)
  2736. */
  2737. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2738. /**
  2739. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2740. */
  2741. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2742. /**
  2743. * M18, M84: Disable all stepper motors
  2744. */
  2745. inline void gcode_M18_M84() {
  2746. if (code_seen('S')) {
  2747. stepper_inactive_time = code_value() * 1000;
  2748. }
  2749. else {
  2750. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2751. if (all_axis) {
  2752. st_synchronize();
  2753. disable_e0();
  2754. disable_e1();
  2755. disable_e2();
  2756. disable_e3();
  2757. finishAndDisableSteppers();
  2758. }
  2759. else {
  2760. st_synchronize();
  2761. if (code_seen('X')) disable_x();
  2762. if (code_seen('Y')) disable_y();
  2763. if (code_seen('Z')) disable_z();
  2764. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2765. if (code_seen('E')) {
  2766. disable_e0();
  2767. disable_e1();
  2768. disable_e2();
  2769. disable_e3();
  2770. }
  2771. #endif
  2772. }
  2773. }
  2774. }
  2775. /**
  2776. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2777. */
  2778. inline void gcode_M85() {
  2779. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2780. }
  2781. /**
  2782. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2783. */
  2784. inline void gcode_M92() {
  2785. for(int8_t i=0; i < NUM_AXIS; i++) {
  2786. if (code_seen(axis_codes[i])) {
  2787. if (i == E_AXIS) {
  2788. float value = code_value();
  2789. if (value < 20.0) {
  2790. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2791. max_e_jerk *= factor;
  2792. max_feedrate[i] *= factor;
  2793. axis_steps_per_sqr_second[i] *= factor;
  2794. }
  2795. axis_steps_per_unit[i] = value;
  2796. }
  2797. else {
  2798. axis_steps_per_unit[i] = code_value();
  2799. }
  2800. }
  2801. }
  2802. }
  2803. /**
  2804. * M114: Output current position to serial port
  2805. */
  2806. inline void gcode_M114() {
  2807. SERIAL_PROTOCOLPGM("X:");
  2808. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2809. SERIAL_PROTOCOLPGM(" Y:");
  2810. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2811. SERIAL_PROTOCOLPGM(" Z:");
  2812. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2813. SERIAL_PROTOCOLPGM(" E:");
  2814. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2815. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2816. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2817. SERIAL_PROTOCOLPGM(" Y:");
  2818. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2819. SERIAL_PROTOCOLPGM(" Z:");
  2820. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2821. SERIAL_PROTOCOLLN("");
  2822. #ifdef SCARA
  2823. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2824. SERIAL_PROTOCOL(delta[X_AXIS]);
  2825. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2826. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2827. SERIAL_PROTOCOLLN("");
  2828. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2829. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2830. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2831. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2832. SERIAL_PROTOCOLLN("");
  2833. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2834. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2835. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2836. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2837. SERIAL_PROTOCOLLN("");
  2838. SERIAL_PROTOCOLLN("");
  2839. #endif
  2840. }
  2841. /**
  2842. * M115: Capabilities string
  2843. */
  2844. inline void gcode_M115() {
  2845. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2846. }
  2847. /**
  2848. * M117: Set LCD Status Message
  2849. */
  2850. inline void gcode_M117() {
  2851. char* codepos = strchr_pointer + 5;
  2852. char* starpos = strchr(codepos, '*');
  2853. if (starpos) *starpos = '\0';
  2854. lcd_setstatus(codepos);
  2855. }
  2856. /**
  2857. * M119: Output endstop states to serial output
  2858. */
  2859. inline void gcode_M119() {
  2860. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2861. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2862. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2863. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2864. #endif
  2865. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2866. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2867. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2868. #endif
  2869. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2870. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2871. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2872. #endif
  2873. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2874. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2875. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2876. #endif
  2877. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2878. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2879. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2880. #endif
  2881. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2882. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2883. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2884. #endif
  2885. }
  2886. /**
  2887. * M120: Enable endstops
  2888. */
  2889. inline void gcode_M120() { enable_endstops(false); }
  2890. /**
  2891. * M121: Disable endstops
  2892. */
  2893. inline void gcode_M121() { enable_endstops(true); }
  2894. #ifdef BLINKM
  2895. /**
  2896. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2897. */
  2898. inline void gcode_M150() {
  2899. SendColors(
  2900. code_seen('R') ? (byte)code_value() : 0,
  2901. code_seen('U') ? (byte)code_value() : 0,
  2902. code_seen('B') ? (byte)code_value() : 0
  2903. );
  2904. }
  2905. #endif // BLINKM
  2906. /**
  2907. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2908. * T<extruder>
  2909. * D<millimeters>
  2910. */
  2911. inline void gcode_M200() {
  2912. tmp_extruder = active_extruder;
  2913. if (code_seen('T')) {
  2914. tmp_extruder = code_value();
  2915. if (tmp_extruder >= EXTRUDERS) {
  2916. SERIAL_ECHO_START;
  2917. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2918. return;
  2919. }
  2920. }
  2921. float area = .0;
  2922. if (code_seen('D')) {
  2923. float diameter = code_value();
  2924. // setting any extruder filament size disables volumetric on the assumption that
  2925. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2926. // for all extruders
  2927. volumetric_enabled = (diameter != 0.0);
  2928. if (volumetric_enabled) {
  2929. filament_size[tmp_extruder] = diameter;
  2930. // make sure all extruders have some sane value for the filament size
  2931. for (int i=0; i<EXTRUDERS; i++)
  2932. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2933. }
  2934. }
  2935. else {
  2936. //reserved for setting filament diameter via UFID or filament measuring device
  2937. return;
  2938. }
  2939. calculate_volumetric_multipliers();
  2940. }
  2941. /**
  2942. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2943. */
  2944. inline void gcode_M201() {
  2945. for (int8_t i=0; i < NUM_AXIS; i++) {
  2946. if (code_seen(axis_codes[i])) {
  2947. max_acceleration_units_per_sq_second[i] = code_value();
  2948. }
  2949. }
  2950. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2951. reset_acceleration_rates();
  2952. }
  2953. #if 0 // Not used for Sprinter/grbl gen6
  2954. inline void gcode_M202() {
  2955. for(int8_t i=0; i < NUM_AXIS; i++) {
  2956. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2957. }
  2958. }
  2959. #endif
  2960. /**
  2961. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2962. */
  2963. inline void gcode_M203() {
  2964. for (int8_t i=0; i < NUM_AXIS; i++) {
  2965. if (code_seen(axis_codes[i])) {
  2966. max_feedrate[i] = code_value();
  2967. }
  2968. }
  2969. }
  2970. /**
  2971. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  2972. *
  2973. * P = Printing moves
  2974. * R = Retract only (no X, Y, Z) moves
  2975. * T = Travel (non printing) moves
  2976. *
  2977. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2978. */
  2979. inline void gcode_M204() {
  2980. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  2981. {
  2982. acceleration = code_value();
  2983. travel_acceleration = acceleration;
  2984. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  2985. SERIAL_EOL;
  2986. }
  2987. if (code_seen('P'))
  2988. {
  2989. acceleration = code_value();
  2990. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  2991. SERIAL_EOL;
  2992. }
  2993. if (code_seen('R'))
  2994. {
  2995. retract_acceleration = code_value();
  2996. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  2997. SERIAL_EOL;
  2998. }
  2999. if (code_seen('T'))
  3000. {
  3001. travel_acceleration = code_value();
  3002. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3003. SERIAL_EOL;
  3004. }
  3005. }
  3006. /**
  3007. * M205: Set Advanced Settings
  3008. *
  3009. * S = Min Feed Rate (mm/s)
  3010. * T = Min Travel Feed Rate (mm/s)
  3011. * B = Min Segment Time (µs)
  3012. * X = Max XY Jerk (mm/s/s)
  3013. * Z = Max Z Jerk (mm/s/s)
  3014. * E = Max E Jerk (mm/s/s)
  3015. */
  3016. inline void gcode_M205() {
  3017. if (code_seen('S')) minimumfeedrate = code_value();
  3018. if (code_seen('T')) mintravelfeedrate = code_value();
  3019. if (code_seen('B')) minsegmenttime = code_value();
  3020. if (code_seen('X')) max_xy_jerk = code_value();
  3021. if (code_seen('Z')) max_z_jerk = code_value();
  3022. if (code_seen('E')) max_e_jerk = code_value();
  3023. }
  3024. /**
  3025. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3026. */
  3027. inline void gcode_M206() {
  3028. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3029. if (code_seen(axis_codes[i])) {
  3030. add_homing[i] = code_value();
  3031. }
  3032. }
  3033. #ifdef SCARA
  3034. if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
  3035. if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
  3036. #endif
  3037. }
  3038. #ifdef DELTA
  3039. /**
  3040. * M665: Set delta configurations
  3041. *
  3042. * L = diagonal rod
  3043. * R = delta radius
  3044. * S = segments per second
  3045. */
  3046. inline void gcode_M665() {
  3047. if (code_seen('L')) delta_diagonal_rod = code_value();
  3048. if (code_seen('R')) delta_radius = code_value();
  3049. if (code_seen('S')) delta_segments_per_second = code_value();
  3050. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3051. }
  3052. /**
  3053. * M666: Set delta endstop adjustment
  3054. */
  3055. inline void gcode_M666() {
  3056. for (int8_t i = 0; i < 3; i++) {
  3057. if (code_seen(axis_codes[i])) {
  3058. endstop_adj[i] = code_value();
  3059. }
  3060. }
  3061. }
  3062. #endif // DELTA
  3063. #ifdef FWRETRACT
  3064. /**
  3065. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3066. */
  3067. inline void gcode_M207() {
  3068. if (code_seen('S')) retract_length = code_value();
  3069. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3070. if (code_seen('Z')) retract_zlift = code_value();
  3071. }
  3072. /**
  3073. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3074. */
  3075. inline void gcode_M208() {
  3076. if (code_seen('S')) retract_recover_length = code_value();
  3077. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3078. }
  3079. /**
  3080. * M209: Enable automatic retract (M209 S1)
  3081. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3082. */
  3083. inline void gcode_M209() {
  3084. if (code_seen('S')) {
  3085. int t = code_value();
  3086. switch(t) {
  3087. case 0:
  3088. autoretract_enabled = false;
  3089. break;
  3090. case 1:
  3091. autoretract_enabled = true;
  3092. break;
  3093. default:
  3094. SERIAL_ECHO_START;
  3095. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3096. SERIAL_ECHO(cmdbuffer[bufindr]);
  3097. SERIAL_ECHOLNPGM("\"");
  3098. return;
  3099. }
  3100. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3101. }
  3102. }
  3103. #endif // FWRETRACT
  3104. #if EXTRUDERS > 1
  3105. /**
  3106. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3107. */
  3108. inline void gcode_M218() {
  3109. if (setTargetedHotend(218)) return;
  3110. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3111. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3112. #ifdef DUAL_X_CARRIAGE
  3113. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3114. #endif
  3115. SERIAL_ECHO_START;
  3116. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3117. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3118. SERIAL_ECHO(" ");
  3119. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3120. SERIAL_ECHO(",");
  3121. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3122. #ifdef DUAL_X_CARRIAGE
  3123. SERIAL_ECHO(",");
  3124. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3125. #endif
  3126. }
  3127. SERIAL_EOL;
  3128. }
  3129. #endif // EXTRUDERS > 1
  3130. /**
  3131. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3132. */
  3133. inline void gcode_M220() {
  3134. if (code_seen('S')) feedmultiply = code_value();
  3135. }
  3136. /**
  3137. * M221: Set extrusion percentage (M221 T0 S95)
  3138. */
  3139. inline void gcode_M221() {
  3140. if (code_seen('S')) {
  3141. int sval = code_value();
  3142. if (code_seen('T')) {
  3143. if (setTargetedHotend(221)) return;
  3144. extruder_multiply[tmp_extruder] = sval;
  3145. }
  3146. else {
  3147. extrudemultiply = sval;
  3148. }
  3149. }
  3150. }
  3151. /**
  3152. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3153. */
  3154. inline void gcode_M226() {
  3155. if (code_seen('P')) {
  3156. int pin_number = code_value();
  3157. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3158. if (pin_state >= -1 && pin_state <= 1) {
  3159. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3160. if (sensitive_pins[i] == pin_number) {
  3161. pin_number = -1;
  3162. break;
  3163. }
  3164. }
  3165. if (pin_number > -1) {
  3166. int target = LOW;
  3167. st_synchronize();
  3168. pinMode(pin_number, INPUT);
  3169. switch(pin_state){
  3170. case 1:
  3171. target = HIGH;
  3172. break;
  3173. case 0:
  3174. target = LOW;
  3175. break;
  3176. case -1:
  3177. target = !digitalRead(pin_number);
  3178. break;
  3179. }
  3180. while(digitalRead(pin_number) != target) {
  3181. manage_heater();
  3182. manage_inactivity();
  3183. lcd_update();
  3184. }
  3185. } // pin_number > -1
  3186. } // pin_state -1 0 1
  3187. } // code_seen('P')
  3188. }
  3189. #if NUM_SERVOS > 0
  3190. /**
  3191. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3192. */
  3193. inline void gcode_M280() {
  3194. int servo_index = code_seen('P') ? code_value() : -1;
  3195. int servo_position = 0;
  3196. if (code_seen('S')) {
  3197. servo_position = code_value();
  3198. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3199. #if SERVO_LEVELING
  3200. servos[servo_index].attach(0);
  3201. #endif
  3202. servos[servo_index].write(servo_position);
  3203. #if SERVO_LEVELING
  3204. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3205. servos[servo_index].detach();
  3206. #endif
  3207. }
  3208. else {
  3209. SERIAL_ECHO_START;
  3210. SERIAL_ECHO("Servo ");
  3211. SERIAL_ECHO(servo_index);
  3212. SERIAL_ECHOLN(" out of range");
  3213. }
  3214. }
  3215. else if (servo_index >= 0) {
  3216. SERIAL_PROTOCOL(MSG_OK);
  3217. SERIAL_PROTOCOL(" Servo ");
  3218. SERIAL_PROTOCOL(servo_index);
  3219. SERIAL_PROTOCOL(": ");
  3220. SERIAL_PROTOCOL(servos[servo_index].read());
  3221. SERIAL_PROTOCOLLN("");
  3222. }
  3223. }
  3224. #endif // NUM_SERVOS > 0
  3225. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3226. /**
  3227. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3228. */
  3229. inline void gcode_M300() {
  3230. int beepS = code_seen('S') ? code_value() : 110;
  3231. int beepP = code_seen('P') ? code_value() : 1000;
  3232. if (beepS > 0) {
  3233. #if BEEPER > 0
  3234. tone(BEEPER, beepS);
  3235. delay(beepP);
  3236. noTone(BEEPER);
  3237. #elif defined(ULTRALCD)
  3238. lcd_buzz(beepS, beepP);
  3239. #elif defined(LCD_USE_I2C_BUZZER)
  3240. lcd_buzz(beepP, beepS);
  3241. #endif
  3242. }
  3243. else {
  3244. delay(beepP);
  3245. }
  3246. }
  3247. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3248. #ifdef PIDTEMP
  3249. /**
  3250. * M301: Set PID parameters P I D (and optionally C)
  3251. */
  3252. inline void gcode_M301() {
  3253. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3254. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3255. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3256. if (e < EXTRUDERS) { // catch bad input value
  3257. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3258. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3259. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3260. #ifdef PID_ADD_EXTRUSION_RATE
  3261. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3262. #endif
  3263. updatePID();
  3264. SERIAL_PROTOCOL(MSG_OK);
  3265. #ifdef PID_PARAMS_PER_EXTRUDER
  3266. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3267. SERIAL_PROTOCOL(e);
  3268. #endif // PID_PARAMS_PER_EXTRUDER
  3269. SERIAL_PROTOCOL(" p:");
  3270. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3271. SERIAL_PROTOCOL(" i:");
  3272. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3273. SERIAL_PROTOCOL(" d:");
  3274. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3275. #ifdef PID_ADD_EXTRUSION_RATE
  3276. SERIAL_PROTOCOL(" c:");
  3277. //Kc does not have scaling applied above, or in resetting defaults
  3278. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3279. #endif
  3280. SERIAL_PROTOCOLLN("");
  3281. }
  3282. else {
  3283. SERIAL_ECHO_START;
  3284. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3285. }
  3286. }
  3287. #endif // PIDTEMP
  3288. #ifdef PIDTEMPBED
  3289. inline void gcode_M304() {
  3290. if (code_seen('P')) bedKp = code_value();
  3291. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3292. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3293. updatePID();
  3294. SERIAL_PROTOCOL(MSG_OK);
  3295. SERIAL_PROTOCOL(" p:");
  3296. SERIAL_PROTOCOL(bedKp);
  3297. SERIAL_PROTOCOL(" i:");
  3298. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3299. SERIAL_PROTOCOL(" d:");
  3300. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3301. SERIAL_PROTOCOLLN("");
  3302. }
  3303. #endif // PIDTEMPBED
  3304. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3305. /**
  3306. * M240: Trigger a camera by emulating a Canon RC-1
  3307. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3308. */
  3309. inline void gcode_M240() {
  3310. #ifdef CHDK
  3311. OUT_WRITE(CHDK, HIGH);
  3312. chdkHigh = millis();
  3313. chdkActive = true;
  3314. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3315. const uint8_t NUM_PULSES = 16;
  3316. const float PULSE_LENGTH = 0.01524;
  3317. for (int i = 0; i < NUM_PULSES; i++) {
  3318. WRITE(PHOTOGRAPH_PIN, HIGH);
  3319. _delay_ms(PULSE_LENGTH);
  3320. WRITE(PHOTOGRAPH_PIN, LOW);
  3321. _delay_ms(PULSE_LENGTH);
  3322. }
  3323. delay(7.33);
  3324. for (int i = 0; i < NUM_PULSES; i++) {
  3325. WRITE(PHOTOGRAPH_PIN, HIGH);
  3326. _delay_ms(PULSE_LENGTH);
  3327. WRITE(PHOTOGRAPH_PIN, LOW);
  3328. _delay_ms(PULSE_LENGTH);
  3329. }
  3330. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3331. }
  3332. #endif // CHDK || PHOTOGRAPH_PIN
  3333. #ifdef DOGLCD
  3334. /**
  3335. * M250: Read and optionally set the LCD contrast
  3336. */
  3337. inline void gcode_M250() {
  3338. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3339. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3340. SERIAL_PROTOCOL(lcd_contrast);
  3341. SERIAL_PROTOCOLLN("");
  3342. }
  3343. #endif // DOGLCD
  3344. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3345. /**
  3346. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3347. */
  3348. inline void gcode_M302() {
  3349. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3350. }
  3351. #endif // PREVENT_DANGEROUS_EXTRUDE
  3352. /**
  3353. * M303: PID relay autotune
  3354. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3355. * E<extruder> (-1 for the bed)
  3356. * C<cycles>
  3357. */
  3358. inline void gcode_M303() {
  3359. int e = code_seen('E') ? code_value_long() : 0;
  3360. int c = code_seen('C') ? code_value_long() : 5;
  3361. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3362. PID_autotune(temp, e, c);
  3363. }
  3364. #ifdef SCARA
  3365. /**
  3366. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3367. */
  3368. inline bool gcode_M360() {
  3369. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3370. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3371. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3372. if (! Stopped) {
  3373. //get_coordinates(); // For X Y Z E F
  3374. delta[X_AXIS] = 0;
  3375. delta[Y_AXIS] = 120;
  3376. calculate_SCARA_forward_Transform(delta);
  3377. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3378. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3379. prepare_move();
  3380. //ClearToSend();
  3381. return true;
  3382. }
  3383. return false;
  3384. }
  3385. /**
  3386. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3387. */
  3388. inline bool gcode_M361() {
  3389. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3390. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3391. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3392. if (! Stopped) {
  3393. //get_coordinates(); // For X Y Z E F
  3394. delta[X_AXIS] = 90;
  3395. delta[Y_AXIS] = 130;
  3396. calculate_SCARA_forward_Transform(delta);
  3397. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3398. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3399. prepare_move();
  3400. //ClearToSend();
  3401. return true;
  3402. }
  3403. return false;
  3404. }
  3405. /**
  3406. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3407. */
  3408. inline bool gcode_M362() {
  3409. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3410. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3411. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3412. if (! Stopped) {
  3413. //get_coordinates(); // For X Y Z E F
  3414. delta[X_AXIS] = 60;
  3415. delta[Y_AXIS] = 180;
  3416. calculate_SCARA_forward_Transform(delta);
  3417. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3418. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3419. prepare_move();
  3420. //ClearToSend();
  3421. return true;
  3422. }
  3423. return false;
  3424. }
  3425. /**
  3426. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3427. */
  3428. inline bool gcode_M363() {
  3429. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3430. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3431. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3432. if (! Stopped) {
  3433. //get_coordinates(); // For X Y Z E F
  3434. delta[X_AXIS] = 50;
  3435. delta[Y_AXIS] = 90;
  3436. calculate_SCARA_forward_Transform(delta);
  3437. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3438. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3439. prepare_move();
  3440. //ClearToSend();
  3441. return true;
  3442. }
  3443. return false;
  3444. }
  3445. /**
  3446. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3447. */
  3448. inline bool gcode_M364() {
  3449. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3450. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3451. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3452. if (! Stopped) {
  3453. //get_coordinates(); // For X Y Z E F
  3454. delta[X_AXIS] = 45;
  3455. delta[Y_AXIS] = 135;
  3456. calculate_SCARA_forward_Transform(delta);
  3457. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  3458. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  3459. prepare_move();
  3460. //ClearToSend();
  3461. return true;
  3462. }
  3463. return false;
  3464. }
  3465. /**
  3466. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3467. */
  3468. inline void gcode_M365() {
  3469. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3470. if (code_seen(axis_codes[i])) {
  3471. axis_scaling[i] = code_value();
  3472. }
  3473. }
  3474. }
  3475. #endif // SCARA
  3476. #ifdef EXT_SOLENOID
  3477. void enable_solenoid(uint8_t num) {
  3478. switch(num) {
  3479. case 0:
  3480. OUT_WRITE(SOL0_PIN, HIGH);
  3481. break;
  3482. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3483. case 1:
  3484. OUT_WRITE(SOL1_PIN, HIGH);
  3485. break;
  3486. #endif
  3487. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3488. case 2:
  3489. OUT_WRITE(SOL2_PIN, HIGH);
  3490. break;
  3491. #endif
  3492. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3493. case 3:
  3494. OUT_WRITE(SOL3_PIN, HIGH);
  3495. break;
  3496. #endif
  3497. default:
  3498. SERIAL_ECHO_START;
  3499. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3500. break;
  3501. }
  3502. }
  3503. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3504. void disable_all_solenoids() {
  3505. OUT_WRITE(SOL0_PIN, LOW);
  3506. OUT_WRITE(SOL1_PIN, LOW);
  3507. OUT_WRITE(SOL2_PIN, LOW);
  3508. OUT_WRITE(SOL3_PIN, LOW);
  3509. }
  3510. /**
  3511. * M380: Enable solenoid on the active extruder
  3512. */
  3513. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3514. /**
  3515. * M381: Disable all solenoids
  3516. */
  3517. inline void gcode_M381() { disable_all_solenoids(); }
  3518. #endif // EXT_SOLENOID
  3519. /**
  3520. * M400: Finish all moves
  3521. */
  3522. inline void gcode_M400() { st_synchronize(); }
  3523. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3524. /**
  3525. * M401: Engage Z Servo endstop if available
  3526. */
  3527. inline void gcode_M401() { engage_z_probe(); }
  3528. /**
  3529. * M402: Retract Z Servo endstop if enabled
  3530. */
  3531. inline void gcode_M402() { retract_z_probe(); }
  3532. #endif
  3533. #ifdef FILAMENT_SENSOR
  3534. /**
  3535. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3536. */
  3537. inline void gcode_M404() {
  3538. #if FILWIDTH_PIN > -1
  3539. if (code_seen('W')) {
  3540. filament_width_nominal = code_value();
  3541. }
  3542. else {
  3543. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3544. SERIAL_PROTOCOLLN(filament_width_nominal);
  3545. }
  3546. #endif
  3547. }
  3548. /**
  3549. * M405: Turn on filament sensor for control
  3550. */
  3551. inline void gcode_M405() {
  3552. if (code_seen('D')) meas_delay_cm = code_value();
  3553. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3554. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3555. int temp_ratio = widthFil_to_size_ratio();
  3556. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3557. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3558. delay_index1 = delay_index2 = 0;
  3559. }
  3560. filament_sensor = true;
  3561. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3562. //SERIAL_PROTOCOL(filament_width_meas);
  3563. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3564. //SERIAL_PROTOCOL(extrudemultiply);
  3565. }
  3566. /**
  3567. * M406: Turn off filament sensor for control
  3568. */
  3569. inline void gcode_M406() { filament_sensor = false; }
  3570. /**
  3571. * M407: Get measured filament diameter on serial output
  3572. */
  3573. inline void gcode_M407() {
  3574. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3575. SERIAL_PROTOCOLLN(filament_width_meas);
  3576. }
  3577. #endif // FILAMENT_SENSOR
  3578. /**
  3579. * M500: Store settings in EEPROM
  3580. */
  3581. inline void gcode_M500() {
  3582. Config_StoreSettings();
  3583. }
  3584. /**
  3585. * M501: Read settings from EEPROM
  3586. */
  3587. inline void gcode_M501() {
  3588. Config_RetrieveSettings();
  3589. }
  3590. /**
  3591. * M502: Revert to default settings
  3592. */
  3593. inline void gcode_M502() {
  3594. Config_ResetDefault();
  3595. }
  3596. /**
  3597. * M503: print settings currently in memory
  3598. */
  3599. inline void gcode_M503() {
  3600. Config_PrintSettings(code_seen('S') && code_value == 0);
  3601. }
  3602. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3603. /**
  3604. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3605. */
  3606. inline void gcode_M540() {
  3607. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3608. }
  3609. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3610. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3611. inline void gcode_SET_Z_PROBE_OFFSET() {
  3612. float value;
  3613. if (code_seen('Z')) {
  3614. value = code_value();
  3615. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3616. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3617. SERIAL_ECHO_START;
  3618. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3619. SERIAL_PROTOCOLLN("");
  3620. }
  3621. else {
  3622. SERIAL_ECHO_START;
  3623. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3624. SERIAL_ECHOPGM(MSG_Z_MIN);
  3625. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3626. SERIAL_ECHOPGM(MSG_Z_MAX);
  3627. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3628. SERIAL_PROTOCOLLN("");
  3629. }
  3630. }
  3631. else {
  3632. SERIAL_ECHO_START;
  3633. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3634. SERIAL_ECHO(-zprobe_zoffset);
  3635. SERIAL_PROTOCOLLN("");
  3636. }
  3637. }
  3638. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3639. #ifdef FILAMENTCHANGEENABLE
  3640. /**
  3641. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3642. */
  3643. inline void gcode_M600() {
  3644. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3645. for (int i=0; i<NUM_AXIS; i++)
  3646. target[i] = lastpos[i] = current_position[i];
  3647. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3648. #ifdef DELTA
  3649. #define RUNPLAN calculate_delta(target); BASICPLAN
  3650. #else
  3651. #define RUNPLAN BASICPLAN
  3652. #endif
  3653. //retract by E
  3654. if (code_seen('E')) target[E_AXIS] += code_value();
  3655. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3656. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3657. #endif
  3658. RUNPLAN;
  3659. //lift Z
  3660. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3661. #ifdef FILAMENTCHANGE_ZADD
  3662. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3663. #endif
  3664. RUNPLAN;
  3665. //move xy
  3666. if (code_seen('X')) target[X_AXIS] = code_value();
  3667. #ifdef FILAMENTCHANGE_XPOS
  3668. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3669. #endif
  3670. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3671. #ifdef FILAMENTCHANGE_YPOS
  3672. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3673. #endif
  3674. RUNPLAN;
  3675. if (code_seen('L')) target[E_AXIS] += code_value();
  3676. #ifdef FILAMENTCHANGE_FINALRETRACT
  3677. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3678. #endif
  3679. RUNPLAN;
  3680. //finish moves
  3681. st_synchronize();
  3682. //disable extruder steppers so filament can be removed
  3683. disable_e0();
  3684. disable_e1();
  3685. disable_e2();
  3686. disable_e3();
  3687. delay(100);
  3688. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3689. uint8_t cnt = 0;
  3690. while (!lcd_clicked()) {
  3691. cnt++;
  3692. manage_heater();
  3693. manage_inactivity(true);
  3694. lcd_update();
  3695. if (cnt == 0) {
  3696. #if BEEPER > 0
  3697. OUT_WRITE(BEEPER,HIGH);
  3698. delay(3);
  3699. WRITE(BEEPER,LOW);
  3700. delay(3);
  3701. #else
  3702. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3703. lcd_buzz(1000/6, 100);
  3704. #else
  3705. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3706. #endif
  3707. #endif
  3708. }
  3709. } // while(!lcd_clicked)
  3710. //return to normal
  3711. if (code_seen('L')) target[E_AXIS] -= code_value();
  3712. #ifdef FILAMENTCHANGE_FINALRETRACT
  3713. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3714. #endif
  3715. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3716. plan_set_e_position(current_position[E_AXIS]);
  3717. RUNPLAN; //should do nothing
  3718. lcd_reset_alert_level();
  3719. #ifdef DELTA
  3720. calculate_delta(lastpos);
  3721. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3722. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3723. #else
  3724. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3725. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3726. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3727. #endif
  3728. #ifdef FILAMENT_RUNOUT_SENSOR
  3729. filrunoutEnqued = false;
  3730. #endif
  3731. }
  3732. #endif // FILAMENTCHANGEENABLE
  3733. #ifdef DUAL_X_CARRIAGE
  3734. /**
  3735. * M605: Set dual x-carriage movement mode
  3736. *
  3737. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3738. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3739. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3740. * millimeters x-offset and an optional differential hotend temperature of
  3741. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3742. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3743. *
  3744. * Note: the X axis should be homed after changing dual x-carriage mode.
  3745. */
  3746. inline void gcode_M605() {
  3747. st_synchronize();
  3748. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3749. switch(dual_x_carriage_mode) {
  3750. case DXC_DUPLICATION_MODE:
  3751. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3752. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3753. SERIAL_ECHO_START;
  3754. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3755. SERIAL_ECHO(" ");
  3756. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3757. SERIAL_ECHO(",");
  3758. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3759. SERIAL_ECHO(" ");
  3760. SERIAL_ECHO(duplicate_extruder_x_offset);
  3761. SERIAL_ECHO(",");
  3762. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3763. break;
  3764. case DXC_FULL_CONTROL_MODE:
  3765. case DXC_AUTO_PARK_MODE:
  3766. break;
  3767. default:
  3768. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3769. break;
  3770. }
  3771. active_extruder_parked = false;
  3772. extruder_duplication_enabled = false;
  3773. delayed_move_time = 0;
  3774. }
  3775. #endif // DUAL_X_CARRIAGE
  3776. /**
  3777. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3778. */
  3779. inline void gcode_M907() {
  3780. #if HAS_DIGIPOTSS
  3781. for (int i=0;i<NUM_AXIS;i++)
  3782. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3783. if (code_seen('B')) digipot_current(4, code_value());
  3784. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3785. #endif
  3786. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3787. if (code_seen('X')) digipot_current(0, code_value());
  3788. #endif
  3789. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3790. if (code_seen('Z')) digipot_current(1, code_value());
  3791. #endif
  3792. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3793. if (code_seen('E')) digipot_current(2, code_value());
  3794. #endif
  3795. #ifdef DIGIPOT_I2C
  3796. // this one uses actual amps in floating point
  3797. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3798. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3799. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3800. #endif
  3801. }
  3802. #if HAS_DIGIPOTSS
  3803. /**
  3804. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3805. */
  3806. inline void gcode_M908() {
  3807. digitalPotWrite(
  3808. code_seen('P') ? code_value() : 0,
  3809. code_seen('S') ? code_value() : 0
  3810. );
  3811. }
  3812. #endif // HAS_DIGIPOTSS
  3813. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3814. inline void gcode_M350() {
  3815. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3816. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3817. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3818. if(code_seen('B')) microstep_mode(4,code_value());
  3819. microstep_readings();
  3820. #endif
  3821. }
  3822. /**
  3823. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3824. * S# determines MS1 or MS2, X# sets the pin high/low.
  3825. */
  3826. inline void gcode_M351() {
  3827. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3828. if (code_seen('S')) switch(code_value_long()) {
  3829. case 1:
  3830. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3831. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3832. break;
  3833. case 2:
  3834. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3835. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3836. break;
  3837. }
  3838. microstep_readings();
  3839. #endif
  3840. }
  3841. /**
  3842. * M999: Restart after being stopped
  3843. */
  3844. inline void gcode_M999() {
  3845. Stopped = false;
  3846. lcd_reset_alert_level();
  3847. gcode_LastN = Stopped_gcode_LastN;
  3848. FlushSerialRequestResend();
  3849. }
  3850. inline void gcode_T() {
  3851. tmp_extruder = code_value();
  3852. if (tmp_extruder >= EXTRUDERS) {
  3853. SERIAL_ECHO_START;
  3854. SERIAL_ECHO("T");
  3855. SERIAL_ECHO(tmp_extruder);
  3856. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3857. }
  3858. else {
  3859. boolean make_move = false;
  3860. if (code_seen('F')) {
  3861. make_move = true;
  3862. next_feedrate = code_value();
  3863. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3864. }
  3865. #if EXTRUDERS > 1
  3866. if (tmp_extruder != active_extruder) {
  3867. // Save current position to return to after applying extruder offset
  3868. memcpy(destination, current_position, sizeof(destination));
  3869. #ifdef DUAL_X_CARRIAGE
  3870. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3871. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3872. // Park old head: 1) raise 2) move to park position 3) lower
  3873. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3874. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3875. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3876. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3877. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3878. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3879. st_synchronize();
  3880. }
  3881. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3882. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3883. extruder_offset[Y_AXIS][active_extruder] +
  3884. extruder_offset[Y_AXIS][tmp_extruder];
  3885. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3886. extruder_offset[Z_AXIS][active_extruder] +
  3887. extruder_offset[Z_AXIS][tmp_extruder];
  3888. active_extruder = tmp_extruder;
  3889. // This function resets the max/min values - the current position may be overwritten below.
  3890. axis_is_at_home(X_AXIS);
  3891. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3892. current_position[X_AXIS] = inactive_extruder_x_pos;
  3893. inactive_extruder_x_pos = destination[X_AXIS];
  3894. }
  3895. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3896. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3897. if (active_extruder == 0 || active_extruder_parked)
  3898. current_position[X_AXIS] = inactive_extruder_x_pos;
  3899. else
  3900. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3901. inactive_extruder_x_pos = destination[X_AXIS];
  3902. extruder_duplication_enabled = false;
  3903. }
  3904. else {
  3905. // record raised toolhead position for use by unpark
  3906. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3907. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3908. active_extruder_parked = true;
  3909. delayed_move_time = 0;
  3910. }
  3911. #else // !DUAL_X_CARRIAGE
  3912. // Offset extruder (only by XY)
  3913. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3914. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3915. // Set the new active extruder and position
  3916. active_extruder = tmp_extruder;
  3917. #endif // !DUAL_X_CARRIAGE
  3918. #ifdef DELTA
  3919. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3920. //sent position to plan_set_position();
  3921. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3922. #else
  3923. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3924. #endif
  3925. // Move to the old position if 'F' was in the parameters
  3926. if (make_move && !Stopped) prepare_move();
  3927. }
  3928. #ifdef EXT_SOLENOID
  3929. st_synchronize();
  3930. disable_all_solenoids();
  3931. enable_solenoid_on_active_extruder();
  3932. #endif // EXT_SOLENOID
  3933. #endif // EXTRUDERS > 1
  3934. SERIAL_ECHO_START;
  3935. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3936. SERIAL_PROTOCOLLN((int)active_extruder);
  3937. }
  3938. }
  3939. /**
  3940. * Process Commands and dispatch them to handlers
  3941. */
  3942. void process_commands() {
  3943. if (code_seen('G')) {
  3944. int gCode = code_value_long();
  3945. switch(gCode) {
  3946. // G0, G1
  3947. case 0:
  3948. case 1:
  3949. gcode_G0_G1();
  3950. break;
  3951. // G2, G3
  3952. #ifndef SCARA
  3953. case 2: // G2 - CW ARC
  3954. case 3: // G3 - CCW ARC
  3955. gcode_G2_G3(gCode == 2);
  3956. break;
  3957. #endif
  3958. // G4 Dwell
  3959. case 4:
  3960. gcode_G4();
  3961. break;
  3962. #ifdef FWRETRACT
  3963. case 10: // G10: retract
  3964. case 11: // G11: retract_recover
  3965. gcode_G10_G11(gCode == 10);
  3966. break;
  3967. #endif //FWRETRACT
  3968. case 28: // G28: Home all axes, one at a time
  3969. gcode_G28();
  3970. break;
  3971. #ifdef ENABLE_AUTO_BED_LEVELING
  3972. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3973. gcode_G29();
  3974. break;
  3975. #ifndef Z_PROBE_SLED
  3976. case 30: // G30 Single Z Probe
  3977. gcode_G30();
  3978. break;
  3979. #else // Z_PROBE_SLED
  3980. case 31: // G31: dock the sled
  3981. case 32: // G32: undock the sled
  3982. dock_sled(gCode == 31);
  3983. break;
  3984. #endif // Z_PROBE_SLED
  3985. #endif // ENABLE_AUTO_BED_LEVELING
  3986. case 90: // G90
  3987. relative_mode = false;
  3988. break;
  3989. case 91: // G91
  3990. relative_mode = true;
  3991. break;
  3992. case 92: // G92
  3993. gcode_G92();
  3994. break;
  3995. }
  3996. }
  3997. else if (code_seen('M')) {
  3998. switch( code_value_long() ) {
  3999. #ifdef ULTIPANEL
  4000. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4001. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4002. gcode_M0_M1();
  4003. break;
  4004. #endif // ULTIPANEL
  4005. case 17:
  4006. gcode_M17();
  4007. break;
  4008. #ifdef SDSUPPORT
  4009. case 20: // M20 - list SD card
  4010. gcode_M20(); break;
  4011. case 21: // M21 - init SD card
  4012. gcode_M21(); break;
  4013. case 22: //M22 - release SD card
  4014. gcode_M22(); break;
  4015. case 23: //M23 - Select file
  4016. gcode_M23(); break;
  4017. case 24: //M24 - Start SD print
  4018. gcode_M24(); break;
  4019. case 25: //M25 - Pause SD print
  4020. gcode_M25(); break;
  4021. case 26: //M26 - Set SD index
  4022. gcode_M26(); break;
  4023. case 27: //M27 - Get SD status
  4024. gcode_M27(); break;
  4025. case 28: //M28 - Start SD write
  4026. gcode_M28(); break;
  4027. case 29: //M29 - Stop SD write
  4028. gcode_M29(); break;
  4029. case 30: //M30 <filename> Delete File
  4030. gcode_M30(); break;
  4031. case 32: //M32 - Select file and start SD print
  4032. gcode_M32(); break;
  4033. case 928: //M928 - Start SD write
  4034. gcode_M928(); break;
  4035. #endif //SDSUPPORT
  4036. case 31: //M31 take time since the start of the SD print or an M109 command
  4037. gcode_M31();
  4038. break;
  4039. case 42: //M42 -Change pin status via gcode
  4040. gcode_M42();
  4041. break;
  4042. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4043. case 48: // M48 Z-Probe repeatability
  4044. gcode_M48();
  4045. break;
  4046. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4047. case 104: // M104
  4048. gcode_M104();
  4049. break;
  4050. case 112: // M112 Emergency Stop
  4051. gcode_M112();
  4052. break;
  4053. case 140: // M140 Set bed temp
  4054. gcode_M140();
  4055. break;
  4056. case 105: // M105 Read current temperature
  4057. gcode_M105();
  4058. return;
  4059. break;
  4060. case 109: // M109 Wait for temperature
  4061. gcode_M109();
  4062. break;
  4063. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4064. case 190: // M190 - Wait for bed heater to reach target.
  4065. gcode_M190();
  4066. break;
  4067. #endif //TEMP_BED_PIN
  4068. #if defined(FAN_PIN) && FAN_PIN > -1
  4069. case 106: //M106 Fan On
  4070. gcode_M106();
  4071. break;
  4072. case 107: //M107 Fan Off
  4073. gcode_M107();
  4074. break;
  4075. #endif //FAN_PIN
  4076. #ifdef BARICUDA
  4077. // PWM for HEATER_1_PIN
  4078. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4079. case 126: // M126 valve open
  4080. gcode_M126();
  4081. break;
  4082. case 127: // M127 valve closed
  4083. gcode_M127();
  4084. break;
  4085. #endif //HEATER_1_PIN
  4086. // PWM for HEATER_2_PIN
  4087. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4088. case 128: // M128 valve open
  4089. gcode_M128();
  4090. break;
  4091. case 129: // M129 valve closed
  4092. gcode_M129();
  4093. break;
  4094. #endif //HEATER_2_PIN
  4095. #endif //BARICUDA
  4096. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4097. case 80: // M80 - Turn on Power Supply
  4098. gcode_M80();
  4099. break;
  4100. #endif // PS_ON_PIN
  4101. case 81: // M81 - Turn off Power Supply
  4102. gcode_M81();
  4103. break;
  4104. case 82:
  4105. gcode_M82();
  4106. break;
  4107. case 83:
  4108. gcode_M83();
  4109. break;
  4110. case 18: //compatibility
  4111. case 84: // M84
  4112. gcode_M18_M84();
  4113. break;
  4114. case 85: // M85
  4115. gcode_M85();
  4116. break;
  4117. case 92: // M92
  4118. gcode_M92();
  4119. break;
  4120. case 115: // M115
  4121. gcode_M115();
  4122. break;
  4123. case 117: // M117 display message
  4124. gcode_M117();
  4125. break;
  4126. case 114: // M114
  4127. gcode_M114();
  4128. break;
  4129. case 120: // M120
  4130. gcode_M120();
  4131. break;
  4132. case 121: // M121
  4133. gcode_M121();
  4134. break;
  4135. case 119: // M119
  4136. gcode_M119();
  4137. break;
  4138. //TODO: update for all axis, use for loop
  4139. #ifdef BLINKM
  4140. case 150: // M150
  4141. gcode_M150();
  4142. break;
  4143. #endif //BLINKM
  4144. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4145. gcode_M200();
  4146. break;
  4147. case 201: // M201
  4148. gcode_M201();
  4149. break;
  4150. #if 0 // Not used for Sprinter/grbl gen6
  4151. case 202: // M202
  4152. gcode_M202();
  4153. break;
  4154. #endif
  4155. case 203: // M203 max feedrate mm/sec
  4156. gcode_M203();
  4157. break;
  4158. case 204: // M204 acclereration S normal moves T filmanent only moves
  4159. gcode_M204();
  4160. break;
  4161. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4162. gcode_M205();
  4163. break;
  4164. case 206: // M206 additional homing offset
  4165. gcode_M206();
  4166. break;
  4167. #ifdef DELTA
  4168. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4169. gcode_M665();
  4170. break;
  4171. case 666: // M666 set delta endstop adjustment
  4172. gcode_M666();
  4173. break;
  4174. #endif // DELTA
  4175. #ifdef FWRETRACT
  4176. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4177. gcode_M207();
  4178. break;
  4179. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4180. gcode_M208();
  4181. break;
  4182. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4183. gcode_M209();
  4184. break;
  4185. #endif // FWRETRACT
  4186. #if EXTRUDERS > 1
  4187. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4188. gcode_M218();
  4189. break;
  4190. #endif
  4191. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4192. gcode_M220();
  4193. break;
  4194. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4195. gcode_M221();
  4196. break;
  4197. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4198. gcode_M226();
  4199. break;
  4200. #if NUM_SERVOS > 0
  4201. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4202. gcode_M280();
  4203. break;
  4204. #endif // NUM_SERVOS > 0
  4205. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4206. case 300: // M300 - Play beep tone
  4207. gcode_M300();
  4208. break;
  4209. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4210. #ifdef PIDTEMP
  4211. case 301: // M301
  4212. gcode_M301();
  4213. break;
  4214. #endif // PIDTEMP
  4215. #ifdef PIDTEMPBED
  4216. case 304: // M304
  4217. gcode_M304();
  4218. break;
  4219. #endif // PIDTEMPBED
  4220. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4221. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4222. gcode_M240();
  4223. break;
  4224. #endif // CHDK || PHOTOGRAPH_PIN
  4225. #ifdef DOGLCD
  4226. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4227. gcode_M250();
  4228. break;
  4229. #endif // DOGLCD
  4230. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4231. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4232. gcode_M302();
  4233. break;
  4234. #endif // PREVENT_DANGEROUS_EXTRUDE
  4235. case 303: // M303 PID autotune
  4236. gcode_M303();
  4237. break;
  4238. #ifdef SCARA
  4239. case 360: // M360 SCARA Theta pos1
  4240. if (gcode_M360()) return;
  4241. break;
  4242. case 361: // M361 SCARA Theta pos2
  4243. if (gcode_M361()) return;
  4244. break;
  4245. case 362: // M362 SCARA Psi pos1
  4246. if (gcode_M362()) return;
  4247. break;
  4248. case 363: // M363 SCARA Psi pos2
  4249. if (gcode_M363()) return;
  4250. break;
  4251. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4252. if (gcode_M364()) return;
  4253. break;
  4254. case 365: // M365 Set SCARA scaling for X Y Z
  4255. gcode_M365();
  4256. break;
  4257. #endif // SCARA
  4258. case 400: // M400 finish all moves
  4259. gcode_M400();
  4260. break;
  4261. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4262. case 401:
  4263. gcode_M401();
  4264. break;
  4265. case 402:
  4266. gcode_M402();
  4267. break;
  4268. #endif
  4269. #ifdef FILAMENT_SENSOR
  4270. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4271. gcode_M404();
  4272. break;
  4273. case 405: //M405 Turn on filament sensor for control
  4274. gcode_M405();
  4275. break;
  4276. case 406: //M406 Turn off filament sensor for control
  4277. gcode_M406();
  4278. break;
  4279. case 407: //M407 Display measured filament diameter
  4280. gcode_M407();
  4281. break;
  4282. #endif // FILAMENT_SENSOR
  4283. case 500: // M500 Store settings in EEPROM
  4284. gcode_M500();
  4285. break;
  4286. case 501: // M501 Read settings from EEPROM
  4287. gcode_M501();
  4288. break;
  4289. case 502: // M502 Revert to default settings
  4290. gcode_M502();
  4291. break;
  4292. case 503: // M503 print settings currently in memory
  4293. gcode_M503();
  4294. break;
  4295. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4296. case 540:
  4297. gcode_M540();
  4298. break;
  4299. #endif
  4300. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4301. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4302. gcode_SET_Z_PROBE_OFFSET();
  4303. break;
  4304. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4305. #ifdef FILAMENTCHANGEENABLE
  4306. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4307. gcode_M600();
  4308. break;
  4309. #endif // FILAMENTCHANGEENABLE
  4310. #ifdef DUAL_X_CARRIAGE
  4311. case 605:
  4312. gcode_M605();
  4313. break;
  4314. #endif // DUAL_X_CARRIAGE
  4315. case 907: // M907 Set digital trimpot motor current using axis codes.
  4316. gcode_M907();
  4317. break;
  4318. #if HAS_DIGIPOTSS
  4319. case 908: // M908 Control digital trimpot directly.
  4320. gcode_M908();
  4321. break;
  4322. #endif // HAS_DIGIPOTSS
  4323. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4324. gcode_M350();
  4325. break;
  4326. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4327. gcode_M351();
  4328. break;
  4329. case 999: // M999: Restart after being Stopped
  4330. gcode_M999();
  4331. break;
  4332. }
  4333. }
  4334. else if (code_seen('T')) {
  4335. gcode_T();
  4336. }
  4337. else {
  4338. SERIAL_ECHO_START;
  4339. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4340. SERIAL_ECHO(cmdbuffer[bufindr]);
  4341. SERIAL_ECHOLNPGM("\"");
  4342. }
  4343. ClearToSend();
  4344. }
  4345. void FlushSerialRequestResend()
  4346. {
  4347. //char cmdbuffer[bufindr][100]="Resend:";
  4348. MYSERIAL.flush();
  4349. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4350. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4351. ClearToSend();
  4352. }
  4353. void ClearToSend()
  4354. {
  4355. previous_millis_cmd = millis();
  4356. #ifdef SDSUPPORT
  4357. if(fromsd[bufindr])
  4358. return;
  4359. #endif //SDSUPPORT
  4360. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4361. }
  4362. void get_coordinates()
  4363. {
  4364. bool seen[4]={false,false,false,false};
  4365. for(int8_t i=0; i < NUM_AXIS; i++) {
  4366. if(code_seen(axis_codes[i]))
  4367. {
  4368. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4369. seen[i]=true;
  4370. }
  4371. else destination[i] = current_position[i]; //Are these else lines really needed?
  4372. }
  4373. if(code_seen('F')) {
  4374. next_feedrate = code_value();
  4375. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4376. }
  4377. }
  4378. void get_arc_coordinates()
  4379. {
  4380. #ifdef SF_ARC_FIX
  4381. bool relative_mode_backup = relative_mode;
  4382. relative_mode = true;
  4383. #endif
  4384. get_coordinates();
  4385. #ifdef SF_ARC_FIX
  4386. relative_mode=relative_mode_backup;
  4387. #endif
  4388. if(code_seen('I')) {
  4389. offset[0] = code_value();
  4390. }
  4391. else {
  4392. offset[0] = 0.0;
  4393. }
  4394. if(code_seen('J')) {
  4395. offset[1] = code_value();
  4396. }
  4397. else {
  4398. offset[1] = 0.0;
  4399. }
  4400. }
  4401. void clamp_to_software_endstops(float target[3])
  4402. {
  4403. if (min_software_endstops) {
  4404. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4405. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4406. float negative_z_offset = 0;
  4407. #ifdef ENABLE_AUTO_BED_LEVELING
  4408. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4409. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4410. #endif
  4411. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4412. }
  4413. if (max_software_endstops) {
  4414. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4415. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4416. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4417. }
  4418. }
  4419. #ifdef DELTA
  4420. void recalc_delta_settings(float radius, float diagonal_rod)
  4421. {
  4422. delta_tower1_x= -SIN_60*radius; // front left tower
  4423. delta_tower1_y= -COS_60*radius;
  4424. delta_tower2_x= SIN_60*radius; // front right tower
  4425. delta_tower2_y= -COS_60*radius;
  4426. delta_tower3_x= 0.0; // back middle tower
  4427. delta_tower3_y= radius;
  4428. delta_diagonal_rod_2= sq(diagonal_rod);
  4429. }
  4430. void calculate_delta(float cartesian[3])
  4431. {
  4432. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4433. - sq(delta_tower1_x-cartesian[X_AXIS])
  4434. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4435. ) + cartesian[Z_AXIS];
  4436. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4437. - sq(delta_tower2_x-cartesian[X_AXIS])
  4438. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4439. ) + cartesian[Z_AXIS];
  4440. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4441. - sq(delta_tower3_x-cartesian[X_AXIS])
  4442. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4443. ) + cartesian[Z_AXIS];
  4444. /*
  4445. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4446. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4447. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4448. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4449. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4450. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4451. */
  4452. }
  4453. #ifdef ENABLE_AUTO_BED_LEVELING
  4454. // Adjust print surface height by linear interpolation over the bed_level array.
  4455. int delta_grid_spacing[2] = { 0, 0 };
  4456. void adjust_delta(float cartesian[3])
  4457. {
  4458. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4459. return; // G29 not done
  4460. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4461. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4462. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4463. int floor_x = floor(grid_x);
  4464. int floor_y = floor(grid_y);
  4465. float ratio_x = grid_x - floor_x;
  4466. float ratio_y = grid_y - floor_y;
  4467. float z1 = bed_level[floor_x+half][floor_y+half];
  4468. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4469. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4470. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4471. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4472. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4473. float offset = (1-ratio_x)*left + ratio_x*right;
  4474. delta[X_AXIS] += offset;
  4475. delta[Y_AXIS] += offset;
  4476. delta[Z_AXIS] += offset;
  4477. /*
  4478. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4479. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4480. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4481. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4482. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4483. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4484. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4485. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4486. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4487. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4488. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4489. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4490. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4491. */
  4492. }
  4493. #endif //ENABLE_AUTO_BED_LEVELING
  4494. void prepare_move_raw()
  4495. {
  4496. previous_millis_cmd = millis();
  4497. calculate_delta(destination);
  4498. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4499. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4500. active_extruder);
  4501. for(int8_t i=0; i < NUM_AXIS; i++) {
  4502. current_position[i] = destination[i];
  4503. }
  4504. }
  4505. #endif //DELTA
  4506. void prepare_move()
  4507. {
  4508. clamp_to_software_endstops(destination);
  4509. previous_millis_cmd = millis();
  4510. #ifdef SCARA //for now same as delta-code
  4511. float difference[NUM_AXIS];
  4512. for (int8_t i=0; i < NUM_AXIS; i++) {
  4513. difference[i] = destination[i] - current_position[i];
  4514. }
  4515. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4516. sq(difference[Y_AXIS]) +
  4517. sq(difference[Z_AXIS]));
  4518. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4519. if (cartesian_mm < 0.000001) { return; }
  4520. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4521. int steps = max(1, int(scara_segments_per_second * seconds));
  4522. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4523. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4524. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4525. for (int s = 1; s <= steps; s++) {
  4526. float fraction = float(s) / float(steps);
  4527. for(int8_t i=0; i < NUM_AXIS; i++) {
  4528. destination[i] = current_position[i] + difference[i] * fraction;
  4529. }
  4530. calculate_delta(destination);
  4531. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4532. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4533. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4534. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4535. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4536. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4537. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4538. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4539. active_extruder);
  4540. }
  4541. #endif // SCARA
  4542. #ifdef DELTA
  4543. float difference[NUM_AXIS];
  4544. for (int8_t i=0; i < NUM_AXIS; i++) {
  4545. difference[i] = destination[i] - current_position[i];
  4546. }
  4547. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4548. sq(difference[Y_AXIS]) +
  4549. sq(difference[Z_AXIS]));
  4550. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4551. if (cartesian_mm < 0.000001) { return; }
  4552. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4553. int steps = max(1, int(delta_segments_per_second * seconds));
  4554. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4555. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4556. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4557. for (int s = 1; s <= steps; s++) {
  4558. float fraction = float(s) / float(steps);
  4559. for(int8_t i=0; i < NUM_AXIS; i++) {
  4560. destination[i] = current_position[i] + difference[i] * fraction;
  4561. }
  4562. calculate_delta(destination);
  4563. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4564. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4565. active_extruder);
  4566. }
  4567. #endif // DELTA
  4568. #ifdef DUAL_X_CARRIAGE
  4569. if (active_extruder_parked)
  4570. {
  4571. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4572. {
  4573. // move duplicate extruder into correct duplication position.
  4574. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4575. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4576. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4577. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4578. st_synchronize();
  4579. extruder_duplication_enabled = true;
  4580. active_extruder_parked = false;
  4581. }
  4582. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4583. {
  4584. if (current_position[E_AXIS] == destination[E_AXIS])
  4585. {
  4586. // this is a travel move - skit it but keep track of current position (so that it can later
  4587. // be used as start of first non-travel move)
  4588. if (delayed_move_time != 0xFFFFFFFFUL)
  4589. {
  4590. memcpy(current_position, destination, sizeof(current_position));
  4591. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4592. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4593. delayed_move_time = millis();
  4594. return;
  4595. }
  4596. }
  4597. delayed_move_time = 0;
  4598. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4599. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4601. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4603. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4604. active_extruder_parked = false;
  4605. }
  4606. }
  4607. #endif //DUAL_X_CARRIAGE
  4608. #if ! (defined DELTA || defined SCARA)
  4609. // Do not use feedmultiply for E or Z only moves
  4610. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4611. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4612. }
  4613. else {
  4614. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4615. }
  4616. #endif // !(DELTA || SCARA)
  4617. for(int8_t i=0; i < NUM_AXIS; i++) {
  4618. current_position[i] = destination[i];
  4619. }
  4620. }
  4621. void prepare_arc_move(char isclockwise) {
  4622. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4623. // Trace the arc
  4624. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4625. // As far as the parser is concerned, the position is now == target. In reality the
  4626. // motion control system might still be processing the action and the real tool position
  4627. // in any intermediate location.
  4628. for(int8_t i=0; i < NUM_AXIS; i++) {
  4629. current_position[i] = destination[i];
  4630. }
  4631. previous_millis_cmd = millis();
  4632. }
  4633. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4634. #if defined(FAN_PIN)
  4635. #if CONTROLLERFAN_PIN == FAN_PIN
  4636. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4637. #endif
  4638. #endif
  4639. unsigned long lastMotor = 0; // Last time a motor was turned on
  4640. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4641. void controllerFan() {
  4642. uint32_t ms = millis();
  4643. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4644. lastMotorCheck = ms;
  4645. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4646. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4647. #if EXTRUDERS > 1
  4648. || E1_ENABLE_READ == E_ENABLE_ON
  4649. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4650. || X2_ENABLE_READ == X_ENABLE_ON
  4651. #endif
  4652. #if EXTRUDERS > 2
  4653. || E2_ENABLE_READ == E_ENABLE_ON
  4654. #if EXTRUDERS > 3
  4655. || E3_ENABLE_READ == E_ENABLE_ON
  4656. #endif
  4657. #endif
  4658. #endif
  4659. ) {
  4660. lastMotor = ms; //... set time to NOW so the fan will turn on
  4661. }
  4662. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4663. // allows digital or PWM fan output to be used (see M42 handling)
  4664. digitalWrite(CONTROLLERFAN_PIN, speed);
  4665. analogWrite(CONTROLLERFAN_PIN, speed);
  4666. }
  4667. }
  4668. #endif
  4669. #ifdef SCARA
  4670. void calculate_SCARA_forward_Transform(float f_scara[3])
  4671. {
  4672. // Perform forward kinematics, and place results in delta[3]
  4673. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4674. float x_sin, x_cos, y_sin, y_cos;
  4675. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4676. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4677. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4678. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4679. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4680. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4681. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4682. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4683. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4684. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4685. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4686. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4687. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4688. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4689. }
  4690. void calculate_delta(float cartesian[3]){
  4691. //reverse kinematics.
  4692. // Perform reversed kinematics, and place results in delta[3]
  4693. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4694. float SCARA_pos[2];
  4695. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4696. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4697. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4698. #if (Linkage_1 == Linkage_2)
  4699. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4700. #else
  4701. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4702. #endif
  4703. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4704. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4705. SCARA_K2 = Linkage_2 * SCARA_S2;
  4706. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4707. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4708. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4709. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4710. delta[Z_AXIS] = cartesian[Z_AXIS];
  4711. /*
  4712. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4713. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4714. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4715. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4716. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4717. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4718. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4719. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4720. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4721. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4722. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4723. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4724. SERIAL_ECHOLN(" ");*/
  4725. }
  4726. #endif
  4727. #ifdef TEMP_STAT_LEDS
  4728. static bool blue_led = false;
  4729. static bool red_led = false;
  4730. static uint32_t stat_update = 0;
  4731. void handle_status_leds(void) {
  4732. float max_temp = 0.0;
  4733. if(millis() > stat_update) {
  4734. stat_update += 500; // Update every 0.5s
  4735. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4736. max_temp = max(max_temp, degHotend(cur_extruder));
  4737. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4738. }
  4739. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4740. max_temp = max(max_temp, degTargetBed());
  4741. max_temp = max(max_temp, degBed());
  4742. #endif
  4743. if((max_temp > 55.0) && (red_led == false)) {
  4744. digitalWrite(STAT_LED_RED, 1);
  4745. digitalWrite(STAT_LED_BLUE, 0);
  4746. red_led = true;
  4747. blue_led = false;
  4748. }
  4749. if((max_temp < 54.0) && (blue_led == false)) {
  4750. digitalWrite(STAT_LED_RED, 0);
  4751. digitalWrite(STAT_LED_BLUE, 1);
  4752. red_led = false;
  4753. blue_led = true;
  4754. }
  4755. }
  4756. }
  4757. #endif
  4758. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4759. {
  4760. #if defined(KILL_PIN) && KILL_PIN > -1
  4761. static int killCount = 0; // make the inactivity button a bit less responsive
  4762. const int KILL_DELAY = 750;
  4763. #endif
  4764. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4765. if(card.sdprinting) {
  4766. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4767. filrunout(); }
  4768. #endif
  4769. #if defined(HOME_PIN) && HOME_PIN > -1
  4770. static int homeDebounceCount = 0; // poor man's debouncing count
  4771. const int HOME_DEBOUNCE_DELAY = 750;
  4772. #endif
  4773. if(buflen < (BUFSIZE-1))
  4774. get_command();
  4775. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4776. if(max_inactive_time)
  4777. kill();
  4778. if(stepper_inactive_time) {
  4779. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4780. {
  4781. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4782. disable_x();
  4783. disable_y();
  4784. disable_z();
  4785. disable_e0();
  4786. disable_e1();
  4787. disable_e2();
  4788. disable_e3();
  4789. }
  4790. }
  4791. }
  4792. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4793. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4794. {
  4795. chdkActive = false;
  4796. WRITE(CHDK, LOW);
  4797. }
  4798. #endif
  4799. #if defined(KILL_PIN) && KILL_PIN > -1
  4800. // Check if the kill button was pressed and wait just in case it was an accidental
  4801. // key kill key press
  4802. // -------------------------------------------------------------------------------
  4803. if( 0 == READ(KILL_PIN) )
  4804. {
  4805. killCount++;
  4806. }
  4807. else if (killCount > 0)
  4808. {
  4809. killCount--;
  4810. }
  4811. // Exceeded threshold and we can confirm that it was not accidental
  4812. // KILL the machine
  4813. // ----------------------------------------------------------------
  4814. if ( killCount >= KILL_DELAY)
  4815. {
  4816. kill();
  4817. }
  4818. #endif
  4819. #if defined(HOME_PIN) && HOME_PIN > -1
  4820. // Check to see if we have to home, use poor man's debouncer
  4821. // ---------------------------------------------------------
  4822. if ( 0 == READ(HOME_PIN) )
  4823. {
  4824. if (homeDebounceCount == 0)
  4825. {
  4826. enquecommands_P((PSTR("G28")));
  4827. homeDebounceCount++;
  4828. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4829. }
  4830. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4831. {
  4832. homeDebounceCount++;
  4833. }
  4834. else
  4835. {
  4836. homeDebounceCount = 0;
  4837. }
  4838. }
  4839. #endif
  4840. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4841. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4842. #endif
  4843. #ifdef EXTRUDER_RUNOUT_PREVENT
  4844. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4845. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4846. {
  4847. bool oldstatus=E0_ENABLE_READ;
  4848. enable_e0();
  4849. float oldepos=current_position[E_AXIS];
  4850. float oldedes=destination[E_AXIS];
  4851. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4852. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4853. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4854. current_position[E_AXIS]=oldepos;
  4855. destination[E_AXIS]=oldedes;
  4856. plan_set_e_position(oldepos);
  4857. previous_millis_cmd=millis();
  4858. st_synchronize();
  4859. E0_ENABLE_WRITE(oldstatus);
  4860. }
  4861. #endif
  4862. #if defined(DUAL_X_CARRIAGE)
  4863. // handle delayed move timeout
  4864. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4865. {
  4866. // travel moves have been received so enact them
  4867. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4868. memcpy(destination,current_position,sizeof(destination));
  4869. prepare_move();
  4870. }
  4871. #endif
  4872. #ifdef TEMP_STAT_LEDS
  4873. handle_status_leds();
  4874. #endif
  4875. check_axes_activity();
  4876. }
  4877. void kill()
  4878. {
  4879. cli(); // Stop interrupts
  4880. disable_heater();
  4881. disable_x();
  4882. disable_y();
  4883. disable_z();
  4884. disable_e0();
  4885. disable_e1();
  4886. disable_e2();
  4887. disable_e3();
  4888. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4889. pinMode(PS_ON_PIN,INPUT);
  4890. #endif
  4891. SERIAL_ERROR_START;
  4892. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4893. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4894. // FMC small patch to update the LCD before ending
  4895. sei(); // enable interrupts
  4896. for ( int i=5; i--; lcd_update())
  4897. {
  4898. delay(200);
  4899. }
  4900. cli(); // disable interrupts
  4901. suicide();
  4902. while(1) { /* Intentionally left empty */ } // Wait for reset
  4903. }
  4904. #ifdef FILAMENT_RUNOUT_SENSOR
  4905. void filrunout()
  4906. {
  4907. if filrunoutEnqued == false {
  4908. filrunoutEnqued = true;
  4909. enquecommand("M600");
  4910. }
  4911. }
  4912. #endif
  4913. void Stop()
  4914. {
  4915. disable_heater();
  4916. if(Stopped == false) {
  4917. Stopped = true;
  4918. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4919. SERIAL_ERROR_START;
  4920. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4921. LCD_MESSAGEPGM(MSG_STOPPED);
  4922. }
  4923. }
  4924. bool IsStopped() { return Stopped; };
  4925. #ifdef FAST_PWM_FAN
  4926. void setPwmFrequency(uint8_t pin, int val)
  4927. {
  4928. val &= 0x07;
  4929. switch(digitalPinToTimer(pin))
  4930. {
  4931. #if defined(TCCR0A)
  4932. case TIMER0A:
  4933. case TIMER0B:
  4934. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4935. // TCCR0B |= val;
  4936. break;
  4937. #endif
  4938. #if defined(TCCR1A)
  4939. case TIMER1A:
  4940. case TIMER1B:
  4941. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4942. // TCCR1B |= val;
  4943. break;
  4944. #endif
  4945. #if defined(TCCR2)
  4946. case TIMER2:
  4947. case TIMER2:
  4948. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4949. TCCR2 |= val;
  4950. break;
  4951. #endif
  4952. #if defined(TCCR2A)
  4953. case TIMER2A:
  4954. case TIMER2B:
  4955. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4956. TCCR2B |= val;
  4957. break;
  4958. #endif
  4959. #if defined(TCCR3A)
  4960. case TIMER3A:
  4961. case TIMER3B:
  4962. case TIMER3C:
  4963. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4964. TCCR3B |= val;
  4965. break;
  4966. #endif
  4967. #if defined(TCCR4A)
  4968. case TIMER4A:
  4969. case TIMER4B:
  4970. case TIMER4C:
  4971. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4972. TCCR4B |= val;
  4973. break;
  4974. #endif
  4975. #if defined(TCCR5A)
  4976. case TIMER5A:
  4977. case TIMER5B:
  4978. case TIMER5C:
  4979. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4980. TCCR5B |= val;
  4981. break;
  4982. #endif
  4983. }
  4984. }
  4985. #endif //FAST_PWM_FAN
  4986. bool setTargetedHotend(int code){
  4987. tmp_extruder = active_extruder;
  4988. if(code_seen('T')) {
  4989. tmp_extruder = code_value();
  4990. if(tmp_extruder >= EXTRUDERS) {
  4991. SERIAL_ECHO_START;
  4992. switch(code){
  4993. case 104:
  4994. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4995. break;
  4996. case 105:
  4997. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4998. break;
  4999. case 109:
  5000. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5001. break;
  5002. case 218:
  5003. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5004. break;
  5005. case 221:
  5006. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5007. break;
  5008. }
  5009. SERIAL_ECHOLN(tmp_extruder);
  5010. return true;
  5011. }
  5012. }
  5013. return false;
  5014. }
  5015. float calculate_volumetric_multiplier(float diameter) {
  5016. if (!volumetric_enabled || diameter == 0) return 1.0;
  5017. float d2 = diameter * 0.5;
  5018. return 1.0 / (M_PI * d2 * d2);
  5019. }
  5020. void calculate_volumetric_multipliers() {
  5021. for (int i=0; i<EXTRUDERS; i++)
  5022. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5023. }