My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin.pde 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include <EEPROM.h>
  23. #include "EEPROMwrite.h"
  24. #include "fastio.h"
  25. #include "Configuration.h"
  26. #include "pins.h"
  27. #include "Marlin.h"
  28. #include "ultralcd.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "motion_control.h"
  33. #include "cardreader.h"
  34. #include "watchdog.h"
  35. #define VERSION_STRING "1.0.0 Alpha 1"
  36. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  37. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  38. //Implemented Codes
  39. //-------------------
  40. // G0 -> G1
  41. // G1 - Coordinated Movement X Y Z E
  42. // G2 - CW ARC
  43. // G3 - CCW ARC
  44. // G4 - Dwell S<seconds> or P<milliseconds>
  45. // G28 - Home all Axis
  46. // G90 - Use Absolute Coordinates
  47. // G91 - Use Relative Coordinates
  48. // G92 - Set current position to cordinates given
  49. //RepRap M Codes
  50. // M104 - Set extruder target temp
  51. // M105 - Read current temp
  52. // M106 - Fan on
  53. // M107 - Fan off
  54. // M109 - Wait for extruder current temp to reach target temp.
  55. // M114 - Display current position
  56. //Custom M Codes
  57. // M20 - List SD card
  58. // M21 - Init SD card
  59. // M22 - Release SD card
  60. // M23 - Select SD file (M23 filename.g)
  61. // M24 - Start/resume SD print
  62. // M25 - Pause SD print
  63. // M26 - Set SD position in bytes (M26 S12345)
  64. // M27 - Report SD print status
  65. // M28 - Start SD write (M28 filename.g)
  66. // M29 - Stop SD write
  67. // M30 - Output time since last M109 or SD card start to serial
  68. // M42 - Change pin status via gcode
  69. // M80 - Turn on Power Supply
  70. // M81 - Turn off Power Supply
  71. // M82 - Set E codes absolute (default)
  72. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  73. // M84 - Disable steppers until next move,
  74. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  75. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  76. // M92 - Set axis_steps_per_unit - same syntax as G92
  77. // M115 - Capabilities string
  78. // M140 - Set bed target temp
  79. // M190 - Wait for bed current temp to reach target temp.
  80. // M200 - Set filament diameter
  81. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  82. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  83. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  84. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  85. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  86. // M220 - set speed factor override percentage S:factor in percent
  87. // M301 - Set PID parameters P I and D
  88. // M400 - Finish all moves
  89. // M500 - stores paramters in EEPROM
  90. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  91. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  92. //Stepper Movement Variables
  93. //===========================================================================
  94. //=============================imported variables============================
  95. //===========================================================================
  96. extern float HeaterPower;
  97. //===========================================================================
  98. //=============================public variables=============================
  99. //===========================================================================
  100. #ifdef SDSUPPORT
  101. CardReader card;
  102. #endif
  103. float homing_feedrate[] = HOMING_FEEDRATE;
  104. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  105. volatile int feedmultiply=100; //100->1 200->2
  106. int saved_feedmultiply;
  107. volatile bool feedmultiplychanged=false;
  108. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  109. //===========================================================================
  110. //=============================private variables=============================
  111. //===========================================================================
  112. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  113. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  114. static float offset[3] = {0.0, 0.0, 0.0};
  115. static bool home_all_axis = true;
  116. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  117. static long gcode_N, gcode_LastN;
  118. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  119. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  120. static uint8_t fanpwm=0;
  121. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  122. static bool fromsd[BUFSIZE];
  123. static int bufindr = 0;
  124. static int bufindw = 0;
  125. static int buflen = 0;
  126. static int i = 0;
  127. static char serial_char;
  128. static int serial_count = 0;
  129. static boolean comment_mode = false;
  130. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  131. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  132. static float tt = 0, bt = 0;
  133. //Inactivity shutdown variables
  134. static unsigned long previous_millis_cmd = 0;
  135. static unsigned long max_inactive_time = 0;
  136. static unsigned long stepper_inactive_time = 0;
  137. static unsigned long starttime=0;
  138. static unsigned long stoptime=0;
  139. //===========================================================================
  140. //=============================ROUTINES=============================
  141. //===========================================================================
  142. extern "C"{
  143. extern unsigned int __bss_end;
  144. extern unsigned int __heap_start;
  145. extern void *__brkval;
  146. int freeMemory() {
  147. int free_memory;
  148. if((int)__brkval == 0)
  149. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  150. else
  151. free_memory = ((int)&free_memory) - ((int)__brkval);
  152. return free_memory;
  153. }
  154. }
  155. //adds an command to the main command buffer
  156. //thats really done in a non-safe way.
  157. //needs overworking someday
  158. void enquecommand(const char *cmd)
  159. {
  160. if(buflen < BUFSIZE)
  161. {
  162. //this is dangerous if a mixing of serial and this happsens
  163. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  164. SERIAL_ECHO_START;
  165. SERIAL_ECHOPGM("enqueing \"");
  166. SERIAL_ECHO(cmdbuffer[bufindw]);
  167. SERIAL_ECHOLNPGM("\"");
  168. bufindw= (bufindw + 1)%BUFSIZE;
  169. buflen += 1;
  170. }
  171. }
  172. void setup()
  173. {
  174. Serial.begin(BAUDRATE);
  175. SERIAL_ECHO_START;
  176. SERIAL_ECHOLNPGM(VERSION_STRING);
  177. SERIAL_PROTOCOLLNPGM("start");
  178. SERIAL_ECHO_START;
  179. SERIAL_ECHOPGM("Free Memory:");
  180. SERIAL_ECHOLN(freeMemory());
  181. for(int8_t i = 0; i < BUFSIZE; i++)
  182. {
  183. fromsd[i] = false;
  184. }
  185. RetrieveSettings(); // loads data from EEPROM if available
  186. for(int8_t i=0; i < NUM_AXIS; i++)
  187. {
  188. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  189. }
  190. plan_init(); // Initialize planner;
  191. st_init(); // Initialize stepper;
  192. tp_init(); // Initialize temperature loop
  193. wd_init();
  194. }
  195. void loop()
  196. {
  197. if(buflen<3)
  198. get_command();
  199. #ifdef SDSUPPORT
  200. card.checkautostart(false);
  201. #endif
  202. if(buflen)
  203. {
  204. #ifdef SDSUPPORT
  205. if(card.saving)
  206. {
  207. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  208. {
  209. card.write_command(cmdbuffer[bufindr]);
  210. SERIAL_PROTOCOLLNPGM("ok");
  211. }
  212. else
  213. {
  214. card.closefile();
  215. SERIAL_PROTOCOLLNPGM("Done saving file.");
  216. }
  217. }
  218. else
  219. {
  220. process_commands();
  221. }
  222. #else
  223. process_commands();
  224. #endif //SDSUPPORT
  225. buflen = (buflen-1);
  226. bufindr = (bufindr + 1)%BUFSIZE;
  227. }
  228. //check heater every n milliseconds
  229. manage_heater();
  230. manage_inactivity(1);
  231. checkHitEndstops();
  232. LCD_STATUS;
  233. }
  234. inline void get_command()
  235. {
  236. while( Serial.available() > 0 && buflen < BUFSIZE) {
  237. serial_char = Serial.read();
  238. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  239. {
  240. if(!serial_count) return; //if empty line
  241. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  242. if(!comment_mode){
  243. fromsd[bufindw] = false;
  244. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  245. {
  246. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  247. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  248. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  249. SERIAL_ERROR_START;
  250. SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
  251. SERIAL_ERRORLN(gcode_LastN);
  252. //Serial.println(gcode_N);
  253. FlushSerialRequestResend();
  254. serial_count = 0;
  255. return;
  256. }
  257. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  258. {
  259. byte checksum = 0;
  260. byte count = 0;
  261. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  262. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  263. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  264. SERIAL_ERROR_START;
  265. SERIAL_ERRORPGM("checksum mismatch, Last Line:");
  266. SERIAL_ERRORLN(gcode_LastN);
  267. FlushSerialRequestResend();
  268. serial_count = 0;
  269. return;
  270. }
  271. //if no errors, continue parsing
  272. }
  273. else
  274. {
  275. SERIAL_ERROR_START;
  276. SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
  277. SERIAL_ERRORLN(gcode_LastN);
  278. FlushSerialRequestResend();
  279. serial_count = 0;
  280. return;
  281. }
  282. gcode_LastN = gcode_N;
  283. //if no errors, continue parsing
  284. }
  285. else // if we don't receive 'N' but still see '*'
  286. {
  287. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  288. {
  289. SERIAL_ERROR_START;
  290. SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
  291. SERIAL_ERRORLN(gcode_LastN);
  292. serial_count = 0;
  293. return;
  294. }
  295. }
  296. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  297. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  298. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  299. case 0:
  300. case 1:
  301. case 2:
  302. case 3:
  303. #ifdef SDSUPPORT
  304. if(card.saving)
  305. break;
  306. #endif //SDSUPPORT
  307. SERIAL_PROTOCOLLNPGM("ok");
  308. break;
  309. default:
  310. break;
  311. }
  312. }
  313. bufindw = (bufindw + 1)%BUFSIZE;
  314. buflen += 1;
  315. }
  316. comment_mode = false; //for new command
  317. serial_count = 0; //clear buffer
  318. }
  319. else
  320. {
  321. if(serial_char == ';') comment_mode = true;
  322. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  323. }
  324. }
  325. #ifdef SDSUPPORT
  326. if(!card.sdprinting || serial_count!=0){
  327. return;
  328. }
  329. while( !card.eof() && buflen < BUFSIZE) {
  330. int16_t n=card.get();
  331. serial_char = (char)n;
  332. // Serial.print((char)serial_char);
  333. // Serial.print(" ");
  334. // Serial.println((int)serial_count);
  335. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  336. {
  337. // if(serial_char == '\n' || serial_char == '\r' )
  338. // Serial.println("newline or :");
  339. // if(serial_count >= (MAX_CMD_SIZE - 1))
  340. // Serial.println("too long line");
  341. if(card.eof()){
  342. card.sdprinting = false;
  343. SERIAL_PROTOCOLLNPGM("Done printing file");
  344. stoptime=millis();
  345. char time[30];
  346. unsigned long t=(stoptime-starttime)/1000;
  347. int sec,min;
  348. min=t/60;
  349. sec=t%60;
  350. sprintf(time,"%i min, %i sec",min,sec);
  351. SERIAL_ECHO_START;
  352. SERIAL_ECHOLN(time);
  353. LCD_MESSAGE(time);
  354. card.checkautostart(true);
  355. }
  356. if(serial_char=='\n')
  357. comment_mode = false; //for new command
  358. if(!serial_count)
  359. {
  360. // Serial.println("empty line");
  361. return; //if empty line
  362. }
  363. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  364. if(!comment_mode){
  365. fromsd[bufindw] = true;
  366. buflen += 1;
  367. bufindw = (bufindw + 1)%BUFSIZE;
  368. }
  369. serial_count = 0; //clear buffer
  370. }
  371. else
  372. {
  373. if(serial_char == ';') comment_mode = true;
  374. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  375. }
  376. }
  377. #endif //SDSUPPORT
  378. }
  379. inline float code_value()
  380. {
  381. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  382. }
  383. inline long code_value_long()
  384. {
  385. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  386. }
  387. inline bool code_seen(char code_string[]) //Return True if the string was found
  388. {
  389. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  390. }
  391. inline bool code_seen(char code)
  392. {
  393. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  394. return (strchr_pointer != NULL); //Return True if a character was found
  395. }
  396. #define HOMEAXIS(LETTER) \
  397. if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
  398. { \
  399. current_position[LETTER##_AXIS] = 0; \
  400. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
  401. destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
  402. feedrate = homing_feedrate[LETTER##_AXIS]; \
  403. prepare_move(); \
  404. st_synchronize();\
  405. \
  406. current_position[LETTER##_AXIS] = 0;\
  407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  408. destination[LETTER##_AXIS] = -5 * LETTER##_HOME_DIR;\
  409. prepare_move(); \
  410. st_synchronize();\
  411. \
  412. destination[LETTER##_AXIS] = 10 * LETTER##_HOME_DIR;\
  413. feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
  414. prepare_move(); \
  415. st_synchronize();\
  416. \
  417. current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
  418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  419. destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
  420. feedrate = 0.0;\
  421. st_synchronize();\
  422. endstops_hit_on_purpose();\
  423. }
  424. inline void process_commands()
  425. {
  426. unsigned long codenum; //throw away variable
  427. char *starpos = NULL;
  428. if(code_seen('G'))
  429. {
  430. switch((int)code_value())
  431. {
  432. case 0: // G0 -> G1
  433. case 1: // G1
  434. get_coordinates(); // For X Y Z E F
  435. prepare_move();
  436. previous_millis_cmd = millis();
  437. //ClearToSend();
  438. return;
  439. //break;
  440. case 2: // G2 - CW ARC
  441. get_arc_coordinates();
  442. prepare_arc_move(true);
  443. previous_millis_cmd = millis();
  444. return;
  445. case 3: // G3 - CCW ARC
  446. get_arc_coordinates();
  447. prepare_arc_move(false);
  448. previous_millis_cmd = millis();
  449. return;
  450. case 4: // G4 dwell
  451. LCD_MESSAGEPGM("DWELL...");
  452. codenum = 0;
  453. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  454. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  455. codenum += millis(); // keep track of when we started waiting
  456. while(millis() < codenum ){
  457. manage_heater();
  458. }
  459. break;
  460. case 28: //G28 Home all Axis one at a time
  461. saved_feedrate = feedrate;
  462. saved_feedmultiply = feedmultiply;
  463. feedmultiply = 100;
  464. for(int8_t i=0; i < NUM_AXIS; i++) {
  465. destination[i] = current_position[i];
  466. }
  467. feedrate = 0.0;
  468. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  469. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  470. {
  471. HOMEAXIS(X);
  472. }
  473. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  474. HOMEAXIS(Y);
  475. }
  476. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  477. HOMEAXIS(Z);
  478. }
  479. feedrate = saved_feedrate;
  480. feedmultiply = saved_feedmultiply;
  481. previous_millis_cmd = millis();
  482. endstops_hit_on_purpose();
  483. break;
  484. case 90: // G90
  485. relative_mode = false;
  486. break;
  487. case 91: // G91
  488. relative_mode = true;
  489. break;
  490. case 92: // G92
  491. if(!code_seen(axis_codes[E_AXIS]))
  492. st_synchronize();
  493. for(int8_t i=0; i < NUM_AXIS; i++) {
  494. if(code_seen(axis_codes[i])) current_position[i] = code_value();
  495. }
  496. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  497. break;
  498. }
  499. }
  500. else if(code_seen('M'))
  501. {
  502. switch( (int)code_value() )
  503. {
  504. #ifdef SDSUPPORT
  505. case 20: // M20 - list SD card
  506. SERIAL_PROTOCOLLNPGM("Begin file list");
  507. card.ls();
  508. SERIAL_PROTOCOLLNPGM("End file list");
  509. break;
  510. case 21: // M21 - init SD card
  511. card.initsd();
  512. break;
  513. case 22: //M22 - release SD card
  514. card.release();
  515. break;
  516. case 23: //M23 - Select file
  517. starpos = (strchr(strchr_pointer + 4,'*'));
  518. if(starpos!=NULL)
  519. *(starpos-1)='\0';
  520. card.selectFile(strchr_pointer + 4);
  521. break;
  522. case 24: //M24 - Start SD print
  523. card.startFileprint();
  524. starttime=millis();
  525. break;
  526. case 25: //M25 - Pause SD print
  527. card.pauseSDPrint();
  528. break;
  529. case 26: //M26 - Set SD index
  530. if(card.cardOK && code_seen('S')){
  531. card.setIndex(code_value_long());
  532. }
  533. break;
  534. case 27: //M27 - Get SD status
  535. card.getStatus();
  536. break;
  537. case 28: //M28 - Start SD write
  538. starpos = (strchr(strchr_pointer + 4,'*'));
  539. if(starpos != NULL){
  540. char* npos = strchr(cmdbuffer[bufindr], 'N');
  541. strchr_pointer = strchr(npos,' ') + 1;
  542. *(starpos-1) = '\0';
  543. }
  544. card.startFilewrite(strchr_pointer+4);
  545. break;
  546. case 29: //M29 - Stop SD write
  547. //processed in write to file routine above
  548. //card,saving = false;
  549. break;
  550. #endif //SDSUPPORT
  551. case 30: //M30 take time since the start of the SD print or an M109 command
  552. {
  553. stoptime=millis();
  554. char time[30];
  555. unsigned long t=(stoptime-starttime)/1000;
  556. int sec,min;
  557. min=t/60;
  558. sec=t%60;
  559. sprintf(time,"%i min, %i sec",min,sec);
  560. SERIAL_ECHO_START;
  561. SERIAL_ECHOLN(time);
  562. LCD_MESSAGE(time);
  563. }
  564. break;
  565. case 42: //M42 -Change pin status via gcode
  566. if (code_seen('S'))
  567. {
  568. int pin_status = code_value();
  569. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  570. {
  571. int pin_number = code_value();
  572. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  573. {
  574. if (sensitive_pins[i] == pin_number)
  575. {
  576. pin_number = -1;
  577. break;
  578. }
  579. }
  580. if (pin_number > -1)
  581. {
  582. pinMode(pin_number, OUTPUT);
  583. digitalWrite(pin_number, pin_status);
  584. analogWrite(pin_number, pin_status);
  585. }
  586. }
  587. }
  588. break;
  589. case 104: // M104
  590. if (code_seen('S')) setTargetHotend0(code_value());
  591. setWatch();
  592. break;
  593. case 140: // M140 set bed temp
  594. if (code_seen('S')) setTargetBed(code_value());
  595. break;
  596. case 105: // M105
  597. //SERIAL_ECHOLN(freeMemory());
  598. //test watchdog:
  599. //delay(20000);
  600. #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
  601. SERIAL_PROTOCOLPGM("ok T:");
  602. SERIAL_PROTOCOL( degHotend0());
  603. #if TEMP_1_PIN > -1
  604. SERIAL_PROTOCOLPGM(" B:");
  605. SERIAL_PROTOCOL(degBed());
  606. #endif //TEMP_1_PIN
  607. #else
  608. SERIAL_ERROR_START;
  609. SERIAL_ERRORLNPGM("No thermistors - no temp");
  610. #endif
  611. #ifdef PIDTEMP
  612. SERIAL_PROTOCOLPGM(" @:");
  613. SERIAL_PROTOCOL( HeaterPower);
  614. #endif
  615. SERIAL_PROTOCOLLN("");
  616. return;
  617. break;
  618. case 109:
  619. {// M109 - Wait for extruder heater to reach target.
  620. LCD_MESSAGEPGM("Heating...");
  621. if (code_seen('S')) setTargetHotend0(code_value());
  622. setWatch();
  623. codenum = millis();
  624. /* See if we are heating up or cooling down */
  625. bool target_direction = isHeatingHotend0(); // true if heating, false if cooling
  626. #ifdef TEMP_RESIDENCY_TIME
  627. long residencyStart;
  628. residencyStart = -1;
  629. /* continue to loop until we have reached the target temp
  630. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  631. while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ||
  632. (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
  633. #else
  634. while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ) {
  635. #endif //TEMP_RESIDENCY_TIME
  636. if( (millis() - codenum) > 1000 )
  637. { //Print Temp Reading every 1 second while heating up/cooling down
  638. SERIAL_PROTOCOLPGM("T:");
  639. SERIAL_PROTOCOLLN( degHotend0() );
  640. codenum = millis();
  641. }
  642. manage_heater();
  643. LCD_STATUS;
  644. #ifdef TEMP_RESIDENCY_TIME
  645. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  646. or when current temp falls outside the hysteresis after target temp was reached */
  647. if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) ||
  648. (residencyStart == -1 && !target_direction && !isCoolingHotend0()) ||
  649. (residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) )
  650. {
  651. residencyStart = millis();
  652. }
  653. #endif //TEMP_RESIDENCY_TIME
  654. }
  655. LCD_MESSAGEPGM("Heating done.");
  656. starttime=millis();
  657. }
  658. break;
  659. case 190: // M190 - Wait bed for heater to reach target.
  660. #if TEMP_1_PIN > -1
  661. LCD_MESSAGEPGM("Bed Heating.");
  662. if (code_seen('S')) setTargetBed(code_value());
  663. codenum = millis();
  664. while(isHeatingBed())
  665. {
  666. if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  667. {
  668. float tt=degHotend0();
  669. SERIAL_PROTOCOLPGM("T:");
  670. SERIAL_PROTOCOLLN(tt );
  671. SERIAL_PROTOCOLPGM("ok T:");
  672. SERIAL_PROTOCOL(tt );
  673. SERIAL_PROTOCOLPGM(" B:");
  674. SERIAL_PROTOCOLLN(degBed() );
  675. codenum = millis();
  676. }
  677. manage_heater();
  678. }
  679. LCD_MESSAGEPGM("Bed done.");
  680. #endif
  681. break;
  682. #if FAN_PIN > -1
  683. case 106: //M106 Fan On
  684. if (code_seen('S')){
  685. WRITE(FAN_PIN,HIGH);
  686. fanpwm=constrain(code_value(),0,255);
  687. analogWrite(FAN_PIN, fanpwm);
  688. }
  689. else {
  690. WRITE(FAN_PIN,HIGH);
  691. fanpwm=255;
  692. analogWrite(FAN_PIN, fanpwm);
  693. }
  694. break;
  695. case 107: //M107 Fan Off
  696. WRITE(FAN_PIN,LOW);
  697. analogWrite(FAN_PIN, 0);
  698. break;
  699. #endif //FAN_PIN
  700. #if (PS_ON_PIN > -1)
  701. case 80: // M80 - ATX Power On
  702. SET_OUTPUT(PS_ON_PIN); //GND
  703. break;
  704. case 81: // M81 - ATX Power Off
  705. SET_INPUT(PS_ON_PIN); //Floating
  706. break;
  707. #endif
  708. case 82:
  709. axis_relative_modes[3] = false;
  710. break;
  711. case 83:
  712. axis_relative_modes[3] = true;
  713. break;
  714. case 18: //compatibility
  715. case 84:
  716. if(code_seen('S')){
  717. stepper_inactive_time = code_value() * 1000;
  718. }
  719. else
  720. {
  721. st_synchronize();
  722. LCD_MESSAGEPGM("Free move.");
  723. disable_x();
  724. disable_y();
  725. disable_z();
  726. disable_e();
  727. }
  728. break;
  729. case 85: // M85
  730. code_seen('S');
  731. max_inactive_time = code_value() * 1000;
  732. break;
  733. case 92: // M92
  734. for(int8_t i=0; i < NUM_AXIS; i++)
  735. {
  736. if(code_seen(axis_codes[i]))
  737. axis_steps_per_unit[i] = code_value();
  738. }
  739. break;
  740. case 115: // M115
  741. SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
  742. break;
  743. case 114: // M114
  744. SERIAL_PROTOCOLPGM("X:");
  745. SERIAL_PROTOCOL(current_position[X_AXIS]);
  746. SERIAL_PROTOCOLPGM("Y:");
  747. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  748. SERIAL_PROTOCOLPGM("Z:");
  749. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  750. SERIAL_PROTOCOLPGM("E:");
  751. SERIAL_PROTOCOL(current_position[E_AXIS]);
  752. #ifdef DEBUG_STEPS
  753. SERIAL_PROTOCOLPGM(" Count X:");
  754. SERIAL_PROTOCOL(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
  755. SERIAL_PROTOCOLPGM("Y:");
  756. SERIAL_PROTOCOL(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
  757. SERIAL_PROTOCOLPGM("Z:");
  758. SERIAL_PROTOCOL(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
  759. #endif
  760. SERIAL_PROTOCOLLN("");
  761. break;
  762. case 119: // M119
  763. #if (X_MIN_PIN > -1)
  764. SERIAL_PROTOCOLPGM("x_min:");
  765. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  766. #endif
  767. #if (X_MAX_PIN > -1)
  768. SERIAL_PROTOCOLPGM("x_max:");
  769. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  770. #endif
  771. #if (Y_MIN_PIN > -1)
  772. SERIAL_PROTOCOLPGM("y_min:");
  773. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  774. #endif
  775. #if (Y_MAX_PIN > -1)
  776. SERIAL_PROTOCOLPGM("y_max:");
  777. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  778. #endif
  779. #if (Z_MIN_PIN > -1)
  780. SERIAL_PROTOCOLPGM("z_min:");
  781. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  782. #endif
  783. #if (Z_MAX_PIN > -1)
  784. SERIAL_PROTOCOLPGM("z_max:");
  785. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L "));
  786. #endif
  787. SERIAL_PROTOCOLLN("");
  788. break;
  789. //TODO: update for all axis, use for loop
  790. case 201: // M201
  791. for(int8_t i=0; i < NUM_AXIS; i++)
  792. {
  793. if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  794. }
  795. break;
  796. #if 0 // Not used for Sprinter/grbl gen6
  797. case 202: // M202
  798. for(int8_t i=0; i < NUM_AXIS; i++) {
  799. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  800. }
  801. break;
  802. #endif
  803. case 203: // M203 max feedrate mm/sec
  804. for(int8_t i=0; i < NUM_AXIS; i++) {
  805. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
  806. }
  807. break;
  808. case 204: // M204 acclereration S normal moves T filmanent only moves
  809. {
  810. if(code_seen('S')) acceleration = code_value() ;
  811. if(code_seen('T')) retract_acceleration = code_value() ;
  812. }
  813. break;
  814. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  815. {
  816. if(code_seen('S')) minimumfeedrate = code_value()*60 ;
  817. if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
  818. if(code_seen('B')) minsegmenttime = code_value() ;
  819. if(code_seen('X')) max_xy_jerk = code_value()*60 ;
  820. if(code_seen('Z')) max_z_jerk = code_value()*60 ;
  821. }
  822. break;
  823. case 220: // M220 S<factor in percent>- set speed factor override percentage
  824. {
  825. if(code_seen('S'))
  826. {
  827. feedmultiply = code_value() ;
  828. feedmultiplychanged=true;
  829. }
  830. }
  831. break;
  832. #ifdef PIDTEMP
  833. case 301: // M301
  834. {
  835. if(code_seen('P')) Kp = code_value();
  836. if(code_seen('I')) Ki = code_value()*PID_dT;
  837. if(code_seen('D')) Kd = code_value()/PID_dT;
  838. #ifdef PID_ADD_EXTRUSION_RATE
  839. if(code_seen('C')) Kc = code_value();
  840. #endif
  841. updatePID();
  842. SERIAL_PROTOCOL("ok p:");
  843. SERIAL_PROTOCOL(Kp);
  844. SERIAL_PROTOCOL(" i:");
  845. SERIAL_PROTOCOL(Ki/PID_dT);
  846. SERIAL_PROTOCOL(" d:");
  847. SERIAL_PROTOCOL(Kd*PID_dT);
  848. #ifdef PID_ADD_EXTRUSION_RATE
  849. SERIAL_PROTOCOL(" c:");
  850. SERIAL_PROTOCOL(Kc*PID_dT);
  851. #endif
  852. SERIAL_PROTOCOLLN("");
  853. }
  854. break;
  855. #endif //PIDTEMP
  856. case 400: // finish all moves
  857. {
  858. st_synchronize();
  859. }
  860. break;
  861. case 500: // Store settings in EEPROM
  862. {
  863. StoreSettings();
  864. }
  865. break;
  866. case 501: // Read settings from EEPROM
  867. {
  868. RetrieveSettings();
  869. }
  870. break;
  871. case 502: // Revert to default settings
  872. {
  873. RetrieveSettings(true);
  874. }
  875. break;
  876. }
  877. }
  878. else
  879. {
  880. SERIAL_ECHO_START;
  881. SERIAL_ECHOPGM("Unknown command:\"");
  882. SERIAL_ECHO(cmdbuffer[bufindr]);
  883. SERIAL_ECHOLNPGM("\"");
  884. }
  885. ClearToSend();
  886. }
  887. void FlushSerialRequestResend()
  888. {
  889. //char cmdbuffer[bufindr][100]="Resend:";
  890. Serial.flush();
  891. SERIAL_PROTOCOLPGM("Resend:");
  892. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  893. ClearToSend();
  894. }
  895. void ClearToSend()
  896. {
  897. previous_millis_cmd = millis();
  898. #ifdef SDSUPPORT
  899. if(fromsd[bufindr])
  900. return;
  901. #endif //SDSUPPORT
  902. SERIAL_PROTOCOLLNPGM("ok");
  903. }
  904. inline void get_coordinates()
  905. {
  906. for(int8_t i=0; i < NUM_AXIS; i++) {
  907. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  908. else destination[i] = current_position[i]; //Are these else lines really needed?
  909. }
  910. if(code_seen('F')) {
  911. next_feedrate = code_value();
  912. if(next_feedrate > 0.0) feedrate = next_feedrate;
  913. }
  914. }
  915. inline void get_arc_coordinates()
  916. {
  917. get_coordinates();
  918. if(code_seen('I')) offset[0] = code_value();
  919. if(code_seen('J')) offset[1] = code_value();
  920. }
  921. void prepare_move()
  922. {
  923. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0);
  924. for(int8_t i=0; i < NUM_AXIS; i++) {
  925. current_position[i] = destination[i];
  926. }
  927. }
  928. void prepare_arc_move(char isclockwise) {
  929. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  930. // Trace the arc
  931. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise);
  932. // As far as the parser is concerned, the position is now == target. In reality the
  933. // motion control system might still be processing the action and the real tool position
  934. // in any intermediate location.
  935. for(int8_t i=0; i < NUM_AXIS; i++) {
  936. current_position[i] = destination[i];
  937. }
  938. }
  939. void manage_inactivity(byte debug)
  940. {
  941. if( (millis()-previous_millis_cmd) > max_inactive_time )
  942. if(max_inactive_time)
  943. kill();
  944. if( (millis()-previous_millis_cmd) > stepper_inactive_time )
  945. if(stepper_inactive_time)
  946. {
  947. disable_x();
  948. disable_y();
  949. disable_z();
  950. disable_e();
  951. }
  952. check_axes_activity();
  953. }
  954. void kill()
  955. {
  956. disable_heater();
  957. disable_x();
  958. disable_y();
  959. disable_z();
  960. disable_e();
  961. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  962. SERIAL_ERROR_START;
  963. SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
  964. LCD_MESSAGEPGM("KILLED. ");
  965. while(1); // Wait for reset
  966. }