My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 89KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V64"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #include "../lcd/ultralcd.h"
  49. #include "../core/language.h"
  50. #include "../libs/vector_3.h"
  51. #include "../gcode/gcode.h"
  52. #include "../Marlin.h"
  53. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  54. #include "../HAL/shared/persistent_store_api.h"
  55. #endif
  56. #if HAS_LEVELING
  57. #include "../feature/bedlevel/bedlevel.h"
  58. #endif
  59. #if HAS_SERVOS
  60. #include "servo.h"
  61. #endif
  62. #if HAS_SERVOS && HAS_SERVO_ANGLES
  63. #define EEPROM_NUM_SERVOS NUM_SERVOS
  64. #else
  65. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  66. #endif
  67. #if HAS_BED_PROBE
  68. #include "probe.h"
  69. #endif
  70. #include "../feature/fwretract.h"
  71. #if ENABLED(POWER_LOSS_RECOVERY)
  72. #include "../feature/power_loss_recovery.h"
  73. #endif
  74. #include "../feature/pause.h"
  75. #if EXTRUDERS > 1
  76. #include "tool_change.h"
  77. void M217_report(const bool eeprom);
  78. #endif
  79. #if HAS_TRINAMIC
  80. #include "stepper_indirection.h"
  81. #include "../feature/tmc_util.h"
  82. #define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.settings.axis_steps_per_mm[_AXIS(A)])
  83. #endif
  84. #pragma pack(push, 1) // No padding between variables
  85. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stepper_current_t;
  86. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_hybrid_threshold_t;
  87. typedef struct { int16_t X, Y, Z; } tmc_sgt_t;
  88. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5; } tmc_stealth_enabled_t;
  89. // Limit an index to an array size
  90. #define ALIM(I,ARR) MIN(I, COUNT(ARR) - 1)
  91. /**
  92. * Current EEPROM Layout
  93. *
  94. * Keep this data structure up to date so
  95. * EEPROM size is known at compile time!
  96. */
  97. typedef struct SettingsDataStruct {
  98. char version[4]; // Vnn\0
  99. uint16_t crc; // Data Checksum
  100. //
  101. // DISTINCT_E_FACTORS
  102. //
  103. uint8_t esteppers; // XYZE_N - XYZ
  104. planner_settings_t planner_settings;
  105. float planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
  106. planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  107. float home_offset[XYZ]; // M206 XYZ / M665 TPZ
  108. #if HAS_HOTEND_OFFSET
  109. float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
  110. #endif
  111. //
  112. // ENABLE_LEVELING_FADE_HEIGHT
  113. //
  114. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  115. //
  116. // MESH_BED_LEVELING
  117. //
  118. float mbl_z_offset; // mbl.z_offset
  119. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  120. #if ENABLED(MESH_BED_LEVELING)
  121. float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
  122. #else
  123. float mbl_z_values[3][3];
  124. #endif
  125. //
  126. // HAS_BED_PROBE
  127. //
  128. float zprobe_zoffset;
  129. //
  130. // ABL_PLANAR
  131. //
  132. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  133. //
  134. // AUTO_BED_LEVELING_BILINEAR
  135. //
  136. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  137. int bilinear_grid_spacing[2],
  138. bilinear_start[2]; // G29 L F
  139. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  140. float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
  141. #else
  142. float z_values[3][3];
  143. #endif
  144. //
  145. // AUTO_BED_LEVELING_UBL
  146. //
  147. bool planner_leveling_active; // M420 S planner.leveling_active
  148. int8_t ubl_storage_slot; // ubl.storage_slot
  149. //
  150. // SERVO_ANGLES
  151. //
  152. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  153. //
  154. // DELTA / [XYZ]_DUAL_ENDSTOPS
  155. //
  156. #if ENABLED(DELTA)
  157. float delta_height, // M666 H
  158. delta_endstop_adj[ABC], // M666 XYZ
  159. delta_radius, // M665 R
  160. delta_diagonal_rod, // M665 L
  161. delta_segments_per_second, // M665 S
  162. delta_calibration_radius, // M665 B
  163. delta_tower_angle_trim[ABC]; // M665 XYZ
  164. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  165. float x2_endstop_adj, // M666 X
  166. y2_endstop_adj, // M666 Y
  167. z2_endstop_adj, // M666 Z (S2)
  168. z3_endstop_adj; // M666 Z (S3)
  169. #endif
  170. //
  171. // ULTIPANEL
  172. //
  173. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  174. ui_preheat_bed_temp[2]; // M145 S0 B
  175. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  176. //
  177. // PIDTEMP
  178. //
  179. PIDC_t hotendPID[HOTENDS]; // M301 En PIDC / M303 En U
  180. int16_t lpq_len; // M301 L
  181. //
  182. // PIDTEMPBED
  183. //
  184. PID_t bedPID; // M304 PID / M303 E-1 U
  185. //
  186. // HAS_LCD_CONTRAST
  187. //
  188. int16_t lcd_contrast; // M250 C
  189. //
  190. // POWER_LOSS_RECOVERY
  191. //
  192. bool recovery_enabled; // M413 S
  193. //
  194. // FWRETRACT
  195. //
  196. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  197. bool autoretract_enabled; // M209 S
  198. //
  199. // !NO_VOLUMETRIC
  200. //
  201. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  202. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  203. //
  204. // HAS_TRINAMIC
  205. //
  206. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  207. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  208. tmc_sgt_t tmc_sgt; // M914 X Y Z
  209. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 E0 E1 E2 E3 E4 E5
  210. //
  211. // LIN_ADVANCE
  212. //
  213. float planner_extruder_advance_K[EXTRUDERS]; // M900 K planner.extruder_advance_K
  214. //
  215. // HAS_MOTOR_CURRENT_PWM
  216. //
  217. uint32_t motor_current_setting[3]; // M907 X Z E
  218. //
  219. // CNC_COORDINATE_SYSTEMS
  220. //
  221. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
  222. //
  223. // SKEW_CORRECTION
  224. //
  225. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  226. //
  227. // ADVANCED_PAUSE_FEATURE
  228. //
  229. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  230. //
  231. // Tool-change settings
  232. //
  233. #if EXTRUDERS > 1
  234. toolchange_settings_t toolchange_settings; // M217 S P R
  235. #endif
  236. } SettingsData;
  237. MarlinSettings settings;
  238. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  239. /**
  240. * Post-process after Retrieve or Reset
  241. */
  242. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  243. float new_z_fade_height;
  244. #endif
  245. void MarlinSettings::postprocess() {
  246. const float oldpos[XYZE] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] };
  247. // steps per s2 needs to be updated to agree with units per s2
  248. planner.reset_acceleration_rates();
  249. // Make sure delta kinematics are updated before refreshing the
  250. // planner position so the stepper counts will be set correctly.
  251. #if ENABLED(DELTA)
  252. recalc_delta_settings();
  253. #endif
  254. #if ENABLED(PIDTEMP)
  255. thermalManager.updatePID();
  256. #endif
  257. #if DISABLED(NO_VOLUMETRICS)
  258. planner.calculate_volumetric_multipliers();
  259. #else
  260. for (uint8_t i = COUNT(planner.e_factor); i--;)
  261. planner.refresh_e_factor(i);
  262. #endif
  263. // Software endstops depend on home_offset
  264. LOOP_XYZ(i) {
  265. update_workspace_offset((AxisEnum)i);
  266. update_software_endstops((AxisEnum)i);
  267. }
  268. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  269. set_z_fade_height(new_z_fade_height, false); // false = no report
  270. #endif
  271. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  272. refresh_bed_level();
  273. #endif
  274. #if HAS_MOTOR_CURRENT_PWM
  275. stepper.refresh_motor_power();
  276. #endif
  277. #if ENABLED(FWRETRACT)
  278. fwretract.refresh_autoretract();
  279. #endif
  280. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  281. planner.recalculate_max_e_jerk();
  282. #endif
  283. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  284. // and init stepper.count[], planner.position[] with current_position
  285. planner.refresh_positioning();
  286. // Various factors can change the current position
  287. if (memcmp(oldpos, current_position, sizeof(oldpos)))
  288. report_current_position();
  289. }
  290. #if ENABLED(SD_FIRMWARE_UPDATE)
  291. #if ENABLED(EEPROM_SETTINGS)
  292. static_assert(
  293. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  294. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  295. );
  296. #endif
  297. bool MarlinSettings::sd_update_status() {
  298. uint8_t val;
  299. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  300. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  301. }
  302. bool MarlinSettings::set_sd_update_status(const bool enable) {
  303. if (enable != sd_update_status())
  304. persistentStore.write_data(
  305. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  306. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  307. );
  308. return true;
  309. }
  310. #endif // SD_FIRMWARE_UPDATE
  311. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  312. #include "../core/debug_out.h"
  313. #if ENABLED(EEPROM_SETTINGS)
  314. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
  315. #define EEPROM_FINISH() persistentStore.access_finish()
  316. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  317. #define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  318. #define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
  319. #define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  320. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  321. #if ENABLED(DEBUG_EEPROM_READWRITE)
  322. #define _FIELD_TEST(FIELD) \
  323. EEPROM_ASSERT( \
  324. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  325. "Field " STRINGIFY(FIELD) " mismatch." \
  326. )
  327. #else
  328. #define _FIELD_TEST(FIELD) NOOP
  329. #endif
  330. const char version[4] = EEPROM_VERSION;
  331. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  332. bool MarlinSettings::size_error(const uint16_t size) {
  333. if (size != datasize()) {
  334. DEBUG_ERROR_MSG("EEPROM datasize error.");
  335. return true;
  336. }
  337. return false;
  338. }
  339. /**
  340. * M500 - Store Configuration
  341. */
  342. bool MarlinSettings::save() {
  343. float dummy = 0;
  344. char ver[4] = "ERR";
  345. uint16_t working_crc = 0;
  346. EEPROM_START();
  347. eeprom_error = false;
  348. #if ENABLED(FLASH_EEPROM_EMULATION)
  349. EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
  350. #else
  351. EEPROM_WRITE(ver); // invalidate data first
  352. #endif
  353. EEPROM_SKIP(working_crc); // Skip the checksum slot
  354. working_crc = 0; // clear before first "real data"
  355. _FIELD_TEST(esteppers);
  356. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  357. EEPROM_WRITE(esteppers);
  358. //
  359. // Planner Motion
  360. //
  361. {
  362. EEPROM_WRITE(planner.settings);
  363. #if HAS_CLASSIC_JERK
  364. EEPROM_WRITE(planner.max_jerk);
  365. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  366. dummy = float(DEFAULT_EJERK);
  367. EEPROM_WRITE(dummy);
  368. #endif
  369. #else
  370. const float planner_max_jerk[XYZE] = { float(DEFAULT_EJERK) };
  371. EEPROM_WRITE(planner_max_jerk);
  372. #endif
  373. #if ENABLED(JUNCTION_DEVIATION)
  374. EEPROM_WRITE(planner.junction_deviation_mm);
  375. #else
  376. dummy = 0.02f;
  377. EEPROM_WRITE(dummy);
  378. #endif
  379. }
  380. //
  381. // Home Offset
  382. //
  383. {
  384. _FIELD_TEST(home_offset);
  385. #if HAS_SCARA_OFFSET
  386. EEPROM_WRITE(scara_home_offset);
  387. #else
  388. #if !HAS_HOME_OFFSET
  389. const float home_offset[XYZ] = { 0 };
  390. #endif
  391. EEPROM_WRITE(home_offset);
  392. #endif
  393. #if HAS_HOTEND_OFFSET
  394. // Skip hotend 0 which must be 0
  395. for (uint8_t e = 1; e < HOTENDS; e++)
  396. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  397. #endif
  398. }
  399. //
  400. // Global Leveling
  401. //
  402. {
  403. const float zfh = (
  404. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  405. planner.z_fade_height
  406. #else
  407. 10.0
  408. #endif
  409. );
  410. EEPROM_WRITE(zfh);
  411. }
  412. //
  413. // Mesh Bed Leveling
  414. //
  415. {
  416. #if ENABLED(MESH_BED_LEVELING)
  417. // Compile time test that sizeof(mbl.z_values) is as expected
  418. static_assert(
  419. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  420. "MBL Z array is the wrong size."
  421. );
  422. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  423. EEPROM_WRITE(mbl.z_offset);
  424. EEPROM_WRITE(mesh_num_x);
  425. EEPROM_WRITE(mesh_num_y);
  426. EEPROM_WRITE(mbl.z_values);
  427. #else // For disabled MBL write a default mesh
  428. dummy = 0;
  429. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  430. EEPROM_WRITE(dummy); // z_offset
  431. EEPROM_WRITE(mesh_num_x);
  432. EEPROM_WRITE(mesh_num_y);
  433. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  434. #endif
  435. }
  436. //
  437. // Probe Z Offset
  438. //
  439. {
  440. _FIELD_TEST(zprobe_zoffset);
  441. #if !HAS_BED_PROBE
  442. const float zprobe_zoffset = 0;
  443. #endif
  444. EEPROM_WRITE(zprobe_zoffset);
  445. }
  446. //
  447. // Planar Bed Leveling matrix
  448. //
  449. {
  450. #if ABL_PLANAR
  451. EEPROM_WRITE(planner.bed_level_matrix);
  452. #else
  453. dummy = 0;
  454. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  455. #endif
  456. }
  457. //
  458. // Bilinear Auto Bed Leveling
  459. //
  460. {
  461. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  462. // Compile time test that sizeof(z_values) is as expected
  463. static_assert(
  464. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  465. "Bilinear Z array is the wrong size."
  466. );
  467. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  468. EEPROM_WRITE(grid_max_x); // 1 byte
  469. EEPROM_WRITE(grid_max_y); // 1 byte
  470. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  471. EEPROM_WRITE(bilinear_start); // 2 ints
  472. EEPROM_WRITE(z_values); // 9-256 floats
  473. #else
  474. // For disabled Bilinear Grid write an empty 3x3 grid
  475. const uint8_t grid_max_x = 3, grid_max_y = 3;
  476. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  477. dummy = 0;
  478. EEPROM_WRITE(grid_max_x);
  479. EEPROM_WRITE(grid_max_y);
  480. EEPROM_WRITE(bilinear_grid_spacing);
  481. EEPROM_WRITE(bilinear_start);
  482. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  483. #endif
  484. }
  485. //
  486. // Unified Bed Leveling
  487. //
  488. {
  489. _FIELD_TEST(planner_leveling_active);
  490. #if ENABLED(AUTO_BED_LEVELING_UBL)
  491. EEPROM_WRITE(planner.leveling_active);
  492. EEPROM_WRITE(ubl.storage_slot);
  493. #else
  494. const bool ubl_active = false;
  495. const int8_t storage_slot = -1;
  496. EEPROM_WRITE(ubl_active);
  497. EEPROM_WRITE(storage_slot);
  498. #endif // AUTO_BED_LEVELING_UBL
  499. }
  500. //
  501. // Servo Angles
  502. //
  503. {
  504. _FIELD_TEST(servo_angles);
  505. #if !HAS_SERVO_ANGLES
  506. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  507. #endif
  508. EEPROM_WRITE(servo_angles);
  509. }
  510. //
  511. // DELTA Geometry or Dual Endstops offsets
  512. //
  513. {
  514. #if ENABLED(DELTA)
  515. _FIELD_TEST(delta_height);
  516. EEPROM_WRITE(delta_height); // 1 float
  517. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  518. EEPROM_WRITE(delta_radius); // 1 float
  519. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  520. EEPROM_WRITE(delta_segments_per_second); // 1 float
  521. EEPROM_WRITE(delta_calibration_radius); // 1 float
  522. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  523. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  524. _FIELD_TEST(x2_endstop_adj);
  525. // Write dual endstops in X, Y, Z order. Unused = 0.0
  526. dummy = 0;
  527. #if ENABLED(X_DUAL_ENDSTOPS)
  528. EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
  529. #else
  530. EEPROM_WRITE(dummy);
  531. #endif
  532. #if ENABLED(Y_DUAL_ENDSTOPS)
  533. EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
  534. #else
  535. EEPROM_WRITE(dummy);
  536. #endif
  537. #if Z_MULTI_ENDSTOPS
  538. EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
  539. #else
  540. EEPROM_WRITE(dummy);
  541. #endif
  542. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  543. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  544. #else
  545. EEPROM_WRITE(dummy);
  546. #endif
  547. #endif
  548. }
  549. //
  550. // LCD Preheat settings
  551. //
  552. {
  553. _FIELD_TEST(ui_preheat_hotend_temp);
  554. #if HAS_LCD_MENU
  555. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  556. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  557. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  558. #else
  559. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  560. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  561. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  562. #endif
  563. EEPROM_WRITE(ui_preheat_hotend_temp);
  564. EEPROM_WRITE(ui_preheat_bed_temp);
  565. EEPROM_WRITE(ui_preheat_fan_speed);
  566. }
  567. //
  568. // PIDTEMP
  569. //
  570. {
  571. _FIELD_TEST(hotendPID);
  572. HOTEND_LOOP() {
  573. PIDC_t pidc = {
  574. PID_PARAM(Kp, e), PID_PARAM(Ki, e), PID_PARAM(Kd, e), PID_PARAM(Kc, e)
  575. };
  576. EEPROM_WRITE(pidc);
  577. }
  578. _FIELD_TEST(lpq_len);
  579. #if ENABLED(PID_EXTRUSION_SCALING)
  580. EEPROM_WRITE(thermalManager.lpq_len);
  581. #else
  582. const int16_t lpq_len = 20;
  583. EEPROM_WRITE(lpq_len);
  584. #endif
  585. }
  586. //
  587. // PIDTEMPBED
  588. //
  589. {
  590. _FIELD_TEST(bedPID);
  591. #if DISABLED(PIDTEMPBED)
  592. const PID_t bed_pid = { DUMMY_PID_VALUE, DUMMY_PID_VALUE, DUMMY_PID_VALUE };
  593. EEPROM_WRITE(bed_pid);
  594. #else
  595. EEPROM_WRITE(thermalManager.temp_bed.pid);
  596. #endif
  597. }
  598. //
  599. // LCD Contrast
  600. //
  601. {
  602. _FIELD_TEST(lcd_contrast);
  603. const int16_t lcd_contrast =
  604. #if HAS_LCD_CONTRAST
  605. ui.contrast
  606. #else
  607. 32
  608. #endif
  609. ;
  610. EEPROM_WRITE(lcd_contrast);
  611. }
  612. //
  613. // Power-Loss Recovery
  614. //
  615. {
  616. _FIELD_TEST(recovery_enabled);
  617. const bool recovery_enabled =
  618. #if ENABLED(POWER_LOSS_RECOVERY)
  619. recovery.enabled
  620. #else
  621. true
  622. #endif
  623. ;
  624. EEPROM_WRITE(recovery_enabled);
  625. }
  626. //
  627. // Firmware Retraction
  628. //
  629. {
  630. _FIELD_TEST(fwretract_settings);
  631. #if ENABLED(FWRETRACT)
  632. EEPROM_WRITE(fwretract.settings);
  633. #else
  634. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  635. EEPROM_WRITE(autoretract_defaults);
  636. #endif
  637. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  638. EEPROM_WRITE(fwretract.autoretract_enabled);
  639. #else
  640. const bool autoretract_enabled = false;
  641. EEPROM_WRITE(autoretract_enabled);
  642. #endif
  643. }
  644. //
  645. // Volumetric & Filament Size
  646. //
  647. {
  648. _FIELD_TEST(parser_volumetric_enabled);
  649. #if DISABLED(NO_VOLUMETRICS)
  650. EEPROM_WRITE(parser.volumetric_enabled);
  651. EEPROM_WRITE(planner.filament_size);
  652. #else
  653. const bool volumetric_enabled = false;
  654. dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
  655. EEPROM_WRITE(volumetric_enabled);
  656. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  657. #endif
  658. }
  659. //
  660. // TMC Configuration
  661. //
  662. {
  663. _FIELD_TEST(tmc_stepper_current);
  664. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  665. #if HAS_TRINAMIC
  666. #if AXIS_IS_TMC(X)
  667. tmc_stepper_current.X = stepperX.getMilliamps();
  668. #endif
  669. #if AXIS_IS_TMC(Y)
  670. tmc_stepper_current.Y = stepperY.getMilliamps();
  671. #endif
  672. #if AXIS_IS_TMC(Z)
  673. tmc_stepper_current.Z = stepperZ.getMilliamps();
  674. #endif
  675. #if AXIS_IS_TMC(X2)
  676. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  677. #endif
  678. #if AXIS_IS_TMC(Y2)
  679. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  680. #endif
  681. #if AXIS_IS_TMC(Z2)
  682. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  683. #endif
  684. #if AXIS_IS_TMC(Z3)
  685. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  686. #endif
  687. #if MAX_EXTRUDERS
  688. #if AXIS_IS_TMC(E0)
  689. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  690. #endif
  691. #if MAX_EXTRUDERS > 1
  692. #if AXIS_IS_TMC(E1)
  693. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  694. #endif
  695. #if MAX_EXTRUDERS > 2
  696. #if AXIS_IS_TMC(E2)
  697. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  698. #endif
  699. #if MAX_EXTRUDERS > 3
  700. #if AXIS_IS_TMC(E3)
  701. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  702. #endif
  703. #if MAX_EXTRUDERS > 4
  704. #if AXIS_IS_TMC(E4)
  705. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  706. #endif
  707. #if MAX_EXTRUDERS > 5
  708. #if AXIS_IS_TMC(E5)
  709. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  710. #endif
  711. #endif // MAX_EXTRUDERS > 5
  712. #endif // MAX_EXTRUDERS > 4
  713. #endif // MAX_EXTRUDERS > 3
  714. #endif // MAX_EXTRUDERS > 2
  715. #endif // MAX_EXTRUDERS > 1
  716. #endif // MAX_EXTRUDERS
  717. #endif
  718. EEPROM_WRITE(tmc_stepper_current);
  719. }
  720. //
  721. // TMC Hybrid Threshold, and placeholder values
  722. //
  723. {
  724. _FIELD_TEST(tmc_hybrid_threshold);
  725. #if ENABLED(HYBRID_THRESHOLD)
  726. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  727. #if AXIS_HAS_STEALTHCHOP(X)
  728. tmc_hybrid_threshold.X = TMC_GET_PWMTHRS(X, X);
  729. #endif
  730. #if AXIS_HAS_STEALTHCHOP(Y)
  731. tmc_hybrid_threshold.Y = TMC_GET_PWMTHRS(Y, Y);
  732. #endif
  733. #if AXIS_HAS_STEALTHCHOP(Z)
  734. tmc_hybrid_threshold.Z = TMC_GET_PWMTHRS(Z, Z);
  735. #endif
  736. #if AXIS_HAS_STEALTHCHOP(X2)
  737. tmc_hybrid_threshold.X2 = TMC_GET_PWMTHRS(X, X2);
  738. #endif
  739. #if AXIS_HAS_STEALTHCHOP(Y2)
  740. tmc_hybrid_threshold.Y2 = TMC_GET_PWMTHRS(Y, Y2);
  741. #endif
  742. #if AXIS_HAS_STEALTHCHOP(Z2)
  743. tmc_hybrid_threshold.Z2 = TMC_GET_PWMTHRS(Z, Z2);
  744. #endif
  745. #if AXIS_HAS_STEALTHCHOP(Z3)
  746. tmc_hybrid_threshold.Z3 = TMC_GET_PWMTHRS(Z, Z3);
  747. #endif
  748. #if MAX_EXTRUDERS
  749. #if AXIS_HAS_STEALTHCHOP(E0)
  750. tmc_hybrid_threshold.E0 = TMC_GET_PWMTHRS(E, E0);
  751. #endif
  752. #if MAX_EXTRUDERS > 1
  753. #if AXIS_HAS_STEALTHCHOP(E1)
  754. tmc_hybrid_threshold.E1 = TMC_GET_PWMTHRS(E, E1);
  755. #endif
  756. #if MAX_EXTRUDERS > 2
  757. #if AXIS_HAS_STEALTHCHOP(E2)
  758. tmc_hybrid_threshold.E2 = TMC_GET_PWMTHRS(E, E2);
  759. #endif
  760. #if MAX_EXTRUDERS > 3
  761. #if AXIS_HAS_STEALTHCHOP(E3)
  762. tmc_hybrid_threshold.E3 = TMC_GET_PWMTHRS(E, E3);
  763. #endif
  764. #if MAX_EXTRUDERS > 4
  765. #if AXIS_HAS_STEALTHCHOP(E4)
  766. tmc_hybrid_threshold.E4 = TMC_GET_PWMTHRS(E, E4);
  767. #endif
  768. #if MAX_EXTRUDERS > 5
  769. #if AXIS_HAS_STEALTHCHOP(E5)
  770. tmc_hybrid_threshold.E5 = TMC_GET_PWMTHRS(E, E5);
  771. #endif
  772. #endif // MAX_EXTRUDERS > 5
  773. #endif // MAX_EXTRUDERS > 4
  774. #endif // MAX_EXTRUDERS > 3
  775. #endif // MAX_EXTRUDERS > 2
  776. #endif // MAX_EXTRUDERS > 1
  777. #endif // MAX_EXTRUDERS
  778. #else
  779. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  780. .X = 100, .Y = 100, .Z = 3,
  781. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3,
  782. .E0 = 30, .E1 = 30, .E2 = 30,
  783. .E3 = 30, .E4 = 30, .E5 = 30
  784. };
  785. #endif
  786. EEPROM_WRITE(tmc_hybrid_threshold);
  787. }
  788. //
  789. // TMC StallGuard threshold
  790. //
  791. {
  792. tmc_sgt_t tmc_sgt = { 0, 0, 0 };
  793. #if USE_SENSORLESS
  794. #if X_SENSORLESS
  795. tmc_sgt.X = stepperX.sgt();
  796. #endif
  797. #if Y_SENSORLESS
  798. tmc_sgt.Y = stepperY.sgt();
  799. #endif
  800. #if Z_SENSORLESS
  801. tmc_sgt.Z = stepperZ.sgt();
  802. #endif
  803. #endif
  804. EEPROM_WRITE(tmc_sgt);
  805. }
  806. //
  807. // TMC stepping mode
  808. //
  809. {
  810. _FIELD_TEST(tmc_stealth_enabled);
  811. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  812. #if HAS_STEALTHCHOP
  813. #if AXIS_HAS_STEALTHCHOP(X)
  814. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  815. #endif
  816. #if AXIS_HAS_STEALTHCHOP(Y)
  817. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  818. #endif
  819. #if AXIS_HAS_STEALTHCHOP(Z)
  820. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  821. #endif
  822. #if AXIS_HAS_STEALTHCHOP(X2)
  823. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  824. #endif
  825. #if AXIS_HAS_STEALTHCHOP(Y2)
  826. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  827. #endif
  828. #if AXIS_HAS_STEALTHCHOP(Z2)
  829. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  830. #endif
  831. #if AXIS_HAS_STEALTHCHOP(Z3)
  832. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  833. #endif
  834. #if MAX_EXTRUDERS
  835. #if AXIS_HAS_STEALTHCHOP(E0)
  836. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  837. #endif
  838. #if MAX_EXTRUDERS > 1
  839. #if AXIS_HAS_STEALTHCHOP(E1)
  840. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  841. #endif
  842. #if MAX_EXTRUDERS > 2
  843. #if AXIS_HAS_STEALTHCHOP(E2)
  844. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  845. #endif
  846. #if MAX_EXTRUDERS > 3
  847. #if AXIS_HAS_STEALTHCHOP(E3)
  848. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  849. #endif
  850. #if MAX_EXTRUDERS > 4
  851. #if AXIS_HAS_STEALTHCHOP(E4)
  852. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  853. #endif
  854. #if MAX_EXTRUDERS > 5
  855. #if AXIS_HAS_STEALTHCHOP(E5)
  856. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  857. #endif
  858. #endif // MAX_EXTRUDERS > 5
  859. #endif // MAX_EXTRUDERS > 4
  860. #endif // MAX_EXTRUDERS > 3
  861. #endif // MAX_EXTRUDERS > 2
  862. #endif // MAX_EXTRUDERS > 1
  863. #endif // MAX_EXTRUDERS
  864. #endif
  865. EEPROM_WRITE(tmc_stealth_enabled);
  866. }
  867. //
  868. // Linear Advance
  869. //
  870. {
  871. _FIELD_TEST(planner_extruder_advance_K);
  872. #if ENABLED(LIN_ADVANCE)
  873. EEPROM_WRITE(planner.extruder_advance_K);
  874. #else
  875. dummy = 0;
  876. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
  877. #endif
  878. }
  879. //
  880. // Motor Current PWM
  881. //
  882. {
  883. _FIELD_TEST(motor_current_setting);
  884. #if HAS_MOTOR_CURRENT_PWM
  885. EEPROM_WRITE(stepper.motor_current_setting);
  886. #else
  887. const uint32_t dummyui32[XYZ] = { 0 };
  888. EEPROM_WRITE(dummyui32);
  889. #endif
  890. }
  891. //
  892. // CNC Coordinate Systems
  893. //
  894. _FIELD_TEST(coordinate_system);
  895. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  896. EEPROM_WRITE(gcode.coordinate_system);
  897. #else
  898. const float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ] = { { 0 } };
  899. EEPROM_WRITE(coordinate_system);
  900. #endif
  901. //
  902. // Skew correction factors
  903. //
  904. _FIELD_TEST(planner_skew_factor);
  905. EEPROM_WRITE(planner.skew_factor);
  906. //
  907. // Advanced Pause filament load & unload lengths
  908. //
  909. {
  910. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  911. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  912. #endif
  913. _FIELD_TEST(fc_settings);
  914. EEPROM_WRITE(fc_settings);
  915. }
  916. //
  917. // Multiple Extruders
  918. //
  919. #if EXTRUDERS > 1
  920. _FIELD_TEST(toolchange_settings);
  921. EEPROM_WRITE(toolchange_settings);
  922. #endif
  923. //
  924. // Validate CRC and Data Size
  925. //
  926. if (!eeprom_error) {
  927. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  928. final_crc = working_crc;
  929. // Write the EEPROM header
  930. eeprom_index = EEPROM_OFFSET;
  931. EEPROM_WRITE(version);
  932. EEPROM_WRITE(final_crc);
  933. // Report storage size
  934. DEBUG_ECHO_START();
  935. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  936. eeprom_error |= size_error(eeprom_size);
  937. }
  938. EEPROM_FINISH();
  939. //
  940. // UBL Mesh
  941. //
  942. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  943. if (ubl.storage_slot >= 0)
  944. store_mesh(ubl.storage_slot);
  945. #endif
  946. return !eeprom_error;
  947. }
  948. /**
  949. * M501 - Retrieve Configuration
  950. */
  951. bool MarlinSettings::_load() {
  952. uint16_t working_crc = 0;
  953. EEPROM_START();
  954. char stored_ver[4];
  955. EEPROM_READ_ALWAYS(stored_ver);
  956. uint16_t stored_crc;
  957. EEPROM_READ_ALWAYS(stored_crc);
  958. // Version has to match or defaults are used
  959. if (strncmp(version, stored_ver, 3) != 0) {
  960. if (stored_ver[3] != '\0') {
  961. stored_ver[0] = '?';
  962. stored_ver[1] = '\0';
  963. }
  964. DEBUG_ECHO_START();
  965. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  966. eeprom_error = true;
  967. }
  968. else {
  969. float dummy = 0;
  970. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  971. _FIELD_TEST(esteppers);
  972. // Number of esteppers may change
  973. uint8_t esteppers;
  974. EEPROM_READ_ALWAYS(esteppers);
  975. //
  976. // Planner Motion
  977. //
  978. {
  979. // Get only the number of E stepper parameters previously stored
  980. // Any steppers added later are set to their defaults
  981. const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
  982. const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
  983. uint32_t tmp1[XYZ + esteppers];
  984. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  985. EEPROM_READ(planner.settings.min_segment_time_us);
  986. float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
  987. EEPROM_READ(tmp2); // axis_steps_per_mm
  988. EEPROM_READ(tmp3); // max_feedrate_mm_s
  989. if (!validating) LOOP_XYZE_N(i) {
  990. const bool in = (i < esteppers + XYZ);
  991. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : def1[ALIM(i, def1)];
  992. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : def2[ALIM(i, def2)];
  993. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : def3[ALIM(i, def3)];
  994. }
  995. EEPROM_READ(planner.settings.acceleration);
  996. EEPROM_READ(planner.settings.retract_acceleration);
  997. EEPROM_READ(planner.settings.travel_acceleration);
  998. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  999. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1000. #if HAS_CLASSIC_JERK
  1001. EEPROM_READ(planner.max_jerk);
  1002. #if BOTH(JUNCTION_DEVIATION, LIN_ADVANCE)
  1003. EEPROM_READ(dummy);
  1004. #endif
  1005. #else
  1006. for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
  1007. #endif
  1008. #if ENABLED(JUNCTION_DEVIATION)
  1009. EEPROM_READ(planner.junction_deviation_mm);
  1010. #else
  1011. EEPROM_READ(dummy);
  1012. #endif
  1013. }
  1014. //
  1015. // Home Offset (M206 / M665)
  1016. //
  1017. {
  1018. _FIELD_TEST(home_offset);
  1019. #if HAS_SCARA_OFFSET
  1020. EEPROM_READ(scara_home_offset);
  1021. #else
  1022. #if !HAS_HOME_OFFSET
  1023. float home_offset[XYZ];
  1024. #endif
  1025. EEPROM_READ(home_offset);
  1026. #endif
  1027. }
  1028. //
  1029. // Hotend Offsets, if any
  1030. //
  1031. {
  1032. #if HAS_HOTEND_OFFSET
  1033. // Skip hotend 0 which must be 0
  1034. for (uint8_t e = 1; e < HOTENDS; e++)
  1035. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  1036. #endif
  1037. }
  1038. //
  1039. // Global Leveling
  1040. //
  1041. {
  1042. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1043. EEPROM_READ(new_z_fade_height);
  1044. #else
  1045. EEPROM_READ(dummy);
  1046. #endif
  1047. }
  1048. //
  1049. // Mesh (Manual) Bed Leveling
  1050. //
  1051. {
  1052. uint8_t mesh_num_x, mesh_num_y;
  1053. EEPROM_READ(dummy);
  1054. EEPROM_READ_ALWAYS(mesh_num_x);
  1055. EEPROM_READ_ALWAYS(mesh_num_y);
  1056. #if ENABLED(MESH_BED_LEVELING)
  1057. if (!validating) mbl.z_offset = dummy;
  1058. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1059. // EEPROM data fits the current mesh
  1060. EEPROM_READ(mbl.z_values);
  1061. }
  1062. else {
  1063. // EEPROM data is stale
  1064. if (!validating) mbl.reset();
  1065. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1066. }
  1067. #else
  1068. // MBL is disabled - skip the stored data
  1069. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  1070. #endif // MESH_BED_LEVELING
  1071. }
  1072. //
  1073. // Probe Z Offset
  1074. //
  1075. {
  1076. _FIELD_TEST(zprobe_zoffset);
  1077. #if !HAS_BED_PROBE
  1078. float zprobe_zoffset;
  1079. #endif
  1080. EEPROM_READ(zprobe_zoffset);
  1081. }
  1082. //
  1083. // Planar Bed Leveling matrix
  1084. //
  1085. {
  1086. #if ABL_PLANAR
  1087. EEPROM_READ(planner.bed_level_matrix);
  1088. #else
  1089. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  1090. #endif
  1091. }
  1092. //
  1093. // Bilinear Auto Bed Leveling
  1094. //
  1095. {
  1096. uint8_t grid_max_x, grid_max_y;
  1097. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1098. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1099. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1100. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1101. if (!validating) set_bed_leveling_enabled(false);
  1102. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1103. EEPROM_READ(bilinear_start); // 2 ints
  1104. EEPROM_READ(z_values); // 9 to 256 floats
  1105. }
  1106. else // EEPROM data is stale
  1107. #endif // AUTO_BED_LEVELING_BILINEAR
  1108. {
  1109. // Skip past disabled (or stale) Bilinear Grid data
  1110. int bgs[2], bs[2];
  1111. EEPROM_READ(bgs);
  1112. EEPROM_READ(bs);
  1113. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  1114. }
  1115. }
  1116. //
  1117. // Unified Bed Leveling active state
  1118. //
  1119. {
  1120. _FIELD_TEST(planner_leveling_active);
  1121. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1122. EEPROM_READ(planner.leveling_active);
  1123. EEPROM_READ(ubl.storage_slot);
  1124. #else
  1125. bool planner_leveling_active;
  1126. uint8_t ubl_storage_slot;
  1127. EEPROM_READ(planner_leveling_active);
  1128. EEPROM_READ(ubl_storage_slot);
  1129. #endif
  1130. }
  1131. //
  1132. // SERVO_ANGLES
  1133. //
  1134. {
  1135. _FIELD_TEST(servo_angles);
  1136. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1137. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1138. #else
  1139. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1140. #endif
  1141. EEPROM_READ(servo_angles_arr);
  1142. }
  1143. //
  1144. // DELTA Geometry or Dual Endstops offsets
  1145. //
  1146. {
  1147. #if ENABLED(DELTA)
  1148. _FIELD_TEST(delta_height);
  1149. EEPROM_READ(delta_height); // 1 float
  1150. EEPROM_READ(delta_endstop_adj); // 3 floats
  1151. EEPROM_READ(delta_radius); // 1 float
  1152. EEPROM_READ(delta_diagonal_rod); // 1 float
  1153. EEPROM_READ(delta_segments_per_second); // 1 float
  1154. EEPROM_READ(delta_calibration_radius); // 1 float
  1155. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1156. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1157. _FIELD_TEST(x2_endstop_adj);
  1158. #if ENABLED(X_DUAL_ENDSTOPS)
  1159. EEPROM_READ(endstops.x2_endstop_adj); // 1 float
  1160. #else
  1161. EEPROM_READ(dummy);
  1162. #endif
  1163. #if ENABLED(Y_DUAL_ENDSTOPS)
  1164. EEPROM_READ(endstops.y2_endstop_adj); // 1 float
  1165. #else
  1166. EEPROM_READ(dummy);
  1167. #endif
  1168. #if Z_MULTI_ENDSTOPS
  1169. EEPROM_READ(endstops.z2_endstop_adj); // 1 float
  1170. #else
  1171. EEPROM_READ(dummy);
  1172. #endif
  1173. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  1174. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1175. #else
  1176. EEPROM_READ(dummy);
  1177. #endif
  1178. #endif
  1179. }
  1180. //
  1181. // LCD Preheat settings
  1182. //
  1183. {
  1184. _FIELD_TEST(ui_preheat_hotend_temp);
  1185. #if HAS_LCD_MENU
  1186. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1187. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1188. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1189. #else
  1190. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1191. uint8_t ui_preheat_fan_speed[2];
  1192. #endif
  1193. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1194. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1195. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1196. }
  1197. //
  1198. // Hotend PID
  1199. //
  1200. {
  1201. HOTEND_LOOP() {
  1202. PIDC_t pidc;
  1203. EEPROM_READ(pidc);
  1204. #if ENABLED(PIDTEMP)
  1205. if (!validating && pidc.Kp != DUMMY_PID_VALUE) {
  1206. // No need to scale PID values since EEPROM values are scaled
  1207. PID_PARAM(Kp, e) = pidc.Kp;
  1208. PID_PARAM(Ki, e) = pidc.Ki;
  1209. PID_PARAM(Kd, e) = pidc.Kd;
  1210. #if ENABLED(PID_EXTRUSION_SCALING)
  1211. PID_PARAM(Kc, e) = pidc.Kc;
  1212. #endif
  1213. }
  1214. #endif
  1215. }
  1216. }
  1217. //
  1218. // PID Extrusion Scaling
  1219. //
  1220. {
  1221. _FIELD_TEST(lpq_len);
  1222. #if ENABLED(PID_EXTRUSION_SCALING)
  1223. EEPROM_READ(thermalManager.lpq_len);
  1224. #else
  1225. int16_t lpq_len;
  1226. EEPROM_READ(lpq_len);
  1227. #endif
  1228. }
  1229. //
  1230. // Heated Bed PID
  1231. //
  1232. {
  1233. PID_t pid;
  1234. EEPROM_READ(pid);
  1235. #if ENABLED(PIDTEMPBED)
  1236. if (!validating && pid.Kp != DUMMY_PID_VALUE)
  1237. memcpy(&thermalManager.temp_bed.pid, &pid, sizeof(pid));
  1238. #endif
  1239. }
  1240. //
  1241. // LCD Contrast
  1242. //
  1243. {
  1244. _FIELD_TEST(lcd_contrast);
  1245. int16_t lcd_contrast;
  1246. EEPROM_READ(lcd_contrast);
  1247. #if HAS_LCD_CONTRAST
  1248. ui.set_contrast(lcd_contrast);
  1249. #endif
  1250. }
  1251. //
  1252. // Power-Loss Recovery
  1253. //
  1254. {
  1255. _FIELD_TEST(recovery_enabled);
  1256. #if ENABLED(POWER_LOSS_RECOVERY)
  1257. EEPROM_READ(recovery.enabled);
  1258. #else
  1259. bool recovery_enabled;
  1260. EEPROM_READ(recovery_enabled);
  1261. #endif
  1262. }
  1263. //
  1264. // Firmware Retraction
  1265. //
  1266. {
  1267. _FIELD_TEST(fwretract_settings);
  1268. #if ENABLED(FWRETRACT)
  1269. EEPROM_READ(fwretract.settings);
  1270. #else
  1271. fwretract_settings_t fwretract_settings;
  1272. EEPROM_READ(fwretract_settings);
  1273. #endif
  1274. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1275. EEPROM_READ(fwretract.autoretract_enabled);
  1276. #else
  1277. bool autoretract_enabled;
  1278. EEPROM_READ(autoretract_enabled);
  1279. #endif
  1280. }
  1281. //
  1282. // Volumetric & Filament Size
  1283. //
  1284. {
  1285. struct {
  1286. bool volumetric_enabled;
  1287. float filament_size[EXTRUDERS];
  1288. } storage;
  1289. _FIELD_TEST(parser_volumetric_enabled);
  1290. EEPROM_READ(storage);
  1291. #if DISABLED(NO_VOLUMETRICS)
  1292. if (!validating) {
  1293. parser.volumetric_enabled = storage.volumetric_enabled;
  1294. COPY(planner.filament_size, storage.filament_size);
  1295. }
  1296. #endif
  1297. }
  1298. //
  1299. // TMC Stepper Settings
  1300. //
  1301. if (!validating) reset_stepper_drivers();
  1302. // TMC Stepper Current
  1303. {
  1304. _FIELD_TEST(tmc_stepper_current);
  1305. tmc_stepper_current_t currents;
  1306. EEPROM_READ(currents);
  1307. #if HAS_TRINAMIC
  1308. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1309. if (!validating) {
  1310. #if AXIS_IS_TMC(X)
  1311. SET_CURR(X);
  1312. #endif
  1313. #if AXIS_IS_TMC(Y)
  1314. SET_CURR(Y);
  1315. #endif
  1316. #if AXIS_IS_TMC(Z)
  1317. SET_CURR(Z);
  1318. #endif
  1319. #if AXIS_IS_TMC(X2)
  1320. SET_CURR(X2);
  1321. #endif
  1322. #if AXIS_IS_TMC(Y2)
  1323. SET_CURR(Y2);
  1324. #endif
  1325. #if AXIS_IS_TMC(Z2)
  1326. SET_CURR(Z2);
  1327. #endif
  1328. #if AXIS_IS_TMC(Z3)
  1329. SET_CURR(Z3);
  1330. #endif
  1331. #if AXIS_IS_TMC(E0)
  1332. SET_CURR(E0);
  1333. #endif
  1334. #if AXIS_IS_TMC(E1)
  1335. SET_CURR(E1);
  1336. #endif
  1337. #if AXIS_IS_TMC(E2)
  1338. SET_CURR(E2);
  1339. #endif
  1340. #if AXIS_IS_TMC(E3)
  1341. SET_CURR(E3);
  1342. #endif
  1343. #if AXIS_IS_TMC(E4)
  1344. SET_CURR(E4);
  1345. #endif
  1346. #if AXIS_IS_TMC(E5)
  1347. SET_CURR(E5);
  1348. #endif
  1349. }
  1350. #endif
  1351. }
  1352. // TMC Hybrid Threshold
  1353. {
  1354. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1355. _FIELD_TEST(tmc_hybrid_threshold);
  1356. EEPROM_READ(tmc_hybrid_threshold);
  1357. #if ENABLED(HYBRID_THRESHOLD)
  1358. #define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold.Q, planner.settings.axis_steps_per_mm[_AXIS(A)])
  1359. if (!validating) {
  1360. #if AXIS_HAS_STEALTHCHOP(X)
  1361. TMC_SET_PWMTHRS(X, X);
  1362. #endif
  1363. #if AXIS_HAS_STEALTHCHOP(Y)
  1364. TMC_SET_PWMTHRS(Y, Y);
  1365. #endif
  1366. #if AXIS_HAS_STEALTHCHOP(Z)
  1367. TMC_SET_PWMTHRS(Z, Z);
  1368. #endif
  1369. #if AXIS_HAS_STEALTHCHOP(X2)
  1370. TMC_SET_PWMTHRS(X, X2);
  1371. #endif
  1372. #if AXIS_HAS_STEALTHCHOP(Y2)
  1373. TMC_SET_PWMTHRS(Y, Y2);
  1374. #endif
  1375. #if AXIS_HAS_STEALTHCHOP(Z2)
  1376. TMC_SET_PWMTHRS(Z, Z2);
  1377. #endif
  1378. #if AXIS_HAS_STEALTHCHOP(Z3)
  1379. TMC_SET_PWMTHRS(Z, Z3);
  1380. #endif
  1381. #if AXIS_HAS_STEALTHCHOP(E0)
  1382. TMC_SET_PWMTHRS(E, E0);
  1383. #endif
  1384. #if AXIS_HAS_STEALTHCHOP(E1)
  1385. TMC_SET_PWMTHRS(E, E1);
  1386. #endif
  1387. #if AXIS_HAS_STEALTHCHOP(E2)
  1388. TMC_SET_PWMTHRS(E, E2);
  1389. #endif
  1390. #if AXIS_HAS_STEALTHCHOP(E3)
  1391. TMC_SET_PWMTHRS(E, E3);
  1392. #endif
  1393. #if AXIS_HAS_STEALTHCHOP(E4)
  1394. TMC_SET_PWMTHRS(E, E4);
  1395. #endif
  1396. #if AXIS_HAS_STEALTHCHOP(E5)
  1397. TMC_SET_PWMTHRS(E, E5);
  1398. #endif
  1399. }
  1400. #endif
  1401. }
  1402. //
  1403. // TMC StallGuard threshold.
  1404. // X and X2 use the same value
  1405. // Y and Y2 use the same value
  1406. // Z, Z2 and Z3 use the same value
  1407. //
  1408. {
  1409. tmc_sgt_t tmc_sgt;
  1410. _FIELD_TEST(tmc_sgt);
  1411. EEPROM_READ(tmc_sgt);
  1412. #if USE_SENSORLESS
  1413. if (!validating) {
  1414. #ifdef X_STALL_SENSITIVITY
  1415. #if AXIS_HAS_STALLGUARD(X)
  1416. stepperX.sgt(tmc_sgt.X);
  1417. #endif
  1418. #if AXIS_HAS_STALLGUARD(X2)
  1419. stepperX2.sgt(tmc_sgt.X);
  1420. #endif
  1421. #endif
  1422. #ifdef Y_STALL_SENSITIVITY
  1423. #if AXIS_HAS_STALLGUARD(Y)
  1424. stepperY.sgt(tmc_sgt.Y);
  1425. #endif
  1426. #if AXIS_HAS_STALLGUARD(Y2)
  1427. stepperY2.sgt(tmc_sgt.Y);
  1428. #endif
  1429. #endif
  1430. #ifdef Z_STALL_SENSITIVITY
  1431. #if AXIS_HAS_STALLGUARD(Z)
  1432. stepperZ.sgt(tmc_sgt.Z);
  1433. #endif
  1434. #if AXIS_HAS_STALLGUARD(Z2)
  1435. stepperZ2.sgt(tmc_sgt.Z);
  1436. #endif
  1437. #if AXIS_HAS_STALLGUARD(Z3)
  1438. stepperZ3.sgt(tmc_sgt.Z);
  1439. #endif
  1440. #endif
  1441. }
  1442. #endif
  1443. }
  1444. // TMC stepping mode
  1445. {
  1446. _FIELD_TEST(tmc_stealth_enabled);
  1447. tmc_stealth_enabled_t tmc_stealth_enabled;
  1448. EEPROM_READ(tmc_stealth_enabled);
  1449. #if HAS_TRINAMIC
  1450. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1451. if (!validating) {
  1452. #if AXIS_HAS_STEALTHCHOP(X)
  1453. SET_STEPPING_MODE(X);
  1454. #endif
  1455. #if AXIS_HAS_STEALTHCHOP(Y)
  1456. SET_STEPPING_MODE(Y);
  1457. #endif
  1458. #if AXIS_HAS_STEALTHCHOP(Z)
  1459. SET_STEPPING_MODE(Z);
  1460. #endif
  1461. #if AXIS_HAS_STEALTHCHOP(X2)
  1462. SET_STEPPING_MODE(X2);
  1463. #endif
  1464. #if AXIS_HAS_STEALTHCHOP(Y2)
  1465. SET_STEPPING_MODE(Y2);
  1466. #endif
  1467. #if AXIS_HAS_STEALTHCHOP(Z2)
  1468. SET_STEPPING_MODE(Z2);
  1469. #endif
  1470. #if AXIS_HAS_STEALTHCHOP(Z3)
  1471. SET_STEPPING_MODE(Z3);
  1472. #endif
  1473. #if AXIS_HAS_STEALTHCHOP(E0)
  1474. SET_STEPPING_MODE(E0);
  1475. #endif
  1476. #if AXIS_HAS_STEALTHCHOP(E1)
  1477. SET_STEPPING_MODE(E1);
  1478. #endif
  1479. #if AXIS_HAS_STEALTHCHOP(E2)
  1480. SET_STEPPING_MODE(E2);
  1481. #endif
  1482. #if AXIS_HAS_STEALTHCHOP(E3)
  1483. SET_STEPPING_MODE(E3);
  1484. #endif
  1485. #if AXIS_HAS_STEALTHCHOP(E4)
  1486. SET_STEPPING_MODE(E4);
  1487. #endif
  1488. #if AXIS_HAS_STEALTHCHOP(E5)
  1489. SET_STEPPING_MODE(E5);
  1490. #endif
  1491. }
  1492. #endif
  1493. }
  1494. //
  1495. // Linear Advance
  1496. //
  1497. {
  1498. float extruder_advance_K[EXTRUDERS];
  1499. _FIELD_TEST(planner_extruder_advance_K);
  1500. EEPROM_READ(extruder_advance_K);
  1501. #if ENABLED(LIN_ADVANCE)
  1502. if (!validating)
  1503. COPY(planner.extruder_advance_K, extruder_advance_K);
  1504. #endif
  1505. }
  1506. //
  1507. // Motor Current PWM
  1508. //
  1509. {
  1510. uint32_t motor_current_setting[3];
  1511. _FIELD_TEST(motor_current_setting);
  1512. EEPROM_READ(motor_current_setting);
  1513. #if HAS_MOTOR_CURRENT_PWM
  1514. if (!validating)
  1515. COPY(stepper.motor_current_setting, motor_current_setting);
  1516. #endif
  1517. }
  1518. //
  1519. // CNC Coordinate System
  1520. //
  1521. {
  1522. _FIELD_TEST(coordinate_system);
  1523. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1524. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1525. EEPROM_READ(gcode.coordinate_system);
  1526. #else
  1527. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  1528. EEPROM_READ(coordinate_system);
  1529. #endif
  1530. }
  1531. //
  1532. // Skew correction factors
  1533. //
  1534. {
  1535. skew_factor_t skew_factor;
  1536. _FIELD_TEST(planner_skew_factor);
  1537. EEPROM_READ(skew_factor);
  1538. #if ENABLED(SKEW_CORRECTION_GCODE)
  1539. if (!validating) {
  1540. planner.skew_factor.xy = skew_factor.xy;
  1541. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1542. planner.skew_factor.xz = skew_factor.xz;
  1543. planner.skew_factor.yz = skew_factor.yz;
  1544. #endif
  1545. }
  1546. #endif
  1547. }
  1548. //
  1549. // Advanced Pause filament load & unload lengths
  1550. //
  1551. {
  1552. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1553. fil_change_settings_t fc_settings[EXTRUDERS];
  1554. #endif
  1555. _FIELD_TEST(fc_settings);
  1556. EEPROM_READ(fc_settings);
  1557. }
  1558. //
  1559. // Tool-change settings
  1560. //
  1561. #if EXTRUDERS > 1
  1562. _FIELD_TEST(toolchange_settings);
  1563. EEPROM_READ(toolchange_settings);
  1564. #endif
  1565. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1566. if (eeprom_error) {
  1567. DEBUG_ECHO_START();
  1568. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1569. }
  1570. else if (working_crc != stored_crc) {
  1571. eeprom_error = true;
  1572. DEBUG_ERROR_START();
  1573. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1574. }
  1575. else if (!validating) {
  1576. DEBUG_ECHO_START();
  1577. DEBUG_ECHO(version);
  1578. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1579. }
  1580. if (!validating && !eeprom_error) postprocess();
  1581. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1582. if (!validating) {
  1583. ubl.report_state();
  1584. if (!ubl.sanity_check()) {
  1585. SERIAL_EOL();
  1586. #if ENABLED(EEPROM_CHITCHAT)
  1587. ubl.echo_name();
  1588. DEBUG_ECHOLNPGM(" initialized.\n");
  1589. #endif
  1590. }
  1591. else {
  1592. eeprom_error = true;
  1593. #if ENABLED(EEPROM_CHITCHAT)
  1594. DEBUG_ECHOPGM("?Can't enable ");
  1595. ubl.echo_name();
  1596. DEBUG_ECHOLNPGM(".");
  1597. #endif
  1598. ubl.reset();
  1599. }
  1600. if (ubl.storage_slot >= 0) {
  1601. load_mesh(ubl.storage_slot);
  1602. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1603. }
  1604. else {
  1605. ubl.reset();
  1606. DEBUG_ECHOLNPGM("UBL System reset()");
  1607. }
  1608. }
  1609. #endif
  1610. }
  1611. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1612. if (!validating) report();
  1613. #endif
  1614. EEPROM_FINISH();
  1615. return !eeprom_error;
  1616. }
  1617. bool MarlinSettings::validate() {
  1618. validating = true;
  1619. const bool success = _load();
  1620. validating = false;
  1621. return success;
  1622. }
  1623. bool MarlinSettings::load() {
  1624. if (validate()) return _load();
  1625. reset();
  1626. return true;
  1627. }
  1628. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1629. inline void ubl_invalid_slot(const int s) {
  1630. #if ENABLED(EEPROM_CHITCHAT)
  1631. DEBUG_ECHOLNPGM("?Invalid slot.");
  1632. DEBUG_ECHO(s);
  1633. DEBUG_ECHOLNPGM(" mesh slots available.");
  1634. #else
  1635. UNUSED(s);
  1636. #endif
  1637. }
  1638. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1639. // is a placeholder for the size of the MAT; the MAT will always
  1640. // live at the very end of the eeprom
  1641. uint16_t MarlinSettings::meshes_start_index() {
  1642. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1643. // or down a little bit without disrupting the mesh data
  1644. }
  1645. uint16_t MarlinSettings::calc_num_meshes() {
  1646. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  1647. }
  1648. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  1649. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  1650. }
  1651. void MarlinSettings::store_mesh(const int8_t slot) {
  1652. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1653. const int16_t a = calc_num_meshes();
  1654. if (!WITHIN(slot, 0, a - 1)) {
  1655. ubl_invalid_slot(a);
  1656. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  1657. DEBUG_EOL();
  1658. return;
  1659. }
  1660. int pos = mesh_slot_offset(slot);
  1661. uint16_t crc = 0;
  1662. // Write crc to MAT along with other data, or just tack on to the beginning or end
  1663. persistentStore.access_start();
  1664. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  1665. persistentStore.access_finish();
  1666. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  1667. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  1668. #else
  1669. // Other mesh types
  1670. #endif
  1671. }
  1672. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
  1673. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1674. const int16_t a = settings.calc_num_meshes();
  1675. if (!WITHIN(slot, 0, a - 1)) {
  1676. ubl_invalid_slot(a);
  1677. return;
  1678. }
  1679. int pos = mesh_slot_offset(slot);
  1680. uint16_t crc = 0;
  1681. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  1682. persistentStore.access_start();
  1683. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  1684. persistentStore.access_finish();
  1685. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  1686. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  1687. EEPROM_FINISH();
  1688. #else
  1689. // Other mesh types
  1690. #endif
  1691. }
  1692. //void MarlinSettings::delete_mesh() { return; }
  1693. //void MarlinSettings::defrag_meshes() { return; }
  1694. #endif // AUTO_BED_LEVELING_UBL
  1695. #else // !EEPROM_SETTINGS
  1696. bool MarlinSettings::save() {
  1697. DEBUG_ERROR_MSG("EEPROM disabled");
  1698. return false;
  1699. }
  1700. #endif // !EEPROM_SETTINGS
  1701. /**
  1702. * M502 - Reset Configuration
  1703. */
  1704. void MarlinSettings::reset() {
  1705. static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  1706. static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  1707. LOOP_XYZE_N(i) {
  1708. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&tmp1[ALIM(i, tmp1)]);
  1709. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[ALIM(i, tmp2)]);
  1710. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&tmp3[ALIM(i, tmp3)]);
  1711. }
  1712. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  1713. planner.settings.acceleration = DEFAULT_ACCELERATION;
  1714. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  1715. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  1716. planner.settings.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  1717. planner.settings.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  1718. #if HAS_CLASSIC_JERK
  1719. #ifndef DEFAULT_XJERK
  1720. #define DEFAULT_XJERK 0
  1721. #endif
  1722. #ifndef DEFAULT_YJERK
  1723. #define DEFAULT_YJERK 0
  1724. #endif
  1725. #ifndef DEFAULT_ZJERK
  1726. #define DEFAULT_ZJERK 0
  1727. #endif
  1728. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  1729. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  1730. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  1731. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  1732. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1733. #endif
  1734. #endif
  1735. #if ENABLED(JUNCTION_DEVIATION)
  1736. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  1737. #endif
  1738. #if HAS_SCARA_OFFSET
  1739. ZERO(scara_home_offset);
  1740. #elif HAS_HOME_OFFSET
  1741. ZERO(home_offset);
  1742. #endif
  1743. #if HAS_HOTEND_OFFSET
  1744. reset_hotend_offsets();
  1745. #endif
  1746. #if EXTRUDERS > 1
  1747. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  1748. toolchange_settings.swap_length = TOOLCHANGE_FIL_SWAP_LENGTH;
  1749. toolchange_settings.prime_speed = TOOLCHANGE_FIL_SWAP_PRIME_SPEED;
  1750. toolchange_settings.retract_speed = TOOLCHANGE_FIL_SWAP_RETRACT_SPEED;
  1751. #endif
  1752. #if ENABLED(TOOLCHANGE_PARK)
  1753. toolchange_settings.change_point = TOOLCHANGE_PARK_XY;
  1754. #endif
  1755. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  1756. #endif
  1757. #if ENABLED(MAGNETIC_PARKING_EXTRUDER)
  1758. mpe_settings_init();
  1759. #endif
  1760. //
  1761. // Global Leveling
  1762. //
  1763. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1764. new_z_fade_height = 0.0;
  1765. #endif
  1766. #if HAS_LEVELING
  1767. reset_bed_level();
  1768. #endif
  1769. #if HAS_BED_PROBE
  1770. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1771. #endif
  1772. //
  1773. // Servo Angles
  1774. //
  1775. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1776. COPY(servo_angles, base_servo_angles);
  1777. #endif
  1778. //
  1779. // Endstop Adjustments
  1780. //
  1781. #if ENABLED(DELTA)
  1782. const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1783. delta_height = DELTA_HEIGHT;
  1784. COPY(delta_endstop_adj, adj);
  1785. delta_radius = DELTA_RADIUS;
  1786. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1787. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1788. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1789. COPY(delta_tower_angle_trim, dta);
  1790. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  1791. #if ENABLED(X_DUAL_ENDSTOPS)
  1792. endstops.x2_endstop_adj = (
  1793. #ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
  1794. X_DUAL_ENDSTOPS_ADJUSTMENT
  1795. #else
  1796. 0
  1797. #endif
  1798. );
  1799. #endif
  1800. #if ENABLED(Y_DUAL_ENDSTOPS)
  1801. endstops.y2_endstop_adj = (
  1802. #ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
  1803. Y_DUAL_ENDSTOPS_ADJUSTMENT
  1804. #else
  1805. 0
  1806. #endif
  1807. );
  1808. #endif
  1809. #if ENABLED(Z_DUAL_ENDSTOPS)
  1810. endstops.z2_endstop_adj = (
  1811. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1812. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1813. #else
  1814. 0
  1815. #endif
  1816. );
  1817. #elif ENABLED(Z_TRIPLE_ENDSTOPS)
  1818. endstops.z2_endstop_adj = (
  1819. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1820. Z_TRIPLE_ENDSTOPS_ADJUSTMENT2
  1821. #else
  1822. 0
  1823. #endif
  1824. );
  1825. endstops.z3_endstop_adj = (
  1826. #ifdef Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1827. Z_TRIPLE_ENDSTOPS_ADJUSTMENT3
  1828. #else
  1829. 0
  1830. #endif
  1831. );
  1832. #endif
  1833. #endif
  1834. //
  1835. // Preheat parameters
  1836. //
  1837. #if HAS_LCD_MENU
  1838. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1839. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1840. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1841. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1842. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1843. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1844. #endif
  1845. //
  1846. // Hotend PID
  1847. //
  1848. #if ENABLED(PIDTEMP)
  1849. HOTEND_LOOP() {
  1850. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  1851. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1852. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1853. #if ENABLED(PID_EXTRUSION_SCALING)
  1854. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1855. #endif
  1856. }
  1857. #endif
  1858. //
  1859. // PID Extrusion Scaling
  1860. //
  1861. #if ENABLED(PID_EXTRUSION_SCALING)
  1862. thermalManager.lpq_len = 20; // Default last-position-queue size
  1863. #endif
  1864. //
  1865. // Heated Bed PID
  1866. //
  1867. #if ENABLED(PIDTEMPBED)
  1868. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  1869. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  1870. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  1871. #endif
  1872. //
  1873. // LCD Contrast
  1874. //
  1875. #if HAS_LCD_CONTRAST
  1876. ui.set_contrast(DEFAULT_LCD_CONTRAST);
  1877. #endif
  1878. //
  1879. // Power-Loss Recovery
  1880. //
  1881. #if ENABLED(POWER_LOSS_RECOVERY)
  1882. recovery.enable(true);
  1883. #endif
  1884. //
  1885. // Firmware Retraction
  1886. //
  1887. #if ENABLED(FWRETRACT)
  1888. fwretract.reset();
  1889. #endif
  1890. //
  1891. // Volumetric & Filament Size
  1892. //
  1893. #if DISABLED(NO_VOLUMETRICS)
  1894. parser.volumetric_enabled =
  1895. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1896. true
  1897. #else
  1898. false
  1899. #endif
  1900. ;
  1901. for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
  1902. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1903. #endif
  1904. endstops.enable_globally(
  1905. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1906. true
  1907. #else
  1908. false
  1909. #endif
  1910. );
  1911. reset_stepper_drivers();
  1912. //
  1913. // Linear Advance
  1914. //
  1915. #if ENABLED(LIN_ADVANCE)
  1916. LOOP_L_N(i, EXTRUDERS) planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  1917. #endif
  1918. //
  1919. // Motor Current PWM
  1920. //
  1921. #if HAS_MOTOR_CURRENT_PWM
  1922. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  1923. for (uint8_t q = 3; q--;)
  1924. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  1925. #endif
  1926. //
  1927. // CNC Coordinate System
  1928. //
  1929. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1930. (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1931. #endif
  1932. //
  1933. // Skew Correction
  1934. //
  1935. #if ENABLED(SKEW_CORRECTION_GCODE)
  1936. planner.skew_factor.xy = XY_SKEW_FACTOR;
  1937. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1938. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  1939. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  1940. #endif
  1941. #endif
  1942. //
  1943. // Advanced Pause filament load & unload lengths
  1944. //
  1945. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1946. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  1947. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  1948. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  1949. }
  1950. #endif
  1951. postprocess();
  1952. DEBUG_ECHO_START();
  1953. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1954. }
  1955. #if DISABLED(DISABLE_M503)
  1956. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  1957. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  1958. #define CONFIG_ECHO_HEADING(STR) do{ if (!forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); } }while(0)
  1959. #if HAS_TRINAMIC
  1960. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  1961. #if HAS_STEALTHCHOP
  1962. void say_M569(const char * const etc=NULL) {
  1963. SERIAL_ECHOPGM(" M569 S1");
  1964. if (etc) {
  1965. SERIAL_CHAR(' ');
  1966. serialprintPGM(etc);
  1967. SERIAL_EOL();
  1968. }
  1969. }
  1970. #endif
  1971. #if ENABLED(HYBRID_THRESHOLD)
  1972. inline void say_M913() { SERIAL_ECHOPGM(" M913"); }
  1973. #endif
  1974. #if USE_SENSORLESS
  1975. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  1976. #endif
  1977. #endif
  1978. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  1979. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  1980. #endif
  1981. inline void say_units(const bool colon) {
  1982. serialprintPGM(
  1983. #if ENABLED(INCH_MODE_SUPPORT)
  1984. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  1985. #endif
  1986. PSTR(" (mm)")
  1987. );
  1988. if (colon) SERIAL_ECHOLNPGM(":");
  1989. }
  1990. void report_M92(const bool echo=true, const int8_t e=-1);
  1991. /**
  1992. * M503 - Report current settings in RAM
  1993. *
  1994. * Unless specifically disabled, M503 is available even without EEPROM
  1995. */
  1996. void MarlinSettings::report(const bool forReplay) {
  1997. /**
  1998. * Announce current units, in case inches are being displayed
  1999. */
  2000. CONFIG_ECHO_START();
  2001. #if ENABLED(INCH_MODE_SUPPORT)
  2002. SERIAL_ECHOPGM(" G2");
  2003. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2004. SERIAL_ECHOPGM(" ;");
  2005. say_units(false);
  2006. #else
  2007. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2008. say_units(false);
  2009. #endif
  2010. SERIAL_EOL();
  2011. #if HAS_LCD_MENU
  2012. // Temperature units - for Ultipanel temperature options
  2013. CONFIG_ECHO_START();
  2014. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2015. SERIAL_ECHOPGM(" M149 ");
  2016. SERIAL_CHAR(parser.temp_units_code());
  2017. SERIAL_ECHOPGM(" ; Units in ");
  2018. serialprintPGM(parser.temp_units_name());
  2019. #else
  2020. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2021. #endif
  2022. #endif
  2023. SERIAL_EOL();
  2024. #if DISABLED(NO_VOLUMETRICS)
  2025. /**
  2026. * Volumetric extrusion M200
  2027. */
  2028. if (!forReplay) {
  2029. CONFIG_ECHO_START();
  2030. SERIAL_ECHOPGM("Filament settings:");
  2031. if (parser.volumetric_enabled)
  2032. SERIAL_EOL();
  2033. else
  2034. SERIAL_ECHOLNPGM(" Disabled");
  2035. }
  2036. CONFIG_ECHO_START();
  2037. SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  2038. #if EXTRUDERS > 1
  2039. CONFIG_ECHO_START();
  2040. SERIAL_ECHOLNPAIR(" M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
  2041. #if EXTRUDERS > 2
  2042. CONFIG_ECHO_START();
  2043. SERIAL_ECHOLNPAIR(" M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
  2044. #if EXTRUDERS > 3
  2045. CONFIG_ECHO_START();
  2046. SERIAL_ECHOLNPAIR(" M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
  2047. #if EXTRUDERS > 4
  2048. CONFIG_ECHO_START();
  2049. SERIAL_ECHOLNPAIR(" M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
  2050. #if EXTRUDERS > 5
  2051. CONFIG_ECHO_START();
  2052. SERIAL_ECHOLNPAIR(" M200 T5 D", LINEAR_UNIT(planner.filament_size[5]));
  2053. #endif // EXTRUDERS > 5
  2054. #endif // EXTRUDERS > 4
  2055. #endif // EXTRUDERS > 3
  2056. #endif // EXTRUDERS > 2
  2057. #endif // EXTRUDERS > 1
  2058. if (!parser.volumetric_enabled)
  2059. CONFIG_ECHO_MSG(" M200 D0");
  2060. #endif // !NO_VOLUMETRICS
  2061. CONFIG_ECHO_HEADING("Steps per unit:");
  2062. report_M92(!forReplay);
  2063. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2064. CONFIG_ECHO_START();
  2065. SERIAL_ECHOLNPAIR(
  2066. " M203 X", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2067. , " Y", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2068. , " Z", LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2069. #if DISABLED(DISTINCT_E_FACTORS)
  2070. , " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2071. #endif
  2072. );
  2073. #if ENABLED(DISTINCT_E_FACTORS)
  2074. CONFIG_ECHO_START();
  2075. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  2076. SERIAL_ECHOLNPAIR(
  2077. " M203 T", (int)i
  2078. , " E", VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2079. );
  2080. }
  2081. #endif
  2082. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2083. CONFIG_ECHO_START();
  2084. SERIAL_ECHOLNPAIR(
  2085. " M201 X", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2086. , " Y", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2087. , " Z", LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2088. #if DISABLED(DISTINCT_E_FACTORS)
  2089. , " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2090. #endif
  2091. );
  2092. #if ENABLED(DISTINCT_E_FACTORS)
  2093. CONFIG_ECHO_START();
  2094. for (uint8_t i = 0; i < E_STEPPERS; i++)
  2095. SERIAL_ECHOLNPAIR(
  2096. " M201 T", (int)i
  2097. , " E", VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2098. );
  2099. #endif
  2100. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2101. CONFIG_ECHO_START();
  2102. SERIAL_ECHOLNPAIR(
  2103. " M204 P", LINEAR_UNIT(planner.settings.acceleration)
  2104. , " R", LINEAR_UNIT(planner.settings.retract_acceleration)
  2105. , " T", LINEAR_UNIT(planner.settings.travel_acceleration)
  2106. );
  2107. if (!forReplay) {
  2108. CONFIG_ECHO_START();
  2109. SERIAL_ECHOPGM("Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
  2110. #if ENABLED(JUNCTION_DEVIATION)
  2111. SERIAL_ECHOPGM(" J<junc_dev>");
  2112. #endif
  2113. #if HAS_CLASSIC_JERK
  2114. SERIAL_ECHOPGM(" X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
  2115. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2116. SERIAL_ECHOPGM(" E<max_e_jerk>");
  2117. #endif
  2118. #endif
  2119. SERIAL_EOL();
  2120. }
  2121. CONFIG_ECHO_START();
  2122. SERIAL_ECHOLNPAIR(
  2123. " M205 B", LINEAR_UNIT(planner.settings.min_segment_time_us)
  2124. , " S", LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2125. , " T", LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2126. #if ENABLED(JUNCTION_DEVIATION)
  2127. , " J", LINEAR_UNIT(planner.junction_deviation_mm)
  2128. #endif
  2129. #if HAS_CLASSIC_JERK
  2130. , " X", LINEAR_UNIT(planner.max_jerk[X_AXIS])
  2131. , " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS])
  2132. , " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS])
  2133. #if DISABLED(JUNCTION_DEVIATION) || DISABLED(LIN_ADVANCE)
  2134. , " E", LINEAR_UNIT(planner.max_jerk[E_AXIS])
  2135. #endif
  2136. #endif
  2137. );
  2138. #if HAS_M206_COMMAND
  2139. CONFIG_ECHO_HEADING("Home offset:");
  2140. CONFIG_ECHO_START();
  2141. SERIAL_ECHOLNPAIR(" M206"
  2142. #if IS_CARTESIAN
  2143. " X", LINEAR_UNIT(home_offset[X_AXIS]),
  2144. " Y", LINEAR_UNIT(home_offset[Y_AXIS]),
  2145. #endif
  2146. " Z", LINEAR_UNIT(home_offset[Z_AXIS])
  2147. );
  2148. #endif
  2149. #if HAS_HOTEND_OFFSET
  2150. CONFIG_ECHO_HEADING("Hotend offsets:");
  2151. CONFIG_ECHO_START();
  2152. for (uint8_t e = 1; e < HOTENDS; e++) {
  2153. SERIAL_ECHOPAIR(
  2154. " M218 T", (int)e
  2155. , " X", LINEAR_UNIT(hotend_offset[X_AXIS][e])
  2156. , " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e])
  2157. );
  2158. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]), 3);
  2159. }
  2160. #endif
  2161. /**
  2162. * Bed Leveling
  2163. */
  2164. #if HAS_LEVELING
  2165. #if ENABLED(MESH_BED_LEVELING)
  2166. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2167. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2168. if (!forReplay) {
  2169. CONFIG_ECHO_START();
  2170. ubl.echo_name();
  2171. SERIAL_ECHOLNPGM(":");
  2172. }
  2173. #elif HAS_ABL_OR_UBL
  2174. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2175. #endif
  2176. CONFIG_ECHO_START();
  2177. SERIAL_ECHOLNPAIR(
  2178. " M420 S", planner.leveling_active ? 1 : 0
  2179. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2180. , " Z", LINEAR_UNIT(planner.z_fade_height)
  2181. #endif
  2182. );
  2183. #if ENABLED(MESH_BED_LEVELING)
  2184. if (leveling_is_valid()) {
  2185. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2186. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2187. CONFIG_ECHO_START();
  2188. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1, " Y", (int)py + 1);
  2189. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2190. }
  2191. }
  2192. }
  2193. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2194. if (!forReplay) {
  2195. SERIAL_EOL();
  2196. ubl.report_state();
  2197. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.storage_slot);
  2198. SERIAL_ECHOLNPAIR("EEPROM can hold ", calc_num_meshes(), " meshes.\n");
  2199. }
  2200. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2201. // solution needs to be found.
  2202. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2203. if (leveling_is_valid()) {
  2204. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  2205. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  2206. CONFIG_ECHO_START();
  2207. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2208. SERIAL_ECHOLNPAIR_F(" Z", LINEAR_UNIT(z_values[px][py]), 5);
  2209. }
  2210. }
  2211. }
  2212. #endif
  2213. #endif // HAS_LEVELING
  2214. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2215. CONFIG_ECHO_HEADING("Servo Angles:");
  2216. for (uint8_t i = 0; i < NUM_SERVOS; i++) {
  2217. switch (i) {
  2218. #if ENABLED(SWITCHING_EXTRUDER)
  2219. case SWITCHING_EXTRUDER_SERVO_NR:
  2220. #if EXTRUDERS > 3
  2221. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2222. #endif
  2223. #elif ENABLED(SWITCHING_NOZZLE)
  2224. case SWITCHING_NOZZLE_SERVO_NR:
  2225. #elif (ENABLED(BLTOUCH) && defined(BLTOUCH_ANGLES)) || (defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR))
  2226. case Z_PROBE_SERVO_NR:
  2227. #endif
  2228. CONFIG_ECHO_START();
  2229. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2230. default: break;
  2231. }
  2232. }
  2233. #endif // EDITABLE_SERVO_ANGLES
  2234. #if HAS_SCARA_OFFSET
  2235. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2236. CONFIG_ECHO_START();
  2237. SERIAL_ECHOLNPAIR(
  2238. " M665 S", delta_segments_per_second
  2239. , " P", scara_home_offset[A_AXIS]
  2240. , " T", scara_home_offset[B_AXIS]
  2241. , " Z", LINEAR_UNIT(scara_home_offset[Z_AXIS])
  2242. );
  2243. #elif ENABLED(DELTA)
  2244. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2245. CONFIG_ECHO_START();
  2246. SERIAL_ECHOLNPAIR(
  2247. " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS])
  2248. , " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS])
  2249. , " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS])
  2250. );
  2251. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  2252. CONFIG_ECHO_START();
  2253. SERIAL_ECHOLNPAIR(
  2254. " M665 L", LINEAR_UNIT(delta_diagonal_rod)
  2255. , " R", LINEAR_UNIT(delta_radius)
  2256. , " H", LINEAR_UNIT(delta_height)
  2257. , " S", delta_segments_per_second
  2258. , " B", LINEAR_UNIT(delta_calibration_radius)
  2259. , " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS])
  2260. , " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS])
  2261. , " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS])
  2262. );
  2263. #elif EITHER(X_DUAL_ENDSTOPS, Y_DUAL_ENDSTOPS) || Z_MULTI_ENDSTOPS
  2264. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2265. CONFIG_ECHO_START();
  2266. SERIAL_ECHOPGM(" M666");
  2267. #if ENABLED(X_DUAL_ENDSTOPS)
  2268. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(endstops.x2_endstop_adj));
  2269. #endif
  2270. #if ENABLED(Y_DUAL_ENDSTOPS)
  2271. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstops.y2_endstop_adj));
  2272. #endif
  2273. #if ENABLED(Z_TRIPLE_ENDSTOPS)
  2274. SERIAL_ECHOLNPAIR("S1 Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2275. CONFIG_ECHO_START();
  2276. SERIAL_ECHOPAIR(" M666 S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2277. #elif ENABLED(Z_DUAL_ENDSTOPS)
  2278. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(endstops.z2_endstop_adj));
  2279. #endif
  2280. SERIAL_EOL();
  2281. #endif // [XYZ]_DUAL_ENDSTOPS
  2282. #if HAS_LCD_MENU
  2283. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2284. for (uint8_t i = 0; i < COUNT(ui.preheat_hotend_temp); i++) {
  2285. CONFIG_ECHO_START();
  2286. SERIAL_ECHOLNPAIR(
  2287. " M145 S", (int)i
  2288. , " H", TEMP_UNIT(ui.preheat_hotend_temp[i])
  2289. , " B", TEMP_UNIT(ui.preheat_bed_temp[i])
  2290. , " F", int(ui.preheat_fan_speed[i])
  2291. );
  2292. }
  2293. #endif
  2294. #if HAS_PID_HEATING
  2295. CONFIG_ECHO_HEADING("PID settings:");
  2296. #if ENABLED(PIDTEMP)
  2297. #if HOTENDS > 1
  2298. if (forReplay) {
  2299. HOTEND_LOOP() {
  2300. CONFIG_ECHO_START();
  2301. SERIAL_ECHOPAIR(
  2302. " M301 E", e
  2303. , " P", PID_PARAM(Kp, e)
  2304. , " I", unscalePID_i(PID_PARAM(Ki, e))
  2305. , " D", unscalePID_d(PID_PARAM(Kd, e))
  2306. );
  2307. #if ENABLED(PID_EXTRUSION_SCALING)
  2308. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  2309. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2310. #endif
  2311. SERIAL_EOL();
  2312. }
  2313. }
  2314. else
  2315. #endif // HOTENDS > 1
  2316. // !forReplay || HOTENDS == 1
  2317. {
  2318. CONFIG_ECHO_START();
  2319. SERIAL_ECHOLNPAIR(
  2320. " M301 P", PID_PARAM(Kp, 0) // for compatibility with hosts, only echo values for E0
  2321. , " I", unscalePID_i(PID_PARAM(Ki, 0))
  2322. , " D", unscalePID_d(PID_PARAM(Kd, 0))
  2323. #if ENABLED(PID_EXTRUSION_SCALING)
  2324. , " C", PID_PARAM(Kc, 0)
  2325. , " L", thermalManager.lpq_len
  2326. #endif
  2327. );
  2328. }
  2329. #endif // PIDTEMP
  2330. #if ENABLED(PIDTEMPBED)
  2331. CONFIG_ECHO_START();
  2332. SERIAL_ECHOLNPAIR(
  2333. " M304 P", thermalManager.temp_bed.pid.Kp
  2334. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2335. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2336. );
  2337. #endif
  2338. #endif // PIDTEMP || PIDTEMPBED
  2339. #if HAS_LCD_CONTRAST
  2340. CONFIG_ECHO_HEADING("LCD Contrast:");
  2341. CONFIG_ECHO_START();
  2342. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2343. #endif
  2344. #if ENABLED(POWER_LOSS_RECOVERY)
  2345. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2346. CONFIG_ECHO_START();
  2347. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2348. #endif
  2349. #if ENABLED(FWRETRACT)
  2350. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2351. CONFIG_ECHO_START();
  2352. SERIAL_ECHOLNPAIR(
  2353. " M207 S", LINEAR_UNIT(fwretract.settings.retract_length)
  2354. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2355. , " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_feedrate_mm_s))
  2356. , " Z", LINEAR_UNIT(fwretract.settings.retract_zraise)
  2357. );
  2358. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2359. CONFIG_ECHO_START();
  2360. SERIAL_ECHOLNPAIR(
  2361. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2362. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2363. , " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.settings.retract_recover_feedrate_mm_s))
  2364. );
  2365. #if ENABLED(FWRETRACT_AUTORETRACT)
  2366. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2367. CONFIG_ECHO_START();
  2368. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2369. #endif // FWRETRACT_AUTORETRACT
  2370. #endif // FWRETRACT
  2371. /**
  2372. * Probe Offset
  2373. */
  2374. #if HAS_BED_PROBE
  2375. if (!forReplay) {
  2376. CONFIG_ECHO_START();
  2377. SERIAL_ECHOPGM("Z-Probe Offset");
  2378. say_units(true);
  2379. }
  2380. CONFIG_ECHO_START();
  2381. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  2382. #endif
  2383. /**
  2384. * Bed Skew Correction
  2385. */
  2386. #if ENABLED(SKEW_CORRECTION_GCODE)
  2387. CONFIG_ECHO_HEADING("Skew Factor: ");
  2388. CONFIG_ECHO_START();
  2389. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2390. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2391. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2392. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2393. #else
  2394. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2395. #endif
  2396. #endif
  2397. #if HAS_TRINAMIC
  2398. /**
  2399. * TMC stepper driver current
  2400. */
  2401. CONFIG_ECHO_HEADING("Stepper driver current:");
  2402. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2403. say_M906(forReplay);
  2404. SERIAL_ECHOLNPAIR(
  2405. #if AXIS_IS_TMC(X)
  2406. " X", stepperX.getMilliamps(),
  2407. #endif
  2408. #if AXIS_IS_TMC(Y)
  2409. " Y", stepperY.getMilliamps(),
  2410. #endif
  2411. #if AXIS_IS_TMC(Z)
  2412. " Z", stepperZ.getMilliamps()
  2413. #endif
  2414. );
  2415. #endif
  2416. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2417. say_M906(forReplay);
  2418. SERIAL_ECHOPGM(" I1");
  2419. SERIAL_ECHOLNPAIR(
  2420. #if AXIS_IS_TMC(X2)
  2421. " X", stepperX2.getMilliamps(),
  2422. #endif
  2423. #if AXIS_IS_TMC(Y2)
  2424. " Y", stepperY2.getMilliamps(),
  2425. #endif
  2426. #if AXIS_IS_TMC(Z2)
  2427. " Z", stepperZ2.getMilliamps()
  2428. #endif
  2429. );
  2430. #endif
  2431. #if AXIS_IS_TMC(Z3)
  2432. say_M906(forReplay);
  2433. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2434. #endif
  2435. #if AXIS_IS_TMC(E0)
  2436. say_M906(forReplay);
  2437. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2438. #endif
  2439. #if AXIS_IS_TMC(E1)
  2440. say_M906(forReplay);
  2441. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2442. #endif
  2443. #if AXIS_IS_TMC(E2)
  2444. say_M906(forReplay);
  2445. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2446. #endif
  2447. #if AXIS_IS_TMC(E3)
  2448. say_M906(forReplay);
  2449. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2450. #endif
  2451. #if AXIS_IS_TMC(E4)
  2452. say_M906(forReplay);
  2453. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2454. #endif
  2455. #if AXIS_IS_TMC(E5)
  2456. say_M906(forReplay);
  2457. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2458. #endif
  2459. SERIAL_EOL();
  2460. /**
  2461. * TMC Hybrid Threshold
  2462. */
  2463. #if ENABLED(HYBRID_THRESHOLD)
  2464. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2465. CONFIG_ECHO_START();
  2466. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2467. say_M913();
  2468. #endif
  2469. #if AXIS_HAS_STEALTHCHOP(X)
  2470. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X));
  2471. #endif
  2472. #if AXIS_HAS_STEALTHCHOP(Y)
  2473. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y));
  2474. #endif
  2475. #if AXIS_HAS_STEALTHCHOP(Z)
  2476. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z));
  2477. #endif
  2478. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2479. SERIAL_EOL();
  2480. #endif
  2481. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2482. say_M913();
  2483. SERIAL_ECHOPGM(" I1");
  2484. #endif
  2485. #if AXIS_HAS_STEALTHCHOP(X2)
  2486. SERIAL_ECHOPAIR(" X", TMC_GET_PWMTHRS(X, X2));
  2487. #endif
  2488. #if AXIS_HAS_STEALTHCHOP(Y2)
  2489. SERIAL_ECHOPAIR(" Y", TMC_GET_PWMTHRS(Y, Y2));
  2490. #endif
  2491. #if AXIS_HAS_STEALTHCHOP(Z2)
  2492. SERIAL_ECHOPAIR(" Z", TMC_GET_PWMTHRS(Z, Z2));
  2493. #endif
  2494. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2495. SERIAL_EOL();
  2496. #endif
  2497. #if AXIS_HAS_STEALTHCHOP(Z3)
  2498. say_M913();
  2499. SERIAL_ECHOLNPAIR(" I2 Z", TMC_GET_PWMTHRS(Z, Z3));
  2500. #endif
  2501. #if AXIS_HAS_STEALTHCHOP(E0)
  2502. say_M913();
  2503. SERIAL_ECHOLNPAIR(" T0 E", TMC_GET_PWMTHRS(E, E0));
  2504. #endif
  2505. #if AXIS_HAS_STEALTHCHOP(E1)
  2506. say_M913();
  2507. SERIAL_ECHOLNPAIR(" T1 E", TMC_GET_PWMTHRS(E, E1));
  2508. #endif
  2509. #if AXIS_HAS_STEALTHCHOP(E2)
  2510. say_M913();
  2511. SERIAL_ECHOLNPAIR(" T2 E", TMC_GET_PWMTHRS(E, E2));
  2512. #endif
  2513. #if AXIS_HAS_STEALTHCHOP(E3)
  2514. say_M913();
  2515. SERIAL_ECHOLNPAIR(" T3 E", TMC_GET_PWMTHRS(E, E3));
  2516. #endif
  2517. #if AXIS_HAS_STEALTHCHOP(E4)
  2518. say_M913();
  2519. SERIAL_ECHOLNPAIR(" T4 E", TMC_GET_PWMTHRS(E, E4));
  2520. #endif
  2521. #if AXIS_HAS_STEALTHCHOP(E5)
  2522. say_M913();
  2523. SERIAL_ECHOLNPAIR(" T5 E", TMC_GET_PWMTHRS(E, E5));
  2524. #endif
  2525. SERIAL_EOL();
  2526. #endif // HYBRID_THRESHOLD
  2527. /**
  2528. * TMC Sensorless homing thresholds
  2529. */
  2530. #if USE_SENSORLESS
  2531. CONFIG_ECHO_HEADING("TMC2130 StallGuard threshold:");
  2532. CONFIG_ECHO_START();
  2533. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2534. say_M914();
  2535. #if X_SENSORLESS
  2536. SERIAL_ECHOPAIR(" X", stepperX.sgt());
  2537. #endif
  2538. #if Y_SENSORLESS
  2539. SERIAL_ECHOPAIR(" Y", stepperY.sgt());
  2540. #endif
  2541. #if Z_SENSORLESS
  2542. SERIAL_ECHOPAIR(" Z", stepperZ.sgt());
  2543. #endif
  2544. SERIAL_EOL();
  2545. #endif
  2546. #define HAS_X2_SENSORLESS (defined(X_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
  2547. #define HAS_Y2_SENSORLESS (defined(Y_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
  2548. #define HAS_Z2_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
  2549. #define HAS_Z3_SENSORLESS (defined(Z_STALL_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z3))
  2550. #if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
  2551. say_M914();
  2552. SERIAL_ECHOPGM(" I1");
  2553. #if HAS_X2_SENSORLESS
  2554. SERIAL_ECHOPAIR(" X", stepperX2.sgt());
  2555. #endif
  2556. #if HAS_Y2_SENSORLESS
  2557. SERIAL_ECHOPAIR(" Y", stepperY2.sgt());
  2558. #endif
  2559. #if HAS_Z2_SENSORLESS
  2560. SERIAL_ECHOPAIR(" Z", stepperZ2.sgt());
  2561. #endif
  2562. SERIAL_EOL();
  2563. #endif
  2564. #if HAS_Z3_SENSORLESS
  2565. say_M914();
  2566. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.sgt());
  2567. #endif
  2568. #endif // USE_SENSORLESS
  2569. /**
  2570. * TMC stepping mode
  2571. */
  2572. #if HAS_STEALTHCHOP
  2573. CONFIG_ECHO_HEADING("Driver stepping mode:");
  2574. CONFIG_ECHO_START();
  2575. #if AXIS_HAS_STEALTHCHOP(X)
  2576. const bool chop_x = stepperX.get_stealthChop_status();
  2577. #else
  2578. constexpr bool chop_x = false;
  2579. #endif
  2580. #if AXIS_HAS_STEALTHCHOP(Y)
  2581. const bool chop_y = stepperY.get_stealthChop_status();
  2582. #else
  2583. constexpr bool chop_y = false;
  2584. #endif
  2585. #if AXIS_HAS_STEALTHCHOP(Z)
  2586. const bool chop_z = stepperZ.get_stealthChop_status();
  2587. #else
  2588. constexpr bool chop_z = false;
  2589. #endif
  2590. if (chop_x || chop_y || chop_z) say_M569();
  2591. if (chop_x) SERIAL_ECHOPGM(" X");
  2592. if (chop_y) SERIAL_ECHOPGM(" Y");
  2593. if (chop_z) SERIAL_ECHOPGM(" Z");
  2594. if (chop_x || chop_y || chop_z) SERIAL_EOL();
  2595. #if AXIS_HAS_STEALTHCHOP(X2)
  2596. const bool chop_x2 = stepperX2.get_stealthChop_status();
  2597. #else
  2598. constexpr bool chop_x2 = false;
  2599. #endif
  2600. #if AXIS_HAS_STEALTHCHOP(Y2)
  2601. const bool chop_y2 = stepperY2.get_stealthChop_status();
  2602. #else
  2603. constexpr bool chop_y2 = false;
  2604. #endif
  2605. #if AXIS_HAS_STEALTHCHOP(Z2)
  2606. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  2607. #else
  2608. constexpr bool chop_z2 = false;
  2609. #endif
  2610. if (chop_x2 || chop_y2 || chop_z2) say_M569(PSTR("I1"));
  2611. if (chop_x2) SERIAL_ECHOPGM(" X");
  2612. if (chop_y2) SERIAL_ECHOPGM(" Y");
  2613. if (chop_z2) SERIAL_ECHOPGM(" Z");
  2614. if (chop_x2 || chop_y2 || chop_z2) SERIAL_EOL();
  2615. #if AXIS_HAS_STEALTHCHOP(Z3)
  2616. if (stepperZ3.get_stealthChop_status()) { say_M569(PSTR("I2 Z")); }
  2617. #endif
  2618. #if AXIS_HAS_STEALTHCHOP(E0)
  2619. if (stepperE0.get_stealthChop_status()) { say_M569(PSTR("T0 E")); }
  2620. #endif
  2621. #if AXIS_HAS_STEALTHCHOP(E1)
  2622. if (stepperE1.get_stealthChop_status()) { say_M569(PSTR("T1 E")); }
  2623. #endif
  2624. #if AXIS_HAS_STEALTHCHOP(E2)
  2625. if (stepperE2.get_stealthChop_status()) { say_M569(PSTR("T2 E")); }
  2626. #endif
  2627. #if AXIS_HAS_STEALTHCHOP(E3)
  2628. if (stepperE3.get_stealthChop_status()) { say_M569(PSTR("T3 E")); }
  2629. #endif
  2630. #if AXIS_HAS_STEALTHCHOP(E4)
  2631. if (stepperE4.get_stealthChop_status()) { say_M569(PSTR("T4 E")); }
  2632. #endif
  2633. #if AXIS_HAS_STEALTHCHOP(E5)
  2634. if (stepperE5.get_stealthChop_status()) { say_M569(PSTR("T5 E")); }
  2635. #endif
  2636. #endif // HAS_STEALTHCHOP
  2637. #endif // HAS_TRINAMIC
  2638. /**
  2639. * Linear Advance
  2640. */
  2641. #if ENABLED(LIN_ADVANCE)
  2642. CONFIG_ECHO_HEADING("Linear Advance:");
  2643. CONFIG_ECHO_START();
  2644. #if EXTRUDERS < 2
  2645. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  2646. #else
  2647. LOOP_L_N(i, EXTRUDERS)
  2648. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  2649. #endif
  2650. #endif
  2651. #if HAS_MOTOR_CURRENT_PWM
  2652. CONFIG_ECHO_HEADING("Stepper motor currents:");
  2653. CONFIG_ECHO_START();
  2654. SERIAL_ECHOLNPAIR(
  2655. " M907 X", stepper.motor_current_setting[0]
  2656. , " Z", stepper.motor_current_setting[1]
  2657. , " E", stepper.motor_current_setting[2]
  2658. );
  2659. #endif
  2660. /**
  2661. * Advanced Pause filament load & unload lengths
  2662. */
  2663. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2664. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  2665. #if EXTRUDERS == 1
  2666. say_M603(forReplay);
  2667. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  2668. #else
  2669. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0)
  2670. _ECHO_603(0);
  2671. _ECHO_603(1);
  2672. #if EXTRUDERS > 2
  2673. _ECHO_603(2);
  2674. #if EXTRUDERS > 3
  2675. _ECHO_603(3);
  2676. #if EXTRUDERS > 4
  2677. _ECHO_603(4);
  2678. #if EXTRUDERS > 5
  2679. _ECHO_603(5);
  2680. #endif // EXTRUDERS > 5
  2681. #endif // EXTRUDERS > 4
  2682. #endif // EXTRUDERS > 3
  2683. #endif // EXTRUDERS > 2
  2684. #endif // EXTRUDERS == 1
  2685. #endif // ADVANCED_PAUSE_FEATURE
  2686. #if EXTRUDERS > 1
  2687. CONFIG_ECHO_HEADING("Tool-changing:");
  2688. CONFIG_ECHO_START();
  2689. M217_report(true);
  2690. #endif
  2691. }
  2692. #endif // !DISABLE_M503
  2693. #pragma pack(pop)