My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.h 26KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
  25. * Derived from Grbl
  26. *
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <https://www.gnu.org/licenses/>.
  41. */
  42. #include "../inc/MarlinConfig.h"
  43. #include "planner.h"
  44. #include "stepper/indirection.h"
  45. #ifdef __AVR__
  46. #include "stepper/speed_lookuptable.h"
  47. #endif
  48. // Disable multiple steps per ISR
  49. //#define DISABLE_MULTI_STEPPING
  50. //
  51. // Estimate the amount of time the Stepper ISR will take to execute
  52. //
  53. /**
  54. * The method of calculating these cycle-constants is unclear.
  55. * Most of them are no longer used directly for pulse timing, and exist
  56. * only to estimate a maximum step rate based on the user's configuration.
  57. * As 32-bit processors continue to diverge, maintaining cycle counts
  58. * will become increasingly difficult and error-prone.
  59. */
  60. #ifdef CPU_32_BIT
  61. /**
  62. * Duration of START_TIMED_PULSE
  63. *
  64. * ...as measured on an LPC1768 with a scope and converted to cycles.
  65. * Not applicable to other 32-bit processors, but as long as others
  66. * take longer, pulses will be longer. For example the SKR Pro
  67. * (stm32f407zgt6) requires ~60 cyles.
  68. */
  69. #define TIMER_READ_ADD_AND_STORE_CYCLES 34UL
  70. // The base ISR takes 792 cycles
  71. #define ISR_BASE_CYCLES 792UL
  72. // Linear advance base time is 64 cycles
  73. #if ENABLED(LIN_ADVANCE)
  74. #define ISR_LA_BASE_CYCLES 64UL
  75. #else
  76. #define ISR_LA_BASE_CYCLES 0UL
  77. #endif
  78. // S curve interpolation adds 40 cycles
  79. #if ENABLED(S_CURVE_ACCELERATION)
  80. #define ISR_S_CURVE_CYCLES 40UL
  81. #else
  82. #define ISR_S_CURVE_CYCLES 0UL
  83. #endif
  84. // Stepper Loop base cycles
  85. #define ISR_LOOP_BASE_CYCLES 4UL
  86. // To start the step pulse, in the worst case takes
  87. #define ISR_START_STEPPER_CYCLES 13UL
  88. // And each stepper (start + stop pulse) takes in worst case
  89. #define ISR_STEPPER_CYCLES 16UL
  90. #else
  91. // Cycles to perform actions in START_TIMED_PULSE
  92. #define TIMER_READ_ADD_AND_STORE_CYCLES 13UL
  93. // The base ISR takes 752 cycles
  94. #define ISR_BASE_CYCLES 752UL
  95. // Linear advance base time is 32 cycles
  96. #if ENABLED(LIN_ADVANCE)
  97. #define ISR_LA_BASE_CYCLES 32UL
  98. #else
  99. #define ISR_LA_BASE_CYCLES 0UL
  100. #endif
  101. // S curve interpolation adds 160 cycles
  102. #if ENABLED(S_CURVE_ACCELERATION)
  103. #define ISR_S_CURVE_CYCLES 160UL
  104. #else
  105. #define ISR_S_CURVE_CYCLES 0UL
  106. #endif
  107. // Stepper Loop base cycles
  108. #define ISR_LOOP_BASE_CYCLES 32UL
  109. // To start the step pulse, in the worst case takes
  110. #define ISR_START_STEPPER_CYCLES 57UL
  111. // And each stepper (start + stop pulse) takes in worst case
  112. #define ISR_STEPPER_CYCLES 88UL
  113. #endif
  114. // If linear advance is disabled, the loop also handles them
  115. #if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
  116. #define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
  117. #else
  118. #define ISR_MIXING_STEPPER_CYCLES 0UL
  119. #endif
  120. // Add time for each stepper
  121. #if HAS_X_STEP
  122. #define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
  123. #endif
  124. #if HAS_Y_STEP
  125. #define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
  126. #endif
  127. #if HAS_Z_STEP
  128. #define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
  129. #endif
  130. #if HAS_I_STEP
  131. #define ISR_I_STEPPER_CYCLES ISR_STEPPER_CYCLES
  132. #endif
  133. #if HAS_J_STEP
  134. #define ISR_J_STEPPER_CYCLES ISR_STEPPER_CYCLES
  135. #endif
  136. #if HAS_K_STEP
  137. #define ISR_K_STEPPER_CYCLES ISR_STEPPER_CYCLES
  138. #endif
  139. #if HAS_U_STEP
  140. #define ISR_U_STEPPER_CYCLES ISR_STEPPER_CYCLES
  141. #endif
  142. #if HAS_V_STEP
  143. #define ISR_V_STEPPER_CYCLES ISR_STEPPER_CYCLES
  144. #endif
  145. #if HAS_W_STEP
  146. #define ISR_W_STEPPER_CYCLES ISR_STEPPER_CYCLES
  147. #endif
  148. #if HAS_EXTRUDERS
  149. #define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES // E is always interpolated, even for mixing extruders
  150. #endif
  151. // And the total minimum loop time, not including the base
  152. #define MIN_ISR_LOOP_CYCLES (ISR_MIXING_STEPPER_CYCLES LOGICAL_AXIS_GANG(+ ISR_E_STEPPER_CYCLES, + ISR_X_STEPPER_CYCLES, + ISR_Y_STEPPER_CYCLES, + ISR_Z_STEPPER_CYCLES, + ISR_I_STEPPER_CYCLES, + ISR_J_STEPPER_CYCLES, + ISR_K_STEPPER_CYCLES, + ISR_U_STEPPER_CYCLES, + ISR_V_STEPPER_CYCLES, + ISR_W_STEPPER_CYCLES))
  153. // Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
  154. #define _MIN_STEPPER_PULSE_CYCLES(N) _MAX(uint32_t((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N))
  155. #if MINIMUM_STEPPER_PULSE
  156. #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(uint32_t(MINIMUM_STEPPER_PULSE))
  157. #elif HAS_DRIVER(LV8729)
  158. #define MIN_STEPPER_PULSE_CYCLES uint32_t((((F_CPU) - 1) / 2000000) + 1) // 0.5µs, aka 500ns
  159. #else
  160. #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
  161. #endif
  162. // Calculate the minimum pulse times (high and low)
  163. #if MINIMUM_STEPPER_PULSE && MAXIMUM_STEPPER_RATE
  164. constexpr uint32_t _MIN_STEP_PERIOD_NS = 1000000000UL / MAXIMUM_STEPPER_RATE;
  165. constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE;
  166. constexpr uint32_t _MIN_PULSE_LOW_NS = _MAX((_MIN_STEP_PERIOD_NS - _MIN(_MIN_STEP_PERIOD_NS, _MIN_PULSE_HIGH_NS)), _MIN_PULSE_HIGH_NS);
  167. #elif MINIMUM_STEPPER_PULSE
  168. // Assume 50% duty cycle
  169. constexpr uint32_t _MIN_PULSE_HIGH_NS = 1000UL * MINIMUM_STEPPER_PULSE;
  170. constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS;
  171. #elif MAXIMUM_STEPPER_RATE
  172. // Assume 50% duty cycle
  173. constexpr uint32_t _MIN_PULSE_HIGH_NS = 500000000UL / MAXIMUM_STEPPER_RATE;
  174. constexpr uint32_t _MIN_PULSE_LOW_NS = _MIN_PULSE_HIGH_NS;
  175. #else
  176. #error "Expected at least one of MINIMUM_STEPPER_PULSE or MAXIMUM_STEPPER_RATE to be defined"
  177. #endif
  178. // But the user could be enforcing a minimum time, so the loop time is
  179. #define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
  180. // If linear advance is enabled, then it is handled separately
  181. #if ENABLED(LIN_ADVANCE)
  182. // Estimate the minimum LA loop time
  183. #if ENABLED(MIXING_EXTRUDER) // ToDo: ???
  184. // HELP ME: What is what?
  185. // Directions are set up for MIXING_STEPPERS - like before.
  186. // Finding the right stepper may last up to MIXING_STEPPERS loops in get_next_stepper().
  187. // These loops are a bit faster than advancing a bresenham counter.
  188. // Always only one E stepper is stepped.
  189. #define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
  190. #else
  191. #define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
  192. #endif
  193. // And the real loop time
  194. #define ISR_LA_LOOP_CYCLES _MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
  195. #else
  196. #define ISR_LA_LOOP_CYCLES 0UL
  197. #endif
  198. // Now estimate the total ISR execution time in cycles given a step per ISR multiplier
  199. #define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
  200. // The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
  201. #define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
  202. #define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
  203. #define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
  204. #define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
  205. #define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
  206. #define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
  207. #define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
  208. #define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
  209. // The minimum step ISR rate used by ADAPTIVE_STEP_SMOOTHING to target 50% CPU usage
  210. // This does not account for the possibility of multi-stepping.
  211. // Perhaps DISABLE_MULTI_STEPPING should be required with ADAPTIVE_STEP_SMOOTHING.
  212. #define MIN_STEP_ISR_FREQUENCY (MAX_STEP_ISR_FREQUENCY_1X / 2)
  213. #define ENABLE_COUNT (NUM_AXES + E_STEPPERS)
  214. #if ENABLE_COUNT > 16
  215. typedef uint32_t ena_mask_t;
  216. #else
  217. typedef IF<(ENABLE_COUNT > 8), uint16_t, uint8_t>::type ena_mask_t;
  218. #endif
  219. // Axis flags type, for enabled state or other simple state
  220. typedef struct {
  221. union {
  222. ena_mask_t bits;
  223. struct {
  224. bool NUM_AXIS_LIST(X:1, Y:1, Z:1, I:1, J:1, K:1, U:1, V:1, W:1);
  225. #if HAS_EXTRUDERS
  226. bool LIST_N(EXTRUDERS, E0:1, E1:1, E2:1, E3:1, E4:1, E5:1, E6:1, E7:1);
  227. #endif
  228. };
  229. };
  230. } stepper_flags_t;
  231. // All the stepper enable pins
  232. constexpr pin_t ena_pins[] = {
  233. NUM_AXIS_LIST(X_ENABLE_PIN, Y_ENABLE_PIN, Z_ENABLE_PIN, I_ENABLE_PIN, J_ENABLE_PIN, K_ENABLE_PIN, U_ENABLE_PIN, V_ENABLE_PIN, W_ENABLE_PIN),
  234. LIST_N(E_STEPPERS, E0_ENABLE_PIN, E1_ENABLE_PIN, E2_ENABLE_PIN, E3_ENABLE_PIN, E4_ENABLE_PIN, E5_ENABLE_PIN, E6_ENABLE_PIN, E7_ENABLE_PIN)
  235. };
  236. // Index of the axis or extruder element in a combined array
  237. constexpr uint8_t index_of_axis(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
  238. return uint8_t(axis) + (E_TERN0(axis < NUM_AXES ? 0 : eindex));
  239. }
  240. //#define __IAX_N(N,V...) _IAX_##N(V)
  241. //#define _IAX_N(N,V...) __IAX_N(N,V)
  242. //#define _IAX_1(A) index_of_axis(A)
  243. //#define _IAX_2(A,B) index_of_axis(A E_OPTARG(B))
  244. //#define INDEX_OF_AXIS(V...) _IAX_N(TWO_ARGS(V),V)
  245. #define INDEX_OF_AXIS(A,V...) index_of_axis(A E_OPTARG(V+0))
  246. // Bit mask for a matching enable pin, or 0
  247. constexpr ena_mask_t ena_same(const uint8_t a, const uint8_t b) {
  248. return ena_pins[a] == ena_pins[b] ? _BV(b) : 0;
  249. }
  250. // Recursively get the enable overlaps mask for a given linear axis or extruder
  251. constexpr ena_mask_t ena_overlap(const uint8_t a=0, const uint8_t b=0) {
  252. return b >= ENABLE_COUNT ? 0 : (a == b ? 0 : ena_same(a, b)) | ena_overlap(a, b + 1);
  253. }
  254. // Recursively get whether there's any overlap at all
  255. constexpr bool any_enable_overlap(const uint8_t a=0) {
  256. return a >= ENABLE_COUNT ? false : ena_overlap(a) || any_enable_overlap(a + 1);
  257. }
  258. // Array of axes that overlap with each
  259. // TODO: Consider cases where >=2 steppers are used by a linear axis or extruder
  260. // (e.g., CoreXY, Dual XYZ, or E with multiple steppers, etc.).
  261. constexpr ena_mask_t enable_overlap[] = {
  262. #define _OVERLAP(N) ena_overlap(INDEX_OF_AXIS(AxisEnum(N))),
  263. REPEAT(NUM_AXES, _OVERLAP)
  264. #if HAS_EXTRUDERS
  265. #define _E_OVERLAP(N) ena_overlap(INDEX_OF_AXIS(E_AXIS, N)),
  266. REPEAT(E_STEPPERS, _E_OVERLAP)
  267. #endif
  268. };
  269. //static_assert(!any_enable_overlap(), "There is some overlap.");
  270. //
  271. // Stepper class definition
  272. //
  273. class Stepper {
  274. public:
  275. #if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  276. static bool separate_multi_axis;
  277. #endif
  278. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  279. #if HAS_MOTOR_CURRENT_PWM
  280. #ifndef PWM_MOTOR_CURRENT
  281. #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
  282. #endif
  283. #ifndef MOTOR_CURRENT_PWM_FREQUENCY
  284. #define MOTOR_CURRENT_PWM_FREQUENCY 31400
  285. #endif
  286. #define MOTOR_CURRENT_COUNT 3
  287. #elif HAS_MOTOR_CURRENT_SPI
  288. static constexpr uint32_t digipot_count[] = DIGIPOT_MOTOR_CURRENT;
  289. #define MOTOR_CURRENT_COUNT COUNT(Stepper::digipot_count)
  290. #endif
  291. static bool initialized;
  292. static uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
  293. #endif
  294. // Last-moved extruder, as set when the last movement was fetched from planner
  295. #if HAS_MULTI_EXTRUDER
  296. static uint8_t last_moved_extruder;
  297. #else
  298. static constexpr uint8_t last_moved_extruder = 0;
  299. #endif
  300. #if ENABLED(FREEZE_FEATURE)
  301. static bool frozen; // Set this flag to instantly freeze motion
  302. #endif
  303. private:
  304. static block_t* current_block; // A pointer to the block currently being traced
  305. static axis_bits_t last_direction_bits, // The next stepping-bits to be output
  306. axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
  307. static bool abort_current_block; // Signals to the stepper that current block should be aborted
  308. #if ENABLED(X_DUAL_ENDSTOPS)
  309. static bool locked_X_motor, locked_X2_motor;
  310. #endif
  311. #if ENABLED(Y_DUAL_ENDSTOPS)
  312. static bool locked_Y_motor, locked_Y2_motor;
  313. #endif
  314. #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  315. static bool locked_Z_motor, locked_Z2_motor
  316. #if NUM_Z_STEPPERS >= 3
  317. , locked_Z3_motor
  318. #if NUM_Z_STEPPERS >= 4
  319. , locked_Z4_motor
  320. #endif
  321. #endif
  322. ;
  323. #endif
  324. static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks
  325. static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call
  326. #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
  327. static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
  328. #else
  329. static constexpr uint8_t oversampling_factor = 0;
  330. #endif
  331. // Delta error variables for the Bresenham line tracer
  332. static xyze_long_t delta_error;
  333. static xyze_ulong_t advance_dividend;
  334. static uint32_t advance_divisor,
  335. step_events_completed, // The number of step events executed in the current block
  336. accelerate_until, // The point from where we need to stop acceleration
  337. decelerate_after, // The point from where we need to start decelerating
  338. step_event_count; // The total event count for the current block
  339. #if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
  340. static uint8_t stepper_extruder;
  341. #else
  342. static constexpr uint8_t stepper_extruder = 0;
  343. #endif
  344. #if ENABLED(S_CURVE_ACCELERATION)
  345. static int32_t bezier_A, // A coefficient in Bézier speed curve
  346. bezier_B, // B coefficient in Bézier speed curve
  347. bezier_C; // C coefficient in Bézier speed curve
  348. static uint32_t bezier_F, // F coefficient in Bézier speed curve
  349. bezier_AV; // AV coefficient in Bézier speed curve
  350. #ifdef __AVR__
  351. static bool A_negative; // If A coefficient was negative
  352. #endif
  353. static bool bezier_2nd_half; // If Bézier curve has been initialized or not
  354. #endif
  355. #if ENABLED(LIN_ADVANCE)
  356. static constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF;
  357. static uint32_t nextAdvanceISR, LA_isr_rate;
  358. static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early".
  359. static int8_t LA_steps;
  360. static bool LA_use_advance_lead;
  361. #endif
  362. #if ENABLED(INTEGRATED_BABYSTEPPING)
  363. static constexpr uint32_t BABYSTEP_NEVER = 0xFFFFFFFF;
  364. static uint32_t nextBabystepISR;
  365. #endif
  366. #if ENABLED(DIRECT_STEPPING)
  367. static page_step_state_t page_step_state;
  368. #endif
  369. static int32_t ticks_nominal;
  370. #if DISABLED(S_CURVE_ACCELERATION)
  371. static uint32_t acc_step_rate; // needed for deceleration start point
  372. #endif
  373. // Exact steps at which an endstop was triggered
  374. static xyz_long_t endstops_trigsteps;
  375. // Positions of stepper motors, in step units
  376. static xyze_long_t count_position;
  377. // Current stepper motor directions (+1 or -1)
  378. static xyze_int8_t count_direction;
  379. public:
  380. // Initialize stepper hardware
  381. static void init();
  382. // Interrupt Service Routine and phases
  383. // The stepper subsystem goes to sleep when it runs out of things to execute.
  384. // Call this to notify the subsystem that it is time to go to work.
  385. static void wake_up() { ENABLE_STEPPER_DRIVER_INTERRUPT(); }
  386. static bool is_awake() { return STEPPER_ISR_ENABLED(); }
  387. static bool suspend() {
  388. const bool awake = is_awake();
  389. if (awake) DISABLE_STEPPER_DRIVER_INTERRUPT();
  390. return awake;
  391. }
  392. // The ISR scheduler
  393. static void isr();
  394. // The stepper pulse ISR phase
  395. static void pulse_phase_isr();
  396. // The stepper block processing ISR phase
  397. static uint32_t block_phase_isr();
  398. #if ENABLED(LIN_ADVANCE)
  399. // The Linear advance ISR phase
  400. static uint32_t advance_isr();
  401. FORCE_INLINE static void initiateLA() { nextAdvanceISR = 0; }
  402. #endif
  403. #if ENABLED(INTEGRATED_BABYSTEPPING)
  404. // The Babystepping ISR phase
  405. static uint32_t babystepping_isr();
  406. FORCE_INLINE static void initiateBabystepping() {
  407. if (nextBabystepISR == BABYSTEP_NEVER) {
  408. nextBabystepISR = 0;
  409. wake_up();
  410. }
  411. }
  412. #endif
  413. // Check if the given block is busy or not - Must not be called from ISR contexts
  414. static bool is_block_busy(const block_t * const block);
  415. // Get the position of a stepper, in steps
  416. static int32_t position(const AxisEnum axis);
  417. // Set the current position in steps
  418. static void set_position(const xyze_long_t &spos);
  419. static void set_axis_position(const AxisEnum a, const int32_t &v);
  420. // Report the positions of the steppers, in steps
  421. static void report_a_position(const xyz_long_t &pos);
  422. static void report_positions();
  423. // Discard current block and free any resources
  424. FORCE_INLINE static void discard_current_block() {
  425. #if ENABLED(DIRECT_STEPPING)
  426. if (current_block->is_page()) page_manager.free_page(current_block->page_idx);
  427. #endif
  428. current_block = nullptr;
  429. axis_did_move = 0;
  430. planner.release_current_block();
  431. }
  432. // Quickly stop all steppers
  433. FORCE_INLINE static void quick_stop() { abort_current_block = true; }
  434. // The direction of a single motor
  435. FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
  436. // The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
  437. FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
  438. // Handle a triggered endstop
  439. static void endstop_triggered(const AxisEnum axis);
  440. // Triggered position of an axis in steps
  441. static int32_t triggered_position(const AxisEnum axis);
  442. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  443. static void set_digipot_value_spi(const int16_t address, const int16_t value);
  444. static void set_digipot_current(const uint8_t driver, const int16_t current);
  445. #endif
  446. #if HAS_MICROSTEPS
  447. static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3);
  448. static void microstep_mode(const uint8_t driver, const uint8_t stepping);
  449. static void microstep_readings();
  450. #endif
  451. #if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  452. FORCE_INLINE static void set_separate_multi_axis(const bool state) { separate_multi_axis = state; }
  453. #endif
  454. #if ENABLED(X_DUAL_ENDSTOPS)
  455. FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; }
  456. FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; }
  457. #endif
  458. #if ENABLED(Y_DUAL_ENDSTOPS)
  459. FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; }
  460. FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; }
  461. #endif
  462. #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  463. FORCE_INLINE static void set_z1_lock(const bool state) { locked_Z_motor = state; }
  464. FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; }
  465. #if NUM_Z_STEPPERS >= 3
  466. FORCE_INLINE static void set_z3_lock(const bool state) { locked_Z3_motor = state; }
  467. #if NUM_Z_STEPPERS >= 4
  468. FORCE_INLINE static void set_z4_lock(const bool state) { locked_Z4_motor = state; }
  469. #endif
  470. #endif
  471. static void set_all_z_lock(const bool lock, const int8_t except=-1) {
  472. set_z1_lock(lock ^ (except == 0));
  473. set_z2_lock(lock ^ (except == 1));
  474. #if NUM_Z_STEPPERS >= 3
  475. set_z3_lock(lock ^ (except == 2));
  476. #if NUM_Z_STEPPERS >= 4
  477. set_z4_lock(lock ^ (except == 3));
  478. #endif
  479. #endif
  480. }
  481. #endif
  482. #if ENABLED(BABYSTEPPING)
  483. static void do_babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention
  484. #endif
  485. #if HAS_MOTOR_CURRENT_PWM
  486. static void refresh_motor_power();
  487. #endif
  488. static stepper_flags_t axis_enabled; // Axis stepper(s) ENABLED states
  489. static bool axis_is_enabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
  490. return TEST(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
  491. }
  492. static void mark_axis_enabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
  493. SBI(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
  494. }
  495. static void mark_axis_disabled(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
  496. CBI(axis_enabled.bits, INDEX_OF_AXIS(axis, eindex));
  497. }
  498. static bool can_axis_disable(const AxisEnum axis E_OPTARG(const uint8_t eindex=0)) {
  499. return !any_enable_overlap() || !(axis_enabled.bits & enable_overlap[INDEX_OF_AXIS(axis, eindex)]);
  500. }
  501. static void enable_axis(const AxisEnum axis);
  502. static bool disable_axis(const AxisEnum axis);
  503. #if HAS_EXTRUDERS
  504. static void enable_extruder(E_TERN_(const uint8_t eindex=0));
  505. static bool disable_extruder(E_TERN_(const uint8_t eindex=0));
  506. static void enable_e_steppers();
  507. static void disable_e_steppers();
  508. #else
  509. static void enable_extruder() {}
  510. static bool disable_extruder() { return true; }
  511. static void enable_e_steppers() {}
  512. static void disable_e_steppers() {}
  513. #endif
  514. #define ENABLE_EXTRUDER(N) enable_extruder(E_TERN_(N))
  515. #define DISABLE_EXTRUDER(N) disable_extruder(E_TERN_(N))
  516. #define AXIS_IS_ENABLED(N,V...) axis_is_enabled(N E_OPTARG(#V))
  517. static void enable_all_steppers();
  518. static void disable_all_steppers();
  519. // Update direction states for all steppers
  520. static void set_directions();
  521. // Set direction bits and update all stepper DIR states
  522. static void set_directions(const axis_bits_t bits) {
  523. last_direction_bits = bits;
  524. set_directions();
  525. }
  526. private:
  527. // Set the current position in steps
  528. static void _set_position(const abce_long_t &spos);
  529. FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t *loops) {
  530. uint32_t timer;
  531. // Scale the frequency, as requested by the caller
  532. step_rate <<= oversampling_factor;
  533. uint8_t multistep = 1;
  534. #if DISABLED(DISABLE_MULTI_STEPPING)
  535. // The stepping frequency limits for each multistepping rate
  536. static const uint32_t limit[] PROGMEM = {
  537. ( MAX_STEP_ISR_FREQUENCY_1X ),
  538. ( MAX_STEP_ISR_FREQUENCY_2X >> 1),
  539. ( MAX_STEP_ISR_FREQUENCY_4X >> 2),
  540. ( MAX_STEP_ISR_FREQUENCY_8X >> 3),
  541. ( MAX_STEP_ISR_FREQUENCY_16X >> 4),
  542. ( MAX_STEP_ISR_FREQUENCY_32X >> 5),
  543. ( MAX_STEP_ISR_FREQUENCY_64X >> 6),
  544. (MAX_STEP_ISR_FREQUENCY_128X >> 7)
  545. };
  546. // Select the proper multistepping
  547. uint8_t idx = 0;
  548. while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {
  549. step_rate >>= 1;
  550. multistep <<= 1;
  551. ++idx;
  552. };
  553. #else
  554. NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
  555. #endif
  556. *loops = multistep;
  557. #ifdef CPU_32_BIT
  558. // In case of high-performance processor, it is able to calculate in real-time
  559. timer = uint32_t(STEPPER_TIMER_RATE) / step_rate;
  560. #else
  561. constexpr uint32_t min_step_rate = (F_CPU) / 500000U;
  562. NOLESS(step_rate, min_step_rate);
  563. step_rate -= min_step_rate; // Correct for minimal speed
  564. if (step_rate >= (8 * 256)) { // higher step rate
  565. const uint8_t tmp_step_rate = (step_rate & 0x00FF);
  566. const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0],
  567. gain = (uint16_t)pgm_read_word(table_address + 2);
  568. timer = MultiU16X8toH16(tmp_step_rate, gain);
  569. timer = (uint16_t)pgm_read_word(table_address) - timer;
  570. }
  571. else { // lower step rates
  572. uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0];
  573. table_address += ((step_rate) >> 1) & 0xFFFC;
  574. timer = (uint16_t)pgm_read_word(table_address)
  575. - (((uint16_t)pgm_read_word(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3);
  576. }
  577. // (there is no need to limit the timer value here. All limits have been
  578. // applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
  579. #endif
  580. return timer;
  581. }
  582. #if ENABLED(S_CURVE_ACCELERATION)
  583. static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
  584. static int32_t _eval_bezier_curve(const uint32_t curr_step);
  585. #endif
  586. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  587. static void digipot_init();
  588. #endif
  589. #if HAS_MICROSTEPS
  590. static void microstep_init();
  591. #endif
  592. };
  593. extern Stepper stepper;