My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #include "BlinkM.h"
  38. #include "Wire.h"
  39. #if NUM_SERVOS > 0
  40. #include "Servo.h"
  41. #endif
  42. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  43. #include <SPI.h>
  44. #endif
  45. #define VERSION_STRING "1.0.0"
  46. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  47. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  48. //Implemented Codes
  49. //-------------------
  50. // G0 -> G1
  51. // G1 - Coordinated Movement X Y Z E
  52. // G2 - CW ARC
  53. // G3 - CCW ARC
  54. // G4 - Dwell S<seconds> or P<milliseconds>
  55. // G10 - retract filament according to settings of M207
  56. // G11 - retract recover filament according to settings of M208
  57. // G28 - Home all Axis
  58. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  59. // G30 - Single Z Probe, probes bed at current XY location.
  60. // G90 - Use Absolute Coordinates
  61. // G91 - Use Relative Coordinates
  62. // G92 - Set current position to cordinates given
  63. // M Codes
  64. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  65. // M1 - Same as M0
  66. // M17 - Enable/Power all stepper motors
  67. // M18 - Disable all stepper motors; same as M84
  68. // M20 - List SD card
  69. // M21 - Init SD card
  70. // M22 - Release SD card
  71. // M23 - Select SD file (M23 filename.g)
  72. // M24 - Start/resume SD print
  73. // M25 - Pause SD print
  74. // M26 - Set SD position in bytes (M26 S12345)
  75. // M27 - Report SD print status
  76. // M28 - Start SD write (M28 filename.g)
  77. // M29 - Stop SD write
  78. // M30 - Delete file from SD (M30 filename.g)
  79. // M31 - Output time since last M109 or SD card start to serial
  80. // M32 - Select file and start SD print (Can be used when printing from SD card)
  81. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  82. // M80 - Turn on Power Supply
  83. // M81 - Turn off Power Supply
  84. // M82 - Set E codes absolute (default)
  85. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  86. // M84 - Disable steppers until next move,
  87. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  88. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  89. // M92 - Set axis_steps_per_unit - same syntax as G92
  90. // M104 - Set extruder target temp
  91. // M105 - Read current temp
  92. // M106 - Fan on
  93. // M107 - Fan off
  94. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  95. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  96. // M114 - Output current position to serial port
  97. // M115 - Capabilities string
  98. // M117 - display message
  99. // M119 - Output Endstop status to serial port
  100. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  101. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  102. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  103. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  104. // M140 - Set bed target temp
  105. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  106. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  107. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  108. // M200 - Set filament diameter
  109. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  110. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  111. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  112. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  113. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  114. // M206 - set additional homeing offset
  115. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  116. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  117. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  118. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  119. // M220 S<factor in percent>- set speed factor override percentage
  120. // M221 S<factor in percent>- set extrude factor override percentage
  121. // M240 - Trigger a camera to take a photograph
  122. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  123. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  124. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  125. // M301 - Set PID parameters P I and D
  126. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  127. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  128. // M304 - Set bed PID parameters P I and D
  129. // M400 - Finish all moves
  130. // M401 - Lower z-probe if present
  131. // M402 - Raise z-probe if present
  132. // M500 - stores paramters in EEPROM
  133. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  134. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  135. // M503 - print the current settings (from memory not from eeprom)
  136. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  137. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  138. // M666 - set delta endstop adjustemnt
  139. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  140. // M907 - Set digital trimpot motor current using axis codes.
  141. // M908 - Control digital trimpot directly.
  142. // M350 - Set microstepping mode.
  143. // M351 - Toggle MS1 MS2 pins directly.
  144. // M928 - Start SD logging (M928 filename.g) - ended by M29
  145. // M999 - Restart after being stopped by error
  146. //Stepper Movement Variables
  147. //===========================================================================
  148. //=============================imported variables============================
  149. //===========================================================================
  150. //===========================================================================
  151. //=============================public variables=============================
  152. //===========================================================================
  153. #ifdef SDSUPPORT
  154. CardReader card;
  155. #endif
  156. float homing_feedrate[] = HOMING_FEEDRATE;
  157. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  158. int feedmultiply=100; //100->1 200->2
  159. int saved_feedmultiply;
  160. int extrudemultiply=100; //100->1 200->2
  161. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  162. float add_homeing[3]={0,0,0};
  163. #ifdef DELTA
  164. float endstop_adj[3]={0,0,0};
  165. #endif
  166. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  167. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  168. // Extruder offset
  169. #if EXTRUDERS > 1
  170. #ifndef DUAL_X_CARRIAGE
  171. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  172. #else
  173. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  174. #endif
  175. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  176. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  177. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  178. #endif
  179. };
  180. #endif
  181. uint8_t active_extruder = 0;
  182. int fanSpeed=0;
  183. #ifdef SERVO_ENDSTOPS
  184. int servo_endstops[] = SERVO_ENDSTOPS;
  185. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  186. #endif
  187. #ifdef BARICUDA
  188. int ValvePressure=0;
  189. int EtoPPressure=0;
  190. #endif
  191. #ifdef FWRETRACT
  192. bool autoretract_enabled=true;
  193. bool retracted=false;
  194. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  195. float retract_recover_length=0, retract_recover_feedrate=8*60;
  196. #endif
  197. #ifdef ULTIPANEL
  198. bool powersupply = true;
  199. #endif
  200. #ifdef DELTA
  201. float delta[3] = {0.0, 0.0, 0.0};
  202. #endif
  203. //===========================================================================
  204. //=============================private variables=============================
  205. //===========================================================================
  206. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  207. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  208. static float offset[3] = {0.0, 0.0, 0.0};
  209. static bool home_all_axis = true;
  210. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  211. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  212. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  213. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  214. static bool fromsd[BUFSIZE];
  215. static int bufindr = 0;
  216. static int bufindw = 0;
  217. static int buflen = 0;
  218. //static int i = 0;
  219. static char serial_char;
  220. static int serial_count = 0;
  221. static boolean comment_mode = false;
  222. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  223. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  224. //static float tt = 0;
  225. //static float bt = 0;
  226. //Inactivity shutdown variables
  227. static unsigned long previous_millis_cmd = 0;
  228. static unsigned long max_inactive_time = 0;
  229. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  230. unsigned long starttime=0;
  231. unsigned long stoptime=0;
  232. static uint8_t tmp_extruder;
  233. bool Stopped=false;
  234. #if NUM_SERVOS > 0
  235. Servo servos[NUM_SERVOS];
  236. #endif
  237. bool CooldownNoWait = true;
  238. bool target_direction;
  239. //===========================================================================
  240. //=============================ROUTINES=============================
  241. //===========================================================================
  242. void get_arc_coordinates();
  243. bool setTargetedHotend(int code);
  244. void serial_echopair_P(const char *s_P, float v)
  245. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  246. void serial_echopair_P(const char *s_P, double v)
  247. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  248. void serial_echopair_P(const char *s_P, unsigned long v)
  249. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  250. extern "C"{
  251. extern unsigned int __bss_end;
  252. extern unsigned int __heap_start;
  253. extern void *__brkval;
  254. int freeMemory() {
  255. int free_memory;
  256. if((int)__brkval == 0)
  257. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  258. else
  259. free_memory = ((int)&free_memory) - ((int)__brkval);
  260. return free_memory;
  261. }
  262. }
  263. //adds an command to the main command buffer
  264. //thats really done in a non-safe way.
  265. //needs overworking someday
  266. void enquecommand(const char *cmd)
  267. {
  268. if(buflen < BUFSIZE)
  269. {
  270. //this is dangerous if a mixing of serial and this happsens
  271. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  272. SERIAL_ECHO_START;
  273. SERIAL_ECHOPGM("enqueing \"");
  274. SERIAL_ECHO(cmdbuffer[bufindw]);
  275. SERIAL_ECHOLNPGM("\"");
  276. bufindw= (bufindw + 1)%BUFSIZE;
  277. buflen += 1;
  278. }
  279. }
  280. void enquecommand_P(const char *cmd)
  281. {
  282. if(buflen < BUFSIZE)
  283. {
  284. //this is dangerous if a mixing of serial and this happsens
  285. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  286. SERIAL_ECHO_START;
  287. SERIAL_ECHOPGM("enqueing \"");
  288. SERIAL_ECHO(cmdbuffer[bufindw]);
  289. SERIAL_ECHOLNPGM("\"");
  290. bufindw= (bufindw + 1)%BUFSIZE;
  291. buflen += 1;
  292. }
  293. }
  294. void setup_killpin()
  295. {
  296. #if defined(KILL_PIN) && KILL_PIN > -1
  297. pinMode(KILL_PIN,INPUT);
  298. WRITE(KILL_PIN,HIGH);
  299. #endif
  300. }
  301. void setup_photpin()
  302. {
  303. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  304. SET_OUTPUT(PHOTOGRAPH_PIN);
  305. WRITE(PHOTOGRAPH_PIN, LOW);
  306. #endif
  307. }
  308. void setup_powerhold()
  309. {
  310. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  311. SET_OUTPUT(SUICIDE_PIN);
  312. WRITE(SUICIDE_PIN, HIGH);
  313. #endif
  314. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  315. SET_OUTPUT(PS_ON_PIN);
  316. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  317. #endif
  318. }
  319. void suicide()
  320. {
  321. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  322. SET_OUTPUT(SUICIDE_PIN);
  323. WRITE(SUICIDE_PIN, LOW);
  324. #endif
  325. }
  326. void servo_init()
  327. {
  328. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  329. servos[0].attach(SERVO0_PIN);
  330. #endif
  331. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  332. servos[1].attach(SERVO1_PIN);
  333. #endif
  334. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  335. servos[2].attach(SERVO2_PIN);
  336. #endif
  337. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  338. servos[3].attach(SERVO3_PIN);
  339. #endif
  340. #if (NUM_SERVOS >= 5)
  341. #error "TODO: enter initalisation code for more servos"
  342. #endif
  343. // Set position of Servo Endstops that are defined
  344. #ifdef SERVO_ENDSTOPS
  345. for(int8_t i = 0; i < 3; i++)
  346. {
  347. if(servo_endstops[i] > -1) {
  348. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  349. }
  350. }
  351. #endif
  352. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  353. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  354. servos[servo_endstops[Z_AXIS]].detach();
  355. #endif
  356. }
  357. void setup()
  358. {
  359. setup_killpin();
  360. setup_powerhold();
  361. MYSERIAL.begin(BAUDRATE);
  362. SERIAL_PROTOCOLLNPGM("start");
  363. SERIAL_ECHO_START;
  364. // Check startup - does nothing if bootloader sets MCUSR to 0
  365. byte mcu = MCUSR;
  366. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  367. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  368. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  369. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  370. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  371. MCUSR=0;
  372. SERIAL_ECHOPGM(MSG_MARLIN);
  373. SERIAL_ECHOLNPGM(VERSION_STRING);
  374. #ifdef STRING_VERSION_CONFIG_H
  375. #ifdef STRING_CONFIG_H_AUTHOR
  376. SERIAL_ECHO_START;
  377. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  378. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  379. SERIAL_ECHOPGM(MSG_AUTHOR);
  380. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  381. SERIAL_ECHOPGM("Compiled: ");
  382. SERIAL_ECHOLNPGM(__DATE__);
  383. #endif
  384. #endif
  385. SERIAL_ECHO_START;
  386. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  387. SERIAL_ECHO(freeMemory());
  388. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  389. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  390. for(int8_t i = 0; i < BUFSIZE; i++)
  391. {
  392. fromsd[i] = false;
  393. }
  394. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  395. Config_RetrieveSettings();
  396. tp_init(); // Initialize temperature loop
  397. plan_init(); // Initialize planner;
  398. watchdog_init();
  399. st_init(); // Initialize stepper, this enables interrupts!
  400. setup_photpin();
  401. servo_init();
  402. lcd_init();
  403. _delay_ms(1000); // wait 1sec to display the splash screen
  404. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  405. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  406. #endif
  407. }
  408. void loop()
  409. {
  410. if(buflen < (BUFSIZE-1))
  411. get_command();
  412. #ifdef SDSUPPORT
  413. card.checkautostart(false);
  414. #endif
  415. if(buflen)
  416. {
  417. #ifdef SDSUPPORT
  418. if(card.saving)
  419. {
  420. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  421. {
  422. card.write_command(cmdbuffer[bufindr]);
  423. if(card.logging)
  424. {
  425. process_commands();
  426. }
  427. else
  428. {
  429. SERIAL_PROTOCOLLNPGM(MSG_OK);
  430. }
  431. }
  432. else
  433. {
  434. card.closefile();
  435. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  436. }
  437. }
  438. else
  439. {
  440. process_commands();
  441. }
  442. #else
  443. process_commands();
  444. #endif //SDSUPPORT
  445. buflen = (buflen-1);
  446. bufindr = (bufindr + 1)%BUFSIZE;
  447. }
  448. //check heater every n milliseconds
  449. manage_heater();
  450. manage_inactivity();
  451. checkHitEndstops();
  452. lcd_update();
  453. }
  454. void get_command()
  455. {
  456. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  457. serial_char = MYSERIAL.read();
  458. if(serial_char == '\n' ||
  459. serial_char == '\r' ||
  460. (serial_char == ':' && comment_mode == false) ||
  461. serial_count >= (MAX_CMD_SIZE - 1) )
  462. {
  463. if(!serial_count) { //if empty line
  464. comment_mode = false; //for new command
  465. return;
  466. }
  467. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  468. if(!comment_mode){
  469. comment_mode = false; //for new command
  470. fromsd[bufindw] = false;
  471. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  472. {
  473. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  474. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  475. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  476. SERIAL_ERROR_START;
  477. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  478. SERIAL_ERRORLN(gcode_LastN);
  479. //Serial.println(gcode_N);
  480. FlushSerialRequestResend();
  481. serial_count = 0;
  482. return;
  483. }
  484. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  485. {
  486. byte checksum = 0;
  487. byte count = 0;
  488. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  489. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  490. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  491. SERIAL_ERROR_START;
  492. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  493. SERIAL_ERRORLN(gcode_LastN);
  494. FlushSerialRequestResend();
  495. serial_count = 0;
  496. return;
  497. }
  498. //if no errors, continue parsing
  499. }
  500. else
  501. {
  502. SERIAL_ERROR_START;
  503. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  504. SERIAL_ERRORLN(gcode_LastN);
  505. FlushSerialRequestResend();
  506. serial_count = 0;
  507. return;
  508. }
  509. gcode_LastN = gcode_N;
  510. //if no errors, continue parsing
  511. }
  512. else // if we don't receive 'N' but still see '*'
  513. {
  514. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  515. {
  516. SERIAL_ERROR_START;
  517. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  518. SERIAL_ERRORLN(gcode_LastN);
  519. serial_count = 0;
  520. return;
  521. }
  522. }
  523. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  524. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  525. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  526. case 0:
  527. case 1:
  528. case 2:
  529. case 3:
  530. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  531. #ifdef SDSUPPORT
  532. if(card.saving)
  533. break;
  534. #endif //SDSUPPORT
  535. SERIAL_PROTOCOLLNPGM(MSG_OK);
  536. }
  537. else {
  538. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  539. LCD_MESSAGEPGM(MSG_STOPPED);
  540. }
  541. break;
  542. default:
  543. break;
  544. }
  545. }
  546. bufindw = (bufindw + 1)%BUFSIZE;
  547. buflen += 1;
  548. }
  549. serial_count = 0; //clear buffer
  550. }
  551. else
  552. {
  553. if(serial_char == ';') comment_mode = true;
  554. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  555. }
  556. }
  557. #ifdef SDSUPPORT
  558. if(!card.sdprinting || serial_count!=0){
  559. return;
  560. }
  561. while( !card.eof() && buflen < BUFSIZE) {
  562. int16_t n=card.get();
  563. serial_char = (char)n;
  564. if(serial_char == '\n' ||
  565. serial_char == '\r' ||
  566. (serial_char == ':' && comment_mode == false) ||
  567. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  568. {
  569. if(card.eof()){
  570. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  571. stoptime=millis();
  572. char time[30];
  573. unsigned long t=(stoptime-starttime)/1000;
  574. int hours, minutes;
  575. minutes=(t/60)%60;
  576. hours=t/60/60;
  577. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  578. SERIAL_ECHO_START;
  579. SERIAL_ECHOLN(time);
  580. lcd_setstatus(time);
  581. card.printingHasFinished();
  582. card.checkautostart(true);
  583. }
  584. if(!serial_count)
  585. {
  586. comment_mode = false; //for new command
  587. return; //if empty line
  588. }
  589. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  590. // if(!comment_mode){
  591. fromsd[bufindw] = true;
  592. buflen += 1;
  593. bufindw = (bufindw + 1)%BUFSIZE;
  594. // }
  595. comment_mode = false; //for new command
  596. serial_count = 0; //clear buffer
  597. }
  598. else
  599. {
  600. if(serial_char == ';') comment_mode = true;
  601. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  602. }
  603. }
  604. #endif //SDSUPPORT
  605. }
  606. float code_value()
  607. {
  608. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  609. }
  610. long code_value_long()
  611. {
  612. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  613. }
  614. bool code_seen(char code)
  615. {
  616. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  617. return (strchr_pointer != NULL); //Return True if a character was found
  618. }
  619. #define DEFINE_PGM_READ_ANY(type, reader) \
  620. static inline type pgm_read_any(const type *p) \
  621. { return pgm_read_##reader##_near(p); }
  622. DEFINE_PGM_READ_ANY(float, float);
  623. DEFINE_PGM_READ_ANY(signed char, byte);
  624. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  625. static const PROGMEM type array##_P[3] = \
  626. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  627. static inline type array(int axis) \
  628. { return pgm_read_any(&array##_P[axis]); }
  629. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  630. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  631. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  632. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  633. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  634. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  635. #ifdef DUAL_X_CARRIAGE
  636. #if EXTRUDERS == 1 || defined(COREXY) \
  637. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  638. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  639. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  640. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  641. #endif
  642. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  643. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  644. #endif
  645. #define DXC_FULL_CONTROL_MODE 0
  646. #define DXC_AUTO_PARK_MODE 1
  647. #define DXC_DUPLICATION_MODE 2
  648. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  649. static float x_home_pos(int extruder) {
  650. if (extruder == 0)
  651. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  652. else
  653. // In dual carriage mode the extruder offset provides an override of the
  654. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  655. // This allow soft recalibration of the second extruder offset position without firmware reflash
  656. // (through the M218 command).
  657. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  658. }
  659. static int x_home_dir(int extruder) {
  660. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  661. }
  662. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  663. static bool active_extruder_parked = false; // used in mode 1 & 2
  664. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  665. static unsigned long delayed_move_time = 0; // used in mode 1
  666. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  667. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  668. bool extruder_duplication_enabled = false; // used in mode 2
  669. #endif //DUAL_X_CARRIAGE
  670. static void axis_is_at_home(int axis) {
  671. #ifdef DUAL_X_CARRIAGE
  672. if (axis == X_AXIS) {
  673. if (active_extruder != 0) {
  674. current_position[X_AXIS] = x_home_pos(active_extruder);
  675. min_pos[X_AXIS] = X2_MIN_POS;
  676. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  677. return;
  678. }
  679. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  680. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  681. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  682. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  683. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  684. return;
  685. }
  686. }
  687. #endif
  688. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  689. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  690. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  691. }
  692. #ifdef ENABLE_AUTO_BED_LEVELING
  693. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  694. plan_bed_level_matrix.set_to_identity();
  695. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  696. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  697. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  698. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  699. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  700. vector_3 planeNormal = vector_3::cross(yPositive, xPositive).get_normal();
  701. //planeNormal.debug("planeNormal");
  702. //yPositive.debug("yPositive");
  703. matrix_3x3 bedLevel = matrix_3x3::create_look_at(planeNormal, yPositive);
  704. //bedLevel.debug("bedLevel");
  705. //plan_bed_level_matrix.debug("bed level before");
  706. //vector_3 uncorrected_position = plan_get_position_mm();
  707. //uncorrected_position.debug("position before");
  708. // and set our bed level equation to do the right thing
  709. plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  710. //plan_bed_level_matrix.debug("bed level after");
  711. vector_3 corrected_position = plan_get_position();
  712. //corrected_position.debug("position after");
  713. current_position[X_AXIS] = corrected_position.x;
  714. current_position[Y_AXIS] = corrected_position.y;
  715. current_position[Z_AXIS] = corrected_position.z;
  716. // but the bed at 0 so we don't go below it.
  717. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  718. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  719. }
  720. static void run_z_probe() {
  721. plan_bed_level_matrix.set_to_identity();
  722. feedrate = homing_feedrate[Z_AXIS];
  723. // move down until you find the bed
  724. float zPosition = -10;
  725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  726. st_synchronize();
  727. // we have to let the planner know where we are right now as it is not where we said to go.
  728. zPosition = st_get_position_mm(Z_AXIS);
  729. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  730. // move up the retract distance
  731. zPosition += home_retract_mm(Z_AXIS);
  732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  733. st_synchronize();
  734. // move back down slowly to find bed
  735. feedrate = homing_feedrate[Z_AXIS]/4;
  736. zPosition -= home_retract_mm(Z_AXIS) * 2;
  737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  738. st_synchronize();
  739. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  740. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  742. }
  743. static void do_blocking_move_to(float x, float y, float z) {
  744. float oldFeedRate = feedrate;
  745. feedrate = XY_TRAVEL_SPEED;
  746. current_position[X_AXIS] = x;
  747. current_position[Y_AXIS] = y;
  748. current_position[Z_AXIS] = z;
  749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  750. st_synchronize();
  751. feedrate = oldFeedRate;
  752. }
  753. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  754. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  755. }
  756. static void setup_for_endstop_move() {
  757. saved_feedrate = feedrate;
  758. saved_feedmultiply = feedmultiply;
  759. feedmultiply = 100;
  760. previous_millis_cmd = millis();
  761. enable_endstops(true);
  762. }
  763. static void clean_up_after_endstop_move() {
  764. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  765. enable_endstops(false);
  766. #endif
  767. feedrate = saved_feedrate;
  768. feedmultiply = saved_feedmultiply;
  769. previous_millis_cmd = millis();
  770. }
  771. static void engage_z_probe() {
  772. // Engage Z Servo endstop if enabled
  773. #ifdef SERVO_ENDSTOPS
  774. if (servo_endstops[Z_AXIS] > -1) {
  775. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  776. servos[servo_endstops[Z_AXIS]].attach(0);
  777. #endif
  778. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  779. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  780. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  781. servos[servo_endstops[Z_AXIS]].detach();
  782. #endif
  783. }
  784. #endif
  785. }
  786. static void retract_z_probe() {
  787. // Retract Z Servo endstop if enabled
  788. #ifdef SERVO_ENDSTOPS
  789. if (servo_endstops[Z_AXIS] > -1) {
  790. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  791. servos[servo_endstops[Z_AXIS]].attach(0);
  792. #endif
  793. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  794. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  795. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  796. servos[servo_endstops[Z_AXIS]].detach();
  797. #endif
  798. }
  799. #endif
  800. }
  801. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  802. static void homeaxis(int axis) {
  803. #define HOMEAXIS_DO(LETTER) \
  804. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  805. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  806. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  807. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  808. 0) {
  809. int axis_home_dir = home_dir(axis);
  810. #ifdef DUAL_X_CARRIAGE
  811. if (axis == X_AXIS)
  812. axis_home_dir = x_home_dir(active_extruder);
  813. #endif
  814. current_position[axis] = 0;
  815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  816. // Engage Servo endstop if enabled
  817. #ifdef SERVO_ENDSTOPS
  818. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  819. if (axis==Z_AXIS) {
  820. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  821. destination[axis] = Z_RAISE_BEFORE_HOMING * axis_home_dir * (-1); // Set destination away from bed
  822. feedrate = max_feedrate[axis];
  823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  824. st_synchronize();
  825. #endif
  826. engage_z_probe();
  827. }
  828. else
  829. #endif
  830. if (servo_endstops[axis] > -1) {
  831. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  832. }
  833. #endif
  834. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  835. feedrate = homing_feedrate[axis];
  836. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  837. st_synchronize();
  838. current_position[axis] = 0;
  839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  840. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  841. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  842. st_synchronize();
  843. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  844. #ifdef DELTA
  845. feedrate = homing_feedrate[axis]/10;
  846. #else
  847. feedrate = homing_feedrate[axis]/2 ;
  848. #endif
  849. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  850. st_synchronize();
  851. #ifdef DELTA
  852. // retrace by the amount specified in endstop_adj
  853. if (endstop_adj[axis] * axis_home_dir < 0) {
  854. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  855. destination[axis] = endstop_adj[axis];
  856. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  857. st_synchronize();
  858. }
  859. #endif
  860. axis_is_at_home(axis);
  861. destination[axis] = current_position[axis];
  862. feedrate = 0.0;
  863. endstops_hit_on_purpose();
  864. // Retract Servo endstop if enabled
  865. #ifdef SERVO_ENDSTOPS
  866. if (servo_endstops[axis] > -1) {
  867. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  868. }
  869. #endif
  870. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  871. if (axis==Z_AXIS) retract_z_probe();
  872. #endif
  873. }
  874. }
  875. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  876. void process_commands()
  877. {
  878. unsigned long codenum; //throw away variable
  879. char *starpos = NULL;
  880. #ifdef ENABLE_AUTO_BED_LEVELING
  881. float x_tmp, y_tmp, z_tmp, real_z;
  882. #endif
  883. if(code_seen('G'))
  884. {
  885. switch((int)code_value())
  886. {
  887. case 0: // G0 -> G1
  888. case 1: // G1
  889. if(Stopped == false) {
  890. get_coordinates(); // For X Y Z E F
  891. prepare_move();
  892. //ClearToSend();
  893. return;
  894. }
  895. //break;
  896. case 2: // G2 - CW ARC
  897. if(Stopped == false) {
  898. get_arc_coordinates();
  899. prepare_arc_move(true);
  900. return;
  901. }
  902. case 3: // G3 - CCW ARC
  903. if(Stopped == false) {
  904. get_arc_coordinates();
  905. prepare_arc_move(false);
  906. return;
  907. }
  908. case 4: // G4 dwell
  909. LCD_MESSAGEPGM(MSG_DWELL);
  910. codenum = 0;
  911. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  912. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  913. st_synchronize();
  914. codenum += millis(); // keep track of when we started waiting
  915. previous_millis_cmd = millis();
  916. while(millis() < codenum ){
  917. manage_heater();
  918. manage_inactivity();
  919. lcd_update();
  920. }
  921. break;
  922. #ifdef FWRETRACT
  923. case 10: // G10 retract
  924. if(!retracted)
  925. {
  926. destination[X_AXIS]=current_position[X_AXIS];
  927. destination[Y_AXIS]=current_position[Y_AXIS];
  928. destination[Z_AXIS]=current_position[Z_AXIS];
  929. current_position[Z_AXIS]+=-retract_zlift;
  930. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  931. feedrate=retract_feedrate;
  932. retracted=true;
  933. prepare_move();
  934. }
  935. break;
  936. case 11: // G10 retract_recover
  937. if(!retracted)
  938. {
  939. destination[X_AXIS]=current_position[X_AXIS];
  940. destination[Y_AXIS]=current_position[Y_AXIS];
  941. destination[Z_AXIS]=current_position[Z_AXIS];
  942. current_position[Z_AXIS]+=retract_zlift;
  943. current_position[E_AXIS]+=-retract_recover_length;
  944. feedrate=retract_recover_feedrate;
  945. retracted=false;
  946. prepare_move();
  947. }
  948. break;
  949. #endif //FWRETRACT
  950. case 28: //G28 Home all Axis one at a time
  951. #ifdef ENABLE_AUTO_BED_LEVELING
  952. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  953. #endif //ENABLE_AUTO_BED_LEVELING
  954. saved_feedrate = feedrate;
  955. saved_feedmultiply = feedmultiply;
  956. feedmultiply = 100;
  957. previous_millis_cmd = millis();
  958. enable_endstops(true);
  959. for(int8_t i=0; i < NUM_AXIS; i++) {
  960. destination[i] = current_position[i];
  961. }
  962. feedrate = 0.0;
  963. #ifdef DELTA
  964. // A delta can only safely home all axis at the same time
  965. // all axis have to home at the same time
  966. // Move all carriages up together until the first endstop is hit.
  967. current_position[X_AXIS] = 0;
  968. current_position[Y_AXIS] = 0;
  969. current_position[Z_AXIS] = 0;
  970. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  971. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  972. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  973. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  974. feedrate = 1.732 * homing_feedrate[X_AXIS];
  975. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  976. st_synchronize();
  977. endstops_hit_on_purpose();
  978. current_position[X_AXIS] = destination[X_AXIS];
  979. current_position[Y_AXIS] = destination[Y_AXIS];
  980. current_position[Z_AXIS] = destination[Z_AXIS];
  981. // take care of back off and rehome now we are all at the top
  982. HOMEAXIS(X);
  983. HOMEAXIS(Y);
  984. HOMEAXIS(Z);
  985. calculate_delta(current_position);
  986. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  987. #else // NOT DELTA
  988. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  989. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  990. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  991. HOMEAXIS(Z);
  992. }
  993. #endif
  994. #ifdef QUICK_HOME
  995. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  996. {
  997. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  998. #ifndef DUAL_X_CARRIAGE
  999. int x_axis_home_dir = home_dir(X_AXIS);
  1000. #else
  1001. int x_axis_home_dir = x_home_dir(active_extruder);
  1002. extruder_duplication_enabled = false;
  1003. #endif
  1004. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1005. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1006. feedrate = homing_feedrate[X_AXIS];
  1007. if(homing_feedrate[Y_AXIS]<feedrate)
  1008. feedrate =homing_feedrate[Y_AXIS];
  1009. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1010. st_synchronize();
  1011. axis_is_at_home(X_AXIS);
  1012. axis_is_at_home(Y_AXIS);
  1013. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1014. destination[X_AXIS] = current_position[X_AXIS];
  1015. destination[Y_AXIS] = current_position[Y_AXIS];
  1016. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1017. feedrate = 0.0;
  1018. st_synchronize();
  1019. endstops_hit_on_purpose();
  1020. current_position[X_AXIS] = destination[X_AXIS];
  1021. current_position[Y_AXIS] = destination[Y_AXIS];
  1022. current_position[Z_AXIS] = destination[Z_AXIS];
  1023. }
  1024. #endif
  1025. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1026. {
  1027. #ifdef DUAL_X_CARRIAGE
  1028. int tmp_extruder = active_extruder;
  1029. extruder_duplication_enabled = false;
  1030. active_extruder = !active_extruder;
  1031. HOMEAXIS(X);
  1032. inactive_extruder_x_pos = current_position[X_AXIS];
  1033. active_extruder = tmp_extruder;
  1034. HOMEAXIS(X);
  1035. // reset state used by the different modes
  1036. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1037. delayed_move_time = 0;
  1038. active_extruder_parked = true;
  1039. #else
  1040. HOMEAXIS(X);
  1041. #endif
  1042. }
  1043. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1044. HOMEAXIS(Y);
  1045. }
  1046. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1047. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1048. HOMEAXIS(Z);
  1049. }
  1050. #endif
  1051. if(code_seen(axis_codes[X_AXIS]))
  1052. {
  1053. if(code_value_long() != 0) {
  1054. current_position[X_AXIS]=code_value()+add_homeing[0];
  1055. }
  1056. }
  1057. if(code_seen(axis_codes[Y_AXIS])) {
  1058. if(code_value_long() != 0) {
  1059. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1060. }
  1061. }
  1062. if(code_seen(axis_codes[Z_AXIS])) {
  1063. if(code_value_long() != 0) {
  1064. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1065. }
  1066. }
  1067. #ifdef ENABLE_AUTO_BED_LEVELING
  1068. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1069. #endif
  1070. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1071. #endif // else DELTA
  1072. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1073. enable_endstops(false);
  1074. #endif
  1075. feedrate = saved_feedrate;
  1076. feedmultiply = saved_feedmultiply;
  1077. previous_millis_cmd = millis();
  1078. endstops_hit_on_purpose();
  1079. break;
  1080. #ifdef ENABLE_AUTO_BED_LEVELING
  1081. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1082. {
  1083. #if Z_MIN_PIN == -1
  1084. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1085. #endif
  1086. st_synchronize();
  1087. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1088. //vector_3 corrected_position = plan_get_position_mm();
  1089. //corrected_position.debug("position before G29");
  1090. plan_bed_level_matrix.set_to_identity();
  1091. vector_3 uncorrected_position = plan_get_position();
  1092. //uncorrected_position.debug("position durring G29");
  1093. current_position[X_AXIS] = uncorrected_position.x;
  1094. current_position[Y_AXIS] = uncorrected_position.y;
  1095. current_position[Z_AXIS] = uncorrected_position.z;
  1096. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1097. setup_for_endstop_move();
  1098. feedrate = homing_feedrate[Z_AXIS];
  1099. // prob 1
  1100. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1101. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1102. engage_z_probe(); // Engage Z Servo endstop if available
  1103. run_z_probe();
  1104. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1105. SERIAL_PROTOCOLPGM("Bed x: ");
  1106. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1107. SERIAL_PROTOCOLPGM(" y: ");
  1108. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1109. SERIAL_PROTOCOLPGM(" z: ");
  1110. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1111. SERIAL_PROTOCOLPGM("\n");
  1112. // prob 2
  1113. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1114. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1115. run_z_probe();
  1116. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1117. SERIAL_PROTOCOLPGM("Bed x: ");
  1118. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1119. SERIAL_PROTOCOLPGM(" y: ");
  1120. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1121. SERIAL_PROTOCOLPGM(" z: ");
  1122. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1123. SERIAL_PROTOCOLPGM("\n");
  1124. // prob 3
  1125. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1126. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1127. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1128. run_z_probe();
  1129. float z_at_xRight_yFront = current_position[Z_AXIS];
  1130. SERIAL_PROTOCOLPGM("Bed x: ");
  1131. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1132. SERIAL_PROTOCOLPGM(" y: ");
  1133. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1134. SERIAL_PROTOCOLPGM(" z: ");
  1135. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1136. SERIAL_PROTOCOLPGM("\n");
  1137. clean_up_after_endstop_move();
  1138. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1139. retract_z_probe(); // Retract Z Servo endstop if available
  1140. st_synchronize();
  1141. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1142. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1143. // When the bed is uneven, this height must be corrected.
  1144. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1145. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1146. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1147. z_tmp = current_position[Z_AXIS];
  1148. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1149. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1150. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1151. }
  1152. break;
  1153. case 30: // G30 Single Z Probe
  1154. {
  1155. engage_z_probe(); // Engage Z Servo endstop if available
  1156. st_synchronize();
  1157. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1158. setup_for_endstop_move();
  1159. feedrate = homing_feedrate[Z_AXIS];
  1160. run_z_probe();
  1161. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1162. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1163. SERIAL_PROTOCOLPGM(" Y: ");
  1164. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1165. SERIAL_PROTOCOLPGM(" Z: ");
  1166. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1167. SERIAL_PROTOCOLPGM("\n");
  1168. clean_up_after_endstop_move();
  1169. retract_z_probe(); // Retract Z Servo endstop if available
  1170. }
  1171. break;
  1172. #endif // ENABLE_AUTO_BED_LEVELING
  1173. case 90: // G90
  1174. relative_mode = false;
  1175. break;
  1176. case 91: // G91
  1177. relative_mode = true;
  1178. break;
  1179. case 92: // G92
  1180. if(!code_seen(axis_codes[E_AXIS]))
  1181. st_synchronize();
  1182. for(int8_t i=0; i < NUM_AXIS; i++) {
  1183. if(code_seen(axis_codes[i])) {
  1184. if(i == E_AXIS) {
  1185. current_position[i] = code_value();
  1186. plan_set_e_position(current_position[E_AXIS]);
  1187. }
  1188. else {
  1189. current_position[i] = code_value()+add_homeing[i];
  1190. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1191. }
  1192. }
  1193. }
  1194. break;
  1195. }
  1196. }
  1197. else if(code_seen('M'))
  1198. {
  1199. switch( (int)code_value() )
  1200. {
  1201. #ifdef ULTIPANEL
  1202. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1203. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1204. {
  1205. LCD_MESSAGEPGM(MSG_USERWAIT);
  1206. codenum = 0;
  1207. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1208. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1209. st_synchronize();
  1210. previous_millis_cmd = millis();
  1211. if (codenum > 0){
  1212. codenum += millis(); // keep track of when we started waiting
  1213. while(millis() < codenum && !lcd_clicked()){
  1214. manage_heater();
  1215. manage_inactivity();
  1216. lcd_update();
  1217. }
  1218. }else{
  1219. while(!lcd_clicked()){
  1220. manage_heater();
  1221. manage_inactivity();
  1222. lcd_update();
  1223. }
  1224. }
  1225. LCD_MESSAGEPGM(MSG_RESUMING);
  1226. }
  1227. break;
  1228. #endif
  1229. case 17:
  1230. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1231. enable_x();
  1232. enable_y();
  1233. enable_z();
  1234. enable_e0();
  1235. enable_e1();
  1236. enable_e2();
  1237. break;
  1238. #ifdef SDSUPPORT
  1239. case 20: // M20 - list SD card
  1240. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1241. card.ls();
  1242. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1243. break;
  1244. case 21: // M21 - init SD card
  1245. card.initsd();
  1246. break;
  1247. case 22: //M22 - release SD card
  1248. card.release();
  1249. break;
  1250. case 23: //M23 - Select file
  1251. starpos = (strchr(strchr_pointer + 4,'*'));
  1252. if(starpos!=NULL)
  1253. *(starpos-1)='\0';
  1254. card.openFile(strchr_pointer + 4,true);
  1255. break;
  1256. case 24: //M24 - Start SD print
  1257. card.startFileprint();
  1258. starttime=millis();
  1259. break;
  1260. case 25: //M25 - Pause SD print
  1261. card.pauseSDPrint();
  1262. break;
  1263. case 26: //M26 - Set SD index
  1264. if(card.cardOK && code_seen('S')) {
  1265. card.setIndex(code_value_long());
  1266. }
  1267. break;
  1268. case 27: //M27 - Get SD status
  1269. card.getStatus();
  1270. break;
  1271. case 28: //M28 - Start SD write
  1272. starpos = (strchr(strchr_pointer + 4,'*'));
  1273. if(starpos != NULL){
  1274. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1275. strchr_pointer = strchr(npos,' ') + 1;
  1276. *(starpos-1) = '\0';
  1277. }
  1278. card.openFile(strchr_pointer+4,false);
  1279. break;
  1280. case 29: //M29 - Stop SD write
  1281. //processed in write to file routine above
  1282. //card,saving = false;
  1283. break;
  1284. case 30: //M30 <filename> Delete File
  1285. if (card.cardOK){
  1286. card.closefile();
  1287. starpos = (strchr(strchr_pointer + 4,'*'));
  1288. if(starpos != NULL){
  1289. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1290. strchr_pointer = strchr(npos,' ') + 1;
  1291. *(starpos-1) = '\0';
  1292. }
  1293. card.removeFile(strchr_pointer + 4);
  1294. }
  1295. break;
  1296. case 32: //M32 - Select file and start SD print
  1297. if(card.sdprinting) {
  1298. st_synchronize();
  1299. card.closefile();
  1300. card.sdprinting = false;
  1301. }
  1302. starpos = (strchr(strchr_pointer + 4,'*'));
  1303. if(starpos!=NULL)
  1304. *(starpos-1)='\0';
  1305. card.openFile(strchr_pointer + 4,true);
  1306. card.startFileprint();
  1307. starttime=millis();
  1308. break;
  1309. case 928: //M928 - Start SD write
  1310. starpos = (strchr(strchr_pointer + 5,'*'));
  1311. if(starpos != NULL){
  1312. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1313. strchr_pointer = strchr(npos,' ') + 1;
  1314. *(starpos-1) = '\0';
  1315. }
  1316. card.openLogFile(strchr_pointer+5);
  1317. break;
  1318. #endif //SDSUPPORT
  1319. case 31: //M31 take time since the start of the SD print or an M109 command
  1320. {
  1321. stoptime=millis();
  1322. char time[30];
  1323. unsigned long t=(stoptime-starttime)/1000;
  1324. int sec,min;
  1325. min=t/60;
  1326. sec=t%60;
  1327. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1328. SERIAL_ECHO_START;
  1329. SERIAL_ECHOLN(time);
  1330. lcd_setstatus(time);
  1331. autotempShutdown();
  1332. }
  1333. break;
  1334. case 42: //M42 -Change pin status via gcode
  1335. if (code_seen('S'))
  1336. {
  1337. int pin_status = code_value();
  1338. int pin_number = LED_PIN;
  1339. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1340. pin_number = code_value();
  1341. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1342. {
  1343. if (sensitive_pins[i] == pin_number)
  1344. {
  1345. pin_number = -1;
  1346. break;
  1347. }
  1348. }
  1349. #if defined(FAN_PIN) && FAN_PIN > -1
  1350. if (pin_number == FAN_PIN)
  1351. fanSpeed = pin_status;
  1352. #endif
  1353. if (pin_number > -1)
  1354. {
  1355. pinMode(pin_number, OUTPUT);
  1356. digitalWrite(pin_number, pin_status);
  1357. analogWrite(pin_number, pin_status);
  1358. }
  1359. }
  1360. break;
  1361. case 104: // M104
  1362. if(setTargetedHotend(104)){
  1363. break;
  1364. }
  1365. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1366. #ifdef DUAL_X_CARRIAGE
  1367. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1368. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1369. #endif
  1370. setWatch();
  1371. break;
  1372. case 140: // M140 set bed temp
  1373. if (code_seen('S')) setTargetBed(code_value());
  1374. break;
  1375. case 105 : // M105
  1376. if(setTargetedHotend(105)){
  1377. break;
  1378. }
  1379. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1380. SERIAL_PROTOCOLPGM("ok T:");
  1381. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1382. SERIAL_PROTOCOLPGM(" /");
  1383. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1384. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1385. SERIAL_PROTOCOLPGM(" B:");
  1386. SERIAL_PROTOCOL_F(degBed(),1);
  1387. SERIAL_PROTOCOLPGM(" /");
  1388. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1389. #endif //TEMP_BED_PIN
  1390. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1391. SERIAL_PROTOCOLPGM(" T");
  1392. SERIAL_PROTOCOL(cur_extruder);
  1393. SERIAL_PROTOCOLPGM(":");
  1394. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1395. SERIAL_PROTOCOLPGM(" /");
  1396. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1397. }
  1398. #else
  1399. SERIAL_ERROR_START;
  1400. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1401. #endif
  1402. SERIAL_PROTOCOLPGM(" @:");
  1403. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1404. SERIAL_PROTOCOLPGM(" B@:");
  1405. SERIAL_PROTOCOL(getHeaterPower(-1));
  1406. #ifdef SHOW_TEMP_ADC_VALUES
  1407. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1408. SERIAL_PROTOCOLPGM(" ADC B:");
  1409. SERIAL_PROTOCOL_F(degBed(),1);
  1410. SERIAL_PROTOCOLPGM("C->");
  1411. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1412. #endif
  1413. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1414. SERIAL_PROTOCOLPGM(" T");
  1415. SERIAL_PROTOCOL(cur_extruder);
  1416. SERIAL_PROTOCOLPGM(":");
  1417. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1418. SERIAL_PROTOCOLPGM("C->");
  1419. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1420. }
  1421. #endif
  1422. SERIAL_PROTOCOLLN("");
  1423. return;
  1424. break;
  1425. case 109:
  1426. {// M109 - Wait for extruder heater to reach target.
  1427. if(setTargetedHotend(109)){
  1428. break;
  1429. }
  1430. LCD_MESSAGEPGM(MSG_HEATING);
  1431. #ifdef AUTOTEMP
  1432. autotemp_enabled=false;
  1433. #endif
  1434. if (code_seen('S')) {
  1435. setTargetHotend(code_value(), tmp_extruder);
  1436. #ifdef DUAL_X_CARRIAGE
  1437. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1438. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1439. #endif
  1440. CooldownNoWait = true;
  1441. } else if (code_seen('R')) {
  1442. setTargetHotend(code_value(), tmp_extruder);
  1443. #ifdef DUAL_X_CARRIAGE
  1444. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1445. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1446. #endif
  1447. CooldownNoWait = false;
  1448. }
  1449. #ifdef AUTOTEMP
  1450. if (code_seen('S')) autotemp_min=code_value();
  1451. if (code_seen('B')) autotemp_max=code_value();
  1452. if (code_seen('F'))
  1453. {
  1454. autotemp_factor=code_value();
  1455. autotemp_enabled=true;
  1456. }
  1457. #endif
  1458. setWatch();
  1459. codenum = millis();
  1460. /* See if we are heating up or cooling down */
  1461. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1462. #ifdef TEMP_RESIDENCY_TIME
  1463. long residencyStart;
  1464. residencyStart = -1;
  1465. /* continue to loop until we have reached the target temp
  1466. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1467. while((residencyStart == -1) ||
  1468. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1469. #else
  1470. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1471. #endif //TEMP_RESIDENCY_TIME
  1472. if( (millis() - codenum) > 1000UL )
  1473. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1474. SERIAL_PROTOCOLPGM("T:");
  1475. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1476. SERIAL_PROTOCOLPGM(" E:");
  1477. SERIAL_PROTOCOL((int)tmp_extruder);
  1478. #ifdef TEMP_RESIDENCY_TIME
  1479. SERIAL_PROTOCOLPGM(" W:");
  1480. if(residencyStart > -1)
  1481. {
  1482. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1483. SERIAL_PROTOCOLLN( codenum );
  1484. }
  1485. else
  1486. {
  1487. SERIAL_PROTOCOLLN( "?" );
  1488. }
  1489. #else
  1490. SERIAL_PROTOCOLLN("");
  1491. #endif
  1492. codenum = millis();
  1493. }
  1494. manage_heater();
  1495. manage_inactivity();
  1496. lcd_update();
  1497. #ifdef TEMP_RESIDENCY_TIME
  1498. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1499. or when current temp falls outside the hysteresis after target temp was reached */
  1500. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1501. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1502. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1503. {
  1504. residencyStart = millis();
  1505. }
  1506. #endif //TEMP_RESIDENCY_TIME
  1507. }
  1508. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1509. starttime=millis();
  1510. previous_millis_cmd = millis();
  1511. }
  1512. break;
  1513. case 190: // M190 - Wait for bed heater to reach target.
  1514. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1515. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1516. if (code_seen('S')) {
  1517. setTargetBed(code_value());
  1518. CooldownNoWait = true;
  1519. } else if (code_seen('R')) {
  1520. setTargetBed(code_value());
  1521. CooldownNoWait = false;
  1522. }
  1523. codenum = millis();
  1524. target_direction = isHeatingBed(); // true if heating, false if cooling
  1525. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1526. {
  1527. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1528. {
  1529. float tt=degHotend(active_extruder);
  1530. SERIAL_PROTOCOLPGM("T:");
  1531. SERIAL_PROTOCOL(tt);
  1532. SERIAL_PROTOCOLPGM(" E:");
  1533. SERIAL_PROTOCOL((int)active_extruder);
  1534. SERIAL_PROTOCOLPGM(" B:");
  1535. SERIAL_PROTOCOL_F(degBed(),1);
  1536. SERIAL_PROTOCOLLN("");
  1537. codenum = millis();
  1538. }
  1539. manage_heater();
  1540. manage_inactivity();
  1541. lcd_update();
  1542. }
  1543. LCD_MESSAGEPGM(MSG_BED_DONE);
  1544. previous_millis_cmd = millis();
  1545. #endif
  1546. break;
  1547. #if defined(FAN_PIN) && FAN_PIN > -1
  1548. case 106: //M106 Fan On
  1549. if (code_seen('S')){
  1550. fanSpeed=constrain(code_value(),0,255);
  1551. }
  1552. else {
  1553. fanSpeed=255;
  1554. }
  1555. break;
  1556. case 107: //M107 Fan Off
  1557. fanSpeed = 0;
  1558. break;
  1559. #endif //FAN_PIN
  1560. #ifdef BARICUDA
  1561. // PWM for HEATER_1_PIN
  1562. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1563. case 126: //M126 valve open
  1564. if (code_seen('S')){
  1565. ValvePressure=constrain(code_value(),0,255);
  1566. }
  1567. else {
  1568. ValvePressure=255;
  1569. }
  1570. break;
  1571. case 127: //M127 valve closed
  1572. ValvePressure = 0;
  1573. break;
  1574. #endif //HEATER_1_PIN
  1575. // PWM for HEATER_2_PIN
  1576. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1577. case 128: //M128 valve open
  1578. if (code_seen('S')){
  1579. EtoPPressure=constrain(code_value(),0,255);
  1580. }
  1581. else {
  1582. EtoPPressure=255;
  1583. }
  1584. break;
  1585. case 129: //M129 valve closed
  1586. EtoPPressure = 0;
  1587. break;
  1588. #endif //HEATER_2_PIN
  1589. #endif
  1590. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1591. case 80: // M80 - Turn on Power Supply
  1592. SET_OUTPUT(PS_ON_PIN); //GND
  1593. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1594. #ifdef ULTIPANEL
  1595. powersupply = true;
  1596. LCD_MESSAGEPGM(WELCOME_MSG);
  1597. lcd_update();
  1598. #endif
  1599. break;
  1600. #endif
  1601. case 81: // M81 - Turn off Power Supply
  1602. disable_heater();
  1603. st_synchronize();
  1604. disable_e0();
  1605. disable_e1();
  1606. disable_e2();
  1607. finishAndDisableSteppers();
  1608. fanSpeed = 0;
  1609. delay(1000); // Wait a little before to switch off
  1610. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1611. st_synchronize();
  1612. suicide();
  1613. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1614. SET_OUTPUT(PS_ON_PIN);
  1615. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1616. #endif
  1617. #ifdef ULTIPANEL
  1618. powersupply = false;
  1619. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1620. lcd_update();
  1621. #endif
  1622. break;
  1623. case 82:
  1624. axis_relative_modes[3] = false;
  1625. break;
  1626. case 83:
  1627. axis_relative_modes[3] = true;
  1628. break;
  1629. case 18: //compatibility
  1630. case 84: // M84
  1631. if(code_seen('S')){
  1632. stepper_inactive_time = code_value() * 1000;
  1633. }
  1634. else
  1635. {
  1636. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1637. if(all_axis)
  1638. {
  1639. st_synchronize();
  1640. disable_e0();
  1641. disable_e1();
  1642. disable_e2();
  1643. finishAndDisableSteppers();
  1644. }
  1645. else
  1646. {
  1647. st_synchronize();
  1648. if(code_seen('X')) disable_x();
  1649. if(code_seen('Y')) disable_y();
  1650. if(code_seen('Z')) disable_z();
  1651. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1652. if(code_seen('E')) {
  1653. disable_e0();
  1654. disable_e1();
  1655. disable_e2();
  1656. }
  1657. #endif
  1658. }
  1659. }
  1660. break;
  1661. case 85: // M85
  1662. code_seen('S');
  1663. max_inactive_time = code_value() * 1000;
  1664. break;
  1665. case 92: // M92
  1666. for(int8_t i=0; i < NUM_AXIS; i++)
  1667. {
  1668. if(code_seen(axis_codes[i]))
  1669. {
  1670. if(i == 3) { // E
  1671. float value = code_value();
  1672. if(value < 20.0) {
  1673. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1674. max_e_jerk *= factor;
  1675. max_feedrate[i] *= factor;
  1676. axis_steps_per_sqr_second[i] *= factor;
  1677. }
  1678. axis_steps_per_unit[i] = value;
  1679. }
  1680. else {
  1681. axis_steps_per_unit[i] = code_value();
  1682. }
  1683. }
  1684. }
  1685. break;
  1686. case 115: // M115
  1687. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1688. break;
  1689. case 117: // M117 display message
  1690. starpos = (strchr(strchr_pointer + 5,'*'));
  1691. if(starpos!=NULL)
  1692. *(starpos-1)='\0';
  1693. lcd_setstatus(strchr_pointer + 5);
  1694. break;
  1695. case 114: // M114
  1696. SERIAL_PROTOCOLPGM("X:");
  1697. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1698. SERIAL_PROTOCOLPGM("Y:");
  1699. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1700. SERIAL_PROTOCOLPGM("Z:");
  1701. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1702. SERIAL_PROTOCOLPGM("E:");
  1703. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1704. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1705. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1706. SERIAL_PROTOCOLPGM("Y:");
  1707. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1708. SERIAL_PROTOCOLPGM("Z:");
  1709. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1710. SERIAL_PROTOCOLLN("");
  1711. break;
  1712. case 120: // M120
  1713. enable_endstops(false) ;
  1714. break;
  1715. case 121: // M121
  1716. enable_endstops(true) ;
  1717. break;
  1718. case 119: // M119
  1719. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1720. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1721. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1722. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1723. #endif
  1724. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1725. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1726. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1727. #endif
  1728. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1729. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1730. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1731. #endif
  1732. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1733. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1734. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1735. #endif
  1736. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1737. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1738. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1739. #endif
  1740. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1741. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1742. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1743. #endif
  1744. break;
  1745. //TODO: update for all axis, use for loop
  1746. #ifdef BLINKM
  1747. case 150: // M150
  1748. {
  1749. byte red;
  1750. byte grn;
  1751. byte blu;
  1752. if(code_seen('R')) red = code_value();
  1753. if(code_seen('U')) grn = code_value();
  1754. if(code_seen('B')) blu = code_value();
  1755. SendColors(red,grn,blu);
  1756. }
  1757. break;
  1758. #endif //BLINKM
  1759. case 201: // M201
  1760. for(int8_t i=0; i < NUM_AXIS; i++)
  1761. {
  1762. if(code_seen(axis_codes[i]))
  1763. {
  1764. max_acceleration_units_per_sq_second[i] = code_value();
  1765. }
  1766. }
  1767. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1768. reset_acceleration_rates();
  1769. break;
  1770. #if 0 // Not used for Sprinter/grbl gen6
  1771. case 202: // M202
  1772. for(int8_t i=0; i < NUM_AXIS; i++) {
  1773. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1774. }
  1775. break;
  1776. #endif
  1777. case 203: // M203 max feedrate mm/sec
  1778. for(int8_t i=0; i < NUM_AXIS; i++) {
  1779. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1780. }
  1781. break;
  1782. case 204: // M204 acclereration S normal moves T filmanent only moves
  1783. {
  1784. if(code_seen('S')) acceleration = code_value() ;
  1785. if(code_seen('T')) retract_acceleration = code_value() ;
  1786. }
  1787. break;
  1788. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1789. {
  1790. if(code_seen('S')) minimumfeedrate = code_value();
  1791. if(code_seen('T')) mintravelfeedrate = code_value();
  1792. if(code_seen('B')) minsegmenttime = code_value() ;
  1793. if(code_seen('X')) max_xy_jerk = code_value() ;
  1794. if(code_seen('Z')) max_z_jerk = code_value() ;
  1795. if(code_seen('E')) max_e_jerk = code_value() ;
  1796. }
  1797. break;
  1798. case 206: // M206 additional homeing offset
  1799. for(int8_t i=0; i < 3; i++)
  1800. {
  1801. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1802. }
  1803. break;
  1804. #ifdef DELTA
  1805. case 666: // M666 set delta endstop adjustemnt
  1806. for(int8_t i=0; i < 3; i++)
  1807. {
  1808. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1809. }
  1810. break;
  1811. #endif
  1812. #ifdef FWRETRACT
  1813. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1814. {
  1815. if(code_seen('S'))
  1816. {
  1817. retract_length = code_value() ;
  1818. }
  1819. if(code_seen('F'))
  1820. {
  1821. retract_feedrate = code_value() ;
  1822. }
  1823. if(code_seen('Z'))
  1824. {
  1825. retract_zlift = code_value() ;
  1826. }
  1827. }break;
  1828. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1829. {
  1830. if(code_seen('S'))
  1831. {
  1832. retract_recover_length = code_value() ;
  1833. }
  1834. if(code_seen('F'))
  1835. {
  1836. retract_recover_feedrate = code_value() ;
  1837. }
  1838. }break;
  1839. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1840. {
  1841. if(code_seen('S'))
  1842. {
  1843. int t= code_value() ;
  1844. switch(t)
  1845. {
  1846. case 0: autoretract_enabled=false;retracted=false;break;
  1847. case 1: autoretract_enabled=true;retracted=false;break;
  1848. default:
  1849. SERIAL_ECHO_START;
  1850. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1851. SERIAL_ECHO(cmdbuffer[bufindr]);
  1852. SERIAL_ECHOLNPGM("\"");
  1853. }
  1854. }
  1855. }break;
  1856. #endif // FWRETRACT
  1857. #if EXTRUDERS > 1
  1858. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1859. {
  1860. if(setTargetedHotend(218)){
  1861. break;
  1862. }
  1863. if(code_seen('X'))
  1864. {
  1865. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1866. }
  1867. if(code_seen('Y'))
  1868. {
  1869. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1870. }
  1871. #ifdef DUAL_X_CARRIAGE
  1872. if(code_seen('Z'))
  1873. {
  1874. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1875. }
  1876. #endif
  1877. SERIAL_ECHO_START;
  1878. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1879. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1880. {
  1881. SERIAL_ECHO(" ");
  1882. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1883. SERIAL_ECHO(",");
  1884. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1885. #ifdef DUAL_X_CARRIAGE
  1886. SERIAL_ECHO(",");
  1887. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1888. #endif
  1889. }
  1890. SERIAL_ECHOLN("");
  1891. }break;
  1892. #endif
  1893. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1894. {
  1895. if(code_seen('S'))
  1896. {
  1897. feedmultiply = code_value() ;
  1898. }
  1899. }
  1900. break;
  1901. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1902. {
  1903. if(code_seen('S'))
  1904. {
  1905. extrudemultiply = code_value() ;
  1906. }
  1907. }
  1908. break;
  1909. #if NUM_SERVOS > 0
  1910. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1911. {
  1912. int servo_index = -1;
  1913. int servo_position = 0;
  1914. if (code_seen('P'))
  1915. servo_index = code_value();
  1916. if (code_seen('S')) {
  1917. servo_position = code_value();
  1918. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1919. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1920. servos[servo_index].attach(0);
  1921. #endif
  1922. servos[servo_index].write(servo_position);
  1923. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1924. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1925. servos[servo_index].detach();
  1926. #endif
  1927. }
  1928. else {
  1929. SERIAL_ECHO_START;
  1930. SERIAL_ECHO("Servo ");
  1931. SERIAL_ECHO(servo_index);
  1932. SERIAL_ECHOLN(" out of range");
  1933. }
  1934. }
  1935. else if (servo_index >= 0) {
  1936. SERIAL_PROTOCOL(MSG_OK);
  1937. SERIAL_PROTOCOL(" Servo ");
  1938. SERIAL_PROTOCOL(servo_index);
  1939. SERIAL_PROTOCOL(": ");
  1940. SERIAL_PROTOCOL(servos[servo_index].read());
  1941. SERIAL_PROTOCOLLN("");
  1942. }
  1943. }
  1944. break;
  1945. #endif // NUM_SERVOS > 0
  1946. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  1947. case 300: // M300
  1948. {
  1949. int beepS = code_seen('S') ? code_value() : 110;
  1950. int beepP = code_seen('P') ? code_value() : 1000;
  1951. if (beepS > 0)
  1952. {
  1953. #if BEEPER > 0
  1954. tone(BEEPER, beepS);
  1955. delay(beepP);
  1956. noTone(BEEPER);
  1957. #elif defined(ULTRALCD)
  1958. lcd_buzz(beepS, beepP);
  1959. #endif
  1960. }
  1961. else
  1962. {
  1963. delay(beepP);
  1964. }
  1965. }
  1966. break;
  1967. #endif // M300
  1968. #ifdef PIDTEMP
  1969. case 301: // M301
  1970. {
  1971. if(code_seen('P')) Kp = code_value();
  1972. if(code_seen('I')) Ki = scalePID_i(code_value());
  1973. if(code_seen('D')) Kd = scalePID_d(code_value());
  1974. #ifdef PID_ADD_EXTRUSION_RATE
  1975. if(code_seen('C')) Kc = code_value();
  1976. #endif
  1977. updatePID();
  1978. SERIAL_PROTOCOL(MSG_OK);
  1979. SERIAL_PROTOCOL(" p:");
  1980. SERIAL_PROTOCOL(Kp);
  1981. SERIAL_PROTOCOL(" i:");
  1982. SERIAL_PROTOCOL(unscalePID_i(Ki));
  1983. SERIAL_PROTOCOL(" d:");
  1984. SERIAL_PROTOCOL(unscalePID_d(Kd));
  1985. #ifdef PID_ADD_EXTRUSION_RATE
  1986. SERIAL_PROTOCOL(" c:");
  1987. //Kc does not have scaling applied above, or in resetting defaults
  1988. SERIAL_PROTOCOL(Kc);
  1989. #endif
  1990. SERIAL_PROTOCOLLN("");
  1991. }
  1992. break;
  1993. #endif //PIDTEMP
  1994. #ifdef PIDTEMPBED
  1995. case 304: // M304
  1996. {
  1997. if(code_seen('P')) bedKp = code_value();
  1998. if(code_seen('I')) bedKi = scalePID_i(code_value());
  1999. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2000. updatePID();
  2001. SERIAL_PROTOCOL(MSG_OK);
  2002. SERIAL_PROTOCOL(" p:");
  2003. SERIAL_PROTOCOL(bedKp);
  2004. SERIAL_PROTOCOL(" i:");
  2005. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2006. SERIAL_PROTOCOL(" d:");
  2007. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2008. SERIAL_PROTOCOLLN("");
  2009. }
  2010. break;
  2011. #endif //PIDTEMP
  2012. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2013. {
  2014. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2015. const uint8_t NUM_PULSES=16;
  2016. const float PULSE_LENGTH=0.01524;
  2017. for(int i=0; i < NUM_PULSES; i++) {
  2018. WRITE(PHOTOGRAPH_PIN, HIGH);
  2019. _delay_ms(PULSE_LENGTH);
  2020. WRITE(PHOTOGRAPH_PIN, LOW);
  2021. _delay_ms(PULSE_LENGTH);
  2022. }
  2023. delay(7.33);
  2024. for(int i=0; i < NUM_PULSES; i++) {
  2025. WRITE(PHOTOGRAPH_PIN, HIGH);
  2026. _delay_ms(PULSE_LENGTH);
  2027. WRITE(PHOTOGRAPH_PIN, LOW);
  2028. _delay_ms(PULSE_LENGTH);
  2029. }
  2030. #endif
  2031. }
  2032. break;
  2033. #ifdef DOGLCD
  2034. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2035. {
  2036. if (code_seen('C')) {
  2037. lcd_setcontrast( ((int)code_value())&63 );
  2038. }
  2039. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2040. SERIAL_PROTOCOL(lcd_contrast);
  2041. SERIAL_PROTOCOLLN("");
  2042. }
  2043. break;
  2044. #endif
  2045. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2046. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2047. {
  2048. float temp = .0;
  2049. if (code_seen('S')) temp=code_value();
  2050. set_extrude_min_temp(temp);
  2051. }
  2052. break;
  2053. #endif
  2054. case 303: // M303 PID autotune
  2055. {
  2056. float temp = 150.0;
  2057. int e=0;
  2058. int c=5;
  2059. if (code_seen('E')) e=code_value();
  2060. if (e<0)
  2061. temp=70;
  2062. if (code_seen('S')) temp=code_value();
  2063. if (code_seen('C')) c=code_value();
  2064. PID_autotune(temp, e, c);
  2065. }
  2066. break;
  2067. case 400: // M400 finish all moves
  2068. {
  2069. st_synchronize();
  2070. }
  2071. break;
  2072. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2073. case 401:
  2074. {
  2075. engage_z_probe(); // Engage Z Servo endstop if available
  2076. }
  2077. break;
  2078. case 402:
  2079. {
  2080. retract_z_probe(); // Retract Z Servo endstop if enabled
  2081. }
  2082. break;
  2083. #endif
  2084. case 500: // M500 Store settings in EEPROM
  2085. {
  2086. Config_StoreSettings();
  2087. }
  2088. break;
  2089. case 501: // M501 Read settings from EEPROM
  2090. {
  2091. Config_RetrieveSettings();
  2092. }
  2093. break;
  2094. case 502: // M502 Revert to default settings
  2095. {
  2096. Config_ResetDefault();
  2097. }
  2098. break;
  2099. case 503: // M503 print settings currently in memory
  2100. {
  2101. Config_PrintSettings();
  2102. }
  2103. break;
  2104. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2105. case 540:
  2106. {
  2107. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2108. }
  2109. break;
  2110. #endif
  2111. #ifdef FILAMENTCHANGEENABLE
  2112. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2113. {
  2114. float target[4];
  2115. float lastpos[4];
  2116. target[X_AXIS]=current_position[X_AXIS];
  2117. target[Y_AXIS]=current_position[Y_AXIS];
  2118. target[Z_AXIS]=current_position[Z_AXIS];
  2119. target[E_AXIS]=current_position[E_AXIS];
  2120. lastpos[X_AXIS]=current_position[X_AXIS];
  2121. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2122. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2123. lastpos[E_AXIS]=current_position[E_AXIS];
  2124. //retract by E
  2125. if(code_seen('E'))
  2126. {
  2127. target[E_AXIS]+= code_value();
  2128. }
  2129. else
  2130. {
  2131. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2132. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2133. #endif
  2134. }
  2135. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2136. //lift Z
  2137. if(code_seen('Z'))
  2138. {
  2139. target[Z_AXIS]+= code_value();
  2140. }
  2141. else
  2142. {
  2143. #ifdef FILAMENTCHANGE_ZADD
  2144. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2145. #endif
  2146. }
  2147. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2148. //move xy
  2149. if(code_seen('X'))
  2150. {
  2151. target[X_AXIS]+= code_value();
  2152. }
  2153. else
  2154. {
  2155. #ifdef FILAMENTCHANGE_XPOS
  2156. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2157. #endif
  2158. }
  2159. if(code_seen('Y'))
  2160. {
  2161. target[Y_AXIS]= code_value();
  2162. }
  2163. else
  2164. {
  2165. #ifdef FILAMENTCHANGE_YPOS
  2166. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2167. #endif
  2168. }
  2169. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2170. if(code_seen('L'))
  2171. {
  2172. target[E_AXIS]+= code_value();
  2173. }
  2174. else
  2175. {
  2176. #ifdef FILAMENTCHANGE_FINALRETRACT
  2177. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2178. #endif
  2179. }
  2180. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2181. //finish moves
  2182. st_synchronize();
  2183. //disable extruder steppers so filament can be removed
  2184. disable_e0();
  2185. disable_e1();
  2186. disable_e2();
  2187. delay(100);
  2188. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2189. uint8_t cnt=0;
  2190. while(!lcd_clicked()){
  2191. cnt++;
  2192. manage_heater();
  2193. manage_inactivity();
  2194. lcd_update();
  2195. if(cnt==0)
  2196. {
  2197. #if BEEPER > 0
  2198. SET_OUTPUT(BEEPER);
  2199. WRITE(BEEPER,HIGH);
  2200. delay(3);
  2201. WRITE(BEEPER,LOW);
  2202. delay(3);
  2203. #else
  2204. lcd_buzz(1000/6,100);
  2205. #endif
  2206. }
  2207. }
  2208. //return to normal
  2209. if(code_seen('L'))
  2210. {
  2211. target[E_AXIS]+= -code_value();
  2212. }
  2213. else
  2214. {
  2215. #ifdef FILAMENTCHANGE_FINALRETRACT
  2216. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2217. #endif
  2218. }
  2219. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2220. plan_set_e_position(current_position[E_AXIS]);
  2221. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2222. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2223. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2224. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2225. }
  2226. break;
  2227. #endif //FILAMENTCHANGEENABLE
  2228. #ifdef DUAL_X_CARRIAGE
  2229. case 605: // Set dual x-carriage movement mode:
  2230. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2231. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2232. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2233. // millimeters x-offset and an optional differential hotend temperature of
  2234. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2235. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2236. //
  2237. // Note: the X axis should be homed after changing dual x-carriage mode.
  2238. {
  2239. st_synchronize();
  2240. if (code_seen('S'))
  2241. dual_x_carriage_mode = code_value();
  2242. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2243. {
  2244. if (code_seen('X'))
  2245. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2246. if (code_seen('R'))
  2247. duplicate_extruder_temp_offset = code_value();
  2248. SERIAL_ECHO_START;
  2249. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2250. SERIAL_ECHO(" ");
  2251. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2252. SERIAL_ECHO(",");
  2253. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2254. SERIAL_ECHO(" ");
  2255. SERIAL_ECHO(duplicate_extruder_x_offset);
  2256. SERIAL_ECHO(",");
  2257. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2258. }
  2259. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2260. {
  2261. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2262. }
  2263. active_extruder_parked = false;
  2264. extruder_duplication_enabled = false;
  2265. delayed_move_time = 0;
  2266. }
  2267. break;
  2268. #endif //DUAL_X_CARRIAGE
  2269. case 907: // M907 Set digital trimpot motor current using axis codes.
  2270. {
  2271. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2272. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2273. if(code_seen('B')) digipot_current(4,code_value());
  2274. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2275. #endif
  2276. }
  2277. break;
  2278. case 908: // M908 Control digital trimpot directly.
  2279. {
  2280. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2281. uint8_t channel,current;
  2282. if(code_seen('P')) channel=code_value();
  2283. if(code_seen('S')) current=code_value();
  2284. digitalPotWrite(channel, current);
  2285. #endif
  2286. }
  2287. break;
  2288. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2289. {
  2290. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2291. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2292. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2293. if(code_seen('B')) microstep_mode(4,code_value());
  2294. microstep_readings();
  2295. #endif
  2296. }
  2297. break;
  2298. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2299. {
  2300. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2301. if(code_seen('S')) switch((int)code_value())
  2302. {
  2303. case 1:
  2304. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2305. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2306. break;
  2307. case 2:
  2308. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2309. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2310. break;
  2311. }
  2312. microstep_readings();
  2313. #endif
  2314. }
  2315. break;
  2316. case 999: // M999: Restart after being stopped
  2317. Stopped = false;
  2318. lcd_reset_alert_level();
  2319. gcode_LastN = Stopped_gcode_LastN;
  2320. FlushSerialRequestResend();
  2321. break;
  2322. }
  2323. }
  2324. else if(code_seen('T'))
  2325. {
  2326. tmp_extruder = code_value();
  2327. if(tmp_extruder >= EXTRUDERS) {
  2328. SERIAL_ECHO_START;
  2329. SERIAL_ECHO("T");
  2330. SERIAL_ECHO(tmp_extruder);
  2331. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2332. }
  2333. else {
  2334. boolean make_move = false;
  2335. if(code_seen('F')) {
  2336. make_move = true;
  2337. next_feedrate = code_value();
  2338. if(next_feedrate > 0.0) {
  2339. feedrate = next_feedrate;
  2340. }
  2341. }
  2342. #if EXTRUDERS > 1
  2343. if(tmp_extruder != active_extruder) {
  2344. // Save current position to return to after applying extruder offset
  2345. memcpy(destination, current_position, sizeof(destination));
  2346. #ifdef DUAL_X_CARRIAGE
  2347. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2348. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2349. {
  2350. // Park old head: 1) raise 2) move to park position 3) lower
  2351. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2352. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2353. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2354. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2355. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2356. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2357. st_synchronize();
  2358. }
  2359. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2360. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2361. extruder_offset[Y_AXIS][active_extruder] +
  2362. extruder_offset[Y_AXIS][tmp_extruder];
  2363. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2364. extruder_offset[Z_AXIS][active_extruder] +
  2365. extruder_offset[Z_AXIS][tmp_extruder];
  2366. active_extruder = tmp_extruder;
  2367. // This function resets the max/min values - the current position may be overwritten below.
  2368. axis_is_at_home(X_AXIS);
  2369. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2370. {
  2371. current_position[X_AXIS] = inactive_extruder_x_pos;
  2372. inactive_extruder_x_pos = destination[X_AXIS];
  2373. }
  2374. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2375. {
  2376. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2377. if (active_extruder == 0 || active_extruder_parked)
  2378. current_position[X_AXIS] = inactive_extruder_x_pos;
  2379. else
  2380. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2381. inactive_extruder_x_pos = destination[X_AXIS];
  2382. extruder_duplication_enabled = false;
  2383. }
  2384. else
  2385. {
  2386. // record raised toolhead position for use by unpark
  2387. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2388. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2389. active_extruder_parked = true;
  2390. delayed_move_time = 0;
  2391. }
  2392. #else
  2393. // Offset extruder (only by XY)
  2394. int i;
  2395. for(i = 0; i < 2; i++) {
  2396. current_position[i] = current_position[i] -
  2397. extruder_offset[i][active_extruder] +
  2398. extruder_offset[i][tmp_extruder];
  2399. }
  2400. // Set the new active extruder and position
  2401. active_extruder = tmp_extruder;
  2402. #endif //else DUAL_X_CARRIAGE
  2403. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2404. // Move to the old position if 'F' was in the parameters
  2405. if(make_move && Stopped == false) {
  2406. prepare_move();
  2407. }
  2408. }
  2409. #endif
  2410. SERIAL_ECHO_START;
  2411. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2412. SERIAL_PROTOCOLLN((int)active_extruder);
  2413. }
  2414. }
  2415. else
  2416. {
  2417. SERIAL_ECHO_START;
  2418. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2419. SERIAL_ECHO(cmdbuffer[bufindr]);
  2420. SERIAL_ECHOLNPGM("\"");
  2421. }
  2422. ClearToSend();
  2423. }
  2424. void FlushSerialRequestResend()
  2425. {
  2426. //char cmdbuffer[bufindr][100]="Resend:";
  2427. MYSERIAL.flush();
  2428. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2429. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2430. ClearToSend();
  2431. }
  2432. void ClearToSend()
  2433. {
  2434. previous_millis_cmd = millis();
  2435. #ifdef SDSUPPORT
  2436. if(fromsd[bufindr])
  2437. return;
  2438. #endif //SDSUPPORT
  2439. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2440. }
  2441. void get_coordinates()
  2442. {
  2443. bool seen[4]={false,false,false,false};
  2444. for(int8_t i=0; i < NUM_AXIS; i++) {
  2445. if(code_seen(axis_codes[i]))
  2446. {
  2447. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2448. seen[i]=true;
  2449. }
  2450. else destination[i] = current_position[i]; //Are these else lines really needed?
  2451. }
  2452. if(code_seen('F')) {
  2453. next_feedrate = code_value();
  2454. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2455. }
  2456. #ifdef FWRETRACT
  2457. if(autoretract_enabled)
  2458. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2459. {
  2460. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2461. if(echange<-MIN_RETRACT) //retract
  2462. {
  2463. if(!retracted)
  2464. {
  2465. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2466. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2467. float correctede=-echange-retract_length;
  2468. //to generate the additional steps, not the destination is changed, but inversely the current position
  2469. current_position[E_AXIS]+=-correctede;
  2470. feedrate=retract_feedrate;
  2471. retracted=true;
  2472. }
  2473. }
  2474. else
  2475. if(echange>MIN_RETRACT) //retract_recover
  2476. {
  2477. if(retracted)
  2478. {
  2479. //current_position[Z_AXIS]+=-retract_zlift;
  2480. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2481. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2482. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2483. feedrate=retract_recover_feedrate;
  2484. retracted=false;
  2485. }
  2486. }
  2487. }
  2488. #endif //FWRETRACT
  2489. }
  2490. void get_arc_coordinates()
  2491. {
  2492. #ifdef SF_ARC_FIX
  2493. bool relative_mode_backup = relative_mode;
  2494. relative_mode = true;
  2495. #endif
  2496. get_coordinates();
  2497. #ifdef SF_ARC_FIX
  2498. relative_mode=relative_mode_backup;
  2499. #endif
  2500. if(code_seen('I')) {
  2501. offset[0] = code_value();
  2502. }
  2503. else {
  2504. offset[0] = 0.0;
  2505. }
  2506. if(code_seen('J')) {
  2507. offset[1] = code_value();
  2508. }
  2509. else {
  2510. offset[1] = 0.0;
  2511. }
  2512. }
  2513. void clamp_to_software_endstops(float target[3])
  2514. {
  2515. if (min_software_endstops) {
  2516. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2517. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2518. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2519. }
  2520. if (max_software_endstops) {
  2521. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2522. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2523. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2524. }
  2525. }
  2526. #ifdef DELTA
  2527. void calculate_delta(float cartesian[3])
  2528. {
  2529. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2530. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2531. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2532. ) + cartesian[Z_AXIS];
  2533. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2534. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2535. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2536. ) + cartesian[Z_AXIS];
  2537. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2538. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2539. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2540. ) + cartesian[Z_AXIS];
  2541. /*
  2542. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2543. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2544. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2545. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2546. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2547. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2548. */
  2549. }
  2550. #endif
  2551. void prepare_move()
  2552. {
  2553. clamp_to_software_endstops(destination);
  2554. previous_millis_cmd = millis();
  2555. #ifdef DELTA
  2556. float difference[NUM_AXIS];
  2557. for (int8_t i=0; i < NUM_AXIS; i++) {
  2558. difference[i] = destination[i] - current_position[i];
  2559. }
  2560. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2561. sq(difference[Y_AXIS]) +
  2562. sq(difference[Z_AXIS]));
  2563. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2564. if (cartesian_mm < 0.000001) { return; }
  2565. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2566. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2567. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2568. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2569. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2570. for (int s = 1; s <= steps; s++) {
  2571. float fraction = float(s) / float(steps);
  2572. for(int8_t i=0; i < NUM_AXIS; i++) {
  2573. destination[i] = current_position[i] + difference[i] * fraction;
  2574. }
  2575. calculate_delta(destination);
  2576. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2577. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2578. active_extruder);
  2579. }
  2580. #else
  2581. #ifdef DUAL_X_CARRIAGE
  2582. if (active_extruder_parked)
  2583. {
  2584. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2585. {
  2586. // move duplicate extruder into correct duplication position.
  2587. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2588. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2589. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2590. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2591. st_synchronize();
  2592. extruder_duplication_enabled = true;
  2593. active_extruder_parked = false;
  2594. }
  2595. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2596. {
  2597. if (current_position[E_AXIS] == destination[E_AXIS])
  2598. {
  2599. // this is a travel move - skit it but keep track of current position (so that it can later
  2600. // be used as start of first non-travel move)
  2601. if (delayed_move_time != 0xFFFFFFFFUL)
  2602. {
  2603. memcpy(current_position, destination, sizeof(current_position));
  2604. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2605. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2606. delayed_move_time = millis();
  2607. return;
  2608. }
  2609. }
  2610. delayed_move_time = 0;
  2611. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2612. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2614. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2616. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2617. active_extruder_parked = false;
  2618. }
  2619. }
  2620. #endif //DUAL_X_CARRIAGE
  2621. // Do not use feedmultiply for E or Z only moves
  2622. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2623. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2624. }
  2625. else {
  2626. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2627. }
  2628. #endif //else DELTA
  2629. for(int8_t i=0; i < NUM_AXIS; i++) {
  2630. current_position[i] = destination[i];
  2631. }
  2632. }
  2633. void prepare_arc_move(char isclockwise) {
  2634. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2635. // Trace the arc
  2636. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2637. // As far as the parser is concerned, the position is now == target. In reality the
  2638. // motion control system might still be processing the action and the real tool position
  2639. // in any intermediate location.
  2640. for(int8_t i=0; i < NUM_AXIS; i++) {
  2641. current_position[i] = destination[i];
  2642. }
  2643. previous_millis_cmd = millis();
  2644. }
  2645. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2646. #if defined(FAN_PIN)
  2647. #if CONTROLLERFAN_PIN == FAN_PIN
  2648. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2649. #endif
  2650. #endif
  2651. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2652. unsigned long lastMotorCheck = 0;
  2653. void controllerFan()
  2654. {
  2655. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2656. {
  2657. lastMotorCheck = millis();
  2658. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  2659. #if EXTRUDERS > 2
  2660. || !READ(E2_ENABLE_PIN)
  2661. #endif
  2662. #if EXTRUDER > 1
  2663. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2664. || !READ(X2_ENABLE_PIN)
  2665. #endif
  2666. || !READ(E1_ENABLE_PIN)
  2667. #endif
  2668. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2669. {
  2670. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2671. }
  2672. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2673. {
  2674. digitalWrite(CONTROLLERFAN_PIN, 0);
  2675. analogWrite(CONTROLLERFAN_PIN, 0);
  2676. }
  2677. else
  2678. {
  2679. // allows digital or PWM fan output to be used (see M42 handling)
  2680. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2681. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2682. }
  2683. }
  2684. }
  2685. #endif
  2686. void manage_inactivity()
  2687. {
  2688. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2689. if(max_inactive_time)
  2690. kill();
  2691. if(stepper_inactive_time) {
  2692. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2693. {
  2694. if(blocks_queued() == false) {
  2695. disable_x();
  2696. disable_y();
  2697. disable_z();
  2698. disable_e0();
  2699. disable_e1();
  2700. disable_e2();
  2701. }
  2702. }
  2703. }
  2704. #if defined(KILL_PIN) && KILL_PIN > -1
  2705. if( 0 == READ(KILL_PIN) )
  2706. kill();
  2707. #endif
  2708. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2709. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2710. #endif
  2711. #ifdef EXTRUDER_RUNOUT_PREVENT
  2712. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2713. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2714. {
  2715. bool oldstatus=READ(E0_ENABLE_PIN);
  2716. enable_e0();
  2717. float oldepos=current_position[E_AXIS];
  2718. float oldedes=destination[E_AXIS];
  2719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2720. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2721. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2722. current_position[E_AXIS]=oldepos;
  2723. destination[E_AXIS]=oldedes;
  2724. plan_set_e_position(oldepos);
  2725. previous_millis_cmd=millis();
  2726. st_synchronize();
  2727. WRITE(E0_ENABLE_PIN,oldstatus);
  2728. }
  2729. #endif
  2730. #if defined(DUAL_X_CARRIAGE)
  2731. // handle delayed move timeout
  2732. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2733. {
  2734. // travel moves have been received so enact them
  2735. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2736. memcpy(destination,current_position,sizeof(destination));
  2737. prepare_move();
  2738. }
  2739. #endif
  2740. check_axes_activity();
  2741. }
  2742. void kill()
  2743. {
  2744. cli(); // Stop interrupts
  2745. disable_heater();
  2746. disable_x();
  2747. disable_y();
  2748. disable_z();
  2749. disable_e0();
  2750. disable_e1();
  2751. disable_e2();
  2752. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2753. pinMode(PS_ON_PIN,INPUT);
  2754. #endif
  2755. SERIAL_ERROR_START;
  2756. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2757. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2758. suicide();
  2759. while(1) { /* Intentionally left empty */ } // Wait for reset
  2760. }
  2761. void Stop()
  2762. {
  2763. disable_heater();
  2764. if(Stopped == false) {
  2765. Stopped = true;
  2766. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2767. SERIAL_ERROR_START;
  2768. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2769. LCD_MESSAGEPGM(MSG_STOPPED);
  2770. }
  2771. }
  2772. bool IsStopped() { return Stopped; };
  2773. #ifdef FAST_PWM_FAN
  2774. void setPwmFrequency(uint8_t pin, int val)
  2775. {
  2776. val &= 0x07;
  2777. switch(digitalPinToTimer(pin))
  2778. {
  2779. #if defined(TCCR0A)
  2780. case TIMER0A:
  2781. case TIMER0B:
  2782. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2783. // TCCR0B |= val;
  2784. break;
  2785. #endif
  2786. #if defined(TCCR1A)
  2787. case TIMER1A:
  2788. case TIMER1B:
  2789. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2790. // TCCR1B |= val;
  2791. break;
  2792. #endif
  2793. #if defined(TCCR2)
  2794. case TIMER2:
  2795. case TIMER2:
  2796. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2797. TCCR2 |= val;
  2798. break;
  2799. #endif
  2800. #if defined(TCCR2A)
  2801. case TIMER2A:
  2802. case TIMER2B:
  2803. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2804. TCCR2B |= val;
  2805. break;
  2806. #endif
  2807. #if defined(TCCR3A)
  2808. case TIMER3A:
  2809. case TIMER3B:
  2810. case TIMER3C:
  2811. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2812. TCCR3B |= val;
  2813. break;
  2814. #endif
  2815. #if defined(TCCR4A)
  2816. case TIMER4A:
  2817. case TIMER4B:
  2818. case TIMER4C:
  2819. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2820. TCCR4B |= val;
  2821. break;
  2822. #endif
  2823. #if defined(TCCR5A)
  2824. case TIMER5A:
  2825. case TIMER5B:
  2826. case TIMER5C:
  2827. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2828. TCCR5B |= val;
  2829. break;
  2830. #endif
  2831. }
  2832. }
  2833. #endif //FAST_PWM_FAN
  2834. bool setTargetedHotend(int code){
  2835. tmp_extruder = active_extruder;
  2836. if(code_seen('T')) {
  2837. tmp_extruder = code_value();
  2838. if(tmp_extruder >= EXTRUDERS) {
  2839. SERIAL_ECHO_START;
  2840. switch(code){
  2841. case 104:
  2842. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2843. break;
  2844. case 105:
  2845. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2846. break;
  2847. case 109:
  2848. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2849. break;
  2850. case 218:
  2851. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2852. break;
  2853. }
  2854. SERIAL_ECHOLN(tmp_extruder);
  2855. return true;
  2856. }
  2857. }
  2858. return false;
  2859. }