123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * planner_bezier.cpp
- *
- * Compute and buffer movement commands for bezier curves
- *
- */
-
- #include "Marlin.h"
-
- #if ENABLED(BEZIER_CURVE_SUPPORT)
-
- #include "planner.h"
- #include "language.h"
- #include "temperature.h"
-
- // See the meaning in the documentation of cubic_b_spline().
- #define MIN_STEP 0.002
- #define MAX_STEP 0.1
- #define SIGMA 0.1
-
- /* Compute the linear interpolation between to real numbers.
- */
- inline static float interp(float a, float b, float t) { return (1.0 - t) * a + t * b; }
-
- /**
- * Compute a Bézier curve using the De Casteljau's algorithm (see
- * https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm), which is
- * easy to code and has good numerical stability (very important,
- * since Arudino works with limited precision real numbers).
- */
- inline static float eval_bezier(float a, float b, float c, float d, float t) {
- float iab = interp(a, b, t);
- float ibc = interp(b, c, t);
- float icd = interp(c, d, t);
- float iabc = interp(iab, ibc, t);
- float ibcd = interp(ibc, icd, t);
- float iabcd = interp(iabc, ibcd, t);
- return iabcd;
- }
-
- /**
- * We approximate Euclidean distance with the sum of the coordinates
- * offset (so-called "norm 1"), which is quicker to compute.
- */
- inline static float dist1(float x1, float y1, float x2, float y2) { return fabs(x1 - x2) + fabs(y1 - y2); }
-
- /**
- * The algorithm for computing the step is loosely based on the one in Kig
- * (See https://sources.debian.net/src/kig/4:15.08.3-1/misc/kigpainter.cpp/#L759)
- * However, we do not use the stack.
- *
- * The algorithm goes as it follows: the parameters t runs from 0.0 to
- * 1.0 describing the curve, which is evaluated by eval_bezier(). At
- * each iteration we have to choose a step, i.e., the increment of the
- * t variable. By default the step of the previous iteration is taken,
- * and then it is enlarged or reduced depending on how straight the
- * curve locally is. The step is always clamped between MIN_STEP/2 and
- * 2*MAX_STEP. MAX_STEP is taken at the first iteration.
- *
- * For some t, the step value is considered acceptable if the curve in
- * the interval [t, t+step] is sufficiently straight, i.e.,
- * sufficiently close to linear interpolation. In practice the
- * following test is performed: the distance between eval_bezier(...,
- * t+step/2) is evaluated and compared with 0.5*(eval_bezier(...,
- * t)+eval_bezier(..., t+step)). If it is smaller than SIGMA, then the
- * step value is considered acceptable, otherwise it is not. The code
- * seeks to find the larger step value which is considered acceptable.
- *
- * At every iteration the recorded step value is considered and then
- * iteratively halved until it becomes acceptable. If it was already
- * acceptable in the beginning (i.e., no halving were done), then
- * maybe it was necessary to enlarge it; then it is iteratively
- * doubled while it remains acceptable. The last acceptable value
- * found is taken, provided that it is between MIN_STEP and MAX_STEP
- * and does not bring t over 1.0.
- *
- * Caveat: this algorithm is not perfect, since it can happen that a
- * step is considered acceptable even when the curve is not linear at
- * all in the interval [t, t+step] (but its mid point coincides "by
- * chance" with the midpoint according to the parametrization). This
- * kind of glitches can be eliminated with proper first derivative
- * estimates; however, given the improbability of such configurations,
- * the mitigation offered by MIN_STEP and the small computational
- * power available on Arduino, I think it is not wise to implement it.
- */
- void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS], const float offset[4], float fr_mm_s, uint8_t extruder) {
- // Absolute first and second control points are recovered.
- float first0 = position[X_AXIS] + offset[0];
- float first1 = position[Y_AXIS] + offset[1];
- float second0 = target[X_AXIS] + offset[2];
- float second1 = target[Y_AXIS] + offset[3];
- float t = 0.0;
-
- float bez_target[4];
- bez_target[X_AXIS] = position[X_AXIS];
- bez_target[Y_AXIS] = position[Y_AXIS];
- float step = MAX_STEP;
-
- millis_t next_idle_ms = millis() + 200UL;
-
- while (t < 1.0) {
-
- thermalManager.manage_heater();
- millis_t now = millis();
- if (ELAPSED(now, next_idle_ms)) {
- next_idle_ms = now + 200UL;
- idle();
- }
-
- // First try to reduce the step in order to make it sufficiently
- // close to a linear interpolation.
- bool did_reduce = false;
- float new_t = t + step;
- NOMORE(new_t, 1.0);
- float new_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], new_t);
- float new_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], new_t);
- for (;;) {
- if (new_t - t < (MIN_STEP)) break;
- float candidate_t = 0.5 * (t + new_t);
- float candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t);
- float candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t);
- float interp_pos0 = 0.5 * (bez_target[X_AXIS] + new_pos0);
- float interp_pos1 = 0.5 * (bez_target[Y_AXIS] + new_pos1);
- if (dist1(candidate_pos0, candidate_pos1, interp_pos0, interp_pos1) <= (SIGMA)) break;
- new_t = candidate_t;
- new_pos0 = candidate_pos0;
- new_pos1 = candidate_pos1;
- did_reduce = true;
- }
-
- // If we did not reduce the step, maybe we should enlarge it.
- if (!did_reduce) for (;;) {
- if (new_t - t > MAX_STEP) break;
- float candidate_t = t + 2.0 * (new_t - t);
- if (candidate_t >= 1.0) break;
- float candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t);
- float candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t);
- float interp_pos0 = 0.5 * (bez_target[X_AXIS] + candidate_pos0);
- float interp_pos1 = 0.5 * (bez_target[Y_AXIS] + candidate_pos1);
- if (dist1(new_pos0, new_pos1, interp_pos0, interp_pos1) > (SIGMA)) break;
- new_t = candidate_t;
- new_pos0 = candidate_pos0;
- new_pos1 = candidate_pos1;
- }
-
- // Check some postcondition; they are disabled in the actual
- // Marlin build, but if you test the same code on a computer you
- // may want to check they are respect.
- /*
- assert(new_t <= 1.0);
- if (new_t < 1.0) {
- assert(new_t - t >= (MIN_STEP) / 2.0);
- assert(new_t - t <= (MAX_STEP) * 2.0);
- }
- */
-
- step = new_t - t;
- t = new_t;
-
- // Compute and send new position
- bez_target[X_AXIS] = new_pos0;
- bez_target[Y_AXIS] = new_pos1;
- // FIXME. The following two are wrong, since the parameter t is
- // not linear in the distance.
- bez_target[Z_AXIS] = interp(position[Z_AXIS], target[Z_AXIS], t);
- bez_target[E_AXIS] = interp(position[E_AXIS], target[E_AXIS], t);
- clamp_to_software_endstops(bez_target);
-
- #if ENABLED(DELTA) || ENABLED(SCARA)
- calculate_delta(bez_target);
- #if ENABLED(AUTO_BED_LEVELING_FEATURE)
- adjust_delta(bez_target);
- #endif
- planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
- #else
- planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
- #endif
- }
- }
-
- #endif // BEZIER_CURVE_SUPPORT
|