My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

temperature.cpp 56KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.cpp - temperature control
  24. */
  25. #include "Marlin.h"
  26. #include "ultralcd.h"
  27. #include "temperature.h"
  28. #include "language.h"
  29. #include "Sd2PinMap.h"
  30. #if ENABLED(USE_WATCHDOG)
  31. #include "watchdog.h"
  32. #endif
  33. #ifdef K1 // Defined in Configuration.h in the PID settings
  34. #define K2 (1.0-K1)
  35. #endif
  36. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  37. static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
  38. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  39. #else
  40. static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE);
  41. static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN);
  42. #endif
  43. Temperature thermalManager;
  44. // public:
  45. float Temperature::current_temperature[HOTENDS] = { 0.0 },
  46. Temperature::current_temperature_bed = 0.0;
  47. int Temperature::current_temperature_raw[HOTENDS] = { 0 },
  48. Temperature::target_temperature[HOTENDS] = { 0 },
  49. Temperature::current_temperature_bed_raw = 0,
  50. Temperature::target_temperature_bed = 0;
  51. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  52. float Temperature::redundant_temperature = 0.0;
  53. #endif
  54. unsigned char Temperature::soft_pwm_bed;
  55. #if ENABLED(FAN_SOFT_PWM)
  56. unsigned char Temperature::fanSpeedSoftPwm[FAN_COUNT];
  57. #endif
  58. #if ENABLED(PIDTEMP)
  59. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  60. float Temperature::Kp[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kp),
  61. Temperature::Ki[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Ki) * (PID_dT)),
  62. Temperature::Kd[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Kd) / (PID_dT));
  63. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  64. float Temperature::Kc[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kc);
  65. #endif
  66. #else
  67. float Temperature::Kp = DEFAULT_Kp,
  68. Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
  69. Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
  70. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  71. float Temperature::Kc = DEFAULT_Kc;
  72. #endif
  73. #endif
  74. #endif
  75. #if ENABLED(PIDTEMPBED)
  76. float Temperature::bedKp = DEFAULT_bedKp,
  77. Temperature::bedKi = ((DEFAULT_bedKi) * PID_dT),
  78. Temperature::bedKd = ((DEFAULT_bedKd) / PID_dT);
  79. #endif
  80. #if ENABLED(BABYSTEPPING)
  81. volatile int Temperature::babystepsTodo[3] = { 0 };
  82. #endif
  83. #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
  84. int Temperature::watch_target_temp[HOTENDS] = { 0 };
  85. millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
  86. #endif
  87. #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
  88. int Temperature::watch_target_bed_temp = 0;
  89. millis_t Temperature::watch_bed_next_ms = 0;
  90. #endif
  91. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  92. bool Temperature::allow_cold_extrude = false;
  93. float Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
  94. #endif
  95. // private:
  96. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  97. int Temperature::redundant_temperature_raw = 0;
  98. float Temperature::redundant_temperature = 0.0;
  99. #endif
  100. volatile bool Temperature::temp_meas_ready = false;
  101. #if ENABLED(PIDTEMP)
  102. float Temperature::temp_iState[HOTENDS] = { 0 },
  103. Temperature::temp_dState[HOTENDS] = { 0 },
  104. Temperature::pTerm[HOTENDS],
  105. Temperature::iTerm[HOTENDS],
  106. Temperature::dTerm[HOTENDS];
  107. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  108. float Temperature::cTerm[HOTENDS];
  109. long Temperature::last_e_position;
  110. long Temperature::lpq[LPQ_MAX_LEN];
  111. int Temperature::lpq_ptr = 0;
  112. #endif
  113. float Temperature::pid_error[HOTENDS],
  114. Temperature::temp_iState_min[HOTENDS],
  115. Temperature::temp_iState_max[HOTENDS];
  116. bool Temperature::pid_reset[HOTENDS];
  117. #endif
  118. #if ENABLED(PIDTEMPBED)
  119. float Temperature::temp_iState_bed = { 0 },
  120. Temperature::temp_dState_bed = { 0 },
  121. Temperature::pTerm_bed,
  122. Temperature::iTerm_bed,
  123. Temperature::dTerm_bed,
  124. Temperature::pid_error_bed,
  125. Temperature::temp_iState_min_bed,
  126. Temperature::temp_iState_max_bed;
  127. #else
  128. millis_t Temperature::next_bed_check_ms;
  129. #endif
  130. unsigned long Temperature::raw_temp_value[4] = { 0 };
  131. unsigned long Temperature::raw_temp_bed_value = 0;
  132. // Init min and max temp with extreme values to prevent false errors during startup
  133. int Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP),
  134. Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP),
  135. Temperature::minttemp[HOTENDS] = { 0 },
  136. Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
  137. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  138. int Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
  139. #endif
  140. #ifdef MILLISECONDS_PREHEAT_TIME
  141. unsigned long Temperature::preheat_end_time[HOTENDS] = { 0 };
  142. #endif
  143. #ifdef BED_MINTEMP
  144. int Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  145. #endif
  146. #ifdef BED_MAXTEMP
  147. int Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  148. #endif
  149. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  150. int Temperature::meas_shift_index; // Index of a delayed sample in buffer
  151. #endif
  152. #if HAS_AUTO_FAN
  153. millis_t Temperature::next_auto_fan_check_ms;
  154. #endif
  155. unsigned char Temperature::soft_pwm[HOTENDS];
  156. #if ENABLED(FAN_SOFT_PWM)
  157. unsigned char Temperature::soft_pwm_fan[FAN_COUNT];
  158. #endif
  159. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  160. int Temperature::current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  161. #endif
  162. #if HAS_PID_HEATING
  163. void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) {
  164. float input = 0.0;
  165. int cycles = 0;
  166. bool heating = true;
  167. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  168. long t_high = 0, t_low = 0;
  169. long bias, d;
  170. float Ku, Tu;
  171. float workKp = 0, workKi = 0, workKd = 0;
  172. float max = 0, min = 10000;
  173. #if HAS_AUTO_FAN
  174. next_auto_fan_check_ms = temp_ms + 2500UL;
  175. #endif
  176. if (hotend >=
  177. #if ENABLED(PIDTEMP)
  178. HOTENDS
  179. #else
  180. 0
  181. #endif
  182. || hotend <
  183. #if ENABLED(PIDTEMPBED)
  184. -1
  185. #else
  186. 0
  187. #endif
  188. ) {
  189. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  190. return;
  191. }
  192. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  193. disable_all_heaters(); // switch off all heaters.
  194. #if HAS_PID_FOR_BOTH
  195. if (hotend < 0)
  196. soft_pwm_bed = bias = d = (MAX_BED_POWER) / 2;
  197. else
  198. soft_pwm[hotend] = bias = d = (PID_MAX) / 2;
  199. #elif ENABLED(PIDTEMP)
  200. soft_pwm[hotend] = bias = d = (PID_MAX) / 2;
  201. #else
  202. soft_pwm_bed = bias = d = (MAX_BED_POWER) / 2;
  203. #endif
  204. wait_for_heatup = true;
  205. // PID Tuning loop
  206. while (wait_for_heatup) {
  207. millis_t ms = millis();
  208. if (temp_meas_ready) { // temp sample ready
  209. updateTemperaturesFromRawValues();
  210. input =
  211. #if HAS_PID_FOR_BOTH
  212. hotend < 0 ? current_temperature_bed : current_temperature[hotend]
  213. #elif ENABLED(PIDTEMP)
  214. current_temperature[hotend]
  215. #else
  216. current_temperature_bed
  217. #endif
  218. ;
  219. max = max(max, input);
  220. min = min(min, input);
  221. #if HAS_AUTO_FAN
  222. if (ELAPSED(ms, next_auto_fan_check_ms)) {
  223. checkExtruderAutoFans();
  224. next_auto_fan_check_ms = ms + 2500UL;
  225. }
  226. #endif
  227. if (heating && input > temp) {
  228. if (ELAPSED(ms, t2 + 5000UL)) {
  229. heating = false;
  230. #if HAS_PID_FOR_BOTH
  231. if (hotend < 0)
  232. soft_pwm_bed = (bias - d) >> 1;
  233. else
  234. soft_pwm[hotend] = (bias - d) >> 1;
  235. #elif ENABLED(PIDTEMP)
  236. soft_pwm[hotend] = (bias - d) >> 1;
  237. #elif ENABLED(PIDTEMPBED)
  238. soft_pwm_bed = (bias - d) >> 1;
  239. #endif
  240. t1 = ms;
  241. t_high = t1 - t2;
  242. max = temp;
  243. }
  244. }
  245. if (!heating && input < temp) {
  246. if (ELAPSED(ms, t1 + 5000UL)) {
  247. heating = true;
  248. t2 = ms;
  249. t_low = t2 - t1;
  250. if (cycles > 0) {
  251. long max_pow =
  252. #if HAS_PID_FOR_BOTH
  253. hotend < 0 ? MAX_BED_POWER : PID_MAX
  254. #elif ENABLED(PIDTEMP)
  255. PID_MAX
  256. #else
  257. MAX_BED_POWER
  258. #endif
  259. ;
  260. bias += (d * (t_high - t_low)) / (t_low + t_high);
  261. bias = constrain(bias, 20, max_pow - 20);
  262. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  263. SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
  264. SERIAL_PROTOCOLPAIR(MSG_D, d);
  265. SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
  266. SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
  267. if (cycles > 2) {
  268. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  269. Tu = ((float)(t_low + t_high) / 1000.0);
  270. SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
  271. SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
  272. workKp = 0.6 * Ku;
  273. workKi = 2 * workKp / Tu;
  274. workKd = workKp * Tu / 8;
  275. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  276. SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
  277. SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
  278. SERIAL_PROTOCOLPAIR(MSG_KD, workKd);
  279. /**
  280. workKp = 0.33*Ku;
  281. workKi = workKp/Tu;
  282. workKd = workKp*Tu/3;
  283. SERIAL_PROTOCOLLNPGM(" Some overshoot");
  284. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  285. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  286. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  287. workKp = 0.2*Ku;
  288. workKi = 2*workKp/Tu;
  289. workKd = workKp*Tu/3;
  290. SERIAL_PROTOCOLLNPGM(" No overshoot");
  291. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  292. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  293. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  294. */
  295. }
  296. }
  297. #if HAS_PID_FOR_BOTH
  298. if (hotend < 0)
  299. soft_pwm_bed = (bias + d) >> 1;
  300. else
  301. soft_pwm[hotend] = (bias + d) >> 1;
  302. #elif ENABLED(PIDTEMP)
  303. soft_pwm[hotend] = (bias + d) >> 1;
  304. #else
  305. soft_pwm_bed = (bias + d) >> 1;
  306. #endif
  307. cycles++;
  308. min = temp;
  309. }
  310. }
  311. }
  312. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  313. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  314. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  315. return;
  316. }
  317. // Every 2 seconds...
  318. if (ELAPSED(ms, temp_ms + 2000UL)) {
  319. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  320. print_heaterstates();
  321. SERIAL_EOL;
  322. #endif
  323. temp_ms = ms;
  324. } // every 2 seconds
  325. // Over 2 minutes?
  326. if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
  327. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  328. return;
  329. }
  330. if (cycles > ncycles) {
  331. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  332. #if HAS_PID_FOR_BOTH
  333. const char* estring = hotend < 0 ? "bed" : "";
  334. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp);
  335. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi);
  336. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd);
  337. #elif ENABLED(PIDTEMP)
  338. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp);
  339. SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi);
  340. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd);
  341. #else
  342. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp);
  343. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi);
  344. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd);
  345. #endif
  346. #define _SET_BED_PID() \
  347. bedKp = workKp; \
  348. bedKi = scalePID_i(workKi); \
  349. bedKd = scalePID_d(workKd); \
  350. updatePID()
  351. #define _SET_EXTRUDER_PID() \
  352. PID_PARAM(Kp, hotend) = workKp; \
  353. PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
  354. PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
  355. updatePID()
  356. // Use the result? (As with "M303 U1")
  357. if (set_result) {
  358. #if HAS_PID_FOR_BOTH
  359. if (hotend < 0) {
  360. _SET_BED_PID();
  361. }
  362. else {
  363. _SET_EXTRUDER_PID();
  364. }
  365. #elif ENABLED(PIDTEMP)
  366. _SET_EXTRUDER_PID();
  367. #else
  368. _SET_BED_PID();
  369. #endif
  370. }
  371. return;
  372. }
  373. lcd_update();
  374. }
  375. if (!wait_for_heatup) disable_all_heaters();
  376. }
  377. #endif // HAS_PID_HEATING
  378. /**
  379. * Class and Instance Methods
  380. */
  381. Temperature::Temperature() { }
  382. void Temperature::updatePID() {
  383. #if ENABLED(PIDTEMP)
  384. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  385. last_e_position = 0;
  386. #endif
  387. HOTEND_LOOP() {
  388. temp_iState_max[e] = (PID_INTEGRAL_DRIVE_MAX) / PID_PARAM(Ki, e);
  389. }
  390. #endif
  391. #if ENABLED(PIDTEMPBED)
  392. temp_iState_max_bed = (PID_BED_INTEGRAL_DRIVE_MAX) / bedKi;
  393. #endif
  394. }
  395. int Temperature::getHeaterPower(int heater) {
  396. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  397. }
  398. #if HAS_AUTO_FAN
  399. void Temperature::checkExtruderAutoFans() {
  400. const int8_t fanPin[] = { EXTRUDER_0_AUTO_FAN_PIN, EXTRUDER_1_AUTO_FAN_PIN, EXTRUDER_2_AUTO_FAN_PIN, EXTRUDER_3_AUTO_FAN_PIN };
  401. const int fanBit[] = { 0,
  402. EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN ? 0 : 1,
  403. EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN ? 0 :
  404. EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN ? 1 : 2,
  405. EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN ? 0 :
  406. EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN ? 1 :
  407. EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN ? 2 : 3
  408. };
  409. uint8_t fanState = 0;
  410. HOTEND_LOOP() {
  411. if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  412. SBI(fanState, fanBit[e]);
  413. }
  414. uint8_t fanDone = 0;
  415. for (int8_t f = 0; f <= 3; f++) {
  416. int8_t pin = fanPin[f];
  417. if (pin >= 0 && !TEST(fanDone, fanBit[f])) {
  418. unsigned char newFanSpeed = TEST(fanState, fanBit[f]) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  419. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  420. digitalWrite(pin, newFanSpeed);
  421. analogWrite(pin, newFanSpeed);
  422. SBI(fanDone, fanBit[f]);
  423. }
  424. }
  425. }
  426. #endif // HAS_AUTO_FAN
  427. //
  428. // Temperature Error Handlers
  429. //
  430. void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) {
  431. static bool killed = false;
  432. if (IsRunning()) {
  433. SERIAL_ERROR_START;
  434. serialprintPGM(serial_msg);
  435. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  436. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  437. }
  438. #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
  439. if (!killed) {
  440. Running = false;
  441. killed = true;
  442. kill(lcd_msg);
  443. }
  444. else
  445. disable_all_heaters(); // paranoia
  446. #endif
  447. }
  448. void Temperature::max_temp_error(uint8_t e) {
  449. #if HOTENDS == 1
  450. UNUSED(e);
  451. #endif
  452. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  453. }
  454. void Temperature::min_temp_error(uint8_t e) {
  455. #if HOTENDS == 1
  456. UNUSED(e);
  457. #endif
  458. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  459. }
  460. float Temperature::get_pid_output(int e) {
  461. #if HOTENDS == 1
  462. UNUSED(e);
  463. #define _HOTEND_TEST true
  464. #else
  465. #define _HOTEND_TEST e == active_extruder
  466. #endif
  467. float pid_output;
  468. #if ENABLED(PIDTEMP)
  469. #if DISABLED(PID_OPENLOOP)
  470. pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
  471. dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
  472. temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
  473. if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
  474. pid_output = BANG_MAX;
  475. pid_reset[HOTEND_INDEX] = true;
  476. }
  477. else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) {
  478. pid_output = 0;
  479. pid_reset[HOTEND_INDEX] = true;
  480. }
  481. else {
  482. if (pid_reset[HOTEND_INDEX]) {
  483. temp_iState[HOTEND_INDEX] = 0.0;
  484. pid_reset[HOTEND_INDEX] = false;
  485. }
  486. pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
  487. temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
  488. temp_iState[HOTEND_INDEX] = constrain(temp_iState[HOTEND_INDEX], temp_iState_min[HOTEND_INDEX], temp_iState_max[HOTEND_INDEX]);
  489. iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
  490. pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
  491. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  492. cTerm[HOTEND_INDEX] = 0;
  493. if (_HOTEND_TEST) {
  494. long e_position = stepper.position(E_AXIS);
  495. if (e_position > last_e_position) {
  496. lpq[lpq_ptr] = e_position - last_e_position;
  497. last_e_position = e_position;
  498. }
  499. else {
  500. lpq[lpq_ptr] = 0;
  501. }
  502. if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
  503. cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
  504. pid_output += cTerm[HOTEND_INDEX];
  505. }
  506. #endif //PID_ADD_EXTRUSION_RATE
  507. if (pid_output > PID_MAX) {
  508. if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  509. pid_output = PID_MAX;
  510. }
  511. else if (pid_output < 0) {
  512. if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  513. pid_output = 0;
  514. }
  515. }
  516. #else
  517. pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
  518. #endif //PID_OPENLOOP
  519. #if ENABLED(PID_DEBUG)
  520. SERIAL_ECHO_START;
  521. SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
  522. SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
  523. SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
  524. SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
  525. SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
  526. SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
  527. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  528. SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
  529. #endif
  530. SERIAL_EOL;
  531. #endif //PID_DEBUG
  532. #else /* PID off */
  533. pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
  534. #endif
  535. return pid_output;
  536. }
  537. #if ENABLED(PIDTEMPBED)
  538. float Temperature::get_pid_output_bed() {
  539. float pid_output;
  540. #if DISABLED(PID_OPENLOOP)
  541. pid_error_bed = target_temperature_bed - current_temperature_bed;
  542. pTerm_bed = bedKp * pid_error_bed;
  543. temp_iState_bed += pid_error_bed;
  544. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  545. iTerm_bed = bedKi * temp_iState_bed;
  546. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  547. temp_dState_bed = current_temperature_bed;
  548. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  549. if (pid_output > MAX_BED_POWER) {
  550. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  551. pid_output = MAX_BED_POWER;
  552. }
  553. else if (pid_output < 0) {
  554. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  555. pid_output = 0;
  556. }
  557. #else
  558. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  559. #endif // PID_OPENLOOP
  560. #if ENABLED(PID_BED_DEBUG)
  561. SERIAL_ECHO_START;
  562. SERIAL_ECHOPGM(" PID_BED_DEBUG ");
  563. SERIAL_ECHOPGM(": Input ");
  564. SERIAL_ECHO(current_temperature_bed);
  565. SERIAL_ECHOPGM(" Output ");
  566. SERIAL_ECHO(pid_output);
  567. SERIAL_ECHOPGM(" pTerm ");
  568. SERIAL_ECHO(pTerm_bed);
  569. SERIAL_ECHOPGM(" iTerm ");
  570. SERIAL_ECHO(iTerm_bed);
  571. SERIAL_ECHOPGM(" dTerm ");
  572. SERIAL_ECHOLN(dTerm_bed);
  573. #endif //PID_BED_DEBUG
  574. return pid_output;
  575. }
  576. #endif //PIDTEMPBED
  577. /**
  578. * Manage heating activities for extruder hot-ends and a heated bed
  579. * - Acquire updated temperature readings
  580. * - Also resets the watchdog timer
  581. * - Invoke thermal runaway protection
  582. * - Manage extruder auto-fan
  583. * - Apply filament width to the extrusion rate (may move)
  584. * - Update the heated bed PID output value
  585. */
  586. void Temperature::manage_heater() {
  587. if (!temp_meas_ready) return;
  588. updateTemperaturesFromRawValues(); // also resets the watchdog
  589. #if ENABLED(HEATER_0_USES_MAX6675)
  590. float ct = current_temperature[0];
  591. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  592. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  593. #endif
  594. #if (ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0) || (ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0) || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
  595. millis_t ms = millis();
  596. #endif
  597. // Loop through all hotends
  598. HOTEND_LOOP() {
  599. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  600. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  601. #endif
  602. float pid_output = get_pid_output(e);
  603. // Check if temperature is within the correct range
  604. soft_pwm[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  605. // Check if the temperature is failing to increase
  606. #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
  607. // Is it time to check this extruder's heater?
  608. if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
  609. // Has it failed to increase enough?
  610. if (degHotend(e) < watch_target_temp[e]) {
  611. // Stop!
  612. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  613. }
  614. else {
  615. // Start again if the target is still far off
  616. start_watching_heater(e);
  617. }
  618. }
  619. #endif // THERMAL_PROTECTION_HOTENDS
  620. // Check if the temperature is failing to increase
  621. #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
  622. // Is it time to check the bed?
  623. if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
  624. // Has it failed to increase enough?
  625. if (degBed() < watch_target_bed_temp) {
  626. // Stop!
  627. _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  628. }
  629. else {
  630. // Start again if the target is still far off
  631. start_watching_bed();
  632. }
  633. }
  634. #endif // THERMAL_PROTECTION_HOTENDS
  635. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  636. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  637. _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
  638. }
  639. #endif
  640. } // Hotends Loop
  641. #if HAS_AUTO_FAN
  642. if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
  643. checkExtruderAutoFans();
  644. next_auto_fan_check_ms = ms + 2500UL;
  645. }
  646. #endif
  647. // Control the extruder rate based on the width sensor
  648. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  649. if (filament_sensor) {
  650. meas_shift_index = filwidth_delay_index1 - meas_delay_cm;
  651. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  652. // Get the delayed info and add 100 to reconstitute to a percent of
  653. // the nominal filament diameter then square it to get an area
  654. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  655. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  656. NOLESS(vm, 0.01);
  657. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  658. }
  659. #endif //FILAMENT_WIDTH_SENSOR
  660. #if DISABLED(PIDTEMPBED)
  661. if (PENDING(ms, next_bed_check_ms)) return;
  662. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  663. #endif
  664. #if TEMP_SENSOR_BED != 0
  665. #if HAS_THERMALLY_PROTECTED_BED
  666. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  667. #endif
  668. #if ENABLED(PIDTEMPBED)
  669. float pid_output = get_pid_output_bed();
  670. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  671. #elif ENABLED(BED_LIMIT_SWITCHING)
  672. // Check if temperature is within the correct band
  673. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  674. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  675. soft_pwm_bed = 0;
  676. else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
  677. soft_pwm_bed = MAX_BED_POWER >> 1;
  678. }
  679. else {
  680. soft_pwm_bed = 0;
  681. WRITE_HEATER_BED(LOW);
  682. }
  683. #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
  684. // Check if temperature is within the correct range
  685. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  686. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  687. }
  688. else {
  689. soft_pwm_bed = 0;
  690. WRITE_HEATER_BED(LOW);
  691. }
  692. #endif
  693. #endif //TEMP_SENSOR_BED != 0
  694. }
  695. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  696. // Derived from RepRap FiveD extruder::getTemperature()
  697. // For hot end temperature measurement.
  698. float Temperature::analog2temp(int raw, uint8_t e) {
  699. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  700. if (e > HOTENDS)
  701. #else
  702. if (e >= HOTENDS)
  703. #endif
  704. {
  705. SERIAL_ERROR_START;
  706. SERIAL_ERROR((int)e);
  707. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  708. kill(PSTR(MSG_KILLED));
  709. return 0.0;
  710. }
  711. #if ENABLED(HEATER_0_USES_MAX6675)
  712. if (e == 0) return 0.25 * raw;
  713. #endif
  714. if (heater_ttbl_map[e] != NULL) {
  715. float celsius = 0;
  716. uint8_t i;
  717. short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
  718. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  719. if (PGM_RD_W((*tt)[i][0]) > raw) {
  720. celsius = PGM_RD_W((*tt)[i - 1][1]) +
  721. (raw - PGM_RD_W((*tt)[i - 1][0])) *
  722. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
  723. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
  724. break;
  725. }
  726. }
  727. // Overflow: Set to last value in the table
  728. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
  729. return celsius;
  730. }
  731. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  732. }
  733. // Derived from RepRap FiveD extruder::getTemperature()
  734. // For bed temperature measurement.
  735. float Temperature::analog2tempBed(int raw) {
  736. #if ENABLED(BED_USES_THERMISTOR)
  737. float celsius = 0;
  738. byte i;
  739. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  740. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  741. celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
  742. (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
  743. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
  744. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
  745. break;
  746. }
  747. }
  748. // Overflow: Set to last value in the table
  749. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
  750. return celsius;
  751. #elif defined(BED_USES_AD595)
  752. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  753. #else
  754. UNUSED(raw);
  755. return 0;
  756. #endif
  757. }
  758. /**
  759. * Get the raw values into the actual temperatures.
  760. * The raw values are created in interrupt context,
  761. * and this function is called from normal context
  762. * as it would block the stepper routine.
  763. */
  764. void Temperature::updateTemperaturesFromRawValues() {
  765. #if ENABLED(HEATER_0_USES_MAX6675)
  766. current_temperature_raw[0] = read_max6675();
  767. #endif
  768. HOTEND_LOOP() {
  769. current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
  770. }
  771. current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
  772. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  773. redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
  774. #endif
  775. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  776. filament_width_meas = analog2widthFil();
  777. #endif
  778. #if ENABLED(USE_WATCHDOG)
  779. // Reset the watchdog after we know we have a temperature measurement.
  780. watchdog_reset();
  781. #endif
  782. CRITICAL_SECTION_START;
  783. temp_meas_ready = false;
  784. CRITICAL_SECTION_END;
  785. }
  786. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  787. // Convert raw Filament Width to millimeters
  788. float Temperature::analog2widthFil() {
  789. return current_raw_filwidth / 16383.0 * 5.0;
  790. //return current_raw_filwidth;
  791. }
  792. // Convert raw Filament Width to a ratio
  793. int Temperature::widthFil_to_size_ratio() {
  794. float temp = filament_width_meas;
  795. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  796. else NOMORE(temp, MEASURED_UPPER_LIMIT);
  797. return filament_width_nominal / temp * 100;
  798. }
  799. #endif
  800. /**
  801. * Initialize the temperature manager
  802. * The manager is implemented by periodic calls to manage_heater()
  803. */
  804. void Temperature::init() {
  805. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  806. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  807. MCUCR = _BV(JTD);
  808. MCUCR = _BV(JTD);
  809. #endif
  810. // Finish init of mult hotend arrays
  811. HOTEND_LOOP() {
  812. // populate with the first value
  813. maxttemp[e] = maxttemp[0];
  814. #if ENABLED(PIDTEMP)
  815. temp_iState_min[e] = 0.0;
  816. temp_iState_max[e] = (PID_INTEGRAL_DRIVE_MAX) / PID_PARAM(Ki, e);
  817. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  818. last_e_position = 0;
  819. #endif
  820. #endif //PIDTEMP
  821. #if ENABLED(PIDTEMPBED)
  822. temp_iState_min_bed = 0.0;
  823. temp_iState_max_bed = (PID_BED_INTEGRAL_DRIVE_MAX) / bedKi;
  824. #endif //PIDTEMPBED
  825. }
  826. #if ENABLED(PIDTEMP) && ENABLED(PID_ADD_EXTRUSION_RATE)
  827. last_e_position = 0;
  828. #endif
  829. #if HAS_HEATER_0
  830. SET_OUTPUT(HEATER_0_PIN);
  831. #endif
  832. #if HAS_HEATER_1
  833. SET_OUTPUT(HEATER_1_PIN);
  834. #endif
  835. #if HAS_HEATER_2
  836. SET_OUTPUT(HEATER_2_PIN);
  837. #endif
  838. #if HAS_HEATER_3
  839. SET_OUTPUT(HEATER_3_PIN);
  840. #endif
  841. #if HAS_HEATER_BED
  842. SET_OUTPUT(HEATER_BED_PIN);
  843. #endif
  844. #if ENABLED(FAST_PWM_FAN) || ENABLED(FAN_SOFT_PWM)
  845. #if HAS_FAN0
  846. SET_OUTPUT(FAN_PIN);
  847. #if ENABLED(FAST_PWM_FAN)
  848. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  849. #endif
  850. #if ENABLED(FAN_SOFT_PWM)
  851. soft_pwm_fan[0] = fanSpeedSoftPwm[0] / 2;
  852. #endif
  853. #endif
  854. #if HAS_FAN1
  855. SET_OUTPUT(FAN1_PIN);
  856. #if ENABLED(FAST_PWM_FAN)
  857. setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  858. #endif
  859. #if ENABLED(FAN_SOFT_PWM)
  860. soft_pwm_fan[1] = fanSpeedSoftPwm[1] / 2;
  861. #endif
  862. #endif
  863. #if HAS_FAN2
  864. SET_OUTPUT(FAN2_PIN);
  865. #if ENABLED(FAST_PWM_FAN)
  866. setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  867. #endif
  868. #if ENABLED(FAN_SOFT_PWM)
  869. soft_pwm_fan[2] = fanSpeedSoftPwm[2] / 2;
  870. #endif
  871. #endif
  872. #endif // FAST_PWM_FAN || FAN_SOFT_PWM
  873. #if ENABLED(HEATER_0_USES_MAX6675)
  874. #if DISABLED(SDSUPPORT)
  875. OUT_WRITE(SCK_PIN, LOW);
  876. OUT_WRITE(MOSI_PIN, HIGH);
  877. OUT_WRITE(MISO_PIN, HIGH);
  878. #else
  879. pinMode(SS_PIN, OUTPUT);
  880. digitalWrite(SS_PIN, HIGH);
  881. #endif
  882. OUT_WRITE(MAX6675_SS, HIGH);
  883. #endif //HEATER_0_USES_MAX6675
  884. #ifdef DIDR2
  885. #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
  886. #else
  887. #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
  888. #endif
  889. // Set analog inputs
  890. ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
  891. DIDR0 = 0;
  892. #ifdef DIDR2
  893. DIDR2 = 0;
  894. #endif
  895. #if HAS_TEMP_0
  896. ANALOG_SELECT(TEMP_0_PIN);
  897. #endif
  898. #if HAS_TEMP_1
  899. ANALOG_SELECT(TEMP_1_PIN);
  900. #endif
  901. #if HAS_TEMP_2
  902. ANALOG_SELECT(TEMP_2_PIN);
  903. #endif
  904. #if HAS_TEMP_3
  905. ANALOG_SELECT(TEMP_3_PIN);
  906. #endif
  907. #if HAS_TEMP_BED
  908. ANALOG_SELECT(TEMP_BED_PIN);
  909. #endif
  910. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  911. ANALOG_SELECT(FILWIDTH_PIN);
  912. #endif
  913. #if HAS_AUTO_FAN_0
  914. pinMode(EXTRUDER_0_AUTO_FAN_PIN, OUTPUT);
  915. #endif
  916. #if HAS_AUTO_FAN_1 && (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  917. pinMode(EXTRUDER_1_AUTO_FAN_PIN, OUTPUT);
  918. #endif
  919. #if HAS_AUTO_FAN_2 && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  920. pinMode(EXTRUDER_2_AUTO_FAN_PIN, OUTPUT);
  921. #endif
  922. #if HAS_AUTO_FAN_3 && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN) && (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  923. pinMode(EXTRUDER_3_AUTO_FAN_PIN, OUTPUT);
  924. #endif
  925. // Use timer0 for temperature measurement
  926. // Interleave temperature interrupt with millies interrupt
  927. OCR0B = 128;
  928. SBI(TIMSK0, OCIE0B);
  929. // Wait for temperature measurement to settle
  930. delay(250);
  931. #define TEMP_MIN_ROUTINE(NR) \
  932. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  933. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  934. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  935. minttemp_raw[NR] += OVERSAMPLENR; \
  936. else \
  937. minttemp_raw[NR] -= OVERSAMPLENR; \
  938. }
  939. #define TEMP_MAX_ROUTINE(NR) \
  940. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  941. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  942. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  943. maxttemp_raw[NR] -= OVERSAMPLENR; \
  944. else \
  945. maxttemp_raw[NR] += OVERSAMPLENR; \
  946. }
  947. #ifdef HEATER_0_MINTEMP
  948. TEMP_MIN_ROUTINE(0);
  949. #endif
  950. #ifdef HEATER_0_MAXTEMP
  951. TEMP_MAX_ROUTINE(0);
  952. #endif
  953. #if HOTENDS > 1
  954. #ifdef HEATER_1_MINTEMP
  955. TEMP_MIN_ROUTINE(1);
  956. #endif
  957. #ifdef HEATER_1_MAXTEMP
  958. TEMP_MAX_ROUTINE(1);
  959. #endif
  960. #if HOTENDS > 2
  961. #ifdef HEATER_2_MINTEMP
  962. TEMP_MIN_ROUTINE(2);
  963. #endif
  964. #ifdef HEATER_2_MAXTEMP
  965. TEMP_MAX_ROUTINE(2);
  966. #endif
  967. #if HOTENDS > 3
  968. #ifdef HEATER_3_MINTEMP
  969. TEMP_MIN_ROUTINE(3);
  970. #endif
  971. #ifdef HEATER_3_MAXTEMP
  972. TEMP_MAX_ROUTINE(3);
  973. #endif
  974. #endif // HOTENDS > 3
  975. #endif // HOTENDS > 2
  976. #endif // HOTENDS > 1
  977. #ifdef BED_MINTEMP
  978. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  979. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  980. bed_minttemp_raw += OVERSAMPLENR;
  981. #else
  982. bed_minttemp_raw -= OVERSAMPLENR;
  983. #endif
  984. }
  985. #endif //BED_MINTEMP
  986. #ifdef BED_MAXTEMP
  987. while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  988. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  989. bed_maxttemp_raw -= OVERSAMPLENR;
  990. #else
  991. bed_maxttemp_raw += OVERSAMPLENR;
  992. #endif
  993. }
  994. #endif //BED_MAXTEMP
  995. }
  996. #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
  997. /**
  998. * Start Heating Sanity Check for hotends that are below
  999. * their target temperature by a configurable margin.
  1000. * This is called when the temperature is set. (M104, M109)
  1001. */
  1002. void Temperature::start_watching_heater(uint8_t e) {
  1003. #if HOTENDS == 1
  1004. UNUSED(e);
  1005. #endif
  1006. if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  1007. watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
  1008. watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
  1009. }
  1010. else
  1011. watch_heater_next_ms[HOTEND_INDEX] = 0;
  1012. }
  1013. #endif
  1014. #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
  1015. /**
  1016. * Start Heating Sanity Check for hotends that are below
  1017. * their target temperature by a configurable margin.
  1018. * This is called when the temperature is set. (M140, M190)
  1019. */
  1020. void Temperature::start_watching_bed() {
  1021. if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
  1022. watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
  1023. watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
  1024. }
  1025. else
  1026. watch_bed_next_ms = 0;
  1027. }
  1028. #endif
  1029. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  1030. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  1031. Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
  1032. millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
  1033. #endif
  1034. #if HAS_THERMALLY_PROTECTED_BED
  1035. Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
  1036. millis_t Temperature::thermal_runaway_bed_timer;
  1037. #endif
  1038. void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  1039. static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
  1040. /**
  1041. SERIAL_ECHO_START;
  1042. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  1043. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
  1044. SERIAL_ECHOPAIR(" ; State:", *state);
  1045. SERIAL_ECHOPAIR(" ; Timer:", *timer);
  1046. SERIAL_ECHOPAIR(" ; Temperature:", temperature);
  1047. SERIAL_ECHOPAIR(" ; Target Temp:", target_temperature);
  1048. SERIAL_EOL;
  1049. */
  1050. int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
  1051. // If the target temperature changes, restart
  1052. if (tr_target_temperature[heater_index] != target_temperature) {
  1053. tr_target_temperature[heater_index] = target_temperature;
  1054. *state = target_temperature > 0 ? TRFirstHeating : TRInactive;
  1055. }
  1056. switch (*state) {
  1057. // Inactive state waits for a target temperature to be set
  1058. case TRInactive: break;
  1059. // When first heating, wait for the temperature to be reached then go to Stable state
  1060. case TRFirstHeating:
  1061. if (temperature < tr_target_temperature[heater_index]) break;
  1062. *state = TRStable;
  1063. // While the temperature is stable watch for a bad temperature
  1064. case TRStable:
  1065. if (temperature < tr_target_temperature[heater_index] - hysteresis_degc && ELAPSED(millis(), *timer))
  1066. *state = TRRunaway;
  1067. else {
  1068. *timer = millis() + period_seconds * 1000UL;
  1069. break;
  1070. }
  1071. case TRRunaway:
  1072. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  1073. }
  1074. }
  1075. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  1076. void Temperature::disable_all_heaters() {
  1077. HOTEND_LOOP() setTargetHotend(0, e);
  1078. setTargetBed(0);
  1079. // If all heaters go down then for sure our print job has stopped
  1080. print_job_timer.stop();
  1081. #define DISABLE_HEATER(NR) { \
  1082. setTargetHotend(0, NR); \
  1083. soft_pwm[NR] = 0; \
  1084. WRITE_HEATER_ ## NR (LOW); \
  1085. }
  1086. #if HAS_TEMP_HOTEND
  1087. setTargetHotend(0, 0);
  1088. soft_pwm[0] = 0;
  1089. WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
  1090. #endif
  1091. #if HOTENDS > 1 && HAS_TEMP_1
  1092. DISABLE_HEATER(1);
  1093. #endif
  1094. #if HOTENDS > 2 && HAS_TEMP_2
  1095. DISABLE_HEATER(2);
  1096. #endif
  1097. #if HOTENDS > 3 && HAS_TEMP_3
  1098. DISABLE_HEATER(3);
  1099. #endif
  1100. #if HAS_TEMP_BED
  1101. target_temperature_bed = 0;
  1102. soft_pwm_bed = 0;
  1103. #if HAS_HEATER_BED
  1104. WRITE_HEATER_BED(LOW);
  1105. #endif
  1106. #endif
  1107. }
  1108. #if ENABLED(HEATER_0_USES_MAX6675)
  1109. #define MAX6675_HEAT_INTERVAL 250u
  1110. #if ENABLED(MAX6675_IS_MAX31855)
  1111. uint32_t max6675_temp = 2000;
  1112. #define MAX6675_ERROR_MASK 7
  1113. #define MAX6675_DISCARD_BITS 18
  1114. #define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
  1115. #else
  1116. uint16_t max6675_temp = 2000;
  1117. #define MAX6675_ERROR_MASK 4
  1118. #define MAX6675_DISCARD_BITS 3
  1119. #define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
  1120. #endif
  1121. int Temperature::read_max6675() {
  1122. static millis_t next_max6675_ms = 0;
  1123. millis_t ms = millis();
  1124. if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
  1125. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  1126. CBI(
  1127. #ifdef PRR
  1128. PRR
  1129. #elif defined(PRR0)
  1130. PRR0
  1131. #endif
  1132. , PRSPI);
  1133. SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
  1134. WRITE(MAX6675_SS, 0); // enable TT_MAX6675
  1135. // ensure 100ns delay - a bit extra is fine
  1136. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1137. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1138. // Read a big-endian temperature value
  1139. max6675_temp = 0;
  1140. for (uint8_t i = sizeof(max6675_temp); i--;) {
  1141. SPDR = 0;
  1142. for (;!TEST(SPSR, SPIF););
  1143. max6675_temp |= SPDR;
  1144. if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
  1145. }
  1146. WRITE(MAX6675_SS, 1); // disable TT_MAX6675
  1147. if (max6675_temp & MAX6675_ERROR_MASK)
  1148. max6675_temp = 4000; // thermocouple open
  1149. else
  1150. max6675_temp >>= MAX6675_DISCARD_BITS;
  1151. return (int)max6675_temp;
  1152. }
  1153. #endif //HEATER_0_USES_MAX6675
  1154. /**
  1155. * Get raw temperatures
  1156. */
  1157. void Temperature::set_current_temp_raw() {
  1158. #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
  1159. current_temperature_raw[0] = raw_temp_value[0];
  1160. #endif
  1161. #if HAS_TEMP_1
  1162. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  1163. redundant_temperature_raw = raw_temp_value[1];
  1164. #else
  1165. current_temperature_raw[1] = raw_temp_value[1];
  1166. #endif
  1167. #if HAS_TEMP_2
  1168. current_temperature_raw[2] = raw_temp_value[2];
  1169. #if HAS_TEMP_3
  1170. current_temperature_raw[3] = raw_temp_value[3];
  1171. #endif
  1172. #endif
  1173. #endif
  1174. current_temperature_bed_raw = raw_temp_bed_value;
  1175. temp_meas_ready = true;
  1176. }
  1177. /**
  1178. * Timer 0 is shared with millies
  1179. * - Manage PWM to all the heaters and fan
  1180. * - Update the raw temperature values
  1181. * - Check new temperature values for MIN/MAX errors
  1182. * - Step the babysteps value for each axis towards 0
  1183. */
  1184. ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
  1185. void Temperature::isr() {
  1186. static unsigned char temp_count = 0;
  1187. static TempState temp_state = StartupDelay;
  1188. static unsigned char pwm_count = _BV(SOFT_PWM_SCALE);
  1189. // Static members for each heater
  1190. #if ENABLED(SLOW_PWM_HEATERS)
  1191. static unsigned char slow_pwm_count = 0;
  1192. #define ISR_STATICS(n) \
  1193. static unsigned char soft_pwm_ ## n; \
  1194. static unsigned char state_heater_ ## n = 0; \
  1195. static unsigned char state_timer_heater_ ## n = 0
  1196. #else
  1197. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1198. #endif
  1199. // Statics per heater
  1200. ISR_STATICS(0);
  1201. #if (HOTENDS > 1) || ENABLED(HEATERS_PARALLEL)
  1202. ISR_STATICS(1);
  1203. #if HOTENDS > 2
  1204. ISR_STATICS(2);
  1205. #if HOTENDS > 3
  1206. ISR_STATICS(3);
  1207. #endif
  1208. #endif
  1209. #endif
  1210. #if HAS_HEATER_BED
  1211. ISR_STATICS(BED);
  1212. #endif
  1213. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1214. static unsigned long raw_filwidth_value = 0;
  1215. #endif
  1216. #if DISABLED(SLOW_PWM_HEATERS)
  1217. /**
  1218. * standard PWM modulation
  1219. */
  1220. if (pwm_count == 0) {
  1221. soft_pwm_0 = soft_pwm[0];
  1222. if (soft_pwm_0 > 0) {
  1223. WRITE_HEATER_0(1);
  1224. }
  1225. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1226. #if HOTENDS > 1
  1227. soft_pwm_1 = soft_pwm[1];
  1228. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1229. #if HOTENDS > 2
  1230. soft_pwm_2 = soft_pwm[2];
  1231. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1232. #if HOTENDS > 3
  1233. soft_pwm_3 = soft_pwm[3];
  1234. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1235. #endif
  1236. #endif
  1237. #endif
  1238. #if HAS_HEATER_BED
  1239. soft_pwm_BED = soft_pwm_bed;
  1240. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1241. #endif
  1242. #if ENABLED(FAN_SOFT_PWM)
  1243. #if HAS_FAN0
  1244. soft_pwm_fan[0] = fanSpeedSoftPwm[0] / 2;
  1245. WRITE_FAN(soft_pwm_fan[0] > 0 ? 1 : 0);
  1246. #endif
  1247. #if HAS_FAN1
  1248. soft_pwm_fan[1] = fanSpeedSoftPwm[1] / 2;
  1249. WRITE_FAN1(soft_pwm_fan[1] > 0 ? 1 : 0);
  1250. #endif
  1251. #if HAS_FAN2
  1252. soft_pwm_fan[2] = fanSpeedSoftPwm[2] / 2;
  1253. WRITE_FAN2(soft_pwm_fan[2] > 0 ? 1 : 0);
  1254. #endif
  1255. #endif
  1256. }
  1257. if (soft_pwm_0 < pwm_count) WRITE_HEATER_0(0);
  1258. #if HOTENDS > 1
  1259. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1260. #if HOTENDS > 2
  1261. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1262. #if HOTENDS > 3
  1263. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1264. #endif
  1265. #endif
  1266. #endif
  1267. #if HAS_HEATER_BED
  1268. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1269. #endif
  1270. #if ENABLED(FAN_SOFT_PWM)
  1271. #if HAS_FAN0
  1272. if (soft_pwm_fan[0] < pwm_count) WRITE_FAN(0);
  1273. #endif
  1274. #if HAS_FAN1
  1275. if (soft_pwm_fan[1] < pwm_count) WRITE_FAN1(0);
  1276. #endif
  1277. #if HAS_FAN2
  1278. if (soft_pwm_fan[2] < pwm_count) WRITE_FAN2(0);
  1279. #endif
  1280. #endif
  1281. pwm_count += _BV(SOFT_PWM_SCALE);
  1282. pwm_count &= 0x7f;
  1283. #else // SLOW_PWM_HEATERS
  1284. /**
  1285. * SLOW PWM HEATERS
  1286. *
  1287. * for heaters drived by relay
  1288. */
  1289. #ifndef MIN_STATE_TIME
  1290. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1291. #endif
  1292. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1293. #define _SLOW_PWM_ROUTINE(NR, src) \
  1294. soft_pwm_ ## NR = src; \
  1295. if (soft_pwm_ ## NR > 0) { \
  1296. if (state_timer_heater_ ## NR == 0) { \
  1297. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1298. state_heater_ ## NR = 1; \
  1299. WRITE_HEATER_ ## NR(1); \
  1300. } \
  1301. } \
  1302. else { \
  1303. if (state_timer_heater_ ## NR == 0) { \
  1304. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1305. state_heater_ ## NR = 0; \
  1306. WRITE_HEATER_ ## NR(0); \
  1307. } \
  1308. }
  1309. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1310. #define PWM_OFF_ROUTINE(NR) \
  1311. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1312. if (state_timer_heater_ ## NR == 0) { \
  1313. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1314. state_heater_ ## NR = 0; \
  1315. WRITE_HEATER_ ## NR (0); \
  1316. } \
  1317. }
  1318. if (slow_pwm_count == 0) {
  1319. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1320. #if HOTENDS > 1
  1321. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1322. #if HOTENDS > 2
  1323. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1324. #if HOTENDS > 3
  1325. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1326. #endif
  1327. #endif
  1328. #endif
  1329. #if HAS_HEATER_BED
  1330. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1331. #endif
  1332. } // slow_pwm_count == 0
  1333. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1334. #if HOTENDS > 1
  1335. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1336. #if HOTENDS > 2
  1337. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1338. #if HOTENDS > 3
  1339. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1340. #endif
  1341. #endif
  1342. #endif
  1343. #if HAS_HEATER_BED
  1344. PWM_OFF_ROUTINE(BED); // BED
  1345. #endif
  1346. #if ENABLED(FAN_SOFT_PWM)
  1347. if (pwm_count == 0) {
  1348. #if HAS_FAN0
  1349. soft_pwm_fan[0] = fanSpeedSoftPwm[0] / 2;
  1350. WRITE_FAN(soft_pwm_fan[0] > 0 ? 1 : 0);
  1351. #endif
  1352. #if HAS_FAN1
  1353. soft_pwm_fan[1] = fanSpeedSoftPwm[1] / 2;
  1354. WRITE_FAN1(soft_pwm_fan[1] > 0 ? 1 : 0);
  1355. #endif
  1356. #if HAS_FAN2
  1357. soft_pwm_fan[2] = fanSpeedSoftPwm[2] / 2;
  1358. WRITE_FAN2(soft_pwm_fan[2] > 0 ? 1 : 0);
  1359. #endif
  1360. }
  1361. #if HAS_FAN0
  1362. if (soft_pwm_fan[0] < pwm_count) WRITE_FAN(0);
  1363. #endif
  1364. #if HAS_FAN1
  1365. if (soft_pwm_fan[1] < pwm_count) WRITE_FAN1(0);
  1366. #endif
  1367. #if HAS_FAN2
  1368. if (soft_pwm_fan[2] < pwm_count) WRITE_FAN2(0);
  1369. #endif
  1370. #endif //FAN_SOFT_PWM
  1371. pwm_count += _BV(SOFT_PWM_SCALE);
  1372. pwm_count &= 0x7f;
  1373. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1374. if ((pwm_count % 64) == 0) {
  1375. slow_pwm_count++;
  1376. slow_pwm_count &= 0x7f;
  1377. // EXTRUDER 0
  1378. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1379. #if HOTENDS > 1 // EXTRUDER 1
  1380. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1381. #if HOTENDS > 2 // EXTRUDER 2
  1382. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1383. #if HOTENDS > 3 // EXTRUDER 3
  1384. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1385. #endif
  1386. #endif
  1387. #endif
  1388. #if HAS_HEATER_BED
  1389. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1390. #endif
  1391. } // (pwm_count % 64) == 0
  1392. #endif // SLOW_PWM_HEATERS
  1393. #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
  1394. #ifdef MUX5
  1395. #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1396. #else
  1397. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1398. #endif
  1399. // Prepare or measure a sensor, each one every 12th frame
  1400. switch (temp_state) {
  1401. case PrepareTemp_0:
  1402. #if HAS_TEMP_0
  1403. START_ADC(TEMP_0_PIN);
  1404. #endif
  1405. lcd_buttons_update();
  1406. temp_state = MeasureTemp_0;
  1407. break;
  1408. case MeasureTemp_0:
  1409. #if HAS_TEMP_0
  1410. raw_temp_value[0] += ADC;
  1411. #endif
  1412. temp_state = PrepareTemp_BED;
  1413. break;
  1414. case PrepareTemp_BED:
  1415. #if HAS_TEMP_BED
  1416. START_ADC(TEMP_BED_PIN);
  1417. #endif
  1418. lcd_buttons_update();
  1419. temp_state = MeasureTemp_BED;
  1420. break;
  1421. case MeasureTemp_BED:
  1422. #if HAS_TEMP_BED
  1423. raw_temp_bed_value += ADC;
  1424. #endif
  1425. temp_state = PrepareTemp_1;
  1426. break;
  1427. case PrepareTemp_1:
  1428. #if HAS_TEMP_1
  1429. START_ADC(TEMP_1_PIN);
  1430. #endif
  1431. lcd_buttons_update();
  1432. temp_state = MeasureTemp_1;
  1433. break;
  1434. case MeasureTemp_1:
  1435. #if HAS_TEMP_1
  1436. raw_temp_value[1] += ADC;
  1437. #endif
  1438. temp_state = PrepareTemp_2;
  1439. break;
  1440. case PrepareTemp_2:
  1441. #if HAS_TEMP_2
  1442. START_ADC(TEMP_2_PIN);
  1443. #endif
  1444. lcd_buttons_update();
  1445. temp_state = MeasureTemp_2;
  1446. break;
  1447. case MeasureTemp_2:
  1448. #if HAS_TEMP_2
  1449. raw_temp_value[2] += ADC;
  1450. #endif
  1451. temp_state = PrepareTemp_3;
  1452. break;
  1453. case PrepareTemp_3:
  1454. #if HAS_TEMP_3
  1455. START_ADC(TEMP_3_PIN);
  1456. #endif
  1457. lcd_buttons_update();
  1458. temp_state = MeasureTemp_3;
  1459. break;
  1460. case MeasureTemp_3:
  1461. #if HAS_TEMP_3
  1462. raw_temp_value[3] += ADC;
  1463. #endif
  1464. temp_state = Prepare_FILWIDTH;
  1465. break;
  1466. case Prepare_FILWIDTH:
  1467. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1468. START_ADC(FILWIDTH_PIN);
  1469. #endif
  1470. lcd_buttons_update();
  1471. temp_state = Measure_FILWIDTH;
  1472. break;
  1473. case Measure_FILWIDTH:
  1474. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1475. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1476. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1477. raw_filwidth_value -= (raw_filwidth_value >> 7); //multiply raw_filwidth_value by 127/128
  1478. raw_filwidth_value += ((unsigned long)ADC << 7); //add new ADC reading
  1479. }
  1480. #endif
  1481. temp_state = PrepareTemp_0;
  1482. temp_count++;
  1483. break;
  1484. case StartupDelay:
  1485. temp_state = PrepareTemp_0;
  1486. break;
  1487. // default:
  1488. // SERIAL_ERROR_START;
  1489. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1490. // break;
  1491. } // switch(temp_state)
  1492. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1493. // Update the raw values if they've been read. Else we could be updating them during reading.
  1494. if (!temp_meas_ready) set_current_temp_raw();
  1495. // Filament Sensor - can be read any time since IIR filtering is used
  1496. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1497. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1498. #endif
  1499. temp_count = 0;
  1500. for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
  1501. raw_temp_bed_value = 0;
  1502. #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
  1503. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1504. #define GE0 <=
  1505. #else
  1506. #define GE0 >=
  1507. #endif
  1508. if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
  1509. if (minttemp_raw[0] GE0 current_temperature_raw[0] && !is_preheating(0) && target_temperature[0] > 0.0f) {
  1510. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1511. if (++consecutive_low_temperature_error[0] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1512. #endif
  1513. min_temp_error(0);
  1514. }
  1515. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1516. else
  1517. consecutive_low_temperature_error[0] = 0;
  1518. #endif
  1519. #endif
  1520. #if HAS_TEMP_1 && HOTENDS > 1
  1521. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1522. #define GE1 <=
  1523. #else
  1524. #define GE1 >=
  1525. #endif
  1526. if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
  1527. if (minttemp_raw[1] GE1 current_temperature_raw[1] && !is_preheating(1) && target_temperature[1] > 0.0f) {
  1528. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1529. if (++consecutive_low_temperature_error[1] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1530. #endif
  1531. min_temp_error(1);
  1532. }
  1533. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1534. else
  1535. consecutive_low_temperature_error[1] = 0;
  1536. #endif
  1537. #endif // TEMP_SENSOR_1
  1538. #if HAS_TEMP_2 && HOTENDS > 2
  1539. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1540. #define GE2 <=
  1541. #else
  1542. #define GE2 >=
  1543. #endif
  1544. if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
  1545. if (minttemp_raw[2] GE2 current_temperature_raw[2] && !is_preheating(2) && target_temperature[2] > 0.0f) {
  1546. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1547. if (++consecutive_low_temperature_error[2] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1548. #endif
  1549. min_temp_error(2);
  1550. }
  1551. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1552. else
  1553. consecutive_low_temperature_error[2] = 0;
  1554. #endif
  1555. #endif // TEMP_SENSOR_2
  1556. #if HAS_TEMP_3 && HOTENDS > 3
  1557. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1558. #define GE3 <=
  1559. #else
  1560. #define GE3 >=
  1561. #endif
  1562. if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
  1563. if (minttemp_raw[3] GE3 current_temperature_raw[3] && !is_preheating(3) && target_temperature[3] > 0.0f) {
  1564. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1565. if (++consecutive_low_temperature_error[3] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1566. #endif
  1567. min_temp_error(3);
  1568. }
  1569. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1570. else
  1571. consecutive_low_temperature_error[3] = 0;
  1572. #endif
  1573. #endif // TEMP_SENSOR_3
  1574. #if HAS_TEMP_BED
  1575. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1576. #define GEBED <=
  1577. #else
  1578. #define GEBED >=
  1579. #endif
  1580. if (current_temperature_bed_raw GEBED bed_maxttemp_raw) _temp_error(-1, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP_BED));
  1581. if (bed_minttemp_raw GEBED current_temperature_bed_raw) _temp_error(-1, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP_BED));
  1582. #endif
  1583. } // temp_count >= OVERSAMPLENR
  1584. #if ENABLED(BABYSTEPPING)
  1585. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
  1586. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1587. if (curTodo > 0) {
  1588. stepper.babystep(axis,/*fwd*/true);
  1589. babystepsTodo[axis]--; //fewer to do next time
  1590. }
  1591. else if (curTodo < 0) {
  1592. stepper.babystep(axis,/*fwd*/false);
  1593. babystepsTodo[axis]++; //fewer to do next time
  1594. }
  1595. }
  1596. #endif //BABYSTEPPING
  1597. }