My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G33.cpp 23KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../inc/MarlinConfig.h"
  23. #if ENABLED(DELTA_AUTO_CALIBRATION)
  24. #include "../gcode.h"
  25. #include "../../module/delta.h"
  26. #include "../../module/motion.h"
  27. #include "../../module/stepper.h"
  28. #include "../../module/endstops.h"
  29. #include "../../lcd/ultralcd.h"
  30. #if HAS_BED_PROBE
  31. #include "../../module/probe.h"
  32. #endif
  33. #if HAS_MULTI_HOTEND
  34. #include "../../module/tool_change.h"
  35. #endif
  36. #if HAS_LEVELING
  37. #include "../../feature/bedlevel/bedlevel.h"
  38. #endif
  39. constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
  40. _4P_STEP = _7P_STEP * 2, // 4-point step
  41. NPP = _7P_STEP * 6; // number of calibration points on the radius
  42. enum CalEnum : char { // the 7 main calibration points - add definitions if needed
  43. CEN = 0,
  44. __A = 1,
  45. _AB = __A + _7P_STEP,
  46. __B = _AB + _7P_STEP,
  47. _BC = __B + _7P_STEP,
  48. __C = _BC + _7P_STEP,
  49. _CA = __C + _7P_STEP,
  50. };
  51. #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
  52. #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
  53. #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
  54. #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
  55. #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
  56. #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
  57. TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index = active_extruder);
  58. float lcd_probe_pt(const xy_pos_t &xy);
  59. void ac_home() {
  60. endstops.enable(true);
  61. home_delta();
  62. endstops.not_homing();
  63. }
  64. void ac_setup(const bool reset_bed) {
  65. TERN_(HAS_MULTI_HOTEND, tool_change(0, true));
  66. planner.synchronize();
  67. remember_feedrate_scaling_off();
  68. #if HAS_LEVELING
  69. if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid
  70. #endif
  71. }
  72. void ac_cleanup(TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index)) {
  73. TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height));
  74. TERN_(HAS_BED_PROBE, probe.stow());
  75. restore_feedrate_and_scaling();
  76. TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, true));
  77. }
  78. void print_signed_float(PGM_P const prefix, const float &f) {
  79. SERIAL_ECHOPGM(" ");
  80. serialprintPGM(prefix);
  81. SERIAL_CHAR(':');
  82. if (f >= 0) SERIAL_CHAR('+');
  83. SERIAL_ECHO_F(f, 2);
  84. }
  85. /**
  86. * - Print the delta settings
  87. */
  88. static void print_calibration_settings(const bool end_stops, const bool tower_angles) {
  89. SERIAL_ECHOPAIR(".Height:", delta_height);
  90. if (end_stops) {
  91. print_signed_float(PSTR("Ex"), delta_endstop_adj.a);
  92. print_signed_float(PSTR("Ey"), delta_endstop_adj.b);
  93. print_signed_float(PSTR("Ez"), delta_endstop_adj.c);
  94. }
  95. if (end_stops && tower_angles) {
  96. SERIAL_ECHOPAIR(" Radius:", delta_radius);
  97. SERIAL_EOL();
  98. SERIAL_CHAR('.');
  99. SERIAL_ECHO_SP(13);
  100. }
  101. if (tower_angles) {
  102. print_signed_float(PSTR("Tx"), delta_tower_angle_trim.a);
  103. print_signed_float(PSTR("Ty"), delta_tower_angle_trim.b);
  104. print_signed_float(PSTR("Tz"), delta_tower_angle_trim.c);
  105. }
  106. if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
  107. SERIAL_ECHOPAIR(" Radius:", delta_radius);
  108. }
  109. SERIAL_EOL();
  110. }
  111. /**
  112. * - Print the probe results
  113. */
  114. static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
  115. SERIAL_ECHOPGM(". ");
  116. print_signed_float(PSTR("c"), z_pt[CEN]);
  117. if (tower_points) {
  118. print_signed_float(PSTR(" x"), z_pt[__A]);
  119. print_signed_float(PSTR(" y"), z_pt[__B]);
  120. print_signed_float(PSTR(" z"), z_pt[__C]);
  121. }
  122. if (tower_points && opposite_points) {
  123. SERIAL_EOL();
  124. SERIAL_CHAR('.');
  125. SERIAL_ECHO_SP(13);
  126. }
  127. if (opposite_points) {
  128. print_signed_float(PSTR("yz"), z_pt[_BC]);
  129. print_signed_float(PSTR("zx"), z_pt[_CA]);
  130. print_signed_float(PSTR("xy"), z_pt[_AB]);
  131. }
  132. SERIAL_EOL();
  133. }
  134. /**
  135. * - Calculate the standard deviation from the zero plane
  136. */
  137. static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) {
  138. if (!_0p_cal) {
  139. float S2 = sq(z_pt[CEN]);
  140. int16_t N = 1;
  141. if (!_1p_cal) { // std dev from zero plane
  142. LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) {
  143. S2 += sq(z_pt[rad]);
  144. N++;
  145. }
  146. return LROUND(SQRT(S2 / N) * 1000.0f) / 1000.0f + 0.00001f;
  147. }
  148. }
  149. return 0.00001f;
  150. }
  151. /**
  152. * - Probe a point
  153. */
  154. static float calibration_probe(const xy_pos_t &xy, const bool stow) {
  155. #if HAS_BED_PROBE
  156. return probe.probe_at_point(xy, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, true, false);
  157. #else
  158. UNUSED(stow);
  159. return lcd_probe_pt(xy);
  160. #endif
  161. }
  162. /**
  163. * - Probe a grid
  164. */
  165. static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
  166. const bool _0p_calibration = probe_points == 0,
  167. _1p_calibration = probe_points == 1 || probe_points == -1,
  168. _4p_calibration = probe_points == 2,
  169. _4p_opposite_points = _4p_calibration && !towers_set,
  170. _7p_calibration = probe_points >= 3,
  171. _7p_no_intermediates = probe_points == 3,
  172. _7p_1_intermediates = probe_points == 4,
  173. _7p_2_intermediates = probe_points == 5,
  174. _7p_4_intermediates = probe_points == 6,
  175. _7p_6_intermediates = probe_points == 7,
  176. _7p_8_intermediates = probe_points == 8,
  177. _7p_11_intermediates = probe_points == 9,
  178. _7p_14_intermediates = probe_points == 10,
  179. _7p_intermed_points = probe_points >= 4,
  180. _7p_6_center = probe_points >= 5 && probe_points <= 7,
  181. _7p_9_center = probe_points >= 8;
  182. LOOP_CAL_ALL(rad) z_pt[rad] = 0.0f;
  183. if (!_0p_calibration) {
  184. const float dcr = delta_calibration_radius();
  185. if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
  186. const xy_pos_t center{0};
  187. z_pt[CEN] += calibration_probe(center, stow_after_each);
  188. if (isnan(z_pt[CEN])) return false;
  189. }
  190. if (_7p_calibration) { // probe extra center points
  191. const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0f : _7p_6_center ? float(_CA) : float(__C),
  192. steps = _7p_9_center ? _4P_STEP / 3.0f : _7p_6_center ? _7P_STEP : _4P_STEP;
  193. I_LOOP_CAL_PT(rad, start, steps) {
  194. const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
  195. r = dcr * 0.1;
  196. const xy_pos_t vec = { cos(a), sin(a) };
  197. z_pt[CEN] += calibration_probe(vec * r, stow_after_each);
  198. if (isnan(z_pt[CEN])) return false;
  199. }
  200. z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
  201. }
  202. if (!_1p_calibration) { // probe the radius
  203. const CalEnum start = _4p_opposite_points ? _AB : __A;
  204. const float steps = _7p_14_intermediates ? _7P_STEP / 15.0f : // 15r * 6 + 10c = 100
  205. _7p_11_intermediates ? _7P_STEP / 12.0f : // 12r * 6 + 9c = 81
  206. _7p_8_intermediates ? _7P_STEP / 9.0f : // 9r * 6 + 10c = 64
  207. _7p_6_intermediates ? _7P_STEP / 7.0f : // 7r * 6 + 7c = 49
  208. _7p_4_intermediates ? _7P_STEP / 5.0f : // 5r * 6 + 6c = 36
  209. _7p_2_intermediates ? _7P_STEP / 3.0f : // 3r * 6 + 7c = 25
  210. _7p_1_intermediates ? _7P_STEP / 2.0f : // 2r * 6 + 4c = 16
  211. _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
  212. _4P_STEP; // .5r * 6 + 1c = 4
  213. bool zig_zag = true;
  214. F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) {
  215. const int8_t offset = _7p_9_center ? 2 : 0;
  216. for (int8_t circle = 0; circle <= offset; circle++) {
  217. const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
  218. r = dcr * (1 - 0.1 * (zig_zag ? offset - circle : circle)),
  219. interpol = FMOD(rad, 1);
  220. const xy_pos_t vec = { cos(a), sin(a) };
  221. const float z_temp = calibration_probe(vec * r, stow_after_each);
  222. if (isnan(z_temp)) return false;
  223. // split probe point to neighbouring calibration points
  224. z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
  225. z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
  226. }
  227. zig_zag = !zig_zag;
  228. }
  229. if (_7p_intermed_points)
  230. LOOP_CAL_RAD(rad)
  231. z_pt[rad] /= _7P_STEP / steps;
  232. do_blocking_move_to_xy(0.0f, 0.0f);
  233. }
  234. }
  235. return true;
  236. }
  237. /**
  238. * kinematics routines and auto tune matrix scaling parameters:
  239. * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
  240. * - formulae for approximative forward kinematics in the end-stop displacement matrix
  241. * - definition of the matrix scaling parameters
  242. */
  243. static void reverse_kinematics_probe_points(float z_pt[NPP + 1], abc_float_t mm_at_pt_axis[NPP + 1]) {
  244. xyz_pos_t pos{0};
  245. const float dcr = delta_calibration_radius();
  246. LOOP_CAL_ALL(rad) {
  247. const float a = RADIANS(210 + (360 / NPP) * (rad - 1)),
  248. r = (rad == CEN ? 0.0f : dcr);
  249. pos.set(cos(a) * r, sin(a) * r, z_pt[rad]);
  250. inverse_kinematics(pos);
  251. mm_at_pt_axis[rad] = delta;
  252. }
  253. }
  254. static void forward_kinematics_probe_points(abc_float_t mm_at_pt_axis[NPP + 1], float z_pt[NPP + 1]) {
  255. const float r_quot = delta_calibration_radius() / delta_radius;
  256. #define ZPP(N,I,A) (((1.0f + r_quot * (N)) / 3.0f) * mm_at_pt_axis[I].A)
  257. #define Z00(I, A) ZPP( 0, I, A)
  258. #define Zp1(I, A) ZPP(+1, I, A)
  259. #define Zm1(I, A) ZPP(-1, I, A)
  260. #define Zp2(I, A) ZPP(+2, I, A)
  261. #define Zm2(I, A) ZPP(-2, I, A)
  262. z_pt[CEN] = Z00(CEN, a) + Z00(CEN, b) + Z00(CEN, c);
  263. z_pt[__A] = Zp2(__A, a) + Zm1(__A, b) + Zm1(__A, c);
  264. z_pt[__B] = Zm1(__B, a) + Zp2(__B, b) + Zm1(__B, c);
  265. z_pt[__C] = Zm1(__C, a) + Zm1(__C, b) + Zp2(__C, c);
  266. z_pt[_BC] = Zm2(_BC, a) + Zp1(_BC, b) + Zp1(_BC, c);
  267. z_pt[_CA] = Zp1(_CA, a) + Zm2(_CA, b) + Zp1(_CA, c);
  268. z_pt[_AB] = Zp1(_AB, a) + Zp1(_AB, b) + Zm2(_AB, c);
  269. }
  270. static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], abc_float_t delta_e, const float delta_r, abc_float_t delta_t) {
  271. const float z_center = z_pt[CEN];
  272. abc_float_t diff_mm_at_pt_axis[NPP + 1], new_mm_at_pt_axis[NPP + 1];
  273. reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis);
  274. delta_radius += delta_r;
  275. delta_tower_angle_trim += delta_t;
  276. recalc_delta_settings();
  277. reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis);
  278. LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad] -= new_mm_at_pt_axis[rad] + delta_e;
  279. forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt);
  280. LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center;
  281. z_pt[CEN] = z_center;
  282. delta_radius -= delta_r;
  283. delta_tower_angle_trim -= delta_t;
  284. recalc_delta_settings();
  285. }
  286. static float auto_tune_h() {
  287. const float r_quot = delta_calibration_radius() / delta_radius;
  288. return RECIPROCAL(r_quot / (2.0f / 3.0f)); // (2/3)/CR
  289. }
  290. static float auto_tune_r() {
  291. constexpr float diff = 0.01f, delta_r = diff;
  292. float r_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
  293. abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
  294. calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
  295. r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0f;
  296. r_fac = diff / r_fac / 3.0f; // 1/(3*delta_Z)
  297. return r_fac;
  298. }
  299. static float auto_tune_a() {
  300. constexpr float diff = 0.01f, delta_r = 0.0f;
  301. float a_fac = 0.0f, z_pt[NPP + 1] = { 0.0f };
  302. abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f };
  303. delta_t.reset();
  304. LOOP_XYZ(axis) {
  305. delta_t[axis] = diff;
  306. calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t);
  307. delta_t[axis] = 0;
  308. a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0f;
  309. a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0f;
  310. }
  311. a_fac = diff / a_fac / 3.0f; // 1/(3*delta_Z)
  312. return a_fac;
  313. }
  314. /**
  315. * G33 - Delta '1-4-7-point' Auto-Calibration
  316. * Calibrate height, z_offset, endstops, delta radius, and tower angles.
  317. *
  318. * Parameters:
  319. *
  320. * Pn Number of probe points:
  321. * P0 Normalizes calibration.
  322. * P1 Calibrates height only with center probe.
  323. * P2 Probe center and towers. Calibrate height, endstops and delta radius.
  324. * P3 Probe all positions: center, towers and opposite towers. Calibrate all.
  325. * P4-P10 Probe all positions at different intermediate locations and average them.
  326. *
  327. * T Don't calibrate tower angle corrections
  328. *
  329. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  330. *
  331. * Fn Force to run at least n iterations and take the best result
  332. *
  333. * Vn Verbose level:
  334. * V0 Dry-run mode. Report settings and probe results. No calibration.
  335. * V1 Report start and end settings only
  336. * V2 Report settings at each iteration
  337. * V3 Report settings and probe results
  338. *
  339. * E Engage the probe for each point
  340. */
  341. void GcodeSuite::G33() {
  342. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  343. if (!WITHIN(probe_points, 0, 10)) {
  344. SERIAL_ECHOLNPGM("?(P)oints implausible (0-10).");
  345. return;
  346. }
  347. const bool towers_set = !parser.seen('T');
  348. const float calibration_precision = parser.floatval('C', 0.0f);
  349. if (calibration_precision < 0) {
  350. SERIAL_ECHOLNPGM("?(C)alibration precision implausible (>=0).");
  351. return;
  352. }
  353. const int8_t force_iterations = parser.intval('F', 0);
  354. if (!WITHIN(force_iterations, 0, 30)) {
  355. SERIAL_ECHOLNPGM("?(F)orce iteration implausible (0-30).");
  356. return;
  357. }
  358. const int8_t verbose_level = parser.byteval('V', 1);
  359. if (!WITHIN(verbose_level, 0, 3)) {
  360. SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-3).");
  361. return;
  362. }
  363. const bool stow_after_each = parser.seen('E');
  364. const bool _0p_calibration = probe_points == 0,
  365. _1p_calibration = probe_points == 1 || probe_points == -1,
  366. _4p_calibration = probe_points == 2,
  367. _4p_opposite_points = _4p_calibration && !towers_set,
  368. _7p_9_center = probe_points >= 8,
  369. _tower_results = (_4p_calibration && towers_set) || probe_points >= 3,
  370. _opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3,
  371. _endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0,
  372. _angle_results = probe_points >= 3 && towers_set;
  373. int8_t iterations = 0;
  374. float test_precision,
  375. zero_std_dev = (verbose_level ? 999.0f : 0.0f), // 0.0 in dry-run mode : forced end
  376. zero_std_dev_min = zero_std_dev,
  377. zero_std_dev_old = zero_std_dev,
  378. h_factor, r_factor, a_factor,
  379. r_old = delta_radius,
  380. h_old = delta_height;
  381. abc_pos_t e_old = delta_endstop_adj, a_old = delta_tower_angle_trim;
  382. SERIAL_ECHOLNPGM("G33 Auto Calibrate");
  383. const float dcr = delta_calibration_radius();
  384. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  385. LOOP_CAL_RAD(axis) {
  386. const float a = RADIANS(210 + (360 / NPP) * (axis - 1));
  387. if (!position_is_reachable(cos(a) * dcr, sin(a) * dcr)) {
  388. SERIAL_ECHOLNPGM("?Bed calibration radius implausible.");
  389. return;
  390. }
  391. }
  392. }
  393. // Report settings
  394. PGM_P checkingac = PSTR("Checking... AC");
  395. serialprintPGM(checkingac);
  396. if (verbose_level == 0) SERIAL_ECHOPGM(" (DRY-RUN)");
  397. SERIAL_EOL();
  398. ui.set_status_P(checkingac);
  399. print_calibration_settings(_endstop_results, _angle_results);
  400. ac_setup(!_0p_calibration && !_1p_calibration);
  401. if (!_0p_calibration) ac_home();
  402. do { // start iterations
  403. float z_at_pt[NPP + 1] = { 0.0f };
  404. test_precision = zero_std_dev_old != 999.0f ? (zero_std_dev + zero_std_dev_old) / 2.0f : zero_std_dev;
  405. iterations++;
  406. // Probe the points
  407. zero_std_dev_old = zero_std_dev;
  408. if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each)) {
  409. SERIAL_ECHOLNPGM("Correct delta settings with M665 and M666");
  410. return ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index));
  411. }
  412. zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points);
  413. // Solve matrices
  414. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  415. #if !HAS_BED_PROBE
  416. test_precision = 0.0f; // forced end
  417. #endif
  418. if (zero_std_dev < zero_std_dev_min) {
  419. // set roll-back point
  420. e_old = delta_endstop_adj;
  421. r_old = delta_radius;
  422. h_old = delta_height;
  423. a_old = delta_tower_angle_trim;
  424. }
  425. abc_float_t e_delta = { 0.0f }, t_delta = { 0.0f };
  426. float r_delta = 0.0f;
  427. /**
  428. * convergence matrices:
  429. * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for
  430. * - definition of the matrix scaling parameters
  431. * - matrices for 4 and 7 point calibration
  432. */
  433. #define ZP(N,I) ((N) * z_at_pt[I] / 4.0f) // 4.0 = divider to normalize to integers
  434. #define Z12(I) ZP(12, I)
  435. #define Z4(I) ZP(4, I)
  436. #define Z2(I) ZP(2, I)
  437. #define Z1(I) ZP(1, I)
  438. #define Z0(I) ZP(0, I)
  439. // calculate factors
  440. if (_7p_9_center) calibration_radius_factor = 0.9f;
  441. h_factor = auto_tune_h();
  442. r_factor = auto_tune_r();
  443. a_factor = auto_tune_a();
  444. calibration_radius_factor = 1.0f;
  445. switch (probe_points) {
  446. case 0:
  447. test_precision = 0.0f; // forced end
  448. break;
  449. case 1:
  450. test_precision = 0.0f; // forced end
  451. LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN);
  452. break;
  453. case 2:
  454. if (towers_set) { // see 4 point calibration (towers) matrix
  455. e_delta.set((+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN),
  456. (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN),
  457. (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN));
  458. r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor;
  459. }
  460. else { // see 4 point calibration (opposites) matrix
  461. e_delta.set((-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
  462. (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN),
  463. (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN));
  464. r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor;
  465. }
  466. break;
  467. default: // see 7 point calibration (towers & opposites) matrix
  468. e_delta.set((+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
  469. (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN),
  470. (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN));
  471. r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor;
  472. if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix
  473. t_delta.set((+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor,
  474. (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor,
  475. (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor);
  476. }
  477. break;
  478. }
  479. delta_endstop_adj += e_delta;
  480. delta_radius += r_delta;
  481. delta_tower_angle_trim += t_delta;
  482. }
  483. else if (zero_std_dev >= test_precision) {
  484. // roll back
  485. delta_endstop_adj = e_old;
  486. delta_radius = r_old;
  487. delta_height = h_old;
  488. delta_tower_angle_trim = a_old;
  489. }
  490. if (verbose_level != 0) { // !dry run
  491. // Normalize angles to least-squares
  492. if (_angle_results) {
  493. float a_sum = 0.0f;
  494. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  495. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f;
  496. }
  497. // adjust delta_height and endstops by the max amount
  498. const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c);
  499. delta_height -= z_temp;
  500. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  501. }
  502. recalc_delta_settings();
  503. NOMORE(zero_std_dev_min, zero_std_dev);
  504. // print report
  505. if (verbose_level == 3)
  506. print_calibration_results(z_at_pt, _tower_results, _opposite_results);
  507. if (verbose_level != 0) { // !dry run
  508. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  509. SERIAL_ECHOPGM("Calibration OK");
  510. SERIAL_ECHO_SP(32);
  511. #if HAS_BED_PROBE
  512. if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration)
  513. SERIAL_ECHOPGM("rolling back.");
  514. else
  515. #endif
  516. {
  517. SERIAL_ECHOPAIR_F("std dev:", zero_std_dev_min, 3);
  518. }
  519. SERIAL_EOL();
  520. char mess[21];
  521. strcpy_P(mess, PSTR("Calibration sd:"));
  522. if (zero_std_dev_min < 1)
  523. sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev_min * 1000.0f));
  524. else
  525. sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev_min));
  526. ui.set_status(mess);
  527. print_calibration_settings(_endstop_results, _angle_results);
  528. SERIAL_ECHOLNPGM("Save with M500 and/or copy to Configuration.h");
  529. }
  530. else { // !end iterations
  531. char mess[15];
  532. if (iterations < 31)
  533. sprintf_P(mess, PSTR("Iteration : %02i"), (unsigned int)iterations);
  534. else
  535. strcpy_P(mess, PSTR("No convergence"));
  536. SERIAL_ECHO(mess);
  537. SERIAL_ECHO_SP(32);
  538. SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
  539. ui.set_status(mess);
  540. if (verbose_level > 1)
  541. print_calibration_settings(_endstop_results, _angle_results);
  542. }
  543. }
  544. else { // dry run
  545. PGM_P enddryrun = PSTR("End DRY-RUN");
  546. serialprintPGM(enddryrun);
  547. SERIAL_ECHO_SP(35);
  548. SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3);
  549. char mess[21];
  550. strcpy_P(mess, enddryrun);
  551. strcpy_P(&mess[11], PSTR(" sd:"));
  552. if (zero_std_dev < 1)
  553. sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev * 1000.0f));
  554. else
  555. sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev));
  556. ui.set_status(mess);
  557. }
  558. ac_home();
  559. }
  560. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  561. ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index));
  562. }
  563. #endif // DELTA_AUTO_CALIBRATION