My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 58KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "ConfigurationStore.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #if DIGIPOTSS_PIN > -1
  35. #include <SPI.h>
  36. #endif
  37. #define VERSION_STRING "1.0.0"
  38. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  39. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  40. //Implemented Codes
  41. //-------------------
  42. // G0 -> G1
  43. // G1 - Coordinated Movement X Y Z E
  44. // G2 - CW ARC
  45. // G3 - CCW ARC
  46. // G4 - Dwell S<seconds> or P<milliseconds>
  47. // G10 - retract filament according to settings of M207
  48. // G11 - retract recover filament according to settings of M208
  49. // G28 - Home all Axis
  50. // G90 - Use Absolute Coordinates
  51. // G91 - Use Relative Coordinates
  52. // G92 - Set current position to cordinates given
  53. //RepRap M Codes
  54. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  55. // M1 - Same as M0
  56. // M104 - Set extruder target temp
  57. // M105 - Read current temp
  58. // M106 - Fan on
  59. // M107 - Fan off
  60. // M109 - Wait for extruder current temp to reach target temp.
  61. // M114 - Display current position
  62. //Custom M Codes
  63. // M17 - Enable/Power all stepper motors
  64. // M18 - Disable all stepper motors; same as M84
  65. // M20 - List SD card
  66. // M21 - Init SD card
  67. // M22 - Release SD card
  68. // M23 - Select SD file (M23 filename.g)
  69. // M24 - Start/resume SD print
  70. // M25 - Pause SD print
  71. // M26 - Set SD position in bytes (M26 S12345)
  72. // M27 - Report SD print status
  73. // M28 - Start SD write (M28 filename.g)
  74. // M29 - Stop SD write
  75. // M30 - Delete file from SD (M30 filename.g)
  76. // M31 - Output time since last M109 or SD card start to serial
  77. // M42 - Change pin status via gcode
  78. // M80 - Turn on Power Supply
  79. // M81 - Turn off Power Supply
  80. // M82 - Set E codes absolute (default)
  81. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  82. // M84 - Disable steppers until next move,
  83. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  84. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  85. // M92 - Set axis_steps_per_unit - same syntax as G92
  86. // M114 - Output current position to serial port
  87. // M115 - Capabilities string
  88. // M117 - display message
  89. // M119 - Output Endstop status to serial port
  90. // M140 - Set bed target temp
  91. // M190 - Wait for bed current temp to reach target temp.
  92. // M200 - Set filament diameter
  93. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  94. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  95. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  96. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  97. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  98. // M206 - set additional homeing offset
  99. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  100. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  101. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  102. // M220 S<factor in percent>- set speed factor override percentage
  103. // M221 S<factor in percent>- set extrude factor override percentage
  104. // M240 - Trigger a camera to take a photograph
  105. // M301 - Set PID parameters P I and D
  106. // M302 - Allow cold extrudes
  107. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  108. // M304 - Set bed PID parameters P I and D
  109. // M400 - Finish all moves
  110. // M500 - stores paramters in EEPROM
  111. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  112. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  113. // M503 - print the current settings (from memory not from eeprom)
  114. // M907 - Set digital trimpot motor current using axis codes.
  115. // M908 - Control digital trimpot directly.
  116. // M350 - Set microstepping mode.
  117. // M351 - Toggle MS1 MS2 pins directly.
  118. // M999 - Restart after being stopped by error
  119. //Stepper Movement Variables
  120. //===========================================================================
  121. //=============================imported variables============================
  122. //===========================================================================
  123. //===========================================================================
  124. //=============================public variables=============================
  125. //===========================================================================
  126. #ifdef SDSUPPORT
  127. CardReader card;
  128. #endif
  129. float homing_feedrate[] = HOMING_FEEDRATE;
  130. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  131. int feedmultiply=100; //100->1 200->2
  132. bool feedmultiplychanged;
  133. int saved_feedmultiply;
  134. int extrudemultiply=100; //100->1 200->2
  135. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  136. float add_homeing[3]={0,0,0};
  137. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  138. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  139. uint8_t active_extruder = 0;
  140. int fanSpeed=0;
  141. #ifdef FWRETRACT
  142. bool autoretract_enabled=true;
  143. bool retracted=false;
  144. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  145. float retract_recover_length=0, retract_recover_feedrate=8*60;
  146. #endif
  147. //===========================================================================
  148. //=============================private variables=============================
  149. //===========================================================================
  150. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  151. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  152. static float offset[3] = {0.0, 0.0, 0.0};
  153. static bool home_all_axis = true;
  154. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  155. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  156. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  157. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  158. static bool fromsd[BUFSIZE];
  159. static int bufindr = 0;
  160. static int bufindw = 0;
  161. static int buflen = 0;
  162. //static int i = 0;
  163. static char serial_char;
  164. static int serial_count = 0;
  165. static boolean comment_mode = false;
  166. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  167. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  168. //static float tt = 0;
  169. //static float bt = 0;
  170. //Inactivity shutdown variables
  171. static unsigned long previous_millis_cmd = 0;
  172. static unsigned long max_inactive_time = 0;
  173. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  174. unsigned long starttime=0;
  175. unsigned long stoptime=0;
  176. static uint8_t tmp_extruder;
  177. bool Stopped=false;
  178. //===========================================================================
  179. //=============================ROUTINES=============================
  180. //===========================================================================
  181. void get_arc_coordinates();
  182. bool setTargetedHotend(int code);
  183. void serial_echopair_P(const char *s_P, float v)
  184. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  185. void serial_echopair_P(const char *s_P, double v)
  186. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  187. void serial_echopair_P(const char *s_P, unsigned long v)
  188. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  189. extern "C"{
  190. extern unsigned int __bss_end;
  191. extern unsigned int __heap_start;
  192. extern void *__brkval;
  193. int freeMemory() {
  194. int free_memory;
  195. if((int)__brkval == 0)
  196. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  197. else
  198. free_memory = ((int)&free_memory) - ((int)__brkval);
  199. return free_memory;
  200. }
  201. }
  202. //adds an command to the main command buffer
  203. //thats really done in a non-safe way.
  204. //needs overworking someday
  205. void enquecommand(const char *cmd)
  206. {
  207. if(buflen < BUFSIZE)
  208. {
  209. //this is dangerous if a mixing of serial and this happsens
  210. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  211. SERIAL_ECHO_START;
  212. SERIAL_ECHOPGM("enqueing \"");
  213. SERIAL_ECHO(cmdbuffer[bufindw]);
  214. SERIAL_ECHOLNPGM("\"");
  215. bufindw= (bufindw + 1)%BUFSIZE;
  216. buflen += 1;
  217. }
  218. }
  219. void enquecommand_P(const char *cmd)
  220. {
  221. if(buflen < BUFSIZE)
  222. {
  223. //this is dangerous if a mixing of serial and this happsens
  224. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  225. SERIAL_ECHO_START;
  226. SERIAL_ECHOPGM("enqueing \"");
  227. SERIAL_ECHO(cmdbuffer[bufindw]);
  228. SERIAL_ECHOLNPGM("\"");
  229. bufindw= (bufindw + 1)%BUFSIZE;
  230. buflen += 1;
  231. }
  232. }
  233. void setup_killpin()
  234. {
  235. #if( KILL_PIN>-1 )
  236. pinMode(KILL_PIN,INPUT);
  237. WRITE(KILL_PIN,HIGH);
  238. #endif
  239. }
  240. void setup_photpin()
  241. {
  242. #ifdef PHOTOGRAPH_PIN
  243. #if (PHOTOGRAPH_PIN > -1)
  244. SET_OUTPUT(PHOTOGRAPH_PIN);
  245. WRITE(PHOTOGRAPH_PIN, LOW);
  246. #endif
  247. #endif
  248. }
  249. void setup_powerhold()
  250. {
  251. #ifdef SUICIDE_PIN
  252. #if (SUICIDE_PIN> -1)
  253. SET_OUTPUT(SUICIDE_PIN);
  254. WRITE(SUICIDE_PIN, HIGH);
  255. #endif
  256. #endif
  257. }
  258. void suicide()
  259. {
  260. #ifdef SUICIDE_PIN
  261. #if (SUICIDE_PIN> -1)
  262. SET_OUTPUT(SUICIDE_PIN);
  263. WRITE(SUICIDE_PIN, LOW);
  264. #endif
  265. #endif
  266. }
  267. void setup()
  268. {
  269. setup_killpin();
  270. setup_powerhold();
  271. MYSERIAL.begin(BAUDRATE);
  272. SERIAL_PROTOCOLLNPGM("start");
  273. SERIAL_ECHO_START;
  274. // Check startup - does nothing if bootloader sets MCUSR to 0
  275. byte mcu = MCUSR;
  276. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  277. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  278. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  279. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  280. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  281. MCUSR=0;
  282. SERIAL_ECHOPGM(MSG_MARLIN);
  283. SERIAL_ECHOLNPGM(VERSION_STRING);
  284. #ifdef STRING_VERSION_CONFIG_H
  285. #ifdef STRING_CONFIG_H_AUTHOR
  286. SERIAL_ECHO_START;
  287. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  288. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  289. SERIAL_ECHOPGM(MSG_AUTHOR);
  290. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  291. SERIAL_ECHOPGM("Compiled: ");
  292. SERIAL_ECHOLNPGM(__DATE__);
  293. #endif
  294. #endif
  295. SERIAL_ECHO_START;
  296. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  297. SERIAL_ECHO(freeMemory());
  298. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  299. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  300. for(int8_t i = 0; i < BUFSIZE; i++)
  301. {
  302. fromsd[i] = false;
  303. }
  304. Config_RetrieveSettings(); // loads data from EEPROM if available
  305. for(int8_t i=0; i < NUM_AXIS; i++)
  306. {
  307. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  308. }
  309. tp_init(); // Initialize temperature loop
  310. plan_init(); // Initialize planner;
  311. watchdog_init();
  312. st_init(); // Initialize stepper, this enables interrupts!
  313. setup_photpin();
  314. lcd_init();
  315. }
  316. void loop()
  317. {
  318. if(buflen < (BUFSIZE-1))
  319. get_command();
  320. #ifdef SDSUPPORT
  321. card.checkautostart(false);
  322. #endif
  323. if(buflen)
  324. {
  325. #ifdef SDSUPPORT
  326. if(card.saving)
  327. {
  328. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  329. {
  330. card.write_command(cmdbuffer[bufindr]);
  331. SERIAL_PROTOCOLLNPGM(MSG_OK);
  332. }
  333. else
  334. {
  335. card.closefile();
  336. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  337. }
  338. }
  339. else
  340. {
  341. process_commands();
  342. }
  343. #else
  344. process_commands();
  345. #endif //SDSUPPORT
  346. buflen = (buflen-1);
  347. bufindr = (bufindr + 1)%BUFSIZE;
  348. }
  349. //check heater every n milliseconds
  350. manage_heater();
  351. manage_inactivity();
  352. checkHitEndstops();
  353. lcd_update();
  354. }
  355. void get_command()
  356. {
  357. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  358. serial_char = MYSERIAL.read();
  359. if(serial_char == '\n' ||
  360. serial_char == '\r' ||
  361. (serial_char == ':' && comment_mode == false) ||
  362. serial_count >= (MAX_CMD_SIZE - 1) )
  363. {
  364. if(!serial_count) { //if empty line
  365. comment_mode = false; //for new command
  366. return;
  367. }
  368. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  369. if(!comment_mode){
  370. comment_mode = false; //for new command
  371. fromsd[bufindw] = false;
  372. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  373. {
  374. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  375. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  376. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  377. SERIAL_ERROR_START;
  378. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  379. SERIAL_ERRORLN(gcode_LastN);
  380. //Serial.println(gcode_N);
  381. FlushSerialRequestResend();
  382. serial_count = 0;
  383. return;
  384. }
  385. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  386. {
  387. byte checksum = 0;
  388. byte count = 0;
  389. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  390. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  391. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  392. SERIAL_ERROR_START;
  393. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  394. SERIAL_ERRORLN(gcode_LastN);
  395. FlushSerialRequestResend();
  396. serial_count = 0;
  397. return;
  398. }
  399. //if no errors, continue parsing
  400. }
  401. else
  402. {
  403. SERIAL_ERROR_START;
  404. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  405. SERIAL_ERRORLN(gcode_LastN);
  406. FlushSerialRequestResend();
  407. serial_count = 0;
  408. return;
  409. }
  410. gcode_LastN = gcode_N;
  411. //if no errors, continue parsing
  412. }
  413. else // if we don't receive 'N' but still see '*'
  414. {
  415. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  416. {
  417. SERIAL_ERROR_START;
  418. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  419. SERIAL_ERRORLN(gcode_LastN);
  420. serial_count = 0;
  421. return;
  422. }
  423. }
  424. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  425. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  426. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  427. case 0:
  428. case 1:
  429. case 2:
  430. case 3:
  431. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  432. #ifdef SDSUPPORT
  433. if(card.saving)
  434. break;
  435. #endif //SDSUPPORT
  436. SERIAL_PROTOCOLLNPGM(MSG_OK);
  437. }
  438. else {
  439. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  440. LCD_MESSAGEPGM(MSG_STOPPED);
  441. }
  442. break;
  443. default:
  444. break;
  445. }
  446. }
  447. bufindw = (bufindw + 1)%BUFSIZE;
  448. buflen += 1;
  449. }
  450. serial_count = 0; //clear buffer
  451. }
  452. else
  453. {
  454. if(serial_char == ';') comment_mode = true;
  455. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  456. }
  457. }
  458. #ifdef SDSUPPORT
  459. if(!card.sdprinting || serial_count!=0){
  460. return;
  461. }
  462. while( !card.eof() && buflen < BUFSIZE) {
  463. int16_t n=card.get();
  464. serial_char = (char)n;
  465. if(serial_char == '\n' ||
  466. serial_char == '\r' ||
  467. (serial_char == ':' && comment_mode == false) ||
  468. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  469. {
  470. if(card.eof()){
  471. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  472. stoptime=millis();
  473. char time[30];
  474. unsigned long t=(stoptime-starttime)/1000;
  475. int sec,min;
  476. min=t/60;
  477. sec=t%60;
  478. sprintf_P(time, PSTR("%i min, %i sec"),min,sec);
  479. SERIAL_ECHO_START;
  480. SERIAL_ECHOLN(time);
  481. lcd_setstatus(time);
  482. card.printingHasFinished();
  483. card.checkautostart(true);
  484. }
  485. if(!serial_count)
  486. {
  487. comment_mode = false; //for new command
  488. return; //if empty line
  489. }
  490. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  491. // if(!comment_mode){
  492. fromsd[bufindw] = true;
  493. buflen += 1;
  494. bufindw = (bufindw + 1)%BUFSIZE;
  495. // }
  496. comment_mode = false; //for new command
  497. serial_count = 0; //clear buffer
  498. }
  499. else
  500. {
  501. if(serial_char == ';') comment_mode = true;
  502. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  503. }
  504. }
  505. #endif //SDSUPPORT
  506. }
  507. float code_value()
  508. {
  509. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  510. }
  511. long code_value_long()
  512. {
  513. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  514. }
  515. bool code_seen(char code)
  516. {
  517. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  518. return (strchr_pointer != NULL); //Return True if a character was found
  519. }
  520. #define DEFINE_PGM_READ_ANY(type, reader) \
  521. static inline type pgm_read_any(const type *p) \
  522. { return pgm_read_##reader##_near(p); }
  523. DEFINE_PGM_READ_ANY(float, float);
  524. DEFINE_PGM_READ_ANY(signed char, byte);
  525. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  526. static const PROGMEM type array##_P[3] = \
  527. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  528. static inline type array(int axis) \
  529. { return pgm_read_any(&array##_P[axis]); }
  530. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  531. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  532. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  533. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  534. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  535. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  536. static void axis_is_at_home(int axis) {
  537. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  538. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  539. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  540. }
  541. static void homeaxis(int axis) {
  542. #define HOMEAXIS_DO(LETTER) \
  543. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  544. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  545. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  546. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  547. 0) {
  548. current_position[axis] = 0;
  549. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  550. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  551. feedrate = homing_feedrate[axis];
  552. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  553. st_synchronize();
  554. current_position[axis] = 0;
  555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  556. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  557. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  558. st_synchronize();
  559. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  560. feedrate = homing_feedrate[axis]/2 ;
  561. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  562. st_synchronize();
  563. axis_is_at_home(axis);
  564. destination[axis] = current_position[axis];
  565. feedrate = 0.0;
  566. endstops_hit_on_purpose();
  567. }
  568. }
  569. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  570. void process_commands()
  571. {
  572. unsigned long codenum; //throw away variable
  573. char *starpos = NULL;
  574. if(code_seen('G'))
  575. {
  576. switch((int)code_value())
  577. {
  578. case 0: // G0 -> G1
  579. case 1: // G1
  580. if(Stopped == false) {
  581. get_coordinates(); // For X Y Z E F
  582. prepare_move();
  583. //ClearToSend();
  584. return;
  585. }
  586. //break;
  587. case 2: // G2 - CW ARC
  588. if(Stopped == false) {
  589. get_arc_coordinates();
  590. prepare_arc_move(true);
  591. return;
  592. }
  593. case 3: // G3 - CCW ARC
  594. if(Stopped == false) {
  595. get_arc_coordinates();
  596. prepare_arc_move(false);
  597. return;
  598. }
  599. case 4: // G4 dwell
  600. LCD_MESSAGEPGM(MSG_DWELL);
  601. codenum = 0;
  602. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  603. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  604. st_synchronize();
  605. codenum += millis(); // keep track of when we started waiting
  606. previous_millis_cmd = millis();
  607. while(millis() < codenum ){
  608. manage_heater();
  609. manage_inactivity();
  610. lcd_update();
  611. }
  612. break;
  613. #ifdef FWRETRACT
  614. case 10: // G10 retract
  615. if(!retracted)
  616. {
  617. destination[X_AXIS]=current_position[X_AXIS];
  618. destination[Y_AXIS]=current_position[Y_AXIS];
  619. destination[Z_AXIS]=current_position[Z_AXIS];
  620. current_position[Z_AXIS]+=-retract_zlift;
  621. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  622. feedrate=retract_feedrate;
  623. retracted=true;
  624. prepare_move();
  625. }
  626. break;
  627. case 11: // G10 retract_recover
  628. if(!retracted)
  629. {
  630. destination[X_AXIS]=current_position[X_AXIS];
  631. destination[Y_AXIS]=current_position[Y_AXIS];
  632. destination[Z_AXIS]=current_position[Z_AXIS];
  633. current_position[Z_AXIS]+=retract_zlift;
  634. current_position[E_AXIS]+=-retract_recover_length;
  635. feedrate=retract_recover_feedrate;
  636. retracted=false;
  637. prepare_move();
  638. }
  639. break;
  640. #endif //FWRETRACT
  641. case 28: //G28 Home all Axis one at a time
  642. saved_feedrate = feedrate;
  643. saved_feedmultiply = feedmultiply;
  644. feedmultiply = 100;
  645. previous_millis_cmd = millis();
  646. enable_endstops(true);
  647. for(int8_t i=0; i < NUM_AXIS; i++) {
  648. destination[i] = current_position[i];
  649. }
  650. feedrate = 0.0;
  651. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  652. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  653. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  654. HOMEAXIS(Z);
  655. }
  656. #endif
  657. #ifdef QUICK_HOME
  658. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  659. {
  660. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  662. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  663. feedrate = homing_feedrate[X_AXIS];
  664. if(homing_feedrate[Y_AXIS]<feedrate)
  665. feedrate =homing_feedrate[Y_AXIS];
  666. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  667. st_synchronize();
  668. axis_is_at_home(X_AXIS);
  669. axis_is_at_home(Y_AXIS);
  670. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  671. destination[X_AXIS] = current_position[X_AXIS];
  672. destination[Y_AXIS] = current_position[Y_AXIS];
  673. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  674. feedrate = 0.0;
  675. st_synchronize();
  676. endstops_hit_on_purpose();
  677. }
  678. #endif
  679. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  680. {
  681. HOMEAXIS(X);
  682. }
  683. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  684. HOMEAXIS(Y);
  685. }
  686. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  687. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  688. HOMEAXIS(Z);
  689. }
  690. #endif
  691. if(code_seen(axis_codes[X_AXIS]))
  692. {
  693. if(code_value_long() != 0) {
  694. current_position[X_AXIS]=code_value()+add_homeing[0];
  695. }
  696. }
  697. if(code_seen(axis_codes[Y_AXIS])) {
  698. if(code_value_long() != 0) {
  699. current_position[Y_AXIS]=code_value()+add_homeing[1];
  700. }
  701. }
  702. if(code_seen(axis_codes[Z_AXIS])) {
  703. if(code_value_long() != 0) {
  704. current_position[Z_AXIS]=code_value()+add_homeing[2];
  705. }
  706. }
  707. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  708. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  709. enable_endstops(false);
  710. #endif
  711. feedrate = saved_feedrate;
  712. feedmultiply = saved_feedmultiply;
  713. previous_millis_cmd = millis();
  714. endstops_hit_on_purpose();
  715. break;
  716. case 90: // G90
  717. relative_mode = false;
  718. break;
  719. case 91: // G91
  720. relative_mode = true;
  721. break;
  722. case 92: // G92
  723. if(!code_seen(axis_codes[E_AXIS]))
  724. st_synchronize();
  725. for(int8_t i=0; i < NUM_AXIS; i++) {
  726. if(code_seen(axis_codes[i])) {
  727. if(i == E_AXIS) {
  728. current_position[i] = code_value();
  729. plan_set_e_position(current_position[E_AXIS]);
  730. }
  731. else {
  732. current_position[i] = code_value()+add_homeing[i];
  733. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  734. }
  735. }
  736. }
  737. break;
  738. }
  739. }
  740. else if(code_seen('M'))
  741. {
  742. switch( (int)code_value() )
  743. {
  744. #ifdef ULTRA_LCD
  745. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  746. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  747. {
  748. LCD_MESSAGEPGM(MSG_USERWAIT);
  749. codenum = 0;
  750. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  751. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  752. st_synchronize();
  753. previous_millis_cmd = millis();
  754. if (codenum > 0){
  755. codenum += millis(); // keep track of when we started waiting
  756. while(millis() < codenum && !LCD_CLICKED){
  757. manage_heater();
  758. manage_inactivity();
  759. lcd_update();
  760. }
  761. }else{
  762. while(!LCD_CLICKED){
  763. manage_heater();
  764. manage_inactivity();
  765. lcd_update();
  766. }
  767. }
  768. }
  769. break;
  770. #endif
  771. case 17:
  772. LCD_MESSAGEPGM(MSG_NO_MOVE);
  773. enable_x();
  774. enable_y();
  775. enable_z();
  776. enable_e0();
  777. enable_e1();
  778. enable_e2();
  779. break;
  780. #ifdef SDSUPPORT
  781. case 20: // M20 - list SD card
  782. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  783. card.ls();
  784. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  785. break;
  786. case 21: // M21 - init SD card
  787. card.initsd();
  788. break;
  789. case 22: //M22 - release SD card
  790. card.release();
  791. break;
  792. case 23: //M23 - Select file
  793. starpos = (strchr(strchr_pointer + 4,'*'));
  794. if(starpos!=NULL)
  795. *(starpos-1)='\0';
  796. card.openFile(strchr_pointer + 4,true);
  797. break;
  798. case 24: //M24 - Start SD print
  799. card.startFileprint();
  800. starttime=millis();
  801. break;
  802. case 25: //M25 - Pause SD print
  803. card.pauseSDPrint();
  804. break;
  805. case 26: //M26 - Set SD index
  806. if(card.cardOK && code_seen('S')) {
  807. card.setIndex(code_value_long());
  808. }
  809. break;
  810. case 27: //M27 - Get SD status
  811. card.getStatus();
  812. break;
  813. case 28: //M28 - Start SD write
  814. starpos = (strchr(strchr_pointer + 4,'*'));
  815. if(starpos != NULL){
  816. char* npos = strchr(cmdbuffer[bufindr], 'N');
  817. strchr_pointer = strchr(npos,' ') + 1;
  818. *(starpos-1) = '\0';
  819. }
  820. card.openFile(strchr_pointer+4,false);
  821. break;
  822. case 29: //M29 - Stop SD write
  823. //processed in write to file routine above
  824. //card,saving = false;
  825. break;
  826. case 30: //M30 <filename> Delete File
  827. if (card.cardOK){
  828. card.closefile();
  829. starpos = (strchr(strchr_pointer + 4,'*'));
  830. if(starpos != NULL){
  831. char* npos = strchr(cmdbuffer[bufindr], 'N');
  832. strchr_pointer = strchr(npos,' ') + 1;
  833. *(starpos-1) = '\0';
  834. }
  835. card.removeFile(strchr_pointer + 4);
  836. }
  837. break;
  838. #endif //SDSUPPORT
  839. case 31: //M31 take time since the start of the SD print or an M109 command
  840. {
  841. stoptime=millis();
  842. char time[30];
  843. unsigned long t=(stoptime-starttime)/1000;
  844. int sec,min;
  845. min=t/60;
  846. sec=t%60;
  847. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  848. SERIAL_ECHO_START;
  849. SERIAL_ECHOLN(time);
  850. lcd_setstatus(time);
  851. autotempShutdown();
  852. }
  853. break;
  854. case 42: //M42 -Change pin status via gcode
  855. if (code_seen('S'))
  856. {
  857. int pin_status = code_value();
  858. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  859. {
  860. int pin_number = code_value();
  861. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  862. {
  863. if (sensitive_pins[i] == pin_number)
  864. {
  865. pin_number = -1;
  866. break;
  867. }
  868. }
  869. if (pin_number > -1)
  870. {
  871. pinMode(pin_number, OUTPUT);
  872. digitalWrite(pin_number, pin_status);
  873. analogWrite(pin_number, pin_status);
  874. }
  875. }
  876. }
  877. break;
  878. case 104: // M104
  879. if(setTargetedHotend(104)){
  880. break;
  881. }
  882. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  883. setWatch();
  884. break;
  885. case 140: // M140 set bed temp
  886. if (code_seen('S')) setTargetBed(code_value());
  887. break;
  888. case 105 : // M105
  889. if(setTargetedHotend(105)){
  890. break;
  891. }
  892. #if (TEMP_0_PIN > -1)
  893. SERIAL_PROTOCOLPGM("ok T:");
  894. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  895. SERIAL_PROTOCOLPGM(" /");
  896. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  897. #if TEMP_BED_PIN > -1
  898. SERIAL_PROTOCOLPGM(" B:");
  899. SERIAL_PROTOCOL_F(degBed(),1);
  900. SERIAL_PROTOCOLPGM(" /");
  901. SERIAL_PROTOCOL_F(degTargetBed(),1);
  902. #endif //TEMP_BED_PIN
  903. #else
  904. SERIAL_ERROR_START;
  905. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  906. #endif
  907. SERIAL_PROTOCOLPGM(" @:");
  908. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  909. SERIAL_PROTOCOLPGM(" B@:");
  910. SERIAL_PROTOCOL(getHeaterPower(-1));
  911. SERIAL_PROTOCOLLN("");
  912. return;
  913. break;
  914. case 109:
  915. {// M109 - Wait for extruder heater to reach target.
  916. if(setTargetedHotend(109)){
  917. break;
  918. }
  919. LCD_MESSAGEPGM(MSG_HEATING);
  920. #ifdef AUTOTEMP
  921. autotemp_enabled=false;
  922. #endif
  923. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  924. #ifdef AUTOTEMP
  925. if (code_seen('S')) autotemp_min=code_value();
  926. if (code_seen('B')) autotemp_max=code_value();
  927. if (code_seen('F'))
  928. {
  929. autotemp_factor=code_value();
  930. autotemp_enabled=true;
  931. }
  932. #endif
  933. setWatch();
  934. codenum = millis();
  935. /* See if we are heating up or cooling down */
  936. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  937. #ifdef TEMP_RESIDENCY_TIME
  938. long residencyStart;
  939. residencyStart = -1;
  940. /* continue to loop until we have reached the target temp
  941. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  942. while((residencyStart == -1) ||
  943. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  944. #else
  945. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  946. #endif //TEMP_RESIDENCY_TIME
  947. if( (millis() - codenum) > 1000UL )
  948. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  949. SERIAL_PROTOCOLPGM("T:");
  950. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  951. SERIAL_PROTOCOLPGM(" E:");
  952. SERIAL_PROTOCOL((int)tmp_extruder);
  953. #ifdef TEMP_RESIDENCY_TIME
  954. SERIAL_PROTOCOLPGM(" W:");
  955. if(residencyStart > -1)
  956. {
  957. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  958. SERIAL_PROTOCOLLN( codenum );
  959. }
  960. else
  961. {
  962. SERIAL_PROTOCOLLN( "?" );
  963. }
  964. #else
  965. SERIAL_PROTOCOLLN("");
  966. #endif
  967. codenum = millis();
  968. }
  969. manage_heater();
  970. manage_inactivity();
  971. lcd_update();
  972. #ifdef TEMP_RESIDENCY_TIME
  973. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  974. or when current temp falls outside the hysteresis after target temp was reached */
  975. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  976. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  977. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  978. {
  979. residencyStart = millis();
  980. }
  981. #endif //TEMP_RESIDENCY_TIME
  982. }
  983. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  984. starttime=millis();
  985. previous_millis_cmd = millis();
  986. }
  987. break;
  988. case 190: // M190 - Wait for bed heater to reach target.
  989. #if TEMP_BED_PIN > -1
  990. LCD_MESSAGEPGM(MSG_BED_HEATING);
  991. if (code_seen('S')) setTargetBed(code_value());
  992. codenum = millis();
  993. while(isHeatingBed())
  994. {
  995. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  996. {
  997. float tt=degHotend(active_extruder);
  998. SERIAL_PROTOCOLPGM("T:");
  999. SERIAL_PROTOCOL(tt);
  1000. SERIAL_PROTOCOLPGM(" E:");
  1001. SERIAL_PROTOCOL((int)active_extruder);
  1002. SERIAL_PROTOCOLPGM(" B:");
  1003. SERIAL_PROTOCOL_F(degBed(),1);
  1004. SERIAL_PROTOCOLLN("");
  1005. codenum = millis();
  1006. }
  1007. manage_heater();
  1008. manage_inactivity();
  1009. lcd_update();
  1010. }
  1011. LCD_MESSAGEPGM(MSG_BED_DONE);
  1012. previous_millis_cmd = millis();
  1013. #endif
  1014. break;
  1015. #if FAN_PIN > -1
  1016. case 106: //M106 Fan On
  1017. if (code_seen('S')){
  1018. fanSpeed=constrain(code_value(),0,255);
  1019. }
  1020. else {
  1021. fanSpeed=255;
  1022. }
  1023. break;
  1024. case 107: //M107 Fan Off
  1025. fanSpeed = 0;
  1026. break;
  1027. #endif //FAN_PIN
  1028. #if (PS_ON_PIN > -1)
  1029. case 80: // M80 - ATX Power On
  1030. SET_OUTPUT(PS_ON_PIN); //GND
  1031. WRITE(PS_ON_PIN, LOW);
  1032. break;
  1033. #endif
  1034. case 81: // M81 - ATX Power Off
  1035. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1036. st_synchronize();
  1037. suicide();
  1038. #elif (PS_ON_PIN > -1)
  1039. SET_OUTPUT(PS_ON_PIN);
  1040. WRITE(PS_ON_PIN, HIGH);
  1041. #endif
  1042. break;
  1043. case 82:
  1044. axis_relative_modes[3] = false;
  1045. break;
  1046. case 83:
  1047. axis_relative_modes[3] = true;
  1048. break;
  1049. case 18: //compatibility
  1050. case 84: // M84
  1051. if(code_seen('S')){
  1052. stepper_inactive_time = code_value() * 1000;
  1053. }
  1054. else
  1055. {
  1056. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1057. if(all_axis)
  1058. {
  1059. st_synchronize();
  1060. disable_e0();
  1061. disable_e1();
  1062. disable_e2();
  1063. finishAndDisableSteppers();
  1064. }
  1065. else
  1066. {
  1067. st_synchronize();
  1068. if(code_seen('X')) disable_x();
  1069. if(code_seen('Y')) disable_y();
  1070. if(code_seen('Z')) disable_z();
  1071. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1072. if(code_seen('E')) {
  1073. disable_e0();
  1074. disable_e1();
  1075. disable_e2();
  1076. }
  1077. #endif
  1078. }
  1079. }
  1080. break;
  1081. case 85: // M85
  1082. code_seen('S');
  1083. max_inactive_time = code_value() * 1000;
  1084. break;
  1085. case 92: // M92
  1086. for(int8_t i=0; i < NUM_AXIS; i++)
  1087. {
  1088. if(code_seen(axis_codes[i]))
  1089. {
  1090. if(i == 3) { // E
  1091. float value = code_value();
  1092. if(value < 20.0) {
  1093. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1094. max_e_jerk *= factor;
  1095. max_feedrate[i] *= factor;
  1096. axis_steps_per_sqr_second[i] *= factor;
  1097. }
  1098. axis_steps_per_unit[i] = value;
  1099. }
  1100. else {
  1101. axis_steps_per_unit[i] = code_value();
  1102. }
  1103. }
  1104. }
  1105. break;
  1106. case 115: // M115
  1107. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1108. break;
  1109. case 117: // M117 display message
  1110. lcd_setstatus(cmdbuffer[bufindr]+5);
  1111. break;
  1112. case 114: // M114
  1113. SERIAL_PROTOCOLPGM("X:");
  1114. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1115. SERIAL_PROTOCOLPGM("Y:");
  1116. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1117. SERIAL_PROTOCOLPGM("Z:");
  1118. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1119. SERIAL_PROTOCOLPGM("E:");
  1120. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1121. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1122. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1123. SERIAL_PROTOCOLPGM("Y:");
  1124. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1125. SERIAL_PROTOCOLPGM("Z:");
  1126. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1127. SERIAL_PROTOCOLLN("");
  1128. break;
  1129. case 120: // M120
  1130. enable_endstops(false) ;
  1131. break;
  1132. case 121: // M121
  1133. enable_endstops(true) ;
  1134. break;
  1135. case 119: // M119
  1136. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1137. #if (X_MIN_PIN > -1)
  1138. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1139. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1140. #endif
  1141. #if (X_MAX_PIN > -1)
  1142. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1143. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1144. #endif
  1145. #if (Y_MIN_PIN > -1)
  1146. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1147. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1148. #endif
  1149. #if (Y_MAX_PIN > -1)
  1150. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1151. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1152. #endif
  1153. #if (Z_MIN_PIN > -1)
  1154. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1155. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1156. #endif
  1157. #if (Z_MAX_PIN > -1)
  1158. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1159. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1160. #endif
  1161. break;
  1162. //TODO: update for all axis, use for loop
  1163. case 201: // M201
  1164. for(int8_t i=0; i < NUM_AXIS; i++)
  1165. {
  1166. if(code_seen(axis_codes[i]))
  1167. {
  1168. max_acceleration_units_per_sq_second[i] = code_value();
  1169. axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1170. }
  1171. }
  1172. break;
  1173. #if 0 // Not used for Sprinter/grbl gen6
  1174. case 202: // M202
  1175. for(int8_t i=0; i < NUM_AXIS; i++) {
  1176. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1177. }
  1178. break;
  1179. #endif
  1180. case 203: // M203 max feedrate mm/sec
  1181. for(int8_t i=0; i < NUM_AXIS; i++) {
  1182. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1183. }
  1184. break;
  1185. case 204: // M204 acclereration S normal moves T filmanent only moves
  1186. {
  1187. if(code_seen('S')) acceleration = code_value() ;
  1188. if(code_seen('T')) retract_acceleration = code_value() ;
  1189. }
  1190. break;
  1191. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1192. {
  1193. if(code_seen('S')) minimumfeedrate = code_value();
  1194. if(code_seen('T')) mintravelfeedrate = code_value();
  1195. if(code_seen('B')) minsegmenttime = code_value() ;
  1196. if(code_seen('X')) max_xy_jerk = code_value() ;
  1197. if(code_seen('Z')) max_z_jerk = code_value() ;
  1198. if(code_seen('E')) max_e_jerk = code_value() ;
  1199. }
  1200. break;
  1201. case 206: // M206 additional homeing offset
  1202. for(int8_t i=0; i < 3; i++)
  1203. {
  1204. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1205. }
  1206. break;
  1207. #ifdef FWRETRACT
  1208. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1209. {
  1210. if(code_seen('S'))
  1211. {
  1212. retract_length = code_value() ;
  1213. }
  1214. if(code_seen('F'))
  1215. {
  1216. retract_feedrate = code_value() ;
  1217. }
  1218. if(code_seen('Z'))
  1219. {
  1220. retract_zlift = code_value() ;
  1221. }
  1222. }break;
  1223. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1224. {
  1225. if(code_seen('S'))
  1226. {
  1227. retract_recover_length = code_value() ;
  1228. }
  1229. if(code_seen('F'))
  1230. {
  1231. retract_recover_feedrate = code_value() ;
  1232. }
  1233. }break;
  1234. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1235. {
  1236. if(code_seen('S'))
  1237. {
  1238. int t= code_value() ;
  1239. switch(t)
  1240. {
  1241. case 0: autoretract_enabled=false;retracted=false;break;
  1242. case 1: autoretract_enabled=true;retracted=false;break;
  1243. default:
  1244. SERIAL_ECHO_START;
  1245. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1246. SERIAL_ECHO(cmdbuffer[bufindr]);
  1247. SERIAL_ECHOLNPGM("\"");
  1248. }
  1249. }
  1250. }break;
  1251. #endif
  1252. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1253. {
  1254. if(code_seen('S'))
  1255. {
  1256. feedmultiply = code_value() ;
  1257. feedmultiplychanged = true;
  1258. }
  1259. }
  1260. break;
  1261. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1262. {
  1263. if(code_seen('S'))
  1264. {
  1265. extrudemultiply = code_value() ;
  1266. }
  1267. }
  1268. break;
  1269. #ifdef PIDTEMP
  1270. case 301: // M301
  1271. {
  1272. if(code_seen('P')) Kp = code_value();
  1273. if(code_seen('I')) Ki = code_value()*PID_dT;
  1274. if(code_seen('D')) Kd = code_value()/PID_dT;
  1275. #ifdef PID_ADD_EXTRUSION_RATE
  1276. if(code_seen('C')) Kc = code_value();
  1277. #endif
  1278. updatePID();
  1279. SERIAL_PROTOCOL(MSG_OK);
  1280. SERIAL_PROTOCOL(" p:");
  1281. SERIAL_PROTOCOL(Kp);
  1282. SERIAL_PROTOCOL(" i:");
  1283. SERIAL_PROTOCOL(Ki/PID_dT);
  1284. SERIAL_PROTOCOL(" d:");
  1285. SERIAL_PROTOCOL(Kd*PID_dT);
  1286. #ifdef PID_ADD_EXTRUSION_RATE
  1287. SERIAL_PROTOCOL(" c:");
  1288. SERIAL_PROTOCOL(Kc*PID_dT);
  1289. #endif
  1290. SERIAL_PROTOCOLLN("");
  1291. }
  1292. break;
  1293. #endif //PIDTEMP
  1294. #ifdef PIDTEMPBED
  1295. case 304: // M304
  1296. {
  1297. if(code_seen('P')) bedKp = code_value();
  1298. if(code_seen('I')) bedKi = code_value()*PID_dT;
  1299. if(code_seen('D')) bedKd = code_value()/PID_dT;
  1300. updatePID();
  1301. SERIAL_PROTOCOL(MSG_OK);
  1302. SERIAL_PROTOCOL(" p:");
  1303. SERIAL_PROTOCOL(bedKp);
  1304. SERIAL_PROTOCOL(" i:");
  1305. SERIAL_PROTOCOL(bedKi/PID_dT);
  1306. SERIAL_PROTOCOL(" d:");
  1307. SERIAL_PROTOCOL(bedKd*PID_dT);
  1308. SERIAL_PROTOCOLLN("");
  1309. }
  1310. break;
  1311. #endif //PIDTEMP
  1312. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1313. {
  1314. #ifdef PHOTOGRAPH_PIN
  1315. #if (PHOTOGRAPH_PIN > -1)
  1316. const uint8_t NUM_PULSES=16;
  1317. const float PULSE_LENGTH=0.01524;
  1318. for(int i=0; i < NUM_PULSES; i++) {
  1319. WRITE(PHOTOGRAPH_PIN, HIGH);
  1320. _delay_ms(PULSE_LENGTH);
  1321. WRITE(PHOTOGRAPH_PIN, LOW);
  1322. _delay_ms(PULSE_LENGTH);
  1323. }
  1324. delay(7.33);
  1325. for(int i=0; i < NUM_PULSES; i++) {
  1326. WRITE(PHOTOGRAPH_PIN, HIGH);
  1327. _delay_ms(PULSE_LENGTH);
  1328. WRITE(PHOTOGRAPH_PIN, LOW);
  1329. _delay_ms(PULSE_LENGTH);
  1330. }
  1331. #endif
  1332. #endif
  1333. }
  1334. break;
  1335. case 302: // allow cold extrudes
  1336. {
  1337. allow_cold_extrudes(true);
  1338. }
  1339. break;
  1340. case 303: // M303 PID autotune
  1341. {
  1342. float temp = 150.0;
  1343. int e=0;
  1344. int c=5;
  1345. if (code_seen('E')) e=code_value();
  1346. if (e<0)
  1347. temp=70;
  1348. if (code_seen('S')) temp=code_value();
  1349. if (code_seen('C')) c=code_value();
  1350. PID_autotune(temp, e, c);
  1351. }
  1352. break;
  1353. case 400: // M400 finish all moves
  1354. {
  1355. st_synchronize();
  1356. }
  1357. break;
  1358. case 500: // Store settings in EEPROM
  1359. {
  1360. Config_StoreSettings();
  1361. }
  1362. break;
  1363. case 501: // Read settings from EEPROM
  1364. {
  1365. Config_RetrieveSettings();
  1366. }
  1367. break;
  1368. case 502: // Revert to default settings
  1369. {
  1370. Config_ResetDefault();
  1371. }
  1372. break;
  1373. case 503: // print settings currently in memory
  1374. {
  1375. Config_PrintSettings();
  1376. }
  1377. break;
  1378. case 907: // Set digital trimpot motor current using axis codes.
  1379. {
  1380. #if DIGIPOTSS_PIN > -1
  1381. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  1382. if(code_seen('B')) digipot_current(4,code_value());
  1383. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  1384. #endif
  1385. }
  1386. case 908: // Control digital trimpot directly.
  1387. {
  1388. #if DIGIPOTSS_PIN > -1
  1389. uint8_t channel,current;
  1390. if(code_seen('P')) channel=code_value();
  1391. if(code_seen('S')) current=code_value();
  1392. digitalPotWrite(channel, current);
  1393. #endif
  1394. }
  1395. break;
  1396. case 350: // Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  1397. {
  1398. #if X_MS1_PIN > -1
  1399. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  1400. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  1401. if(code_seen('B')) microstep_mode(4,code_value());
  1402. microstep_readings();
  1403. #endif
  1404. }
  1405. break;
  1406. case 351: // Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  1407. {
  1408. #if X_MS1_PIN > -1
  1409. if(code_seen('S')) switch((int)code_value())
  1410. {
  1411. case 1:
  1412. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  1413. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  1414. break;
  1415. case 2:
  1416. for(int i=0;i<=NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  1417. if(code_seen('B')) microstep_ms(4,-1,code_value());
  1418. break;
  1419. }
  1420. microstep_readings();
  1421. #endif
  1422. }
  1423. break;
  1424. case 999: // Restart after being stopped
  1425. Stopped = false;
  1426. gcode_LastN = Stopped_gcode_LastN;
  1427. FlushSerialRequestResend();
  1428. break;
  1429. }
  1430. }
  1431. else if(code_seen('T'))
  1432. {
  1433. tmp_extruder = code_value();
  1434. if(tmp_extruder >= EXTRUDERS) {
  1435. SERIAL_ECHO_START;
  1436. SERIAL_ECHO("T");
  1437. SERIAL_ECHO(tmp_extruder);
  1438. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1439. }
  1440. else {
  1441. active_extruder = tmp_extruder;
  1442. SERIAL_ECHO_START;
  1443. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1444. SERIAL_PROTOCOLLN((int)active_extruder);
  1445. }
  1446. }
  1447. else
  1448. {
  1449. SERIAL_ECHO_START;
  1450. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1451. SERIAL_ECHO(cmdbuffer[bufindr]);
  1452. SERIAL_ECHOLNPGM("\"");
  1453. }
  1454. ClearToSend();
  1455. }
  1456. void FlushSerialRequestResend()
  1457. {
  1458. //char cmdbuffer[bufindr][100]="Resend:";
  1459. MYSERIAL.flush();
  1460. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1461. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1462. ClearToSend();
  1463. }
  1464. void ClearToSend()
  1465. {
  1466. previous_millis_cmd = millis();
  1467. #ifdef SDSUPPORT
  1468. if(fromsd[bufindr])
  1469. return;
  1470. #endif //SDSUPPORT
  1471. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1472. }
  1473. void get_coordinates()
  1474. {
  1475. bool seen[4]={false,false,false,false};
  1476. for(int8_t i=0; i < NUM_AXIS; i++) {
  1477. if(code_seen(axis_codes[i]))
  1478. {
  1479. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1480. seen[i]=true;
  1481. }
  1482. else destination[i] = current_position[i]; //Are these else lines really needed?
  1483. }
  1484. if(code_seen('F')) {
  1485. next_feedrate = code_value();
  1486. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1487. }
  1488. #ifdef FWRETRACT
  1489. if(autoretract_enabled)
  1490. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1491. {
  1492. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1493. if(echange<-MIN_RETRACT) //retract
  1494. {
  1495. if(!retracted)
  1496. {
  1497. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1498. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1499. float correctede=-echange-retract_length;
  1500. //to generate the additional steps, not the destination is changed, but inversely the current position
  1501. current_position[E_AXIS]+=-correctede;
  1502. feedrate=retract_feedrate;
  1503. retracted=true;
  1504. }
  1505. }
  1506. else
  1507. if(echange>MIN_RETRACT) //retract_recover
  1508. {
  1509. if(retracted)
  1510. {
  1511. //current_position[Z_AXIS]+=-retract_zlift;
  1512. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1513. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1514. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1515. feedrate=retract_recover_feedrate;
  1516. retracted=false;
  1517. }
  1518. }
  1519. }
  1520. #endif //FWRETRACT
  1521. }
  1522. void get_arc_coordinates()
  1523. {
  1524. #ifdef SF_ARC_FIX
  1525. bool relative_mode_backup = relative_mode;
  1526. relative_mode = true;
  1527. #endif
  1528. get_coordinates();
  1529. #ifdef SF_ARC_FIX
  1530. relative_mode=relative_mode_backup;
  1531. #endif
  1532. if(code_seen('I')) {
  1533. offset[0] = code_value();
  1534. }
  1535. else {
  1536. offset[0] = 0.0;
  1537. }
  1538. if(code_seen('J')) {
  1539. offset[1] = code_value();
  1540. }
  1541. else {
  1542. offset[1] = 0.0;
  1543. }
  1544. }
  1545. void clamp_to_software_endstops(float target[3])
  1546. {
  1547. if (min_software_endstops) {
  1548. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1549. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1550. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1551. }
  1552. if (max_software_endstops) {
  1553. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1554. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1555. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1556. }
  1557. }
  1558. void prepare_move()
  1559. {
  1560. clamp_to_software_endstops(destination);
  1561. previous_millis_cmd = millis();
  1562. // Do not use feedmultiply for E or Z only moves
  1563. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  1564. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1565. }
  1566. else {
  1567. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1568. }
  1569. for(int8_t i=0; i < NUM_AXIS; i++) {
  1570. current_position[i] = destination[i];
  1571. }
  1572. }
  1573. void prepare_arc_move(char isclockwise) {
  1574. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1575. // Trace the arc
  1576. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1577. // As far as the parser is concerned, the position is now == target. In reality the
  1578. // motion control system might still be processing the action and the real tool position
  1579. // in any intermediate location.
  1580. for(int8_t i=0; i < NUM_AXIS; i++) {
  1581. current_position[i] = destination[i];
  1582. }
  1583. previous_millis_cmd = millis();
  1584. }
  1585. #ifdef CONTROLLERFAN_PIN
  1586. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  1587. unsigned long lastMotorCheck = 0;
  1588. void controllerFan()
  1589. {
  1590. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1591. {
  1592. lastMotorCheck = millis();
  1593. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  1594. #if EXTRUDERS > 2
  1595. || !READ(E2_ENABLE_PIN)
  1596. #endif
  1597. #if EXTRUDER > 1
  1598. || !READ(E2_ENABLE_PIN)
  1599. #endif
  1600. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  1601. {
  1602. lastMotor = millis(); //... set time to NOW so the fan will turn on
  1603. }
  1604. if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  1605. {
  1606. WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
  1607. }
  1608. else
  1609. {
  1610. WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
  1611. }
  1612. }
  1613. }
  1614. #endif
  1615. void manage_inactivity()
  1616. {
  1617. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1618. if(max_inactive_time)
  1619. kill();
  1620. if(stepper_inactive_time) {
  1621. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1622. {
  1623. if(blocks_queued() == false) {
  1624. disable_x();
  1625. disable_y();
  1626. disable_z();
  1627. disable_e0();
  1628. disable_e1();
  1629. disable_e2();
  1630. }
  1631. }
  1632. }
  1633. #if( KILL_PIN>-1 )
  1634. if( 0 == READ(KILL_PIN) )
  1635. kill();
  1636. #endif
  1637. #ifdef CONTROLLERFAN_PIN
  1638. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  1639. #endif
  1640. #ifdef EXTRUDER_RUNOUT_PREVENT
  1641. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1642. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1643. {
  1644. bool oldstatus=READ(E0_ENABLE_PIN);
  1645. enable_e0();
  1646. float oldepos=current_position[E_AXIS];
  1647. float oldedes=destination[E_AXIS];
  1648. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1649. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1650. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1651. current_position[E_AXIS]=oldepos;
  1652. destination[E_AXIS]=oldedes;
  1653. plan_set_e_position(oldepos);
  1654. previous_millis_cmd=millis();
  1655. st_synchronize();
  1656. WRITE(E0_ENABLE_PIN,oldstatus);
  1657. }
  1658. #endif
  1659. check_axes_activity();
  1660. }
  1661. void kill()
  1662. {
  1663. cli(); // Stop interrupts
  1664. disable_heater();
  1665. disable_x();
  1666. disable_y();
  1667. disable_z();
  1668. disable_e0();
  1669. disable_e1();
  1670. disable_e2();
  1671. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1672. SERIAL_ERROR_START;
  1673. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  1674. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  1675. suicide();
  1676. while(1) { /* Intentionally left empty */ } // Wait for reset
  1677. }
  1678. void Stop()
  1679. {
  1680. disable_heater();
  1681. if(Stopped == false) {
  1682. Stopped = true;
  1683. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  1684. SERIAL_ERROR_START;
  1685. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1686. LCD_MESSAGEPGM(MSG_STOPPED);
  1687. }
  1688. }
  1689. bool IsStopped() { return Stopped; };
  1690. #ifdef FAST_PWM_FAN
  1691. void setPwmFrequency(uint8_t pin, int val)
  1692. {
  1693. val &= 0x07;
  1694. switch(digitalPinToTimer(pin))
  1695. {
  1696. #if defined(TCCR0A)
  1697. case TIMER0A:
  1698. case TIMER0B:
  1699. // TCCR0B &= ~(CS00 | CS01 | CS02);
  1700. // TCCR0B |= val;
  1701. break;
  1702. #endif
  1703. #if defined(TCCR1A)
  1704. case TIMER1A:
  1705. case TIMER1B:
  1706. // TCCR1B &= ~(CS10 | CS11 | CS12);
  1707. // TCCR1B |= val;
  1708. break;
  1709. #endif
  1710. #if defined(TCCR2)
  1711. case TIMER2:
  1712. case TIMER2:
  1713. TCCR2 &= ~(CS10 | CS11 | CS12);
  1714. TCCR2 |= val;
  1715. break;
  1716. #endif
  1717. #if defined(TCCR2A)
  1718. case TIMER2A:
  1719. case TIMER2B:
  1720. TCCR2B &= ~(CS20 | CS21 | CS22);
  1721. TCCR2B |= val;
  1722. break;
  1723. #endif
  1724. #if defined(TCCR3A)
  1725. case TIMER3A:
  1726. case TIMER3B:
  1727. case TIMER3C:
  1728. TCCR3B &= ~(CS30 | CS31 | CS32);
  1729. TCCR3B |= val;
  1730. break;
  1731. #endif
  1732. #if defined(TCCR4A)
  1733. case TIMER4A:
  1734. case TIMER4B:
  1735. case TIMER4C:
  1736. TCCR4B &= ~(CS40 | CS41 | CS42);
  1737. TCCR4B |= val;
  1738. break;
  1739. #endif
  1740. #if defined(TCCR5A)
  1741. case TIMER5A:
  1742. case TIMER5B:
  1743. case TIMER5C:
  1744. TCCR5B &= ~(CS50 | CS51 | CS52);
  1745. TCCR5B |= val;
  1746. break;
  1747. #endif
  1748. }
  1749. }
  1750. #endif //FAST_PWM_FAN
  1751. bool setTargetedHotend(int code){
  1752. tmp_extruder = active_extruder;
  1753. if(code_seen('T')) {
  1754. tmp_extruder = code_value();
  1755. if(tmp_extruder >= EXTRUDERS) {
  1756. SERIAL_ECHO_START;
  1757. switch(code){
  1758. case 104:
  1759. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  1760. break;
  1761. case 105:
  1762. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  1763. break;
  1764. case 109:
  1765. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  1766. break;
  1767. }
  1768. SERIAL_ECHOLN(tmp_extruder);
  1769. return true;
  1770. }
  1771. }
  1772. return false;
  1773. }