My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

ubl.h 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #ifndef UNIFIED_BED_LEVELING_H
  23. #define UNIFIED_BED_LEVELING_H
  24. //#define UBL_DEVEL_DEBUGGING
  25. #include "../bedlevel.h"
  26. #include "../../../module/planner.h"
  27. #include "../../../module/motion.h"
  28. #include "../../../Marlin.h"
  29. #define UBL_VERSION "1.01"
  30. #define UBL_OK false
  31. #define UBL_ERR true
  32. #define USE_NOZZLE_AS_REFERENCE 0
  33. #define USE_PROBE_AS_REFERENCE 1
  34. // ubl_motion.cpp
  35. #if ENABLED(UBL_DEVEL_DEBUGGING)
  36. void debug_current_and_destination(const char * const title);
  37. #else
  38. FORCE_INLINE void debug_current_and_destination(const char * const title) { UNUSED(title); }
  39. #endif
  40. // ubl_G29.cpp
  41. enum MeshPointType : char { INVALID, REAL, SET_IN_BITMAP };
  42. // External references
  43. extern uint8_t ubl_cnt;
  44. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  45. #if ENABLED(ULTRA_LCD)
  46. void lcd_quick_feedback(const bool clear_buttons);
  47. #endif
  48. #define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  49. #define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
  50. class unified_bed_leveling {
  51. private:
  52. static int g29_verbose_level,
  53. g29_phase_value,
  54. g29_repetition_cnt,
  55. g29_storage_slot,
  56. g29_map_type;
  57. static bool g29_c_flag, g29_x_flag, g29_y_flag;
  58. static float g29_x_pos, g29_y_pos,
  59. g29_card_thickness,
  60. g29_constant;
  61. #if HAS_BED_PROBE
  62. static int g29_grid_size;
  63. #endif
  64. #if ENABLED(NEWPANEL)
  65. static void move_z_with_encoder(const float &multiplier);
  66. static float measure_point_with_encoder();
  67. static float measure_business_card_thickness(float in_height);
  68. static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool) _O0;
  69. static void fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) _O0;
  70. #endif
  71. static bool g29_parameter_parsing() _O0;
  72. static void shift_mesh_height();
  73. static void probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0;
  74. static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
  75. static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
  76. static void g29_what_command();
  77. static void g29_eeprom_dump();
  78. static void g29_compare_current_mesh_to_stored_mesh();
  79. static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
  80. static void smart_fill_mesh();
  81. public:
  82. static void echo_name(
  83. #if NUM_SERIAL > 1
  84. const int8_t port = -1
  85. #endif
  86. );
  87. static void report_current_mesh(
  88. #if NUM_SERIAL > 1
  89. const int8_t port = -1
  90. #endif
  91. );
  92. static void report_state(
  93. #if NUM_SERIAL > 1
  94. const int8_t port = -1
  95. #endif
  96. );
  97. static void save_ubl_active_state_and_disable();
  98. static void restore_ubl_active_state_and_leave();
  99. static void display_map(const int) _O0;
  100. static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16]) _O0;
  101. static mesh_index_pair find_furthest_invalid_mesh_point() _O0;
  102. static void reset();
  103. static void invalidate();
  104. static void set_all_mesh_points_to_value(const float value);
  105. static void adjust_mesh_to_mean(const bool cflag, const float value);
  106. static bool sanity_check();
  107. static void G29() _O0; // O0 for no optimization
  108. static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
  109. static int8_t storage_slot;
  110. static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  111. // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
  112. // until determinism prevails
  113. static constexpr float _mesh_index_to_xpos[16] PROGMEM = {
  114. MESH_MIN_X + 0 * (MESH_X_DIST), MESH_MIN_X + 1 * (MESH_X_DIST),
  115. MESH_MIN_X + 2 * (MESH_X_DIST), MESH_MIN_X + 3 * (MESH_X_DIST),
  116. MESH_MIN_X + 4 * (MESH_X_DIST), MESH_MIN_X + 5 * (MESH_X_DIST),
  117. MESH_MIN_X + 6 * (MESH_X_DIST), MESH_MIN_X + 7 * (MESH_X_DIST),
  118. MESH_MIN_X + 8 * (MESH_X_DIST), MESH_MIN_X + 9 * (MESH_X_DIST),
  119. MESH_MIN_X + 10 * (MESH_X_DIST), MESH_MIN_X + 11 * (MESH_X_DIST),
  120. MESH_MIN_X + 12 * (MESH_X_DIST), MESH_MIN_X + 13 * (MESH_X_DIST),
  121. MESH_MIN_X + 14 * (MESH_X_DIST), MESH_MIN_X + 15 * (MESH_X_DIST)
  122. };
  123. static constexpr float _mesh_index_to_ypos[16] PROGMEM = {
  124. MESH_MIN_Y + 0 * (MESH_Y_DIST), MESH_MIN_Y + 1 * (MESH_Y_DIST),
  125. MESH_MIN_Y + 2 * (MESH_Y_DIST), MESH_MIN_Y + 3 * (MESH_Y_DIST),
  126. MESH_MIN_Y + 4 * (MESH_Y_DIST), MESH_MIN_Y + 5 * (MESH_Y_DIST),
  127. MESH_MIN_Y + 6 * (MESH_Y_DIST), MESH_MIN_Y + 7 * (MESH_Y_DIST),
  128. MESH_MIN_Y + 8 * (MESH_Y_DIST), MESH_MIN_Y + 9 * (MESH_Y_DIST),
  129. MESH_MIN_Y + 10 * (MESH_Y_DIST), MESH_MIN_Y + 11 * (MESH_Y_DIST),
  130. MESH_MIN_Y + 12 * (MESH_Y_DIST), MESH_MIN_Y + 13 * (MESH_Y_DIST),
  131. MESH_MIN_Y + 14 * (MESH_Y_DIST), MESH_MIN_Y + 15 * (MESH_Y_DIST)
  132. };
  133. #if ENABLED(ULTIPANEL)
  134. static bool lcd_map_control;
  135. #endif
  136. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  137. unified_bed_leveling();
  138. FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  139. static int8_t get_cell_index_x(const float &x) {
  140. const int8_t cx = (x - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  141. return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
  142. } // position. But with this defined this way, it is possible
  143. // to extrapolate off of this point even further out. Probably
  144. // that is OK because something else should be keeping that from
  145. // happening and should not be worried about at this level.
  146. static int8_t get_cell_index_y(const float &y) {
  147. const int8_t cy = (y - (MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  148. return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  149. } // position. But with this defined this way, it is possible
  150. // to extrapolate off of this point even further out. Probably
  151. // that is OK because something else should be keeping that from
  152. // happening and should not be worried about at this level.
  153. static int8_t find_closest_x_index(const float &x) {
  154. const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  155. return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
  156. }
  157. static int8_t find_closest_y_index(const float &y) {
  158. const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  159. return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
  160. }
  161. /**
  162. * z2 --|
  163. * z0 | |
  164. * | | + (z2-z1)
  165. * z1 | | |
  166. * ---+-------------+--------+-- --|
  167. * a1 a0 a2
  168. * |<---delta_a---------->|
  169. *
  170. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  171. * find the expected Z Height at a position between two known Z-Height locations.
  172. *
  173. * It is fairly expensive with its 4 floating point additions and 2 floating point
  174. * multiplications.
  175. */
  176. FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  177. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  178. }
  179. /**
  180. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  181. * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
  182. */
  183. inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
  184. if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
  185. #if ENABLED(DEBUG_LEVELING_FEATURE)
  186. if (DEBUGGING(LEVELING)) {
  187. serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1_i") : PSTR("yi") );
  188. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0);
  189. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  190. SERIAL_ECHOPAIR(",yi=", yi);
  191. SERIAL_CHAR(')');
  192. SERIAL_EOL();
  193. }
  194. #endif
  195. // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
  196. return (
  197. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  198. UBL_Z_RAISE_WHEN_OFF_MESH
  199. #else
  200. NAN
  201. #endif
  202. );
  203. }
  204. const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
  205. z1 = z_values[x1_i][yi];
  206. return z1 + xratio * (z_values[MIN(x1_i, GRID_MAX_POINTS_X - 2) + 1][yi] - z1); // Don't allow x1_i+1 to be past the end of the array
  207. // If it is, it is clamped to the last element of the
  208. // z_values[][] array and no correction is applied.
  209. }
  210. //
  211. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  212. //
  213. inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
  214. if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
  215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  216. if (DEBUGGING(LEVELING)) {
  217. serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("y1_i") );
  218. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0);
  219. SERIAL_ECHOPAIR(", xi=", xi);
  220. SERIAL_ECHOPAIR(", y1_i=", y1_i);
  221. SERIAL_CHAR(')');
  222. SERIAL_EOL();
  223. }
  224. #endif
  225. // The requested location is off the mesh. Return UBL_Z_RAISE_WHEN_OFF_MESH or NAN.
  226. return (
  227. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  228. UBL_Z_RAISE_WHEN_OFF_MESH
  229. #else
  230. NAN
  231. #endif
  232. );
  233. }
  234. const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
  235. z1 = z_values[xi][y1_i];
  236. return z1 + yratio * (z_values[xi][MIN(y1_i, GRID_MAX_POINTS_Y - 2) + 1] - z1); // Don't allow y1_i+1 to be past the end of the array
  237. // If it is, it is clamped to the last element of the
  238. // z_values[][] array and no correction is applied.
  239. }
  240. /**
  241. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  242. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  243. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  244. * on the Y position within the cell.
  245. */
  246. static float get_z_correction(const float &rx0, const float &ry0) {
  247. const int8_t cx = get_cell_index_x(rx0),
  248. cy = get_cell_index_y(ry0); // return values are clamped
  249. /**
  250. * Check if the requested location is off the mesh. If so, and
  251. * UBL_Z_RAISE_WHEN_OFF_MESH is specified, that value is returned.
  252. */
  253. #ifdef UBL_Z_RAISE_WHEN_OFF_MESH
  254. if (!WITHIN(rx0, MESH_MIN_X, MESH_MAX_X) || !WITHIN(ry0, MESH_MIN_Y, MESH_MAX_Y))
  255. return UBL_Z_RAISE_WHEN_OFF_MESH;
  256. #endif
  257. const float z1 = calc_z0(rx0,
  258. mesh_index_to_xpos(cx), z_values[cx][cy],
  259. mesh_index_to_xpos(cx + 1), z_values[MIN(cx, GRID_MAX_POINTS_X - 2) + 1][cy]);
  260. const float z2 = calc_z0(rx0,
  261. mesh_index_to_xpos(cx), z_values[cx][MIN(cy, GRID_MAX_POINTS_Y - 2) + 1],
  262. mesh_index_to_xpos(cx + 1), z_values[MIN(cx, GRID_MAX_POINTS_X - 2) + 1][MIN(cy, GRID_MAX_POINTS_Y - 2) + 1]);
  263. float z0 = calc_z0(ry0,
  264. mesh_index_to_ypos(cy), z1,
  265. mesh_index_to_ypos(cy + 1), z2);
  266. #if ENABLED(DEBUG_LEVELING_FEATURE)
  267. if (DEBUGGING(MESH_ADJUST)) {
  268. SERIAL_ECHOPAIR(" raw get_z_correction(", rx0);
  269. SERIAL_CHAR(',');
  270. SERIAL_ECHO(ry0);
  271. SERIAL_ECHOPGM(") = ");
  272. SERIAL_ECHO_F(z0, 6);
  273. }
  274. #endif
  275. #if ENABLED(DEBUG_LEVELING_FEATURE)
  276. if (DEBUGGING(MESH_ADJUST)) {
  277. SERIAL_ECHOPGM(" >>>---> ");
  278. SERIAL_ECHO_F(z0, 6);
  279. SERIAL_EOL();
  280. }
  281. #endif
  282. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  283. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  284. // calculations. If our correction is NAN, we throw it out
  285. // because part of the Mesh is undefined and we don't have the
  286. // information we need to complete the height correction.
  287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  288. if (DEBUGGING(MESH_ADJUST)) {
  289. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0);
  290. SERIAL_CHAR(',');
  291. SERIAL_ECHO(ry0);
  292. SERIAL_CHAR(')');
  293. SERIAL_EOL();
  294. }
  295. #endif
  296. }
  297. return z0;
  298. }
  299. FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
  300. return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST);
  301. }
  302. FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
  303. return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
  304. }
  305. #if UBL_SEGMENTED
  306. static bool prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate);
  307. #else
  308. static void line_to_destination_cartesian(const float &fr, const uint8_t e);
  309. #endif
  310. inline static bool mesh_is_valid() {
  311. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  312. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  313. if (isnan(z_values[x][y])) return false;
  314. return true;
  315. }
  316. }; // class unified_bed_leveling
  317. extern unified_bed_leveling ubl;
  318. #endif // UNIFIED_BED_LEVELING_H