My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G26.cpp 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "../../inc/MarlinConfig.h"
  26. #if ENABLED(G26_MESH_VALIDATION)
  27. #define G26_OK false
  28. #define G26_ERR true
  29. #include "../../gcode/gcode.h"
  30. #include "../../feature/bedlevel/bedlevel.h"
  31. #include "../../Marlin.h"
  32. #include "../../module/planner.h"
  33. #include "../../module/stepper.h"
  34. #include "../../module/motion.h"
  35. #include "../../module/temperature.h"
  36. #include "../../lcd/ultralcd.h"
  37. #define EXTRUSION_MULTIPLIER 1.0
  38. #define RETRACTION_MULTIPLIER 1.0
  39. #define PRIME_LENGTH 10.0
  40. #define OOZE_AMOUNT 0.3
  41. #define INTERSECTION_CIRCLE_RADIUS 5
  42. #define CROSSHAIRS_SIZE 3
  43. #if CROSSHAIRS_SIZE >= INTERSECTION_CIRCLE_RADIUS
  44. #error "CROSSHAIRS_SIZE must be less than INTERSECTION_CIRCLE_RADIUS."
  45. #endif
  46. #define G26_OK false
  47. #define G26_ERR true
  48. #if ENABLED(ARC_SUPPORT)
  49. void plan_arc(const float (&cart)[XYZE], const float (&offset)[2], const uint8_t clockwise);
  50. #endif
  51. /**
  52. * G26 Mesh Validation Tool
  53. *
  54. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  55. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  56. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  57. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  58. * the intersections of those lines (respectively).
  59. *
  60. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  61. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  62. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  63. * focus on a particular area of the Mesh where attention is needed.
  64. *
  65. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  66. *
  67. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  68. * as the base for any distance comparison.
  69. *
  70. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  71. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  72. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  73. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  74. * it is on.
  75. *
  76. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  77. *
  78. * F # Filament Used to specify the diameter of the filament being used. If not specified
  79. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  80. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  81. * of filament that is being extruded during the printing of the various lines on the bed.
  82. *
  83. * K Keep-On Keep the heaters turned on at the end of the command.
  84. *
  85. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  86. *
  87. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  88. * is over kill, but using this parameter will let you get the very first 'circle' perfect
  89. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  90. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  91. *
  92. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  93. * given, no prime action will take place. If the parameter specifies an amount, that much
  94. * will be purged before continuing. If no amount is specified the command will start
  95. * purging filament until the user provides an LCD Click and then it will continue with
  96. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  97. * pliers while holding the LCD Click wheel in a depressed state. If you do not have
  98. * an LCD, you must specify a value if you use P.
  99. *
  100. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  101. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  102. *
  103. * R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
  104. * If a parameter isn't given, every point will be printed unless G26 is interrupted.
  105. * This works the same way that the UBL G29 P4 R parameter works.
  106. *
  107. * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
  108. * aware that there's some risk associated with printing without the ability to abort in
  109. * cases where mesh point Z value may be inaccurate. As above, if you do not include a
  110. * parameter, every point will be printed.
  111. *
  112. * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  113. *
  114. * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  115. * undrawn cicle is still done. But the distance to the location for each circle has a
  116. * random number of the size specified added to it. Specifying S50 will give an interesting
  117. * deviation from the normal behaviour on a 10 x 10 Mesh.
  118. *
  119. * X # X Coord. Specify the starting location of the drawing activity.
  120. *
  121. * Y # Y Coord. Specify the starting location of the drawing activity.
  122. */
  123. // External references
  124. // Private functions
  125. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
  126. float g26_e_axis_feedrate = 0.025,
  127. random_deviation = 0.0;
  128. static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
  129. // retracts/recovers won't result in a bad state.
  130. float g26_extrusion_multiplier,
  131. g26_retraction_multiplier,
  132. g26_layer_height,
  133. g26_prime_length;
  134. float g26_x_pos = 0, g26_y_pos = 0;
  135. int16_t g26_bed_temp,
  136. g26_hotend_temp;
  137. int8_t g26_prime_flag;
  138. #if ENABLED(ULTIPANEL)
  139. /**
  140. * If the LCD is clicked, cancel, wait for release, return true
  141. */
  142. bool user_canceled() {
  143. if (!is_lcd_clicked()) return false; // Return if the button isn't pressed
  144. lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99);
  145. #if ENABLED(ULTIPANEL)
  146. lcd_quick_feedback(true);
  147. #endif
  148. wait_for_release();
  149. return true;
  150. }
  151. bool exit_from_g26() {
  152. lcd_setstatusPGM(PSTR("Leaving G26"), -1);
  153. wait_for_release();
  154. return G26_ERR;
  155. }
  156. #endif
  157. mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
  158. float closest = 99999.99;
  159. mesh_index_pair return_val;
  160. return_val.x_index = return_val.y_index = -1;
  161. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  162. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  163. if (!is_bitmap_set(circle_flags, i, j)) {
  164. const float mx = _GET_MESH_X(i), // We found a circle that needs to be printed
  165. my = _GET_MESH_Y(j);
  166. // Get the distance to this intersection
  167. float f = HYPOT(X - mx, Y - my);
  168. // It is possible that we are being called with the values
  169. // to let us find the closest circle to the start position.
  170. // But if this is not the case, add a small weighting to the
  171. // distance calculation to help it choose a better place to continue.
  172. f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
  173. // Add in the specified amount of Random Noise to our search
  174. if (random_deviation > 1.0)
  175. f += random(0.0, random_deviation);
  176. if (f < closest) {
  177. closest = f; // We found a closer location that is still
  178. return_val.x_index = i; // un-printed --- save the data for it
  179. return_val.y_index = j;
  180. return_val.distance = closest;
  181. }
  182. }
  183. }
  184. }
  185. bitmap_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  186. return return_val;
  187. }
  188. void G26_line_to_destination(const float &feed_rate) {
  189. const float save_feedrate = feedrate_mm_s;
  190. feedrate_mm_s = feed_rate;
  191. prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_SEGMENTED
  192. feedrate_mm_s = save_feedrate;
  193. }
  194. void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
  195. float feed_value;
  196. static float last_z = -999.99;
  197. bool has_xy_component = (rx != current_position[X_AXIS] || ry != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  198. if (z != last_z) {
  199. last_z = z;
  200. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  201. destination[X_AXIS] = current_position[X_AXIS];
  202. destination[Y_AXIS] = current_position[Y_AXIS];
  203. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  204. destination[E_AXIS] = current_position[E_AXIS];
  205. G26_line_to_destination(feed_value);
  206. set_destination_from_current();
  207. }
  208. // Check if X or Y is involved in the movement.
  209. // Yes: a 'normal' movement. No: a retract() or recover()
  210. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  211. if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
  212. destination[X_AXIS] = rx;
  213. destination[Y_AXIS] = ry;
  214. destination[E_AXIS] += e_delta;
  215. G26_line_to_destination(feed_value);
  216. set_destination_from_current();
  217. }
  218. FORCE_INLINE void move_to(const float (&where)[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); }
  219. void retract_filament(const float (&where)[XYZE]) {
  220. if (!g26_retracted) { // Only retract if we are not already retracted!
  221. g26_retracted = true;
  222. move_to(where, -1.0 * g26_retraction_multiplier);
  223. }
  224. }
  225. void recover_filament(const float (&where)[XYZE]) {
  226. if (g26_retracted) { // Only un-retract if we are retracted.
  227. move_to(where, 1.2 * g26_retraction_multiplier);
  228. g26_retracted = false;
  229. }
  230. }
  231. /**
  232. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  233. * to the other. But there are really three sets of coordinates involved. The first coordinate
  234. * is the present location of the nozzle. We don't necessarily want to print from this location.
  235. * We first need to move the nozzle to the start of line segment where we want to print. Once
  236. * there, we can use the two coordinates supplied to draw the line.
  237. *
  238. * Note: Although we assume the first set of coordinates is the start of the line and the second
  239. * set of coordinates is the end of the line, it does not always work out that way. This function
  240. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  241. * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
  242. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  243. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  244. * cases where the optimization comes into play.
  245. */
  246. void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
  247. const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
  248. dy_s = current_position[Y_AXIS] - sy,
  249. dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
  250. // to save computation time
  251. dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
  252. dy_e = current_position[Y_AXIS] - ey,
  253. dist_end = HYPOT2(dx_e, dy_e),
  254. line_length = HYPOT(ex - sx, ey - sy);
  255. // If the end point of the line is closer to the nozzle, flip the direction,
  256. // moving from the end to the start. On very small lines the optimization isn't worth it.
  257. if (dist_end < dist_start && (INTERSECTION_CIRCLE_RADIUS) < ABS(line_length))
  258. return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  259. // Decide whether to retract & bump
  260. if (dist_start > 2.0) {
  261. retract_filament(destination);
  262. //todo: parameterize the bump height with a define
  263. move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
  264. move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
  265. }
  266. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
  267. const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
  268. recover_filament(destination);
  269. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  270. }
  271. inline bool look_for_lines_to_connect() {
  272. float sx, sy, ex, ey;
  273. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  274. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  275. #if ENABLED(ULTIPANEL)
  276. if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
  277. #endif
  278. if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
  279. // This is already a half circle because we are at the edge of the bed.
  280. if (is_bitmap_set(circle_flags, i, j) && is_bitmap_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  281. if (!is_bitmap_set(horizontal_mesh_line_flags, i, j)) {
  282. //
  283. // We found two circles that need a horizontal line to connect them
  284. // Print it!
  285. //
  286. sx = _GET_MESH_X( i ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // right edge
  287. ex = _GET_MESH_X(i + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // left edge
  288. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
  289. sy = ey = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
  290. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  291. if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
  292. if (g26_debug_flag) {
  293. SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
  294. SERIAL_ECHOPAIR(", sy=", sy);
  295. SERIAL_ECHOPAIR(") -> (ex=", ex);
  296. SERIAL_ECHOPAIR(", ey=", ey);
  297. SERIAL_CHAR(')');
  298. SERIAL_EOL();
  299. //debug_current_and_destination(PSTR("Connecting horizontal line."));
  300. }
  301. print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
  302. }
  303. bitmap_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
  304. }
  305. }
  306. if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
  307. // This is already a half circle because we are at the edge of the bed.
  308. if (is_bitmap_set(circle_flags, i, j) && is_bitmap_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  309. if (!is_bitmap_set( vertical_mesh_line_flags, i, j)) {
  310. //
  311. // We found two circles that need a vertical line to connect them
  312. // Print it!
  313. //
  314. sy = _GET_MESH_Y( j ) + (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // top edge
  315. ey = _GET_MESH_Y(j + 1) - (INTERSECTION_CIRCLE_RADIUS - (CROSSHAIRS_SIZE)); // bottom edge
  316. sx = ex = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
  317. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  318. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  319. if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
  320. if (g26_debug_flag) {
  321. SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
  322. SERIAL_ECHOPAIR(", sy=", sy);
  323. SERIAL_ECHOPAIR(") -> (ex=", ex);
  324. SERIAL_ECHOPAIR(", ey=", ey);
  325. SERIAL_CHAR(')');
  326. SERIAL_EOL();
  327. #if ENABLED(AUTO_BED_LEVELING_UBL)
  328. debug_current_and_destination(PSTR("Connecting vertical line."));
  329. #endif
  330. }
  331. print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
  332. }
  333. bitmap_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
  334. }
  335. }
  336. }
  337. }
  338. }
  339. }
  340. return false;
  341. }
  342. /**
  343. * Turn on the bed and nozzle heat and
  344. * wait for them to get up to temperature.
  345. */
  346. inline bool turn_on_heaters() {
  347. millis_t next = millis() + 5000UL;
  348. #if HAS_HEATED_BED
  349. #if ENABLED(ULTRA_LCD)
  350. if (g26_bed_temp > 25) {
  351. lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99);
  352. lcd_quick_feedback(true);
  353. #if ENABLED(ULTIPANEL)
  354. lcd_external_control = true;
  355. #endif
  356. #endif
  357. thermalManager.setTargetBed(g26_bed_temp);
  358. while (ABS(thermalManager.degBed() - g26_bed_temp) > 3) {
  359. #if ENABLED(ULTIPANEL)
  360. if (is_lcd_clicked()) return exit_from_g26();
  361. #endif
  362. if (ELAPSED(millis(), next)) {
  363. next = millis() + 5000UL;
  364. thermalManager.print_heaterstates();
  365. SERIAL_EOL();
  366. }
  367. idle();
  368. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  369. }
  370. #if ENABLED(ULTRA_LCD)
  371. }
  372. lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99);
  373. lcd_quick_feedback(true);
  374. #endif
  375. #endif
  376. // Start heating the nozzle and wait for it to reach temperature.
  377. thermalManager.setTargetHotend(g26_hotend_temp, 0);
  378. while (ABS(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
  379. #if ENABLED(ULTIPANEL)
  380. if (is_lcd_clicked()) return exit_from_g26();
  381. #endif
  382. if (ELAPSED(millis(), next)) {
  383. next = millis() + 5000UL;
  384. thermalManager.print_heaterstates();
  385. SERIAL_EOL();
  386. }
  387. idle();
  388. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  389. }
  390. #if ENABLED(ULTRA_LCD)
  391. lcd_reset_status();
  392. lcd_quick_feedback(true);
  393. #endif
  394. return G26_OK;
  395. }
  396. /**
  397. * Prime the nozzle if needed. Return true on error.
  398. */
  399. inline bool prime_nozzle() {
  400. #if ENABLED(ULTIPANEL)
  401. float Total_Prime = 0.0;
  402. if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
  403. lcd_external_control = true;
  404. lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
  405. lcd_chirp();
  406. set_destination_from_current();
  407. recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  408. while (!is_lcd_clicked()) {
  409. lcd_chirp();
  410. destination[E_AXIS] += 0.25;
  411. #ifdef PREVENT_LENGTHY_EXTRUDE
  412. Total_Prime += 0.25;
  413. if (Total_Prime >= EXTRUDE_MAXLENGTH) return G26_ERR;
  414. #endif
  415. G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
  416. set_destination_from_current();
  417. planner.synchronize(); // Without this synchronize, the purge is more consistent,
  418. // but because the planner has a buffer, we won't be able
  419. // to stop as quickly. So we put up with the less smooth
  420. // action to give the user a more responsive 'Stop'.
  421. }
  422. wait_for_release();
  423. lcd_setstatusPGM(PSTR("Done Priming"), 99);
  424. lcd_quick_feedback(true);
  425. lcd_external_control = false;
  426. }
  427. else
  428. #endif
  429. {
  430. #if ENABLED(ULTRA_LCD)
  431. lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
  432. lcd_quick_feedback(true);
  433. #endif
  434. set_destination_from_current();
  435. destination[E_AXIS] += g26_prime_length;
  436. G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
  437. set_destination_from_current();
  438. retract_filament(destination);
  439. }
  440. return G26_OK;
  441. }
  442. float valid_trig_angle(float d) {
  443. while (d > 360.0) d -= 360.0;
  444. while (d < 0.0) d += 360.0;
  445. return d;
  446. }
  447. /**
  448. * G26: Mesh Validation Pattern generation.
  449. *
  450. * Used to interactively edit the mesh by placing the
  451. * nozzle in a problem area and doing a G29 P4 R command.
  452. *
  453. * Parameters:
  454. *
  455. * B Bed Temperature
  456. * C Continue from the Closest mesh point
  457. * D Disable leveling before starting
  458. * F Filament diameter
  459. * H Hotend Temperature
  460. * K Keep heaters on when completed
  461. * L Layer Height
  462. * O Ooze extrusion length
  463. * P Prime length
  464. * Q Retraction multiplier
  465. * R Repetitions (number of grid points)
  466. * S Nozzle Size (diameter) in mm
  467. * U Random deviation (50 if no value given)
  468. * X X position
  469. * Y Y position
  470. */
  471. void GcodeSuite::G26() {
  472. SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
  473. // Don't allow Mesh Validation without homing first,
  474. // or if the parameter parsing did not go OK, abort
  475. if (axis_unhomed_error()) return;
  476. g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
  477. g26_retraction_multiplier = RETRACTION_MULTIPLIER;
  478. g26_layer_height = MESH_TEST_LAYER_HEIGHT;
  479. g26_prime_length = PRIME_LENGTH;
  480. g26_bed_temp = MESH_TEST_BED_TEMP;
  481. g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
  482. g26_prime_flag = 0;
  483. float g26_nozzle = MESH_TEST_NOZZLE_SIZE,
  484. g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
  485. g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
  486. bool g26_continue_with_closest = parser.boolval('C'),
  487. g26_keep_heaters_on = parser.boolval('K');
  488. if (parser.seenval('B')) {
  489. g26_bed_temp = parser.value_celsius();
  490. if (g26_bed_temp && !WITHIN(g26_bed_temp, 40, 140)) {
  491. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible (40-140C).");
  492. return;
  493. }
  494. }
  495. if (parser.seenval('L')) {
  496. g26_layer_height = parser.value_linear_units();
  497. if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
  498. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  499. return;
  500. }
  501. }
  502. if (parser.seen('Q')) {
  503. if (parser.has_value()) {
  504. g26_retraction_multiplier = parser.value_float();
  505. if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
  506. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  507. return;
  508. }
  509. }
  510. else {
  511. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  512. return;
  513. }
  514. }
  515. if (parser.seenval('S')) {
  516. g26_nozzle = parser.value_float();
  517. if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
  518. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  519. return;
  520. }
  521. }
  522. if (parser.seen('P')) {
  523. if (!parser.has_value()) {
  524. #if ENABLED(ULTIPANEL)
  525. g26_prime_flag = -1;
  526. #else
  527. SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
  528. return;
  529. #endif
  530. }
  531. else {
  532. g26_prime_flag++;
  533. g26_prime_length = parser.value_linear_units();
  534. if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
  535. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  536. return;
  537. }
  538. }
  539. }
  540. if (parser.seenval('F')) {
  541. g26_filament_diameter = parser.value_linear_units();
  542. if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
  543. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  544. return;
  545. }
  546. }
  547. g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
  548. // scale up or down the length needed to get the
  549. // same volume of filament
  550. g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
  551. if (parser.seenval('H')) {
  552. g26_hotend_temp = parser.value_celsius();
  553. if (!WITHIN(g26_hotend_temp, 165, 280)) {
  554. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  555. return;
  556. }
  557. }
  558. if (parser.seen('U')) {
  559. randomSeed(millis());
  560. // This setting will persist for the next G26
  561. random_deviation = parser.has_value() ? parser.value_float() : 50.0;
  562. }
  563. int16_t g26_repeats;
  564. #if ENABLED(ULTIPANEL)
  565. g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
  566. #else
  567. if (!parser.seen('R')) {
  568. SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
  569. return;
  570. }
  571. else
  572. g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
  573. #endif
  574. if (g26_repeats < 1) {
  575. SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
  576. return;
  577. }
  578. g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS];
  579. g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS];
  580. if (!position_is_reachable(g26_x_pos, g26_y_pos)) {
  581. SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
  582. return;
  583. }
  584. /**
  585. * Wait until all parameters are verified before altering the state!
  586. */
  587. set_bed_leveling_enabled(!parser.seen('D'));
  588. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  589. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  590. set_current_from_destination();
  591. }
  592. if (turn_on_heaters() != G26_OK) goto LEAVE;
  593. current_position[E_AXIS] = 0.0;
  594. sync_plan_position_e();
  595. if (g26_prime_flag && prime_nozzle() != G26_OK) goto LEAVE;
  596. /**
  597. * Bed is preheated
  598. *
  599. * Nozzle is at temperature
  600. *
  601. * Filament is primed!
  602. *
  603. * It's "Show Time" !!!
  604. */
  605. ZERO(circle_flags);
  606. ZERO(horizontal_mesh_line_flags);
  607. ZERO(vertical_mesh_line_flags);
  608. // Move nozzle to the specified height for the first layer
  609. set_destination_from_current();
  610. destination[Z_AXIS] = g26_layer_height;
  611. move_to(destination, 0.0);
  612. move_to(destination, g26_ooze_amount);
  613. #if ENABLED(ULTIPANEL)
  614. lcd_external_control = true;
  615. #endif
  616. //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
  617. #if DISABLED(ARC_SUPPORT)
  618. /**
  619. * Pre-generate radius offset values at 30 degree intervals to reduce CPU load.
  620. */
  621. #define A_INT 30
  622. #define _ANGS (360 / A_INT)
  623. #define A_CNT (_ANGS / 2)
  624. #define _IND(A) ((A + _ANGS * 8) % _ANGS)
  625. #define _COS(A) (trig_table[_IND(A) % A_CNT] * (_IND(A) >= A_CNT ? -1 : 1))
  626. #define _SIN(A) (-_COS((A + A_CNT / 2) % _ANGS))
  627. #if A_CNT & 1
  628. #error "A_CNT must be a positive value. Please change A_INT."
  629. #endif
  630. float trig_table[A_CNT];
  631. for (uint8_t i = 0; i < A_CNT; i++)
  632. trig_table[i] = INTERSECTION_CIRCLE_RADIUS * cos(RADIANS(i * A_INT));
  633. #endif // !ARC_SUPPORT
  634. mesh_index_pair location;
  635. do {
  636. location = g26_continue_with_closest
  637. ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
  638. : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
  639. if (location.x_index >= 0 && location.y_index >= 0) {
  640. const float circle_x = _GET_MESH_X(location.x_index),
  641. circle_y = _GET_MESH_Y(location.y_index);
  642. // If this mesh location is outside the printable_radius, skip it.
  643. if (!position_is_reachable(circle_x, circle_y)) continue;
  644. // Determine where to start and end the circle,
  645. // which is always drawn counter-clockwise.
  646. const uint8_t xi = location.x_index, yi = location.y_index;
  647. const bool f = yi == 0, r = xi >= GRID_MAX_POINTS_X - 1, b = yi >= GRID_MAX_POINTS_Y - 1;
  648. #if ENABLED(ARC_SUPPORT)
  649. #define ARC_LENGTH(quarters) (INTERSECTION_CIRCLE_RADIUS * M_PI * (quarters) / 2)
  650. float sx = circle_x + INTERSECTION_CIRCLE_RADIUS, // default to full circle
  651. ex = circle_x + INTERSECTION_CIRCLE_RADIUS,
  652. sy = circle_y, ey = circle_y,
  653. arc_length = ARC_LENGTH(4);
  654. // Figure out where to start and end the arc - we always print counterclockwise
  655. if (xi == 0) { // left edge
  656. sx = f ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
  657. ex = b ? circle_x + INTERSECTION_CIRCLE_RADIUS : circle_x;
  658. sy = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS;
  659. ey = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
  660. arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
  661. }
  662. else if (r) { // right edge
  663. sx = b ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x;
  664. ex = f ? circle_x - INTERSECTION_CIRCLE_RADIUS : circle_x;
  665. sy = b ? circle_y : circle_y + INTERSECTION_CIRCLE_RADIUS;
  666. ey = f ? circle_y : circle_y - INTERSECTION_CIRCLE_RADIUS;
  667. arc_length = (f || b) ? ARC_LENGTH(1) : ARC_LENGTH(2);
  668. }
  669. else if (f) {
  670. sx = circle_x + INTERSECTION_CIRCLE_RADIUS;
  671. ex = circle_x - INTERSECTION_CIRCLE_RADIUS;
  672. sy = ey = circle_y;
  673. arc_length = ARC_LENGTH(2);
  674. }
  675. else if (b) {
  676. sx = circle_x - INTERSECTION_CIRCLE_RADIUS;
  677. ex = circle_x + INTERSECTION_CIRCLE_RADIUS;
  678. sy = ey = circle_y;
  679. arc_length = ARC_LENGTH(2);
  680. }
  681. const float arc_offset[2] = {
  682. circle_x - sx,
  683. circle_y - sy
  684. };
  685. const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual circle
  686. dy_s = current_position[Y_AXIS] - sy,
  687. dist_start = HYPOT2(dx_s, dy_s);
  688. const float endpoint[XYZE] = {
  689. ex, ey,
  690. g26_layer_height,
  691. current_position[E_AXIS] + (arc_length * g26_e_axis_feedrate * g26_extrusion_multiplier)
  692. };
  693. if (dist_start > 2.0) {
  694. retract_filament(destination);
  695. //todo: parameterize the bump height with a define
  696. move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
  697. move_to(sx, sy, g26_layer_height + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
  698. }
  699. move_to(sx, sy, g26_layer_height, 0.0); // Get to the starting point with no extrusion / un-Z bump
  700. recover_filament(destination);
  701. const float save_feedrate = feedrate_mm_s;
  702. feedrate_mm_s = PLANNER_XY_FEEDRATE() / 10.0;
  703. plan_arc(endpoint, arc_offset, false); // Draw a counter-clockwise arc
  704. feedrate_mm_s = save_feedrate;
  705. set_destination_from_current();
  706. #if ENABLED(ULTIPANEL)
  707. if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  708. #endif
  709. #else // !ARC_SUPPORT
  710. int8_t start_ind = -2, end_ind = 9; // Assume a full circle (from 5:00 to 5:00)
  711. if (xi == 0) { // Left edge? Just right half.
  712. start_ind = f ? 0 : -3; // 03:00 to 12:00 for front-left
  713. end_ind = b ? 0 : 2; // 06:00 to 03:00 for back-left
  714. }
  715. else if (r) { // Right edge? Just left half.
  716. start_ind = b ? 6 : 3; // 12:00 to 09:00 for front-right
  717. end_ind = f ? 5 : 8; // 09:00 to 06:00 for back-right
  718. }
  719. else if (f) { // Front edge? Just back half.
  720. start_ind = 0; // 03:00
  721. end_ind = 5; // 09:00
  722. }
  723. else if (b) { // Back edge? Just front half.
  724. start_ind = 6; // 09:00
  725. end_ind = 11; // 03:00
  726. }
  727. for (int8_t ind = start_ind; ind <= end_ind; ind++) {
  728. #if ENABLED(ULTIPANEL)
  729. if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  730. #endif
  731. float rx = circle_x + _COS(ind), // For speed, these are now a lookup table entry
  732. ry = circle_y + _SIN(ind),
  733. xe = circle_x + _COS(ind + 1),
  734. ye = circle_y + _SIN(ind + 1);
  735. #if IS_KINEMATIC
  736. // Check to make sure this segment is entirely on the bed, skip if not.
  737. if (!position_is_reachable(rx, ry) || !position_is_reachable(xe, ye)) continue;
  738. #else // not, we need to skip
  739. rx = constrain(rx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  740. ry = constrain(ry, Y_MIN_POS + 1, Y_MAX_POS - 1);
  741. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  742. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  743. #endif
  744. print_line_from_here_to_there(rx, ry, g26_layer_height, xe, ye, g26_layer_height);
  745. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  746. }
  747. #endif // !ARC_SUPPORT
  748. if (look_for_lines_to_connect()) goto LEAVE;
  749. }
  750. SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
  751. } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
  752. LEAVE:
  753. lcd_setstatusPGM(PSTR("Leaving G26"), -1);
  754. retract_filament(destination);
  755. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
  756. //debug_current_and_destination(PSTR("ready to do Z-Raise."));
  757. move_to(destination, 0); // Raise the nozzle
  758. //debug_current_and_destination(PSTR("done doing Z-Raise."));
  759. destination[X_AXIS] = g26_x_pos; // Move back to the starting position
  760. destination[Y_AXIS] = g26_y_pos;
  761. //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  762. move_to(destination, 0); // Move back to the starting position
  763. //debug_current_and_destination(PSTR("done doing X/Y move."));
  764. #if ENABLED(ULTIPANEL)
  765. lcd_external_control = false; // Give back control of the LCD Panel!
  766. #endif
  767. if (!g26_keep_heaters_on) {
  768. #if HAS_HEATED_BED
  769. thermalManager.setTargetBed(0);
  770. #endif
  771. thermalManager.setTargetHotend(0, 0);
  772. }
  773. }
  774. #endif // G26_MESH_VALIDATION