My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 278KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "nozzle.h"
  57. #include "duration_t.h"
  58. #include "types.h"
  59. #if ENABLED(USE_WATCHDOG)
  60. #include "watchdog.h"
  61. #endif
  62. #if ENABLED(BLINKM)
  63. #include "blinkm.h"
  64. #include "Wire.h"
  65. #endif
  66. #if HAS_SERVOS
  67. #include "servo.h"
  68. #endif
  69. #if HAS_DIGIPOTSS
  70. #include <SPI.h>
  71. #endif
  72. #if ENABLED(DAC_STEPPER_CURRENT)
  73. #include "stepper_dac.h"
  74. #endif
  75. #if ENABLED(EXPERIMENTAL_I2CBUS)
  76. #include "twibus.h"
  77. #endif
  78. /**
  79. * Look here for descriptions of G-codes:
  80. * - http://linuxcnc.org/handbook/gcode/g-code.html
  81. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  82. *
  83. * Help us document these G-codes online:
  84. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  85. * - http://reprap.org/wiki/G-code
  86. *
  87. * -----------------
  88. * Implemented Codes
  89. * -----------------
  90. *
  91. * "G" Codes
  92. *
  93. * G0 -> G1
  94. * G1 - Coordinated Movement X Y Z E
  95. * G2 - CW ARC
  96. * G3 - CCW ARC
  97. * G4 - Dwell S<seconds> or P<milliseconds>
  98. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  99. * G10 - Retract filament according to settings of M207
  100. * G11 - Retract recover filament according to settings of M208
  101. * G12 - Clean tool
  102. * G20 - Set input units to inches
  103. * G21 - Set input units to millimeters
  104. * G28 - Home one or more axes
  105. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  106. * G30 - Single Z probe, probes bed at current XY location.
  107. * G31 - Dock sled (Z_PROBE_SLED only)
  108. * G32 - Undock sled (Z_PROBE_SLED only)
  109. * G90 - Use Absolute Coordinates
  110. * G91 - Use Relative Coordinates
  111. * G92 - Set current position to coordinates given
  112. *
  113. * "M" Codes
  114. *
  115. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  116. * M1 - Same as M0
  117. * M17 - Enable/Power all stepper motors
  118. * M18 - Disable all stepper motors; same as M84
  119. * M20 - List SD card
  120. * M21 - Init SD card
  121. * M22 - Release SD card
  122. * M23 - Select SD file (M23 filename.g)
  123. * M24 - Start/resume SD print
  124. * M25 - Pause SD print
  125. * M26 - Set SD position in bytes (M26 S12345)
  126. * M27 - Report SD print status
  127. * M28 - Start SD write (M28 filename.g)
  128. * M29 - Stop SD write
  129. * M30 - Delete file from SD (M30 filename.g)
  130. * M31 - Output time since last M109 or SD card start to serial
  131. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  132. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  133. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  134. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  135. * M33 - Get the longname version of a path
  136. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  137. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  138. * M75 - Start the print job timer
  139. * M76 - Pause the print job timer
  140. * M77 - Stop the print job timer
  141. * M78 - Show statistical information about the print jobs
  142. * M80 - Turn on Power Supply
  143. * M81 - Turn off Power Supply
  144. * M82 - Set E codes absolute (default)
  145. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  146. * M84 - Disable steppers until next move,
  147. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  148. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  149. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  150. * M104 - Set extruder target temp
  151. * M105 - Read current temp
  152. * M106 - Fan on
  153. * M107 - Fan off
  154. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  155. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  156. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  157. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  158. * M110 - Set the current line number
  159. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  160. * M112 - Emergency stop
  161. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  162. * M114 - Output current position to serial port
  163. * M115 - Capabilities string
  164. * M117 - Display a message on the controller screen
  165. * M119 - Output Endstop status to serial port
  166. * M120 - Enable endstop detection
  167. * M121 - Disable endstop detection
  168. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  169. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  170. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  172. * M140 - Set bed target temp
  173. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  174. * M149 - Set temperature units
  175. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  176. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  177. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  178. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  179. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  180. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  181. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  182. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  183. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  184. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  185. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  186. * M205 - Set advanced settings. Current units apply:
  187. S<print> T<travel> minimum speeds
  188. B<minimum segment time>
  189. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  190. * M206 - Set additional homing offset
  191. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  192. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  193. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  194. Every normal extrude-only move will be classified as retract depending on the direction.
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  244. * ************* SCARA End ***************
  245. *
  246. * ************ Custom codes - This can change to suit future G-code regulations
  247. * M100 - Watch Free Memory (For Debugging Only)
  248. * M928 - Start SD logging (M928 filename.g) - ended by M29
  249. * M999 - Restart after being stopped by error
  250. *
  251. * "T" Codes
  252. *
  253. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  254. *
  255. */
  256. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  257. void gcode_M100();
  258. #endif
  259. #if ENABLED(SDSUPPORT)
  260. CardReader card;
  261. #endif
  262. #if ENABLED(EXPERIMENTAL_I2CBUS)
  263. TWIBus i2c;
  264. #endif
  265. bool Running = true;
  266. uint8_t marlin_debug_flags = DEBUG_NONE;
  267. float current_position[NUM_AXIS] = { 0.0 };
  268. static float destination[NUM_AXIS] = { 0.0 };
  269. bool axis_known_position[3] = { false };
  270. bool axis_homed[3] = { false };
  271. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  272. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  273. static char* current_command, *current_command_args;
  274. static uint8_t cmd_queue_index_r = 0,
  275. cmd_queue_index_w = 0,
  276. commands_in_queue = 0;
  277. #if ENABLED(INCH_MODE_SUPPORT)
  278. float linear_unit_factor = 1.0;
  279. float volumetric_unit_factor = 1.0;
  280. #endif
  281. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  282. TempUnit input_temp_units = TEMPUNIT_C;
  283. #endif
  284. /**
  285. * Feed rates are often configured with mm/m
  286. * but the planner and stepper like mm/s units.
  287. */
  288. const float homing_feedrate_mm_s[] = {
  289. #if ENABLED(DELTA)
  290. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  291. #else
  292. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  293. #endif
  294. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  295. };
  296. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  297. int feedrate_percentage = 100, saved_feedrate_percentage;
  298. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  299. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  300. bool volumetric_enabled = false;
  301. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  302. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  303. // The distance that XYZ has been offset by G92. Reset by G28.
  304. float position_shift[3] = { 0 };
  305. // This offset is added to the configured home position.
  306. // Set by M206, M428, or menu item. Saved to EEPROM.
  307. float home_offset[3] = { 0 };
  308. // Software Endstops. Default to configured limits.
  309. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  310. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  311. #if FAN_COUNT > 0
  312. int fanSpeeds[FAN_COUNT] = { 0 };
  313. #endif
  314. // The active extruder (tool). Set with T<extruder> command.
  315. uint8_t active_extruder = 0;
  316. // Relative Mode. Enable with G91, disable with G90.
  317. static bool relative_mode = false;
  318. volatile bool wait_for_heatup = true;
  319. const char errormagic[] PROGMEM = "Error:";
  320. const char echomagic[] PROGMEM = "echo:";
  321. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  322. static int serial_count = 0;
  323. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  324. static char* seen_pointer;
  325. // Next Immediate GCode Command pointer. NULL if none.
  326. const char* queued_commands_P = NULL;
  327. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  328. // Inactivity shutdown
  329. millis_t previous_cmd_ms = 0;
  330. static millis_t max_inactive_time = 0;
  331. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  332. // Print Job Timer
  333. #if ENABLED(PRINTCOUNTER)
  334. PrintCounter print_job_timer = PrintCounter();
  335. #else
  336. Stopwatch print_job_timer = Stopwatch();
  337. #endif
  338. // Buzzer - I2C on the LCD or a BEEPER_PIN
  339. #if ENABLED(LCD_USE_I2C_BUZZER)
  340. #define BUZZ(d,f) lcd_buzz(d, f)
  341. #elif HAS_BUZZER
  342. Buzzer buzzer;
  343. #define BUZZ(d,f) buzzer.tone(d, f)
  344. #else
  345. #define BUZZ(d,f) NOOP
  346. #endif
  347. static uint8_t target_extruder;
  348. #if HAS_BED_PROBE
  349. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  350. #endif
  351. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  352. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  353. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  354. bool bed_leveling_in_progress = false;
  355. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  356. #elif defined(XY_PROBE_SPEED)
  357. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  358. #else
  359. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  360. #endif
  361. #if ENABLED(Z_DUAL_ENDSTOPS)
  362. float z_endstop_adj = 0;
  363. #endif
  364. // Extruder offsets
  365. #if HOTENDS > 1
  366. float hotend_offset[][HOTENDS] = {
  367. HOTEND_OFFSET_X,
  368. HOTEND_OFFSET_Y
  369. #ifdef HOTEND_OFFSET_Z
  370. , HOTEND_OFFSET_Z
  371. #endif
  372. };
  373. #endif
  374. #if HAS_Z_SERVO_ENDSTOP
  375. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  376. #endif
  377. #if ENABLED(BARICUDA)
  378. int baricuda_valve_pressure = 0;
  379. int baricuda_e_to_p_pressure = 0;
  380. #endif
  381. #if ENABLED(FWRETRACT)
  382. bool autoretract_enabled = false;
  383. bool retracted[EXTRUDERS] = { false };
  384. bool retracted_swap[EXTRUDERS] = { false };
  385. float retract_length = RETRACT_LENGTH;
  386. float retract_length_swap = RETRACT_LENGTH_SWAP;
  387. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  388. float retract_zlift = RETRACT_ZLIFT;
  389. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  390. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  391. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  392. #endif // FWRETRACT
  393. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  394. bool powersupply =
  395. #if ENABLED(PS_DEFAULT_OFF)
  396. false
  397. #else
  398. true
  399. #endif
  400. ;
  401. #endif
  402. #if ENABLED(DELTA)
  403. #define TOWER_1 X_AXIS
  404. #define TOWER_2 Y_AXIS
  405. #define TOWER_3 Z_AXIS
  406. float delta[3];
  407. float cartesian_position[3] = { 0 };
  408. #define SIN_60 0.8660254037844386
  409. #define COS_60 0.5
  410. float endstop_adj[3] = { 0 };
  411. // these are the default values, can be overriden with M665
  412. float delta_radius = DELTA_RADIUS;
  413. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  414. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  415. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  416. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  417. float delta_tower3_x = 0; // back middle tower
  418. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  419. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  420. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  421. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  422. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  423. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  424. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  425. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  426. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  427. float delta_clip_start_height = Z_MAX_POS;
  428. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  429. int delta_grid_spacing[2] = { 0, 0 };
  430. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  431. #endif
  432. float delta_safe_distance_from_top();
  433. #else
  434. static bool home_all_axis = true;
  435. #endif
  436. #if ENABLED(SCARA)
  437. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  438. float delta[3];
  439. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  440. #endif
  441. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  442. //Variables for Filament Sensor input
  443. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  444. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  445. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  446. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  447. int filwidth_delay_index1 = 0; //index into ring buffer
  448. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  449. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  450. #endif
  451. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  452. static bool filament_ran_out = false;
  453. #endif
  454. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  455. FilamentChangeMenuResponse filament_change_menu_response;
  456. #endif
  457. #if ENABLED(MIXING_EXTRUDER)
  458. float mixing_factor[MIXING_STEPPERS];
  459. #if MIXING_VIRTUAL_TOOLS > 1
  460. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  461. #endif
  462. #endif
  463. static bool send_ok[BUFSIZE];
  464. #if HAS_SERVOS
  465. Servo servo[NUM_SERVOS];
  466. #define MOVE_SERVO(I, P) servo[I].move(P)
  467. #if HAS_Z_SERVO_ENDSTOP
  468. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  469. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  470. #endif
  471. #endif
  472. #ifdef CHDK
  473. millis_t chdkHigh = 0;
  474. boolean chdkActive = false;
  475. #endif
  476. #if ENABLED(PID_EXTRUSION_SCALING)
  477. int lpq_len = 20;
  478. #endif
  479. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  480. static MarlinBusyState busy_state = NOT_BUSY;
  481. static millis_t next_busy_signal_ms = 0;
  482. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  483. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  484. #else
  485. #define host_keepalive() ;
  486. #define KEEPALIVE_STATE(n) ;
  487. #endif // HOST_KEEPALIVE_FEATURE
  488. /**
  489. * ***************************************************************************
  490. * ******************************** FUNCTIONS ********************************
  491. * ***************************************************************************
  492. */
  493. void stop();
  494. void get_available_commands();
  495. void process_next_command();
  496. void prepare_move_to_destination();
  497. void set_current_from_steppers_for_axis(AxisEnum axis);
  498. #if ENABLED(ARC_SUPPORT)
  499. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  500. #endif
  501. #if ENABLED(BEZIER_CURVE_SUPPORT)
  502. void plan_cubic_move(const float offset[4]);
  503. #endif
  504. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  505. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  506. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  507. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  508. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  509. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  510. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  511. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  512. static void report_current_position();
  513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  514. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  515. serialprintPGM(prefix);
  516. SERIAL_ECHOPAIR("(", x);
  517. SERIAL_ECHOPAIR(", ", y);
  518. SERIAL_ECHOPAIR(", ", z);
  519. SERIAL_ECHOPGM(")");
  520. if (suffix) serialprintPGM(suffix);
  521. else SERIAL_EOL;
  522. }
  523. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  524. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  525. }
  526. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  527. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  528. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  529. }
  530. #endif
  531. #define DEBUG_POS(SUFFIX,VAR) do { \
  532. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  533. #endif
  534. /**
  535. * sync_plan_position
  536. * Set planner / stepper positions to the cartesian current_position.
  537. * The stepper code translates these coordinates into step units.
  538. * Allows translation between steps and millimeters for cartesian & core robots
  539. */
  540. inline void sync_plan_position() {
  541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  542. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  543. #endif
  544. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  545. }
  546. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  547. #if ENABLED(DELTA) || ENABLED(SCARA)
  548. inline void sync_plan_position_delta() {
  549. #if ENABLED(DEBUG_LEVELING_FEATURE)
  550. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  551. #endif
  552. inverse_kinematics(current_position);
  553. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  554. }
  555. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  556. #else
  557. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  558. #endif
  559. #if ENABLED(SDSUPPORT)
  560. #include "SdFatUtil.h"
  561. int freeMemory() { return SdFatUtil::FreeRam(); }
  562. #else
  563. extern "C" {
  564. extern unsigned int __bss_end;
  565. extern unsigned int __heap_start;
  566. extern void* __brkval;
  567. int freeMemory() {
  568. int free_memory;
  569. if ((int)__brkval == 0)
  570. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  571. else
  572. free_memory = ((int)&free_memory) - ((int)__brkval);
  573. return free_memory;
  574. }
  575. }
  576. #endif //!SDSUPPORT
  577. #if ENABLED(DIGIPOT_I2C)
  578. extern void digipot_i2c_set_current(int channel, float current);
  579. extern void digipot_i2c_init();
  580. #endif
  581. /**
  582. * Inject the next "immediate" command, when possible.
  583. * Return true if any immediate commands remain to inject.
  584. */
  585. static bool drain_queued_commands_P() {
  586. if (queued_commands_P != NULL) {
  587. size_t i = 0;
  588. char c, cmd[30];
  589. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  590. cmd[sizeof(cmd) - 1] = '\0';
  591. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  592. cmd[i] = '\0';
  593. if (enqueue_and_echo_command(cmd)) { // success?
  594. if (c) // newline char?
  595. queued_commands_P += i + 1; // advance to the next command
  596. else
  597. queued_commands_P = NULL; // nul char? no more commands
  598. }
  599. }
  600. return (queued_commands_P != NULL); // return whether any more remain
  601. }
  602. /**
  603. * Record one or many commands to run from program memory.
  604. * Aborts the current queue, if any.
  605. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  606. */
  607. void enqueue_and_echo_commands_P(const char* pgcode) {
  608. queued_commands_P = pgcode;
  609. drain_queued_commands_P(); // first command executed asap (when possible)
  610. }
  611. void clear_command_queue() {
  612. cmd_queue_index_r = cmd_queue_index_w;
  613. commands_in_queue = 0;
  614. }
  615. /**
  616. * Once a new command is in the ring buffer, call this to commit it
  617. */
  618. inline void _commit_command(bool say_ok) {
  619. send_ok[cmd_queue_index_w] = say_ok;
  620. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  621. commands_in_queue++;
  622. }
  623. /**
  624. * Copy a command directly into the main command buffer, from RAM.
  625. * Returns true if successfully adds the command
  626. */
  627. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  628. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  629. strcpy(command_queue[cmd_queue_index_w], cmd);
  630. _commit_command(say_ok);
  631. return true;
  632. }
  633. void enqueue_and_echo_command_now(const char* cmd) {
  634. while (!enqueue_and_echo_command(cmd)) idle();
  635. }
  636. /**
  637. * Enqueue with Serial Echo
  638. */
  639. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  640. if (_enqueuecommand(cmd, say_ok)) {
  641. SERIAL_ECHO_START;
  642. SERIAL_ECHOPGM(MSG_Enqueueing);
  643. SERIAL_ECHO(cmd);
  644. SERIAL_ECHOLNPGM("\"");
  645. return true;
  646. }
  647. return false;
  648. }
  649. void setup_killpin() {
  650. #if HAS_KILL
  651. SET_INPUT(KILL_PIN);
  652. WRITE(KILL_PIN, HIGH);
  653. #endif
  654. }
  655. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  656. void setup_filrunoutpin() {
  657. pinMode(FIL_RUNOUT_PIN, INPUT);
  658. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  659. WRITE(FIL_RUNOUT_PIN, HIGH);
  660. #endif
  661. }
  662. #endif
  663. // Set home pin
  664. void setup_homepin(void) {
  665. #if HAS_HOME
  666. SET_INPUT(HOME_PIN);
  667. WRITE(HOME_PIN, HIGH);
  668. #endif
  669. }
  670. void setup_photpin() {
  671. #if HAS_PHOTOGRAPH
  672. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  673. #endif
  674. }
  675. void setup_powerhold() {
  676. #if HAS_SUICIDE
  677. OUT_WRITE(SUICIDE_PIN, HIGH);
  678. #endif
  679. #if HAS_POWER_SWITCH
  680. #if ENABLED(PS_DEFAULT_OFF)
  681. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  682. #else
  683. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  684. #endif
  685. #endif
  686. }
  687. void suicide() {
  688. #if HAS_SUICIDE
  689. OUT_WRITE(SUICIDE_PIN, LOW);
  690. #endif
  691. }
  692. void servo_init() {
  693. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  694. servo[0].attach(SERVO0_PIN);
  695. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  696. #endif
  697. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  698. servo[1].attach(SERVO1_PIN);
  699. servo[1].detach();
  700. #endif
  701. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  702. servo[2].attach(SERVO2_PIN);
  703. servo[2].detach();
  704. #endif
  705. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  706. servo[3].attach(SERVO3_PIN);
  707. servo[3].detach();
  708. #endif
  709. #if HAS_Z_SERVO_ENDSTOP
  710. /**
  711. * Set position of Z Servo Endstop
  712. *
  713. * The servo might be deployed and positioned too low to stow
  714. * when starting up the machine or rebooting the board.
  715. * There's no way to know where the nozzle is positioned until
  716. * homing has been done - no homing with z-probe without init!
  717. *
  718. */
  719. STOW_Z_SERVO();
  720. #endif
  721. #if HAS_BED_PROBE
  722. endstops.enable_z_probe(false);
  723. #endif
  724. }
  725. /**
  726. * Stepper Reset (RigidBoard, et.al.)
  727. */
  728. #if HAS_STEPPER_RESET
  729. void disableStepperDrivers() {
  730. pinMode(STEPPER_RESET_PIN, OUTPUT);
  731. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  732. }
  733. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  734. #endif
  735. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  736. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  737. i2c.receive(bytes);
  738. }
  739. void i2c_on_request() { // just send dummy data for now
  740. i2c.reply("Hello World!\n");
  741. }
  742. #endif
  743. /**
  744. * Marlin entry-point: Set up before the program loop
  745. * - Set up the kill pin, filament runout, power hold
  746. * - Start the serial port
  747. * - Print startup messages and diagnostics
  748. * - Get EEPROM or default settings
  749. * - Initialize managers for:
  750. * • temperature
  751. * • planner
  752. * • watchdog
  753. * • stepper
  754. * • photo pin
  755. * • servos
  756. * • LCD controller
  757. * • Digipot I2C
  758. * • Z probe sled
  759. * • status LEDs
  760. */
  761. void setup() {
  762. #ifdef DISABLE_JTAG
  763. // Disable JTAG on AT90USB chips to free up pins for IO
  764. MCUCR = 0x80;
  765. MCUCR = 0x80;
  766. #endif
  767. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  768. setup_filrunoutpin();
  769. #endif
  770. setup_killpin();
  771. setup_powerhold();
  772. #if HAS_STEPPER_RESET
  773. disableStepperDrivers();
  774. #endif
  775. MYSERIAL.begin(BAUDRATE);
  776. SERIAL_PROTOCOLLNPGM("start");
  777. SERIAL_ECHO_START;
  778. // Check startup - does nothing if bootloader sets MCUSR to 0
  779. byte mcu = MCUSR;
  780. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  781. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  782. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  783. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  784. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  785. MCUSR = 0;
  786. SERIAL_ECHOPGM(MSG_MARLIN);
  787. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  788. #ifdef STRING_DISTRIBUTION_DATE
  789. #ifdef STRING_CONFIG_H_AUTHOR
  790. SERIAL_ECHO_START;
  791. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  792. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  793. SERIAL_ECHOPGM(MSG_AUTHOR);
  794. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  795. SERIAL_ECHOPGM("Compiled: ");
  796. SERIAL_ECHOLNPGM(__DATE__);
  797. #endif // STRING_CONFIG_H_AUTHOR
  798. #endif // STRING_DISTRIBUTION_DATE
  799. SERIAL_ECHO_START;
  800. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  801. SERIAL_ECHO(freeMemory());
  802. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  803. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  804. // Send "ok" after commands by default
  805. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  806. // Load data from EEPROM if available (or use defaults)
  807. // This also updates variables in the planner, elsewhere
  808. Config_RetrieveSettings();
  809. // Initialize current position based on home_offset
  810. memcpy(current_position, home_offset, sizeof(home_offset));
  811. // Vital to init stepper/planner equivalent for current_position
  812. SYNC_PLAN_POSITION_KINEMATIC();
  813. thermalManager.init(); // Initialize temperature loop
  814. #if ENABLED(USE_WATCHDOG)
  815. watchdog_init();
  816. #endif
  817. stepper.init(); // Initialize stepper, this enables interrupts!
  818. setup_photpin();
  819. servo_init();
  820. #if HAS_CONTROLLERFAN
  821. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  822. #endif
  823. #if HAS_STEPPER_RESET
  824. enableStepperDrivers();
  825. #endif
  826. #if ENABLED(DIGIPOT_I2C)
  827. digipot_i2c_init();
  828. #endif
  829. #if ENABLED(DAC_STEPPER_CURRENT)
  830. dac_init();
  831. #endif
  832. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  833. pinMode(SLED_PIN, OUTPUT);
  834. digitalWrite(SLED_PIN, LOW); // turn it off
  835. #endif // Z_PROBE_SLED
  836. setup_homepin();
  837. #ifdef STAT_LED_RED
  838. pinMode(STAT_LED_RED, OUTPUT);
  839. digitalWrite(STAT_LED_RED, LOW); // turn it off
  840. #endif
  841. #ifdef STAT_LED_BLUE
  842. pinMode(STAT_LED_BLUE, OUTPUT);
  843. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  844. #endif
  845. lcd_init();
  846. #if ENABLED(SHOW_BOOTSCREEN)
  847. #if ENABLED(DOGLCD)
  848. safe_delay(BOOTSCREEN_TIMEOUT);
  849. #elif ENABLED(ULTRA_LCD)
  850. bootscreen();
  851. lcd_init();
  852. #endif
  853. #endif
  854. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  855. // Initialize mixing to 100% color 1
  856. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  857. mixing_factor[i] = (i == 0) ? 1 : 0;
  858. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  859. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  860. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  861. #endif
  862. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  863. i2c.onReceive(i2c_on_receive);
  864. i2c.onRequest(i2c_on_request);
  865. #endif
  866. }
  867. /**
  868. * The main Marlin program loop
  869. *
  870. * - Save or log commands to SD
  871. * - Process available commands (if not saving)
  872. * - Call heater manager
  873. * - Call inactivity manager
  874. * - Call endstop manager
  875. * - Call LCD update
  876. */
  877. void loop() {
  878. if (commands_in_queue < BUFSIZE) get_available_commands();
  879. #if ENABLED(SDSUPPORT)
  880. card.checkautostart(false);
  881. #endif
  882. if (commands_in_queue) {
  883. #if ENABLED(SDSUPPORT)
  884. if (card.saving) {
  885. char* command = command_queue[cmd_queue_index_r];
  886. if (strstr_P(command, PSTR("M29"))) {
  887. // M29 closes the file
  888. card.closefile();
  889. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  890. ok_to_send();
  891. }
  892. else {
  893. // Write the string from the read buffer to SD
  894. card.write_command(command);
  895. if (card.logging)
  896. process_next_command(); // The card is saving because it's logging
  897. else
  898. ok_to_send();
  899. }
  900. }
  901. else
  902. process_next_command();
  903. #else
  904. process_next_command();
  905. #endif // SDSUPPORT
  906. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  907. if (commands_in_queue) {
  908. --commands_in_queue;
  909. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  910. }
  911. }
  912. endstops.report_state();
  913. idle();
  914. }
  915. void gcode_line_error(const char* err, bool doFlush = true) {
  916. SERIAL_ERROR_START;
  917. serialprintPGM(err);
  918. SERIAL_ERRORLN(gcode_LastN);
  919. //Serial.println(gcode_N);
  920. if (doFlush) FlushSerialRequestResend();
  921. serial_count = 0;
  922. }
  923. inline void get_serial_commands() {
  924. static char serial_line_buffer[MAX_CMD_SIZE];
  925. static boolean serial_comment_mode = false;
  926. // If the command buffer is empty for too long,
  927. // send "wait" to indicate Marlin is still waiting.
  928. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  929. static millis_t last_command_time = 0;
  930. millis_t ms = millis();
  931. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  932. SERIAL_ECHOLNPGM(MSG_WAIT);
  933. last_command_time = ms;
  934. }
  935. #endif
  936. /**
  937. * Loop while serial characters are incoming and the queue is not full
  938. */
  939. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  940. char serial_char = MYSERIAL.read();
  941. /**
  942. * If the character ends the line
  943. */
  944. if (serial_char == '\n' || serial_char == '\r') {
  945. serial_comment_mode = false; // end of line == end of comment
  946. if (!serial_count) continue; // skip empty lines
  947. serial_line_buffer[serial_count] = 0; // terminate string
  948. serial_count = 0; //reset buffer
  949. char* command = serial_line_buffer;
  950. while (*command == ' ') command++; // skip any leading spaces
  951. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  952. char* apos = strchr(command, '*');
  953. if (npos) {
  954. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  955. if (M110) {
  956. char* n2pos = strchr(command + 4, 'N');
  957. if (n2pos) npos = n2pos;
  958. }
  959. gcode_N = strtol(npos + 1, NULL, 10);
  960. if (gcode_N != gcode_LastN + 1 && !M110) {
  961. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  962. return;
  963. }
  964. if (apos) {
  965. byte checksum = 0, count = 0;
  966. while (command[count] != '*') checksum ^= command[count++];
  967. if (strtol(apos + 1, NULL, 10) != checksum) {
  968. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  969. return;
  970. }
  971. // if no errors, continue parsing
  972. }
  973. else {
  974. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  975. return;
  976. }
  977. gcode_LastN = gcode_N;
  978. // if no errors, continue parsing
  979. }
  980. else if (apos) { // No '*' without 'N'
  981. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  982. return;
  983. }
  984. // Movement commands alert when stopped
  985. if (IsStopped()) {
  986. char* gpos = strchr(command, 'G');
  987. if (gpos) {
  988. int codenum = strtol(gpos + 1, NULL, 10);
  989. switch (codenum) {
  990. case 0:
  991. case 1:
  992. case 2:
  993. case 3:
  994. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  995. LCD_MESSAGEPGM(MSG_STOPPED);
  996. break;
  997. }
  998. }
  999. }
  1000. #if DISABLED(EMERGENCY_PARSER)
  1001. // If command was e-stop process now
  1002. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  1003. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1004. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1005. #endif
  1006. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1007. last_command_time = ms;
  1008. #endif
  1009. // Add the command to the queue
  1010. _enqueuecommand(serial_line_buffer, true);
  1011. }
  1012. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1013. // Keep fetching, but ignore normal characters beyond the max length
  1014. // The command will be injected when EOL is reached
  1015. }
  1016. else if (serial_char == '\\') { // Handle escapes
  1017. if (MYSERIAL.available() > 0) {
  1018. // if we have one more character, copy it over
  1019. serial_char = MYSERIAL.read();
  1020. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1021. }
  1022. // otherwise do nothing
  1023. }
  1024. else { // it's not a newline, carriage return or escape char
  1025. if (serial_char == ';') serial_comment_mode = true;
  1026. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1027. }
  1028. } // queue has space, serial has data
  1029. }
  1030. #if ENABLED(SDSUPPORT)
  1031. inline void get_sdcard_commands() {
  1032. static bool stop_buffering = false,
  1033. sd_comment_mode = false;
  1034. if (!card.sdprinting) return;
  1035. /**
  1036. * '#' stops reading from SD to the buffer prematurely, so procedural
  1037. * macro calls are possible. If it occurs, stop_buffering is triggered
  1038. * and the buffer is run dry; this character _can_ occur in serial com
  1039. * due to checksums, however, no checksums are used in SD printing.
  1040. */
  1041. if (commands_in_queue == 0) stop_buffering = false;
  1042. uint16_t sd_count = 0;
  1043. bool card_eof = card.eof();
  1044. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1045. int16_t n = card.get();
  1046. char sd_char = (char)n;
  1047. card_eof = card.eof();
  1048. if (card_eof || n == -1
  1049. || sd_char == '\n' || sd_char == '\r'
  1050. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1051. ) {
  1052. if (card_eof) {
  1053. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1054. card.printingHasFinished();
  1055. card.checkautostart(true);
  1056. }
  1057. else if (n == -1) {
  1058. SERIAL_ERROR_START;
  1059. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1060. }
  1061. if (sd_char == '#') stop_buffering = true;
  1062. sd_comment_mode = false; //for new command
  1063. if (!sd_count) continue; //skip empty lines
  1064. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1065. sd_count = 0; //clear buffer
  1066. _commit_command(false);
  1067. }
  1068. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1069. /**
  1070. * Keep fetching, but ignore normal characters beyond the max length
  1071. * The command will be injected when EOL is reached
  1072. */
  1073. }
  1074. else {
  1075. if (sd_char == ';') sd_comment_mode = true;
  1076. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1077. }
  1078. }
  1079. }
  1080. #endif // SDSUPPORT
  1081. /**
  1082. * Add to the circular command queue the next command from:
  1083. * - The command-injection queue (queued_commands_P)
  1084. * - The active serial input (usually USB)
  1085. * - The SD card file being actively printed
  1086. */
  1087. void get_available_commands() {
  1088. // if any immediate commands remain, don't get other commands yet
  1089. if (drain_queued_commands_P()) return;
  1090. get_serial_commands();
  1091. #if ENABLED(SDSUPPORT)
  1092. get_sdcard_commands();
  1093. #endif
  1094. }
  1095. inline bool code_has_value() {
  1096. int i = 1;
  1097. char c = seen_pointer[i];
  1098. while (c == ' ') c = seen_pointer[++i];
  1099. if (c == '-' || c == '+') c = seen_pointer[++i];
  1100. if (c == '.') c = seen_pointer[++i];
  1101. return NUMERIC(c);
  1102. }
  1103. inline float code_value_float() {
  1104. float ret;
  1105. char* e = strchr(seen_pointer, 'E');
  1106. if (e) {
  1107. *e = 0;
  1108. ret = strtod(seen_pointer + 1, NULL);
  1109. *e = 'E';
  1110. }
  1111. else
  1112. ret = strtod(seen_pointer + 1, NULL);
  1113. return ret;
  1114. }
  1115. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1116. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1117. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1118. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1119. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1120. inline bool code_value_bool() { return code_value_byte() > 0; }
  1121. #if ENABLED(INCH_MODE_SUPPORT)
  1122. inline void set_input_linear_units(LinearUnit units) {
  1123. switch (units) {
  1124. case LINEARUNIT_INCH:
  1125. linear_unit_factor = 25.4;
  1126. break;
  1127. case LINEARUNIT_MM:
  1128. default:
  1129. linear_unit_factor = 1.0;
  1130. break;
  1131. }
  1132. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1133. }
  1134. inline float axis_unit_factor(int axis) {
  1135. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1136. }
  1137. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1138. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1139. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1140. #else
  1141. inline float code_value_linear_units() { return code_value_float(); }
  1142. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1143. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1144. #endif
  1145. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1146. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1147. float code_value_temp_abs() {
  1148. switch (input_temp_units) {
  1149. case TEMPUNIT_C:
  1150. return code_value_float();
  1151. case TEMPUNIT_F:
  1152. return (code_value_float() - 32) * 0.5555555556;
  1153. case TEMPUNIT_K:
  1154. return code_value_float() - 272.15;
  1155. default:
  1156. return code_value_float();
  1157. }
  1158. }
  1159. float code_value_temp_diff() {
  1160. switch (input_temp_units) {
  1161. case TEMPUNIT_C:
  1162. case TEMPUNIT_K:
  1163. return code_value_float();
  1164. case TEMPUNIT_F:
  1165. return code_value_float() * 0.5555555556;
  1166. default:
  1167. return code_value_float();
  1168. }
  1169. }
  1170. #else
  1171. float code_value_temp_abs() { return code_value_float(); }
  1172. float code_value_temp_diff() { return code_value_float(); }
  1173. #endif
  1174. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1175. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1176. bool code_seen(char code) {
  1177. seen_pointer = strchr(current_command_args, code);
  1178. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1179. }
  1180. /**
  1181. * Set target_extruder from the T parameter or the active_extruder
  1182. *
  1183. * Returns TRUE if the target is invalid
  1184. */
  1185. bool get_target_extruder_from_command(int code) {
  1186. if (code_seen('T')) {
  1187. if (code_value_byte() >= EXTRUDERS) {
  1188. SERIAL_ECHO_START;
  1189. SERIAL_CHAR('M');
  1190. SERIAL_ECHO(code);
  1191. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1192. SERIAL_EOL;
  1193. return true;
  1194. }
  1195. target_extruder = code_value_byte();
  1196. }
  1197. else
  1198. target_extruder = active_extruder;
  1199. return false;
  1200. }
  1201. #define DEFINE_PGM_READ_ANY(type, reader) \
  1202. static inline type pgm_read_any(const type *p) \
  1203. { return pgm_read_##reader##_near(p); }
  1204. DEFINE_PGM_READ_ANY(float, float);
  1205. DEFINE_PGM_READ_ANY(signed char, byte);
  1206. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1207. static const PROGMEM type array##_P[3] = \
  1208. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1209. static inline type array(int axis) \
  1210. { return pgm_read_any(&array##_P[axis]); }
  1211. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1212. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1213. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1214. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1215. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1216. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1217. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1218. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1219. #endif
  1220. #if ENABLED(DUAL_X_CARRIAGE)
  1221. #define DXC_FULL_CONTROL_MODE 0
  1222. #define DXC_AUTO_PARK_MODE 1
  1223. #define DXC_DUPLICATION_MODE 2
  1224. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1225. static float x_home_pos(int extruder) {
  1226. if (extruder == 0)
  1227. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1228. else
  1229. /**
  1230. * In dual carriage mode the extruder offset provides an override of the
  1231. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1232. * This allow soft recalibration of the second extruder offset position
  1233. * without firmware reflash (through the M218 command).
  1234. */
  1235. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1236. }
  1237. static int x_home_dir(int extruder) {
  1238. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1239. }
  1240. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1241. static bool active_extruder_parked = false; // used in mode 1 & 2
  1242. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1243. static millis_t delayed_move_time = 0; // used in mode 1
  1244. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1245. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1246. #endif //DUAL_X_CARRIAGE
  1247. /**
  1248. * Software endstops can be used to monitor the open end of
  1249. * an axis that has a hardware endstop on the other end. Or
  1250. * they can prevent axes from moving past endstops and grinding.
  1251. *
  1252. * To keep doing their job as the coordinate system changes,
  1253. * the software endstop positions must be refreshed to remain
  1254. * at the same positions relative to the machine.
  1255. */
  1256. void update_software_endstops(AxisEnum axis) {
  1257. float offs = LOGICAL_POSITION(0, axis);
  1258. #if ENABLED(DUAL_X_CARRIAGE)
  1259. if (axis == X_AXIS) {
  1260. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1261. if (active_extruder != 0) {
  1262. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1263. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1264. return;
  1265. }
  1266. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1267. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1268. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1269. return;
  1270. }
  1271. }
  1272. else
  1273. #endif
  1274. {
  1275. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1276. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1277. }
  1278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1279. if (DEBUGGING(LEVELING)) {
  1280. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1281. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1282. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1283. SERIAL_ECHOPAIR("\n sw_endstop_min = ", sw_endstop_min[axis]);
  1284. SERIAL_ECHOPAIR("\n sw_endstop_max = ", sw_endstop_max[axis]);
  1285. SERIAL_EOL;
  1286. }
  1287. #endif
  1288. #if ENABLED(DELTA)
  1289. if (axis == Z_AXIS) {
  1290. delta_clip_start_height = sw_endstop_max[axis] - delta_safe_distance_from_top();
  1291. }
  1292. #endif
  1293. }
  1294. /**
  1295. * Change the home offset for an axis, update the current
  1296. * position and the software endstops to retain the same
  1297. * relative distance to the new home.
  1298. *
  1299. * Since this changes the current_position, code should
  1300. * call sync_plan_position soon after this.
  1301. */
  1302. static void set_home_offset(AxisEnum axis, float v) {
  1303. current_position[axis] += v - home_offset[axis];
  1304. home_offset[axis] = v;
  1305. update_software_endstops(axis);
  1306. }
  1307. static void set_axis_is_at_home(AxisEnum axis) {
  1308. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1309. if (DEBUGGING(LEVELING)) {
  1310. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1311. SERIAL_ECHOLNPGM(")");
  1312. }
  1313. #endif
  1314. position_shift[axis] = 0;
  1315. #if ENABLED(DUAL_X_CARRIAGE)
  1316. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1317. if (active_extruder != 0)
  1318. current_position[X_AXIS] = x_home_pos(active_extruder);
  1319. else
  1320. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1321. update_software_endstops(X_AXIS);
  1322. return;
  1323. }
  1324. #endif
  1325. #if ENABLED(SCARA)
  1326. if (axis == X_AXIS || axis == Y_AXIS) {
  1327. float homeposition[3];
  1328. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1329. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1330. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1331. /**
  1332. * Works out real Homeposition angles using inverse kinematics,
  1333. * and calculates homing offset using forward kinematics
  1334. */
  1335. inverse_kinematics(homeposition);
  1336. forward_kinematics_SCARA(delta);
  1337. // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
  1338. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1339. current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
  1340. /**
  1341. * SCARA home positions are based on configuration since the actual
  1342. * limits are determined by the inverse kinematic transform.
  1343. */
  1344. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1345. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1346. }
  1347. else
  1348. #endif
  1349. {
  1350. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1351. update_software_endstops(axis);
  1352. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1353. if (axis == Z_AXIS) {
  1354. current_position[Z_AXIS] -= zprobe_zoffset;
  1355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1356. if (DEBUGGING(LEVELING)) {
  1357. SERIAL_ECHOPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1358. SERIAL_EOL;
  1359. }
  1360. #endif
  1361. }
  1362. #endif
  1363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING)) {
  1365. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1366. SERIAL_ECHOPAIR("] = ", home_offset[axis]);
  1367. SERIAL_EOL;
  1368. DEBUG_POS("", current_position);
  1369. }
  1370. #endif
  1371. }
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) {
  1374. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1375. SERIAL_ECHOLNPGM(")");
  1376. }
  1377. #endif
  1378. }
  1379. /**
  1380. * Some planner shorthand inline functions
  1381. */
  1382. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1383. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1384. int hbd = homing_bump_divisor[axis];
  1385. if (hbd < 1) {
  1386. hbd = 10;
  1387. SERIAL_ECHO_START;
  1388. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1389. }
  1390. return homing_feedrate_mm_s[axis] / hbd;
  1391. }
  1392. //
  1393. // line_to_current_position
  1394. // Move the planner to the current position from wherever it last moved
  1395. // (or from wherever it has been told it is located).
  1396. //
  1397. inline void line_to_current_position() {
  1398. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1399. }
  1400. inline void line_to_z(float zPosition) {
  1401. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1402. }
  1403. //
  1404. // line_to_destination
  1405. // Move the planner, not necessarily synced with current_position
  1406. //
  1407. inline void line_to_destination(float fr_mm_s) {
  1408. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1409. }
  1410. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1411. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1412. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1413. #if ENABLED(DELTA)
  1414. /**
  1415. * Calculate delta, start a line, and set current_position to destination
  1416. */
  1417. void prepare_move_to_destination_raw() {
  1418. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1419. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1420. #endif
  1421. refresh_cmd_timeout();
  1422. inverse_kinematics(destination);
  1423. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1424. set_current_to_destination();
  1425. }
  1426. #endif
  1427. /**
  1428. * Plan a move to (X, Y, Z) and set the current_position
  1429. * The final current_position may not be the one that was requested
  1430. */
  1431. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1432. float old_feedrate_mm_s = feedrate_mm_s;
  1433. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1434. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1435. #endif
  1436. #if ENABLED(DELTA)
  1437. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1438. set_destination_to_current(); // sync destination at the start
  1439. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1440. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1441. #endif
  1442. // when in the danger zone
  1443. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1444. if (z > delta_clip_start_height) { // staying in the danger zone
  1445. destination[X_AXIS] = x; // move directly (uninterpolated)
  1446. destination[Y_AXIS] = y;
  1447. destination[Z_AXIS] = z;
  1448. prepare_move_to_destination_raw(); // set_current_to_destination
  1449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1450. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1451. #endif
  1452. return;
  1453. }
  1454. else {
  1455. destination[Z_AXIS] = delta_clip_start_height;
  1456. prepare_move_to_destination_raw(); // set_current_to_destination
  1457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1458. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1459. #endif
  1460. }
  1461. }
  1462. if (z > current_position[Z_AXIS]) { // raising?
  1463. destination[Z_AXIS] = z;
  1464. prepare_move_to_destination_raw(); // set_current_to_destination
  1465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1466. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1467. #endif
  1468. }
  1469. destination[X_AXIS] = x;
  1470. destination[Y_AXIS] = y;
  1471. prepare_move_to_destination(); // set_current_to_destination
  1472. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1473. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1474. #endif
  1475. if (z < current_position[Z_AXIS]) { // lowering?
  1476. destination[Z_AXIS] = z;
  1477. prepare_move_to_destination_raw(); // set_current_to_destination
  1478. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1479. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1480. #endif
  1481. }
  1482. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1483. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1484. #endif
  1485. #else
  1486. // If Z needs to raise, do it before moving XY
  1487. if (current_position[Z_AXIS] < z) {
  1488. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1489. current_position[Z_AXIS] = z;
  1490. line_to_current_position();
  1491. }
  1492. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1493. current_position[X_AXIS] = x;
  1494. current_position[Y_AXIS] = y;
  1495. line_to_current_position();
  1496. // If Z needs to lower, do it after moving XY
  1497. if (current_position[Z_AXIS] > z) {
  1498. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1499. current_position[Z_AXIS] = z;
  1500. line_to_current_position();
  1501. }
  1502. #endif
  1503. stepper.synchronize();
  1504. feedrate_mm_s = old_feedrate_mm_s;
  1505. }
  1506. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1507. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1508. }
  1509. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1510. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1511. }
  1512. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1513. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1514. }
  1515. //
  1516. // Prepare to do endstop or probe moves
  1517. // with custom feedrates.
  1518. //
  1519. // - Save current feedrates
  1520. // - Reset the rate multiplier
  1521. // - Reset the command timeout
  1522. // - Enable the endstops (for endstop moves)
  1523. //
  1524. static void setup_for_endstop_or_probe_move() {
  1525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1526. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1527. #endif
  1528. saved_feedrate_mm_s = feedrate_mm_s;
  1529. saved_feedrate_percentage = feedrate_percentage;
  1530. feedrate_percentage = 100;
  1531. refresh_cmd_timeout();
  1532. }
  1533. static void clean_up_after_endstop_or_probe_move() {
  1534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1535. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1536. #endif
  1537. feedrate_mm_s = saved_feedrate_mm_s;
  1538. feedrate_percentage = saved_feedrate_percentage;
  1539. refresh_cmd_timeout();
  1540. }
  1541. #if HAS_BED_PROBE
  1542. /**
  1543. * Raise Z to a minimum height to make room for a probe to move
  1544. */
  1545. inline void do_probe_raise(float z_raise) {
  1546. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1547. if (DEBUGGING(LEVELING)) {
  1548. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1549. SERIAL_ECHOLNPGM(")");
  1550. }
  1551. #endif
  1552. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1553. if (z_dest > current_position[Z_AXIS])
  1554. do_blocking_move_to_z(z_dest);
  1555. }
  1556. #endif //HAS_BED_PROBE
  1557. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1558. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1559. const bool xx = x && !axis_homed[X_AXIS],
  1560. yy = y && !axis_homed[Y_AXIS],
  1561. zz = z && !axis_homed[Z_AXIS];
  1562. if (xx || yy || zz) {
  1563. SERIAL_ECHO_START;
  1564. SERIAL_ECHOPGM(MSG_HOME " ");
  1565. if (xx) SERIAL_ECHOPGM(MSG_X);
  1566. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1567. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1568. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1569. #if ENABLED(ULTRA_LCD)
  1570. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1571. strcat_P(message, PSTR(MSG_HOME " "));
  1572. if (xx) strcat_P(message, PSTR(MSG_X));
  1573. if (yy) strcat_P(message, PSTR(MSG_Y));
  1574. if (zz) strcat_P(message, PSTR(MSG_Z));
  1575. strcat_P(message, PSTR(" " MSG_FIRST));
  1576. lcd_setstatus(message);
  1577. #endif
  1578. return true;
  1579. }
  1580. return false;
  1581. }
  1582. #endif
  1583. #if ENABLED(Z_PROBE_SLED)
  1584. #ifndef SLED_DOCKING_OFFSET
  1585. #define SLED_DOCKING_OFFSET 0
  1586. #endif
  1587. /**
  1588. * Method to dock/undock a sled designed by Charles Bell.
  1589. *
  1590. * stow[in] If false, move to MAX_X and engage the solenoid
  1591. * If true, move to MAX_X and release the solenoid
  1592. */
  1593. static void dock_sled(bool stow) {
  1594. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1595. if (DEBUGGING(LEVELING)) {
  1596. SERIAL_ECHOPAIR("dock_sled(", stow);
  1597. SERIAL_ECHOLNPGM(")");
  1598. }
  1599. #endif
  1600. // Dock sled a bit closer to ensure proper capturing
  1601. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1602. #if PIN_EXISTS(SLED)
  1603. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1604. #endif
  1605. }
  1606. #endif // Z_PROBE_SLED
  1607. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1608. void run_deploy_moves_script() {
  1609. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1610. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1611. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1614. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1621. #endif
  1622. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1623. #endif
  1624. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1636. #endif
  1637. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1638. #endif
  1639. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1644. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1647. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1650. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1651. #endif
  1652. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1653. #endif
  1654. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1655. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1656. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1659. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1662. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1665. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1666. #endif
  1667. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1668. #endif
  1669. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1670. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1671. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1674. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1675. #endif
  1676. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1677. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1680. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1681. #endif
  1682. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1683. #endif
  1684. }
  1685. void run_stow_moves_script() {
  1686. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1687. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1688. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1689. #endif
  1690. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1691. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1692. #endif
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1694. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1695. #endif
  1696. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1697. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1698. #endif
  1699. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1700. #endif
  1701. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1703. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1704. #endif
  1705. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1706. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1707. #endif
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1709. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1710. #endif
  1711. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1712. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1713. #endif
  1714. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1715. #endif
  1716. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1717. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1718. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1719. #endif
  1720. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1721. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1722. #endif
  1723. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1724. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1725. #endif
  1726. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1727. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1728. #endif
  1729. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1730. #endif
  1731. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1732. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1733. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1734. #endif
  1735. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1736. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1737. #endif
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1739. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1740. #endif
  1741. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1742. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1743. #endif
  1744. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1745. #endif
  1746. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1747. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1748. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1749. #endif
  1750. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1751. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1752. #endif
  1753. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1754. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1755. #endif
  1756. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1757. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1758. #endif
  1759. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1760. #endif
  1761. }
  1762. #endif
  1763. #if HAS_BED_PROBE
  1764. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1765. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1766. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1767. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1768. #else
  1769. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1770. #endif
  1771. #endif
  1772. #define DEPLOY_PROBE() set_probe_deployed( true )
  1773. #define STOW_PROBE() set_probe_deployed( false )
  1774. // returns false for ok and true for failure
  1775. static bool set_probe_deployed(bool deploy) {
  1776. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1777. if (DEBUGGING(LEVELING)) {
  1778. DEBUG_POS("set_probe_deployed", current_position);
  1779. SERIAL_ECHOPAIR("deploy: ", deploy);
  1780. SERIAL_EOL;
  1781. }
  1782. #endif
  1783. if (endstops.z_probe_enabled == deploy) return false;
  1784. // Make room for probe
  1785. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1786. #if ENABLED(Z_PROBE_SLED)
  1787. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1788. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1789. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1790. #endif
  1791. float oldXpos = current_position[X_AXIS]; // save x position
  1792. float oldYpos = current_position[Y_AXIS]; // save y position
  1793. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1794. // If endstop is already false, the Z probe is deployed
  1795. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1796. // Would a goto be less ugly?
  1797. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1798. // for a triggered when stowed manual probe.
  1799. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1800. // otherwise an Allen-Key probe can't be stowed.
  1801. #endif
  1802. #if ENABLED(Z_PROBE_SLED)
  1803. dock_sled(!deploy);
  1804. #elif HAS_Z_SERVO_ENDSTOP
  1805. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1806. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1807. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1808. #endif
  1809. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1810. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1811. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1812. if (IsRunning()) {
  1813. SERIAL_ERROR_START;
  1814. SERIAL_ERRORLNPGM("Z-Probe failed");
  1815. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1816. }
  1817. stop();
  1818. return true;
  1819. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1820. #endif
  1821. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1822. endstops.enable_z_probe( deploy );
  1823. return false;
  1824. }
  1825. static void do_probe_move(float z, float fr_mm_m) {
  1826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1827. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1828. #endif
  1829. // Move down until probe triggered
  1830. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1831. // Clear endstop flags
  1832. endstops.hit_on_purpose();
  1833. // Get Z where the steppers were interrupted
  1834. set_current_from_steppers_for_axis(Z_AXIS);
  1835. // Tell the planner where we actually are
  1836. SYNC_PLAN_POSITION_KINEMATIC();
  1837. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1838. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1839. #endif
  1840. }
  1841. // Do a single Z probe and return with current_position[Z_AXIS]
  1842. // at the height where the probe triggered.
  1843. static float run_z_probe() {
  1844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1845. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1846. #endif
  1847. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1848. refresh_cmd_timeout();
  1849. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1850. planner.bed_level_matrix.set_to_identity();
  1851. #endif
  1852. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1853. // Do a first probe at the fast speed
  1854. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1855. // move up by the bump distance
  1856. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1857. #else
  1858. // move fast, close to the bed
  1859. float z = LOGICAL_Z_POSITION(home_bump_mm(Z_AXIS));
  1860. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1861. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1862. #endif
  1863. // move down slowly to find bed
  1864. do_probe_move(-10, Z_PROBE_SPEED_SLOW);
  1865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1866. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1867. #endif
  1868. return current_position[Z_AXIS];
  1869. }
  1870. //
  1871. // - Move to the given XY
  1872. // - Deploy the probe, if not already deployed
  1873. // - Probe the bed, get the Z position
  1874. // - Depending on the 'stow' flag
  1875. // - Stow the probe, or
  1876. // - Raise to the BETWEEN height
  1877. // - Return the probed Z position
  1878. //
  1879. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1880. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1881. if (DEBUGGING(LEVELING)) {
  1882. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1883. SERIAL_ECHOPAIR(", ", y);
  1884. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1885. SERIAL_ECHOLNPGM(")");
  1886. DEBUG_POS("", current_position);
  1887. }
  1888. #endif
  1889. float old_feedrate_mm_s = feedrate_mm_s;
  1890. // Ensure a minimum height before moving the probe
  1891. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1892. // Move to the XY where we shall probe
  1893. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1894. if (DEBUGGING(LEVELING)) {
  1895. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1896. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1897. SERIAL_ECHOLNPGM(")");
  1898. }
  1899. #endif
  1900. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1901. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1902. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1903. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1904. #endif
  1905. if (DEPLOY_PROBE()) return NAN;
  1906. float measured_z = run_z_probe();
  1907. if (stow) {
  1908. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1909. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1910. #endif
  1911. if (STOW_PROBE()) return NAN;
  1912. }
  1913. else {
  1914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1915. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1916. #endif
  1917. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1918. }
  1919. if (verbose_level > 2) {
  1920. SERIAL_PROTOCOLPGM("Bed X: ");
  1921. SERIAL_PROTOCOL_F(x, 3);
  1922. SERIAL_PROTOCOLPGM(" Y: ");
  1923. SERIAL_PROTOCOL_F(y, 3);
  1924. SERIAL_PROTOCOLPGM(" Z: ");
  1925. SERIAL_PROTOCOL_F(measured_z, 3);
  1926. SERIAL_EOL;
  1927. }
  1928. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1929. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1930. #endif
  1931. feedrate_mm_s = old_feedrate_mm_s;
  1932. return measured_z;
  1933. }
  1934. #endif // HAS_BED_PROBE
  1935. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1936. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1937. #if DISABLED(DELTA)
  1938. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1939. //planner.bed_level_matrix.debug("bed level before");
  1940. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1941. planner.bed_level_matrix.set_to_identity();
  1942. if (DEBUGGING(LEVELING)) {
  1943. vector_3 uncorrected_position = planner.adjusted_position();
  1944. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1945. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1946. }
  1947. #endif
  1948. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1949. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1950. vector_3 corrected_position = planner.adjusted_position();
  1951. current_position[X_AXIS] = corrected_position.x;
  1952. current_position[Y_AXIS] = corrected_position.y;
  1953. current_position[Z_AXIS] = corrected_position.z;
  1954. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1955. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1956. #endif
  1957. SYNC_PLAN_POSITION_KINEMATIC();
  1958. }
  1959. #endif // !DELTA
  1960. #else // !AUTO_BED_LEVELING_GRID
  1961. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1962. planner.bed_level_matrix.set_to_identity();
  1963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1964. if (DEBUGGING(LEVELING)) {
  1965. vector_3 uncorrected_position = planner.adjusted_position();
  1966. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1967. }
  1968. #endif
  1969. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1970. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1971. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1972. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1973. if (planeNormal.z < 0) {
  1974. planeNormal.x = -planeNormal.x;
  1975. planeNormal.y = -planeNormal.y;
  1976. planeNormal.z = -planeNormal.z;
  1977. }
  1978. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1979. vector_3 corrected_position = planner.adjusted_position();
  1980. current_position[X_AXIS] = corrected_position.x;
  1981. current_position[Y_AXIS] = corrected_position.y;
  1982. current_position[Z_AXIS] = corrected_position.z;
  1983. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1984. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1985. #endif
  1986. SYNC_PLAN_POSITION_KINEMATIC();
  1987. }
  1988. #endif // !AUTO_BED_LEVELING_GRID
  1989. #if ENABLED(DELTA)
  1990. /**
  1991. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1992. */
  1993. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1994. if (bed_level[x][y] != 0.0) {
  1995. return; // Don't overwrite good values.
  1996. }
  1997. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1998. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1999. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  2000. float median = c; // Median is robust (ignores outliers).
  2001. if (a < b) {
  2002. if (b < c) median = b;
  2003. if (c < a) median = a;
  2004. }
  2005. else { // b <= a
  2006. if (c < b) median = b;
  2007. if (a < c) median = a;
  2008. }
  2009. bed_level[x][y] = median;
  2010. }
  2011. /**
  2012. * Fill in the unprobed points (corners of circular print surface)
  2013. * using linear extrapolation, away from the center.
  2014. */
  2015. static void extrapolate_unprobed_bed_level() {
  2016. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  2017. for (int y = 0; y <= half; y++) {
  2018. for (int x = 0; x <= half; x++) {
  2019. if (x + y < 3) continue;
  2020. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  2021. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  2022. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  2023. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  2024. }
  2025. }
  2026. }
  2027. /**
  2028. * Print calibration results for plotting or manual frame adjustment.
  2029. */
  2030. static void print_bed_level() {
  2031. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2032. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2033. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  2034. SERIAL_PROTOCOLCHAR(' ');
  2035. }
  2036. SERIAL_EOL;
  2037. }
  2038. }
  2039. /**
  2040. * Reset calibration results to zero.
  2041. */
  2042. void reset_bed_level() {
  2043. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2044. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2045. #endif
  2046. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2047. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2048. bed_level[x][y] = 0.0;
  2049. }
  2050. }
  2051. }
  2052. #endif // DELTA
  2053. #endif // AUTO_BED_LEVELING_FEATURE
  2054. /**
  2055. * Home an individual axis
  2056. */
  2057. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  2058. float old_feedrate_mm_s = feedrate_mm_s;
  2059. current_position[axis] = where;
  2060. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis];
  2061. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  2062. stepper.synchronize();
  2063. feedrate_mm_s = old_feedrate_mm_s;
  2064. }
  2065. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2066. static void homeaxis(AxisEnum axis) {
  2067. #define HOMEAXIS_DO(LETTER) \
  2068. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2069. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2070. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2071. if (DEBUGGING(LEVELING)) {
  2072. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2073. SERIAL_ECHOLNPGM(")");
  2074. }
  2075. #endif
  2076. int axis_home_dir =
  2077. #if ENABLED(DUAL_X_CARRIAGE)
  2078. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2079. #endif
  2080. home_dir(axis);
  2081. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2082. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2083. if (axis == Z_AXIS) {
  2084. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2085. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2086. #endif
  2087. if (DEPLOY_PROBE()) return;
  2088. }
  2089. #endif
  2090. // Set the axis position as setup for the move
  2091. current_position[axis] = 0;
  2092. sync_plan_position();
  2093. // Set a flag for Z motor locking
  2094. #if ENABLED(Z_DUAL_ENDSTOPS)
  2095. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2096. #endif
  2097. // Move towards the endstop until an endstop is triggered
  2098. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2099. // Set the axis position as setup for the move
  2100. current_position[axis] = 0;
  2101. sync_plan_position();
  2102. // Move away from the endstop by the axis HOME_BUMP_MM
  2103. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  2104. // Move slowly towards the endstop until triggered
  2105. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  2106. // reset current_position to 0 to reflect hitting endpoint
  2107. current_position[axis] = 0;
  2108. sync_plan_position();
  2109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2110. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2111. #endif
  2112. #if ENABLED(Z_DUAL_ENDSTOPS)
  2113. if (axis == Z_AXIS) {
  2114. float adj = fabs(z_endstop_adj);
  2115. bool lockZ1;
  2116. if (axis_home_dir > 0) {
  2117. adj = -adj;
  2118. lockZ1 = (z_endstop_adj > 0);
  2119. }
  2120. else
  2121. lockZ1 = (z_endstop_adj < 0);
  2122. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2123. // Move to the adjusted endstop height
  2124. do_homing_move(axis, adj);
  2125. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2126. stepper.set_homing_flag(false);
  2127. } // Z_AXIS
  2128. #endif
  2129. #if ENABLED(DELTA)
  2130. // retrace by the amount specified in endstop_adj
  2131. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2133. if (DEBUGGING(LEVELING)) {
  2134. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2135. DEBUG_POS("", current_position);
  2136. }
  2137. #endif
  2138. do_homing_move(axis, endstop_adj[axis]);
  2139. }
  2140. #endif
  2141. // Set the axis position to its home position (plus home offsets)
  2142. set_axis_is_at_home(axis);
  2143. SYNC_PLAN_POSITION_KINEMATIC();
  2144. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2145. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2146. #endif
  2147. destination[axis] = current_position[axis];
  2148. endstops.hit_on_purpose(); // clear endstop hit flags
  2149. axis_known_position[axis] = true;
  2150. axis_homed[axis] = true;
  2151. // Put away the Z probe
  2152. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2153. if (axis == Z_AXIS) {
  2154. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2155. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2156. #endif
  2157. if (STOW_PROBE()) return;
  2158. }
  2159. #endif
  2160. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2161. if (DEBUGGING(LEVELING)) {
  2162. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2163. SERIAL_ECHOLNPGM(")");
  2164. }
  2165. #endif
  2166. } // homeaxis()
  2167. #if ENABLED(FWRETRACT)
  2168. void retract(bool retracting, bool swapping = false) {
  2169. if (retracting == retracted[active_extruder]) return;
  2170. float old_feedrate_mm_s = feedrate_mm_s;
  2171. set_destination_to_current();
  2172. if (retracting) {
  2173. feedrate_mm_s = retract_feedrate_mm_s;
  2174. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2175. sync_plan_position_e();
  2176. prepare_move_to_destination();
  2177. if (retract_zlift > 0.01) {
  2178. current_position[Z_AXIS] -= retract_zlift;
  2179. SYNC_PLAN_POSITION_KINEMATIC();
  2180. prepare_move_to_destination();
  2181. }
  2182. }
  2183. else {
  2184. if (retract_zlift > 0.01) {
  2185. current_position[Z_AXIS] += retract_zlift;
  2186. SYNC_PLAN_POSITION_KINEMATIC();
  2187. }
  2188. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2189. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2190. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2191. sync_plan_position_e();
  2192. prepare_move_to_destination();
  2193. }
  2194. feedrate_mm_s = old_feedrate_mm_s;
  2195. retracted[active_extruder] = retracting;
  2196. } // retract()
  2197. #endif // FWRETRACT
  2198. #if ENABLED(MIXING_EXTRUDER)
  2199. void normalize_mix() {
  2200. float mix_total = 0.0;
  2201. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2202. float v = mixing_factor[i];
  2203. if (v < 0) v = mixing_factor[i] = 0;
  2204. mix_total += v;
  2205. }
  2206. // Scale all values if they don't add up to ~1.0
  2207. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2208. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2209. float mix_scale = 1.0 / mix_total;
  2210. for (int i = 0; i < MIXING_STEPPERS; i++)
  2211. mixing_factor[i] *= mix_scale;
  2212. }
  2213. }
  2214. #if ENABLED(DIRECT_MIXING_IN_G1)
  2215. // Get mixing parameters from the GCode
  2216. // Factors that are left out are set to 0
  2217. // The total "must" be 1.0 (but it will be normalized)
  2218. void gcode_get_mix() {
  2219. const char* mixing_codes = "ABCDHI";
  2220. for (int i = 0; i < MIXING_STEPPERS; i++)
  2221. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2222. normalize_mix();
  2223. }
  2224. #endif
  2225. #endif
  2226. /**
  2227. * ***************************************************************************
  2228. * ***************************** G-CODE HANDLING *****************************
  2229. * ***************************************************************************
  2230. */
  2231. /**
  2232. * Set XYZE destination and feedrate from the current GCode command
  2233. *
  2234. * - Set destination from included axis codes
  2235. * - Set to current for missing axis codes
  2236. * - Set the feedrate, if included
  2237. */
  2238. void gcode_get_destination() {
  2239. LOOP_XYZE(i) {
  2240. if (code_seen(axis_codes[i]))
  2241. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2242. else
  2243. destination[i] = current_position[i];
  2244. }
  2245. if (code_seen('F') && code_value_linear_units() > 0.0)
  2246. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2247. #if ENABLED(PRINTCOUNTER)
  2248. if (!DEBUGGING(DRYRUN))
  2249. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2250. #endif
  2251. // Get ABCDHI mixing factors
  2252. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2253. gcode_get_mix();
  2254. #endif
  2255. }
  2256. void unknown_command_error() {
  2257. SERIAL_ECHO_START;
  2258. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2259. SERIAL_ECHO(current_command);
  2260. SERIAL_ECHOLNPGM("\"");
  2261. }
  2262. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2263. /**
  2264. * Output a "busy" message at regular intervals
  2265. * while the machine is not accepting commands.
  2266. */
  2267. void host_keepalive() {
  2268. millis_t ms = millis();
  2269. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2270. if (PENDING(ms, next_busy_signal_ms)) return;
  2271. switch (busy_state) {
  2272. case IN_HANDLER:
  2273. case IN_PROCESS:
  2274. SERIAL_ECHO_START;
  2275. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2276. break;
  2277. case PAUSED_FOR_USER:
  2278. SERIAL_ECHO_START;
  2279. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2280. break;
  2281. case PAUSED_FOR_INPUT:
  2282. SERIAL_ECHO_START;
  2283. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2284. break;
  2285. default:
  2286. break;
  2287. }
  2288. }
  2289. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2290. }
  2291. #endif //HOST_KEEPALIVE_FEATURE
  2292. /**
  2293. * G0, G1: Coordinated movement of X Y Z E axes
  2294. */
  2295. inline void gcode_G0_G1() {
  2296. if (IsRunning()) {
  2297. gcode_get_destination(); // For X Y Z E F
  2298. #if ENABLED(FWRETRACT)
  2299. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2300. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2301. // Is this move an attempt to retract or recover?
  2302. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2303. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2304. sync_plan_position_e(); // AND from the planner
  2305. retract(!retracted[active_extruder]);
  2306. return;
  2307. }
  2308. }
  2309. #endif //FWRETRACT
  2310. prepare_move_to_destination();
  2311. }
  2312. }
  2313. /**
  2314. * G2: Clockwise Arc
  2315. * G3: Counterclockwise Arc
  2316. */
  2317. #if ENABLED(ARC_SUPPORT)
  2318. inline void gcode_G2_G3(bool clockwise) {
  2319. if (IsRunning()) {
  2320. #if ENABLED(SF_ARC_FIX)
  2321. bool relative_mode_backup = relative_mode;
  2322. relative_mode = true;
  2323. #endif
  2324. gcode_get_destination();
  2325. #if ENABLED(SF_ARC_FIX)
  2326. relative_mode = relative_mode_backup;
  2327. #endif
  2328. // Center of arc as offset from current_position
  2329. float arc_offset[2] = {
  2330. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2331. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2332. };
  2333. // Send an arc to the planner
  2334. plan_arc(destination, arc_offset, clockwise);
  2335. refresh_cmd_timeout();
  2336. }
  2337. }
  2338. #endif
  2339. /**
  2340. * G4: Dwell S<seconds> or P<milliseconds>
  2341. */
  2342. inline void gcode_G4() {
  2343. millis_t dwell_ms = 0;
  2344. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2345. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2346. stepper.synchronize();
  2347. refresh_cmd_timeout();
  2348. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2349. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2350. while (PENDING(millis(), dwell_ms)) idle();
  2351. }
  2352. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2353. /**
  2354. * Parameters interpreted according to:
  2355. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2356. * However I, J omission is not supported at this point; all
  2357. * parameters can be omitted and default to zero.
  2358. */
  2359. /**
  2360. * G5: Cubic B-spline
  2361. */
  2362. inline void gcode_G5() {
  2363. if (IsRunning()) {
  2364. gcode_get_destination();
  2365. float offset[] = {
  2366. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2367. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2368. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2369. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2370. };
  2371. plan_cubic_move(offset);
  2372. }
  2373. }
  2374. #endif // BEZIER_CURVE_SUPPORT
  2375. #if ENABLED(FWRETRACT)
  2376. /**
  2377. * G10 - Retract filament according to settings of M207
  2378. * G11 - Recover filament according to settings of M208
  2379. */
  2380. inline void gcode_G10_G11(bool doRetract=false) {
  2381. #if EXTRUDERS > 1
  2382. if (doRetract) {
  2383. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2384. }
  2385. #endif
  2386. retract(doRetract
  2387. #if EXTRUDERS > 1
  2388. , retracted_swap[active_extruder]
  2389. #endif
  2390. );
  2391. }
  2392. #endif //FWRETRACT
  2393. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2394. /**
  2395. * G12: Clean the nozzle
  2396. */
  2397. inline void gcode_G12() {
  2398. // Don't allow nozzle cleaning without homing first
  2399. if (axis_unhomed_error(true, true, true)) { return; }
  2400. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2401. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2402. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2403. Nozzle::clean(pattern, strokes, objects);
  2404. }
  2405. #endif
  2406. #if ENABLED(INCH_MODE_SUPPORT)
  2407. /**
  2408. * G20: Set input mode to inches
  2409. */
  2410. inline void gcode_G20() {
  2411. set_input_linear_units(LINEARUNIT_INCH);
  2412. }
  2413. /**
  2414. * G21: Set input mode to millimeters
  2415. */
  2416. inline void gcode_G21() {
  2417. set_input_linear_units(LINEARUNIT_MM);
  2418. }
  2419. #endif
  2420. #if ENABLED(NOZZLE_PARK_FEATURE)
  2421. /**
  2422. * G27: Park the nozzle
  2423. */
  2424. inline void gcode_G27() {
  2425. // Don't allow nozzle parking without homing first
  2426. if (axis_unhomed_error(true, true, true)) { return; }
  2427. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2428. Nozzle::park(z_action);
  2429. }
  2430. #endif // NOZZLE_PARK_FEATURE
  2431. #if ENABLED(QUICK_HOME)
  2432. static void quick_home_xy() {
  2433. // Pretend the current position is 0,0
  2434. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2435. sync_plan_position();
  2436. int x_axis_home_dir =
  2437. #if ENABLED(DUAL_X_CARRIAGE)
  2438. x_home_dir(active_extruder)
  2439. #else
  2440. home_dir(X_AXIS)
  2441. #endif
  2442. ;
  2443. float mlx = max_length(X_AXIS),
  2444. mly = max_length(Y_AXIS),
  2445. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2446. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2447. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2448. endstops.hit_on_purpose(); // clear endstop hit flags
  2449. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2450. }
  2451. #endif // QUICK_HOME
  2452. /**
  2453. * G28: Home all axes according to settings
  2454. *
  2455. * Parameters
  2456. *
  2457. * None Home to all axes with no parameters.
  2458. * With QUICK_HOME enabled XY will home together, then Z.
  2459. *
  2460. * Cartesian parameters
  2461. *
  2462. * X Home to the X endstop
  2463. * Y Home to the Y endstop
  2464. * Z Home to the Z endstop
  2465. *
  2466. */
  2467. inline void gcode_G28() {
  2468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2469. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2470. #endif
  2471. // Wait for planner moves to finish!
  2472. stepper.synchronize();
  2473. // For auto bed leveling, clear the level matrix
  2474. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2475. planner.bed_level_matrix.set_to_identity();
  2476. #if ENABLED(DELTA)
  2477. reset_bed_level();
  2478. #endif
  2479. #endif
  2480. // Always home with tool 0 active
  2481. #if HOTENDS > 1
  2482. uint8_t old_tool_index = active_extruder;
  2483. tool_change(0, 0, true);
  2484. #endif
  2485. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2486. extruder_duplication_enabled = false;
  2487. #endif
  2488. /**
  2489. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2490. * on again when homing all axis
  2491. */
  2492. #if ENABLED(MESH_BED_LEVELING)
  2493. float pre_home_z = MESH_HOME_SEARCH_Z;
  2494. if (mbl.active()) {
  2495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2496. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2497. #endif
  2498. // Save known Z position if already homed
  2499. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2500. pre_home_z = current_position[Z_AXIS];
  2501. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2502. }
  2503. mbl.set_active(false);
  2504. current_position[Z_AXIS] = pre_home_z;
  2505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2506. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2507. #endif
  2508. }
  2509. #endif
  2510. setup_for_endstop_or_probe_move();
  2511. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2512. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2513. #endif
  2514. endstops.enable(true); // Enable endstops for next homing move
  2515. #if ENABLED(DELTA)
  2516. /**
  2517. * A delta can only safely home all axes at the same time
  2518. */
  2519. // Pretend the current position is 0,0,0
  2520. // This is like quick_home_xy() but for 3 towers.
  2521. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2522. sync_plan_position();
  2523. // Move all carriages up together until the first endstop is hit.
  2524. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
  2525. feedrate_mm_s = 1.732 * homing_feedrate_mm_s[X_AXIS];
  2526. line_to_current_position();
  2527. stepper.synchronize();
  2528. endstops.hit_on_purpose(); // clear endstop hit flags
  2529. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2530. // take care of back off and rehome. Now one carriage is at the top.
  2531. HOMEAXIS(X);
  2532. HOMEAXIS(Y);
  2533. HOMEAXIS(Z);
  2534. SYNC_PLAN_POSITION_KINEMATIC();
  2535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2536. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2537. #endif
  2538. #else // NOT DELTA
  2539. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2540. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2541. set_destination_to_current();
  2542. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2543. if (home_all_axis || homeZ) {
  2544. HOMEAXIS(Z);
  2545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2546. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2547. #endif
  2548. }
  2549. #else
  2550. if (home_all_axis || homeX || homeY) {
  2551. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2552. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2553. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2554. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2555. if (DEBUGGING(LEVELING)) {
  2556. SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2557. SERIAL_EOL;
  2558. }
  2559. #endif
  2560. do_blocking_move_to_z(destination[Z_AXIS]);
  2561. }
  2562. }
  2563. #endif
  2564. #if ENABLED(QUICK_HOME)
  2565. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2566. #endif
  2567. #if ENABLED(HOME_Y_BEFORE_X)
  2568. // Home Y
  2569. if (home_all_axis || homeY) {
  2570. HOMEAXIS(Y);
  2571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2572. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2573. #endif
  2574. }
  2575. #endif
  2576. // Home X
  2577. if (home_all_axis || homeX) {
  2578. #if ENABLED(DUAL_X_CARRIAGE)
  2579. int tmp_extruder = active_extruder;
  2580. active_extruder = !active_extruder;
  2581. HOMEAXIS(X);
  2582. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2583. active_extruder = tmp_extruder;
  2584. HOMEAXIS(X);
  2585. // reset state used by the different modes
  2586. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2587. delayed_move_time = 0;
  2588. active_extruder_parked = true;
  2589. #else
  2590. HOMEAXIS(X);
  2591. #endif
  2592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2593. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2594. #endif
  2595. }
  2596. #if DISABLED(HOME_Y_BEFORE_X)
  2597. // Home Y
  2598. if (home_all_axis || homeY) {
  2599. HOMEAXIS(Y);
  2600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2601. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2602. #endif
  2603. }
  2604. #endif
  2605. // Home Z last if homing towards the bed
  2606. #if Z_HOME_DIR < 0
  2607. if (home_all_axis || homeZ) {
  2608. #if ENABLED(Z_SAFE_HOMING)
  2609. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2610. if (DEBUGGING(LEVELING)) {
  2611. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2612. }
  2613. #endif
  2614. if (home_all_axis) {
  2615. /**
  2616. * At this point we already have Z at Z_HOMING_HEIGHT height
  2617. * No need to move Z any more as this height should already be safe
  2618. * enough to reach Z_SAFE_HOMING XY positions.
  2619. * Just make sure the planner is in sync.
  2620. */
  2621. SYNC_PLAN_POSITION_KINEMATIC();
  2622. /**
  2623. * Move the Z probe (or just the nozzle) to the safe homing point
  2624. */
  2625. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2626. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2627. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2628. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2629. if (DEBUGGING(LEVELING)) {
  2630. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2631. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2632. }
  2633. #endif
  2634. // Move in the XY plane
  2635. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2636. }
  2637. // Let's see if X and Y are homed
  2638. if (axis_unhomed_error(true, true, false)) return;
  2639. /**
  2640. * Make sure the Z probe is within the physical limits
  2641. * NOTE: This doesn't necessarily ensure the Z probe is also
  2642. * within the bed!
  2643. */
  2644. float cpx = RAW_CURRENT_POSITION(X_AXIS), cpy = RAW_CURRENT_POSITION(Y_AXIS);
  2645. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2646. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2647. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2648. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2649. // Home the Z axis
  2650. HOMEAXIS(Z);
  2651. }
  2652. else {
  2653. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2654. SERIAL_ECHO_START;
  2655. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2656. }
  2657. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2658. if (DEBUGGING(LEVELING)) {
  2659. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2660. }
  2661. #endif
  2662. #else // !Z_SAFE_HOMING
  2663. HOMEAXIS(Z);
  2664. #endif // !Z_SAFE_HOMING
  2665. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2666. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2667. #endif
  2668. } // home_all_axis || homeZ
  2669. #endif // Z_HOME_DIR < 0
  2670. SYNC_PLAN_POSITION_KINEMATIC();
  2671. #endif // !DELTA (gcode_G28)
  2672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2673. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2674. #endif
  2675. endstops.not_homing();
  2676. endstops.hit_on_purpose(); // clear endstop hit flags
  2677. // Enable mesh leveling again
  2678. #if ENABLED(MESH_BED_LEVELING)
  2679. if (mbl.has_mesh()) {
  2680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2681. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2682. #endif
  2683. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2684. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2685. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2686. #endif
  2687. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2688. #if Z_HOME_DIR > 0
  2689. + Z_MAX_POS
  2690. #endif
  2691. ;
  2692. SYNC_PLAN_POSITION_KINEMATIC();
  2693. mbl.set_active(true);
  2694. #if ENABLED(MESH_G28_REST_ORIGIN)
  2695. current_position[Z_AXIS] = 0.0;
  2696. set_destination_to_current();
  2697. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2698. line_to_destination();
  2699. stepper.synchronize();
  2700. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2701. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2702. #endif
  2703. #else
  2704. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2705. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2706. #if Z_HOME_DIR > 0
  2707. + Z_MAX_POS
  2708. #endif
  2709. ;
  2710. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2711. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2712. #endif
  2713. #endif
  2714. }
  2715. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2716. current_position[Z_AXIS] = pre_home_z;
  2717. SYNC_PLAN_POSITION_KINEMATIC();
  2718. mbl.set_active(true);
  2719. current_position[Z_AXIS] = pre_home_z -
  2720. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2721. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2722. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2723. #endif
  2724. }
  2725. }
  2726. #endif
  2727. #if ENABLED(DELTA)
  2728. // move to a height where we can use the full xy-area
  2729. do_blocking_move_to_z(delta_clip_start_height);
  2730. #endif
  2731. clean_up_after_endstop_or_probe_move();
  2732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2733. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2734. #endif
  2735. // Restore the active tool after homing
  2736. #if HOTENDS > 1
  2737. tool_change(old_tool_index, 0, true);
  2738. #endif
  2739. report_current_position();
  2740. }
  2741. #if HAS_PROBING_PROCEDURE
  2742. void out_of_range_error(const char* p_edge) {
  2743. SERIAL_PROTOCOLPGM("?Probe ");
  2744. serialprintPGM(p_edge);
  2745. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2746. }
  2747. #endif
  2748. #if ENABLED(MESH_BED_LEVELING)
  2749. inline void _mbl_goto_xy(float x, float y) {
  2750. float old_feedrate_mm_s = feedrate_mm_s;
  2751. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2752. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2753. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2754. + Z_PROBE_TRAVEL_HEIGHT
  2755. #elif Z_HOMING_HEIGHT > 0
  2756. + Z_HOMING_HEIGHT
  2757. #endif
  2758. ;
  2759. line_to_current_position();
  2760. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2761. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2762. line_to_current_position();
  2763. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2764. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2765. line_to_current_position();
  2766. #endif
  2767. feedrate_mm_s = old_feedrate_mm_s;
  2768. stepper.synchronize();
  2769. }
  2770. /**
  2771. * G29: Mesh-based Z probe, probes a grid and produces a
  2772. * mesh to compensate for variable bed height
  2773. *
  2774. * Parameters With MESH_BED_LEVELING:
  2775. *
  2776. * S0 Produce a mesh report
  2777. * S1 Start probing mesh points
  2778. * S2 Probe the next mesh point
  2779. * S3 Xn Yn Zn.nn Manually modify a single point
  2780. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2781. * S5 Reset and disable mesh
  2782. *
  2783. * The S0 report the points as below
  2784. *
  2785. * +----> X-axis 1-n
  2786. * |
  2787. * |
  2788. * v Y-axis 1-n
  2789. *
  2790. */
  2791. inline void gcode_G29() {
  2792. static int probe_point = -1;
  2793. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2794. if (state < 0 || state > 5) {
  2795. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2796. return;
  2797. }
  2798. int8_t px, py;
  2799. switch (state) {
  2800. case MeshReport:
  2801. if (mbl.has_mesh()) {
  2802. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2803. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2804. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2805. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2806. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2807. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2808. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2809. SERIAL_PROTOCOLPGM(" ");
  2810. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2811. }
  2812. SERIAL_EOL;
  2813. }
  2814. }
  2815. else
  2816. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2817. break;
  2818. case MeshStart:
  2819. mbl.reset();
  2820. probe_point = 0;
  2821. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2822. break;
  2823. case MeshNext:
  2824. if (probe_point < 0) {
  2825. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2826. return;
  2827. }
  2828. // For each G29 S2...
  2829. if (probe_point == 0) {
  2830. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2831. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2832. #if Z_HOME_DIR > 0
  2833. + Z_MAX_POS
  2834. #endif
  2835. ;
  2836. SYNC_PLAN_POSITION_KINEMATIC();
  2837. }
  2838. else {
  2839. // For G29 S2 after adjusting Z.
  2840. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2841. }
  2842. // If there's another point to sample, move there with optional lift.
  2843. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2844. mbl.zigzag(probe_point, px, py);
  2845. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2846. probe_point++;
  2847. }
  2848. else {
  2849. // One last "return to the bed" (as originally coded) at completion
  2850. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2851. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2852. + Z_PROBE_TRAVEL_HEIGHT
  2853. #elif Z_HOMING_HEIGHT > 0
  2854. + Z_HOMING_HEIGHT
  2855. #endif
  2856. ;
  2857. line_to_current_position();
  2858. stepper.synchronize();
  2859. // After recording the last point, activate the mbl and home
  2860. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2861. probe_point = -1;
  2862. mbl.set_has_mesh(true);
  2863. enqueue_and_echo_commands_P(PSTR("G28"));
  2864. }
  2865. break;
  2866. case MeshSet:
  2867. if (code_seen('X')) {
  2868. px = code_value_int() - 1;
  2869. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2870. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2871. return;
  2872. }
  2873. }
  2874. else {
  2875. SERIAL_PROTOCOLLNPGM("X not entered.");
  2876. return;
  2877. }
  2878. if (code_seen('Y')) {
  2879. py = code_value_int() - 1;
  2880. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2881. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2882. return;
  2883. }
  2884. }
  2885. else {
  2886. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2887. return;
  2888. }
  2889. if (code_seen('Z')) {
  2890. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2891. }
  2892. else {
  2893. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2894. return;
  2895. }
  2896. break;
  2897. case MeshSetZOffset:
  2898. if (code_seen('Z')) {
  2899. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2900. }
  2901. else {
  2902. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2903. return;
  2904. }
  2905. break;
  2906. case MeshReset:
  2907. if (mbl.active()) {
  2908. current_position[Z_AXIS] +=
  2909. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2910. mbl.reset();
  2911. SYNC_PLAN_POSITION_KINEMATIC();
  2912. }
  2913. else
  2914. mbl.reset();
  2915. } // switch(state)
  2916. report_current_position();
  2917. }
  2918. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2919. /**
  2920. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2921. * Will fail if the printer has not been homed with G28.
  2922. *
  2923. * Enhanced G29 Auto Bed Leveling Probe Routine
  2924. *
  2925. * Parameters With AUTO_BED_LEVELING_GRID:
  2926. *
  2927. * P Set the size of the grid that will be probed (P x P points).
  2928. * Not supported by non-linear delta printer bed leveling.
  2929. * Example: "G29 P4"
  2930. *
  2931. * S Set the XY travel speed between probe points (in units/min)
  2932. *
  2933. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2934. * or clean the rotation Matrix. Useful to check the topology
  2935. * after a first run of G29.
  2936. *
  2937. * V Set the verbose level (0-4). Example: "G29 V3"
  2938. *
  2939. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2940. * This is useful for manual bed leveling and finding flaws in the bed (to
  2941. * assist with part placement).
  2942. * Not supported by non-linear delta printer bed leveling.
  2943. *
  2944. * F Set the Front limit of the probing grid
  2945. * B Set the Back limit of the probing grid
  2946. * L Set the Left limit of the probing grid
  2947. * R Set the Right limit of the probing grid
  2948. *
  2949. * Global Parameters:
  2950. *
  2951. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2952. * Include "E" to engage/disengage the Z probe for each sample.
  2953. * There's no extra effect if you have a fixed Z probe.
  2954. * Usage: "G29 E" or "G29 e"
  2955. *
  2956. */
  2957. inline void gcode_G29() {
  2958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2959. if (DEBUGGING(LEVELING)) {
  2960. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2961. DEBUG_POS("", current_position);
  2962. }
  2963. #endif
  2964. // Don't allow auto-leveling without homing first
  2965. if (axis_unhomed_error(true, true, true)) return;
  2966. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2967. if (verbose_level < 0 || verbose_level > 4) {
  2968. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2969. return;
  2970. }
  2971. bool dryrun = code_seen('D');
  2972. bool stow_probe_after_each = code_seen('E');
  2973. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2974. #if DISABLED(DELTA)
  2975. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2976. #endif
  2977. if (verbose_level > 0) {
  2978. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2979. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2980. }
  2981. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2982. #if DISABLED(DELTA)
  2983. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2984. if (auto_bed_leveling_grid_points < 2) {
  2985. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2986. return;
  2987. }
  2988. #endif
  2989. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2990. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2991. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2992. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2993. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2994. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2995. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2996. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2997. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2998. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2999. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3000. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3001. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3002. if (left_out || right_out || front_out || back_out) {
  3003. if (left_out) {
  3004. out_of_range_error(PSTR("(L)eft"));
  3005. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3006. }
  3007. if (right_out) {
  3008. out_of_range_error(PSTR("(R)ight"));
  3009. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3010. }
  3011. if (front_out) {
  3012. out_of_range_error(PSTR("(F)ront"));
  3013. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3014. }
  3015. if (back_out) {
  3016. out_of_range_error(PSTR("(B)ack"));
  3017. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3018. }
  3019. return;
  3020. }
  3021. #endif // AUTO_BED_LEVELING_GRID
  3022. if (!dryrun) {
  3023. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  3024. if (DEBUGGING(LEVELING)) {
  3025. vector_3 corrected_position = planner.adjusted_position();
  3026. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  3027. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  3028. }
  3029. #endif
  3030. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  3031. planner.bed_level_matrix.set_to_identity();
  3032. #if ENABLED(DELTA)
  3033. reset_bed_level();
  3034. #else //!DELTA
  3035. //vector_3 corrected_position = planner.adjusted_position();
  3036. //corrected_position.debug("position before G29");
  3037. vector_3 uncorrected_position = planner.adjusted_position();
  3038. //uncorrected_position.debug("position during G29");
  3039. current_position[X_AXIS] = uncorrected_position.x;
  3040. current_position[Y_AXIS] = uncorrected_position.y;
  3041. current_position[Z_AXIS] = uncorrected_position.z;
  3042. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3043. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  3044. #endif
  3045. SYNC_PLAN_POSITION_KINEMATIC();
  3046. #endif // !DELTA
  3047. }
  3048. stepper.synchronize();
  3049. setup_for_endstop_or_probe_move();
  3050. // Deploy the probe. Probe will raise if needed.
  3051. if (DEPLOY_PROBE()) return;
  3052. bed_leveling_in_progress = true;
  3053. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3054. // probe at the points of a lattice grid
  3055. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  3056. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  3057. #if ENABLED(DELTA)
  3058. delta_grid_spacing[X_AXIS] = xGridSpacing;
  3059. delta_grid_spacing[Y_AXIS] = yGridSpacing;
  3060. float zoffset = zprobe_zoffset;
  3061. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3062. #else // !DELTA
  3063. /**
  3064. * solve the plane equation ax + by + d = z
  3065. * A is the matrix with rows [x y 1] for all the probed points
  3066. * B is the vector of the Z positions
  3067. * the normal vector to the plane is formed by the coefficients of the
  3068. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3069. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3070. */
  3071. int abl2 = sq(auto_bed_leveling_grid_points);
  3072. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3073. eqnBVector[abl2], // "B" vector of Z points
  3074. mean = 0.0;
  3075. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3076. #endif // !DELTA
  3077. int probePointCounter = 0;
  3078. bool zig = auto_bed_leveling_grid_points & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3079. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3080. float yBase = front_probe_bed_position + yGridSpacing * yCount,
  3081. yProbe = floor(yProbe + (yProbe < 0 ? 0 : 0.5));
  3082. int xStart, xStop, xInc;
  3083. if (zig) {
  3084. xStart = 0;
  3085. xStop = auto_bed_leveling_grid_points;
  3086. xInc = 1;
  3087. }
  3088. else {
  3089. xStart = auto_bed_leveling_grid_points - 1;
  3090. xStop = -1;
  3091. xInc = -1;
  3092. }
  3093. zig = !zig;
  3094. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3095. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3096. xProbe = floor(xProbe + (xProbe < 0 ? 0 : 0.5));
  3097. #if ENABLED(DELTA)
  3098. // Avoid probing outside the round or hexagonal area of a delta printer
  3099. if (sq(xProbe) + sq(yProbe) > sq(DELTA_PROBEABLE_RADIUS)) continue;
  3100. #endif
  3101. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3102. #if DISABLED(DELTA)
  3103. mean += measured_z;
  3104. eqnBVector[probePointCounter] = measured_z;
  3105. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3106. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3107. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3108. indexIntoAB[xCount][yCount] = probePointCounter;
  3109. #else
  3110. bed_level[xCount][yCount] = measured_z + zoffset;
  3111. #endif
  3112. probePointCounter++;
  3113. idle();
  3114. } //xProbe
  3115. } //yProbe
  3116. #else // !AUTO_BED_LEVELING_GRID
  3117. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3118. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3119. #endif
  3120. // Probe at 3 arbitrary points
  3121. float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
  3122. LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
  3123. stow_probe_after_each, verbose_level),
  3124. z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
  3125. LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
  3126. stow_probe_after_each, verbose_level),
  3127. z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
  3128. LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
  3129. stow_probe_after_each, verbose_level);
  3130. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3131. #endif // !AUTO_BED_LEVELING_GRID
  3132. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3133. if (STOW_PROBE()) return;
  3134. // Restore state after probing
  3135. clean_up_after_endstop_or_probe_move();
  3136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3137. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3138. #endif
  3139. // Calculate leveling, print reports, correct the position
  3140. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3141. #if ENABLED(DELTA)
  3142. if (!dryrun) extrapolate_unprobed_bed_level();
  3143. print_bed_level();
  3144. #else // !DELTA
  3145. // solve lsq problem
  3146. double plane_equation_coefficients[3];
  3147. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3148. mean /= abl2;
  3149. if (verbose_level) {
  3150. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3151. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3152. SERIAL_PROTOCOLPGM(" b: ");
  3153. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3154. SERIAL_PROTOCOLPGM(" d: ");
  3155. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3156. SERIAL_EOL;
  3157. if (verbose_level > 2) {
  3158. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3159. SERIAL_PROTOCOL_F(mean, 8);
  3160. SERIAL_EOL;
  3161. }
  3162. }
  3163. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3164. // Show the Topography map if enabled
  3165. if (do_topography_map) {
  3166. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3167. " +--- BACK --+\n"
  3168. " | |\n"
  3169. " L | (+) | R\n"
  3170. " E | | I\n"
  3171. " F | (-) N (+) | G\n"
  3172. " T | | H\n"
  3173. " | (-) | T\n"
  3174. " | |\n"
  3175. " O-- FRONT --+\n"
  3176. " (0,0)");
  3177. float min_diff = 999;
  3178. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3179. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3180. int ind = indexIntoAB[xx][yy];
  3181. float diff = eqnBVector[ind] - mean;
  3182. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3183. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3184. z_tmp = 0;
  3185. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3186. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3187. if (diff >= 0.0)
  3188. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3189. else
  3190. SERIAL_PROTOCOLCHAR(' ');
  3191. SERIAL_PROTOCOL_F(diff, 5);
  3192. } // xx
  3193. SERIAL_EOL;
  3194. } // yy
  3195. SERIAL_EOL;
  3196. if (verbose_level > 3) {
  3197. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3198. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3199. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3200. int ind = indexIntoAB[xx][yy];
  3201. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3202. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3203. z_tmp = 0;
  3204. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3205. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3206. if (diff >= 0.0)
  3207. SERIAL_PROTOCOLPGM(" +");
  3208. // Include + for column alignment
  3209. else
  3210. SERIAL_PROTOCOLCHAR(' ');
  3211. SERIAL_PROTOCOL_F(diff, 5);
  3212. } // xx
  3213. SERIAL_EOL;
  3214. } // yy
  3215. SERIAL_EOL;
  3216. }
  3217. } //do_topography_map
  3218. #endif //!DELTA
  3219. #endif // AUTO_BED_LEVELING_GRID
  3220. #if DISABLED(DELTA)
  3221. if (verbose_level > 0)
  3222. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3223. if (!dryrun) {
  3224. /**
  3225. * Correct the Z height difference from Z probe position and nozzle tip position.
  3226. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3227. * from the nozzle. When the bed is uneven, this height must be corrected.
  3228. */
  3229. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3230. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3231. z_tmp = current_position[Z_AXIS],
  3232. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3234. if (DEBUGGING(LEVELING)) {
  3235. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3236. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3237. SERIAL_EOL;
  3238. }
  3239. #endif
  3240. // Apply the correction sending the Z probe offset
  3241. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3242. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3243. if (DEBUGGING(LEVELING)) {
  3244. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3245. SERIAL_EOL;
  3246. }
  3247. #endif
  3248. // Adjust the current Z and send it to the planner.
  3249. current_position[Z_AXIS] += z_tmp - stepper_z;
  3250. SYNC_PLAN_POSITION_KINEMATIC();
  3251. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3252. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3253. #endif
  3254. }
  3255. #endif // !DELTA
  3256. #ifdef Z_PROBE_END_SCRIPT
  3257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3258. if (DEBUGGING(LEVELING)) {
  3259. SERIAL_ECHOPGM("Z Probe End Script: ");
  3260. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3261. }
  3262. #endif
  3263. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3264. stepper.synchronize();
  3265. #endif
  3266. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3267. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3268. #endif
  3269. bed_leveling_in_progress = false;
  3270. report_current_position();
  3271. KEEPALIVE_STATE(IN_HANDLER);
  3272. }
  3273. #endif //AUTO_BED_LEVELING_FEATURE
  3274. #if HAS_BED_PROBE
  3275. /**
  3276. * G30: Do a single Z probe at the current XY
  3277. */
  3278. inline void gcode_G30() {
  3279. setup_for_endstop_or_probe_move();
  3280. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3281. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3282. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3283. true, 1);
  3284. SERIAL_PROTOCOLPGM("Bed X: ");
  3285. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3286. SERIAL_PROTOCOLPGM(" Y: ");
  3287. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3288. SERIAL_PROTOCOLPGM(" Z: ");
  3289. SERIAL_PROTOCOL(measured_z + 0.0001);
  3290. SERIAL_EOL;
  3291. clean_up_after_endstop_or_probe_move();
  3292. report_current_position();
  3293. }
  3294. #if ENABLED(Z_PROBE_SLED)
  3295. /**
  3296. * G31: Deploy the Z probe
  3297. */
  3298. inline void gcode_G31() { DEPLOY_PROBE(); }
  3299. /**
  3300. * G32: Stow the Z probe
  3301. */
  3302. inline void gcode_G32() { STOW_PROBE(); }
  3303. #endif // Z_PROBE_SLED
  3304. #endif // HAS_BED_PROBE
  3305. /**
  3306. * G92: Set current position to given X Y Z E
  3307. */
  3308. inline void gcode_G92() {
  3309. bool didE = code_seen('E');
  3310. if (!didE) stepper.synchronize();
  3311. bool didXYZ = false;
  3312. LOOP_XYZE(i) {
  3313. if (code_seen(axis_codes[i])) {
  3314. float p = current_position[i],
  3315. v = code_value_axis_units(i);
  3316. current_position[i] = v;
  3317. if (i != E_AXIS) {
  3318. position_shift[i] += v - p; // Offset the coordinate space
  3319. update_software_endstops((AxisEnum)i);
  3320. didXYZ = true;
  3321. }
  3322. }
  3323. }
  3324. if (didXYZ)
  3325. SYNC_PLAN_POSITION_KINEMATIC();
  3326. else if (didE)
  3327. sync_plan_position_e();
  3328. }
  3329. #if ENABLED(ULTIPANEL)
  3330. /**
  3331. * M0: Unconditional stop - Wait for user button press on LCD
  3332. * M1: Conditional stop - Wait for user button press on LCD
  3333. */
  3334. inline void gcode_M0_M1() {
  3335. char* args = current_command_args;
  3336. millis_t codenum = 0;
  3337. bool hasP = false, hasS = false;
  3338. if (code_seen('P')) {
  3339. codenum = code_value_millis(); // milliseconds to wait
  3340. hasP = codenum > 0;
  3341. }
  3342. if (code_seen('S')) {
  3343. codenum = code_value_millis_from_seconds(); // seconds to wait
  3344. hasS = codenum > 0;
  3345. }
  3346. if (!hasP && !hasS && *args != '\0')
  3347. lcd_setstatus(args, true);
  3348. else {
  3349. LCD_MESSAGEPGM(MSG_USERWAIT);
  3350. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3351. dontExpireStatus();
  3352. #endif
  3353. }
  3354. lcd_ignore_click();
  3355. stepper.synchronize();
  3356. refresh_cmd_timeout();
  3357. if (codenum > 0) {
  3358. codenum += previous_cmd_ms; // wait until this time for a click
  3359. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3360. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3361. KEEPALIVE_STATE(IN_HANDLER);
  3362. lcd_ignore_click(false);
  3363. }
  3364. else {
  3365. if (!lcd_detected()) return;
  3366. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3367. while (!lcd_clicked()) idle();
  3368. KEEPALIVE_STATE(IN_HANDLER);
  3369. }
  3370. if (IS_SD_PRINTING)
  3371. LCD_MESSAGEPGM(MSG_RESUMING);
  3372. else
  3373. LCD_MESSAGEPGM(WELCOME_MSG);
  3374. }
  3375. #endif // ULTIPANEL
  3376. /**
  3377. * M17: Enable power on all stepper motors
  3378. */
  3379. inline void gcode_M17() {
  3380. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3381. enable_all_steppers();
  3382. }
  3383. #if ENABLED(SDSUPPORT)
  3384. /**
  3385. * M20: List SD card to serial output
  3386. */
  3387. inline void gcode_M20() {
  3388. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3389. card.ls();
  3390. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3391. }
  3392. /**
  3393. * M21: Init SD Card
  3394. */
  3395. inline void gcode_M21() {
  3396. card.initsd();
  3397. }
  3398. /**
  3399. * M22: Release SD Card
  3400. */
  3401. inline void gcode_M22() {
  3402. card.release();
  3403. }
  3404. /**
  3405. * M23: Open a file
  3406. */
  3407. inline void gcode_M23() {
  3408. card.openFile(current_command_args, true);
  3409. }
  3410. /**
  3411. * M24: Start SD Print
  3412. */
  3413. inline void gcode_M24() {
  3414. card.startFileprint();
  3415. print_job_timer.start();
  3416. }
  3417. /**
  3418. * M25: Pause SD Print
  3419. */
  3420. inline void gcode_M25() {
  3421. card.pauseSDPrint();
  3422. }
  3423. /**
  3424. * M26: Set SD Card file index
  3425. */
  3426. inline void gcode_M26() {
  3427. if (card.cardOK && code_seen('S'))
  3428. card.setIndex(code_value_long());
  3429. }
  3430. /**
  3431. * M27: Get SD Card status
  3432. */
  3433. inline void gcode_M27() {
  3434. card.getStatus();
  3435. }
  3436. /**
  3437. * M28: Start SD Write
  3438. */
  3439. inline void gcode_M28() {
  3440. card.openFile(current_command_args, false);
  3441. }
  3442. /**
  3443. * M29: Stop SD Write
  3444. * Processed in write to file routine above
  3445. */
  3446. inline void gcode_M29() {
  3447. // card.saving = false;
  3448. }
  3449. /**
  3450. * M30 <filename>: Delete SD Card file
  3451. */
  3452. inline void gcode_M30() {
  3453. if (card.cardOK) {
  3454. card.closefile();
  3455. card.removeFile(current_command_args);
  3456. }
  3457. }
  3458. #endif //SDSUPPORT
  3459. /**
  3460. * M31: Get the time since the start of SD Print (or last M109)
  3461. */
  3462. inline void gcode_M31() {
  3463. char buffer[21];
  3464. duration_t elapsed = print_job_timer.duration();
  3465. elapsed.toString(buffer);
  3466. lcd_setstatus(buffer);
  3467. SERIAL_ECHO_START;
  3468. SERIAL_ECHOPGM("Print time: ");
  3469. SERIAL_ECHOLN(buffer);
  3470. thermalManager.autotempShutdown();
  3471. }
  3472. #if ENABLED(SDSUPPORT)
  3473. /**
  3474. * M32: Select file and start SD Print
  3475. */
  3476. inline void gcode_M32() {
  3477. if (card.sdprinting)
  3478. stepper.synchronize();
  3479. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3480. if (!namestartpos)
  3481. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3482. else
  3483. namestartpos++; //to skip the '!'
  3484. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3485. if (card.cardOK) {
  3486. card.openFile(namestartpos, true, call_procedure);
  3487. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3488. card.setIndex(code_value_long());
  3489. card.startFileprint();
  3490. // Procedure calls count as normal print time.
  3491. if (!call_procedure) print_job_timer.start();
  3492. }
  3493. }
  3494. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3495. /**
  3496. * M33: Get the long full path of a file or folder
  3497. *
  3498. * Parameters:
  3499. * <dospath> Case-insensitive DOS-style path to a file or folder
  3500. *
  3501. * Example:
  3502. * M33 miscel~1/armchair/armcha~1.gco
  3503. *
  3504. * Output:
  3505. * /Miscellaneous/Armchair/Armchair.gcode
  3506. */
  3507. inline void gcode_M33() {
  3508. card.printLongPath(current_command_args);
  3509. }
  3510. #endif
  3511. /**
  3512. * M928: Start SD Write
  3513. */
  3514. inline void gcode_M928() {
  3515. card.openLogFile(current_command_args);
  3516. }
  3517. #endif // SDSUPPORT
  3518. /**
  3519. * M42: Change pin status via GCode
  3520. *
  3521. * P<pin> Pin number (LED if omitted)
  3522. * S<byte> Pin status from 0 - 255
  3523. */
  3524. inline void gcode_M42() {
  3525. if (!code_seen('S')) return;
  3526. int pin_status = code_value_int();
  3527. if (pin_status < 0 || pin_status > 255) return;
  3528. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3529. if (pin_number < 0) return;
  3530. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3531. if (pin_number == sensitive_pins[i]) return;
  3532. pinMode(pin_number, OUTPUT);
  3533. digitalWrite(pin_number, pin_status);
  3534. analogWrite(pin_number, pin_status);
  3535. #if FAN_COUNT > 0
  3536. switch (pin_number) {
  3537. #if HAS_FAN0
  3538. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3539. #endif
  3540. #if HAS_FAN1
  3541. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3542. #endif
  3543. #if HAS_FAN2
  3544. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3545. #endif
  3546. }
  3547. #endif
  3548. }
  3549. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3550. /**
  3551. * M48: Z probe repeatability measurement function.
  3552. *
  3553. * Usage:
  3554. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3555. * P = Number of sampled points (4-50, default 10)
  3556. * X = Sample X position
  3557. * Y = Sample Y position
  3558. * V = Verbose level (0-4, default=1)
  3559. * E = Engage Z probe for each reading
  3560. * L = Number of legs of movement before probe
  3561. * S = Schizoid (Or Star if you prefer)
  3562. *
  3563. * This function assumes the bed has been homed. Specifically, that a G28 command
  3564. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3565. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3566. * regenerated.
  3567. */
  3568. inline void gcode_M48() {
  3569. if (axis_unhomed_error(true, true, true)) return;
  3570. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3571. if (verbose_level < 0 || verbose_level > 4) {
  3572. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3573. return;
  3574. }
  3575. if (verbose_level > 0)
  3576. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3577. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3578. if (n_samples < 4 || n_samples > 50) {
  3579. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3580. return;
  3581. }
  3582. float X_current = current_position[X_AXIS],
  3583. Y_current = current_position[Y_AXIS];
  3584. bool stow_probe_after_each = code_seen('E');
  3585. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3586. #if DISABLED(DELTA)
  3587. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3588. out_of_range_error(PSTR("X"));
  3589. return;
  3590. }
  3591. #endif
  3592. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3593. #if DISABLED(DELTA)
  3594. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3595. out_of_range_error(PSTR("Y"));
  3596. return;
  3597. }
  3598. #else
  3599. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3600. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3601. return;
  3602. }
  3603. #endif
  3604. bool seen_L = code_seen('L');
  3605. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3606. if (n_legs > 15) {
  3607. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3608. return;
  3609. }
  3610. if (n_legs == 1) n_legs = 2;
  3611. bool schizoid_flag = code_seen('S');
  3612. if (schizoid_flag && !seen_L) n_legs = 7;
  3613. /**
  3614. * Now get everything to the specified probe point So we can safely do a
  3615. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3616. * we don't want to use that as a starting point for each probe.
  3617. */
  3618. if (verbose_level > 2)
  3619. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3620. #if ENABLED(DELTA)
  3621. // we don't do bed level correction in M48 because we want the raw data when we probe
  3622. reset_bed_level();
  3623. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3624. // we don't do bed level correction in M48 because we want the raw data when we probe
  3625. planner.bed_level_matrix.set_to_identity();
  3626. #endif
  3627. setup_for_endstop_or_probe_move();
  3628. // Move to the first point, deploy, and probe
  3629. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3630. randomSeed(millis());
  3631. double mean = 0, sigma = 0, sample_set[n_samples];
  3632. for (uint8_t n = 0; n < n_samples; n++) {
  3633. if (n_legs) {
  3634. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3635. float angle = random(0.0, 360.0),
  3636. radius = random(
  3637. #if ENABLED(DELTA)
  3638. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3639. #else
  3640. 5, X_MAX_LENGTH / 8
  3641. #endif
  3642. );
  3643. if (verbose_level > 3) {
  3644. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3645. SERIAL_ECHOPAIR(" angle: ", angle);
  3646. SERIAL_ECHOPGM(" Direction: ");
  3647. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3648. SERIAL_ECHOLNPGM("Clockwise");
  3649. }
  3650. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3651. double delta_angle;
  3652. if (schizoid_flag)
  3653. // The points of a 5 point star are 72 degrees apart. We need to
  3654. // skip a point and go to the next one on the star.
  3655. delta_angle = dir * 2.0 * 72.0;
  3656. else
  3657. // If we do this line, we are just trying to move further
  3658. // around the circle.
  3659. delta_angle = dir * (float) random(25, 45);
  3660. angle += delta_angle;
  3661. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3662. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3663. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3664. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3665. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3666. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3667. #if DISABLED(DELTA)
  3668. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3669. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3670. #else
  3671. // If we have gone out too far, we can do a simple fix and scale the numbers
  3672. // back in closer to the origin.
  3673. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3674. X_current /= 1.25;
  3675. Y_current /= 1.25;
  3676. if (verbose_level > 3) {
  3677. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3678. SERIAL_ECHOPAIR(", ", Y_current);
  3679. SERIAL_EOL;
  3680. }
  3681. }
  3682. #endif
  3683. if (verbose_level > 3) {
  3684. SERIAL_PROTOCOLPGM("Going to:");
  3685. SERIAL_ECHOPAIR(" X", X_current);
  3686. SERIAL_ECHOPAIR(" Y", Y_current);
  3687. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3688. SERIAL_EOL;
  3689. }
  3690. do_blocking_move_to_xy(X_current, Y_current);
  3691. } // n_legs loop
  3692. } // n_legs
  3693. // Probe a single point
  3694. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3695. /**
  3696. * Get the current mean for the data points we have so far
  3697. */
  3698. double sum = 0.0;
  3699. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3700. mean = sum / (n + 1);
  3701. /**
  3702. * Now, use that mean to calculate the standard deviation for the
  3703. * data points we have so far
  3704. */
  3705. sum = 0.0;
  3706. for (uint8_t j = 0; j <= n; j++)
  3707. sum += sq(sample_set[j] - mean);
  3708. sigma = sqrt(sum / (n + 1));
  3709. if (verbose_level > 0) {
  3710. if (verbose_level > 1) {
  3711. SERIAL_PROTOCOL(n + 1);
  3712. SERIAL_PROTOCOLPGM(" of ");
  3713. SERIAL_PROTOCOL((int)n_samples);
  3714. SERIAL_PROTOCOLPGM(" z: ");
  3715. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3716. if (verbose_level > 2) {
  3717. SERIAL_PROTOCOLPGM(" mean: ");
  3718. SERIAL_PROTOCOL_F(mean, 6);
  3719. SERIAL_PROTOCOLPGM(" sigma: ");
  3720. SERIAL_PROTOCOL_F(sigma, 6);
  3721. }
  3722. }
  3723. SERIAL_EOL;
  3724. }
  3725. } // End of probe loop
  3726. if (STOW_PROBE()) return;
  3727. if (verbose_level > 0) {
  3728. SERIAL_PROTOCOLPGM("Mean: ");
  3729. SERIAL_PROTOCOL_F(mean, 6);
  3730. SERIAL_EOL;
  3731. }
  3732. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3733. SERIAL_PROTOCOL_F(sigma, 6);
  3734. SERIAL_EOL; SERIAL_EOL;
  3735. clean_up_after_endstop_or_probe_move();
  3736. report_current_position();
  3737. }
  3738. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3739. /**
  3740. * M75: Start print timer
  3741. */
  3742. inline void gcode_M75() { print_job_timer.start(); }
  3743. /**
  3744. * M76: Pause print timer
  3745. */
  3746. inline void gcode_M76() { print_job_timer.pause(); }
  3747. /**
  3748. * M77: Stop print timer
  3749. */
  3750. inline void gcode_M77() { print_job_timer.stop(); }
  3751. #if ENABLED(PRINTCOUNTER)
  3752. /**
  3753. * M78: Show print statistics
  3754. */
  3755. inline void gcode_M78() {
  3756. // "M78 S78" will reset the statistics
  3757. if (code_seen('S') && code_value_int() == 78)
  3758. print_job_timer.initStats();
  3759. else print_job_timer.showStats();
  3760. }
  3761. #endif
  3762. /**
  3763. * M104: Set hot end temperature
  3764. */
  3765. inline void gcode_M104() {
  3766. if (get_target_extruder_from_command(104)) return;
  3767. if (DEBUGGING(DRYRUN)) return;
  3768. #if ENABLED(SINGLENOZZLE)
  3769. if (target_extruder != active_extruder) return;
  3770. #endif
  3771. if (code_seen('S')) {
  3772. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3773. #if ENABLED(DUAL_X_CARRIAGE)
  3774. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3775. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3776. #endif
  3777. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3778. /**
  3779. * Stop the timer at the end of print, starting is managed by
  3780. * 'heat and wait' M109.
  3781. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3782. * stand by mode, for instance in a dual extruder setup, without affecting
  3783. * the running print timer.
  3784. */
  3785. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3786. print_job_timer.stop();
  3787. LCD_MESSAGEPGM(WELCOME_MSG);
  3788. }
  3789. #endif
  3790. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3791. }
  3792. }
  3793. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3794. void print_heaterstates() {
  3795. #if HAS_TEMP_HOTEND
  3796. SERIAL_PROTOCOLPGM(" T:");
  3797. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3798. SERIAL_PROTOCOLPGM(" /");
  3799. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3800. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3801. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3802. SERIAL_CHAR(')');
  3803. #endif
  3804. #endif
  3805. #if HAS_TEMP_BED
  3806. SERIAL_PROTOCOLPGM(" B:");
  3807. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3808. SERIAL_PROTOCOLPGM(" /");
  3809. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3810. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3811. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3812. SERIAL_CHAR(')');
  3813. #endif
  3814. #endif
  3815. #if HOTENDS > 1
  3816. HOTEND_LOOP() {
  3817. SERIAL_PROTOCOLPAIR(" T", e);
  3818. SERIAL_PROTOCOLCHAR(':');
  3819. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3820. SERIAL_PROTOCOLPGM(" /");
  3821. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3822. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3823. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3824. SERIAL_CHAR(')');
  3825. #endif
  3826. }
  3827. #endif
  3828. SERIAL_PROTOCOLPGM(" @:");
  3829. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3830. #if HAS_TEMP_BED
  3831. SERIAL_PROTOCOLPGM(" B@:");
  3832. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3833. #endif
  3834. #if HOTENDS > 1
  3835. HOTEND_LOOP() {
  3836. SERIAL_PROTOCOLPAIR(" @", e);
  3837. SERIAL_PROTOCOLCHAR(':');
  3838. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3839. }
  3840. #endif
  3841. }
  3842. #endif
  3843. /**
  3844. * M105: Read hot end and bed temperature
  3845. */
  3846. inline void gcode_M105() {
  3847. if (get_target_extruder_from_command(105)) return;
  3848. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3849. SERIAL_PROTOCOLPGM(MSG_OK);
  3850. print_heaterstates();
  3851. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3852. SERIAL_ERROR_START;
  3853. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3854. #endif
  3855. SERIAL_EOL;
  3856. }
  3857. #if FAN_COUNT > 0
  3858. /**
  3859. * M106: Set Fan Speed
  3860. *
  3861. * S<int> Speed between 0-255
  3862. * P<index> Fan index, if more than one fan
  3863. */
  3864. inline void gcode_M106() {
  3865. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3866. p = code_seen('P') ? code_value_ushort() : 0;
  3867. NOMORE(s, 255);
  3868. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3869. }
  3870. /**
  3871. * M107: Fan Off
  3872. */
  3873. inline void gcode_M107() {
  3874. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3875. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3876. }
  3877. #endif // FAN_COUNT > 0
  3878. #if DISABLED(EMERGENCY_PARSER)
  3879. /**
  3880. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3881. */
  3882. inline void gcode_M108() { wait_for_heatup = false; }
  3883. /**
  3884. * M112: Emergency Stop
  3885. */
  3886. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3887. /**
  3888. * M410: Quickstop - Abort all planned moves
  3889. *
  3890. * This will stop the carriages mid-move, so most likely they
  3891. * will be out of sync with the stepper position after this.
  3892. */
  3893. inline void gcode_M410() { quickstop_stepper(); }
  3894. #endif
  3895. #ifndef MIN_COOLING_SLOPE_DEG
  3896. #define MIN_COOLING_SLOPE_DEG 1.50
  3897. #endif
  3898. #ifndef MIN_COOLING_SLOPE_TIME
  3899. #define MIN_COOLING_SLOPE_TIME 60
  3900. #endif
  3901. /**
  3902. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3903. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3904. */
  3905. inline void gcode_M109() {
  3906. if (get_target_extruder_from_command(109)) return;
  3907. if (DEBUGGING(DRYRUN)) return;
  3908. #if ENABLED(SINGLENOZZLE)
  3909. if (target_extruder != active_extruder) return;
  3910. #endif
  3911. bool no_wait_for_cooling = code_seen('S');
  3912. if (no_wait_for_cooling || code_seen('R')) {
  3913. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3914. #if ENABLED(DUAL_X_CARRIAGE)
  3915. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3916. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3917. #endif
  3918. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3919. /**
  3920. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3921. * stand by mode, for instance in a dual extruder setup, without affecting
  3922. * the running print timer.
  3923. */
  3924. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3925. print_job_timer.stop();
  3926. LCD_MESSAGEPGM(WELCOME_MSG);
  3927. }
  3928. /**
  3929. * We do not check if the timer is already running because this check will
  3930. * be done for us inside the Stopwatch::start() method thus a running timer
  3931. * will not restart.
  3932. */
  3933. else print_job_timer.start();
  3934. #endif
  3935. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3936. }
  3937. #if ENABLED(AUTOTEMP)
  3938. planner.autotemp_M109();
  3939. #endif
  3940. #if TEMP_RESIDENCY_TIME > 0
  3941. millis_t residency_start_ms = 0;
  3942. // Loop until the temperature has stabilized
  3943. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3944. #else
  3945. // Loop until the temperature is very close target
  3946. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3947. #endif //TEMP_RESIDENCY_TIME > 0
  3948. float theTarget = -1.0, old_temp = 9999.0;
  3949. bool wants_to_cool = false;
  3950. wait_for_heatup = true;
  3951. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3952. KEEPALIVE_STATE(NOT_BUSY);
  3953. do {
  3954. // Target temperature might be changed during the loop
  3955. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3956. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3957. theTarget = thermalManager.degTargetHotend(target_extruder);
  3958. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3959. if (no_wait_for_cooling && wants_to_cool) break;
  3960. }
  3961. now = millis();
  3962. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3963. next_temp_ms = now + 1000UL;
  3964. print_heaterstates();
  3965. #if TEMP_RESIDENCY_TIME > 0
  3966. SERIAL_PROTOCOLPGM(" W:");
  3967. if (residency_start_ms) {
  3968. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3969. SERIAL_PROTOCOLLN(rem);
  3970. }
  3971. else {
  3972. SERIAL_PROTOCOLLNPGM("?");
  3973. }
  3974. #else
  3975. SERIAL_EOL;
  3976. #endif
  3977. }
  3978. idle();
  3979. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3980. float temp = thermalManager.degHotend(target_extruder);
  3981. #if TEMP_RESIDENCY_TIME > 0
  3982. float temp_diff = fabs(theTarget - temp);
  3983. if (!residency_start_ms) {
  3984. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3985. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3986. }
  3987. else if (temp_diff > TEMP_HYSTERESIS) {
  3988. // Restart the timer whenever the temperature falls outside the hysteresis.
  3989. residency_start_ms = now;
  3990. }
  3991. #endif //TEMP_RESIDENCY_TIME > 0
  3992. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3993. if (wants_to_cool) {
  3994. // break after MIN_COOLING_SLOPE_TIME seconds
  3995. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3996. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3997. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3998. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3999. old_temp = temp;
  4000. }
  4001. }
  4002. } while (wait_for_heatup && TEMP_CONDITIONS);
  4003. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4004. KEEPALIVE_STATE(IN_HANDLER);
  4005. }
  4006. #if HAS_TEMP_BED
  4007. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4008. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4009. #endif
  4010. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4011. #define MIN_COOLING_SLOPE_TIME_BED 60
  4012. #endif
  4013. /**
  4014. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4015. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4016. */
  4017. inline void gcode_M190() {
  4018. if (DEBUGGING(DRYRUN)) return;
  4019. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4020. bool no_wait_for_cooling = code_seen('S');
  4021. if (no_wait_for_cooling || code_seen('R')) {
  4022. thermalManager.setTargetBed(code_value_temp_abs());
  4023. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4024. if (code_value_temp_abs() > BED_MINTEMP) {
  4025. /**
  4026. * We start the timer when 'heating and waiting' command arrives, LCD
  4027. * functions never wait. Cooling down managed by extruders.
  4028. *
  4029. * We do not check if the timer is already running because this check will
  4030. * be done for us inside the Stopwatch::start() method thus a running timer
  4031. * will not restart.
  4032. */
  4033. print_job_timer.start();
  4034. }
  4035. #endif
  4036. }
  4037. #if TEMP_BED_RESIDENCY_TIME > 0
  4038. millis_t residency_start_ms = 0;
  4039. // Loop until the temperature has stabilized
  4040. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4041. #else
  4042. // Loop until the temperature is very close target
  4043. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4044. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4045. float theTarget = -1.0, old_temp = 9999.0;
  4046. bool wants_to_cool = false;
  4047. wait_for_heatup = true;
  4048. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4049. KEEPALIVE_STATE(NOT_BUSY);
  4050. target_extruder = active_extruder; // for print_heaterstates
  4051. do {
  4052. // Target temperature might be changed during the loop
  4053. if (theTarget != thermalManager.degTargetBed()) {
  4054. wants_to_cool = thermalManager.isCoolingBed();
  4055. theTarget = thermalManager.degTargetBed();
  4056. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4057. if (no_wait_for_cooling && wants_to_cool) break;
  4058. }
  4059. now = millis();
  4060. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4061. next_temp_ms = now + 1000UL;
  4062. print_heaterstates();
  4063. #if TEMP_BED_RESIDENCY_TIME > 0
  4064. SERIAL_PROTOCOLPGM(" W:");
  4065. if (residency_start_ms) {
  4066. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4067. SERIAL_PROTOCOLLN(rem);
  4068. }
  4069. else {
  4070. SERIAL_PROTOCOLLNPGM("?");
  4071. }
  4072. #else
  4073. SERIAL_EOL;
  4074. #endif
  4075. }
  4076. idle();
  4077. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4078. float temp = thermalManager.degBed();
  4079. #if TEMP_BED_RESIDENCY_TIME > 0
  4080. float temp_diff = fabs(theTarget - temp);
  4081. if (!residency_start_ms) {
  4082. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4083. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4084. }
  4085. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4086. // Restart the timer whenever the temperature falls outside the hysteresis.
  4087. residency_start_ms = now;
  4088. }
  4089. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4090. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4091. if (wants_to_cool) {
  4092. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4093. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4094. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4095. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4096. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4097. old_temp = temp;
  4098. }
  4099. }
  4100. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4101. LCD_MESSAGEPGM(MSG_BED_DONE);
  4102. KEEPALIVE_STATE(IN_HANDLER);
  4103. }
  4104. #endif // HAS_TEMP_BED
  4105. /**
  4106. * M110: Set Current Line Number
  4107. */
  4108. inline void gcode_M110() {
  4109. if (code_seen('N')) gcode_N = code_value_long();
  4110. }
  4111. /**
  4112. * M111: Set the debug level
  4113. */
  4114. inline void gcode_M111() {
  4115. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4116. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4117. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4118. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4119. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4120. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4122. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4123. #endif
  4124. const static char* const debug_strings[] PROGMEM = {
  4125. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4127. str_debug_32
  4128. #endif
  4129. };
  4130. SERIAL_ECHO_START;
  4131. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4132. if (marlin_debug_flags) {
  4133. uint8_t comma = 0;
  4134. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4135. if (TEST(marlin_debug_flags, i)) {
  4136. if (comma++) SERIAL_CHAR(',');
  4137. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4138. }
  4139. }
  4140. }
  4141. else {
  4142. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4143. }
  4144. SERIAL_EOL;
  4145. }
  4146. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4147. /**
  4148. * M113: Get or set Host Keepalive interval (0 to disable)
  4149. *
  4150. * S<seconds> Optional. Set the keepalive interval.
  4151. */
  4152. inline void gcode_M113() {
  4153. if (code_seen('S')) {
  4154. host_keepalive_interval = code_value_byte();
  4155. NOMORE(host_keepalive_interval, 60);
  4156. }
  4157. else {
  4158. SERIAL_ECHO_START;
  4159. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4160. SERIAL_EOL;
  4161. }
  4162. }
  4163. #endif
  4164. #if ENABLED(BARICUDA)
  4165. #if HAS_HEATER_1
  4166. /**
  4167. * M126: Heater 1 valve open
  4168. */
  4169. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4170. /**
  4171. * M127: Heater 1 valve close
  4172. */
  4173. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4174. #endif
  4175. #if HAS_HEATER_2
  4176. /**
  4177. * M128: Heater 2 valve open
  4178. */
  4179. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4180. /**
  4181. * M129: Heater 2 valve close
  4182. */
  4183. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4184. #endif
  4185. #endif //BARICUDA
  4186. /**
  4187. * M140: Set bed temperature
  4188. */
  4189. inline void gcode_M140() {
  4190. if (DEBUGGING(DRYRUN)) return;
  4191. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4192. }
  4193. #if ENABLED(ULTIPANEL)
  4194. /**
  4195. * M145: Set the heatup state for a material in the LCD menu
  4196. * S<material> (0=PLA, 1=ABS)
  4197. * H<hotend temp>
  4198. * B<bed temp>
  4199. * F<fan speed>
  4200. */
  4201. inline void gcode_M145() {
  4202. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4203. if (material < 0 || material > 1) {
  4204. SERIAL_ERROR_START;
  4205. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4206. }
  4207. else {
  4208. int v;
  4209. switch (material) {
  4210. case 0:
  4211. if (code_seen('H')) {
  4212. v = code_value_int();
  4213. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4214. }
  4215. if (code_seen('F')) {
  4216. v = code_value_int();
  4217. preheatFanSpeed1 = constrain(v, 0, 255);
  4218. }
  4219. #if TEMP_SENSOR_BED != 0
  4220. if (code_seen('B')) {
  4221. v = code_value_int();
  4222. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4223. }
  4224. #endif
  4225. break;
  4226. case 1:
  4227. if (code_seen('H')) {
  4228. v = code_value_int();
  4229. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4230. }
  4231. if (code_seen('F')) {
  4232. v = code_value_int();
  4233. preheatFanSpeed2 = constrain(v, 0, 255);
  4234. }
  4235. #if TEMP_SENSOR_BED != 0
  4236. if (code_seen('B')) {
  4237. v = code_value_int();
  4238. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4239. }
  4240. #endif
  4241. break;
  4242. }
  4243. }
  4244. }
  4245. #endif
  4246. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4247. /**
  4248. * M149: Set temperature units
  4249. */
  4250. inline void gcode_M149() {
  4251. if (code_seen('C')) {
  4252. set_input_temp_units(TEMPUNIT_C);
  4253. } else if (code_seen('K')) {
  4254. set_input_temp_units(TEMPUNIT_K);
  4255. } else if (code_seen('F')) {
  4256. set_input_temp_units(TEMPUNIT_F);
  4257. }
  4258. }
  4259. #endif
  4260. #if HAS_POWER_SWITCH
  4261. /**
  4262. * M80: Turn on Power Supply
  4263. */
  4264. inline void gcode_M80() {
  4265. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4266. /**
  4267. * If you have a switch on suicide pin, this is useful
  4268. * if you want to start another print with suicide feature after
  4269. * a print without suicide...
  4270. */
  4271. #if HAS_SUICIDE
  4272. OUT_WRITE(SUICIDE_PIN, HIGH);
  4273. #endif
  4274. #if ENABLED(ULTIPANEL)
  4275. powersupply = true;
  4276. LCD_MESSAGEPGM(WELCOME_MSG);
  4277. lcd_update();
  4278. #endif
  4279. }
  4280. #endif // HAS_POWER_SWITCH
  4281. /**
  4282. * M81: Turn off Power, including Power Supply, if there is one.
  4283. *
  4284. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4285. */
  4286. inline void gcode_M81() {
  4287. thermalManager.disable_all_heaters();
  4288. stepper.finish_and_disable();
  4289. #if FAN_COUNT > 0
  4290. #if FAN_COUNT > 1
  4291. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4292. #else
  4293. fanSpeeds[0] = 0;
  4294. #endif
  4295. #endif
  4296. delay(1000); // Wait 1 second before switching off
  4297. #if HAS_SUICIDE
  4298. stepper.synchronize();
  4299. suicide();
  4300. #elif HAS_POWER_SWITCH
  4301. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4302. #endif
  4303. #if ENABLED(ULTIPANEL)
  4304. #if HAS_POWER_SWITCH
  4305. powersupply = false;
  4306. #endif
  4307. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4308. lcd_update();
  4309. #endif
  4310. }
  4311. /**
  4312. * M82: Set E codes absolute (default)
  4313. */
  4314. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4315. /**
  4316. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4317. */
  4318. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4319. /**
  4320. * M18, M84: Disable all stepper motors
  4321. */
  4322. inline void gcode_M18_M84() {
  4323. if (code_seen('S')) {
  4324. stepper_inactive_time = code_value_millis_from_seconds();
  4325. }
  4326. else {
  4327. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4328. if (all_axis) {
  4329. stepper.finish_and_disable();
  4330. }
  4331. else {
  4332. stepper.synchronize();
  4333. if (code_seen('X')) disable_x();
  4334. if (code_seen('Y')) disable_y();
  4335. if (code_seen('Z')) disable_z();
  4336. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4337. if (code_seen('E')) {
  4338. disable_e0();
  4339. disable_e1();
  4340. disable_e2();
  4341. disable_e3();
  4342. }
  4343. #endif
  4344. }
  4345. }
  4346. }
  4347. /**
  4348. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4349. */
  4350. inline void gcode_M85() {
  4351. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4352. }
  4353. /**
  4354. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4355. * (Follows the same syntax as G92)
  4356. */
  4357. inline void gcode_M92() {
  4358. LOOP_XYZE(i) {
  4359. if (code_seen(axis_codes[i])) {
  4360. if (i == E_AXIS) {
  4361. float value = code_value_per_axis_unit(i);
  4362. if (value < 20.0) {
  4363. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4364. planner.max_e_jerk *= factor;
  4365. planner.max_feedrate_mm_s[i] *= factor;
  4366. planner.max_acceleration_steps_per_s2[i] *= factor;
  4367. }
  4368. planner.axis_steps_per_mm[i] = value;
  4369. }
  4370. else {
  4371. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4372. }
  4373. }
  4374. }
  4375. planner.refresh_positioning();
  4376. }
  4377. /**
  4378. * Output the current position to serial
  4379. */
  4380. static void report_current_position() {
  4381. SERIAL_PROTOCOLPGM("X:");
  4382. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4383. SERIAL_PROTOCOLPGM(" Y:");
  4384. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4385. SERIAL_PROTOCOLPGM(" Z:");
  4386. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4387. SERIAL_PROTOCOLPGM(" E:");
  4388. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4389. stepper.report_positions();
  4390. #if ENABLED(SCARA)
  4391. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4392. SERIAL_PROTOCOL(delta[X_AXIS]);
  4393. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4394. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4395. SERIAL_EOL;
  4396. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4397. SERIAL_PROTOCOL(delta[X_AXIS]);
  4398. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4399. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4400. SERIAL_EOL;
  4401. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4402. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4403. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4404. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4405. SERIAL_EOL; SERIAL_EOL;
  4406. #endif
  4407. }
  4408. /**
  4409. * M114: Output current position to serial port
  4410. */
  4411. inline void gcode_M114() { report_current_position(); }
  4412. /**
  4413. * M115: Capabilities string
  4414. */
  4415. inline void gcode_M115() {
  4416. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4417. }
  4418. /**
  4419. * M117: Set LCD Status Message
  4420. */
  4421. inline void gcode_M117() {
  4422. lcd_setstatus(current_command_args);
  4423. }
  4424. /**
  4425. * M119: Output endstop states to serial output
  4426. */
  4427. inline void gcode_M119() { endstops.M119(); }
  4428. /**
  4429. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4430. */
  4431. inline void gcode_M120() { endstops.enable_globally(true); }
  4432. /**
  4433. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4434. */
  4435. inline void gcode_M121() { endstops.enable_globally(false); }
  4436. #if ENABLED(BLINKM)
  4437. /**
  4438. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4439. */
  4440. inline void gcode_M150() {
  4441. SendColors(
  4442. code_seen('R') ? code_value_byte() : 0,
  4443. code_seen('U') ? code_value_byte() : 0,
  4444. code_seen('B') ? code_value_byte() : 0
  4445. );
  4446. }
  4447. #endif // BLINKM
  4448. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4449. /**
  4450. * M155: Send data to a I2C slave device
  4451. *
  4452. * This is a PoC, the formating and arguments for the GCODE will
  4453. * change to be more compatible, the current proposal is:
  4454. *
  4455. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4456. *
  4457. * M155 B<byte-1 value in base 10>
  4458. * M155 B<byte-2 value in base 10>
  4459. * M155 B<byte-3 value in base 10>
  4460. *
  4461. * M155 S1 ; Send the buffered data and reset the buffer
  4462. * M155 R1 ; Reset the buffer without sending data
  4463. *
  4464. */
  4465. inline void gcode_M155() {
  4466. // Set the target address
  4467. if (code_seen('A')) i2c.address(code_value_byte());
  4468. // Add a new byte to the buffer
  4469. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4470. // Flush the buffer to the bus
  4471. if (code_seen('S')) i2c.send();
  4472. // Reset and rewind the buffer
  4473. else if (code_seen('R')) i2c.reset();
  4474. }
  4475. /**
  4476. * M156: Request X bytes from I2C slave device
  4477. *
  4478. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4479. */
  4480. inline void gcode_M156() {
  4481. if (code_seen('A')) i2c.address(code_value_byte());
  4482. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4483. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4484. i2c.relay(bytes);
  4485. }
  4486. else {
  4487. SERIAL_ERROR_START;
  4488. SERIAL_ERRORLN("Bad i2c request");
  4489. }
  4490. }
  4491. #endif // EXPERIMENTAL_I2CBUS
  4492. /**
  4493. * M200: Set filament diameter and set E axis units to cubic units
  4494. *
  4495. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4496. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4497. */
  4498. inline void gcode_M200() {
  4499. if (get_target_extruder_from_command(200)) return;
  4500. if (code_seen('D')) {
  4501. // setting any extruder filament size disables volumetric on the assumption that
  4502. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4503. // for all extruders
  4504. volumetric_enabled = (code_value_linear_units() != 0.0);
  4505. if (volumetric_enabled) {
  4506. filament_size[target_extruder] = code_value_linear_units();
  4507. // make sure all extruders have some sane value for the filament size
  4508. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4509. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4510. }
  4511. }
  4512. else {
  4513. //reserved for setting filament diameter via UFID or filament measuring device
  4514. return;
  4515. }
  4516. calculate_volumetric_multipliers();
  4517. }
  4518. /**
  4519. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4520. */
  4521. inline void gcode_M201() {
  4522. LOOP_XYZE(i) {
  4523. if (code_seen(axis_codes[i])) {
  4524. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4525. }
  4526. }
  4527. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4528. planner.reset_acceleration_rates();
  4529. }
  4530. #if 0 // Not used for Sprinter/grbl gen6
  4531. inline void gcode_M202() {
  4532. LOOP_XYZE(i) {
  4533. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4534. }
  4535. }
  4536. #endif
  4537. /**
  4538. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4539. */
  4540. inline void gcode_M203() {
  4541. LOOP_XYZE(i)
  4542. if (code_seen(axis_codes[i]))
  4543. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4544. }
  4545. /**
  4546. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4547. *
  4548. * P = Printing moves
  4549. * R = Retract only (no X, Y, Z) moves
  4550. * T = Travel (non printing) moves
  4551. *
  4552. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4553. */
  4554. inline void gcode_M204() {
  4555. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4556. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4557. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4558. SERIAL_EOL;
  4559. }
  4560. if (code_seen('P')) {
  4561. planner.acceleration = code_value_linear_units();
  4562. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4563. SERIAL_EOL;
  4564. }
  4565. if (code_seen('R')) {
  4566. planner.retract_acceleration = code_value_linear_units();
  4567. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4568. SERIAL_EOL;
  4569. }
  4570. if (code_seen('T')) {
  4571. planner.travel_acceleration = code_value_linear_units();
  4572. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4573. SERIAL_EOL;
  4574. }
  4575. }
  4576. /**
  4577. * M205: Set Advanced Settings
  4578. *
  4579. * S = Min Feed Rate (units/s)
  4580. * T = Min Travel Feed Rate (units/s)
  4581. * B = Min Segment Time (µs)
  4582. * X = Max XY Jerk (units/sec^2)
  4583. * Z = Max Z Jerk (units/sec^2)
  4584. * E = Max E Jerk (units/sec^2)
  4585. */
  4586. inline void gcode_M205() {
  4587. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4588. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4589. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4590. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4591. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4592. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4593. }
  4594. /**
  4595. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4596. */
  4597. inline void gcode_M206() {
  4598. LOOP_XYZ(i)
  4599. if (code_seen(axis_codes[i]))
  4600. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4601. #if ENABLED(SCARA)
  4602. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4603. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4604. #endif
  4605. SYNC_PLAN_POSITION_KINEMATIC();
  4606. report_current_position();
  4607. }
  4608. #if ENABLED(DELTA)
  4609. /**
  4610. * M665: Set delta configurations
  4611. *
  4612. * L = diagonal rod
  4613. * R = delta radius
  4614. * S = segments per second
  4615. * A = Alpha (Tower 1) diagonal rod trim
  4616. * B = Beta (Tower 2) diagonal rod trim
  4617. * C = Gamma (Tower 3) diagonal rod trim
  4618. */
  4619. inline void gcode_M665() {
  4620. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4621. if (code_seen('R')) delta_radius = code_value_linear_units();
  4622. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4623. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4624. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4625. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4626. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4627. }
  4628. /**
  4629. * M666: Set delta endstop adjustment
  4630. */
  4631. inline void gcode_M666() {
  4632. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4633. if (DEBUGGING(LEVELING)) {
  4634. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4635. }
  4636. #endif
  4637. LOOP_XYZ(i) {
  4638. if (code_seen(axis_codes[i])) {
  4639. endstop_adj[i] = code_value_axis_units(i);
  4640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4641. if (DEBUGGING(LEVELING)) {
  4642. SERIAL_ECHOPGM("endstop_adj[");
  4643. SERIAL_ECHO(axis_codes[i]);
  4644. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4645. SERIAL_EOL;
  4646. }
  4647. #endif
  4648. }
  4649. }
  4650. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4651. if (DEBUGGING(LEVELING)) {
  4652. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4653. }
  4654. #endif
  4655. }
  4656. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4657. /**
  4658. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4659. */
  4660. inline void gcode_M666() {
  4661. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4662. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4663. SERIAL_EOL;
  4664. }
  4665. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4666. #if ENABLED(FWRETRACT)
  4667. /**
  4668. * M207: Set firmware retraction values
  4669. *
  4670. * S[+units] retract_length
  4671. * W[+units] retract_length_swap (multi-extruder)
  4672. * F[units/min] retract_feedrate_mm_s
  4673. * Z[units] retract_zlift
  4674. */
  4675. inline void gcode_M207() {
  4676. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4677. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4678. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4679. #if EXTRUDERS > 1
  4680. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4681. #endif
  4682. }
  4683. /**
  4684. * M208: Set firmware un-retraction values
  4685. *
  4686. * S[+units] retract_recover_length (in addition to M207 S*)
  4687. * W[+units] retract_recover_length_swap (multi-extruder)
  4688. * F[units/min] retract_recover_feedrate_mm_s
  4689. */
  4690. inline void gcode_M208() {
  4691. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4692. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4693. #if EXTRUDERS > 1
  4694. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4695. #endif
  4696. }
  4697. /**
  4698. * M209: Enable automatic retract (M209 S1)
  4699. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4700. */
  4701. inline void gcode_M209() {
  4702. if (code_seen('S')) {
  4703. int t = code_value_int();
  4704. switch (t) {
  4705. case 0:
  4706. autoretract_enabled = false;
  4707. break;
  4708. case 1:
  4709. autoretract_enabled = true;
  4710. break;
  4711. default:
  4712. unknown_command_error();
  4713. return;
  4714. }
  4715. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4716. }
  4717. }
  4718. #endif // FWRETRACT
  4719. #if HOTENDS > 1
  4720. /**
  4721. * M218 - set hotend offset (in linear units)
  4722. *
  4723. * T<tool>
  4724. * X<xoffset>
  4725. * Y<yoffset>
  4726. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4727. */
  4728. inline void gcode_M218() {
  4729. if (get_target_extruder_from_command(218)) return;
  4730. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4731. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4732. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4733. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4734. #endif
  4735. SERIAL_ECHO_START;
  4736. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4737. HOTEND_LOOP() {
  4738. SERIAL_CHAR(' ');
  4739. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4740. SERIAL_CHAR(',');
  4741. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4742. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4743. SERIAL_CHAR(',');
  4744. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4745. #endif
  4746. }
  4747. SERIAL_EOL;
  4748. }
  4749. #endif // HOTENDS > 1
  4750. /**
  4751. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4752. */
  4753. inline void gcode_M220() {
  4754. if (code_seen('S')) feedrate_percentage = code_value_int();
  4755. }
  4756. /**
  4757. * M221: Set extrusion percentage (M221 T0 S95)
  4758. */
  4759. inline void gcode_M221() {
  4760. if (get_target_extruder_from_command(221)) return;
  4761. if (code_seen('S'))
  4762. flow_percentage[target_extruder] = code_value_int();
  4763. }
  4764. /**
  4765. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4766. */
  4767. inline void gcode_M226() {
  4768. if (code_seen('P')) {
  4769. int pin_number = code_value_int();
  4770. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4771. if (pin_state >= -1 && pin_state <= 1) {
  4772. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4773. if (sensitive_pins[i] == pin_number) {
  4774. pin_number = -1;
  4775. break;
  4776. }
  4777. }
  4778. if (pin_number > -1) {
  4779. int target = LOW;
  4780. stepper.synchronize();
  4781. pinMode(pin_number, INPUT);
  4782. switch (pin_state) {
  4783. case 1:
  4784. target = HIGH;
  4785. break;
  4786. case 0:
  4787. target = LOW;
  4788. break;
  4789. case -1:
  4790. target = !digitalRead(pin_number);
  4791. break;
  4792. }
  4793. while (digitalRead(pin_number) != target) idle();
  4794. } // pin_number > -1
  4795. } // pin_state -1 0 1
  4796. } // code_seen('P')
  4797. }
  4798. #if HAS_SERVOS
  4799. /**
  4800. * M280: Get or set servo position. P<index> [S<angle>]
  4801. */
  4802. inline void gcode_M280() {
  4803. if (!code_seen('P')) return;
  4804. int servo_index = code_value_int();
  4805. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4806. if (code_seen('S'))
  4807. MOVE_SERVO(servo_index, code_value_int());
  4808. else {
  4809. SERIAL_ECHO_START;
  4810. SERIAL_ECHOPGM(" Servo ");
  4811. SERIAL_ECHO(servo_index);
  4812. SERIAL_ECHOPGM(": ");
  4813. SERIAL_ECHOLN(servo[servo_index].read());
  4814. }
  4815. }
  4816. else {
  4817. SERIAL_ERROR_START;
  4818. SERIAL_ERROR("Servo ");
  4819. SERIAL_ERROR(servo_index);
  4820. SERIAL_ERRORLN(" out of range");
  4821. }
  4822. }
  4823. #endif // HAS_SERVOS
  4824. #if HAS_BUZZER
  4825. /**
  4826. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4827. */
  4828. inline void gcode_M300() {
  4829. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4830. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4831. // Limits the tone duration to 0-5 seconds.
  4832. NOMORE(duration, 5000);
  4833. BUZZ(duration, frequency);
  4834. }
  4835. #endif // HAS_BUZZER
  4836. #if ENABLED(PIDTEMP)
  4837. /**
  4838. * M301: Set PID parameters P I D (and optionally C, L)
  4839. *
  4840. * P[float] Kp term
  4841. * I[float] Ki term (unscaled)
  4842. * D[float] Kd term (unscaled)
  4843. *
  4844. * With PID_EXTRUSION_SCALING:
  4845. *
  4846. * C[float] Kc term
  4847. * L[float] LPQ length
  4848. */
  4849. inline void gcode_M301() {
  4850. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4851. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4852. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4853. if (e < HOTENDS) { // catch bad input value
  4854. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4855. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4856. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4857. #if ENABLED(PID_EXTRUSION_SCALING)
  4858. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4859. if (code_seen('L')) lpq_len = code_value_float();
  4860. NOMORE(lpq_len, LPQ_MAX_LEN);
  4861. #endif
  4862. thermalManager.updatePID();
  4863. SERIAL_ECHO_START;
  4864. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4865. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4866. SERIAL_ECHO(e);
  4867. #endif // PID_PARAMS_PER_HOTEND
  4868. SERIAL_ECHOPGM(" p:");
  4869. SERIAL_ECHO(PID_PARAM(Kp, e));
  4870. SERIAL_ECHOPGM(" i:");
  4871. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4872. SERIAL_ECHOPGM(" d:");
  4873. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4874. #if ENABLED(PID_EXTRUSION_SCALING)
  4875. SERIAL_ECHOPGM(" c:");
  4876. //Kc does not have scaling applied above, or in resetting defaults
  4877. SERIAL_ECHO(PID_PARAM(Kc, e));
  4878. #endif
  4879. SERIAL_EOL;
  4880. }
  4881. else {
  4882. SERIAL_ERROR_START;
  4883. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4884. }
  4885. }
  4886. #endif // PIDTEMP
  4887. #if ENABLED(PIDTEMPBED)
  4888. inline void gcode_M304() {
  4889. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4890. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4891. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4892. thermalManager.updatePID();
  4893. SERIAL_ECHO_START;
  4894. SERIAL_ECHOPGM(" p:");
  4895. SERIAL_ECHO(thermalManager.bedKp);
  4896. SERIAL_ECHOPGM(" i:");
  4897. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4898. SERIAL_ECHOPGM(" d:");
  4899. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4900. }
  4901. #endif // PIDTEMPBED
  4902. #if defined(CHDK) || HAS_PHOTOGRAPH
  4903. /**
  4904. * M240: Trigger a camera by emulating a Canon RC-1
  4905. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4906. */
  4907. inline void gcode_M240() {
  4908. #ifdef CHDK
  4909. OUT_WRITE(CHDK, HIGH);
  4910. chdkHigh = millis();
  4911. chdkActive = true;
  4912. #elif HAS_PHOTOGRAPH
  4913. const uint8_t NUM_PULSES = 16;
  4914. const float PULSE_LENGTH = 0.01524;
  4915. for (int i = 0; i < NUM_PULSES; i++) {
  4916. WRITE(PHOTOGRAPH_PIN, HIGH);
  4917. _delay_ms(PULSE_LENGTH);
  4918. WRITE(PHOTOGRAPH_PIN, LOW);
  4919. _delay_ms(PULSE_LENGTH);
  4920. }
  4921. delay(7.33);
  4922. for (int i = 0; i < NUM_PULSES; i++) {
  4923. WRITE(PHOTOGRAPH_PIN, HIGH);
  4924. _delay_ms(PULSE_LENGTH);
  4925. WRITE(PHOTOGRAPH_PIN, LOW);
  4926. _delay_ms(PULSE_LENGTH);
  4927. }
  4928. #endif // !CHDK && HAS_PHOTOGRAPH
  4929. }
  4930. #endif // CHDK || PHOTOGRAPH_PIN
  4931. #if HAS_LCD_CONTRAST
  4932. /**
  4933. * M250: Read and optionally set the LCD contrast
  4934. */
  4935. inline void gcode_M250() {
  4936. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4937. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4938. SERIAL_PROTOCOL(lcd_contrast);
  4939. SERIAL_EOL;
  4940. }
  4941. #endif // HAS_LCD_CONTRAST
  4942. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4943. /**
  4944. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4945. *
  4946. * S<temperature> sets the minimum extrude temperature
  4947. * P<bool> enables (1) or disables (0) cold extrusion
  4948. *
  4949. * Examples:
  4950. *
  4951. * M302 ; report current cold extrusion state
  4952. * M302 P0 ; enable cold extrusion checking
  4953. * M302 P1 ; disables cold extrusion checking
  4954. * M302 S0 ; always allow extrusion (disables checking)
  4955. * M302 S170 ; only allow extrusion above 170
  4956. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4957. */
  4958. inline void gcode_M302() {
  4959. bool seen_S = code_seen('S');
  4960. if (seen_S) {
  4961. thermalManager.extrude_min_temp = code_value_temp_abs();
  4962. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4963. }
  4964. if (code_seen('P'))
  4965. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4966. else if (!seen_S) {
  4967. // Report current state
  4968. SERIAL_ECHO_START;
  4969. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4970. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4971. SERIAL_ECHOLNPGM("C)");
  4972. }
  4973. }
  4974. #endif // PREVENT_DANGEROUS_EXTRUDE
  4975. /**
  4976. * M303: PID relay autotune
  4977. *
  4978. * S<temperature> sets the target temperature. (default 150C)
  4979. * E<extruder> (-1 for the bed) (default 0)
  4980. * C<cycles>
  4981. * U<bool> with a non-zero value will apply the result to current settings
  4982. */
  4983. inline void gcode_M303() {
  4984. #if HAS_PID_HEATING
  4985. int e = code_seen('E') ? code_value_int() : 0;
  4986. int c = code_seen('C') ? code_value_int() : 5;
  4987. bool u = code_seen('U') && code_value_bool();
  4988. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4989. if (e >= 0 && e < HOTENDS)
  4990. target_extruder = e;
  4991. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4992. thermalManager.PID_autotune(temp, e, c, u);
  4993. KEEPALIVE_STATE(IN_HANDLER);
  4994. #else
  4995. SERIAL_ERROR_START;
  4996. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4997. #endif
  4998. }
  4999. #if ENABLED(SCARA)
  5000. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  5001. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  5002. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  5003. if (IsRunning()) {
  5004. //gcode_get_destination(); // For X Y Z E F
  5005. delta[X_AXIS] = delta_x;
  5006. delta[Y_AXIS] = delta_y;
  5007. forward_kinematics_SCARA(delta);
  5008. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  5009. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  5010. prepare_move_to_destination();
  5011. //ok_to_send();
  5012. return true;
  5013. }
  5014. return false;
  5015. }
  5016. /**
  5017. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5018. */
  5019. inline bool gcode_M360() {
  5020. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5021. return SCARA_move_to_cal(0, 120);
  5022. }
  5023. /**
  5024. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5025. */
  5026. inline bool gcode_M361() {
  5027. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5028. return SCARA_move_to_cal(90, 130);
  5029. }
  5030. /**
  5031. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5032. */
  5033. inline bool gcode_M362() {
  5034. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5035. return SCARA_move_to_cal(60, 180);
  5036. }
  5037. /**
  5038. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5039. */
  5040. inline bool gcode_M363() {
  5041. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5042. return SCARA_move_to_cal(50, 90);
  5043. }
  5044. /**
  5045. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5046. */
  5047. inline bool gcode_M364() {
  5048. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5049. return SCARA_move_to_cal(45, 135);
  5050. }
  5051. /**
  5052. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5053. */
  5054. inline void gcode_M365() {
  5055. LOOP_XYZ(i)
  5056. if (code_seen(axis_codes[i]))
  5057. axis_scaling[i] = code_value_float();
  5058. }
  5059. #endif // SCARA
  5060. #if ENABLED(EXT_SOLENOID)
  5061. void enable_solenoid(uint8_t num) {
  5062. switch (num) {
  5063. case 0:
  5064. OUT_WRITE(SOL0_PIN, HIGH);
  5065. break;
  5066. #if HAS_SOLENOID_1
  5067. case 1:
  5068. OUT_WRITE(SOL1_PIN, HIGH);
  5069. break;
  5070. #endif
  5071. #if HAS_SOLENOID_2
  5072. case 2:
  5073. OUT_WRITE(SOL2_PIN, HIGH);
  5074. break;
  5075. #endif
  5076. #if HAS_SOLENOID_3
  5077. case 3:
  5078. OUT_WRITE(SOL3_PIN, HIGH);
  5079. break;
  5080. #endif
  5081. default:
  5082. SERIAL_ECHO_START;
  5083. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5084. break;
  5085. }
  5086. }
  5087. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5088. void disable_all_solenoids() {
  5089. OUT_WRITE(SOL0_PIN, LOW);
  5090. OUT_WRITE(SOL1_PIN, LOW);
  5091. OUT_WRITE(SOL2_PIN, LOW);
  5092. OUT_WRITE(SOL3_PIN, LOW);
  5093. }
  5094. /**
  5095. * M380: Enable solenoid on the active extruder
  5096. */
  5097. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5098. /**
  5099. * M381: Disable all solenoids
  5100. */
  5101. inline void gcode_M381() { disable_all_solenoids(); }
  5102. #endif // EXT_SOLENOID
  5103. /**
  5104. * M400: Finish all moves
  5105. */
  5106. inline void gcode_M400() { stepper.synchronize(); }
  5107. #if HAS_BED_PROBE
  5108. /**
  5109. * M401: Engage Z Servo endstop if available
  5110. */
  5111. inline void gcode_M401() { DEPLOY_PROBE(); }
  5112. /**
  5113. * M402: Retract Z Servo endstop if enabled
  5114. */
  5115. inline void gcode_M402() { STOW_PROBE(); }
  5116. #endif // HAS_BED_PROBE
  5117. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5118. /**
  5119. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5120. */
  5121. inline void gcode_M404() {
  5122. if (code_seen('W')) {
  5123. filament_width_nominal = code_value_linear_units();
  5124. }
  5125. else {
  5126. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5127. SERIAL_PROTOCOLLN(filament_width_nominal);
  5128. }
  5129. }
  5130. /**
  5131. * M405: Turn on filament sensor for control
  5132. */
  5133. inline void gcode_M405() {
  5134. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5135. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5136. if (code_seen('D')) meas_delay_cm = code_value_int();
  5137. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5138. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5139. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5140. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5141. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5142. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5143. }
  5144. filament_sensor = true;
  5145. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5146. //SERIAL_PROTOCOL(filament_width_meas);
  5147. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5148. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5149. }
  5150. /**
  5151. * M406: Turn off filament sensor for control
  5152. */
  5153. inline void gcode_M406() { filament_sensor = false; }
  5154. /**
  5155. * M407: Get measured filament diameter on serial output
  5156. */
  5157. inline void gcode_M407() {
  5158. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5159. SERIAL_PROTOCOLLN(filament_width_meas);
  5160. }
  5161. #endif // FILAMENT_WIDTH_SENSOR
  5162. void quickstop_stepper() {
  5163. stepper.quick_stop();
  5164. #if DISABLED(SCARA)
  5165. stepper.synchronize();
  5166. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5167. SYNC_PLAN_POSITION_KINEMATIC();
  5168. #endif
  5169. }
  5170. #if ENABLED(MESH_BED_LEVELING)
  5171. /**
  5172. * M420: Enable/Disable Mesh Bed Leveling
  5173. */
  5174. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5175. /**
  5176. * M421: Set a single Mesh Bed Leveling Z coordinate
  5177. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5178. */
  5179. inline void gcode_M421() {
  5180. int8_t px = 0, py = 0;
  5181. float z = 0;
  5182. bool hasX, hasY, hasZ, hasI, hasJ;
  5183. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5184. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5185. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5186. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5187. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5188. if (hasX && hasY && hasZ) {
  5189. if (px >= 0 && py >= 0)
  5190. mbl.set_z(px, py, z);
  5191. else {
  5192. SERIAL_ERROR_START;
  5193. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5194. }
  5195. }
  5196. else if (hasI && hasJ && hasZ) {
  5197. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5198. mbl.set_z(px, py, z);
  5199. else {
  5200. SERIAL_ERROR_START;
  5201. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5202. }
  5203. }
  5204. else {
  5205. SERIAL_ERROR_START;
  5206. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5207. }
  5208. }
  5209. #endif
  5210. /**
  5211. * M428: Set home_offset based on the distance between the
  5212. * current_position and the nearest "reference point."
  5213. * If an axis is past center its endstop position
  5214. * is the reference-point. Otherwise it uses 0. This allows
  5215. * the Z offset to be set near the bed when using a max endstop.
  5216. *
  5217. * M428 can't be used more than 2cm away from 0 or an endstop.
  5218. *
  5219. * Use M206 to set these values directly.
  5220. */
  5221. inline void gcode_M428() {
  5222. bool err = false;
  5223. LOOP_XYZ(i) {
  5224. if (axis_homed[i]) {
  5225. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5226. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5227. if (diff > -20 && diff < 20) {
  5228. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5229. }
  5230. else {
  5231. SERIAL_ERROR_START;
  5232. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5233. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5234. BUZZ(200, 40);
  5235. err = true;
  5236. break;
  5237. }
  5238. }
  5239. }
  5240. if (!err) {
  5241. SYNC_PLAN_POSITION_KINEMATIC();
  5242. report_current_position();
  5243. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5244. BUZZ(200, 659);
  5245. BUZZ(200, 698);
  5246. }
  5247. }
  5248. /**
  5249. * M500: Store settings in EEPROM
  5250. */
  5251. inline void gcode_M500() {
  5252. Config_StoreSettings();
  5253. }
  5254. /**
  5255. * M501: Read settings from EEPROM
  5256. */
  5257. inline void gcode_M501() {
  5258. Config_RetrieveSettings();
  5259. }
  5260. /**
  5261. * M502: Revert to default settings
  5262. */
  5263. inline void gcode_M502() {
  5264. Config_ResetDefault();
  5265. }
  5266. /**
  5267. * M503: print settings currently in memory
  5268. */
  5269. inline void gcode_M503() {
  5270. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5271. }
  5272. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5273. /**
  5274. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5275. */
  5276. inline void gcode_M540() {
  5277. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5278. }
  5279. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5280. #if HAS_BED_PROBE
  5281. inline void gcode_M851() {
  5282. SERIAL_ECHO_START;
  5283. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5284. SERIAL_CHAR(' ');
  5285. if (code_seen('Z')) {
  5286. float value = code_value_axis_units(Z_AXIS);
  5287. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5288. zprobe_zoffset = value;
  5289. SERIAL_ECHO(zprobe_zoffset);
  5290. }
  5291. else {
  5292. SERIAL_ECHOPGM(MSG_Z_MIN);
  5293. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5294. SERIAL_CHAR(' ');
  5295. SERIAL_ECHOPGM(MSG_Z_MAX);
  5296. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5297. }
  5298. }
  5299. else {
  5300. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5301. }
  5302. SERIAL_EOL;
  5303. }
  5304. #endif // HAS_BED_PROBE
  5305. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5306. /**
  5307. * M600: Pause for filament change
  5308. *
  5309. * E[distance] - Retract the filament this far (negative value)
  5310. * Z[distance] - Move the Z axis by this distance
  5311. * X[position] - Move to this X position, with Y
  5312. * Y[position] - Move to this Y position, with X
  5313. * L[distance] - Retract distance for removal (manual reload)
  5314. *
  5315. * Default values are used for omitted arguments.
  5316. *
  5317. */
  5318. inline void gcode_M600() {
  5319. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5320. SERIAL_ERROR_START;
  5321. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5322. return;
  5323. }
  5324. // Show initial message and wait for synchronize steppers
  5325. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5326. stepper.synchronize();
  5327. float lastpos[NUM_AXIS];
  5328. // Save current position of all axes
  5329. LOOP_XYZE(i)
  5330. lastpos[i] = destination[i] = current_position[i];
  5331. // Define runplan for move axes
  5332. #if ENABLED(DELTA)
  5333. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5334. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5335. #else
  5336. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5337. #endif
  5338. KEEPALIVE_STATE(IN_HANDLER);
  5339. // Initial retract before move to filament change position
  5340. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5341. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5342. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5343. #endif
  5344. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5345. // Lift Z axis
  5346. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5347. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5348. FILAMENT_CHANGE_Z_ADD
  5349. #else
  5350. 0
  5351. #endif
  5352. ;
  5353. if (z_lift > 0) {
  5354. destination[Z_AXIS] += z_lift;
  5355. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5356. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5357. }
  5358. // Move XY axes to filament exchange position
  5359. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5360. #ifdef FILAMENT_CHANGE_X_POS
  5361. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5362. #endif
  5363. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5364. #ifdef FILAMENT_CHANGE_Y_POS
  5365. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5366. #endif
  5367. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5368. stepper.synchronize();
  5369. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5370. // Unload filament
  5371. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5372. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5373. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5374. #endif
  5375. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5376. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5377. stepper.synchronize();
  5378. disable_e0();
  5379. disable_e1();
  5380. disable_e2();
  5381. disable_e3();
  5382. delay(100);
  5383. #if HAS_BUZZER
  5384. millis_t next_tick = 0;
  5385. #endif
  5386. // Wait for filament insert by user and press button
  5387. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5388. while (!lcd_clicked()) {
  5389. #if HAS_BUZZER
  5390. millis_t ms = millis();
  5391. if (ms >= next_tick) {
  5392. BUZZ(300, 2000);
  5393. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5394. }
  5395. #endif
  5396. idle(true);
  5397. }
  5398. delay(100);
  5399. while (lcd_clicked()) idle(true);
  5400. delay(100);
  5401. // Show load message
  5402. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5403. // Load filament
  5404. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5405. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5406. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5407. #endif
  5408. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5409. stepper.synchronize();
  5410. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5411. do {
  5412. // Extrude filament to get into hotend
  5413. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5414. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5415. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5416. stepper.synchronize();
  5417. // Ask user if more filament should be extruded
  5418. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5419. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5420. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5421. KEEPALIVE_STATE(IN_HANDLER);
  5422. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5423. #endif
  5424. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5425. KEEPALIVE_STATE(IN_HANDLER);
  5426. // Set extruder to saved position
  5427. current_position[E_AXIS] = lastpos[E_AXIS];
  5428. destination[E_AXIS] = lastpos[E_AXIS];
  5429. planner.set_e_position_mm(current_position[E_AXIS]);
  5430. #if ENABLED(DELTA)
  5431. // Move XYZ to starting position, then E
  5432. inverse_kinematics(lastpos);
  5433. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5434. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5435. #else
  5436. // Move XY to starting position, then Z, then E
  5437. destination[X_AXIS] = lastpos[X_AXIS];
  5438. destination[Y_AXIS] = lastpos[Y_AXIS];
  5439. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5440. destination[Z_AXIS] = lastpos[Z_AXIS];
  5441. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5442. #endif
  5443. stepper.synchronize();
  5444. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5445. filament_ran_out = false;
  5446. #endif
  5447. // Show status screen
  5448. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5449. }
  5450. #endif // FILAMENT_CHANGE_FEATURE
  5451. #if ENABLED(DUAL_X_CARRIAGE)
  5452. /**
  5453. * M605: Set dual x-carriage movement mode
  5454. *
  5455. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5456. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5457. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5458. * units x-offset and an optional differential hotend temperature of
  5459. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5460. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5461. *
  5462. * Note: the X axis should be homed after changing dual x-carriage mode.
  5463. */
  5464. inline void gcode_M605() {
  5465. stepper.synchronize();
  5466. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5467. switch (dual_x_carriage_mode) {
  5468. case DXC_DUPLICATION_MODE:
  5469. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5470. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5471. SERIAL_ECHO_START;
  5472. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5473. SERIAL_CHAR(' ');
  5474. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5475. SERIAL_CHAR(',');
  5476. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5477. SERIAL_CHAR(' ');
  5478. SERIAL_ECHO(duplicate_extruder_x_offset);
  5479. SERIAL_CHAR(',');
  5480. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5481. break;
  5482. case DXC_FULL_CONTROL_MODE:
  5483. case DXC_AUTO_PARK_MODE:
  5484. break;
  5485. default:
  5486. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5487. break;
  5488. }
  5489. active_extruder_parked = false;
  5490. extruder_duplication_enabled = false;
  5491. delayed_move_time = 0;
  5492. }
  5493. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5494. inline void gcode_M605() {
  5495. stepper.synchronize();
  5496. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5497. SERIAL_ECHO_START;
  5498. SERIAL_ECHOPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5499. SERIAL_EOL;
  5500. }
  5501. #endif // M605
  5502. #if ENABLED(LIN_ADVANCE)
  5503. /**
  5504. * M905: Set advance factor
  5505. */
  5506. inline void gcode_M905() {
  5507. stepper.synchronize();
  5508. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5509. }
  5510. #endif
  5511. /**
  5512. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5513. */
  5514. inline void gcode_M907() {
  5515. #if HAS_DIGIPOTSS
  5516. LOOP_XYZE(i)
  5517. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5518. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5519. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5520. #endif
  5521. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5522. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5523. #endif
  5524. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5525. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5526. #endif
  5527. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5528. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5529. #endif
  5530. #if ENABLED(DIGIPOT_I2C)
  5531. // this one uses actual amps in floating point
  5532. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5533. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5534. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5535. #endif
  5536. #if ENABLED(DAC_STEPPER_CURRENT)
  5537. if (code_seen('S')) {
  5538. float dac_percent = code_value_float();
  5539. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5540. }
  5541. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5542. #endif
  5543. }
  5544. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5545. /**
  5546. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5547. */
  5548. inline void gcode_M908() {
  5549. #if HAS_DIGIPOTSS
  5550. stepper.digitalPotWrite(
  5551. code_seen('P') ? code_value_int() : 0,
  5552. code_seen('S') ? code_value_int() : 0
  5553. );
  5554. #endif
  5555. #ifdef DAC_STEPPER_CURRENT
  5556. dac_current_raw(
  5557. code_seen('P') ? code_value_byte() : -1,
  5558. code_seen('S') ? code_value_ushort() : 0
  5559. );
  5560. #endif
  5561. }
  5562. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5563. inline void gcode_M909() { dac_print_values(); }
  5564. inline void gcode_M910() { dac_commit_eeprom(); }
  5565. #endif
  5566. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5567. #if HAS_MICROSTEPS
  5568. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5569. inline void gcode_M350() {
  5570. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5571. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5572. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5573. stepper.microstep_readings();
  5574. }
  5575. /**
  5576. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5577. * S# determines MS1 or MS2, X# sets the pin high/low.
  5578. */
  5579. inline void gcode_M351() {
  5580. if (code_seen('S')) switch (code_value_byte()) {
  5581. case 1:
  5582. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5583. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5584. break;
  5585. case 2:
  5586. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5587. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5588. break;
  5589. }
  5590. stepper.microstep_readings();
  5591. }
  5592. #endif // HAS_MICROSTEPS
  5593. #if ENABLED(MIXING_EXTRUDER)
  5594. /**
  5595. * M163: Set a single mix factor for a mixing extruder
  5596. * This is called "weight" by some systems.
  5597. *
  5598. * S[index] The channel index to set
  5599. * P[float] The mix value
  5600. *
  5601. */
  5602. inline void gcode_M163() {
  5603. int mix_index = code_seen('S') ? code_value_int() : 0;
  5604. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5605. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5606. }
  5607. #if MIXING_VIRTUAL_TOOLS > 1
  5608. /**
  5609. * M164: Store the current mix factors as a virtual tool.
  5610. *
  5611. * S[index] The virtual tool to store
  5612. *
  5613. */
  5614. inline void gcode_M164() {
  5615. int tool_index = code_seen('S') ? code_value_int() : 0;
  5616. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5617. normalize_mix();
  5618. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5619. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5620. }
  5621. }
  5622. #endif
  5623. #if ENABLED(DIRECT_MIXING_IN_G1)
  5624. /**
  5625. * M165: Set multiple mix factors for a mixing extruder.
  5626. * Factors that are left out will be set to 0.
  5627. * All factors together must add up to 1.0.
  5628. *
  5629. * A[factor] Mix factor for extruder stepper 1
  5630. * B[factor] Mix factor for extruder stepper 2
  5631. * C[factor] Mix factor for extruder stepper 3
  5632. * D[factor] Mix factor for extruder stepper 4
  5633. * H[factor] Mix factor for extruder stepper 5
  5634. * I[factor] Mix factor for extruder stepper 6
  5635. *
  5636. */
  5637. inline void gcode_M165() { gcode_get_mix(); }
  5638. #endif
  5639. #endif // MIXING_EXTRUDER
  5640. /**
  5641. * M999: Restart after being stopped
  5642. *
  5643. * Default behaviour is to flush the serial buffer and request
  5644. * a resend to the host starting on the last N line received.
  5645. *
  5646. * Sending "M999 S1" will resume printing without flushing the
  5647. * existing command buffer.
  5648. *
  5649. */
  5650. inline void gcode_M999() {
  5651. Running = true;
  5652. lcd_reset_alert_level();
  5653. if (code_seen('S') && code_value_bool()) return;
  5654. // gcode_LastN = Stopped_gcode_LastN;
  5655. FlushSerialRequestResend();
  5656. }
  5657. #if ENABLED(SWITCHING_EXTRUDER)
  5658. inline void move_extruder_servo(uint8_t e) {
  5659. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5660. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5661. }
  5662. #endif
  5663. inline void invalid_extruder_error(const uint8_t &e) {
  5664. SERIAL_ECHO_START;
  5665. SERIAL_CHAR('T');
  5666. SERIAL_PROTOCOL_F(e, DEC);
  5667. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5668. }
  5669. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5670. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5671. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5672. invalid_extruder_error(tmp_extruder);
  5673. return;
  5674. }
  5675. // T0-Tnnn: Switch virtual tool by changing the mix
  5676. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5677. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5678. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5679. #if HOTENDS > 1
  5680. if (tmp_extruder >= EXTRUDERS) {
  5681. invalid_extruder_error(tmp_extruder);
  5682. return;
  5683. }
  5684. float old_feedrate_mm_s = feedrate_mm_s;
  5685. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5686. if (tmp_extruder != active_extruder) {
  5687. if (!no_move && axis_unhomed_error(true, true, true)) {
  5688. SERIAL_ECHOLNPGM("No move on toolchange");
  5689. no_move = true;
  5690. }
  5691. // Save current position to destination, for use later
  5692. set_destination_to_current();
  5693. #if ENABLED(DUAL_X_CARRIAGE)
  5694. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5695. if (DEBUGGING(LEVELING)) {
  5696. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5697. switch (dual_x_carriage_mode) {
  5698. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5699. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5700. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5701. }
  5702. }
  5703. #endif
  5704. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5705. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5706. ) {
  5707. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5708. if (DEBUGGING(LEVELING)) {
  5709. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5710. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5711. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5712. }
  5713. #endif
  5714. // Park old head: 1) raise 2) move to park position 3) lower
  5715. for (uint8_t i = 0; i < 3; i++)
  5716. planner.buffer_line(
  5717. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5718. current_position[Y_AXIS],
  5719. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5720. current_position[E_AXIS],
  5721. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5722. active_extruder
  5723. );
  5724. stepper.synchronize();
  5725. }
  5726. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5727. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5728. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5729. active_extruder = tmp_extruder;
  5730. // This function resets the max/min values - the current position may be overwritten below.
  5731. set_axis_is_at_home(X_AXIS);
  5732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5733. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5734. #endif
  5735. switch (dual_x_carriage_mode) {
  5736. case DXC_FULL_CONTROL_MODE:
  5737. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5738. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5739. break;
  5740. case DXC_DUPLICATION_MODE:
  5741. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5742. if (active_extruder_parked)
  5743. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5744. else
  5745. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5746. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5747. extruder_duplication_enabled = false;
  5748. break;
  5749. default:
  5750. // record raised toolhead position for use by unpark
  5751. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5752. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5753. active_extruder_parked = true;
  5754. delayed_move_time = 0;
  5755. break;
  5756. }
  5757. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5758. if (DEBUGGING(LEVELING)) {
  5759. SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5760. SERIAL_EOL;
  5761. DEBUG_POS("New extruder (parked)", current_position);
  5762. }
  5763. #endif
  5764. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5765. #else // !DUAL_X_CARRIAGE
  5766. #if ENABLED(SWITCHING_EXTRUDER)
  5767. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5768. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5769. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5770. // Always raise by some amount
  5771. planner.buffer_line(
  5772. current_position[X_AXIS],
  5773. current_position[Y_AXIS],
  5774. current_position[Z_AXIS] + z_raise,
  5775. current_position[E_AXIS],
  5776. planner.max_feedrate_mm_s[Z_AXIS],
  5777. active_extruder
  5778. );
  5779. stepper.synchronize();
  5780. move_extruder_servo(active_extruder);
  5781. delay(500);
  5782. // Move back down, if needed
  5783. if (z_raise != z_diff) {
  5784. planner.buffer_line(
  5785. current_position[X_AXIS],
  5786. current_position[Y_AXIS],
  5787. current_position[Z_AXIS] + z_diff,
  5788. current_position[E_AXIS],
  5789. planner.max_feedrate_mm_s[Z_AXIS],
  5790. active_extruder
  5791. );
  5792. stepper.synchronize();
  5793. }
  5794. #endif
  5795. /**
  5796. * Set current_position to the position of the new nozzle.
  5797. * Offsets are based on linear distance, so we need to get
  5798. * the resulting position in coordinate space.
  5799. *
  5800. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5801. * - With mesh leveling, update Z for the new position
  5802. * - Otherwise, just use the raw linear distance
  5803. *
  5804. * Software endstops are altered here too. Consider a case where:
  5805. * E0 at X=0 ... E1 at X=10
  5806. * When we switch to E1 now X=10, but E1 can't move left.
  5807. * To express this we apply the change in XY to the software endstops.
  5808. * E1 can move farther right than E0, so the right limit is extended.
  5809. *
  5810. * Note that we don't adjust the Z software endstops. Why not?
  5811. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5812. * because the bed is 1mm lower at the new position. As long as
  5813. * the first nozzle is out of the way, the carriage should be
  5814. * allowed to move 1mm lower. This technically "breaks" the
  5815. * Z software endstop. But this is technically correct (and
  5816. * there is no viable alternative).
  5817. */
  5818. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5819. // Offset extruder, make sure to apply the bed level rotation matrix
  5820. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5821. hotend_offset[Y_AXIS][tmp_extruder],
  5822. 0),
  5823. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5824. hotend_offset[Y_AXIS][active_extruder],
  5825. 0),
  5826. offset_vec = tmp_offset_vec - act_offset_vec;
  5827. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5828. if (DEBUGGING(LEVELING)) {
  5829. tmp_offset_vec.debug("tmp_offset_vec");
  5830. act_offset_vec.debug("act_offset_vec");
  5831. offset_vec.debug("offset_vec (BEFORE)");
  5832. }
  5833. #endif
  5834. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5835. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5836. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5837. #endif
  5838. // Adjustments to the current position
  5839. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5840. current_position[Z_AXIS] += offset_vec.z;
  5841. #else // !AUTO_BED_LEVELING_FEATURE
  5842. float xydiff[2] = {
  5843. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5844. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5845. };
  5846. #if ENABLED(MESH_BED_LEVELING)
  5847. if (mbl.active()) {
  5848. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5849. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5850. #endif
  5851. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5852. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5853. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5854. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5855. if (DEBUGGING(LEVELING)) {
  5856. SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
  5857. SERIAL_EOL;
  5858. }
  5859. #endif
  5860. }
  5861. #endif // MESH_BED_LEVELING
  5862. #endif // !AUTO_BED_LEVELING_FEATURE
  5863. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5864. if (DEBUGGING(LEVELING)) {
  5865. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5866. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5867. SERIAL_ECHOLNPGM(" }");
  5868. }
  5869. #endif
  5870. // The newly-selected extruder XY is actually at...
  5871. current_position[X_AXIS] += xydiff[X_AXIS];
  5872. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5873. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5874. position_shift[i] += xydiff[i];
  5875. update_software_endstops((AxisEnum)i);
  5876. }
  5877. // Set the new active extruder
  5878. active_extruder = tmp_extruder;
  5879. #endif // !DUAL_X_CARRIAGE
  5880. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5881. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5882. #endif
  5883. // Tell the planner the new "current position"
  5884. SYNC_PLAN_POSITION_KINEMATIC();
  5885. // Move to the "old position" (move the extruder into place)
  5886. if (!no_move && IsRunning()) {
  5887. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5888. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5889. #endif
  5890. prepare_move_to_destination();
  5891. }
  5892. } // (tmp_extruder != active_extruder)
  5893. stepper.synchronize();
  5894. #if ENABLED(EXT_SOLENOID)
  5895. disable_all_solenoids();
  5896. enable_solenoid_on_active_extruder();
  5897. #endif // EXT_SOLENOID
  5898. feedrate_mm_s = old_feedrate_mm_s;
  5899. #else // HOTENDS <= 1
  5900. // Set the new active extruder
  5901. active_extruder = tmp_extruder;
  5902. UNUSED(fr_mm_s);
  5903. UNUSED(no_move);
  5904. #endif // HOTENDS <= 1
  5905. SERIAL_ECHO_START;
  5906. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5907. SERIAL_PROTOCOLLN((int)active_extruder);
  5908. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5909. }
  5910. /**
  5911. * T0-T3: Switch tool, usually switching extruders
  5912. *
  5913. * F[units/min] Set the movement feedrate
  5914. * S1 Don't move the tool in XY after change
  5915. */
  5916. inline void gcode_T(uint8_t tmp_extruder) {
  5917. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5918. if (DEBUGGING(LEVELING)) {
  5919. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5920. SERIAL_ECHOLNPGM(")");
  5921. DEBUG_POS("BEFORE", current_position);
  5922. }
  5923. #endif
  5924. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5925. tool_change(tmp_extruder);
  5926. #elif HOTENDS > 1
  5927. tool_change(
  5928. tmp_extruder,
  5929. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5930. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5931. );
  5932. #endif
  5933. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5934. if (DEBUGGING(LEVELING)) {
  5935. DEBUG_POS("AFTER", current_position);
  5936. SERIAL_ECHOLNPGM("<<< gcode_T");
  5937. }
  5938. #endif
  5939. }
  5940. /**
  5941. * Process a single command and dispatch it to its handler
  5942. * This is called from the main loop()
  5943. */
  5944. void process_next_command() {
  5945. current_command = command_queue[cmd_queue_index_r];
  5946. if (DEBUGGING(ECHO)) {
  5947. SERIAL_ECHO_START;
  5948. SERIAL_ECHOLN(current_command);
  5949. }
  5950. // Sanitize the current command:
  5951. // - Skip leading spaces
  5952. // - Bypass N[-0-9][0-9]*[ ]*
  5953. // - Overwrite * with nul to mark the end
  5954. while (*current_command == ' ') ++current_command;
  5955. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5956. current_command += 2; // skip N[-0-9]
  5957. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5958. while (*current_command == ' ') ++current_command; // skip [ ]*
  5959. }
  5960. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5961. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5962. char *cmd_ptr = current_command;
  5963. // Get the command code, which must be G, M, or T
  5964. char command_code = *cmd_ptr++;
  5965. // Skip spaces to get the numeric part
  5966. while (*cmd_ptr == ' ') cmd_ptr++;
  5967. uint16_t codenum = 0; // define ahead of goto
  5968. // Bail early if there's no code
  5969. bool code_is_good = NUMERIC(*cmd_ptr);
  5970. if (!code_is_good) goto ExitUnknownCommand;
  5971. // Get and skip the code number
  5972. do {
  5973. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5974. cmd_ptr++;
  5975. } while (NUMERIC(*cmd_ptr));
  5976. // Skip all spaces to get to the first argument, or nul
  5977. while (*cmd_ptr == ' ') cmd_ptr++;
  5978. // The command's arguments (if any) start here, for sure!
  5979. current_command_args = cmd_ptr;
  5980. KEEPALIVE_STATE(IN_HANDLER);
  5981. // Handle a known G, M, or T
  5982. switch (command_code) {
  5983. case 'G': switch (codenum) {
  5984. // G0, G1
  5985. case 0:
  5986. case 1:
  5987. gcode_G0_G1();
  5988. break;
  5989. // G2, G3
  5990. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5991. case 2: // G2 - CW ARC
  5992. case 3: // G3 - CCW ARC
  5993. gcode_G2_G3(codenum == 2);
  5994. break;
  5995. #endif
  5996. // G4 Dwell
  5997. case 4:
  5998. gcode_G4();
  5999. break;
  6000. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6001. // G5
  6002. case 5: // G5 - Cubic B_spline
  6003. gcode_G5();
  6004. break;
  6005. #endif // BEZIER_CURVE_SUPPORT
  6006. #if ENABLED(FWRETRACT)
  6007. case 10: // G10: retract
  6008. case 11: // G11: retract_recover
  6009. gcode_G10_G11(codenum == 10);
  6010. break;
  6011. #endif // FWRETRACT
  6012. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6013. case 12:
  6014. gcode_G12(); // G12: Nozzle Clean
  6015. break;
  6016. #endif // NOZZLE_CLEAN_FEATURE
  6017. #if ENABLED(INCH_MODE_SUPPORT)
  6018. case 20: //G20: Inch Mode
  6019. gcode_G20();
  6020. break;
  6021. case 21: //G21: MM Mode
  6022. gcode_G21();
  6023. break;
  6024. #endif // INCH_MODE_SUPPORT
  6025. #if ENABLED(NOZZLE_PARK_FEATURE)
  6026. case 27: // G27: Nozzle Park
  6027. gcode_G27();
  6028. break;
  6029. #endif // NOZZLE_PARK_FEATURE
  6030. case 28: // G28: Home all axes, one at a time
  6031. gcode_G28();
  6032. break;
  6033. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6034. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6035. gcode_G29();
  6036. break;
  6037. #endif // AUTO_BED_LEVELING_FEATURE
  6038. #if HAS_BED_PROBE
  6039. case 30: // G30 Single Z probe
  6040. gcode_G30();
  6041. break;
  6042. #if ENABLED(Z_PROBE_SLED)
  6043. case 31: // G31: dock the sled
  6044. gcode_G31();
  6045. break;
  6046. case 32: // G32: undock the sled
  6047. gcode_G32();
  6048. break;
  6049. #endif // Z_PROBE_SLED
  6050. #endif // HAS_BED_PROBE
  6051. case 90: // G90
  6052. relative_mode = false;
  6053. break;
  6054. case 91: // G91
  6055. relative_mode = true;
  6056. break;
  6057. case 92: // G92
  6058. gcode_G92();
  6059. break;
  6060. }
  6061. break;
  6062. case 'M': switch (codenum) {
  6063. #if ENABLED(ULTIPANEL)
  6064. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6065. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6066. gcode_M0_M1();
  6067. break;
  6068. #endif // ULTIPANEL
  6069. case 17:
  6070. gcode_M17();
  6071. break;
  6072. #if ENABLED(SDSUPPORT)
  6073. case 20: // M20 - list SD card
  6074. gcode_M20(); break;
  6075. case 21: // M21 - init SD card
  6076. gcode_M21(); break;
  6077. case 22: //M22 - release SD card
  6078. gcode_M22(); break;
  6079. case 23: //M23 - Select file
  6080. gcode_M23(); break;
  6081. case 24: //M24 - Start SD print
  6082. gcode_M24(); break;
  6083. case 25: //M25 - Pause SD print
  6084. gcode_M25(); break;
  6085. case 26: //M26 - Set SD index
  6086. gcode_M26(); break;
  6087. case 27: //M27 - Get SD status
  6088. gcode_M27(); break;
  6089. case 28: //M28 - Start SD write
  6090. gcode_M28(); break;
  6091. case 29: //M29 - Stop SD write
  6092. gcode_M29(); break;
  6093. case 30: //M30 <filename> Delete File
  6094. gcode_M30(); break;
  6095. case 32: //M32 - Select file and start SD print
  6096. gcode_M32(); break;
  6097. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6098. case 33: //M33 - Get the long full path to a file or folder
  6099. gcode_M33(); break;
  6100. #endif // LONG_FILENAME_HOST_SUPPORT
  6101. case 928: //M928 - Start SD write
  6102. gcode_M928(); break;
  6103. #endif //SDSUPPORT
  6104. case 31: //M31 take time since the start of the SD print or an M109 command
  6105. gcode_M31();
  6106. break;
  6107. case 42: //M42 -Change pin status via gcode
  6108. gcode_M42();
  6109. break;
  6110. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6111. case 48: // M48 Z probe repeatability
  6112. gcode_M48();
  6113. break;
  6114. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6115. case 75: // Start print timer
  6116. gcode_M75();
  6117. break;
  6118. case 76: // Pause print timer
  6119. gcode_M76();
  6120. break;
  6121. case 77: // Stop print timer
  6122. gcode_M77();
  6123. break;
  6124. #if ENABLED(PRINTCOUNTER)
  6125. case 78: // Show print statistics
  6126. gcode_M78();
  6127. break;
  6128. #endif
  6129. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6130. case 100:
  6131. gcode_M100();
  6132. break;
  6133. #endif
  6134. case 104: // M104
  6135. gcode_M104();
  6136. break;
  6137. case 110: // M110: Set Current Line Number
  6138. gcode_M110();
  6139. break;
  6140. case 111: // M111: Set debug level
  6141. gcode_M111();
  6142. break;
  6143. #if DISABLED(EMERGENCY_PARSER)
  6144. case 108: // M108: Cancel Waiting
  6145. gcode_M108();
  6146. break;
  6147. case 112: // M112: Emergency Stop
  6148. gcode_M112();
  6149. break;
  6150. case 410: // M410 quickstop - Abort all the planned moves.
  6151. gcode_M410();
  6152. break;
  6153. #endif
  6154. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6155. case 113: // M113: Set Host Keepalive interval
  6156. gcode_M113();
  6157. break;
  6158. #endif
  6159. case 140: // M140: Set bed temp
  6160. gcode_M140();
  6161. break;
  6162. case 105: // M105: Read current temperature
  6163. gcode_M105();
  6164. KEEPALIVE_STATE(NOT_BUSY);
  6165. return; // "ok" already printed
  6166. case 109: // M109: Wait for temperature
  6167. gcode_M109();
  6168. break;
  6169. #if HAS_TEMP_BED
  6170. case 190: // M190: Wait for bed heater to reach target
  6171. gcode_M190();
  6172. break;
  6173. #endif // HAS_TEMP_BED
  6174. #if FAN_COUNT > 0
  6175. case 106: // M106: Fan On
  6176. gcode_M106();
  6177. break;
  6178. case 107: // M107: Fan Off
  6179. gcode_M107();
  6180. break;
  6181. #endif // FAN_COUNT > 0
  6182. #if ENABLED(BARICUDA)
  6183. // PWM for HEATER_1_PIN
  6184. #if HAS_HEATER_1
  6185. case 126: // M126: valve open
  6186. gcode_M126();
  6187. break;
  6188. case 127: // M127: valve closed
  6189. gcode_M127();
  6190. break;
  6191. #endif // HAS_HEATER_1
  6192. // PWM for HEATER_2_PIN
  6193. #if HAS_HEATER_2
  6194. case 128: // M128: valve open
  6195. gcode_M128();
  6196. break;
  6197. case 129: // M129: valve closed
  6198. gcode_M129();
  6199. break;
  6200. #endif // HAS_HEATER_2
  6201. #endif // BARICUDA
  6202. #if HAS_POWER_SWITCH
  6203. case 80: // M80: Turn on Power Supply
  6204. gcode_M80();
  6205. break;
  6206. #endif // HAS_POWER_SWITCH
  6207. case 81: // M81: Turn off Power, including Power Supply, if possible
  6208. gcode_M81();
  6209. break;
  6210. case 82:
  6211. gcode_M82();
  6212. break;
  6213. case 83:
  6214. gcode_M83();
  6215. break;
  6216. case 18: // (for compatibility)
  6217. case 84: // M84
  6218. gcode_M18_M84();
  6219. break;
  6220. case 85: // M85
  6221. gcode_M85();
  6222. break;
  6223. case 92: // M92: Set the steps-per-unit for one or more axes
  6224. gcode_M92();
  6225. break;
  6226. case 115: // M115: Report capabilities
  6227. gcode_M115();
  6228. break;
  6229. case 117: // M117: Set LCD message text, if possible
  6230. gcode_M117();
  6231. break;
  6232. case 114: // M114: Report current position
  6233. gcode_M114();
  6234. break;
  6235. case 120: // M120: Enable endstops
  6236. gcode_M120();
  6237. break;
  6238. case 121: // M121: Disable endstops
  6239. gcode_M121();
  6240. break;
  6241. case 119: // M119: Report endstop states
  6242. gcode_M119();
  6243. break;
  6244. #if ENABLED(ULTIPANEL)
  6245. case 145: // M145: Set material heatup parameters
  6246. gcode_M145();
  6247. break;
  6248. #endif
  6249. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6250. case 149:
  6251. gcode_M149();
  6252. break;
  6253. #endif
  6254. #if ENABLED(BLINKM)
  6255. case 150: // M150
  6256. gcode_M150();
  6257. break;
  6258. #endif //BLINKM
  6259. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6260. case 155:
  6261. gcode_M155();
  6262. break;
  6263. case 156:
  6264. gcode_M156();
  6265. break;
  6266. #endif //EXPERIMENTAL_I2CBUS
  6267. #if ENABLED(MIXING_EXTRUDER)
  6268. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6269. gcode_M163();
  6270. break;
  6271. #if MIXING_VIRTUAL_TOOLS > 1
  6272. case 164: // M164 S<int> save current mix as a virtual extruder
  6273. gcode_M164();
  6274. break;
  6275. #endif
  6276. #if ENABLED(DIRECT_MIXING_IN_G1)
  6277. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6278. gcode_M165();
  6279. break;
  6280. #endif
  6281. #endif
  6282. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6283. gcode_M200();
  6284. break;
  6285. case 201: // M201
  6286. gcode_M201();
  6287. break;
  6288. #if 0 // Not used for Sprinter/grbl gen6
  6289. case 202: // M202
  6290. gcode_M202();
  6291. break;
  6292. #endif
  6293. case 203: // M203 max feedrate units/sec
  6294. gcode_M203();
  6295. break;
  6296. case 204: // M204 acclereration S normal moves T filmanent only moves
  6297. gcode_M204();
  6298. break;
  6299. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6300. gcode_M205();
  6301. break;
  6302. case 206: // M206 additional homing offset
  6303. gcode_M206();
  6304. break;
  6305. #if ENABLED(DELTA)
  6306. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6307. gcode_M665();
  6308. break;
  6309. #endif
  6310. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6311. case 666: // M666 set delta / dual endstop adjustment
  6312. gcode_M666();
  6313. break;
  6314. #endif
  6315. #if ENABLED(FWRETRACT)
  6316. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6317. gcode_M207();
  6318. break;
  6319. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6320. gcode_M208();
  6321. break;
  6322. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6323. gcode_M209();
  6324. break;
  6325. #endif // FWRETRACT
  6326. #if HOTENDS > 1
  6327. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6328. gcode_M218();
  6329. break;
  6330. #endif
  6331. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6332. gcode_M220();
  6333. break;
  6334. case 221: // M221 - Set Flow Percentage: S<percent>
  6335. gcode_M221();
  6336. break;
  6337. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6338. gcode_M226();
  6339. break;
  6340. #if HAS_SERVOS
  6341. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6342. gcode_M280();
  6343. break;
  6344. #endif // HAS_SERVOS
  6345. #if HAS_BUZZER
  6346. case 300: // M300 - Play beep tone
  6347. gcode_M300();
  6348. break;
  6349. #endif // HAS_BUZZER
  6350. #if ENABLED(PIDTEMP)
  6351. case 301: // M301
  6352. gcode_M301();
  6353. break;
  6354. #endif // PIDTEMP
  6355. #if ENABLED(PIDTEMPBED)
  6356. case 304: // M304
  6357. gcode_M304();
  6358. break;
  6359. #endif // PIDTEMPBED
  6360. #if defined(CHDK) || HAS_PHOTOGRAPH
  6361. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6362. gcode_M240();
  6363. break;
  6364. #endif // CHDK || PHOTOGRAPH_PIN
  6365. #if HAS_LCD_CONTRAST
  6366. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6367. gcode_M250();
  6368. break;
  6369. #endif // HAS_LCD_CONTRAST
  6370. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6371. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6372. gcode_M302();
  6373. break;
  6374. #endif // PREVENT_DANGEROUS_EXTRUDE
  6375. case 303: // M303 PID autotune
  6376. gcode_M303();
  6377. break;
  6378. #if ENABLED(SCARA)
  6379. case 360: // M360 SCARA Theta pos1
  6380. if (gcode_M360()) return;
  6381. break;
  6382. case 361: // M361 SCARA Theta pos2
  6383. if (gcode_M361()) return;
  6384. break;
  6385. case 362: // M362 SCARA Psi pos1
  6386. if (gcode_M362()) return;
  6387. break;
  6388. case 363: // M363 SCARA Psi pos2
  6389. if (gcode_M363()) return;
  6390. break;
  6391. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6392. if (gcode_M364()) return;
  6393. break;
  6394. case 365: // M365 Set SCARA scaling for X Y Z
  6395. gcode_M365();
  6396. break;
  6397. #endif // SCARA
  6398. case 400: // M400 finish all moves
  6399. gcode_M400();
  6400. break;
  6401. #if HAS_BED_PROBE
  6402. case 401:
  6403. gcode_M401();
  6404. break;
  6405. case 402:
  6406. gcode_M402();
  6407. break;
  6408. #endif // HAS_BED_PROBE
  6409. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6410. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6411. gcode_M404();
  6412. break;
  6413. case 405: //M405 Turn on filament sensor for control
  6414. gcode_M405();
  6415. break;
  6416. case 406: //M406 Turn off filament sensor for control
  6417. gcode_M406();
  6418. break;
  6419. case 407: //M407 Display measured filament diameter
  6420. gcode_M407();
  6421. break;
  6422. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6423. #if ENABLED(MESH_BED_LEVELING)
  6424. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6425. gcode_M420();
  6426. break;
  6427. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6428. gcode_M421();
  6429. break;
  6430. #endif
  6431. case 428: // M428 Apply current_position to home_offset
  6432. gcode_M428();
  6433. break;
  6434. case 500: // M500 Store settings in EEPROM
  6435. gcode_M500();
  6436. break;
  6437. case 501: // M501 Read settings from EEPROM
  6438. gcode_M501();
  6439. break;
  6440. case 502: // M502 Revert to default settings
  6441. gcode_M502();
  6442. break;
  6443. case 503: // M503 print settings currently in memory
  6444. gcode_M503();
  6445. break;
  6446. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6447. case 540:
  6448. gcode_M540();
  6449. break;
  6450. #endif
  6451. #if HAS_BED_PROBE
  6452. case 851:
  6453. gcode_M851();
  6454. break;
  6455. #endif // HAS_BED_PROBE
  6456. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6457. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6458. gcode_M600();
  6459. break;
  6460. #endif // FILAMENT_CHANGE_FEATURE
  6461. #if ENABLED(DUAL_X_CARRIAGE)
  6462. case 605:
  6463. gcode_M605();
  6464. break;
  6465. #endif // DUAL_X_CARRIAGE
  6466. #if ENABLED(LIN_ADVANCE)
  6467. case 905: // M905 Set advance factor.
  6468. gcode_M905();
  6469. break;
  6470. #endif
  6471. case 907: // M907 Set digital trimpot motor current using axis codes.
  6472. gcode_M907();
  6473. break;
  6474. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6475. case 908: // M908 Control digital trimpot directly.
  6476. gcode_M908();
  6477. break;
  6478. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6479. case 909: // M909 Print digipot/DAC current value
  6480. gcode_M909();
  6481. break;
  6482. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6483. gcode_M910();
  6484. break;
  6485. #endif
  6486. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6487. #if HAS_MICROSTEPS
  6488. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6489. gcode_M350();
  6490. break;
  6491. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6492. gcode_M351();
  6493. break;
  6494. #endif // HAS_MICROSTEPS
  6495. case 999: // M999: Restart after being Stopped
  6496. gcode_M999();
  6497. break;
  6498. }
  6499. break;
  6500. case 'T':
  6501. gcode_T(codenum);
  6502. break;
  6503. default: code_is_good = false;
  6504. }
  6505. KEEPALIVE_STATE(NOT_BUSY);
  6506. ExitUnknownCommand:
  6507. // Still unknown command? Throw an error
  6508. if (!code_is_good) unknown_command_error();
  6509. ok_to_send();
  6510. }
  6511. void FlushSerialRequestResend() {
  6512. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6513. MYSERIAL.flush();
  6514. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6515. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6516. ok_to_send();
  6517. }
  6518. void ok_to_send() {
  6519. refresh_cmd_timeout();
  6520. if (!send_ok[cmd_queue_index_r]) return;
  6521. SERIAL_PROTOCOLPGM(MSG_OK);
  6522. #if ENABLED(ADVANCED_OK)
  6523. char* p = command_queue[cmd_queue_index_r];
  6524. if (*p == 'N') {
  6525. SERIAL_PROTOCOL(' ');
  6526. SERIAL_ECHO(*p++);
  6527. while (NUMERIC_SIGNED(*p))
  6528. SERIAL_ECHO(*p++);
  6529. }
  6530. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6531. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6532. #endif
  6533. SERIAL_EOL;
  6534. }
  6535. void clamp_to_software_endstops(float target[3]) {
  6536. if (min_software_endstops) {
  6537. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6538. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6539. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6540. }
  6541. if (max_software_endstops) {
  6542. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6543. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6544. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6545. }
  6546. }
  6547. #if ENABLED(DELTA)
  6548. void recalc_delta_settings(float radius, float diagonal_rod) {
  6549. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6550. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6551. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6552. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6553. delta_tower3_x = 0.0; // back middle tower
  6554. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6555. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6556. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6557. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6558. }
  6559. void inverse_kinematics(const float in_cartesian[3]) {
  6560. const float cartesian[3] = {
  6561. RAW_X_POSITION(in_cartesian[X_AXIS]),
  6562. RAW_Y_POSITION(in_cartesian[Y_AXIS]),
  6563. RAW_Z_POSITION(in_cartesian[Z_AXIS])
  6564. };
  6565. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6566. - sq(delta_tower1_x - cartesian[X_AXIS])
  6567. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6568. ) + cartesian[Z_AXIS];
  6569. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6570. - sq(delta_tower2_x - cartesian[X_AXIS])
  6571. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6572. ) + cartesian[Z_AXIS];
  6573. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6574. - sq(delta_tower3_x - cartesian[X_AXIS])
  6575. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6576. ) + cartesian[Z_AXIS];
  6577. /**
  6578. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6579. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6580. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6581. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6582. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6583. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6584. */
  6585. }
  6586. float delta_safe_distance_from_top() {
  6587. float cartesian[3] = {
  6588. LOGICAL_X_POSITION(0),
  6589. LOGICAL_Y_POSITION(0),
  6590. LOGICAL_Z_POSITION(0)
  6591. };
  6592. inverse_kinematics(cartesian);
  6593. float distance = delta[TOWER_3];
  6594. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6595. inverse_kinematics(cartesian);
  6596. return abs(distance - delta[TOWER_3]);
  6597. }
  6598. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6599. //As discussed in Wikipedia "Trilateration"
  6600. //we are establishing a new coordinate
  6601. //system in the plane of the three carriage points.
  6602. //This system will have the origin at tower1 and
  6603. //tower2 is on the x axis. tower3 is in the X-Y
  6604. //plane with a Z component of zero. We will define unit
  6605. //vectors in this coordinate system in our original
  6606. //coordinate system. Then when we calculate the
  6607. //Xnew, Ynew and Znew values, we can translate back into
  6608. //the original system by moving along those unit vectors
  6609. //by the corresponding values.
  6610. // https://en.wikipedia.org/wiki/Trilateration
  6611. // Variable names matched to Marlin, c-version
  6612. // and avoiding a vector library
  6613. // by Andreas Hardtung 2016-06-7
  6614. // based on a Java function from
  6615. // "Delta Robot Kinematics by Steve Graves" V3
  6616. // Result is in cartesian_position[].
  6617. //Create a vector in old coordinates along x axis of new coordinate
  6618. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6619. //Get the Magnitude of vector.
  6620. float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
  6621. //Create unit vector by dividing by magnitude.
  6622. float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
  6623. //Now find vector from the origin of the new system to the third point.
  6624. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6625. //Now use dot product to find the component of this vector on the X axis.
  6626. float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
  6627. //Now create a vector along the x axis that represents the x component of p13.
  6628. float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
  6629. //Now subtract the X component away from the original vector leaving only the Y component. We use the
  6630. //variable that will be the unit vector after we scale it.
  6631. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
  6632. //The magnitude of Y component
  6633. float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  6634. //Now make vector a unit vector
  6635. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6636. //The cross product of the unit x and y is the unit z
  6637. //float[] ez = vectorCrossProd(ex, ey);
  6638. float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
  6639. //Now we have the d, i and j values defined in Wikipedia.
  6640. //We can plug them into the equations defined in
  6641. //Wikipedia for Xnew, Ynew and Znew
  6642. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
  6643. float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
  6644. float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
  6645. //Now we can start from the origin in the old coords and
  6646. //add vectors in the old coords that represent the
  6647. //Xnew, Ynew and Znew to find the point in the old system
  6648. cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
  6649. cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
  6650. cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  6651. };
  6652. void forward_kinematics_DELTA(float point[3]) {
  6653. forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]);
  6654. }
  6655. void set_cartesian_from_steppers() {
  6656. forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
  6657. stepper.get_axis_position_mm(Y_AXIS),
  6658. stepper.get_axis_position_mm(Z_AXIS));
  6659. }
  6660. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6661. // Adjust print surface height by linear interpolation over the bed_level array.
  6662. void adjust_delta(float cartesian[3]) {
  6663. if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
  6664. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6665. float h1 = 0.001 - half, h2 = half - 0.001,
  6666. grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[X_AXIS])),
  6667. grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[Y_AXIS]));
  6668. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6669. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6670. z1 = bed_level[floor_x + half][floor_y + half],
  6671. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6672. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6673. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6674. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6675. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6676. offset = (1 - ratio_x) * left + ratio_x * right;
  6677. delta[X_AXIS] += offset;
  6678. delta[Y_AXIS] += offset;
  6679. delta[Z_AXIS] += offset;
  6680. /**
  6681. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6682. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6683. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6684. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6685. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6686. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6687. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6688. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6689. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6690. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6691. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6692. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6693. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6694. */
  6695. }
  6696. #endif // AUTO_BED_LEVELING_FEATURE
  6697. #endif // DELTA
  6698. void set_current_from_steppers_for_axis(AxisEnum axis) {
  6699. #if ENABLED(DELTA)
  6700. set_cartesian_from_steppers();
  6701. current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
  6702. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  6703. vector_3 pos = planner.adjusted_position();
  6704. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6705. #else
  6706. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6707. #endif
  6708. }
  6709. #if ENABLED(MESH_BED_LEVELING)
  6710. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6711. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6712. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6713. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6714. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6715. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6716. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6717. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6718. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6719. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6720. if (cx1 == cx2 && cy1 == cy2) {
  6721. // Start and end on same mesh square
  6722. line_to_destination(fr_mm_s);
  6723. set_current_to_destination();
  6724. return;
  6725. }
  6726. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6727. float normalized_dist, end[NUM_AXIS];
  6728. // Split at the left/front border of the right/top square
  6729. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6730. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6731. memcpy(end, destination, sizeof(end));
  6732. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6733. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6734. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6735. CBI(x_splits, gcx);
  6736. }
  6737. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6738. memcpy(end, destination, sizeof(end));
  6739. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6740. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6741. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6742. CBI(y_splits, gcy);
  6743. }
  6744. else {
  6745. // Already split on a border
  6746. line_to_destination(fr_mm_s);
  6747. set_current_to_destination();
  6748. return;
  6749. }
  6750. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6751. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6752. // Do the split and look for more borders
  6753. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6754. // Restore destination from stack
  6755. memcpy(destination, end, sizeof(end));
  6756. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6757. }
  6758. #endif // MESH_BED_LEVELING
  6759. #if ENABLED(DELTA) || ENABLED(SCARA)
  6760. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6761. float difference[NUM_AXIS];
  6762. LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
  6763. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6764. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6765. if (cartesian_mm < 0.000001) return false;
  6766. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6767. float seconds = cartesian_mm / _feedrate_mm_s;
  6768. int steps = max(1, int(delta_segments_per_second * seconds));
  6769. float inv_steps = 1.0/steps;
  6770. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6771. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6772. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6773. for (int s = 1; s <= steps; s++) {
  6774. float fraction = float(s) * inv_steps;
  6775. LOOP_XYZE(i)
  6776. target[i] = current_position[i] + difference[i] * fraction;
  6777. inverse_kinematics(target);
  6778. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6779. if (!bed_leveling_in_progress) adjust_delta(target);
  6780. #endif
  6781. //DEBUG_POS("prepare_kinematic_move_to", target);
  6782. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6783. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6784. }
  6785. return true;
  6786. }
  6787. #endif // DELTA || SCARA
  6788. #if ENABLED(DUAL_X_CARRIAGE)
  6789. inline bool prepare_move_to_destination_dualx() {
  6790. if (active_extruder_parked) {
  6791. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6792. // move duplicate extruder into correct duplication position.
  6793. planner.set_position_mm(
  6794. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6795. current_position[Y_AXIS],
  6796. current_position[Z_AXIS],
  6797. current_position[E_AXIS]
  6798. );
  6799. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6800. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6801. SYNC_PLAN_POSITION_KINEMATIC();
  6802. stepper.synchronize();
  6803. extruder_duplication_enabled = true;
  6804. active_extruder_parked = false;
  6805. }
  6806. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6807. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6808. // This is a travel move (with no extrusion)
  6809. // Skip it, but keep track of the current position
  6810. // (so it can be used as the start of the next non-travel move)
  6811. if (delayed_move_time != 0xFFFFFFFFUL) {
  6812. set_current_to_destination();
  6813. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6814. delayed_move_time = millis();
  6815. return false;
  6816. }
  6817. }
  6818. delayed_move_time = 0;
  6819. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6820. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6821. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6822. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6823. active_extruder_parked = false;
  6824. }
  6825. }
  6826. return true;
  6827. }
  6828. #endif // DUAL_X_CARRIAGE
  6829. #if DISABLED(DELTA) && DISABLED(SCARA)
  6830. inline bool prepare_move_to_destination_cartesian() {
  6831. // Do not use feedrate_percentage for E or Z only moves
  6832. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6833. line_to_destination();
  6834. }
  6835. else {
  6836. #if ENABLED(MESH_BED_LEVELING)
  6837. if (mbl.active()) {
  6838. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6839. return false;
  6840. }
  6841. else
  6842. #endif
  6843. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6844. }
  6845. return true;
  6846. }
  6847. #endif // !DELTA && !SCARA
  6848. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6849. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6850. if (DEBUGGING(DRYRUN)) return;
  6851. float de = dest_e - curr_e;
  6852. if (de) {
  6853. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6854. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6855. SERIAL_ECHO_START;
  6856. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6857. }
  6858. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6859. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6860. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6861. SERIAL_ECHO_START;
  6862. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6863. }
  6864. #endif
  6865. }
  6866. }
  6867. #endif // PREVENT_DANGEROUS_EXTRUDE
  6868. /**
  6869. * Prepare a single move and get ready for the next one
  6870. *
  6871. * (This may call planner.buffer_line several times to put
  6872. * smaller moves into the planner for DELTA or SCARA.)
  6873. */
  6874. void prepare_move_to_destination() {
  6875. clamp_to_software_endstops(destination);
  6876. refresh_cmd_timeout();
  6877. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6878. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6879. #endif
  6880. #if ENABLED(DELTA) || ENABLED(SCARA)
  6881. if (!prepare_kinematic_move_to(destination)) return;
  6882. #else
  6883. #if ENABLED(DUAL_X_CARRIAGE)
  6884. if (!prepare_move_to_destination_dualx()) return;
  6885. #endif
  6886. if (!prepare_move_to_destination_cartesian()) return;
  6887. #endif
  6888. set_current_to_destination();
  6889. }
  6890. #if ENABLED(ARC_SUPPORT)
  6891. /**
  6892. * Plan an arc in 2 dimensions
  6893. *
  6894. * The arc is approximated by generating many small linear segments.
  6895. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6896. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6897. * larger segments will tend to be more efficient. Your slicer should have
  6898. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6899. */
  6900. void plan_arc(
  6901. float target[NUM_AXIS], // Destination position
  6902. float* offset, // Center of rotation relative to current_position
  6903. uint8_t clockwise // Clockwise?
  6904. ) {
  6905. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6906. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6907. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6908. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6909. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6910. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6911. r_Y = -offset[Y_AXIS],
  6912. rt_X = target[X_AXIS] - center_X,
  6913. rt_Y = target[Y_AXIS] - center_Y;
  6914. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6915. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6916. if (angular_travel < 0) angular_travel += RADIANS(360);
  6917. if (clockwise) angular_travel -= RADIANS(360);
  6918. // Make a circle if the angular rotation is 0
  6919. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6920. angular_travel += RADIANS(360);
  6921. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6922. if (mm_of_travel < 0.001) return;
  6923. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6924. if (segments == 0) segments = 1;
  6925. float theta_per_segment = angular_travel / segments;
  6926. float linear_per_segment = linear_travel / segments;
  6927. float extruder_per_segment = extruder_travel / segments;
  6928. /**
  6929. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6930. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6931. * r_T = [cos(phi) -sin(phi);
  6932. * sin(phi) cos(phi] * r ;
  6933. *
  6934. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6935. * defined from the circle center to the initial position. Each line segment is formed by successive
  6936. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6937. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6938. * all double numbers are single precision on the Arduino. (True double precision will not have
  6939. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6940. * tool precision in some cases. Therefore, arc path correction is implemented.
  6941. *
  6942. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6943. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6944. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6945. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6946. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6947. * issue for CNC machines with the single precision Arduino calculations.
  6948. *
  6949. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6950. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6951. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6952. * This is important when there are successive arc motions.
  6953. */
  6954. // Vector rotation matrix values
  6955. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6956. float sin_T = theta_per_segment;
  6957. float arc_target[NUM_AXIS];
  6958. float sin_Ti, cos_Ti, r_new_Y;
  6959. uint16_t i;
  6960. int8_t count = 0;
  6961. // Initialize the linear axis
  6962. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6963. // Initialize the extruder axis
  6964. arc_target[E_AXIS] = current_position[E_AXIS];
  6965. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6966. millis_t next_idle_ms = millis() + 200UL;
  6967. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6968. thermalManager.manage_heater();
  6969. millis_t now = millis();
  6970. if (ELAPSED(now, next_idle_ms)) {
  6971. next_idle_ms = now + 200UL;
  6972. idle();
  6973. }
  6974. if (++count < N_ARC_CORRECTION) {
  6975. // Apply vector rotation matrix to previous r_X / 1
  6976. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6977. r_X = r_X * cos_T - r_Y * sin_T;
  6978. r_Y = r_new_Y;
  6979. }
  6980. else {
  6981. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6982. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6983. // To reduce stuttering, the sin and cos could be computed at different times.
  6984. // For now, compute both at the same time.
  6985. cos_Ti = cos(i * theta_per_segment);
  6986. sin_Ti = sin(i * theta_per_segment);
  6987. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6988. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6989. count = 0;
  6990. }
  6991. // Update arc_target location
  6992. arc_target[X_AXIS] = center_X + r_X;
  6993. arc_target[Y_AXIS] = center_Y + r_Y;
  6994. arc_target[Z_AXIS] += linear_per_segment;
  6995. arc_target[E_AXIS] += extruder_per_segment;
  6996. clamp_to_software_endstops(arc_target);
  6997. #if ENABLED(DELTA) || ENABLED(SCARA)
  6998. inverse_kinematics(arc_target);
  6999. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  7000. adjust_delta(arc_target);
  7001. #endif
  7002. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7003. #else
  7004. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7005. #endif
  7006. }
  7007. // Ensure last segment arrives at target location.
  7008. #if ENABLED(DELTA) || ENABLED(SCARA)
  7009. inverse_kinematics(target);
  7010. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  7011. adjust_delta(target);
  7012. #endif
  7013. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  7014. #else
  7015. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  7016. #endif
  7017. // As far as the parser is concerned, the position is now == target. In reality the
  7018. // motion control system might still be processing the action and the real tool position
  7019. // in any intermediate location.
  7020. set_current_to_destination();
  7021. }
  7022. #endif
  7023. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7024. void plan_cubic_move(const float offset[4]) {
  7025. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7026. // As far as the parser is concerned, the position is now == target. In reality the
  7027. // motion control system might still be processing the action and the real tool position
  7028. // in any intermediate location.
  7029. set_current_to_destination();
  7030. }
  7031. #endif // BEZIER_CURVE_SUPPORT
  7032. #if HAS_CONTROLLERFAN
  7033. void controllerFan() {
  7034. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7035. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7036. millis_t ms = millis();
  7037. if (ELAPSED(ms, nextMotorCheck)) {
  7038. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7039. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7040. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7041. #if E_STEPPERS > 1
  7042. || E1_ENABLE_READ == E_ENABLE_ON
  7043. #if HAS_X2_ENABLE
  7044. || X2_ENABLE_READ == X_ENABLE_ON
  7045. #endif
  7046. #if E_STEPPERS > 2
  7047. || E2_ENABLE_READ == E_ENABLE_ON
  7048. #if E_STEPPERS > 3
  7049. || E3_ENABLE_READ == E_ENABLE_ON
  7050. #endif
  7051. #endif
  7052. #endif
  7053. ) {
  7054. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7055. }
  7056. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7057. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7058. // allows digital or PWM fan output to be used (see M42 handling)
  7059. digitalWrite(CONTROLLERFAN_PIN, speed);
  7060. analogWrite(CONTROLLERFAN_PIN, speed);
  7061. }
  7062. }
  7063. #endif // HAS_CONTROLLERFAN
  7064. #if ENABLED(SCARA)
  7065. void forward_kinematics_SCARA(float f_scara[3]) {
  7066. // Perform forward kinematics, and place results in delta[3]
  7067. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7068. float x_sin, x_cos, y_sin, y_cos;
  7069. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  7070. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  7071. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7072. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7073. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7074. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7075. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  7076. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  7077. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  7078. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  7079. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  7080. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  7081. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  7082. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  7083. }
  7084. void inverse_kinematics(const float cartesian[3]) {
  7085. // Inverse kinematics.
  7086. // Perform SCARA IK and place results in delta[3].
  7087. // The maths and first version were done by QHARLEY.
  7088. // Integrated, tweaked by Joachim Cerny in June 2014.
  7089. float SCARA_pos[2];
  7090. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  7091. SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  7092. SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  7093. #if (Linkage_1 == Linkage_2)
  7094. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  7095. #else
  7096. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  7097. #endif
  7098. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  7099. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  7100. SCARA_K2 = Linkage_2 * SCARA_S2;
  7101. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  7102. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  7103. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  7104. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  7105. delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
  7106. /**
  7107. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  7108. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  7109. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  7110. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  7111. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  7112. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  7113. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  7114. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  7115. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  7116. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  7117. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  7118. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  7119. SERIAL_EOL;
  7120. */
  7121. }
  7122. #endif // SCARA
  7123. #if ENABLED(TEMP_STAT_LEDS)
  7124. static bool red_led = false;
  7125. static millis_t next_status_led_update_ms = 0;
  7126. void handle_status_leds(void) {
  7127. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7128. next_status_led_update_ms += 500; // Update every 0.5s
  7129. float max_temp =
  7130. #if HAS_TEMP_BED
  7131. MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed())
  7132. #else
  7133. 0.0
  7134. #endif
  7135. ;
  7136. HOTEND_LOOP() {
  7137. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7138. }
  7139. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7140. if (new_led != red_led) {
  7141. red_led = new_led;
  7142. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7143. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7144. }
  7145. }
  7146. }
  7147. #endif
  7148. void enable_all_steppers() {
  7149. enable_x();
  7150. enable_y();
  7151. enable_z();
  7152. enable_e0();
  7153. enable_e1();
  7154. enable_e2();
  7155. enable_e3();
  7156. }
  7157. void disable_all_steppers() {
  7158. disable_x();
  7159. disable_y();
  7160. disable_z();
  7161. disable_e0();
  7162. disable_e1();
  7163. disable_e2();
  7164. disable_e3();
  7165. }
  7166. /**
  7167. * Standard idle routine keeps the machine alive
  7168. */
  7169. void idle(
  7170. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7171. bool no_stepper_sleep/*=false*/
  7172. #endif
  7173. ) {
  7174. lcd_update();
  7175. host_keepalive();
  7176. manage_inactivity(
  7177. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7178. no_stepper_sleep
  7179. #endif
  7180. );
  7181. thermalManager.manage_heater();
  7182. #if ENABLED(PRINTCOUNTER)
  7183. print_job_timer.tick();
  7184. #endif
  7185. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7186. buzzer.tick();
  7187. #endif
  7188. }
  7189. /**
  7190. * Manage several activities:
  7191. * - Check for Filament Runout
  7192. * - Keep the command buffer full
  7193. * - Check for maximum inactive time between commands
  7194. * - Check for maximum inactive time between stepper commands
  7195. * - Check if pin CHDK needs to go LOW
  7196. * - Check for KILL button held down
  7197. * - Check for HOME button held down
  7198. * - Check if cooling fan needs to be switched on
  7199. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7200. */
  7201. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7202. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7203. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7204. handle_filament_runout();
  7205. #endif
  7206. if (commands_in_queue < BUFSIZE) get_available_commands();
  7207. millis_t ms = millis();
  7208. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7209. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7210. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7211. #if ENABLED(DISABLE_INACTIVE_X)
  7212. disable_x();
  7213. #endif
  7214. #if ENABLED(DISABLE_INACTIVE_Y)
  7215. disable_y();
  7216. #endif
  7217. #if ENABLED(DISABLE_INACTIVE_Z)
  7218. disable_z();
  7219. #endif
  7220. #if ENABLED(DISABLE_INACTIVE_E)
  7221. disable_e0();
  7222. disable_e1();
  7223. disable_e2();
  7224. disable_e3();
  7225. #endif
  7226. }
  7227. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7228. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7229. chdkActive = false;
  7230. WRITE(CHDK, LOW);
  7231. }
  7232. #endif
  7233. #if HAS_KILL
  7234. // Check if the kill button was pressed and wait just in case it was an accidental
  7235. // key kill key press
  7236. // -------------------------------------------------------------------------------
  7237. static int killCount = 0; // make the inactivity button a bit less responsive
  7238. const int KILL_DELAY = 750;
  7239. if (!READ(KILL_PIN))
  7240. killCount++;
  7241. else if (killCount > 0)
  7242. killCount--;
  7243. // Exceeded threshold and we can confirm that it was not accidental
  7244. // KILL the machine
  7245. // ----------------------------------------------------------------
  7246. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7247. #endif
  7248. #if HAS_HOME
  7249. // Check to see if we have to home, use poor man's debouncer
  7250. // ---------------------------------------------------------
  7251. static int homeDebounceCount = 0; // poor man's debouncing count
  7252. const int HOME_DEBOUNCE_DELAY = 2500;
  7253. if (!READ(HOME_PIN)) {
  7254. if (!homeDebounceCount) {
  7255. enqueue_and_echo_commands_P(PSTR("G28"));
  7256. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7257. }
  7258. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7259. homeDebounceCount++;
  7260. else
  7261. homeDebounceCount = 0;
  7262. }
  7263. #endif
  7264. #if HAS_CONTROLLERFAN
  7265. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7266. #endif
  7267. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7268. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7269. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7270. #if ENABLED(SWITCHING_EXTRUDER)
  7271. bool oldstatus = E0_ENABLE_READ;
  7272. enable_e0();
  7273. #else // !SWITCHING_EXTRUDER
  7274. bool oldstatus;
  7275. switch (active_extruder) {
  7276. case 0:
  7277. oldstatus = E0_ENABLE_READ;
  7278. enable_e0();
  7279. break;
  7280. #if E_STEPPERS > 1
  7281. case 1:
  7282. oldstatus = E1_ENABLE_READ;
  7283. enable_e1();
  7284. break;
  7285. #if E_STEPPERS > 2
  7286. case 2:
  7287. oldstatus = E2_ENABLE_READ;
  7288. enable_e2();
  7289. break;
  7290. #if E_STEPPERS > 3
  7291. case 3:
  7292. oldstatus = E3_ENABLE_READ;
  7293. enable_e3();
  7294. break;
  7295. #endif
  7296. #endif
  7297. #endif
  7298. }
  7299. #endif // !SWITCHING_EXTRUDER
  7300. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7301. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7302. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS],
  7303. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS], active_extruder);
  7304. current_position[E_AXIS] = oldepos;
  7305. destination[E_AXIS] = oldedes;
  7306. planner.set_e_position_mm(oldepos);
  7307. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7308. stepper.synchronize();
  7309. #if ENABLED(SWITCHING_EXTRUDER)
  7310. E0_ENABLE_WRITE(oldstatus);
  7311. #else
  7312. switch (active_extruder) {
  7313. case 0:
  7314. E0_ENABLE_WRITE(oldstatus);
  7315. break;
  7316. #if E_STEPPERS > 1
  7317. case 1:
  7318. E1_ENABLE_WRITE(oldstatus);
  7319. break;
  7320. #if E_STEPPERS > 2
  7321. case 2:
  7322. E2_ENABLE_WRITE(oldstatus);
  7323. break;
  7324. #if E_STEPPERS > 3
  7325. case 3:
  7326. E3_ENABLE_WRITE(oldstatus);
  7327. break;
  7328. #endif
  7329. #endif
  7330. #endif
  7331. }
  7332. #endif // !SWITCHING_EXTRUDER
  7333. }
  7334. #endif // EXTRUDER_RUNOUT_PREVENT
  7335. #if ENABLED(DUAL_X_CARRIAGE)
  7336. // handle delayed move timeout
  7337. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7338. // travel moves have been received so enact them
  7339. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7340. set_destination_to_current();
  7341. prepare_move_to_destination();
  7342. }
  7343. #endif
  7344. #if ENABLED(TEMP_STAT_LEDS)
  7345. handle_status_leds();
  7346. #endif
  7347. planner.check_axes_activity();
  7348. }
  7349. void kill(const char* lcd_msg) {
  7350. SERIAL_ERROR_START;
  7351. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7352. #if ENABLED(ULTRA_LCD)
  7353. kill_screen(lcd_msg);
  7354. #else
  7355. UNUSED(lcd_msg);
  7356. #endif
  7357. delay(500); // Wait a short time
  7358. cli(); // Stop interrupts
  7359. thermalManager.disable_all_heaters();
  7360. disable_all_steppers();
  7361. #if HAS_POWER_SWITCH
  7362. pinMode(PS_ON_PIN, INPUT);
  7363. #endif
  7364. suicide();
  7365. while (1) {
  7366. #if ENABLED(USE_WATCHDOG)
  7367. watchdog_reset();
  7368. #endif
  7369. } // Wait for reset
  7370. }
  7371. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7372. void handle_filament_runout() {
  7373. if (!filament_ran_out) {
  7374. filament_ran_out = true;
  7375. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7376. stepper.synchronize();
  7377. }
  7378. }
  7379. #endif // FILAMENT_RUNOUT_SENSOR
  7380. #if ENABLED(FAST_PWM_FAN)
  7381. void setPwmFrequency(uint8_t pin, int val) {
  7382. val &= 0x07;
  7383. switch (digitalPinToTimer(pin)) {
  7384. #if defined(TCCR0A)
  7385. case TIMER0A:
  7386. case TIMER0B:
  7387. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7388. // TCCR0B |= val;
  7389. break;
  7390. #endif
  7391. #if defined(TCCR1A)
  7392. case TIMER1A:
  7393. case TIMER1B:
  7394. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7395. // TCCR1B |= val;
  7396. break;
  7397. #endif
  7398. #if defined(TCCR2)
  7399. case TIMER2:
  7400. case TIMER2:
  7401. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7402. TCCR2 |= val;
  7403. break;
  7404. #endif
  7405. #if defined(TCCR2A)
  7406. case TIMER2A:
  7407. case TIMER2B:
  7408. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7409. TCCR2B |= val;
  7410. break;
  7411. #endif
  7412. #if defined(TCCR3A)
  7413. case TIMER3A:
  7414. case TIMER3B:
  7415. case TIMER3C:
  7416. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7417. TCCR3B |= val;
  7418. break;
  7419. #endif
  7420. #if defined(TCCR4A)
  7421. case TIMER4A:
  7422. case TIMER4B:
  7423. case TIMER4C:
  7424. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7425. TCCR4B |= val;
  7426. break;
  7427. #endif
  7428. #if defined(TCCR5A)
  7429. case TIMER5A:
  7430. case TIMER5B:
  7431. case TIMER5C:
  7432. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7433. TCCR5B |= val;
  7434. break;
  7435. #endif
  7436. }
  7437. }
  7438. #endif // FAST_PWM_FAN
  7439. void stop() {
  7440. thermalManager.disable_all_heaters();
  7441. if (IsRunning()) {
  7442. Running = false;
  7443. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7444. SERIAL_ERROR_START;
  7445. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7446. LCD_MESSAGEPGM(MSG_STOPPED);
  7447. }
  7448. }
  7449. float calculate_volumetric_multiplier(float diameter) {
  7450. if (!volumetric_enabled || diameter == 0) return 1.0;
  7451. float d2 = diameter * 0.5;
  7452. return 1.0 / (M_PI * d2 * d2);
  7453. }
  7454. void calculate_volumetric_multipliers() {
  7455. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7456. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7457. }