1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * stepper.cpp - A singleton object to execute motion plans using stepper motors
- * Marlin Firmware
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * Grbl is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Grbl is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
- and Philipp Tiefenbacher. */
-
- #include "Marlin.h"
- #include "stepper.h"
- #include "endstops.h"
- #include "planner.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
- #include "cardreader.h"
- #include "speed_lookuptable.h"
-
- #if HAS_DIGIPOTSS
- #include <SPI.h>
- #endif
-
- Stepper stepper; // Singleton
-
- // public:
-
- block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
-
- #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
- bool Stepper::abort_on_endstop_hit = false;
- #endif
-
- #if ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::performing_homing = false;
- #endif
-
- // private:
-
- unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
- unsigned int Stepper::cleaning_buffer_counter = 0;
-
- #if ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::locked_z_motor = false;
- bool Stepper::locked_z2_motor = false;
- #endif
-
- long Stepper::counter_X = 0,
- Stepper::counter_Y = 0,
- Stepper::counter_Z = 0,
- Stepper::counter_E = 0;
-
- volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
-
- constexpr uint16_t ADV_NEVER = 65535;
-
- uint16_t Stepper::nextMainISR = 0,
- Stepper::nextAdvanceISR = ADV_NEVER,
- Stepper::eISR_Rate = ADV_NEVER;
-
- #if ENABLED(LIN_ADVANCE)
- volatile int Stepper::e_steps[E_STEPPERS];
- int Stepper::final_estep_rate,
- Stepper::current_estep_rate[E_STEPPERS],
- Stepper::current_adv_steps[E_STEPPERS];
- #else
- long Stepper::e_steps[E_STEPPERS],
- Stepper::final_advance = 0,
- Stepper::old_advance = 0,
- Stepper::advance_rate,
- Stepper::advance;
- #endif
-
- #define ADV_RATE(T, L) (e_steps[TOOL_E_INDEX] ? (T) * (L) / abs(e_steps[TOOL_E_INDEX]) : ADV_NEVER)
-
- #endif
-
- long Stepper::acceleration_time, Stepper::deceleration_time;
-
- volatile long Stepper::count_position[NUM_AXIS] = { 0 };
- volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
-
- #if ENABLED(MIXING_EXTRUDER)
- long Stepper::counter_m[MIXING_STEPPERS];
- #endif
-
- unsigned short Stepper::acc_step_rate; // needed for deceleration start point
- uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
- unsigned short Stepper::OCR1A_nominal;
-
- volatile long Stepper::endstops_trigsteps[XYZ];
-
- #if ENABLED(X_DUAL_STEPPER_DRIVERS)
- #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
- #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
- #elif ENABLED(DUAL_X_CARRIAGE)
- #define X_APPLY_DIR(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_DIR_WRITE(v); \
- X2_DIR_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
- }
- #define X_APPLY_STEP(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_STEP_WRITE(v); \
- X2_STEP_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
- }
- #else
- #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
- #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
- #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
- #else
- #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
- #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
- #if ENABLED(Z_DUAL_ENDSTOPS)
- #define Z_APPLY_STEP(v,Q) \
- if (performing_homing) { \
- if (Z_HOME_DIR < 0) { \
- if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
- if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
- } \
- else { \
- if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
- if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
- } \
- } \
- else { \
- Z_STEP_WRITE(v); \
- Z2_STEP_WRITE(v); \
- }
- #else
- #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
- #endif
- #else
- #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
- #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
- #endif
-
- #if DISABLED(MIXING_EXTRUDER)
- #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
- #endif
-
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // r26 to store 0
- // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
- // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
- // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
- // B0 A0 are bits 24-39 and are the returned value
- // C1 B1 A1 is longIn1
- // D2 C2 B2 A2 is longIn2
- //
- #define MultiU24X32toH16(intRes, longIn1, longIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "mov r27, r1 \n\t" \
- "mul %B1, %C2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %C1, %C2 \n\t" \
- "add %B0, r0 \n\t" \
- "mul %C1, %B2 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %A1, %C2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %B2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %C1, %A2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %A2 \n\t" \
- "add r27, r1 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r27 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %D2, %A1 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %D2, %B1 \n\t" \
- "add %B0, r0 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (longIn1), \
- "d" (longIn2) \
- : \
- "r26" , "r27" \
- )
-
- // Some useful constants
-
- #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
- #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
-
- /**
- * __________________________
- * /| |\ _________________ ^
- * / | | \ /| |\ |
- * / | | \ / | | \ s
- * / | | | | | \ p
- * / | | | | | \ e
- * +-----+------------------------+---+--+---------------+----+ e
- * | BLOCK 1 | BLOCK 2 | d
- *
- * time ----->
- *
- * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- * first block->accelerate_until step_events_completed, then keeps going at constant speed until
- * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
- */
- void Stepper::wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- /**
- * Set the stepper direction of each axis
- *
- * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
- * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
- * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
- */
- void Stepper::set_directions() {
-
- #define SET_STEP_DIR(AXIS) \
- if (motor_direction(AXIS ##_AXIS)) { \
- AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
- count_direction[AXIS ##_AXIS] = -1; \
- } \
- else { \
- AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
- count_direction[AXIS ##_AXIS] = 1; \
- }
-
- #if HAS_X_DIR
- SET_STEP_DIR(X); // A
- #endif
- #if HAS_Y_DIR
- SET_STEP_DIR(Y); // B
- #endif
- #if HAS_Z_DIR
- SET_STEP_DIR(Z); // C
- #endif
-
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- if (motor_direction(E_AXIS)) {
- REV_E_DIR();
- count_direction[E_AXIS] = -1;
- }
- else {
- NORM_E_DIR();
- count_direction[E_AXIS] = 1;
- }
- #endif // !ADVANCE && !LIN_ADVANCE
- }
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- extern volatile uint8_t e_hit;
- #endif
-
- /**
- * Stepper Driver Interrupt
- *
- * Directly pulses the stepper motors at high frequency.
- * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
- *
- * OCR1A Frequency
- * 1 2 MHz
- * 50 40 KHz
- * 100 20 KHz - capped max rate
- * 200 10 KHz - nominal max rate
- * 2000 1 KHz - sleep rate
- * 4000 500 Hz - init rate
- */
- ISR(TIMER1_COMPA_vect) {
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
- Stepper::advance_isr_scheduler();
- #else
- Stepper::isr();
- #endif
- }
-
- void Stepper::isr() {
- #define _ENABLE_ISRs() cli(); SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT()
-
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- //Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
- CBI(TIMSK0, OCIE0B); //Temperature ISR
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- sei();
- #endif
-
- if (cleaning_buffer_counter) {
- --cleaning_buffer_counter;
- current_block = NULL;
- planner.discard_current_block();
- #ifdef SD_FINISHED_RELEASECOMMAND
- if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
- #endif
- _NEXT_ISR(200); // Run at max speed - 10 KHz
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
-
- // If there is no current block, attempt to pop one from the buffer
- if (!current_block) {
- // Anything in the buffer?
- current_block = planner.get_current_block();
- if (current_block) {
- trapezoid_generator_reset();
-
- // Initialize Bresenham counters to 1/2 the ceiling
- counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
-
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(i)
- counter_m[i] = -(current_block->mix_event_count[i] >> 1);
- #endif
-
- step_events_completed = 0;
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
- // No 'change' can be detected.
- #endif
-
- #if ENABLED(Z_LATE_ENABLE)
- if (current_block->steps[Z_AXIS] > 0) {
- enable_z();
- _NEXT_ISR(2000); // Run at slow speed - 1 KHz
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
- #endif
-
- // #if ENABLED(ADVANCE)
- // e_steps[TOOL_E_INDEX] = 0;
- // #endif
- }
- else {
- _NEXT_ISR(2000); // Run at slow speed - 1 KHz
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
- }
-
- // Update endstops state, if enabled
- if ((endstops.enabled
- #if HAS_BED_PROBE
- || endstops.z_probe_enabled
- #endif
- )
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- && e_hit
- #endif
- ) {
- endstops.update();
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- e_hit--;
- #endif
- }
-
- // Take multiple steps per interrupt (For high speed moves)
- bool all_steps_done = false;
- for (int8_t i = 0; i < step_loops; i++) {
- #if ENABLED(LIN_ADVANCE)
-
- counter_E += current_block->steps[E_AXIS];
- if (counter_E > 0) {
- counter_E -= current_block->step_event_count;
- #if DISABLED(MIXING_EXTRUDER)
- // Don't step E here for mixing extruder
- count_position[E_AXIS] += count_direction[E_AXIS];
- motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
- #endif
- }
-
- #if ENABLED(MIXING_EXTRUDER)
- // Step mixing steppers proportionally
- const bool dir = motor_direction(E_AXIS);
- MIXING_STEPPERS_LOOP(j) {
- counter_m[j] += current_block->steps[E_AXIS];
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- dir ? --e_steps[j] : ++e_steps[j];
- }
- }
- #endif
-
- #elif ENABLED(ADVANCE)
-
- // Always count the unified E axis
- counter_E += current_block->steps[E_AXIS];
- if (counter_E > 0) {
- counter_E -= current_block->step_event_count;
- #if DISABLED(MIXING_EXTRUDER)
- // Don't step E here for mixing extruder
- motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
- #endif
- }
-
- #if ENABLED(MIXING_EXTRUDER)
-
- // Step mixing steppers proportionally
- const bool dir = motor_direction(E_AXIS);
- MIXING_STEPPERS_LOOP(j) {
- counter_m[j] += current_block->steps[E_AXIS];
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- dir ? --e_steps[j] : ++e_steps[j];
- }
- }
-
- #endif // MIXING_EXTRUDER
-
- #endif // ADVANCE or LIN_ADVANCE
-
- #define _COUNTER(AXIS) counter_## AXIS
- #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
- #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
-
- // Advance the Bresenham counter; start a pulse if the axis needs a step
- #define PULSE_START(AXIS) \
- _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
- if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
-
- // Stop an active pulse, reset the Bresenham counter, update the position
- #define PULSE_STOP(AXIS) \
- if (_COUNTER(AXIS) > 0) { \
- _COUNTER(AXIS) -= current_block->step_event_count; \
- count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
- }
-
- #define CYCLES_EATEN_BY_CODE 240
-
- // If a minimum pulse time was specified get the CPU clock
- #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
- static uint32_t pulse_start;
- pulse_start = TCNT0;
- #endif
-
- #if HAS_X_STEP
- PULSE_START(X);
- #endif
- #if HAS_Y_STEP
- PULSE_START(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_START(Z);
- #endif
-
- // For non-advance use linear interpolation for E also
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- // Keep updating the single E axis
- counter_E += current_block->steps[E_AXIS];
- // Tick the counters used for this mix
- MIXING_STEPPERS_LOOP(j) {
- // Step mixing steppers (proportionally)
- counter_m[j] += current_block->steps[E_AXIS];
- // Step when the counter goes over zero
- if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
- }
- #else // !MIXING_EXTRUDER
- PULSE_START(E);
- #endif
- #endif // !ADVANCE && !LIN_ADVANCE
-
- // For a minimum pulse time wait before stopping pulses
- #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
- while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
- #endif
-
- #if HAS_X_STEP
- PULSE_STOP(X);
- #endif
- #if HAS_Y_STEP
- PULSE_STOP(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_STOP(Z);
- #endif
-
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- // Always step the single E axis
- if (counter_E > 0) {
- counter_E -= current_block->step_event_count;
- count_position[E_AXIS] += count_direction[E_AXIS];
- }
- MIXING_STEPPERS_LOOP(j) {
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- En_STEP_WRITE(j, INVERT_E_STEP_PIN);
- }
- }
- #else // !MIXING_EXTRUDER
- PULSE_STOP(E);
- #endif
- #endif // !ADVANCE && !LIN_ADVANCE
-
- if (++step_events_completed >= current_block->step_event_count) {
- all_steps_done = true;
- break;
- }
- }
-
- #if ENABLED(LIN_ADVANCE)
- if (current_block->use_advance_lead) {
- int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
- current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
- #if ENABLED(MIXING_EXTRUDER)
- // Mixing extruders apply advance lead proportionally
- MIXING_STEPPERS_LOOP(j)
- e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
- #else
- // For most extruders, advance the single E stepper
- e_steps[TOOL_E_INDEX] += delta_adv_steps;
- #endif
- }
- #endif
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
- // If we have esteps to execute, fire the next advance_isr "now"
- if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
- #endif
-
- // Calculate new timer value
- if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
-
- MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- acc_step_rate += current_block->initial_rate;
-
- // upper limit
- NOMORE(acc_step_rate, current_block->nominal_rate);
-
- // step_rate to timer interval
- uint16_t timer = calc_timer(acc_step_rate);
- _NEXT_ISR(timer);
- acceleration_time += timer;
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead) {
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j)
- current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
- #else
- current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif
- }
-
- #elif ENABLED(ADVANCE)
-
- advance += advance_rate * step_loops;
- //NOLESS(advance, current_block->advance);
-
- long advance_whole = advance >> 8,
- advance_factor = advance_whole - old_advance;
-
- // Do E steps + advance steps
- #if ENABLED(MIXING_EXTRUDER)
- // ...for mixing steppers proportionally
- MIXING_STEPPERS_LOOP(j)
- e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
- #else
- // ...for the active extruder
- e_steps[TOOL_E_INDEX] += advance_factor;
- #endif
-
- old_advance = advance_whole;
-
- #endif // ADVANCE or LIN_ADVANCE
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
- eISR_Rate = ADV_RATE(timer, step_loops);
- #endif
- }
- else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
- uint16_t step_rate;
- MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
-
- if (step_rate < acc_step_rate) { // Still decelerating?
- step_rate = acc_step_rate - step_rate;
- NOLESS(step_rate, current_block->final_rate);
- }
- else
- step_rate = current_block->final_rate;
-
- // step_rate to timer interval
- uint16_t timer = calc_timer(step_rate);
- _NEXT_ISR(timer);
- deceleration_time += timer;
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead) {
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j)
- current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
- #else
- current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif
- }
-
- #elif ENABLED(ADVANCE)
-
- advance -= advance_rate * step_loops;
- NOLESS(advance, final_advance);
-
- // Do E steps + advance steps
- long advance_whole = advance >> 8,
- advance_factor = advance_whole - old_advance;
-
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j)
- e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
- #else
- e_steps[TOOL_E_INDEX] += advance_factor;
- #endif
-
- old_advance = advance_whole;
-
- #endif // ADVANCE or LIN_ADVANCE
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
- eISR_Rate = ADV_RATE(timer, step_loops);
- #endif
- }
- else {
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead)
- current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
-
- eISR_Rate = ADV_RATE(OCR1A_nominal, step_loops_nominal);
-
- #endif
-
- _NEXT_ISR(OCR1A_nominal);
- // ensure we're running at the correct step rate, even if we just came off an acceleration
- step_loops = step_loops_nominal;
- }
-
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- NOLESS(OCR1A, TCNT1 + 16);
- #endif
-
- // If current block is finished, reset pointer
- if (all_steps_done) {
- current_block = NULL;
- planner.discard_current_block();
- }
- #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
- _ENABLE_ISRs(); // re-enable ISRs
- #endif
- }
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
-
- // Timer interrupt for E. e_steps is set in the main routine;
-
- void Stepper::advance_isr() {
-
- nextAdvanceISR = eISR_Rate;
-
- #define SET_E_STEP_DIR(INDEX) \
- if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
-
- #define START_E_PULSE(INDEX) \
- if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
-
- #define STOP_E_PULSE(INDEX) \
- if (e_steps[INDEX]) { \
- e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
- E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
- }
-
- SET_E_STEP_DIR(0);
- #if E_STEPPERS > 1
- SET_E_STEP_DIR(1);
- #if E_STEPPERS > 2
- SET_E_STEP_DIR(2);
- #if E_STEPPERS > 3
- SET_E_STEP_DIR(3);
- #endif
- #endif
- #endif
-
- #define CYCLES_EATEN_BY_E 60
-
- // Step all E steppers that have steps
- for (uint8_t i = 0; i < step_loops; i++) {
-
- #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
- static uint32_t pulse_start;
- pulse_start = TCNT0;
- #endif
-
- START_E_PULSE(0);
- #if E_STEPPERS > 1
- START_E_PULSE(1);
- #if E_STEPPERS > 2
- START_E_PULSE(2);
- #if E_STEPPERS > 3
- START_E_PULSE(3);
- #endif
- #endif
- #endif
-
- // For a minimum pulse time wait before stopping pulses
- #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
- while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
- #endif
-
- STOP_E_PULSE(0);
- #if E_STEPPERS > 1
- STOP_E_PULSE(1);
- #if E_STEPPERS > 2
- STOP_E_PULSE(2);
- #if E_STEPPERS > 3
- STOP_E_PULSE(3);
- #endif
- #endif
- #endif
- }
-
- }
-
- void Stepper::advance_isr_scheduler() {
- // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
- CBI(TIMSK0, OCIE0B); // Temperature ISR
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- sei();
-
- // Run main stepping ISR if flagged
- if (!nextMainISR) isr();
-
- // Run Advance stepping ISR if flagged
- if (!nextAdvanceISR) advance_isr();
-
- // Is the next advance ISR scheduled before the next main ISR?
- if (nextAdvanceISR <= nextMainISR) {
- // Set up the next interrupt
- OCR1A = nextAdvanceISR;
- // New interval for the next main ISR
- if (nextMainISR) nextMainISR -= nextAdvanceISR;
- // Will call Stepper::advance_isr on the next interrupt
- nextAdvanceISR = 0;
- }
- else {
- // The next main ISR comes first
- OCR1A = nextMainISR;
- // New interval for the next advance ISR, if any
- if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
- nextAdvanceISR -= nextMainISR;
- // Will call Stepper::isr on the next interrupt
- nextMainISR = 0;
- }
-
- // Don't run the ISR faster than possible
- NOLESS(OCR1A, TCNT1 + 16);
-
- // Restore original ISR settings
- cli();
- SBI(TIMSK0, OCIE0B);
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- #endif // ADVANCE or LIN_ADVANCE
-
- void Stepper::init() {
-
- // Init Digipot Motor Current
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
- digipot_init();
- #endif
-
- // Init Microstepping Pins
- #if HAS_MICROSTEPS
- microstep_init();
- #endif
-
- // Init TMC Steppers
- #if ENABLED(HAVE_TMCDRIVER)
- tmc_init();
- #endif
-
- // Init TMC2130 Steppers
- #if ENABLED(HAVE_TMC2130DRIVER)
- tmc2130_init();
- #endif
-
- // Init L6470 Steppers
- #if ENABLED(HAVE_L6470DRIVER)
- L6470_init();
- #endif
-
- // Init Dir Pins
- #if HAS_X_DIR
- X_DIR_INIT;
- #endif
- #if HAS_X2_DIR
- X2_DIR_INIT;
- #endif
- #if HAS_Y_DIR
- Y_DIR_INIT;
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
- Y2_DIR_INIT;
- #endif
- #endif
- #if HAS_Z_DIR
- Z_DIR_INIT;
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
- Z2_DIR_INIT;
- #endif
- #endif
- #if HAS_E0_DIR
- E0_DIR_INIT;
- #endif
- #if HAS_E1_DIR
- E1_DIR_INIT;
- #endif
- #if HAS_E2_DIR
- E2_DIR_INIT;
- #endif
- #if HAS_E3_DIR
- E3_DIR_INIT;
- #endif
-
- // Init Enable Pins - steppers default to disabled.
- #if HAS_X_ENABLE
- X_ENABLE_INIT;
- if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
- #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
- X2_ENABLE_INIT;
- if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Y_ENABLE
- Y_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
- Y2_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Z_ENABLE
- Z_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
- Z2_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_E0_ENABLE
- E0_ENABLE_INIT;
- if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E1_ENABLE
- E1_ENABLE_INIT;
- if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E2_ENABLE
- E2_ENABLE_INIT;
- if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E3_ENABLE
- E3_ENABLE_INIT;
- if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
- #endif
-
- // Init endstops and pullups
- endstops.init();
-
- #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
- #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
- #define _DISABLE(axis) disable_## axis()
-
- #define AXIS_INIT(axis, AXIS, PIN) \
- _STEP_INIT(AXIS); \
- _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
- _DISABLE(axis)
-
- #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
-
- // Init Step Pins
- #if HAS_X_STEP
- #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
- X2_STEP_INIT;
- X2_STEP_WRITE(INVERT_X_STEP_PIN);
- #endif
- AXIS_INIT(x, X, X);
- #endif
-
- #if HAS_Y_STEP
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- Y2_STEP_INIT;
- Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
- #endif
- AXIS_INIT(y, Y, Y);
- #endif
-
- #if HAS_Z_STEP
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- Z2_STEP_INIT;
- Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
- #endif
- AXIS_INIT(z, Z, Z);
- #endif
-
- #if HAS_E0_STEP
- E_AXIS_INIT(0);
- #endif
- #if HAS_E1_STEP
- E_AXIS_INIT(1);
- #endif
- #if HAS_E2_STEP
- E_AXIS_INIT(2);
- #endif
- #if HAS_E3_STEP
- E_AXIS_INIT(3);
- #endif
-
- // waveform generation = 0100 = CTC
- CBI(TCCR1B, WGM13);
- SBI(TCCR1B, WGM12);
- CBI(TCCR1A, WGM11);
- CBI(TCCR1A, WGM10);
-
- // output mode = 00 (disconnected)
- TCCR1A &= ~(3 << COM1A0);
- TCCR1A &= ~(3 << COM1B0);
-
- // Set the timer pre-scaler
- // Generally we use a divider of 8, resulting in a 2MHz timer
- // frequency on a 16MHz MCU. If you are going to change this, be
- // sure to regenerate speed_lookuptable.h with
- // create_speed_lookuptable.py
- TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
-
- // Init Stepper ISR to 122 Hz for quick starting
- OCR1A = 0x4000;
- TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
-
- #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
-
- for (int i = 0; i < E_STEPPERS; i++) {
- e_steps[i] = 0;
- #if ENABLED(LIN_ADVANCE)
- current_adv_steps[i] = 0;
- #endif
- }
-
- #endif // ADVANCE or LIN_ADVANCE
-
- endstops.enable(true); // Start with endstops active. After homing they can be disabled
- sei();
-
- set_directions(); // Init directions to last_direction_bits = 0
- }
-
-
- /**
- * Block until all buffered steps are executed
- */
- void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
-
- /**
- * Set the stepper positions directly in steps
- *
- * The input is based on the typical per-axis XYZ steps.
- * For CORE machines XYZ needs to be translated to ABC.
- *
- * This allows get_axis_position_mm to correctly
- * derive the current XYZ position later on.
- */
- void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
-
- synchronize(); // Bad to set stepper counts in the middle of a move
-
- CRITICAL_SECTION_START;
-
- #if CORE_IS_XY
- // corexy positioning
- // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
- count_position[A_AXIS] = a + b;
- count_position[B_AXIS] = CORESIGN(a - b);
- count_position[Z_AXIS] = c;
- #elif CORE_IS_XZ
- // corexz planning
- count_position[A_AXIS] = a + c;
- count_position[Y_AXIS] = b;
- count_position[C_AXIS] = CORESIGN(a - c);
- #elif CORE_IS_YZ
- // coreyz planning
- count_position[X_AXIS] = a;
- count_position[B_AXIS] = b + c;
- count_position[C_AXIS] = CORESIGN(b - c);
- #else
- // default non-h-bot planning
- count_position[X_AXIS] = a;
- count_position[Y_AXIS] = b;
- count_position[Z_AXIS] = c;
- #endif
-
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- void Stepper::set_position(const AxisEnum &axis, const long &v) {
- CRITICAL_SECTION_START;
- count_position[axis] = v;
- CRITICAL_SECTION_END;
- }
-
- void Stepper::set_e_position(const long &e) {
- CRITICAL_SECTION_START;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- /**
- * Get a stepper's position in steps.
- */
- long Stepper::position(AxisEnum axis) {
- CRITICAL_SECTION_START;
- long count_pos = count_position[axis];
- CRITICAL_SECTION_END;
- return count_pos;
- }
-
- /**
- * Get an axis position according to stepper position(s)
- * For CORE machines apply translation from ABC to XYZ.
- */
- float Stepper::get_axis_position_mm(AxisEnum axis) {
- float axis_steps;
- #if IS_CORE
- // Requesting one of the "core" axes?
- if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
- CRITICAL_SECTION_START;
- // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
- // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
- axis_steps = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
- : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
- );
- CRITICAL_SECTION_END;
- }
- else
- axis_steps = position(axis);
- #else
- axis_steps = position(axis);
- #endif
- return axis_steps * planner.steps_to_mm[axis];
- }
-
- void Stepper::finish_and_disable() {
- synchronize();
- disable_all_steppers();
- }
-
- void Stepper::quick_stop() {
- cleaning_buffer_counter = 5000;
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- while (planner.blocks_queued()) planner.discard_current_block();
- current_block = NULL;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- #if ENABLED(ULTRA_LCD)
- planner.clear_block_buffer_runtime();
- #endif
- }
-
- void Stepper::endstop_triggered(AxisEnum axis) {
-
- #if IS_CORE
-
- endstops_trigsteps[axis] = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
- : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
- );
-
- #else // !COREXY && !COREXZ && !COREYZ
-
- endstops_trigsteps[axis] = count_position[axis];
-
- #endif // !COREXY && !COREXZ && !COREYZ
-
- kill_current_block();
- }
-
- void Stepper::report_positions() {
- CRITICAL_SECTION_START;
- long xpos = count_position[X_AXIS],
- ypos = count_position[Y_AXIS],
- zpos = count_position[Z_AXIS];
- CRITICAL_SECTION_END;
-
- #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
- SERIAL_PROTOCOLPGM(MSG_COUNT_A);
- #else
- SERIAL_PROTOCOLPGM(MSG_COUNT_X);
- #endif
- SERIAL_PROTOCOL(xpos);
-
- #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
- SERIAL_PROTOCOLPGM(" B:");
- #else
- SERIAL_PROTOCOLPGM(" Y:");
- #endif
- SERIAL_PROTOCOL(ypos);
-
- #if CORE_IS_XZ || CORE_IS_YZ
- SERIAL_PROTOCOLPGM(" C:");
- #else
- SERIAL_PROTOCOLPGM(" Z:");
- #endif
- SERIAL_PROTOCOL(zpos);
-
- SERIAL_EOL;
- }
-
- #if ENABLED(BABYSTEPPING)
-
- #define _ENABLE(axis) enable_## axis()
- #define _READ_DIR(AXIS) AXIS ##_DIR_READ
- #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
- #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
-
- #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
- _ENABLE(axis); \
- uint8_t old_pin = _READ_DIR(AXIS); \
- _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
- _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
- delayMicroseconds(2); \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
- _APPLY_DIR(AXIS, old_pin); \
- }
-
- // MUST ONLY BE CALLED BY AN ISR,
- // No other ISR should ever interrupt this!
- void Stepper::babystep(const AxisEnum axis, const bool direction) {
-
- switch (axis) {
-
- case X_AXIS:
- BABYSTEP_AXIS(x, X, false);
- break;
-
- case Y_AXIS:
- BABYSTEP_AXIS(y, Y, false);
- break;
-
- case Z_AXIS: {
-
- #if DISABLED(DELTA)
-
- BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
-
- #else // DELTA
-
- bool z_direction = direction ^ BABYSTEP_INVERT_Z;
-
- enable_x();
- enable_y();
- enable_z();
- uint8_t old_x_dir_pin = X_DIR_READ,
- old_y_dir_pin = Y_DIR_READ,
- old_z_dir_pin = Z_DIR_READ;
- //setup new step
- X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
- Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
- Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
- //perform step
- X_STEP_WRITE(!INVERT_X_STEP_PIN);
- Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
- delayMicroseconds(2);
- X_STEP_WRITE(INVERT_X_STEP_PIN);
- Y_STEP_WRITE(INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(INVERT_Z_STEP_PIN);
- //get old pin state back.
- X_DIR_WRITE(old_x_dir_pin);
- Y_DIR_WRITE(old_y_dir_pin);
- Z_DIR_WRITE(old_z_dir_pin);
-
- #endif
-
- } break;
-
- default: break;
- }
- }
-
- #endif //BABYSTEPPING
-
- /**
- * Software-controlled Stepper Motor Current
- */
-
- #if HAS_DIGIPOTSS
-
- // From Arduino DigitalPotControl example
- void Stepper::digitalPotWrite(int address, int value) {
- WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
- SPI.transfer(address); // send in the address and value via SPI:
- SPI.transfer(value);
- WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
- //delay(10);
- }
-
- #endif //HAS_DIGIPOTSS
-
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
-
- void Stepper::digipot_init() {
- #if HAS_DIGIPOTSS
- static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
- SPI.begin();
- SET_OUTPUT(DIGIPOTSS_PIN);
- for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
- //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
- digipot_current(i, digipot_motor_current[i]);
- }
- #elif HAS_MOTOR_CURRENT_PWM
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
- digipot_current(0, motor_current_setting[0]);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
- digipot_current(1, motor_current_setting[1]);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
- digipot_current(2, motor_current_setting[2]);
- #endif
- //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
- TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
- #endif
- }
-
- void Stepper::digipot_current(uint8_t driver, int current) {
- #if HAS_DIGIPOTSS
- const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
- digitalPotWrite(digipot_ch[driver], current);
- #elif HAS_MOTOR_CURRENT_PWM
- #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
- switch (driver) {
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
- #endif
- }
- #endif
- }
-
- #endif
-
- #if HAS_MICROSTEPS
-
- /**
- * Software-controlled Microstepping
- */
-
- void Stepper::microstep_init() {
- SET_OUTPUT(X_MS1_PIN);
- SET_OUTPUT(X_MS2_PIN);
- #if HAS_MICROSTEPS_Y
- SET_OUTPUT(Y_MS1_PIN);
- SET_OUTPUT(Y_MS2_PIN);
- #endif
- #if HAS_MICROSTEPS_Z
- SET_OUTPUT(Z_MS1_PIN);
- SET_OUTPUT(Z_MS2_PIN);
- #endif
- #if HAS_MICROSTEPS_E0
- SET_OUTPUT(E0_MS1_PIN);
- SET_OUTPUT(E0_MS2_PIN);
- #endif
- #if HAS_MICROSTEPS_E1
- SET_OUTPUT(E1_MS1_PIN);
- SET_OUTPUT(E1_MS2_PIN);
- #endif
- static const uint8_t microstep_modes[] = MICROSTEP_MODES;
- for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
- microstep_mode(i, microstep_modes[i]);
- }
-
- void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
- if (ms1 >= 0) switch (driver) {
- case 0: digitalWrite(X_MS1_PIN, ms1); break;
- #if HAS_MICROSTEPS_Y
- case 1: digitalWrite(Y_MS1_PIN, ms1); break;
- #endif
- #if HAS_MICROSTEPS_Z
- case 2: digitalWrite(Z_MS1_PIN, ms1); break;
- #endif
- #if HAS_MICROSTEPS_E0
- case 3: digitalWrite(E0_MS1_PIN, ms1); break;
- #endif
- #if HAS_MICROSTEPS_E1
- case 4: digitalWrite(E1_MS1_PIN, ms1); break;
- #endif
- }
- if (ms2 >= 0) switch (driver) {
- case 0: digitalWrite(X_MS2_PIN, ms2); break;
- #if HAS_MICROSTEPS_Y
- case 1: digitalWrite(Y_MS2_PIN, ms2); break;
- #endif
- #if HAS_MICROSTEPS_Z
- case 2: digitalWrite(Z_MS2_PIN, ms2); break;
- #endif
- #if HAS_MICROSTEPS_E0
- case 3: digitalWrite(E0_MS2_PIN, ms2); break;
- #endif
- #if HAS_MICROSTEPS_E1
- case 4: digitalWrite(E1_MS2_PIN, ms2); break;
- #endif
- }
- }
-
- void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
- switch (stepping_mode) {
- case 1: microstep_ms(driver, MICROSTEP1); break;
- case 2: microstep_ms(driver, MICROSTEP2); break;
- case 4: microstep_ms(driver, MICROSTEP4); break;
- case 8: microstep_ms(driver, MICROSTEP8); break;
- case 16: microstep_ms(driver, MICROSTEP16); break;
- }
- }
-
- void Stepper::microstep_readings() {
- SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
- SERIAL_PROTOCOLPGM("X: ");
- SERIAL_PROTOCOL(READ(X_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
- #if HAS_MICROSTEPS_Y
- SERIAL_PROTOCOLPGM("Y: ");
- SERIAL_PROTOCOL(READ(Y_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
- #endif
- #if HAS_MICROSTEPS_Z
- SERIAL_PROTOCOLPGM("Z: ");
- SERIAL_PROTOCOL(READ(Z_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
- #endif
- #if HAS_MICROSTEPS_E0
- SERIAL_PROTOCOLPGM("E0: ");
- SERIAL_PROTOCOL(READ(E0_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
- #endif
- #if HAS_MICROSTEPS_E1
- SERIAL_PROTOCOLPGM("E1: ");
- SERIAL_PROTOCOL(READ(E1_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
- #endif
- }
-
- #endif // HAS_MICROSTEPS
|