My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper/trinamic.cpp
  24. * Stepper driver indirection for Trinamic
  25. */
  26. #include "../../inc/MarlinConfig.h"
  27. #if HAS_TRINAMIC
  28. #include "trinamic.h"
  29. #include "../stepper.h"
  30. #include <HardwareSerial.h>
  31. #include <SPI.h>
  32. enum StealthIndex : uint8_t { STEALTH_AXIS_XY, STEALTH_AXIS_Z, STEALTH_AXIS_E };
  33. #define TMC_INIT(ST, STEALTH_INDEX) tmc_init(stepper##ST, ST##_CURRENT, ST##_MICROSTEPS, ST##_HYBRID_THRESHOLD, stealthchop_by_axis[STEALTH_INDEX])
  34. // IC = TMC model number
  35. // ST = Stepper object letter
  36. // L = Label characters
  37. // AI = Axis Enum Index
  38. // SWHW = SW/SH UART selection
  39. #if ENABLED(TMC_USE_SW_SPI)
  40. #define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), TMC_SW_MOSI, TMC_SW_MISO, TMC_SW_SCK, ST##_CHAIN_POS)
  41. #else
  42. #define __TMC_SPI_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(ST##_CS_PIN, float(ST##_RSENSE), ST##_CHAIN_POS)
  43. #endif
  44. #define TMC_UART_HW_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(&ST##_HARDWARE_SERIAL, float(ST##_RSENSE), ST##_SLAVE_ADDRESS)
  45. #define TMC_UART_SW_DEFINE(IC, ST, L, AI) TMCMarlin<IC##Stepper, L, AI> stepper##ST(ST##_SERIAL_RX_PIN, ST##_SERIAL_TX_PIN, float(ST##_RSENSE), ST##_SLAVE_ADDRESS, ST##_SERIAL_RX_PIN > -1)
  46. #define _TMC_SPI_DEFINE(IC, ST, AI) __TMC_SPI_DEFINE(IC, ST, TMC_##ST##_LABEL, AI)
  47. #define TMC_SPI_DEFINE(ST, AI) _TMC_SPI_DEFINE(ST##_DRIVER_TYPE, ST, AI##_AXIS)
  48. #define _TMC_UART_DEFINE(SWHW, IC, ST, AI) TMC_UART_##SWHW##_DEFINE(IC, ST, TMC_##ST##_LABEL, AI)
  49. #define TMC_UART_DEFINE(SWHW, ST, AI) _TMC_UART_DEFINE(SWHW, ST##_DRIVER_TYPE, ST, AI##_AXIS)
  50. #if ENABLED(DISTINCT_E_FACTORS) && E_STEPPERS > 1
  51. #define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E##AI)
  52. #define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E##AI)
  53. #else
  54. #define TMC_SPI_DEFINE_E(AI) TMC_SPI_DEFINE(E##AI, E)
  55. #define TMC_UART_DEFINE_E(SWHW, AI) TMC_UART_DEFINE(SWHW, E##AI, E)
  56. #endif
  57. // Stepper objects of TMC2130/TMC2160/TMC2660/TMC5130/TMC5160 steppers used
  58. #if AXIS_HAS_SPI(X)
  59. TMC_SPI_DEFINE(X, X);
  60. #endif
  61. #if AXIS_HAS_SPI(X2)
  62. TMC_SPI_DEFINE(X2, X);
  63. #endif
  64. #if AXIS_HAS_SPI(Y)
  65. TMC_SPI_DEFINE(Y, Y);
  66. #endif
  67. #if AXIS_HAS_SPI(Y2)
  68. TMC_SPI_DEFINE(Y2, Y);
  69. #endif
  70. #if AXIS_HAS_SPI(Z)
  71. TMC_SPI_DEFINE(Z, Z);
  72. #endif
  73. #if AXIS_HAS_SPI(Z2)
  74. TMC_SPI_DEFINE(Z2, Z);
  75. #endif
  76. #if AXIS_HAS_SPI(Z3)
  77. TMC_SPI_DEFINE(Z3, Z);
  78. #endif
  79. #if AXIS_HAS_SPI(Z4)
  80. TMC_SPI_DEFINE(Z4, Z);
  81. #endif
  82. #if AXIS_HAS_SPI(E0)
  83. TMC_SPI_DEFINE_E(0);
  84. #endif
  85. #if AXIS_HAS_SPI(E1)
  86. TMC_SPI_DEFINE_E(1);
  87. #endif
  88. #if AXIS_HAS_SPI(E2)
  89. TMC_SPI_DEFINE_E(2);
  90. #endif
  91. #if AXIS_HAS_SPI(E3)
  92. TMC_SPI_DEFINE_E(3);
  93. #endif
  94. #if AXIS_HAS_SPI(E4)
  95. TMC_SPI_DEFINE_E(4);
  96. #endif
  97. #if AXIS_HAS_SPI(E5)
  98. TMC_SPI_DEFINE_E(5);
  99. #endif
  100. #if AXIS_HAS_SPI(E6)
  101. TMC_SPI_DEFINE_E(6);
  102. #endif
  103. #if AXIS_HAS_SPI(E7)
  104. TMC_SPI_DEFINE_E(7);
  105. #endif
  106. #ifndef TMC_BAUD_RATE
  107. #define TMC_BAUD_RATE 115200
  108. #endif
  109. #if HAS_DRIVER(TMC2130)
  110. template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
  111. void tmc_init(TMCMarlin<TMC2130Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) {
  112. st.begin();
  113. CHOPCONF_t chopconf{0};
  114. chopconf.tbl = 1;
  115. chopconf.toff = chopper_timing.toff;
  116. chopconf.intpol = INTERPOLATE;
  117. chopconf.hend = chopper_timing.hend + 3;
  118. chopconf.hstrt = chopper_timing.hstrt - 1;
  119. #if ENABLED(SQUARE_WAVE_STEPPING)
  120. chopconf.dedge = true;
  121. #endif
  122. st.CHOPCONF(chopconf.sr);
  123. st.rms_current(mA, HOLD_MULTIPLIER);
  124. st.microsteps(microsteps);
  125. st.iholddelay(10);
  126. st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
  127. st.en_pwm_mode(stealth);
  128. st.stored.stealthChop_enabled = stealth;
  129. PWMCONF_t pwmconf{0};
  130. pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk
  131. pwmconf.pwm_autoscale = true;
  132. pwmconf.pwm_grad = 5;
  133. pwmconf.pwm_ampl = 180;
  134. st.PWMCONF(pwmconf.sr);
  135. #if ENABLED(HYBRID_THRESHOLD)
  136. st.set_pwm_thrs(hyb_thrs);
  137. #else
  138. UNUSED(hyb_thrs);
  139. #endif
  140. st.GSTAT(); // Clear GSTAT
  141. }
  142. #endif // TMC2130
  143. #if HAS_DRIVER(TMC2160)
  144. template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
  145. void tmc_init(TMCMarlin<TMC2160Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) {
  146. st.begin();
  147. CHOPCONF_t chopconf{0};
  148. chopconf.tbl = 1;
  149. chopconf.toff = chopper_timing.toff;
  150. chopconf.intpol = INTERPOLATE;
  151. chopconf.hend = chopper_timing.hend + 3;
  152. chopconf.hstrt = chopper_timing.hstrt - 1;
  153. #if ENABLED(SQUARE_WAVE_STEPPING)
  154. chopconf.dedge = true;
  155. #endif
  156. st.CHOPCONF(chopconf.sr);
  157. st.rms_current(mA, HOLD_MULTIPLIER);
  158. st.microsteps(microsteps);
  159. st.iholddelay(10);
  160. st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
  161. st.en_pwm_mode(stealth);
  162. st.stored.stealthChop_enabled = stealth;
  163. TMC2160_n::PWMCONF_t pwmconf{0};
  164. pwmconf.pwm_lim = 12;
  165. pwmconf.pwm_reg = 8;
  166. pwmconf.pwm_autograd = true;
  167. pwmconf.pwm_autoscale = true;
  168. pwmconf.pwm_freq = 0b01;
  169. pwmconf.pwm_grad = 14;
  170. pwmconf.pwm_ofs = 36;
  171. st.PWMCONF(pwmconf.sr);
  172. #if ENABLED(HYBRID_THRESHOLD)
  173. st.set_pwm_thrs(hyb_thrs);
  174. #else
  175. UNUSED(hyb_thrs);
  176. #endif
  177. st.GSTAT(); // Clear GSTAT
  178. }
  179. #endif // TMC2160
  180. //
  181. // TMC2208/2209 Driver objects and inits
  182. //
  183. #if HAS_TMC220x
  184. #if AXIS_HAS_UART(X)
  185. #ifdef X_HARDWARE_SERIAL
  186. TMC_UART_DEFINE(HW, X, X);
  187. #else
  188. TMC_UART_DEFINE(SW, X, X);
  189. #endif
  190. #endif
  191. #if AXIS_HAS_UART(X2)
  192. #ifdef X2_HARDWARE_SERIAL
  193. TMC_UART_DEFINE(HW, X2, X);
  194. #else
  195. TMC_UART_DEFINE(SW, X2, X);
  196. #endif
  197. #endif
  198. #if AXIS_HAS_UART(Y)
  199. #ifdef Y_HARDWARE_SERIAL
  200. TMC_UART_DEFINE(HW, Y, Y);
  201. #else
  202. TMC_UART_DEFINE(SW, Y, Y);
  203. #endif
  204. #endif
  205. #if AXIS_HAS_UART(Y2)
  206. #ifdef Y2_HARDWARE_SERIAL
  207. TMC_UART_DEFINE(HW, Y2, Y);
  208. #else
  209. TMC_UART_DEFINE(SW, Y2, Y);
  210. #endif
  211. #endif
  212. #if AXIS_HAS_UART(Z)
  213. #ifdef Z_HARDWARE_SERIAL
  214. TMC_UART_DEFINE(HW, Z, Z);
  215. #else
  216. TMC_UART_DEFINE(SW, Z, Z);
  217. #endif
  218. #endif
  219. #if AXIS_HAS_UART(Z2)
  220. #ifdef Z2_HARDWARE_SERIAL
  221. TMC_UART_DEFINE(HW, Z2, Z);
  222. #else
  223. TMC_UART_DEFINE(SW, Z2, Z);
  224. #endif
  225. #endif
  226. #if AXIS_HAS_UART(Z3)
  227. #ifdef Z3_HARDWARE_SERIAL
  228. TMC_UART_DEFINE(HW, Z3, Z);
  229. #else
  230. TMC_UART_DEFINE(SW, Z3, Z);
  231. #endif
  232. #endif
  233. #if AXIS_HAS_UART(Z4)
  234. #ifdef Z4_HARDWARE_SERIAL
  235. TMC_UART_DEFINE(HW, Z4, Z);
  236. #else
  237. TMC_UART_DEFINE(SW, Z4, Z);
  238. #endif
  239. #endif
  240. #if AXIS_HAS_UART(E0)
  241. #ifdef E0_HARDWARE_SERIAL
  242. TMC_UART_DEFINE_E(HW, 0);
  243. #else
  244. TMC_UART_DEFINE_E(SW, 0);
  245. #endif
  246. #endif
  247. #if AXIS_HAS_UART(E1)
  248. #ifdef E1_HARDWARE_SERIAL
  249. TMC_UART_DEFINE_E(HW, 1);
  250. #else
  251. TMC_UART_DEFINE_E(SW, 1);
  252. #endif
  253. #endif
  254. #if AXIS_HAS_UART(E2)
  255. #ifdef E2_HARDWARE_SERIAL
  256. TMC_UART_DEFINE_E(HW, 2);
  257. #else
  258. TMC_UART_DEFINE_E(SW, 2);
  259. #endif
  260. #endif
  261. #if AXIS_HAS_UART(E3)
  262. #ifdef E3_HARDWARE_SERIAL
  263. TMC_UART_DEFINE_E(HW, 3);
  264. #else
  265. TMC_UART_DEFINE_E(SW, 3);
  266. #endif
  267. #endif
  268. #if AXIS_HAS_UART(E4)
  269. #ifdef E4_HARDWARE_SERIAL
  270. TMC_UART_DEFINE_E(HW, 4);
  271. #else
  272. TMC_UART_DEFINE_E(SW, 4);
  273. #endif
  274. #endif
  275. #if AXIS_HAS_UART(E5)
  276. #ifdef E5_HARDWARE_SERIAL
  277. TMC_UART_DEFINE_E(HW, 5);
  278. #else
  279. TMC_UART_DEFINE_E(SW, 5);
  280. #endif
  281. #endif
  282. #if AXIS_HAS_UART(E6)
  283. #ifdef E6_HARDWARE_SERIAL
  284. TMC_UART_DEFINE_E(HW, 6);
  285. #else
  286. TMC_UART_DEFINE_E(SW, 6);
  287. #endif
  288. #endif
  289. #if AXIS_HAS_UART(E7)
  290. #ifdef E7_HARDWARE_SERIAL
  291. TMC_UART_DEFINE_E(HW, 7);
  292. #else
  293. TMC_UART_DEFINE_E(SW, 7);
  294. #endif
  295. #endif
  296. void tmc_serial_begin() {
  297. #if AXIS_HAS_UART(X)
  298. #ifdef X_HARDWARE_SERIAL
  299. X_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  300. #else
  301. stepperX.beginSerial(TMC_BAUD_RATE);
  302. #endif
  303. #endif
  304. #if AXIS_HAS_UART(X2)
  305. #ifdef X2_HARDWARE_SERIAL
  306. X2_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  307. #else
  308. stepperX2.beginSerial(TMC_BAUD_RATE);
  309. #endif
  310. #endif
  311. #if AXIS_HAS_UART(Y)
  312. #ifdef Y_HARDWARE_SERIAL
  313. Y_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  314. #else
  315. stepperY.beginSerial(TMC_BAUD_RATE);
  316. #endif
  317. #endif
  318. #if AXIS_HAS_UART(Y2)
  319. #ifdef Y2_HARDWARE_SERIAL
  320. Y2_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  321. #else
  322. stepperY2.beginSerial(TMC_BAUD_RATE);
  323. #endif
  324. #endif
  325. #if AXIS_HAS_UART(Z)
  326. #ifdef Z_HARDWARE_SERIAL
  327. Z_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  328. #else
  329. stepperZ.beginSerial(TMC_BAUD_RATE);
  330. #endif
  331. #endif
  332. #if AXIS_HAS_UART(Z2)
  333. #ifdef Z2_HARDWARE_SERIAL
  334. Z2_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  335. #else
  336. stepperZ2.beginSerial(TMC_BAUD_RATE);
  337. #endif
  338. #endif
  339. #if AXIS_HAS_UART(Z3)
  340. #ifdef Z3_HARDWARE_SERIAL
  341. Z3_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  342. #else
  343. stepperZ3.beginSerial(TMC_BAUD_RATE);
  344. #endif
  345. #endif
  346. #if AXIS_HAS_UART(Z4)
  347. #ifdef Z4_HARDWARE_SERIAL
  348. Z4_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  349. #else
  350. stepperZ4.beginSerial(TMC_BAUD_RATE);
  351. #endif
  352. #endif
  353. #if AXIS_HAS_UART(E0)
  354. #ifdef E0_HARDWARE_SERIAL
  355. E0_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  356. #else
  357. stepperE0.beginSerial(TMC_BAUD_RATE);
  358. #endif
  359. #endif
  360. #if AXIS_HAS_UART(E1)
  361. #ifdef E1_HARDWARE_SERIAL
  362. E1_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  363. #else
  364. stepperE1.beginSerial(TMC_BAUD_RATE);
  365. #endif
  366. #endif
  367. #if AXIS_HAS_UART(E2)
  368. #ifdef E2_HARDWARE_SERIAL
  369. E2_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  370. #else
  371. stepperE2.beginSerial(TMC_BAUD_RATE);
  372. #endif
  373. #endif
  374. #if AXIS_HAS_UART(E3)
  375. #ifdef E3_HARDWARE_SERIAL
  376. E3_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  377. #else
  378. stepperE3.beginSerial(TMC_BAUD_RATE);
  379. #endif
  380. #endif
  381. #if AXIS_HAS_UART(E4)
  382. #ifdef E4_HARDWARE_SERIAL
  383. E4_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  384. #else
  385. stepperE4.beginSerial(TMC_BAUD_RATE);
  386. #endif
  387. #endif
  388. #if AXIS_HAS_UART(E5)
  389. #ifdef E5_HARDWARE_SERIAL
  390. E5_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  391. #else
  392. stepperE5.beginSerial(TMC_BAUD_RATE);
  393. #endif
  394. #endif
  395. #if AXIS_HAS_UART(E6)
  396. #ifdef E6_HARDWARE_SERIAL
  397. E6_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  398. #else
  399. stepperE6.beginSerial(TMC_BAUD_RATE);
  400. #endif
  401. #endif
  402. #if AXIS_HAS_UART(E7)
  403. #ifdef E7_HARDWARE_SERIAL
  404. E7_HARDWARE_SERIAL.begin(TMC_BAUD_RATE);
  405. #else
  406. stepperE7.beginSerial(TMC_BAUD_RATE);
  407. #endif
  408. #endif
  409. }
  410. #endif
  411. #if HAS_DRIVER(TMC2208)
  412. template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
  413. void tmc_init(TMCMarlin<TMC2208Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) {
  414. TMC2208_n::GCONF_t gconf{0};
  415. gconf.pdn_disable = true; // Use UART
  416. gconf.mstep_reg_select = true; // Select microsteps with UART
  417. gconf.i_scale_analog = false;
  418. gconf.en_spreadcycle = !stealth;
  419. st.GCONF(gconf.sr);
  420. st.stored.stealthChop_enabled = stealth;
  421. TMC2208_n::CHOPCONF_t chopconf{0};
  422. chopconf.tbl = 0b01; // blank_time = 24
  423. chopconf.toff = chopper_timing.toff;
  424. chopconf.intpol = INTERPOLATE;
  425. chopconf.hend = chopper_timing.hend + 3;
  426. chopconf.hstrt = chopper_timing.hstrt - 1;
  427. #if ENABLED(SQUARE_WAVE_STEPPING)
  428. chopconf.dedge = true;
  429. #endif
  430. st.CHOPCONF(chopconf.sr);
  431. st.rms_current(mA, HOLD_MULTIPLIER);
  432. st.microsteps(microsteps);
  433. st.iholddelay(10);
  434. st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
  435. TMC2208_n::PWMCONF_t pwmconf{0};
  436. pwmconf.pwm_lim = 12;
  437. pwmconf.pwm_reg = 8;
  438. pwmconf.pwm_autograd = true;
  439. pwmconf.pwm_autoscale = true;
  440. pwmconf.pwm_freq = 0b01;
  441. pwmconf.pwm_grad = 14;
  442. pwmconf.pwm_ofs = 36;
  443. st.PWMCONF(pwmconf.sr);
  444. #if ENABLED(HYBRID_THRESHOLD)
  445. st.set_pwm_thrs(hyb_thrs);
  446. #else
  447. UNUSED(hyb_thrs);
  448. #endif
  449. st.GSTAT(0b111); // Clear
  450. delay(200);
  451. }
  452. #endif // TMC2208
  453. #if HAS_DRIVER(TMC2209)
  454. template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
  455. void tmc_init(TMCMarlin<TMC2209Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) {
  456. TMC2208_n::GCONF_t gconf{0};
  457. gconf.pdn_disable = true; // Use UART
  458. gconf.mstep_reg_select = true; // Select microsteps with UART
  459. gconf.i_scale_analog = false;
  460. gconf.en_spreadcycle = !stealth;
  461. st.GCONF(gconf.sr);
  462. st.stored.stealthChop_enabled = stealth;
  463. TMC2208_n::CHOPCONF_t chopconf{0};
  464. chopconf.tbl = 0b01; // blank_time = 24
  465. chopconf.toff = chopper_timing.toff;
  466. chopconf.intpol = INTERPOLATE;
  467. chopconf.hend = chopper_timing.hend + 3;
  468. chopconf.hstrt = chopper_timing.hstrt - 1;
  469. #if ENABLED(SQUARE_WAVE_STEPPING)
  470. chopconf.dedge = true;
  471. #endif
  472. st.CHOPCONF(chopconf.sr);
  473. st.rms_current(mA, HOLD_MULTIPLIER);
  474. st.microsteps(microsteps);
  475. st.iholddelay(10);
  476. st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
  477. TMC2208_n::PWMCONF_t pwmconf{0};
  478. pwmconf.pwm_lim = 12;
  479. pwmconf.pwm_reg = 8;
  480. pwmconf.pwm_autograd = true;
  481. pwmconf.pwm_autoscale = true;
  482. pwmconf.pwm_freq = 0b01;
  483. pwmconf.pwm_grad = 14;
  484. pwmconf.pwm_ofs = 36;
  485. st.PWMCONF(pwmconf.sr);
  486. #if ENABLED(HYBRID_THRESHOLD)
  487. st.set_pwm_thrs(hyb_thrs);
  488. #else
  489. UNUSED(hyb_thrs);
  490. #endif
  491. st.GSTAT(0b111); // Clear
  492. delay(200);
  493. }
  494. #endif // TMC2209
  495. #if HAS_DRIVER(TMC2660)
  496. template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
  497. void tmc_init(TMCMarlin<TMC2660Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t, const bool) {
  498. st.begin();
  499. TMC2660_n::CHOPCONF_t chopconf{0};
  500. chopconf.tbl = 1;
  501. chopconf.toff = chopper_timing.toff;
  502. chopconf.hend = chopper_timing.hend + 3;
  503. chopconf.hstrt = chopper_timing.hstrt - 1;
  504. st.CHOPCONF(chopconf.sr);
  505. st.sdoff(0);
  506. st.rms_current(mA);
  507. st.microsteps(microsteps);
  508. #if ENABLED(SQUARE_WAVE_STEPPING)
  509. st.dedge(true);
  510. #endif
  511. st.intpol(INTERPOLATE);
  512. st.diss2g(true); // Disable short to ground protection. Too many false readings?
  513. #if ENABLED(TMC_DEBUG)
  514. st.rdsel(0b01);
  515. #endif
  516. }
  517. #endif // TMC2660
  518. #if HAS_DRIVER(TMC5130)
  519. template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
  520. void tmc_init(TMCMarlin<TMC5130Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) {
  521. st.begin();
  522. CHOPCONF_t chopconf{0};
  523. chopconf.tbl = 1;
  524. chopconf.toff = chopper_timing.toff;
  525. chopconf.intpol = INTERPOLATE;
  526. chopconf.hend = chopper_timing.hend + 3;
  527. chopconf.hstrt = chopper_timing.hstrt - 1;
  528. #if ENABLED(SQUARE_WAVE_STEPPING)
  529. chopconf.dedge = true;
  530. #endif
  531. st.CHOPCONF(chopconf.sr);
  532. st.rms_current(mA, HOLD_MULTIPLIER);
  533. st.microsteps(microsteps);
  534. st.iholddelay(10);
  535. st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
  536. st.en_pwm_mode(stealth);
  537. st.stored.stealthChop_enabled = stealth;
  538. PWMCONF_t pwmconf{0};
  539. pwmconf.pwm_freq = 0b01; // f_pwm = 2/683 f_clk
  540. pwmconf.pwm_autoscale = true;
  541. pwmconf.pwm_grad = 5;
  542. pwmconf.pwm_ampl = 180;
  543. st.PWMCONF(pwmconf.sr);
  544. #if ENABLED(HYBRID_THRESHOLD)
  545. st.set_pwm_thrs(hyb_thrs);
  546. #else
  547. UNUSED(hyb_thrs);
  548. #endif
  549. st.GSTAT(); // Clear GSTAT
  550. }
  551. #endif // TMC5130
  552. #if HAS_DRIVER(TMC5160)
  553. template<char AXIS_LETTER, char DRIVER_ID, AxisEnum AXIS_ID>
  554. void tmc_init(TMCMarlin<TMC5160Stepper, AXIS_LETTER, DRIVER_ID, AXIS_ID> &st, const uint16_t mA, const uint16_t microsteps, const uint32_t hyb_thrs, const bool stealth) {
  555. st.begin();
  556. CHOPCONF_t chopconf{0};
  557. chopconf.tbl = 1;
  558. chopconf.toff = chopper_timing.toff;
  559. chopconf.intpol = INTERPOLATE;
  560. chopconf.hend = chopper_timing.hend + 3;
  561. chopconf.hstrt = chopper_timing.hstrt - 1;
  562. #if ENABLED(SQUARE_WAVE_STEPPING)
  563. chopconf.dedge = true;
  564. #endif
  565. st.CHOPCONF(chopconf.sr);
  566. st.rms_current(mA, HOLD_MULTIPLIER);
  567. st.microsteps(microsteps);
  568. st.iholddelay(10);
  569. st.TPOWERDOWN(128); // ~2s until driver lowers to hold current
  570. st.en_pwm_mode(stealth);
  571. st.stored.stealthChop_enabled = stealth;
  572. TMC2160_n::PWMCONF_t pwmconf{0};
  573. pwmconf.pwm_lim = 12;
  574. pwmconf.pwm_reg = 8;
  575. pwmconf.pwm_autograd = true;
  576. pwmconf.pwm_autoscale = true;
  577. pwmconf.pwm_freq = 0b01;
  578. pwmconf.pwm_grad = 14;
  579. pwmconf.pwm_ofs = 36;
  580. st.PWMCONF(pwmconf.sr);
  581. #if ENABLED(HYBRID_THRESHOLD)
  582. st.set_pwm_thrs(hyb_thrs);
  583. #else
  584. UNUSED(hyb_thrs);
  585. #endif
  586. st.GSTAT(); // Clear GSTAT
  587. }
  588. #endif // TMC5160
  589. void restore_trinamic_drivers() {
  590. #if AXIS_IS_TMC(X)
  591. stepperX.push();
  592. #endif
  593. #if AXIS_IS_TMC(X2)
  594. stepperX2.push();
  595. #endif
  596. #if AXIS_IS_TMC(Y)
  597. stepperY.push();
  598. #endif
  599. #if AXIS_IS_TMC(Y2)
  600. stepperY2.push();
  601. #endif
  602. #if AXIS_IS_TMC(Z)
  603. stepperZ.push();
  604. #endif
  605. #if AXIS_IS_TMC(Z2)
  606. stepperZ2.push();
  607. #endif
  608. #if AXIS_IS_TMC(Z3)
  609. stepperZ3.push();
  610. #endif
  611. #if AXIS_IS_TMC(Z4)
  612. stepperZ4.push();
  613. #endif
  614. #if AXIS_IS_TMC(E0)
  615. stepperE0.push();
  616. #endif
  617. #if AXIS_IS_TMC(E1)
  618. stepperE1.push();
  619. #endif
  620. #if AXIS_IS_TMC(E2)
  621. stepperE2.push();
  622. #endif
  623. #if AXIS_IS_TMC(E3)
  624. stepperE3.push();
  625. #endif
  626. #if AXIS_IS_TMC(E4)
  627. stepperE4.push();
  628. #endif
  629. #if AXIS_IS_TMC(E5)
  630. stepperE5.push();
  631. #endif
  632. #if AXIS_IS_TMC(E6)
  633. stepperE6.push();
  634. #endif
  635. #if AXIS_IS_TMC(E7)
  636. stepperE7.push();
  637. #endif
  638. }
  639. void reset_trinamic_drivers() {
  640. static constexpr bool stealthchop_by_axis[] = {
  641. #if ENABLED(STEALTHCHOP_XY)
  642. true
  643. #else
  644. false
  645. #endif
  646. ,
  647. #if ENABLED(STEALTHCHOP_Z)
  648. true
  649. #else
  650. false
  651. #endif
  652. ,
  653. #if ENABLED(STEALTHCHOP_E)
  654. true
  655. #else
  656. false
  657. #endif
  658. };
  659. #if AXIS_IS_TMC(X)
  660. TMC_INIT(X, STEALTH_AXIS_XY);
  661. #endif
  662. #if AXIS_IS_TMC(X2)
  663. TMC_INIT(X2, STEALTH_AXIS_XY);
  664. #endif
  665. #if AXIS_IS_TMC(Y)
  666. TMC_INIT(Y, STEALTH_AXIS_XY);
  667. #endif
  668. #if AXIS_IS_TMC(Y2)
  669. TMC_INIT(Y2, STEALTH_AXIS_XY);
  670. #endif
  671. #if AXIS_IS_TMC(Z)
  672. TMC_INIT(Z, STEALTH_AXIS_Z);
  673. #endif
  674. #if AXIS_IS_TMC(Z2)
  675. TMC_INIT(Z2, STEALTH_AXIS_Z);
  676. #endif
  677. #if AXIS_IS_TMC(Z3)
  678. TMC_INIT(Z3, STEALTH_AXIS_Z);
  679. #endif
  680. #if AXIS_IS_TMC(Z4)
  681. TMC_INIT(Z4, STEALTH_AXIS_Z);
  682. #endif
  683. #if AXIS_IS_TMC(E0)
  684. TMC_INIT(E0, STEALTH_AXIS_E);
  685. #endif
  686. #if AXIS_IS_TMC(E1)
  687. TMC_INIT(E1, STEALTH_AXIS_E);
  688. #endif
  689. #if AXIS_IS_TMC(E2)
  690. TMC_INIT(E2, STEALTH_AXIS_E);
  691. #endif
  692. #if AXIS_IS_TMC(E3)
  693. TMC_INIT(E3, STEALTH_AXIS_E);
  694. #endif
  695. #if AXIS_IS_TMC(E4)
  696. TMC_INIT(E4, STEALTH_AXIS_E);
  697. #endif
  698. #if AXIS_IS_TMC(E5)
  699. TMC_INIT(E5, STEALTH_AXIS_E);
  700. #endif
  701. #if AXIS_IS_TMC(E6)
  702. TMC_INIT(E6, STEALTH_AXIS_E);
  703. #endif
  704. #if AXIS_IS_TMC(E7)
  705. TMC_INIT(E7, STEALTH_AXIS_E);
  706. #endif
  707. #if USE_SENSORLESS
  708. #if X_SENSORLESS
  709. #if AXIS_HAS_STALLGUARD(X)
  710. stepperX.homing_threshold(X_STALL_SENSITIVITY);
  711. #endif
  712. #if AXIS_HAS_STALLGUARD(X2) && !X2_SENSORLESS
  713. stepperX2.homing_threshold(X_STALL_SENSITIVITY);
  714. #endif
  715. #endif
  716. #if X2_SENSORLESS
  717. stepperX2.homing_threshold(X2_STALL_SENSITIVITY);
  718. #endif
  719. #if Y_SENSORLESS
  720. #if AXIS_HAS_STALLGUARD(Y)
  721. stepperY.homing_threshold(Y_STALL_SENSITIVITY);
  722. #endif
  723. #if AXIS_HAS_STALLGUARD(Y2)
  724. stepperY2.homing_threshold(Y_STALL_SENSITIVITY);
  725. #endif
  726. #endif
  727. #if Z_SENSORLESS
  728. #if AXIS_HAS_STALLGUARD(Z)
  729. stepperZ.homing_threshold(Z_STALL_SENSITIVITY);
  730. #endif
  731. #if AXIS_HAS_STALLGUARD(Z2)
  732. stepperZ2.homing_threshold(Z_STALL_SENSITIVITY);
  733. #endif
  734. #if AXIS_HAS_STALLGUARD(Z3)
  735. stepperZ3.homing_threshold(Z_STALL_SENSITIVITY);
  736. #endif
  737. #if AXIS_HAS_STALLGUARD(Z4)
  738. stepperZ4.homing_threshold(Z_STALL_SENSITIVITY);
  739. #endif
  740. #endif
  741. #endif
  742. #ifdef TMC_ADV
  743. TMC_ADV()
  744. #endif
  745. stepper.set_directions();
  746. }
  747. #endif // HAS_TRINAMIC