My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * endstops.cpp - A singleton object to manage endstops
  24. */
  25. #include "Marlin.h"
  26. #include "cardreader.h"
  27. #include "endstops.h"
  28. #include "temperature.h"
  29. #include "stepper.h"
  30. #include "ultralcd.h"
  31. // TEST_ENDSTOP: test the old and the current status of an endstop
  32. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP))
  33. Endstops endstops;
  34. // public:
  35. bool Endstops::enabled = true,
  36. Endstops::enabled_globally =
  37. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  38. (true)
  39. #else
  40. (false)
  41. #endif
  42. ;
  43. volatile char Endstops::endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
  44. #if ENABLED(Z_DUAL_ENDSTOPS)
  45. uint16_t
  46. #else
  47. byte
  48. #endif
  49. Endstops::current_endstop_bits = 0,
  50. Endstops::old_endstop_bits = 0;
  51. #if HAS_BED_PROBE
  52. volatile bool Endstops::z_probe_enabled = false;
  53. #endif
  54. /**
  55. * Class and Instance Methods
  56. */
  57. void Endstops::init() {
  58. #if HAS_X_MIN
  59. #if ENABLED(ENDSTOPPULLUP_XMIN)
  60. SET_INPUT_PULLUP(X_MIN_PIN);
  61. #else
  62. SET_INPUT(X_MIN_PIN);
  63. #endif
  64. #endif
  65. #if HAS_Y_MIN
  66. #if ENABLED(ENDSTOPPULLUP_YMIN)
  67. SET_INPUT_PULLUP(Y_MIN_PIN);
  68. #else
  69. SET_INPUT(Y_MIN_PIN);
  70. #endif
  71. #endif
  72. #if HAS_Z_MIN
  73. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  74. SET_INPUT_PULLUP(Z_MIN_PIN);
  75. #else
  76. SET_INPUT(Z_MIN_PIN);
  77. #endif
  78. #endif
  79. #if HAS_Z2_MIN
  80. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  81. SET_INPUT_PULLUP(Z2_MIN_PIN);
  82. #else
  83. SET_INPUT(Z2_MIN_PIN);
  84. #endif
  85. #endif
  86. #if HAS_X_MAX
  87. #if ENABLED(ENDSTOPPULLUP_XMAX)
  88. SET_INPUT_PULLUP(X_MAX_PIN);
  89. #else
  90. SET_INPUT(X_MAX_PIN);
  91. #endif
  92. #endif
  93. #if HAS_Y_MAX
  94. #if ENABLED(ENDSTOPPULLUP_YMAX)
  95. SET_INPUT_PULLUP(Y_MAX_PIN);
  96. #else
  97. SET_INPUT(Y_MAX_PIN);
  98. #endif
  99. #endif
  100. #if HAS_Z_MAX
  101. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  102. SET_INPUT_PULLUP(Z_MAX_PIN);
  103. #else
  104. SET_INPUT(Z_MAX_PIN);
  105. #endif
  106. #endif
  107. #if HAS_Z2_MAX
  108. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  109. SET_INPUT_PULLUP(Z2_MAX_PIN);
  110. #else
  111. SET_INPUT(Z2_MAX_PIN);
  112. #endif
  113. #endif
  114. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  115. #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
  116. SET_INPUT_PULLUP(Z_MIN_PROBE_PIN);
  117. #else
  118. SET_INPUT(Z_MIN_PROBE_PIN);
  119. #endif
  120. #endif
  121. } // Endstops::init
  122. void Endstops::report_state() {
  123. if (endstop_hit_bits) {
  124. #if ENABLED(ULTRA_LCD)
  125. char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
  126. #define _SET_STOP_CHAR(A,C) (chr## A = C)
  127. #else
  128. #define _SET_STOP_CHAR(A,C) ;
  129. #endif
  130. #define _ENDSTOP_HIT_ECHO(A,C) do{ \
  131. SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \
  132. _SET_STOP_CHAR(A,C); }while(0)
  133. #define _ENDSTOP_HIT_TEST(A,C) \
  134. if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \
  135. _ENDSTOP_HIT_ECHO(A,C)
  136. SERIAL_ECHO_START;
  137. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  138. _ENDSTOP_HIT_TEST(X, 'X');
  139. _ENDSTOP_HIT_TEST(Y, 'Y');
  140. _ENDSTOP_HIT_TEST(Z, 'Z');
  141. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  142. #define P_AXIS Z_AXIS
  143. if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
  144. #endif
  145. SERIAL_EOL;
  146. #if ENABLED(ULTRA_LCD)
  147. char msg[3 * strlen(MSG_LCD_ENDSTOPS) + 8 + 1]; // Room for a UTF 8 string
  148. sprintf_P(msg, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
  149. lcd_setstatus(msg);
  150. #endif
  151. hit_on_purpose();
  152. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
  153. if (stepper.abort_on_endstop_hit) {
  154. card.sdprinting = false;
  155. card.closefile();
  156. quickstop_stepper();
  157. thermalManager.disable_all_heaters(); // switch off all heaters.
  158. }
  159. #endif
  160. }
  161. } // Endstops::report_state
  162. void Endstops::M119() {
  163. SERIAL_PROTOCOLLNPGM(MSG_M119_REPORT);
  164. #if HAS_X_MIN
  165. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  166. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  167. #endif
  168. #if HAS_X_MAX
  169. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  170. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  171. #endif
  172. #if HAS_Y_MIN
  173. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  174. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  175. #endif
  176. #if HAS_Y_MAX
  177. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  178. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  179. #endif
  180. #if HAS_Z_MIN
  181. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  182. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  183. #endif
  184. #if HAS_Z2_MIN
  185. SERIAL_PROTOCOLPGM(MSG_Z2_MIN);
  186. SERIAL_PROTOCOLLN(((READ(Z2_MIN_PIN)^Z2_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  187. #endif
  188. #if HAS_Z_MAX
  189. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  190. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  191. #endif
  192. #if HAS_Z2_MAX
  193. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  194. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  195. #endif
  196. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  197. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  198. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  199. #endif
  200. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  201. SERIAL_PROTOCOLPGM(MSG_FILAMENT_RUNOUT_SENSOR);
  202. SERIAL_PROTOCOLLN(((READ(FIL_RUNOUT_PIN)^FIL_RUNOUT_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  203. #endif
  204. } // Endstops::M119
  205. #if ENABLED(Z_DUAL_ENDSTOPS)
  206. // Pass the result of the endstop test
  207. void Endstops::test_dual_z_endstops(const EndstopEnum es1, const EndstopEnum es2) {
  208. byte z_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Z, bit 1 for Z2
  209. if (z_test && stepper.current_block->steps[Z_AXIS] > 0) {
  210. SBI(endstop_hit_bits, Z_MIN);
  211. if (!stepper.performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  212. stepper.kill_current_block();
  213. }
  214. }
  215. #endif
  216. // Check endstops - Called from ISR!
  217. void Endstops::update() {
  218. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  219. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  220. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  221. #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN))
  222. // UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  223. #define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  224. // COPY_BIT: copy the value of SRC_BIT to DST_BIT in DST
  225. #define COPY_BIT(DST, SRC_BIT, DST_BIT) SET_BIT(DST, DST_BIT, TEST(DST, SRC_BIT))
  226. #define _UPDATE_ENDSTOP(AXIS,MINMAX,CODE) do { \
  227. UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
  228. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
  229. _ENDSTOP_HIT(AXIS); \
  230. stepper.endstop_triggered(_AXIS(AXIS)); \
  231. CODE; \
  232. } \
  233. } while(0)
  234. #if ENABLED(G38_PROBE_TARGET) && PIN_EXISTS(Z_MIN) // If G38 command then check Z_MIN for every axis and every direction
  235. #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
  236. _UPDATE_ENDSTOP(AXIS,MINMAX,NOOP); \
  237. if (G38_move) _UPDATE_ENDSTOP(Z, MIN, G38_endstop_hit = true); \
  238. } while(0)
  239. #else
  240. #define UPDATE_ENDSTOP(AXIS,MINMAX) _UPDATE_ENDSTOP(AXIS,MINMAX,NOOP)
  241. #endif
  242. #if CORE_IS_XY || CORE_IS_XZ
  243. #if ENABLED(COREYX) || ENABLED(COREZX)
  244. #define CORE_X_CMP !=
  245. #define CORE_X_NOT !
  246. #else
  247. #define CORE_X_CMP ==
  248. #define CORE_X_NOT
  249. #endif
  250. // Head direction in -X axis for CoreXY and CoreXZ bots.
  251. // If steps differ, both axes are moving.
  252. // If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
  253. // If DeltaA == DeltaB, the movement is only in the 1st axis (X)
  254. if (stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2] || stepper.motor_direction(CORE_AXIS_1) CORE_X_CMP stepper.motor_direction(CORE_AXIS_2)) {
  255. if (CORE_X_NOT stepper.motor_direction(X_HEAD))
  256. #else
  257. if (stepper.motor_direction(X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  258. #endif
  259. { // -direction
  260. #if ENABLED(DUAL_X_CARRIAGE)
  261. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  262. if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR < 0) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR < 0))
  263. #endif
  264. {
  265. #if HAS_X_MIN
  266. UPDATE_ENDSTOP(X, MIN);
  267. #endif
  268. }
  269. }
  270. else { // +direction
  271. #if ENABLED(DUAL_X_CARRIAGE)
  272. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  273. if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR > 0) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR > 0))
  274. #endif
  275. {
  276. #if HAS_X_MAX
  277. UPDATE_ENDSTOP(X, MAX);
  278. #endif
  279. }
  280. }
  281. #if CORE_IS_XY || CORE_IS_XZ
  282. }
  283. #endif
  284. // Handle swapped vs. typical Core axis order
  285. #if ENABLED(COREYX) || ENABLED(COREZY) || ENABLED(COREZX)
  286. #define CORE_YZ_CMP ==
  287. #define CORE_YZ_NOT !
  288. #elif CORE_IS_XY || CORE_IS_YZ || CORE_IS_XZ
  289. #define CORE_YZ_CMP !=
  290. #define CORE_YZ_NOT
  291. #endif
  292. #if CORE_IS_XY || CORE_IS_YZ
  293. // Head direction in -Y axis for CoreXY / CoreYZ bots.
  294. // If steps differ, both axes are moving
  295. // If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
  296. // If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
  297. if (stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2] || stepper.motor_direction(CORE_AXIS_1) CORE_YZ_CMP stepper.motor_direction(CORE_AXIS_2)) {
  298. if (CORE_YZ_NOT stepper.motor_direction(Y_HEAD))
  299. #else
  300. if (stepper.motor_direction(Y_AXIS)) // -direction
  301. #endif
  302. { // -direction
  303. #if HAS_Y_MIN
  304. UPDATE_ENDSTOP(Y, MIN);
  305. #endif
  306. }
  307. else { // +direction
  308. #if HAS_Y_MAX
  309. UPDATE_ENDSTOP(Y, MAX);
  310. #endif
  311. }
  312. #if CORE_IS_XY || CORE_IS_YZ
  313. }
  314. #endif
  315. #if CORE_IS_XZ || CORE_IS_YZ
  316. // Head direction in -Z axis for CoreXZ or CoreYZ bots.
  317. // If steps differ, both axes are moving
  318. // If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
  319. // If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
  320. if (stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2] || stepper.motor_direction(CORE_AXIS_1) CORE_YZ_CMP stepper.motor_direction(CORE_AXIS_2)) {
  321. if (CORE_YZ_NOT stepper.motor_direction(Z_HEAD))
  322. #else
  323. if (stepper.motor_direction(Z_AXIS))
  324. #endif
  325. { // Z -direction. Gantry down, bed up.
  326. #if HAS_Z_MIN
  327. #if ENABLED(Z_DUAL_ENDSTOPS)
  328. UPDATE_ENDSTOP_BIT(Z, MIN);
  329. #if HAS_Z2_MIN
  330. UPDATE_ENDSTOP_BIT(Z2, MIN);
  331. #else
  332. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  333. #endif
  334. test_dual_z_endstops(Z_MIN, Z2_MIN);
  335. #else // !Z_DUAL_ENDSTOPS
  336. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  337. if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN);
  338. #else
  339. UPDATE_ENDSTOP(Z, MIN);
  340. #endif
  341. #endif // !Z_DUAL_ENDSTOPS
  342. #endif // HAS_Z_MIN
  343. // When closing the gap check the enabled probe
  344. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  345. if (z_probe_enabled) {
  346. UPDATE_ENDSTOP(Z, MIN_PROBE);
  347. if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE);
  348. }
  349. #endif
  350. }
  351. else { // Z +direction. Gantry up, bed down.
  352. #if HAS_Z_MAX
  353. // Check both Z dual endstops
  354. #if ENABLED(Z_DUAL_ENDSTOPS)
  355. UPDATE_ENDSTOP_BIT(Z, MAX);
  356. #if HAS_Z2_MAX
  357. UPDATE_ENDSTOP_BIT(Z2, MAX);
  358. #else
  359. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
  360. #endif
  361. test_dual_z_endstops(Z_MAX, Z2_MAX);
  362. // If this pin is not hijacked for the bed probe
  363. // then it belongs to the Z endstop
  364. #elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN
  365. UPDATE_ENDSTOP(Z, MAX);
  366. #endif // !Z_MIN_PROBE_PIN...
  367. #endif // Z_MAX_PIN
  368. }
  369. #if CORE_IS_XZ || CORE_IS_YZ
  370. }
  371. #endif
  372. old_endstop_bits = current_endstop_bits;
  373. } // Endstops::update()