My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.h 26KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * temperature.h - temperature controller
  25. */
  26. #include "thermistor/thermistors.h"
  27. #include "../inc/MarlinConfig.h"
  28. #if ENABLED(AUTO_POWER_CONTROL)
  29. #include "../feature/power.h"
  30. #endif
  31. #ifndef SOFT_PWM_SCALE
  32. #define SOFT_PWM_SCALE 0
  33. #endif
  34. #if HOTENDS <= 1
  35. #define HOTEND_INDEX 0
  36. #define E_NAME
  37. #else
  38. #define HOTEND_INDEX e
  39. #define E_NAME e
  40. #endif
  41. // Identifiers for other heaters
  42. typedef enum : int8_t {
  43. INDEX_NONE = -5,
  44. H_PROBE, H_REDUNDANT, H_CHAMBER, H_BED,
  45. H_E0, H_E1, H_E2, H_E3, H_E4, H_E5, H_E6, H_E7
  46. } heater_ind_t;
  47. // PID storage
  48. typedef struct { float Kp, Ki, Kd; } PID_t;
  49. typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t;
  50. typedef struct { float Kp, Ki, Kd, Kf; } PIDF_t;
  51. typedef struct { float Kp, Ki, Kd, Kc, Kf; } PIDCF_t;
  52. typedef
  53. #if BOTH(PID_EXTRUSION_SCALING, PID_FAN_SCALING)
  54. PIDCF_t
  55. #elif ENABLED(PID_EXTRUSION_SCALING)
  56. PIDC_t
  57. #elif ENABLED(PID_FAN_SCALING)
  58. PIDF_t
  59. #else
  60. PID_t
  61. #endif
  62. hotend_pid_t;
  63. #if ENABLED(PID_EXTRUSION_SCALING)
  64. typedef IF<(LPQ_MAX_LEN > 255), uint16_t, uint8_t>::type lpq_ptr_t;
  65. #endif
  66. #define DUMMY_PID_VALUE 3000.0f
  67. #if ENABLED(PIDTEMP)
  68. #define _PID_Kp(H) Temperature::temp_hotend[H].pid.Kp
  69. #define _PID_Ki(H) Temperature::temp_hotend[H].pid.Ki
  70. #define _PID_Kd(H) Temperature::temp_hotend[H].pid.Kd
  71. #if ENABLED(PID_EXTRUSION_SCALING)
  72. #define _PID_Kc(H) Temperature::temp_hotend[H].pid.Kc
  73. #else
  74. #define _PID_Kc(H) 1
  75. #endif
  76. #if ENABLED(PID_FAN_SCALING)
  77. #define _PID_Kf(H) Temperature::temp_hotend[H].pid.Kf
  78. #else
  79. #define _PID_Kf(H) 0
  80. #endif
  81. #else
  82. #define _PID_Kp(H) DUMMY_PID_VALUE
  83. #define _PID_Ki(H) DUMMY_PID_VALUE
  84. #define _PID_Kd(H) DUMMY_PID_VALUE
  85. #define _PID_Kc(H) 1
  86. #endif
  87. #define PID_PARAM(F,H) _PID_##F(H)
  88. /**
  89. * States for ADC reading in the ISR
  90. */
  91. enum ADCSensorState : char {
  92. StartSampling,
  93. #if HAS_TEMP_ADC_0
  94. PrepareTemp_0, MeasureTemp_0,
  95. #endif
  96. #if HAS_HEATED_BED
  97. PrepareTemp_BED, MeasureTemp_BED,
  98. #endif
  99. #if HAS_TEMP_CHAMBER
  100. PrepareTemp_CHAMBER, MeasureTemp_CHAMBER,
  101. #endif
  102. #if HAS_TEMP_PROBE
  103. PrepareTemp_PROBE, MeasureTemp_PROBE,
  104. #endif
  105. #if HAS_TEMP_ADC_1
  106. PrepareTemp_1, MeasureTemp_1,
  107. #endif
  108. #if HAS_TEMP_ADC_2
  109. PrepareTemp_2, MeasureTemp_2,
  110. #endif
  111. #if HAS_TEMP_ADC_3
  112. PrepareTemp_3, MeasureTemp_3,
  113. #endif
  114. #if HAS_TEMP_ADC_4
  115. PrepareTemp_4, MeasureTemp_4,
  116. #endif
  117. #if HAS_TEMP_ADC_5
  118. PrepareTemp_5, MeasureTemp_5,
  119. #endif
  120. #if HAS_TEMP_ADC_6
  121. PrepareTemp_6, MeasureTemp_6,
  122. #endif
  123. #if HAS_TEMP_ADC_7
  124. PrepareTemp_7, MeasureTemp_7,
  125. #endif
  126. #if HAS_JOY_ADC_X
  127. PrepareJoy_X, MeasureJoy_X,
  128. #endif
  129. #if HAS_JOY_ADC_Y
  130. PrepareJoy_Y, MeasureJoy_Y,
  131. #endif
  132. #if HAS_JOY_ADC_Z
  133. PrepareJoy_Z, MeasureJoy_Z,
  134. #endif
  135. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  136. Prepare_FILWIDTH, Measure_FILWIDTH,
  137. #endif
  138. #if HAS_ADC_BUTTONS
  139. Prepare_ADC_KEY, Measure_ADC_KEY,
  140. #endif
  141. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  142. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  143. };
  144. // Minimum number of Temperature::ISR loops between sensor readings.
  145. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  146. // get all oversampled sensor readings
  147. #define MIN_ADC_ISR_LOOPS 10
  148. #define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  149. #if HAS_PID_HEATING
  150. #define PID_K2 (1-float(PID_K1))
  151. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
  152. // Apply the scale factors to the PID values
  153. #define scalePID_i(i) ( float(i) * PID_dT )
  154. #define unscalePID_i(i) ( float(i) / PID_dT )
  155. #define scalePID_d(d) ( float(d) / PID_dT )
  156. #define unscalePID_d(d) ( float(d) * PID_dT )
  157. #endif
  158. #define G26_CLICK_CAN_CANCEL (HAS_LCD_MENU && ENABLED(G26_MESH_VALIDATION))
  159. // A temperature sensor
  160. typedef struct TempInfo {
  161. uint16_t acc;
  162. int16_t raw;
  163. float celsius;
  164. inline void reset() { acc = 0; }
  165. inline void sample(const uint16_t s) { acc += s; }
  166. inline void update() { raw = acc; }
  167. } temp_info_t;
  168. // A PWM heater with temperature sensor
  169. typedef struct HeaterInfo : public TempInfo {
  170. int16_t target;
  171. uint8_t soft_pwm_amount;
  172. } heater_info_t;
  173. // A heater with PID stabilization
  174. template<typename T>
  175. struct PIDHeaterInfo : public HeaterInfo {
  176. T pid; // Initialized by settings.load()
  177. };
  178. #if ENABLED(PIDTEMP)
  179. typedef struct PIDHeaterInfo<hotend_pid_t> hotend_info_t;
  180. #else
  181. typedef heater_info_t hotend_info_t;
  182. #endif
  183. #if HAS_HEATED_BED
  184. #if ENABLED(PIDTEMPBED)
  185. typedef struct PIDHeaterInfo<PID_t> bed_info_t;
  186. #else
  187. typedef heater_info_t bed_info_t;
  188. #endif
  189. #endif
  190. #if HAS_TEMP_PROBE
  191. typedef temp_info_t probe_info_t;
  192. #endif
  193. #if HAS_HEATED_CHAMBER
  194. typedef heater_info_t chamber_info_t;
  195. #elif HAS_TEMP_CHAMBER
  196. typedef temp_info_t chamber_info_t;
  197. #endif
  198. // Heater idle handling
  199. typedef struct {
  200. millis_t timeout_ms;
  201. bool timed_out;
  202. inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; }
  203. inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; }
  204. inline void reset() { timeout_ms = 0; timed_out = false; }
  205. inline void expire() { start(0); }
  206. } hotend_idle_t;
  207. // Heater watch handling
  208. template <int INCREASE, int HYSTERESIS, millis_t PERIOD>
  209. struct HeaterWatch {
  210. uint16_t target;
  211. millis_t next_ms;
  212. inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); }
  213. inline bool elapsed() { return elapsed(millis()); }
  214. inline void restart(const int16_t curr, const int16_t tgt) {
  215. if (tgt) {
  216. const int16_t newtarget = curr + INCREASE;
  217. if (newtarget < tgt - HYSTERESIS - 1) {
  218. target = newtarget;
  219. next_ms = millis() + PERIOD * 1000UL;
  220. return;
  221. }
  222. }
  223. next_ms = 0;
  224. }
  225. };
  226. #if WATCH_HOTENDS
  227. typedef struct HeaterWatch<WATCH_TEMP_INCREASE, TEMP_HYSTERESIS, WATCH_TEMP_PERIOD> hotend_watch_t;
  228. #endif
  229. #if WATCH_BED
  230. typedef struct HeaterWatch<WATCH_BED_TEMP_INCREASE, TEMP_BED_HYSTERESIS, WATCH_BED_TEMP_PERIOD> bed_watch_t;
  231. #endif
  232. #if WATCH_CHAMBER
  233. typedef struct HeaterWatch<WATCH_CHAMBER_TEMP_INCREASE, TEMP_CHAMBER_HYSTERESIS, WATCH_CHAMBER_TEMP_PERIOD> chamber_watch_t;
  234. #endif
  235. // Temperature sensor read value ranges
  236. typedef struct { int16_t raw_min, raw_max; } raw_range_t;
  237. typedef struct { int16_t mintemp, maxtemp; } celsius_range_t;
  238. typedef struct { int16_t raw_min, raw_max, mintemp, maxtemp; } temp_range_t;
  239. #define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold !
  240. #define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable
  241. #if HAS_USER_THERMISTORS
  242. enum CustomThermistorIndex : uint8_t {
  243. #if ENABLED(HEATER_0_USER_THERMISTOR)
  244. CTI_HOTEND_0,
  245. #endif
  246. #if ENABLED(HEATER_1_USER_THERMISTOR)
  247. CTI_HOTEND_1,
  248. #endif
  249. #if ENABLED(HEATER_2_USER_THERMISTOR)
  250. CTI_HOTEND_2,
  251. #endif
  252. #if ENABLED(HEATER_3_USER_THERMISTOR)
  253. CTI_HOTEND_3,
  254. #endif
  255. #if ENABLED(HEATER_4_USER_THERMISTOR)
  256. CTI_HOTEND_4,
  257. #endif
  258. #if ENABLED(HEATER_5_USER_THERMISTOR)
  259. CTI_HOTEND_5,
  260. #endif
  261. #if ENABLED(HEATER_BED_USER_THERMISTOR)
  262. CTI_BED,
  263. #endif
  264. #if ENABLED(HEATER_PROBE_USER_THERMISTOR)
  265. CTI_PROBE,
  266. #endif
  267. #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
  268. CTI_CHAMBER,
  269. #endif
  270. USER_THERMISTORS
  271. };
  272. // User-defined thermistor
  273. typedef struct {
  274. bool pre_calc; // true if pre-calculations update needed
  275. float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0'
  276. sh_alpha,
  277. series_res,
  278. res_25, res_25_recip,
  279. res_25_log,
  280. beta, beta_recip;
  281. } user_thermistor_t;
  282. #endif
  283. class Temperature {
  284. public:
  285. #if HOTENDS
  286. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  287. #define HOTEND_TEMPS (HOTENDS + 1)
  288. #else
  289. #define HOTEND_TEMPS HOTENDS
  290. #endif
  291. static hotend_info_t temp_hotend[HOTEND_TEMPS];
  292. #endif
  293. #if HAS_HEATED_BED
  294. static bed_info_t temp_bed;
  295. #endif
  296. #if HAS_TEMP_PROBE
  297. static probe_info_t temp_probe;
  298. #endif
  299. #if HAS_TEMP_CHAMBER
  300. static chamber_info_t temp_chamber;
  301. #endif
  302. #if ENABLED(AUTO_POWER_E_FANS)
  303. static uint8_t autofan_speed[HOTENDS];
  304. #endif
  305. #if ENABLED(AUTO_POWER_CHAMBER_FAN)
  306. static uint8_t chamberfan_speed;
  307. #endif
  308. #if ENABLED(FAN_SOFT_PWM)
  309. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  310. soft_pwm_count_fan[FAN_COUNT];
  311. #endif
  312. #if ENABLED(PREVENT_COLD_EXTRUSION)
  313. static bool allow_cold_extrude;
  314. static int16_t extrude_min_temp;
  315. FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
  316. FORCE_INLINE static bool tooColdToExtrude(const uint8_t E_NAME) {
  317. return tooCold(degHotend(HOTEND_INDEX));
  318. }
  319. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t E_NAME) {
  320. return tooCold(degTargetHotend(HOTEND_INDEX));
  321. }
  322. #else
  323. FORCE_INLINE static bool tooColdToExtrude(const uint8_t) { return false; }
  324. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t) { return false; }
  325. #endif
  326. FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
  327. FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
  328. #if HEATER_IDLE_HANDLER
  329. static hotend_idle_t hotend_idle[HOTENDS];
  330. #if HAS_HEATED_BED
  331. static hotend_idle_t bed_idle;
  332. #endif
  333. #if HAS_HEATED_CHAMBER
  334. static hotend_idle_t chamber_idle;
  335. #endif
  336. #endif
  337. private:
  338. #if EARLY_WATCHDOG
  339. static bool inited; // If temperature controller is running
  340. #endif
  341. static volatile bool raw_temps_ready;
  342. #if WATCH_HOTENDS
  343. static hotend_watch_t watch_hotend[HOTENDS];
  344. #endif
  345. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  346. static uint16_t redundant_temperature_raw;
  347. static float redundant_temperature;
  348. #endif
  349. #if ENABLED(PID_EXTRUSION_SCALING)
  350. static int32_t last_e_position, lpq[LPQ_MAX_LEN];
  351. static lpq_ptr_t lpq_ptr;
  352. #endif
  353. #if HOTENDS
  354. static temp_range_t temp_range[HOTENDS];
  355. #endif
  356. #if HAS_HEATED_BED
  357. #if WATCH_BED
  358. static bed_watch_t watch_bed;
  359. #endif
  360. #if DISABLED(PIDTEMPBED)
  361. static millis_t next_bed_check_ms;
  362. #endif
  363. #ifdef BED_MINTEMP
  364. static int16_t mintemp_raw_BED;
  365. #endif
  366. #ifdef BED_MAXTEMP
  367. static int16_t maxtemp_raw_BED;
  368. #endif
  369. #endif
  370. #if HAS_HEATED_CHAMBER
  371. #if WATCH_CHAMBER
  372. static chamber_watch_t watch_chamber;
  373. #endif
  374. static millis_t next_chamber_check_ms;
  375. #ifdef CHAMBER_MINTEMP
  376. static int16_t mintemp_raw_CHAMBER;
  377. #endif
  378. #ifdef CHAMBER_MAXTEMP
  379. static int16_t maxtemp_raw_CHAMBER;
  380. #endif
  381. #endif
  382. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  383. static uint8_t consecutive_low_temperature_error[HOTENDS];
  384. #endif
  385. #ifdef MILLISECONDS_PREHEAT_TIME
  386. static millis_t preheat_end_time[HOTENDS];
  387. #endif
  388. #if HAS_AUTO_FAN
  389. static millis_t next_auto_fan_check_ms;
  390. #endif
  391. #if ENABLED(PROBING_HEATERS_OFF)
  392. static bool paused;
  393. #endif
  394. public:
  395. #if HAS_ADC_BUTTONS
  396. static uint32_t current_ADCKey_raw;
  397. static uint8_t ADCKey_count;
  398. #endif
  399. #if ENABLED(PID_EXTRUSION_SCALING)
  400. static int16_t lpq_len;
  401. #endif
  402. /**
  403. * Instance Methods
  404. */
  405. void init();
  406. /**
  407. * Static (class) methods
  408. */
  409. #if HAS_USER_THERMISTORS
  410. static user_thermistor_t user_thermistor[USER_THERMISTORS];
  411. static void log_user_thermistor(const uint8_t t_index, const bool eprom=false);
  412. static void reset_user_thermistors();
  413. static float user_thermistor_to_deg_c(const uint8_t t_index, const int raw);
  414. static bool set_pull_up_res(int8_t t_index, float value) {
  415. //if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false;
  416. if (!WITHIN(value, 1, 1000000)) return false;
  417. user_thermistor[t_index].series_res = value;
  418. return true;
  419. }
  420. static bool set_res25(int8_t t_index, float value) {
  421. if (!WITHIN(value, 1, 10000000)) return false;
  422. user_thermistor[t_index].res_25 = value;
  423. user_thermistor[t_index].pre_calc = true;
  424. return true;
  425. }
  426. static bool set_beta(int8_t t_index, float value) {
  427. if (!WITHIN(value, 1, 1000000)) return false;
  428. user_thermistor[t_index].beta = value;
  429. user_thermistor[t_index].pre_calc = true;
  430. return true;
  431. }
  432. static bool set_sh_coeff(int8_t t_index, float value) {
  433. if (!WITHIN(value, -0.01f, 0.01f)) return false;
  434. user_thermistor[t_index].sh_c_coeff = value;
  435. user_thermistor[t_index].pre_calc = true;
  436. return true;
  437. }
  438. #endif
  439. #if HOTENDS
  440. static float analog_to_celsius_hotend(const int raw, const uint8_t e);
  441. #endif
  442. #if HAS_HEATED_BED
  443. static float analog_to_celsius_bed(const int raw);
  444. #endif
  445. #if HAS_TEMP_PROBE
  446. static float analog_to_celsius_probe(const int raw);
  447. #endif
  448. #if HAS_TEMP_CHAMBER
  449. static float analog_to_celsius_chamber(const int raw);
  450. #endif
  451. #if FAN_COUNT > 0
  452. static uint8_t fan_speed[FAN_COUNT];
  453. #define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT)
  454. static void set_fan_speed(const uint8_t target, const uint16_t speed);
  455. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  456. static bool fans_paused;
  457. static uint8_t saved_fan_speed[FAN_COUNT];
  458. #endif
  459. static constexpr inline uint8_t fanPercent(const uint8_t speed) { return ui8_to_percent(speed); }
  460. #if ENABLED(ADAPTIVE_FAN_SLOWING)
  461. static uint8_t fan_speed_scaler[FAN_COUNT];
  462. #endif
  463. static inline uint8_t scaledFanSpeed(const uint8_t target, const uint8_t fs) {
  464. UNUSED(target); // Potentially unused!
  465. return (fs * uint16_t(
  466. #if ENABLED(ADAPTIVE_FAN_SLOWING)
  467. fan_speed_scaler[target]
  468. #else
  469. 128
  470. #endif
  471. )) >> 7;
  472. }
  473. static inline uint8_t scaledFanSpeed(const uint8_t target) {
  474. return scaledFanSpeed(target, fan_speed[target]);
  475. }
  476. #if ENABLED(EXTRA_FAN_SPEED)
  477. static uint8_t old_fan_speed[FAN_COUNT], new_fan_speed[FAN_COUNT];
  478. static void set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp);
  479. #endif
  480. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  481. void set_fans_paused(const bool p);
  482. #endif
  483. #endif // FAN_COUNT > 0
  484. static inline void zero_fan_speeds() {
  485. #if FAN_COUNT > 0
  486. FANS_LOOP(i) set_fan_speed(i, 0);
  487. #endif
  488. }
  489. /**
  490. * Called from the Temperature ISR
  491. */
  492. static void readings_ready();
  493. static void tick();
  494. /**
  495. * Call periodically to manage heaters
  496. */
  497. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  498. /**
  499. * Preheating hotends
  500. */
  501. #ifdef MILLISECONDS_PREHEAT_TIME
  502. static bool is_preheating(const uint8_t E_NAME) {
  503. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  504. }
  505. static void start_preheat_time(const uint8_t E_NAME) {
  506. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  507. }
  508. static void reset_preheat_time(const uint8_t E_NAME) {
  509. preheat_end_time[HOTEND_INDEX] = 0;
  510. }
  511. #else
  512. #define is_preheating(n) (false)
  513. #endif
  514. //high level conversion routines, for use outside of temperature.cpp
  515. //inline so that there is no performance decrease.
  516. //deg=degreeCelsius
  517. FORCE_INLINE static float degHotend(const uint8_t E_NAME) {
  518. return (0
  519. #if HOTENDS
  520. + temp_hotend[HOTEND_INDEX].celsius
  521. #endif
  522. );
  523. }
  524. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  525. FORCE_INLINE static int16_t rawHotendTemp(const uint8_t E_NAME) {
  526. return (0
  527. #if HOTENDS
  528. + temp_hotend[HOTEND_INDEX].raw
  529. #endif
  530. );
  531. }
  532. #endif
  533. FORCE_INLINE static int16_t degTargetHotend(const uint8_t E_NAME) {
  534. return (0
  535. #if HOTENDS
  536. + temp_hotend[HOTEND_INDEX].target
  537. #endif
  538. );
  539. }
  540. #if WATCH_HOTENDS
  541. static void start_watching_hotend(const uint8_t e=0);
  542. #else
  543. static inline void start_watching_hotend(const uint8_t=0) {}
  544. #endif
  545. #if HOTENDS
  546. static void setTargetHotend(const int16_t celsius, const uint8_t E_NAME) {
  547. const uint8_t ee = HOTEND_INDEX;
  548. #ifdef MILLISECONDS_PREHEAT_TIME
  549. if (celsius == 0)
  550. reset_preheat_time(ee);
  551. else if (temp_hotend[ee].target == 0)
  552. start_preheat_time(ee);
  553. #endif
  554. #if ENABLED(AUTO_POWER_CONTROL)
  555. powerManager.power_on();
  556. #endif
  557. temp_hotend[ee].target = _MIN(celsius, temp_range[ee].maxtemp - 15);
  558. start_watching_hotend(ee);
  559. }
  560. FORCE_INLINE static bool isHeatingHotend(const uint8_t E_NAME) {
  561. return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius;
  562. }
  563. FORCE_INLINE static bool isCoolingHotend(const uint8_t E_NAME) {
  564. return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius;
  565. }
  566. #if HAS_TEMP_HOTEND
  567. static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true
  568. #if G26_CLICK_CAN_CANCEL
  569. , const bool click_to_cancel=false
  570. #endif
  571. );
  572. #endif
  573. FORCE_INLINE static bool still_heating(const uint8_t e) {
  574. return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
  575. }
  576. #endif // HOTENDS
  577. #if HAS_HEATED_BED
  578. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  579. FORCE_INLINE static int16_t rawBedTemp() { return temp_bed.raw; }
  580. #endif
  581. FORCE_INLINE static float degBed() { return temp_bed.celsius; }
  582. FORCE_INLINE static int16_t degTargetBed() { return temp_bed.target; }
  583. FORCE_INLINE static bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; }
  584. FORCE_INLINE static bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; }
  585. #if WATCH_BED
  586. static void start_watching_bed();
  587. #else
  588. static inline void start_watching_bed() {}
  589. #endif
  590. static void setTargetBed(const int16_t celsius) {
  591. #if ENABLED(AUTO_POWER_CONTROL)
  592. powerManager.power_on();
  593. #endif
  594. temp_bed.target =
  595. #ifdef BED_MAXTEMP
  596. _MIN(celsius, BED_MAXTEMP - 10)
  597. #else
  598. celsius
  599. #endif
  600. ;
  601. start_watching_bed();
  602. }
  603. static bool wait_for_bed(const bool no_wait_for_cooling=true
  604. #if G26_CLICK_CAN_CANCEL
  605. , const bool click_to_cancel=false
  606. #endif
  607. );
  608. static void wait_for_bed_heating();
  609. #endif // HAS_HEATED_BED
  610. #if HAS_TEMP_PROBE
  611. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  612. FORCE_INLINE static int16_t rawProbeTemp() { return temp_probe.raw; }
  613. #endif
  614. FORCE_INLINE static float degProbe() { return temp_probe.celsius; }
  615. #endif
  616. #if WATCH_PROBE
  617. static void start_watching_probe();
  618. #else
  619. static inline void start_watching_probe() {}
  620. #endif
  621. #if HAS_TEMP_CHAMBER
  622. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  623. FORCE_INLINE static int16_t rawChamberTemp() { return temp_chamber.raw; }
  624. #endif
  625. FORCE_INLINE static float degChamber() { return temp_chamber.celsius; }
  626. #if HAS_HEATED_CHAMBER
  627. FORCE_INLINE static int16_t degTargetChamber() { return temp_chamber.target; }
  628. FORCE_INLINE static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; }
  629. FORCE_INLINE static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; }
  630. static bool wait_for_chamber(const bool no_wait_for_cooling=true);
  631. #endif
  632. #endif // HAS_TEMP_CHAMBER
  633. #if WATCH_CHAMBER
  634. static void start_watching_chamber();
  635. #else
  636. static inline void start_watching_chamber() {}
  637. #endif
  638. #if HAS_HEATED_CHAMBER
  639. static void setTargetChamber(const int16_t celsius) {
  640. temp_chamber.target =
  641. #ifdef CHAMBER_MAXTEMP
  642. _MIN(celsius, CHAMBER_MAXTEMP - 10)
  643. #else
  644. celsius
  645. #endif
  646. ;
  647. start_watching_chamber();
  648. }
  649. #endif // HAS_HEATED_CHAMBER
  650. /**
  651. * The software PWM power for a heater
  652. */
  653. static int16_t getHeaterPower(const heater_ind_t heater);
  654. /**
  655. * Switch off all heaters, set all target temperatures to 0
  656. */
  657. static void disable_all_heaters();
  658. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  659. /**
  660. * Methods to check if heaters are enabled, indicating an active job
  661. */
  662. static bool over_autostart_threshold();
  663. static void check_timer_autostart(const bool can_start, const bool can_stop);
  664. #endif
  665. /**
  666. * Perform auto-tuning for hotend or bed in response to M303
  667. */
  668. #if HAS_PID_HEATING
  669. static void PID_autotune(const float &target, const heater_ind_t hotend, const int8_t ncycles, const bool set_result=false);
  670. #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
  671. static bool adaptive_fan_slowing;
  672. #elif ENABLED(ADAPTIVE_FAN_SLOWING)
  673. static constexpr bool adaptive_fan_slowing = true;
  674. #endif
  675. /**
  676. * Update the temp manager when PID values change
  677. */
  678. #if ENABLED(PIDTEMP)
  679. FORCE_INLINE static void updatePID() {
  680. #if ENABLED(PID_EXTRUSION_SCALING)
  681. last_e_position = 0;
  682. #endif
  683. }
  684. #endif
  685. #endif
  686. #if ENABLED(PROBING_HEATERS_OFF)
  687. static void pause(const bool p);
  688. FORCE_INLINE static bool is_paused() { return paused; }
  689. #endif
  690. #if HEATER_IDLE_HANDLER
  691. static void reset_hotend_idle_timer(const uint8_t E_NAME) {
  692. hotend_idle[HOTEND_INDEX].reset();
  693. start_watching_hotend(HOTEND_INDEX);
  694. }
  695. #if HAS_HEATED_BED
  696. static void reset_bed_idle_timer() {
  697. bed_idle.reset();
  698. start_watching_bed();
  699. }
  700. #endif
  701. #endif // HEATER_IDLE_HANDLER
  702. #if HAS_TEMP_SENSOR
  703. static void print_heater_states(const uint8_t target_extruder
  704. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  705. , const bool include_r=false
  706. #endif
  707. );
  708. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  709. static uint8_t auto_report_temp_interval;
  710. static millis_t next_temp_report_ms;
  711. static void auto_report_temperatures();
  712. static inline void set_auto_report_interval(uint8_t v) {
  713. NOMORE(v, 60);
  714. auto_report_temp_interval = v;
  715. next_temp_report_ms = millis() + 1000UL * v;
  716. }
  717. #endif
  718. #endif
  719. #if HAS_DISPLAY
  720. static void set_heating_message(const uint8_t e);
  721. #endif
  722. private:
  723. static void update_raw_temperatures();
  724. static void updateTemperaturesFromRawValues();
  725. #define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
  726. #if HAS_MAX6675
  727. #if BOTH(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
  728. #define COUNT_6675 2
  729. #else
  730. #define COUNT_6675 1
  731. #endif
  732. #if COUNT_6675 > 1
  733. #define READ_MAX6675(N) read_max6675(N)
  734. #else
  735. #define READ_MAX6675(N) read_max6675()
  736. #endif
  737. static int read_max6675(
  738. #if COUNT_6675 > 1
  739. const uint8_t hindex=0
  740. #endif
  741. );
  742. #endif
  743. static void checkExtruderAutoFans();
  744. static float get_pid_output_hotend(const uint8_t e);
  745. #if ENABLED(PIDTEMPBED)
  746. static float get_pid_output_bed();
  747. #endif
  748. #if HAS_HEATED_CHAMBER
  749. static float get_pid_output_chamber();
  750. #endif
  751. static void _temp_error(const heater_ind_t e, PGM_P const serial_msg, PGM_P const lcd_msg);
  752. static void min_temp_error(const heater_ind_t e);
  753. static void max_temp_error(const heater_ind_t e);
  754. #define HAS_THERMAL_PROTECTION (EITHER(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER) || HAS_THERMALLY_PROTECTED_BED)
  755. #if HAS_THERMAL_PROTECTION
  756. enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
  757. typedef struct {
  758. millis_t timer = 0;
  759. TRState state = TRInactive;
  760. } tr_state_machine_t;
  761. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  762. static tr_state_machine_t tr_state_machine[HOTENDS];
  763. #endif
  764. #if HAS_THERMALLY_PROTECTED_BED
  765. static tr_state_machine_t tr_state_machine_bed;
  766. #endif
  767. #if ENABLED(THERMAL_PROTECTION_CHAMBER)
  768. static tr_state_machine_t tr_state_machine_chamber;
  769. #endif
  770. static void thermal_runaway_protection(tr_state_machine_t &state, const float &current, const float &target, const heater_ind_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
  771. #endif // HAS_THERMAL_PROTECTION
  772. };
  773. extern Temperature thermalManager;