My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

planner.cpp 32KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. //#include <inttypes.h>
  37. //#include <math.h>
  38. //#include <stdlib.h>
  39. #include "Marlin.h"
  40. #include "Configuration.h"
  41. #include "pins.h"
  42. #include "fastio.h"
  43. #include "planner.h"
  44. #include "stepper.h"
  45. #include "temperature.h"
  46. #include "ultralcd.h"
  47. //===========================================================================
  48. //=============================public variables ============================
  49. //===========================================================================
  50. unsigned long minsegmenttime;
  51. float max_feedrate[4]; // set the max speeds
  52. float axis_steps_per_unit[4];
  53. unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
  54. float minimumfeedrate;
  55. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  56. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  57. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  58. float max_z_jerk;
  59. float mintravelfeedrate;
  60. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  61. uint8_t active_extruder = 0;
  62. // The current position of the tool in absolute steps
  63. long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  64. static float previous_speed[4]; // Speed of previous path line segment
  65. static float previous_nominal_speed; // Nominal speed of previous path line segment
  66. #ifdef AUTOTEMP
  67. float autotemp_max=250;
  68. float autotemp_min=210;
  69. float autotemp_factor=0.1;
  70. bool autotemp_enabled=false;
  71. #endif
  72. //===========================================================================
  73. //=================semi-private variables, used in inline functions =====
  74. //===========================================================================
  75. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  76. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  77. volatile unsigned char block_buffer_tail; // Index of the block to process now
  78. //===========================================================================
  79. //=============================private variables ============================
  80. //===========================================================================
  81. #ifdef XY_FREQUENCY_LIMIT
  82. // Used for the frequency limit
  83. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  84. static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
  85. static long y_segment_time[3]={0,0,0};
  86. #endif
  87. // Returns the index of the next block in the ring buffer
  88. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  89. static int8_t next_block_index(int8_t block_index) {
  90. block_index++;
  91. if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
  92. return(block_index);
  93. }
  94. // Returns the index of the previous block in the ring buffer
  95. static int8_t prev_block_index(int8_t block_index) {
  96. if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
  97. block_index--;
  98. return(block_index);
  99. }
  100. //===========================================================================
  101. //=============================functions ============================
  102. //===========================================================================
  103. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  104. // given acceleration:
  105. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  106. {
  107. if (acceleration!=0) {
  108. return((target_rate*target_rate-initial_rate*initial_rate)/
  109. (2.0*acceleration));
  110. }
  111. else {
  112. return 0.0; // acceleration was 0, set acceleration distance to 0
  113. }
  114. }
  115. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  116. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  117. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  118. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  119. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  120. {
  121. if (acceleration!=0) {
  122. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  123. (4.0*acceleration) );
  124. }
  125. else {
  126. return 0.0; // acceleration was 0, set intersection distance to 0
  127. }
  128. }
  129. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  130. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  131. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  132. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  133. // Limit minimal step rate (Otherwise the timer will overflow.)
  134. if(initial_rate <120) {initial_rate=120; }
  135. if(final_rate < 120) {final_rate=120; }
  136. long acceleration = block->acceleration_st;
  137. int32_t accelerate_steps =
  138. ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
  139. int32_t decelerate_steps =
  140. floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
  141. // Calculate the size of Plateau of Nominal Rate.
  142. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  143. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  144. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  145. // in order to reach the final_rate exactly at the end of this block.
  146. if (plateau_steps < 0) {
  147. accelerate_steps = ceil(
  148. intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
  149. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  150. accelerate_steps = min(accelerate_steps,block->step_event_count);
  151. plateau_steps = 0;
  152. }
  153. #ifdef ADVANCE
  154. long initial_advance = block->advance*entry_factor*entry_factor;
  155. long final_advance = block->advance*exit_factor*exit_factor;
  156. #endif // ADVANCE
  157. // block->accelerate_until = accelerate_steps;
  158. // block->decelerate_after = accelerate_steps+plateau_steps;
  159. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  160. if(block->busy == false) { // Don't update variables if block is busy.
  161. block->accelerate_until = accelerate_steps;
  162. block->decelerate_after = accelerate_steps+plateau_steps;
  163. block->initial_rate = initial_rate;
  164. block->final_rate = final_rate;
  165. #ifdef ADVANCE
  166. block->initial_advance = initial_advance;
  167. block->final_advance = final_advance;
  168. #endif //ADVANCE
  169. }
  170. CRITICAL_SECTION_END;
  171. }
  172. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  173. // acceleration within the allotted distance.
  174. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  175. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  176. }
  177. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  178. // This method will calculate the junction jerk as the euclidean distance between the nominal
  179. // velocities of the respective blocks.
  180. //inline float junction_jerk(block_t *before, block_t *after) {
  181. // return sqrt(
  182. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  183. //}
  184. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  185. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  186. if(!current) { return; }
  187. if (next) {
  188. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  189. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  190. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  191. if (current->entry_speed != current->max_entry_speed) {
  192. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  193. // for max allowable speed if block is decelerating and nominal length is false.
  194. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  195. current->entry_speed = min( current->max_entry_speed,
  196. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  197. } else {
  198. current->entry_speed = current->max_entry_speed;
  199. }
  200. current->recalculate_flag = true;
  201. }
  202. } // Skip last block. Already initialized and set for recalculation.
  203. }
  204. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  205. // implements the reverse pass.
  206. void planner_reverse_pass() {
  207. uint8_t block_index = block_buffer_head;
  208. if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  209. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  210. block_t *block[3] = { NULL, NULL, NULL };
  211. while(block_index != block_buffer_tail) {
  212. block_index = prev_block_index(block_index);
  213. block[2]= block[1];
  214. block[1]= block[0];
  215. block[0] = &block_buffer[block_index];
  216. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  217. }
  218. }
  219. }
  220. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  221. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  222. if(!previous) { return; }
  223. // If the previous block is an acceleration block, but it is not long enough to complete the
  224. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  225. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  226. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  227. if (!previous->nominal_length_flag) {
  228. if (previous->entry_speed < current->entry_speed) {
  229. double entry_speed = min( current->entry_speed,
  230. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  231. // Check for junction speed change
  232. if (current->entry_speed != entry_speed) {
  233. current->entry_speed = entry_speed;
  234. current->recalculate_flag = true;
  235. }
  236. }
  237. }
  238. }
  239. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  240. // implements the forward pass.
  241. void planner_forward_pass() {
  242. uint8_t block_index = block_buffer_tail;
  243. block_t *block[3] = { NULL, NULL, NULL };
  244. while(block_index != block_buffer_head) {
  245. block[0] = block[1];
  246. block[1] = block[2];
  247. block[2] = &block_buffer[block_index];
  248. planner_forward_pass_kernel(block[0],block[1],block[2]);
  249. block_index = next_block_index(block_index);
  250. }
  251. planner_forward_pass_kernel(block[1], block[2], NULL);
  252. }
  253. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  254. // entry_factor for each junction. Must be called by planner_recalculate() after
  255. // updating the blocks.
  256. void planner_recalculate_trapezoids() {
  257. int8_t block_index = block_buffer_tail;
  258. block_t *current;
  259. block_t *next = NULL;
  260. while(block_index != block_buffer_head) {
  261. current = next;
  262. next = &block_buffer[block_index];
  263. if (current) {
  264. // Recalculate if current block entry or exit junction speed has changed.
  265. if (current->recalculate_flag || next->recalculate_flag) {
  266. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  267. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  268. next->entry_speed/current->nominal_speed);
  269. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  270. }
  271. }
  272. block_index = next_block_index( block_index );
  273. }
  274. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  275. if(next != NULL) {
  276. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  277. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  278. next->recalculate_flag = false;
  279. }
  280. }
  281. // Recalculates the motion plan according to the following algorithm:
  282. //
  283. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  284. // so that:
  285. // a. The junction jerk is within the set limit
  286. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  287. // acceleration.
  288. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  289. // a. The speed increase within one block would require faster accelleration than the one, true
  290. // constant acceleration.
  291. //
  292. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  293. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  294. // the set limit. Finally it will:
  295. //
  296. // 3. Recalculate trapezoids for all blocks.
  297. void planner_recalculate() {
  298. planner_reverse_pass();
  299. planner_forward_pass();
  300. planner_recalculate_trapezoids();
  301. }
  302. void plan_init() {
  303. block_buffer_head = 0;
  304. block_buffer_tail = 0;
  305. memset(position, 0, sizeof(position)); // clear position
  306. previous_speed[0] = 0.0;
  307. previous_speed[1] = 0.0;
  308. previous_speed[2] = 0.0;
  309. previous_speed[3] = 0.0;
  310. previous_nominal_speed = 0.0;
  311. }
  312. #ifdef AUTOTEMP
  313. void getHighESpeed()
  314. {
  315. static float oldt=0;
  316. if(!autotemp_enabled)
  317. return;
  318. if(degTargetHotend0()+2<autotemp_min) //probably temperature set to zero.
  319. return; //do nothing
  320. float high=0;
  321. uint8_t block_index = block_buffer_tail;
  322. while(block_index != block_buffer_head) {
  323. float se=block_buffer[block_index].steps_e/float(block_buffer[block_index].step_event_count)*block_buffer[block_index].nominal_rate;
  324. //se; units steps/sec;
  325. if(se>high)
  326. {
  327. high=se;
  328. }
  329. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  330. }
  331. float g=autotemp_min+high*autotemp_factor;
  332. float t=g;
  333. if(t<autotemp_min)
  334. t=autotemp_min;
  335. if(t>autotemp_max)
  336. t=autotemp_max;
  337. if(oldt>t)
  338. {
  339. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  340. }
  341. oldt=t;
  342. setTargetHotend0(t);
  343. // SERIAL_ECHO_START;
  344. // SERIAL_ECHOPAIR("highe",high);
  345. // SERIAL_ECHOPAIR(" t",t);
  346. // SERIAL_ECHOLN("");
  347. }
  348. #endif
  349. void check_axes_activity() {
  350. unsigned char x_active = 0;
  351. unsigned char y_active = 0;
  352. unsigned char z_active = 0;
  353. unsigned char e_active = 0;
  354. block_t *block;
  355. if(block_buffer_tail != block_buffer_head) {
  356. uint8_t block_index = block_buffer_tail;
  357. while(block_index != block_buffer_head) {
  358. block = &block_buffer[block_index];
  359. if(block->steps_x != 0) x_active++;
  360. if(block->steps_y != 0) y_active++;
  361. if(block->steps_z != 0) z_active++;
  362. if(block->steps_e != 0) e_active++;
  363. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  364. }
  365. }
  366. if((DISABLE_X) && (x_active == 0)) disable_x();
  367. if((DISABLE_Y) && (y_active == 0)) disable_y();
  368. if((DISABLE_Z) && (z_active == 0)) disable_z();
  369. if((DISABLE_E) && (e_active == 0)) disable_e();
  370. }
  371. float junction_deviation = 0.1;
  372. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  373. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  374. // calculation the caller must also provide the physical length of the line in millimeters.
  375. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  376. {
  377. // Calculate the buffer head after we push this byte
  378. int next_buffer_head = next_block_index(block_buffer_head);
  379. // If the buffer is full: good! That means we are well ahead of the robot.
  380. // Rest here until there is room in the buffer.
  381. while(block_buffer_tail == next_buffer_head) {
  382. manage_heater();
  383. manage_inactivity(1);
  384. LCD_STATUS;
  385. }
  386. // The target position of the tool in absolute steps
  387. // Calculate target position in absolute steps
  388. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  389. long target[4];
  390. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  391. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  392. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  393. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  394. // Prepare to set up new block
  395. block_t *block = &block_buffer[block_buffer_head];
  396. // Mark block as not busy (Not executed by the stepper interrupt)
  397. block->busy = false;
  398. // Number of steps for each axis
  399. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  400. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  401. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  402. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  403. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  404. // Bail if this is a zero-length block
  405. if (block->step_event_count <=dropsegments) { return; };
  406. // Compute direction bits for this block
  407. block->direction_bits = 0;
  408. if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
  409. if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
  410. if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
  411. if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
  412. block->active_extruder = extruder;
  413. //enable active axes
  414. if(block->steps_x != 0) enable_x();
  415. if(block->steps_y != 0) enable_y();
  416. if(block->steps_z != 0) enable_z();
  417. if(extruder == 0) {
  418. if(block->steps_e != 0) enable_e();
  419. }
  420. #if (EXTRUDERS > 1)
  421. if(extruder == 1) {
  422. if(block->steps_e != 0) enable_e1();
  423. }
  424. #endif
  425. float delta_mm[4];
  426. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  427. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  428. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  429. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
  430. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) +
  431. square(delta_mm[Z_AXIS]) + square(delta_mm[E_AXIS]));
  432. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  433. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  434. float inverse_second = feed_rate * inverse_millimeters;
  435. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  436. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  437. if (block->steps_e == 0) {
  438. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  439. }
  440. else {
  441. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  442. }
  443. #ifdef SLOWDOWN
  444. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  445. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  446. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  447. #endif
  448. /*
  449. // segment time im micro seconds
  450. long segment_time = lround(1000000.0/inverse_second);
  451. if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
  452. if (segment_time<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  453. segment_time=segment_time+lround(2*(minsegmenttime-segment_time)/blockcount);
  454. }
  455. }
  456. else {
  457. if (segment_time<minsegmenttime) segment_time=minsegmenttime;
  458. }
  459. // END OF SLOW DOWN SECTION
  460. */
  461. // Calculate speed in mm/sec for each axis
  462. float current_speed[4];
  463. for(int i=0; i < 4; i++) {
  464. current_speed[i] = delta_mm[i] * inverse_second;
  465. }
  466. // Limit speed per axis
  467. float speed_factor = 1.0; //factor <=1 do decrease speed
  468. for(int i=0; i < 4; i++) {
  469. if(abs(current_speed[i]) > max_feedrate[i])
  470. speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
  471. }
  472. // Max segement time in us.
  473. #ifdef XY_FREQUENCY_LIMIT
  474. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  475. // Check and limit the xy direction change frequency
  476. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  477. old_direction_bits = block->direction_bits;
  478. if((direction_change & (1<<X_AXIS)) == 0) {
  479. x_segment_time[0] += segment_time;
  480. }
  481. else {
  482. x_segment_time[2] = x_segment_time[1];
  483. x_segment_time[1] = x_segment_time[0];
  484. x_segment_time[0] = segment_time;
  485. }
  486. if((direction_change & (1<<Y_AXIS)) == 0) {
  487. y_segment_time[0] += segment_time;
  488. }
  489. else {
  490. y_segment_time[2] = y_segment_time[1];
  491. y_segment_time[1] = y_segment_time[0];
  492. y_segment_time[0] = segment_time;
  493. }
  494. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  495. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  496. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  497. if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  498. #endif
  499. // Correct the speed
  500. if( speed_factor < 1.0) {
  501. // Serial.print("speed factor : "); Serial.println(speed_factor);
  502. for(int i=0; i < 4; i++) {
  503. if(abs(current_speed[i]) > max_feedrate[i])
  504. speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
  505. /*
  506. if(speed_factor < 0.1) {
  507. Serial.print("speed factor : "); Serial.println(speed_factor);
  508. Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
  509. }
  510. */
  511. }
  512. for(unsigned char i=0; i < 4; i++) {
  513. current_speed[i] *= speed_factor;
  514. }
  515. block->nominal_speed *= speed_factor;
  516. block->nominal_rate *= speed_factor;
  517. }
  518. // Compute and limit the acceleration rate for the trapezoid generator.
  519. float steps_per_mm = block->step_event_count/block->millimeters;
  520. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
  521. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  522. }
  523. else {
  524. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  525. // Limit acceleration per axis
  526. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  527. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  528. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  529. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  530. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  531. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  532. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  533. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  534. }
  535. block->acceleration = block->acceleration_st / steps_per_mm;
  536. block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
  537. #if 0 // Use old jerk for now
  538. // Compute path unit vector
  539. double unit_vec[3];
  540. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  541. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  542. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  543. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  544. // Let a circle be tangent to both previous and current path line segments, where the junction
  545. // deviation is defined as the distance from the junction to the closest edge of the circle,
  546. // colinear with the circle center. The circular segment joining the two paths represents the
  547. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  548. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  549. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  550. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  551. // nonlinearities of both the junction angle and junction velocity.
  552. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  553. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  554. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  555. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  556. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  557. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  558. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  559. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  560. // Skip and use default max junction speed for 0 degree acute junction.
  561. if (cos_theta < 0.95) {
  562. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  563. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  564. if (cos_theta > -0.95) {
  565. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  566. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  567. vmax_junction = min(vmax_junction,
  568. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  569. }
  570. }
  571. }
  572. #endif
  573. // Start with a safe speed
  574. float vmax_junction = max_xy_jerk/2;
  575. if(abs(current_speed[Z_AXIS]) > max_z_jerk/2)
  576. vmax_junction = max_z_jerk/2;
  577. vmax_junction = min(vmax_junction, block->nominal_speed);
  578. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  579. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  580. if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
  581. vmax_junction = block->nominal_speed;
  582. }
  583. if (jerk > max_xy_jerk) {
  584. vmax_junction *= (max_xy_jerk/jerk);
  585. }
  586. if(abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  587. vmax_junction *= (max_z_jerk/abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
  588. }
  589. }
  590. block->max_entry_speed = vmax_junction;
  591. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  592. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  593. block->entry_speed = min(vmax_junction, v_allowable);
  594. // Initialize planner efficiency flags
  595. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  596. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  597. // the current block and next block junction speeds are guaranteed to always be at their maximum
  598. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  599. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  600. // the reverse and forward planners, the corresponding block junction speed will always be at the
  601. // the maximum junction speed and may always be ignored for any speed reduction checks.
  602. if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
  603. else { block->nominal_length_flag = false; }
  604. block->recalculate_flag = true; // Always calculate trapezoid for new block
  605. // Update previous path unit_vector and nominal speed
  606. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  607. previous_nominal_speed = block->nominal_speed;
  608. #ifdef ADVANCE
  609. // Calculate advance rate
  610. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  611. block->advance_rate = 0;
  612. block->advance = 0;
  613. }
  614. else {
  615. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  616. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  617. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
  618. block->advance = advance;
  619. if(acc_dist == 0) {
  620. block->advance_rate = 0;
  621. }
  622. else {
  623. block->advance_rate = advance / (float)acc_dist;
  624. }
  625. }
  626. #endif // ADVANCE
  627. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  628. MINIMUM_PLANNER_SPEED/block->nominal_speed);
  629. // Move buffer head
  630. block_buffer_head = next_buffer_head;
  631. // Update position
  632. memcpy(position, target, sizeof(target)); // position[] = target[]
  633. planner_recalculate();
  634. #ifdef AUTOTEMP
  635. getHighESpeed();
  636. #endif
  637. st_wake_up();
  638. }
  639. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  640. {
  641. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  642. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  643. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  644. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  645. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  646. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  647. previous_speed[0] = 0.0;
  648. previous_speed[1] = 0.0;
  649. previous_speed[2] = 0.0;
  650. previous_speed[3] = 0.0;
  651. }
  652. void plan_set_e_position(const float &e)
  653. {
  654. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  655. st_set_e_position(position[E_AXIS]);
  656. }
  657. uint8_t movesplanned()
  658. {
  659. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  660. }