My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.h
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. */
  30. #ifndef PLANNER_H
  31. #define PLANNER_H
  32. #include "../Marlin.h"
  33. #include "motion.h"
  34. #if ENABLED(DELTA)
  35. #include "delta.h"
  36. #endif
  37. #if HAS_ABL
  38. #include "../libs/vector_3.h"
  39. #endif
  40. enum BlockFlagBit {
  41. // Recalculate trapezoids on entry junction. For optimization.
  42. BLOCK_BIT_RECALCULATE,
  43. // Nominal speed always reached.
  44. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  45. // from a safe speed (in consideration of jerking from zero speed).
  46. BLOCK_BIT_NOMINAL_LENGTH,
  47. // Start from a halt at the start of this block, respecting the maximum allowed jerk.
  48. BLOCK_BIT_START_FROM_FULL_HALT,
  49. // The block is busy
  50. BLOCK_BIT_BUSY,
  51. // The block is segment 2+ of a longer move
  52. BLOCK_BIT_CONTINUED
  53. };
  54. enum BlockFlag {
  55. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  56. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  57. BLOCK_FLAG_START_FROM_FULL_HALT = _BV(BLOCK_BIT_START_FROM_FULL_HALT),
  58. BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY),
  59. BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED)
  60. };
  61. /**
  62. * struct block_t
  63. *
  64. * A single entry in the planner buffer.
  65. * Tracks linear movement over multiple axes.
  66. *
  67. * The "nominal" values are as-specified by gcode, and
  68. * may never actually be reached due to acceleration limits.
  69. */
  70. typedef struct {
  71. uint8_t flag; // Block flags (See BlockFlag enum above)
  72. unsigned char active_extruder; // The extruder to move (if E move)
  73. // Fields used by the Bresenham algorithm for tracing the line
  74. int32_t steps[NUM_AXIS]; // Step count along each axis
  75. uint32_t step_event_count; // The number of step events required to complete this block
  76. #if ENABLED(MIXING_EXTRUDER)
  77. uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
  78. #endif
  79. int32_t accelerate_until, // The index of the step event on which to stop acceleration
  80. decelerate_after, // The index of the step event on which to start decelerating
  81. acceleration_rate; // The acceleration rate used for acceleration calculation
  82. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  83. // Advance extrusion
  84. #if ENABLED(LIN_ADVANCE)
  85. bool use_advance_lead;
  86. uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
  87. #endif
  88. // Fields used by the motion planner to manage acceleration
  89. float nominal_speed, // The nominal speed for this block in mm/sec
  90. entry_speed, // Entry speed at previous-current junction in mm/sec
  91. max_entry_speed, // Maximum allowable junction entry speed in mm/sec
  92. millimeters, // The total travel of this block in mm
  93. acceleration; // acceleration mm/sec^2
  94. // Settings for the trapezoid generator
  95. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  96. initial_rate, // The jerk-adjusted step rate at start of block
  97. final_rate, // The minimal rate at exit
  98. acceleration_steps_per_s2; // acceleration steps/sec^2
  99. #if FAN_COUNT > 0
  100. uint16_t fan_speed[FAN_COUNT];
  101. #endif
  102. #if ENABLED(BARICUDA)
  103. uint8_t valve_pressure, e_to_p_pressure;
  104. #endif
  105. uint32_t segment_time_us;
  106. } block_t;
  107. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  108. class Planner {
  109. public:
  110. /**
  111. * The move buffer, calculated in stepper steps
  112. *
  113. * block_buffer is a ring buffer...
  114. *
  115. * head,tail : indexes for write,read
  116. * head==tail : the buffer is empty
  117. * head!=tail : blocks are in the buffer
  118. * head==(tail-1)%size : the buffer is full
  119. *
  120. * Writer of head is Planner::buffer_segment().
  121. * Reader of tail is Stepper::isr(). Always consider tail busy / read-only
  122. */
  123. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  124. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  125. block_buffer_tail; // Index of the busy block, if any
  126. #if ENABLED(DISTINCT_E_FACTORS)
  127. static uint8_t last_extruder; // Respond to extruder change
  128. #endif
  129. static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
  130. static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement
  131. #if DISABLED(NO_VOLUMETRICS)
  132. static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
  133. volumetric_area_nominal, // Nominal cross-sectional area
  134. volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
  135. // May be auto-adjusted by a filament width sensor
  136. #endif
  137. static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  138. axis_steps_per_mm[XYZE_N],
  139. steps_to_mm[XYZE_N];
  140. static uint32_t max_acceleration_steps_per_s2[XYZE_N],
  141. max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override
  142. static uint32_t min_segment_time_us; // Use 'M205 B<µs>' to override
  143. static float min_feedrate_mm_s,
  144. acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  145. retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  146. travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  147. max_jerk[XYZE], // The largest speed change requiring no acceleration
  148. min_travel_feedrate_mm_s;
  149. #if HAS_LEVELING
  150. static bool leveling_active; // Flag that bed leveling is enabled
  151. #if ABL_PLANAR
  152. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  153. #endif
  154. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  155. static float z_fade_height, inverse_z_fade_height;
  156. #endif
  157. #else
  158. static constexpr bool leveling_active = false;
  159. #endif
  160. #if ENABLED(LIN_ADVANCE)
  161. static float extruder_advance_k, advance_ed_ratio,
  162. position_float[XYZE],
  163. lin_dist_xy, lin_dist_e;
  164. #endif
  165. #if ENABLED(SKEW_CORRECTION)
  166. #if ENABLED(SKEW_CORRECTION_GCODE)
  167. static float xy_skew_factor;
  168. #else
  169. static constexpr float xy_skew_factor = XY_SKEW_FACTOR;
  170. #endif
  171. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  172. #if ENABLED(SKEW_CORRECTION_GCODE)
  173. static float xz_skew_factor, yz_skew_factor;
  174. #else
  175. static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR;
  176. #endif
  177. #else
  178. static constexpr float xz_skew_factor = 0, yz_skew_factor = 0;
  179. #endif
  180. #endif
  181. private:
  182. /**
  183. * The current position of the tool in absolute steps
  184. * Recalculated if any axis_steps_per_mm are changed by gcode
  185. */
  186. static int32_t position[NUM_AXIS];
  187. /**
  188. * Speed of previous path line segment
  189. */
  190. static float previous_speed[NUM_AXIS];
  191. /**
  192. * Nominal speed of previous path line segment
  193. */
  194. static float previous_nominal_speed;
  195. /**
  196. * Limit where 64bit math is necessary for acceleration calculation
  197. */
  198. static uint32_t cutoff_long;
  199. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  200. static float last_fade_z;
  201. #endif
  202. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  203. /**
  204. * Counters to manage disabling inactive extruders
  205. */
  206. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  207. #endif // DISABLE_INACTIVE_EXTRUDER
  208. #ifdef XY_FREQUENCY_LIMIT
  209. // Used for the frequency limit
  210. #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
  211. // Old direction bits. Used for speed calculations
  212. static unsigned char old_direction_bits;
  213. // Segment times (in µs). Used for speed calculations
  214. static uint32_t axis_segment_time_us[2][3];
  215. #endif
  216. #if ENABLED(ULTRA_LCD)
  217. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  218. #endif
  219. public:
  220. /**
  221. * Instance Methods
  222. */
  223. Planner();
  224. void init();
  225. /**
  226. * Static (class) Methods
  227. */
  228. static void reset_acceleration_rates();
  229. static void refresh_positioning();
  230. FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
  231. e_factor[e] = (flow_percentage[e] * 0.01
  232. #if DISABLED(NO_VOLUMETRICS)
  233. * volumetric_multiplier[e]
  234. #endif
  235. );
  236. }
  237. // Manage fans, paste pressure, etc.
  238. static void check_axes_activity();
  239. /**
  240. * Number of moves currently in the planner
  241. */
  242. FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
  243. FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); }
  244. // Update multipliers based on new diameter measurements
  245. static void calculate_volumetric_multipliers();
  246. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  247. void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
  248. #endif
  249. #if DISABLED(NO_VOLUMETRICS)
  250. FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
  251. filament_size[e] = v;
  252. // make sure all extruders have some sane value for the filament size
  253. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  254. if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  255. }
  256. #endif
  257. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  258. /**
  259. * Get the Z leveling fade factor based on the given Z height,
  260. * re-calculating only when needed.
  261. *
  262. * Returns 1.0 if planner.z_fade_height is 0.0.
  263. * Returns 0.0 if Z is past the specified 'Fade Height'.
  264. */
  265. inline static float fade_scaling_factor_for_z(const float &rz) {
  266. static float z_fade_factor = 1.0;
  267. if (z_fade_height) {
  268. if (rz >= z_fade_height) return 0.0;
  269. if (last_fade_z != rz) {
  270. last_fade_z = rz;
  271. z_fade_factor = 1.0 - rz * inverse_z_fade_height;
  272. }
  273. return z_fade_factor;
  274. }
  275. return 1.0;
  276. }
  277. FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999; }
  278. FORCE_INLINE static void set_z_fade_height(const float &zfh) {
  279. z_fade_height = zfh > 0 ? zfh : 0;
  280. inverse_z_fade_height = RECIPROCAL(z_fade_height);
  281. force_fade_recalc();
  282. }
  283. FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
  284. return !z_fade_height || rz < z_fade_height;
  285. }
  286. #else
  287. FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
  288. UNUSED(rz);
  289. return 1.0;
  290. }
  291. FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
  292. #endif
  293. #if ENABLED(SKEW_CORRECTION)
  294. FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) {
  295. if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) {
  296. const float sx = cx - cy * xy_skew_factor - cz * (xz_skew_factor - (xy_skew_factor * yz_skew_factor)),
  297. sy = cy - cz * yz_skew_factor;
  298. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  299. cx = sx; cy = sy;
  300. }
  301. }
  302. }
  303. FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) {
  304. if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) {
  305. const float sx = cx + cy * xy_skew_factor + cz * xz_skew_factor,
  306. sy = cy + cz * yz_skew_factor;
  307. if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) {
  308. cx = sx; cy = sy;
  309. }
  310. }
  311. }
  312. #endif // SKEW_CORRECTION
  313. #if PLANNER_LEVELING
  314. #define ARG_X float rx
  315. #define ARG_Y float ry
  316. #define ARG_Z float rz
  317. /**
  318. * Apply leveling to transform a cartesian position
  319. * as it will be given to the planner and steppers.
  320. */
  321. static void apply_leveling(float &rx, float &ry, float &rz);
  322. static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
  323. static void unapply_leveling(float raw[XYZ]);
  324. #else
  325. #define ARG_X const float &rx
  326. #define ARG_Y const float &ry
  327. #define ARG_Z const float &rz
  328. #endif
  329. /**
  330. * Planner::_buffer_steps
  331. *
  332. * Add a new linear movement to the buffer (in terms of steps).
  333. *
  334. * target - target position in steps units
  335. * fr_mm_s - (target) speed of the move
  336. * extruder - target extruder
  337. * millimeters - the length of the movement, if known
  338. */
  339. static void _buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder, const float &millimeters = 0.0);
  340. /**
  341. * Planner::buffer_segment
  342. *
  343. * Add a new linear movement to the buffer in axis units.
  344. *
  345. * Leveling and kinematics should be applied ahead of calling this.
  346. *
  347. * a,b,c,e - target positions in mm and/or degrees
  348. * fr_mm_s - (target) speed of the move
  349. * extruder - target extruder
  350. * millimeters - the length of the movement, if known
  351. */
  352. static void buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters = 0.0);
  353. static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
  354. /**
  355. * Add a new linear movement to the buffer.
  356. * The target is NOT translated to delta/scara
  357. *
  358. * Leveling will be applied to input on cartesians.
  359. * Kinematic machines should call buffer_line_kinematic (for leveled moves).
  360. * (Cartesians may also call buffer_line_kinematic.)
  361. *
  362. * rx,ry,rz,e - target position in mm or degrees
  363. * fr_mm_s - (target) speed of the move (mm/s)
  364. * extruder - target extruder
  365. * millimeters - the length of the movement, if known
  366. */
  367. FORCE_INLINE static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
  368. #if PLANNER_LEVELING && IS_CARTESIAN
  369. apply_leveling(rx, ry, rz);
  370. #endif
  371. buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters);
  372. }
  373. /**
  374. * Add a new linear movement to the buffer.
  375. * The target is cartesian, it's translated to delta/scara if
  376. * needed.
  377. *
  378. * cart - x,y,z,e CARTESIAN target in mm
  379. * fr_mm_s - (target) speed of the move (mm/s)
  380. * extruder - target extruder
  381. * millimeters - the length of the movement, if known
  382. */
  383. FORCE_INLINE static void buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) {
  384. #if PLANNER_LEVELING
  385. float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
  386. apply_leveling(raw);
  387. #else
  388. const float (&raw)[XYZE] = cart;
  389. #endif
  390. #if IS_KINEMATIC
  391. inverse_kinematics(raw);
  392. buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
  393. #else
  394. buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters);
  395. #endif
  396. }
  397. /**
  398. * Set the planner.position and individual stepper positions.
  399. * Used by G92, G28, G29, and other procedures.
  400. *
  401. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  402. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  403. *
  404. * Clears previous speed values.
  405. */
  406. FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
  407. #if PLANNER_LEVELING && IS_CARTESIAN
  408. apply_leveling(rx, ry, rz);
  409. #endif
  410. _set_position_mm(rx, ry, rz, e);
  411. }
  412. static void set_position_mm_kinematic(const float (&cart)[XYZE]);
  413. static void set_position_mm(const AxisEnum axis, const float &v);
  414. FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
  415. FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(AxisEnum(E_AXIS), e); }
  416. /**
  417. * Sync from the stepper positions. (e.g., after an interrupted move)
  418. */
  419. static void sync_from_steppers();
  420. /**
  421. * Does the buffer have any blocks queued?
  422. */
  423. static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  424. /**
  425. * "Discard" the block and "release" the memory.
  426. * Called when the current block is no longer needed.
  427. */
  428. FORCE_INLINE static void discard_current_block() {
  429. if (blocks_queued())
  430. block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
  431. }
  432. /**
  433. * "Discard" the next block if it's continued.
  434. * Called after an interrupted move to throw away the rest of the move.
  435. */
  436. FORCE_INLINE static bool discard_continued_block() {
  437. const bool discard = blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED);
  438. if (discard) discard_current_block();
  439. return discard;
  440. }
  441. /**
  442. * The current block. NULL if the buffer is empty.
  443. * This also marks the block as busy.
  444. * WARNING: Called from Stepper ISR context!
  445. */
  446. static block_t* get_current_block() {
  447. if (blocks_queued()) {
  448. block_t * const block = &block_buffer[block_buffer_tail];
  449. // If the block has no trapezoid calculated, it's unsafe to execute.
  450. if (movesplanned() > 1) {
  451. const block_t * const next = &block_buffer[next_block_index(block_buffer_tail)];
  452. if (TEST(block->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE))
  453. return NULL;
  454. }
  455. else if (TEST(block->flag, BLOCK_BIT_RECALCULATE))
  456. return NULL;
  457. #if ENABLED(ULTRA_LCD)
  458. block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
  459. #endif
  460. SBI(block->flag, BLOCK_BIT_BUSY);
  461. return block;
  462. }
  463. else {
  464. #if ENABLED(ULTRA_LCD)
  465. clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  466. #endif
  467. return NULL;
  468. }
  469. }
  470. #if ENABLED(ULTRA_LCD)
  471. static uint16_t block_buffer_runtime() {
  472. CRITICAL_SECTION_START
  473. millis_t bbru = block_buffer_runtime_us;
  474. CRITICAL_SECTION_END
  475. // To translate µs to ms a division by 1000 would be required.
  476. // We introduce 2.4% error here by dividing by 1024.
  477. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  478. bbru >>= 10;
  479. // limit to about a minute.
  480. NOMORE(bbru, 0xFFFFul);
  481. return bbru;
  482. }
  483. static void clear_block_buffer_runtime(){
  484. CRITICAL_SECTION_START
  485. block_buffer_runtime_us = 0;
  486. CRITICAL_SECTION_END
  487. }
  488. #endif
  489. #if ENABLED(AUTOTEMP)
  490. static float autotemp_min, autotemp_max, autotemp_factor;
  491. static bool autotemp_enabled;
  492. static void getHighESpeed();
  493. static void autotemp_M104_M109();
  494. #endif
  495. private:
  496. /**
  497. * Get the index of the next / previous block in the ring buffer
  498. */
  499. static constexpr int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  500. static constexpr int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  501. /**
  502. * Calculate the distance (not time) it takes to accelerate
  503. * from initial_rate to target_rate using the given acceleration:
  504. */
  505. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  506. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  507. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  508. }
  509. /**
  510. * Return the point at which you must start braking (at the rate of -'accel') if
  511. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  512. * 'final_rate' after traveling 'distance'.
  513. *
  514. * This is used to compute the intersection point between acceleration and deceleration
  515. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  516. */
  517. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  518. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  519. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  520. }
  521. /**
  522. * Calculate the maximum allowable speed at this point, in order
  523. * to reach 'target_velocity' using 'acceleration' within a given
  524. * 'distance'.
  525. */
  526. static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
  527. return SQRT(sq(target_velocity) - 2 * accel * distance);
  528. }
  529. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  530. static void reverse_pass_kernel(block_t* const current, const block_t * const next);
  531. static void forward_pass_kernel(const block_t * const previous, block_t* const current);
  532. static void reverse_pass();
  533. static void forward_pass();
  534. static void recalculate_trapezoids();
  535. static void recalculate();
  536. };
  537. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  538. extern Planner planner;
  539. #endif // PLANNER_H