My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M80 - Turn on Power Supply
  129. * M81 - Turn off Power Supply
  130. * M82 - Set E codes absolute (default)
  131. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. * M84 - Disable steppers until next move,
  133. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. * M92 - Set axis_steps_per_unit - same syntax as G92
  136. * M104 - Set extruder target temp
  137. * M105 - Read current temp
  138. * M106 - Fan on
  139. * M107 - Fan off
  140. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. * M110 - Set the current line number
  144. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  145. * M112 - Emergency stop
  146. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. * M114 - Output current position to serial port
  148. * M115 - Capabilities string
  149. * M117 - Display a message on the controller screen
  150. * M119 - Output Endstop status to serial port
  151. * M120 - Enable endstop detection
  152. * M121 - Disable endstop detection
  153. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  154. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  155. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  157. * M140 - Set bed target temp
  158. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  159. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  160. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  161. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  162. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  163. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  164. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  165. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  166. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  167. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  168. * M206 - Set additional homing offset
  169. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  170. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  171. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  172. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  173. * M220 - Set speed factor override percentage: S<factor in percent>
  174. * M221 - Set extrude factor override percentage: S<factor in percent>
  175. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  176. * M240 - Trigger a camera to take a photograph
  177. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  178. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  179. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  180. * M301 - Set PID parameters P I and D
  181. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  182. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  183. * M304 - Set bed PID parameters P I and D
  184. * M380 - Activate solenoid on active extruder
  185. * M381 - Disable all solenoids
  186. * M400 - Finish all moves
  187. * M401 - Lower Z probe if present
  188. * M402 - Raise Z probe if present
  189. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. * M406 - Turn off Filament Sensor extrusion control
  192. * M407 - Display measured filament diameter
  193. * M410 - Quickstop. Abort all the planned moves
  194. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  195. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  196. * M428 - Set the home_offset logically based on the current_position
  197. * M500 - Store parameters in EEPROM
  198. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  199. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  200. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  201. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  202. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  203. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  204. * M666 - Set delta endstop adjustment
  205. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  206. * M907 - Set digital trimpot motor current using axis codes.
  207. * M908 - Control digital trimpot directly.
  208. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  209. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  210. * M350 - Set microstepping mode.
  211. * M351 - Toggle MS1 MS2 pins directly.
  212. *
  213. * ************ SCARA Specific - This can change to suit future G-code regulations
  214. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  215. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  216. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  217. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  218. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  219. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  220. * ************* SCARA End ***************
  221. *
  222. * ************ Custom codes - This can change to suit future G-code regulations
  223. * M100 - Watch Free Memory (For Debugging Only)
  224. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  225. * M928 - Start SD logging (M928 filename.g) - ended by M29
  226. * M999 - Restart after being stopped by error
  227. *
  228. * "T" Codes
  229. *
  230. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  231. *
  232. */
  233. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  234. void gcode_M100();
  235. #endif
  236. #if ENABLED(SDSUPPORT)
  237. CardReader card;
  238. #endif
  239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  240. TWIBus i2c;
  241. #endif
  242. bool Running = true;
  243. uint8_t marlin_debug_flags = DEBUG_NONE;
  244. static float feedrate = 1500.0, saved_feedrate;
  245. float current_position[NUM_AXIS] = { 0.0 };
  246. static float destination[NUM_AXIS] = { 0.0 };
  247. bool axis_known_position[3] = { false };
  248. bool axis_homed[3] = { false };
  249. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  250. static char* current_command, *current_command_args;
  251. static int cmd_queue_index_r = 0;
  252. static int cmd_queue_index_w = 0;
  253. static int commands_in_queue = 0;
  254. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  255. const float homing_feedrate[] = HOMING_FEEDRATE;
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedrate_multiplier = 100; //100->1 200->2
  258. int saved_feedrate_multiplier;
  259. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  260. bool volumetric_enabled = false;
  261. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  262. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  263. float position_shift[3] = { 0 };
  264. float home_offset[3] = { 0 };
  265. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  266. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  267. #if FAN_COUNT > 0
  268. int fanSpeeds[FAN_COUNT] = { 0 };
  269. #endif
  270. uint8_t active_extruder = 0;
  271. bool cancel_heatup = false;
  272. const char errormagic[] PROGMEM = "Error:";
  273. const char echomagic[] PROGMEM = "echo:";
  274. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  275. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  276. static int serial_count = 0;
  277. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  278. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  279. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  280. // Inactivity shutdown
  281. millis_t previous_cmd_ms = 0;
  282. static millis_t max_inactive_time = 0;
  283. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  284. Stopwatch print_job_timer = Stopwatch();
  285. static uint8_t target_extruder;
  286. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  287. int xy_travel_speed = XY_TRAVEL_SPEED;
  288. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  289. #endif
  290. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  291. float z_endstop_adj = 0;
  292. #endif
  293. // Extruder offsets
  294. #if EXTRUDERS > 1
  295. #ifndef EXTRUDER_OFFSET_X
  296. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  297. #endif
  298. #ifndef EXTRUDER_OFFSET_Y
  299. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  300. #endif
  301. float extruder_offset[][EXTRUDERS] = {
  302. EXTRUDER_OFFSET_X,
  303. EXTRUDER_OFFSET_Y
  304. #if ENABLED(DUAL_X_CARRIAGE)
  305. , { 0 } // Z offsets for each extruder
  306. #endif
  307. };
  308. #endif
  309. #if HAS_SERVO_ENDSTOPS
  310. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  311. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  312. #endif
  313. #if ENABLED(BARICUDA)
  314. int ValvePressure = 0;
  315. int EtoPPressure = 0;
  316. #endif
  317. #if ENABLED(FWRETRACT)
  318. bool autoretract_enabled = false;
  319. bool retracted[EXTRUDERS] = { false };
  320. bool retracted_swap[EXTRUDERS] = { false };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif // FWRETRACT
  329. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  330. bool powersupply =
  331. #if ENABLED(PS_DEFAULT_OFF)
  332. false
  333. #else
  334. true
  335. #endif
  336. ;
  337. #endif
  338. #if ENABLED(DELTA)
  339. #define TOWER_1 X_AXIS
  340. #define TOWER_2 Y_AXIS
  341. #define TOWER_3 Z_AXIS
  342. float delta[3] = { 0 };
  343. #define SIN_60 0.8660254037844386
  344. #define COS_60 0.5
  345. float endstop_adj[3] = { 0 };
  346. // these are the default values, can be overriden with M665
  347. float delta_radius = DELTA_RADIUS;
  348. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  349. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  350. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  351. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  352. float delta_tower3_x = 0; // back middle tower
  353. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  354. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  355. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  356. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  357. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  358. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  359. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  360. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  361. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  362. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  363. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  364. int delta_grid_spacing[2] = { 0, 0 };
  365. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  366. #endif
  367. #else
  368. static bool home_all_axis = true;
  369. #endif
  370. #if ENABLED(SCARA)
  371. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  372. static float delta[3] = { 0 };
  373. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  374. #endif
  375. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  376. //Variables for Filament Sensor input
  377. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  378. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  379. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  380. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  381. int filwidth_delay_index1 = 0; //index into ring buffer
  382. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  383. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  384. #endif
  385. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  386. static bool filrunoutEnqueued = false;
  387. #endif
  388. static bool send_ok[BUFSIZE];
  389. #if HAS_SERVOS
  390. Servo servo[NUM_SERVOS];
  391. #endif
  392. #ifdef CHDK
  393. millis_t chdkHigh = 0;
  394. boolean chdkActive = false;
  395. #endif
  396. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  397. int lpq_len = 20;
  398. #endif
  399. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  400. // States for managing Marlin and host communication
  401. // Marlin sends messages if blocked or busy
  402. enum MarlinBusyState {
  403. NOT_BUSY, // Not in a handler
  404. IN_HANDLER, // Processing a GCode
  405. IN_PROCESS, // Known to be blocking command input (as in G29)
  406. PAUSED_FOR_USER, // Blocking pending any input
  407. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  408. };
  409. static MarlinBusyState busy_state = NOT_BUSY;
  410. static millis_t next_busy_signal_ms = 0;
  411. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  412. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  413. #else
  414. #define host_keepalive() ;
  415. #define KEEPALIVE_STATE(n) ;
  416. #endif // HOST_KEEPALIVE_FEATURE
  417. /**
  418. * ***************************************************************************
  419. * ******************************** FUNCTIONS ********************************
  420. * ***************************************************************************
  421. */
  422. void get_available_commands();
  423. void process_next_command();
  424. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  425. bool setTargetedHotend(int code);
  426. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  429. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  431. void gcode_M114();
  432. #if ENABLED(DEBUG_LEVELING_FEATURE)
  433. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  434. SERIAL_ECHO(prefix);
  435. SERIAL_ECHOPAIR(": (", x);
  436. SERIAL_ECHOPAIR(", ", y);
  437. SERIAL_ECHOPAIR(", ", z);
  438. SERIAL_ECHOLNPGM(")");
  439. }
  440. void print_xyz(const char* prefix, const float xyz[]) {
  441. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  442. }
  443. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  444. void print_xyz(const char* prefix, const vector_3 &xyz) {
  445. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  446. }
  447. #endif
  448. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  449. #endif
  450. #if ENABLED(DELTA) || ENABLED(SCARA)
  451. inline void sync_plan_position_delta() {
  452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  453. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  454. #endif
  455. calculate_delta(current_position);
  456. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  457. }
  458. #endif
  459. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  460. float extrude_min_temp = EXTRUDE_MINTEMP;
  461. #endif
  462. #if ENABLED(HAS_Z_MIN_PROBE)
  463. extern volatile bool z_probe_is_active;
  464. #endif
  465. #if ENABLED(SDSUPPORT)
  466. #include "SdFatUtil.h"
  467. int freeMemory() { return SdFatUtil::FreeRam(); }
  468. #else
  469. extern "C" {
  470. extern unsigned int __bss_end;
  471. extern unsigned int __heap_start;
  472. extern void* __brkval;
  473. int freeMemory() {
  474. int free_memory;
  475. if ((int)__brkval == 0)
  476. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  477. else
  478. free_memory = ((int)&free_memory) - ((int)__brkval);
  479. return free_memory;
  480. }
  481. }
  482. #endif //!SDSUPPORT
  483. /**
  484. * Inject the next "immediate" command, when possible.
  485. * Return true if any immediate commands remain to inject.
  486. */
  487. static bool drain_queued_commands_P() {
  488. if (queued_commands_P != NULL) {
  489. size_t i = 0;
  490. char c, cmd[30];
  491. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  492. cmd[sizeof(cmd) - 1] = '\0';
  493. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  494. cmd[i] = '\0';
  495. if (enqueue_and_echo_command(cmd)) { // success?
  496. if (c) // newline char?
  497. queued_commands_P += i + 1; // advance to the next command
  498. else
  499. queued_commands_P = NULL; // nul char? no more commands
  500. }
  501. }
  502. return (queued_commands_P != NULL); // return whether any more remain
  503. }
  504. /**
  505. * Record one or many commands to run from program memory.
  506. * Aborts the current queue, if any.
  507. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  508. */
  509. void enqueue_and_echo_commands_P(const char* pgcode) {
  510. queued_commands_P = pgcode;
  511. drain_queued_commands_P(); // first command executed asap (when possible)
  512. }
  513. /**
  514. * Once a new command is in the ring buffer, call this to commit it
  515. */
  516. inline void _commit_command(bool say_ok) {
  517. send_ok[cmd_queue_index_w] = say_ok;
  518. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  519. commands_in_queue++;
  520. }
  521. /**
  522. * Copy a command directly into the main command buffer, from RAM.
  523. * Returns true if successfully adds the command
  524. */
  525. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  526. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  527. strcpy(command_queue[cmd_queue_index_w], cmd);
  528. _commit_command(say_ok);
  529. return true;
  530. }
  531. void enqueue_and_echo_command_now(const char* cmd) {
  532. while (!enqueue_and_echo_command(cmd)) idle();
  533. }
  534. /**
  535. * Enqueue with Serial Echo
  536. */
  537. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  538. if (_enqueuecommand(cmd, say_ok)) {
  539. SERIAL_ECHO_START;
  540. SERIAL_ECHOPGM(MSG_Enqueueing);
  541. SERIAL_ECHO(cmd);
  542. SERIAL_ECHOLNPGM("\"");
  543. return true;
  544. }
  545. return false;
  546. }
  547. void setup_killpin() {
  548. #if HAS_KILL
  549. SET_INPUT(KILL_PIN);
  550. WRITE(KILL_PIN, HIGH);
  551. #endif
  552. }
  553. void setup_filrunoutpin() {
  554. #if HAS_FILRUNOUT
  555. pinMode(FILRUNOUT_PIN, INPUT);
  556. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  557. WRITE(FILRUNOUT_PIN, HIGH);
  558. #endif
  559. #endif
  560. }
  561. // Set home pin
  562. void setup_homepin(void) {
  563. #if HAS_HOME
  564. SET_INPUT(HOME_PIN);
  565. WRITE(HOME_PIN, HIGH);
  566. #endif
  567. }
  568. void setup_photpin() {
  569. #if HAS_PHOTOGRAPH
  570. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  571. #endif
  572. }
  573. void setup_powerhold() {
  574. #if HAS_SUICIDE
  575. OUT_WRITE(SUICIDE_PIN, HIGH);
  576. #endif
  577. #if HAS_POWER_SWITCH
  578. #if ENABLED(PS_DEFAULT_OFF)
  579. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  580. #else
  581. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  582. #endif
  583. #endif
  584. }
  585. void suicide() {
  586. #if HAS_SUICIDE
  587. OUT_WRITE(SUICIDE_PIN, LOW);
  588. #endif
  589. }
  590. void servo_init() {
  591. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  592. servo[0].attach(SERVO0_PIN);
  593. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  594. #endif
  595. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  596. servo[1].attach(SERVO1_PIN);
  597. servo[1].detach();
  598. #endif
  599. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  600. servo[2].attach(SERVO2_PIN);
  601. servo[2].detach();
  602. #endif
  603. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  604. servo[3].attach(SERVO3_PIN);
  605. servo[3].detach();
  606. #endif
  607. #if HAS_SERVO_ENDSTOPS
  608. z_probe_is_active = false;
  609. /**
  610. * Set position of all defined Servo Endstops
  611. *
  612. * ** UNSAFE! - NEEDS UPDATE! **
  613. *
  614. * The servo might be deployed and positioned too low to stow
  615. * when starting up the machine or rebooting the board.
  616. * There's no way to know where the nozzle is positioned until
  617. * homing has been done - no homing with z-probe without init!
  618. *
  619. */
  620. for (int i = 0; i < 3; i++)
  621. if (servo_endstop_id[i] >= 0)
  622. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  623. #endif // HAS_SERVO_ENDSTOPS
  624. }
  625. /**
  626. * Stepper Reset (RigidBoard, et.al.)
  627. */
  628. #if HAS_STEPPER_RESET
  629. void disableStepperDrivers() {
  630. pinMode(STEPPER_RESET_PIN, OUTPUT);
  631. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  632. }
  633. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  634. #endif
  635. /**
  636. * Marlin entry-point: Set up before the program loop
  637. * - Set up the kill pin, filament runout, power hold
  638. * - Start the serial port
  639. * - Print startup messages and diagnostics
  640. * - Get EEPROM or default settings
  641. * - Initialize managers for:
  642. * • temperature
  643. * • planner
  644. * • watchdog
  645. * • stepper
  646. * • photo pin
  647. * • servos
  648. * • LCD controller
  649. * • Digipot I2C
  650. * • Z probe sled
  651. * • status LEDs
  652. */
  653. void setup() {
  654. #ifdef DISABLE_JTAG
  655. // Disable JTAG on AT90USB chips to free up pins for IO
  656. MCUCR = 0x80;
  657. MCUCR = 0x80;
  658. #endif
  659. setup_killpin();
  660. setup_filrunoutpin();
  661. setup_powerhold();
  662. #if HAS_STEPPER_RESET
  663. disableStepperDrivers();
  664. #endif
  665. MYSERIAL.begin(BAUDRATE);
  666. SERIAL_PROTOCOLLNPGM("start");
  667. SERIAL_ECHO_START;
  668. // Check startup - does nothing if bootloader sets MCUSR to 0
  669. byte mcu = MCUSR;
  670. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  671. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  672. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  673. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  674. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  675. MCUSR = 0;
  676. SERIAL_ECHOPGM(MSG_MARLIN);
  677. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  678. #ifdef STRING_DISTRIBUTION_DATE
  679. #ifdef STRING_CONFIG_H_AUTHOR
  680. SERIAL_ECHO_START;
  681. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  682. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  683. SERIAL_ECHOPGM(MSG_AUTHOR);
  684. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  685. SERIAL_ECHOPGM("Compiled: ");
  686. SERIAL_ECHOLNPGM(__DATE__);
  687. #endif // STRING_CONFIG_H_AUTHOR
  688. #endif // STRING_DISTRIBUTION_DATE
  689. SERIAL_ECHO_START;
  690. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  691. SERIAL_ECHO(freeMemory());
  692. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  693. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  694. // Send "ok" after commands by default
  695. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  696. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  697. Config_RetrieveSettings();
  698. lcd_init();
  699. tp_init(); // Initialize temperature loop
  700. plan_init(); // Initialize planner;
  701. #if ENABLED(DELTA) || ENABLED(SCARA)
  702. // Vital to init kinematic equivalent for X0 Y0 Z0
  703. sync_plan_position_delta();
  704. #endif
  705. #if ENABLED(USE_WATCHDOG)
  706. watchdog_init();
  707. #endif
  708. st_init(); // Initialize stepper, this enables interrupts!
  709. setup_photpin();
  710. servo_init();
  711. #if HAS_CONTROLLERFAN
  712. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  713. #endif
  714. #if HAS_STEPPER_RESET
  715. enableStepperDrivers();
  716. #endif
  717. #if ENABLED(DIGIPOT_I2C)
  718. digipot_i2c_init();
  719. #endif
  720. #if ENABLED(Z_PROBE_SLED)
  721. pinMode(SLED_PIN, OUTPUT);
  722. digitalWrite(SLED_PIN, LOW); // turn it off
  723. #endif // Z_PROBE_SLED
  724. setup_homepin();
  725. #ifdef STAT_LED_RED
  726. pinMode(STAT_LED_RED, OUTPUT);
  727. digitalWrite(STAT_LED_RED, LOW); // turn it off
  728. #endif
  729. #ifdef STAT_LED_BLUE
  730. pinMode(STAT_LED_BLUE, OUTPUT);
  731. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  732. #endif
  733. }
  734. /**
  735. * The main Marlin program loop
  736. *
  737. * - Save or log commands to SD
  738. * - Process available commands (if not saving)
  739. * - Call heater manager
  740. * - Call inactivity manager
  741. * - Call endstop manager
  742. * - Call LCD update
  743. */
  744. void loop() {
  745. if (commands_in_queue < BUFSIZE) get_available_commands();
  746. #if ENABLED(SDSUPPORT)
  747. card.checkautostart(false);
  748. #endif
  749. if (commands_in_queue) {
  750. #if ENABLED(SDSUPPORT)
  751. if (card.saving) {
  752. char* command = command_queue[cmd_queue_index_r];
  753. if (strstr_P(command, PSTR("M29"))) {
  754. // M29 closes the file
  755. card.closefile();
  756. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  757. ok_to_send();
  758. }
  759. else {
  760. // Write the string from the read buffer to SD
  761. card.write_command(command);
  762. if (card.logging)
  763. process_next_command(); // The card is saving because it's logging
  764. else
  765. ok_to_send();
  766. }
  767. }
  768. else
  769. process_next_command();
  770. #else
  771. process_next_command();
  772. #endif // SDSUPPORT
  773. commands_in_queue--;
  774. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  775. }
  776. checkHitEndstops();
  777. idle();
  778. }
  779. void gcode_line_error(const char* err, bool doFlush = true) {
  780. SERIAL_ERROR_START;
  781. serialprintPGM(err);
  782. SERIAL_ERRORLN(gcode_LastN);
  783. //Serial.println(gcode_N);
  784. if (doFlush) FlushSerialRequestResend();
  785. serial_count = 0;
  786. }
  787. inline void get_serial_commands() {
  788. static char serial_line_buffer[MAX_CMD_SIZE];
  789. static boolean serial_comment_mode = false;
  790. // If the command buffer is empty for too long,
  791. // send "wait" to indicate Marlin is still waiting.
  792. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  793. static millis_t last_command_time = 0;
  794. millis_t ms = millis();
  795. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  796. SERIAL_ECHOLNPGM(MSG_WAIT);
  797. last_command_time = ms;
  798. }
  799. #endif
  800. /**
  801. * Loop while serial characters are incoming and the queue is not full
  802. */
  803. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  804. char serial_char = MYSERIAL.read();
  805. /**
  806. * If the character ends the line
  807. */
  808. if (serial_char == '\n' || serial_char == '\r') {
  809. serial_comment_mode = false; // end of line == end of comment
  810. if (!serial_count) continue; // skip empty lines
  811. serial_line_buffer[serial_count] = 0; // terminate string
  812. serial_count = 0; //reset buffer
  813. char* command = serial_line_buffer;
  814. while (*command == ' ') command++; // skip any leading spaces
  815. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  816. char* apos = strchr(command, '*');
  817. if (npos) {
  818. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  819. if (M110) {
  820. char* n2pos = strchr(command + 4, 'N');
  821. if (n2pos) npos = n2pos;
  822. }
  823. gcode_N = strtol(npos + 1, NULL, 10);
  824. if (gcode_N != gcode_LastN + 1 && !M110) {
  825. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  826. return;
  827. }
  828. if (apos) {
  829. byte checksum = 0, count = 0;
  830. while (command[count] != '*') checksum ^= command[count++];
  831. if (strtol(apos + 1, NULL, 10) != checksum) {
  832. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  833. return;
  834. }
  835. // if no errors, continue parsing
  836. }
  837. else {
  838. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  839. return;
  840. }
  841. gcode_LastN = gcode_N;
  842. // if no errors, continue parsing
  843. }
  844. else if (apos) { // No '*' without 'N'
  845. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  846. return;
  847. }
  848. // Movement commands alert when stopped
  849. if (IsStopped()) {
  850. char* gpos = strchr(command, 'G');
  851. if (gpos) {
  852. int codenum = strtol(gpos + 1, NULL, 10);
  853. switch (codenum) {
  854. case 0:
  855. case 1:
  856. case 2:
  857. case 3:
  858. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  859. LCD_MESSAGEPGM(MSG_STOPPED);
  860. break;
  861. }
  862. }
  863. }
  864. // If command was e-stop process now
  865. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  866. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  867. last_command_time = ms;
  868. #endif
  869. // Add the command to the queue
  870. _enqueuecommand(serial_line_buffer, true);
  871. }
  872. else if (serial_count >= MAX_CMD_SIZE - 1) {
  873. // Keep fetching, but ignore normal characters beyond the max length
  874. // The command will be injected when EOL is reached
  875. }
  876. else if (serial_char == '\\') { // Handle escapes
  877. if (MYSERIAL.available() > 0) {
  878. // if we have one more character, copy it over
  879. serial_char = MYSERIAL.read();
  880. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  881. }
  882. // otherwise do nothing
  883. }
  884. else { // it's not a newline, carriage return or escape char
  885. if (serial_char == ';') serial_comment_mode = true;
  886. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  887. }
  888. } // queue has space, serial has data
  889. }
  890. #if ENABLED(SDSUPPORT)
  891. inline void get_sdcard_commands() {
  892. static bool stop_buffering = false,
  893. sd_comment_mode = false;
  894. if (!card.sdprinting) return;
  895. /**
  896. * '#' stops reading from SD to the buffer prematurely, so procedural
  897. * macro calls are possible. If it occurs, stop_buffering is triggered
  898. * and the buffer is run dry; this character _can_ occur in serial com
  899. * due to checksums, however, no checksums are used in SD printing.
  900. */
  901. if (commands_in_queue == 0) stop_buffering = false;
  902. uint16_t sd_count = 0;
  903. bool card_eof = card.eof();
  904. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  905. int16_t n = card.get();
  906. char sd_char = (char)n;
  907. card_eof = card.eof();
  908. if (card_eof || n == -1
  909. || sd_char == '\n' || sd_char == '\r'
  910. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  911. ) {
  912. if (card_eof) {
  913. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  914. print_job_timer.stop();
  915. char time[30];
  916. millis_t t = print_job_timer.duration();
  917. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  918. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  919. SERIAL_ECHO_START;
  920. SERIAL_ECHOLN(time);
  921. lcd_setstatus(time, true);
  922. card.printingHasFinished();
  923. card.checkautostart(true);
  924. }
  925. if (sd_char == '#') stop_buffering = true;
  926. sd_comment_mode = false; //for new command
  927. if (!sd_count) continue; //skip empty lines
  928. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  929. sd_count = 0; //clear buffer
  930. _commit_command(false);
  931. }
  932. else if (sd_count >= MAX_CMD_SIZE - 1) {
  933. /**
  934. * Keep fetching, but ignore normal characters beyond the max length
  935. * The command will be injected when EOL is reached
  936. */
  937. }
  938. else {
  939. if (sd_char == ';') sd_comment_mode = true;
  940. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  941. }
  942. }
  943. }
  944. #endif // SDSUPPORT
  945. /**
  946. * Add to the circular command queue the next command from:
  947. * - The command-injection queue (queued_commands_P)
  948. * - The active serial input (usually USB)
  949. * - The SD card file being actively printed
  950. */
  951. void get_available_commands() {
  952. // if any immediate commands remain, don't get other commands yet
  953. if (drain_queued_commands_P()) return;
  954. get_serial_commands();
  955. #if ENABLED(SDSUPPORT)
  956. get_sdcard_commands();
  957. #endif
  958. }
  959. bool code_has_value() {
  960. int i = 1;
  961. char c = seen_pointer[i];
  962. while (c == ' ') c = seen_pointer[++i];
  963. if (c == '-' || c == '+') c = seen_pointer[++i];
  964. if (c == '.') c = seen_pointer[++i];
  965. return NUMERIC(c);
  966. }
  967. float code_value() {
  968. float ret;
  969. char* e = strchr(seen_pointer, 'E');
  970. if (e) {
  971. *e = 0;
  972. ret = strtod(seen_pointer + 1, NULL);
  973. *e = 'E';
  974. }
  975. else
  976. ret = strtod(seen_pointer + 1, NULL);
  977. return ret;
  978. }
  979. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  980. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  981. bool code_seen(char code) {
  982. seen_pointer = strchr(current_command_args, code);
  983. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  984. }
  985. #define DEFINE_PGM_READ_ANY(type, reader) \
  986. static inline type pgm_read_any(const type *p) \
  987. { return pgm_read_##reader##_near(p); }
  988. DEFINE_PGM_READ_ANY(float, float);
  989. DEFINE_PGM_READ_ANY(signed char, byte);
  990. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  991. static const PROGMEM type array##_P[3] = \
  992. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  993. static inline type array(int axis) \
  994. { return pgm_read_any(&array##_P[axis]); }
  995. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  996. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  997. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  998. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  999. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1000. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1001. #if ENABLED(DUAL_X_CARRIAGE)
  1002. #define DXC_FULL_CONTROL_MODE 0
  1003. #define DXC_AUTO_PARK_MODE 1
  1004. #define DXC_DUPLICATION_MODE 2
  1005. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1006. static float x_home_pos(int extruder) {
  1007. if (extruder == 0)
  1008. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1009. else
  1010. /**
  1011. * In dual carriage mode the extruder offset provides an override of the
  1012. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1013. * This allow soft recalibration of the second extruder offset position
  1014. * without firmware reflash (through the M218 command).
  1015. */
  1016. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1017. }
  1018. static int x_home_dir(int extruder) {
  1019. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1020. }
  1021. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1022. static bool active_extruder_parked = false; // used in mode 1 & 2
  1023. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1024. static millis_t delayed_move_time = 0; // used in mode 1
  1025. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1026. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1027. bool extruder_duplication_enabled = false; // used in mode 2
  1028. #endif //DUAL_X_CARRIAGE
  1029. /**
  1030. * Software endstops can be used to monitor the open end of
  1031. * an axis that has a hardware endstop on the other end. Or
  1032. * they can prevent axes from moving past endstops and grinding.
  1033. *
  1034. * To keep doing their job as the coordinate system changes,
  1035. * the software endstop positions must be refreshed to remain
  1036. * at the same positions relative to the machine.
  1037. */
  1038. static void update_software_endstops(AxisEnum axis) {
  1039. float offs = home_offset[axis] + position_shift[axis];
  1040. #if ENABLED(DUAL_X_CARRIAGE)
  1041. if (axis == X_AXIS) {
  1042. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1043. if (active_extruder != 0) {
  1044. min_pos[X_AXIS] = X2_MIN_POS + offs;
  1045. max_pos[X_AXIS] = dual_max_x + offs;
  1046. return;
  1047. }
  1048. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1049. min_pos[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1050. max_pos[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1051. return;
  1052. }
  1053. }
  1054. else
  1055. #endif
  1056. {
  1057. min_pos[axis] = base_min_pos(axis) + offs;
  1058. max_pos[axis] = base_max_pos(axis) + offs;
  1059. }
  1060. }
  1061. static void set_home_offset(AxisEnum axis, float v) {
  1062. current_position[axis] += v - home_offset[axis];
  1063. home_offset[axis] = v;
  1064. update_software_endstops(axis);
  1065. }
  1066. static void set_axis_is_at_home(AxisEnum axis) {
  1067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1068. if (DEBUGGING(LEVELING)) {
  1069. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1070. SERIAL_ECHOLNPGM(") >>>");
  1071. }
  1072. #endif
  1073. position_shift[axis] = 0;
  1074. #if ENABLED(DUAL_X_CARRIAGE)
  1075. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1076. if (active_extruder != 0)
  1077. current_position[X_AXIS] = x_home_pos(active_extruder);
  1078. else
  1079. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1080. update_software_endstops(X_AXIS);
  1081. return;
  1082. }
  1083. #endif
  1084. #if ENABLED(SCARA)
  1085. if (axis == X_AXIS || axis == Y_AXIS) {
  1086. float homeposition[3];
  1087. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1088. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1089. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1090. /**
  1091. * Works out real Homeposition angles using inverse kinematics,
  1092. * and calculates homing offset using forward kinematics
  1093. */
  1094. calculate_delta(homeposition);
  1095. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1096. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1097. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1098. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1099. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1100. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1101. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1102. calculate_SCARA_forward_Transform(delta);
  1103. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1104. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1105. current_position[axis] = delta[axis];
  1106. /**
  1107. * SCARA home positions are based on configuration since the actual
  1108. * limits are determined by the inverse kinematic transform.
  1109. */
  1110. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1111. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1112. }
  1113. else
  1114. #endif
  1115. {
  1116. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1117. update_software_endstops(axis);
  1118. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1119. if (axis == Z_AXIS) {
  1120. current_position[Z_AXIS] -= zprobe_zoffset;
  1121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1122. if (DEBUGGING(LEVELING)) {
  1123. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1124. SERIAL_EOL;
  1125. }
  1126. #endif
  1127. }
  1128. #endif
  1129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1130. if (DEBUGGING(LEVELING)) {
  1131. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1132. DEBUG_POS("", current_position);
  1133. }
  1134. #endif
  1135. }
  1136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1137. if (DEBUGGING(LEVELING)) {
  1138. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1139. SERIAL_ECHOLNPGM(")");
  1140. }
  1141. #endif
  1142. }
  1143. /**
  1144. * Some planner shorthand inline functions
  1145. */
  1146. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1147. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1148. int hbd = homing_bump_divisor[axis];
  1149. if (hbd < 1) {
  1150. hbd = 10;
  1151. SERIAL_ECHO_START;
  1152. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1153. }
  1154. feedrate = homing_feedrate[axis] / hbd;
  1155. }
  1156. //
  1157. // line_to_current_position
  1158. // Move the planner to the current position from wherever it last moved
  1159. // (or from wherever it has been told it is located).
  1160. //
  1161. inline void line_to_current_position() {
  1162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1163. }
  1164. inline void line_to_z(float zPosition) {
  1165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1166. }
  1167. //
  1168. // line_to_destination
  1169. // Move the planner, not necessarily synced with current_position
  1170. //
  1171. inline void line_to_destination(float mm_m) {
  1172. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1173. }
  1174. inline void line_to_destination() {
  1175. line_to_destination(feedrate);
  1176. }
  1177. /**
  1178. * sync_plan_position
  1179. * Set planner / stepper positions to the cartesian current_position.
  1180. * The stepper code translates these coordinates into step units.
  1181. * Allows translation between steps and units (mm) for cartesian & core robots
  1182. */
  1183. inline void sync_plan_position() {
  1184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1185. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1186. #endif
  1187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1188. }
  1189. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1190. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1191. static void setup_for_endstop_move() {
  1192. saved_feedrate = feedrate;
  1193. saved_feedrate_multiplier = feedrate_multiplier;
  1194. feedrate_multiplier = 100;
  1195. refresh_cmd_timeout();
  1196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1197. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1198. #endif
  1199. enable_endstops(true);
  1200. }
  1201. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1202. #if ENABLED(DELTA)
  1203. /**
  1204. * Calculate delta, start a line, and set current_position to destination
  1205. */
  1206. void prepare_move_raw() {
  1207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1208. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1209. #endif
  1210. refresh_cmd_timeout();
  1211. calculate_delta(destination);
  1212. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1213. set_current_to_destination();
  1214. }
  1215. #endif
  1216. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1217. #if DISABLED(DELTA)
  1218. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1219. //plan_bed_level_matrix.debug("bed level before");
  1220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1221. plan_bed_level_matrix.set_to_identity();
  1222. if (DEBUGGING(LEVELING)) {
  1223. vector_3 uncorrected_position = plan_get_position();
  1224. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1225. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1226. }
  1227. #endif
  1228. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1229. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1230. vector_3 corrected_position = plan_get_position();
  1231. current_position[X_AXIS] = corrected_position.x;
  1232. current_position[Y_AXIS] = corrected_position.y;
  1233. current_position[Z_AXIS] = corrected_position.z;
  1234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1235. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1236. #endif
  1237. sync_plan_position();
  1238. }
  1239. #endif // !DELTA
  1240. #else // !AUTO_BED_LEVELING_GRID
  1241. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1242. plan_bed_level_matrix.set_to_identity();
  1243. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1244. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1245. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1246. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1247. if (planeNormal.z < 0) {
  1248. planeNormal.x = -planeNormal.x;
  1249. planeNormal.y = -planeNormal.y;
  1250. planeNormal.z = -planeNormal.z;
  1251. }
  1252. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1253. vector_3 corrected_position = plan_get_position();
  1254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1255. if (DEBUGGING(LEVELING)) {
  1256. vector_3 uncorrected_position = corrected_position;
  1257. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1258. }
  1259. #endif
  1260. current_position[X_AXIS] = corrected_position.x;
  1261. current_position[Y_AXIS] = corrected_position.y;
  1262. current_position[Z_AXIS] = corrected_position.z;
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1265. #endif
  1266. sync_plan_position();
  1267. }
  1268. #endif // !AUTO_BED_LEVELING_GRID
  1269. static void run_z_probe() {
  1270. /**
  1271. * To prevent stepper_inactive_time from running out and
  1272. * EXTRUDER_RUNOUT_PREVENT from extruding
  1273. */
  1274. refresh_cmd_timeout();
  1275. #if ENABLED(DELTA)
  1276. float start_z = current_position[Z_AXIS];
  1277. long start_steps = st_get_position(Z_AXIS);
  1278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1279. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1280. #endif
  1281. // move down slowly until you find the bed
  1282. feedrate = homing_feedrate[Z_AXIS] / 4;
  1283. destination[Z_AXIS] = -10;
  1284. prepare_move_raw(); // this will also set_current_to_destination
  1285. st_synchronize();
  1286. endstops_hit_on_purpose(); // clear endstop hit flags
  1287. /**
  1288. * We have to let the planner know where we are right now as it
  1289. * is not where we said to go.
  1290. */
  1291. long stop_steps = st_get_position(Z_AXIS);
  1292. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1293. current_position[Z_AXIS] = mm;
  1294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1295. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1296. #endif
  1297. sync_plan_position_delta();
  1298. #else // !DELTA
  1299. plan_bed_level_matrix.set_to_identity();
  1300. feedrate = homing_feedrate[Z_AXIS];
  1301. // Move down until the Z probe (or endstop?) is triggered
  1302. float zPosition = -(Z_MAX_LENGTH + 10);
  1303. line_to_z(zPosition);
  1304. st_synchronize();
  1305. // Tell the planner where we ended up - Get this from the stepper handler
  1306. zPosition = st_get_axis_position_mm(Z_AXIS);
  1307. plan_set_position(
  1308. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1309. current_position[E_AXIS]
  1310. );
  1311. // move up the retract distance
  1312. zPosition += home_bump_mm(Z_AXIS);
  1313. line_to_z(zPosition);
  1314. st_synchronize();
  1315. endstops_hit_on_purpose(); // clear endstop hit flags
  1316. // move back down slowly to find bed
  1317. set_homing_bump_feedrate(Z_AXIS);
  1318. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1319. line_to_z(zPosition);
  1320. st_synchronize();
  1321. endstops_hit_on_purpose(); // clear endstop hit flags
  1322. // Get the current stepper position after bumping an endstop
  1323. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1324. sync_plan_position();
  1325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1326. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1327. #endif
  1328. #endif // !DELTA
  1329. }
  1330. /**
  1331. * Plan a move to (X, Y, Z) and set the current_position
  1332. * The final current_position may not be the one that was requested
  1333. */
  1334. static void do_blocking_move_to(float x, float y, float z) {
  1335. float oldFeedRate = feedrate;
  1336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1338. #endif
  1339. #if ENABLED(DELTA)
  1340. feedrate = XY_TRAVEL_SPEED;
  1341. destination[X_AXIS] = x;
  1342. destination[Y_AXIS] = y;
  1343. destination[Z_AXIS] = z;
  1344. prepare_move_raw(); // this will also set_current_to_destination
  1345. st_synchronize();
  1346. #else
  1347. feedrate = homing_feedrate[Z_AXIS];
  1348. current_position[Z_AXIS] = z;
  1349. line_to_current_position();
  1350. st_synchronize();
  1351. feedrate = xy_travel_speed;
  1352. current_position[X_AXIS] = x;
  1353. current_position[Y_AXIS] = y;
  1354. line_to_current_position();
  1355. st_synchronize();
  1356. #endif
  1357. feedrate = oldFeedRate;
  1358. }
  1359. inline void do_blocking_move_to_xy(float x, float y) {
  1360. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1361. }
  1362. inline void do_blocking_move_to_x(float x) {
  1363. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1364. }
  1365. inline void do_blocking_move_to_z(float z) {
  1366. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1367. }
  1368. inline void raise_z_after_probing() {
  1369. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1370. }
  1371. static void clean_up_after_endstop_move() {
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1374. #endif
  1375. endstops_not_homing();
  1376. feedrate = saved_feedrate;
  1377. feedrate_multiplier = saved_feedrate_multiplier;
  1378. refresh_cmd_timeout();
  1379. }
  1380. #if ENABLED(HAS_Z_MIN_PROBE)
  1381. static void deploy_z_probe() {
  1382. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1383. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1384. #endif
  1385. if (z_probe_is_active) return;
  1386. #if HAS_SERVO_ENDSTOPS
  1387. // Engage Z Servo endstop if enabled
  1388. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1389. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1390. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1391. // If endstop is already false, the Z probe is deployed
  1392. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1393. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1394. if (z_probe_endstop)
  1395. #else
  1396. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1397. if (z_min_endstop)
  1398. #endif
  1399. {
  1400. // Move to the start position to initiate deployment
  1401. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1402. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1403. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1404. prepare_move_raw(); // this will also set_current_to_destination
  1405. // Move to engage deployment
  1406. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1407. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1408. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1409. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1410. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1411. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1412. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1413. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1414. prepare_move_raw();
  1415. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1416. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1417. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1418. // Move to trigger deployment
  1419. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1420. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1421. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1422. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1423. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1424. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1425. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1426. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1427. prepare_move_raw();
  1428. #endif
  1429. }
  1430. // Partially Home X,Y for safety
  1431. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1432. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1433. prepare_move_raw(); // this will also set_current_to_destination
  1434. st_synchronize();
  1435. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1436. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1437. if (z_probe_endstop)
  1438. #else
  1439. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1440. if (z_min_endstop)
  1441. #endif
  1442. {
  1443. if (IsRunning()) {
  1444. SERIAL_ERROR_START;
  1445. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1446. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1447. }
  1448. Stop();
  1449. }
  1450. #endif // Z_PROBE_ALLEN_KEY
  1451. #if ENABLED(FIX_MOUNTED_PROBE)
  1452. // Noting to be done. Just set z_probe_is_active
  1453. #endif
  1454. z_probe_is_active = true;
  1455. }
  1456. static void stow_z_probe(bool doRaise = true) {
  1457. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1458. UNUSED(doRaise);
  1459. #endif
  1460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1461. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1462. #endif
  1463. if (!z_probe_is_active) return;
  1464. #if HAS_SERVO_ENDSTOPS
  1465. // Retract Z Servo endstop if enabled
  1466. if (servo_endstop_id[Z_AXIS] >= 0) {
  1467. #if Z_RAISE_AFTER_PROBING > 0
  1468. if (doRaise) {
  1469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1470. if (DEBUGGING(LEVELING)) {
  1471. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1472. SERIAL_EOL;
  1473. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1474. SERIAL_EOL;
  1475. }
  1476. #endif
  1477. raise_z_after_probing(); // this also updates current_position
  1478. st_synchronize();
  1479. }
  1480. #endif
  1481. // Change the Z servo angle
  1482. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1483. }
  1484. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1485. // Move up for safety
  1486. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1487. #if Z_RAISE_AFTER_PROBING > 0
  1488. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1489. prepare_move_raw(); // this will also set_current_to_destination
  1490. #endif
  1491. // Move to the start position to initiate retraction
  1492. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1493. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1494. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1495. prepare_move_raw();
  1496. // Move the nozzle down to push the Z probe into retracted position
  1497. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1498. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1499. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1500. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1501. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1502. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1503. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1504. prepare_move_raw();
  1505. // Move up for safety
  1506. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1507. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1508. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1509. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1510. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1511. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1512. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1513. prepare_move_raw();
  1514. // Home XY for safety
  1515. feedrate = homing_feedrate[X_AXIS] / 2;
  1516. destination[X_AXIS] = 0;
  1517. destination[Y_AXIS] = 0;
  1518. prepare_move_raw(); // this will also set_current_to_destination
  1519. st_synchronize();
  1520. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1521. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1522. if (!z_probe_endstop)
  1523. #else
  1524. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1525. if (!z_min_endstop)
  1526. #endif
  1527. {
  1528. if (IsRunning()) {
  1529. SERIAL_ERROR_START;
  1530. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1531. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1532. }
  1533. Stop();
  1534. }
  1535. #endif // Z_PROBE_ALLEN_KEY
  1536. #if ENABLED(FIX_MOUNTED_PROBE)
  1537. // Nothing to do here. Just clear z_probe_is_active
  1538. #endif
  1539. z_probe_is_active = false;
  1540. }
  1541. #endif // HAS_Z_MIN_PROBE
  1542. enum ProbeAction {
  1543. ProbeStay = 0,
  1544. ProbeDeploy = _BV(0),
  1545. ProbeStow = _BV(1),
  1546. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1547. };
  1548. // Probe bed height at position (x,y), returns the measured z value
  1549. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1551. if (DEBUGGING(LEVELING)) {
  1552. SERIAL_ECHOLNPGM("probe_pt >>>");
  1553. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1554. SERIAL_EOL;
  1555. DEBUG_POS("", current_position);
  1556. }
  1557. #endif
  1558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1559. if (DEBUGGING(LEVELING)) {
  1560. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1561. SERIAL_EOL;
  1562. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1563. SERIAL_EOL;
  1564. }
  1565. #endif
  1566. // Move Z up to the z_before height, then move the Z probe to the given XY
  1567. do_blocking_move_to_z(z_before); // this also updates current_position
  1568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1569. if (DEBUGGING(LEVELING)) {
  1570. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1571. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1572. SERIAL_EOL;
  1573. }
  1574. #endif
  1575. // this also updates current_position
  1576. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1577. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1578. if (probe_action & ProbeDeploy) {
  1579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1580. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1581. #endif
  1582. deploy_z_probe();
  1583. }
  1584. #endif
  1585. run_z_probe();
  1586. float measured_z = current_position[Z_AXIS];
  1587. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1588. if (probe_action & ProbeStow) {
  1589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1590. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1591. #endif
  1592. stow_z_probe();
  1593. }
  1594. #endif
  1595. if (verbose_level > 2) {
  1596. SERIAL_PROTOCOLPGM("Bed X: ");
  1597. SERIAL_PROTOCOL_F(x, 3);
  1598. SERIAL_PROTOCOLPGM(" Y: ");
  1599. SERIAL_PROTOCOL_F(y, 3);
  1600. SERIAL_PROTOCOLPGM(" Z: ");
  1601. SERIAL_PROTOCOL_F(measured_z, 3);
  1602. SERIAL_EOL;
  1603. }
  1604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1605. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1606. #endif
  1607. return measured_z;
  1608. }
  1609. #if ENABLED(DELTA)
  1610. /**
  1611. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1612. */
  1613. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1614. if (bed_level[x][y] != 0.0) {
  1615. return; // Don't overwrite good values.
  1616. }
  1617. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1618. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1619. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1620. float median = c; // Median is robust (ignores outliers).
  1621. if (a < b) {
  1622. if (b < c) median = b;
  1623. if (c < a) median = a;
  1624. }
  1625. else { // b <= a
  1626. if (c < b) median = b;
  1627. if (a < c) median = a;
  1628. }
  1629. bed_level[x][y] = median;
  1630. }
  1631. /**
  1632. * Fill in the unprobed points (corners of circular print surface)
  1633. * using linear extrapolation, away from the center.
  1634. */
  1635. static void extrapolate_unprobed_bed_level() {
  1636. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1637. for (int y = 0; y <= half; y++) {
  1638. for (int x = 0; x <= half; x++) {
  1639. if (x + y < 3) continue;
  1640. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1641. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1642. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1643. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1644. }
  1645. }
  1646. }
  1647. /**
  1648. * Print calibration results for plotting or manual frame adjustment.
  1649. */
  1650. static void print_bed_level() {
  1651. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1652. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1653. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1654. SERIAL_PROTOCOLCHAR(' ');
  1655. }
  1656. SERIAL_EOL;
  1657. }
  1658. }
  1659. /**
  1660. * Reset calibration results to zero.
  1661. */
  1662. void reset_bed_level() {
  1663. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1664. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1665. #endif
  1666. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1667. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1668. bed_level[x][y] = 0.0;
  1669. }
  1670. }
  1671. }
  1672. #endif // DELTA
  1673. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1674. void raise_z_for_servo() {
  1675. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1676. /**
  1677. * The zprobe_zoffset is negative any switch below the nozzle, so
  1678. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1679. */
  1680. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1681. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1682. }
  1683. #endif
  1684. #endif // AUTO_BED_LEVELING_FEATURE
  1685. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1686. static void axis_unhomed_error() {
  1687. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1688. SERIAL_ECHO_START;
  1689. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1690. }
  1691. #endif
  1692. #if ENABLED(Z_PROBE_SLED)
  1693. #ifndef SLED_DOCKING_OFFSET
  1694. #define SLED_DOCKING_OFFSET 0
  1695. #endif
  1696. /**
  1697. * Method to dock/undock a sled designed by Charles Bell.
  1698. *
  1699. * dock[in] If true, move to MAX_X and engage the electromagnet
  1700. * offset[in] The additional distance to move to adjust docking location
  1701. */
  1702. static void dock_sled(bool dock, int offset = 0) {
  1703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1704. if (DEBUGGING(LEVELING)) {
  1705. SERIAL_ECHOPAIR("dock_sled(", dock);
  1706. SERIAL_ECHOLNPGM(")");
  1707. }
  1708. #endif
  1709. if (z_probe_is_active == dock) return;
  1710. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1711. axis_unhomed_error();
  1712. return;
  1713. }
  1714. float oldXpos = current_position[X_AXIS]; // save x position
  1715. if (dock) {
  1716. #if Z_RAISE_AFTER_PROBING > 0
  1717. raise_z_after_probing(); // raise Z
  1718. #endif
  1719. // Dock sled a bit closer to ensure proper capturing
  1720. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1721. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1722. }
  1723. else {
  1724. float z_loc = current_position[Z_AXIS];
  1725. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1726. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1727. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1728. }
  1729. do_blocking_move_to_x(oldXpos); // return to position before docking
  1730. z_probe_is_active = dock;
  1731. }
  1732. #endif // Z_PROBE_SLED
  1733. /**
  1734. * Home an individual axis
  1735. */
  1736. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1737. static void homeaxis(AxisEnum axis) {
  1738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1739. if (DEBUGGING(LEVELING)) {
  1740. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1741. SERIAL_ECHOLNPGM(")");
  1742. }
  1743. #endif
  1744. #define HOMEAXIS_DO(LETTER) \
  1745. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1746. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1747. int axis_home_dir =
  1748. #if ENABLED(DUAL_X_CARRIAGE)
  1749. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1750. #endif
  1751. home_dir(axis);
  1752. // Set the axis position as setup for the move
  1753. current_position[axis] = 0;
  1754. sync_plan_position();
  1755. #if ENABLED(Z_PROBE_SLED)
  1756. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1757. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1758. #define _Z_DEPLOY (dock_sled(false))
  1759. #define _Z_STOW (dock_sled(true))
  1760. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1761. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1762. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1763. #define _Z_DEPLOY (deploy_z_probe())
  1764. #define _Z_STOW (stow_z_probe())
  1765. #elif HAS_SERVO_ENDSTOPS
  1766. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1767. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1768. #endif
  1769. if (axis == Z_AXIS) {
  1770. // If there's a Z probe that needs deployment...
  1771. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1772. // ...and homing Z towards the bed? Deploy it.
  1773. if (axis_home_dir < 0) _Z_DEPLOY;
  1774. #endif
  1775. }
  1776. #if HAS_SERVO_ENDSTOPS
  1777. // Engage an X or Y Servo endstop if enabled
  1778. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1779. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1780. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1781. }
  1782. #endif
  1783. // Set a flag for Z motor locking
  1784. #if ENABLED(Z_DUAL_ENDSTOPS)
  1785. if (axis == Z_AXIS) In_Homing_Process(true);
  1786. #endif
  1787. // Move towards the endstop until an endstop is triggered
  1788. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1789. feedrate = homing_feedrate[axis];
  1790. line_to_destination();
  1791. st_synchronize();
  1792. // Set the axis position as setup for the move
  1793. current_position[axis] = 0;
  1794. sync_plan_position();
  1795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1796. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1797. #endif
  1798. enable_endstops(false); // Disable endstops while moving away
  1799. // Move away from the endstop by the axis HOME_BUMP_MM
  1800. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1801. line_to_destination();
  1802. st_synchronize();
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1805. #endif
  1806. enable_endstops(true); // Enable endstops for next homing move
  1807. // Slow down the feedrate for the next move
  1808. set_homing_bump_feedrate(axis);
  1809. // Move slowly towards the endstop until triggered
  1810. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1811. line_to_destination();
  1812. st_synchronize();
  1813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1814. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1815. #endif
  1816. #if ENABLED(Z_DUAL_ENDSTOPS)
  1817. if (axis == Z_AXIS) {
  1818. float adj = fabs(z_endstop_adj);
  1819. bool lockZ1;
  1820. if (axis_home_dir > 0) {
  1821. adj = -adj;
  1822. lockZ1 = (z_endstop_adj > 0);
  1823. }
  1824. else
  1825. lockZ1 = (z_endstop_adj < 0);
  1826. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1827. sync_plan_position();
  1828. // Move to the adjusted endstop height
  1829. feedrate = homing_feedrate[axis];
  1830. destination[Z_AXIS] = adj;
  1831. line_to_destination();
  1832. st_synchronize();
  1833. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1834. In_Homing_Process(false);
  1835. } // Z_AXIS
  1836. #endif
  1837. #if ENABLED(DELTA)
  1838. // retrace by the amount specified in endstop_adj
  1839. if (endstop_adj[axis] * axis_home_dir < 0) {
  1840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1841. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1842. #endif
  1843. enable_endstops(false); // Disable endstops while moving away
  1844. sync_plan_position();
  1845. destination[axis] = endstop_adj[axis];
  1846. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1847. if (DEBUGGING(LEVELING)) {
  1848. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1849. DEBUG_POS("", destination);
  1850. }
  1851. #endif
  1852. line_to_destination();
  1853. st_synchronize();
  1854. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1855. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1856. #endif
  1857. enable_endstops(true); // Enable endstops for next homing move
  1858. }
  1859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1860. else {
  1861. if (DEBUGGING(LEVELING)) {
  1862. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1863. SERIAL_EOL;
  1864. }
  1865. }
  1866. #endif
  1867. #endif
  1868. // Set the axis position to its home position (plus home offsets)
  1869. set_axis_is_at_home(axis);
  1870. sync_plan_position();
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1873. #endif
  1874. destination[axis] = current_position[axis];
  1875. feedrate = 0.0;
  1876. endstops_hit_on_purpose(); // clear endstop hit flags
  1877. axis_known_position[axis] = true;
  1878. axis_homed[axis] = true;
  1879. // Put away the Z probe
  1880. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1881. if (axis == Z_AXIS && axis_home_dir < 0) {
  1882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1883. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1884. #endif
  1885. _Z_STOW;
  1886. }
  1887. #endif
  1888. // Retract Servo endstop if enabled
  1889. #if HAS_SERVO_ENDSTOPS
  1890. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1892. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1893. #endif
  1894. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1895. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1896. }
  1897. #endif
  1898. }
  1899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1900. if (DEBUGGING(LEVELING)) {
  1901. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1902. SERIAL_ECHOLNPGM(")");
  1903. }
  1904. #endif
  1905. }
  1906. #if ENABLED(FWRETRACT)
  1907. void retract(bool retracting, bool swapping = false) {
  1908. if (retracting == retracted[active_extruder]) return;
  1909. float oldFeedrate = feedrate;
  1910. set_destination_to_current();
  1911. if (retracting) {
  1912. feedrate = retract_feedrate * 60;
  1913. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1914. plan_set_e_position(current_position[E_AXIS]);
  1915. prepare_move();
  1916. if (retract_zlift > 0.01) {
  1917. current_position[Z_AXIS] -= retract_zlift;
  1918. #if ENABLED(DELTA)
  1919. sync_plan_position_delta();
  1920. #else
  1921. sync_plan_position();
  1922. #endif
  1923. prepare_move();
  1924. }
  1925. }
  1926. else {
  1927. if (retract_zlift > 0.01) {
  1928. current_position[Z_AXIS] += retract_zlift;
  1929. #if ENABLED(DELTA)
  1930. sync_plan_position_delta();
  1931. #else
  1932. sync_plan_position();
  1933. #endif
  1934. //prepare_move();
  1935. }
  1936. feedrate = retract_recover_feedrate * 60;
  1937. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1938. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1939. plan_set_e_position(current_position[E_AXIS]);
  1940. prepare_move();
  1941. }
  1942. feedrate = oldFeedrate;
  1943. retracted[active_extruder] = retracting;
  1944. } // retract()
  1945. #endif // FWRETRACT
  1946. /**
  1947. * ***************************************************************************
  1948. * ***************************** G-CODE HANDLING *****************************
  1949. * ***************************************************************************
  1950. */
  1951. /**
  1952. * Set XYZE destination and feedrate from the current GCode command
  1953. *
  1954. * - Set destination from included axis codes
  1955. * - Set to current for missing axis codes
  1956. * - Set the feedrate, if included
  1957. */
  1958. void gcode_get_destination() {
  1959. for (int i = 0; i < NUM_AXIS; i++) {
  1960. if (code_seen(axis_codes[i]))
  1961. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1962. else
  1963. destination[i] = current_position[i];
  1964. }
  1965. if (code_seen('F')) {
  1966. float next_feedrate = code_value();
  1967. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1968. }
  1969. }
  1970. void unknown_command_error() {
  1971. SERIAL_ECHO_START;
  1972. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1973. SERIAL_ECHO(current_command);
  1974. SERIAL_ECHOPGM("\"\n");
  1975. }
  1976. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1977. /**
  1978. * Output a "busy" message at regular intervals
  1979. * while the machine is not accepting commands.
  1980. */
  1981. void host_keepalive() {
  1982. millis_t ms = millis();
  1983. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1984. if (PENDING(ms, next_busy_signal_ms)) return;
  1985. switch (busy_state) {
  1986. case IN_HANDLER:
  1987. case IN_PROCESS:
  1988. SERIAL_ECHO_START;
  1989. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1990. break;
  1991. case PAUSED_FOR_USER:
  1992. SERIAL_ECHO_START;
  1993. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1994. break;
  1995. case PAUSED_FOR_INPUT:
  1996. SERIAL_ECHO_START;
  1997. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1998. break;
  1999. default:
  2000. break;
  2001. }
  2002. }
  2003. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2004. }
  2005. #endif //HOST_KEEPALIVE_FEATURE
  2006. /**
  2007. * G0, G1: Coordinated movement of X Y Z E axes
  2008. */
  2009. inline void gcode_G0_G1() {
  2010. if (IsRunning()) {
  2011. gcode_get_destination(); // For X Y Z E F
  2012. #if ENABLED(FWRETRACT)
  2013. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2014. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2015. // Is this move an attempt to retract or recover?
  2016. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2017. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2018. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  2019. retract(!retracted[active_extruder]);
  2020. return;
  2021. }
  2022. }
  2023. #endif //FWRETRACT
  2024. prepare_move();
  2025. }
  2026. }
  2027. /**
  2028. * G2: Clockwise Arc
  2029. * G3: Counterclockwise Arc
  2030. */
  2031. inline void gcode_G2_G3(bool clockwise) {
  2032. if (IsRunning()) {
  2033. #if ENABLED(SF_ARC_FIX)
  2034. bool relative_mode_backup = relative_mode;
  2035. relative_mode = true;
  2036. #endif
  2037. gcode_get_destination();
  2038. #if ENABLED(SF_ARC_FIX)
  2039. relative_mode = relative_mode_backup;
  2040. #endif
  2041. // Center of arc as offset from current_position
  2042. float arc_offset[2] = {
  2043. code_seen('I') ? code_value() : 0,
  2044. code_seen('J') ? code_value() : 0
  2045. };
  2046. // Send an arc to the planner
  2047. plan_arc(destination, arc_offset, clockwise);
  2048. refresh_cmd_timeout();
  2049. }
  2050. }
  2051. /**
  2052. * G4: Dwell S<seconds> or P<milliseconds>
  2053. */
  2054. inline void gcode_G4() {
  2055. millis_t codenum = 0;
  2056. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2057. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2058. st_synchronize();
  2059. refresh_cmd_timeout();
  2060. codenum += previous_cmd_ms; // keep track of when we started waiting
  2061. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2062. while (PENDING(millis(), codenum)) idle();
  2063. }
  2064. #if ENABLED(FWRETRACT)
  2065. /**
  2066. * G10 - Retract filament according to settings of M207
  2067. * G11 - Recover filament according to settings of M208
  2068. */
  2069. inline void gcode_G10_G11(bool doRetract=false) {
  2070. #if EXTRUDERS > 1
  2071. if (doRetract) {
  2072. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2073. }
  2074. #endif
  2075. retract(doRetract
  2076. #if EXTRUDERS > 1
  2077. , retracted_swap[active_extruder]
  2078. #endif
  2079. );
  2080. }
  2081. #endif //FWRETRACT
  2082. /**
  2083. * G28: Home all axes according to settings
  2084. *
  2085. * Parameters
  2086. *
  2087. * None Home to all axes with no parameters.
  2088. * With QUICK_HOME enabled XY will home together, then Z.
  2089. *
  2090. * Cartesian parameters
  2091. *
  2092. * X Home to the X endstop
  2093. * Y Home to the Y endstop
  2094. * Z Home to the Z endstop
  2095. *
  2096. */
  2097. inline void gcode_G28() {
  2098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2099. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2100. #endif
  2101. // Wait for planner moves to finish!
  2102. st_synchronize();
  2103. // For auto bed leveling, clear the level matrix
  2104. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2105. plan_bed_level_matrix.set_to_identity();
  2106. #if ENABLED(DELTA)
  2107. reset_bed_level();
  2108. #endif
  2109. #endif
  2110. /**
  2111. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2112. * on again when homing all axis
  2113. */
  2114. #if ENABLED(MESH_BED_LEVELING)
  2115. uint8_t mbl_was_active = mbl.active;
  2116. mbl.active = false;
  2117. #endif
  2118. setup_for_endstop_move();
  2119. /**
  2120. * Directly after a reset this is all 0. Later we get a hint if we have
  2121. * to raise z or not.
  2122. */
  2123. set_destination_to_current();
  2124. feedrate = 0.0;
  2125. #if ENABLED(DELTA)
  2126. /**
  2127. * A delta can only safely home all axis at the same time
  2128. * all axis have to home at the same time
  2129. */
  2130. // Pretend the current position is 0,0,0
  2131. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2132. sync_plan_position();
  2133. // Move all carriages up together until the first endstop is hit.
  2134. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2135. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2136. line_to_destination();
  2137. st_synchronize();
  2138. endstops_hit_on_purpose(); // clear endstop hit flags
  2139. // Destination reached
  2140. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2141. // take care of back off and rehome now we are all at the top
  2142. HOMEAXIS(X);
  2143. HOMEAXIS(Y);
  2144. HOMEAXIS(Z);
  2145. sync_plan_position_delta();
  2146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2147. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2148. #endif
  2149. #else // NOT DELTA
  2150. bool homeX = code_seen(axis_codes[X_AXIS]),
  2151. homeY = code_seen(axis_codes[Y_AXIS]),
  2152. homeZ = code_seen(axis_codes[Z_AXIS]);
  2153. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2154. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2155. if (home_all_axis || homeZ) {
  2156. HOMEAXIS(Z);
  2157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2158. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2159. #endif
  2160. }
  2161. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2162. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2163. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2164. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2165. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2167. if (DEBUGGING(LEVELING)) {
  2168. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2169. SERIAL_EOL;
  2170. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2171. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2172. }
  2173. #endif
  2174. line_to_destination();
  2175. st_synchronize();
  2176. /**
  2177. * Update the current Z position even if it currently not real from
  2178. * Z-home otherwise each call to line_to_destination() will want to
  2179. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2180. */
  2181. current_position[Z_AXIS] = destination[Z_AXIS];
  2182. }
  2183. #endif
  2184. #if ENABLED(QUICK_HOME)
  2185. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2186. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2187. #if ENABLED(DUAL_X_CARRIAGE)
  2188. int x_axis_home_dir = x_home_dir(active_extruder);
  2189. extruder_duplication_enabled = false;
  2190. #else
  2191. int x_axis_home_dir = home_dir(X_AXIS);
  2192. #endif
  2193. sync_plan_position();
  2194. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2195. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2196. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2197. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2198. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2199. line_to_destination();
  2200. st_synchronize();
  2201. set_axis_is_at_home(X_AXIS);
  2202. set_axis_is_at_home(Y_AXIS);
  2203. sync_plan_position();
  2204. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2205. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2206. #endif
  2207. destination[X_AXIS] = current_position[X_AXIS];
  2208. destination[Y_AXIS] = current_position[Y_AXIS];
  2209. line_to_destination();
  2210. feedrate = 0.0;
  2211. st_synchronize();
  2212. endstops_hit_on_purpose(); // clear endstop hit flags
  2213. current_position[X_AXIS] = destination[X_AXIS];
  2214. current_position[Y_AXIS] = destination[Y_AXIS];
  2215. #if DISABLED(SCARA)
  2216. current_position[Z_AXIS] = destination[Z_AXIS];
  2217. #endif
  2218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2219. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2220. #endif
  2221. }
  2222. #endif // QUICK_HOME
  2223. #if ENABLED(HOME_Y_BEFORE_X)
  2224. // Home Y
  2225. if (home_all_axis || homeY) HOMEAXIS(Y);
  2226. #endif
  2227. // Home X
  2228. if (home_all_axis || homeX) {
  2229. #if ENABLED(DUAL_X_CARRIAGE)
  2230. int tmp_extruder = active_extruder;
  2231. extruder_duplication_enabled = false;
  2232. active_extruder = !active_extruder;
  2233. HOMEAXIS(X);
  2234. inactive_extruder_x_pos = current_position[X_AXIS];
  2235. active_extruder = tmp_extruder;
  2236. HOMEAXIS(X);
  2237. // reset state used by the different modes
  2238. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2239. delayed_move_time = 0;
  2240. active_extruder_parked = true;
  2241. #else
  2242. HOMEAXIS(X);
  2243. #endif
  2244. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2245. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2246. #endif
  2247. }
  2248. #if DISABLED(HOME_Y_BEFORE_X)
  2249. // Home Y
  2250. if (home_all_axis || homeY) {
  2251. HOMEAXIS(Y);
  2252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2253. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2254. #endif
  2255. }
  2256. #endif
  2257. // Home Z last if homing towards the bed
  2258. #if Z_HOME_DIR < 0
  2259. if (home_all_axis || homeZ) {
  2260. #if ENABLED(Z_SAFE_HOMING)
  2261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2262. if (DEBUGGING(LEVELING)) {
  2263. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2264. }
  2265. #endif
  2266. if (home_all_axis) {
  2267. /**
  2268. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2269. * No need to move Z any more as this height should already be safe
  2270. * enough to reach Z_SAFE_HOMING XY positions.
  2271. * Just make sure the planner is in sync.
  2272. */
  2273. sync_plan_position();
  2274. /**
  2275. * Set the Z probe (or just the nozzle) destination to the safe
  2276. * homing point
  2277. */
  2278. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2279. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2280. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2281. feedrate = XY_TRAVEL_SPEED;
  2282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2283. if (DEBUGGING(LEVELING)) {
  2284. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2285. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2286. }
  2287. #endif
  2288. // Move in the XY plane
  2289. line_to_destination();
  2290. st_synchronize();
  2291. /**
  2292. * Update the current positions for XY, Z is still at least at
  2293. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2294. */
  2295. current_position[X_AXIS] = destination[X_AXIS];
  2296. current_position[Y_AXIS] = destination[Y_AXIS];
  2297. // Home the Z axis
  2298. HOMEAXIS(Z);
  2299. }
  2300. else if (homeZ) { // Don't need to Home Z twice
  2301. // Let's see if X and Y are homed
  2302. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2303. /**
  2304. * Make sure the Z probe is within the physical limits
  2305. * NOTE: This doesn't necessarily ensure the Z probe is also
  2306. * within the bed!
  2307. */
  2308. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2309. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2310. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2311. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2312. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2313. // Home the Z axis
  2314. HOMEAXIS(Z);
  2315. }
  2316. else {
  2317. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2318. SERIAL_ECHO_START;
  2319. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2320. }
  2321. }
  2322. else {
  2323. axis_unhomed_error();
  2324. }
  2325. } // !home_all_axes && homeZ
  2326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2327. if (DEBUGGING(LEVELING)) {
  2328. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2329. }
  2330. #endif
  2331. #else // !Z_SAFE_HOMING
  2332. HOMEAXIS(Z);
  2333. #endif // !Z_SAFE_HOMING
  2334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2335. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2336. #endif
  2337. } // home_all_axis || homeZ
  2338. #endif // Z_HOME_DIR < 0
  2339. sync_plan_position();
  2340. #endif // else DELTA
  2341. #if ENABLED(SCARA)
  2342. sync_plan_position_delta();
  2343. #endif
  2344. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2345. enable_endstops(false);
  2346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2347. if (DEBUGGING(LEVELING)) {
  2348. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2349. }
  2350. #endif
  2351. #endif
  2352. // For mesh leveling move back to Z=0
  2353. #if ENABLED(MESH_BED_LEVELING)
  2354. if (mbl_was_active && home_all_axis) {
  2355. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2356. sync_plan_position();
  2357. mbl.active = 1;
  2358. current_position[Z_AXIS] = 0.0;
  2359. set_destination_to_current();
  2360. feedrate = homing_feedrate[Z_AXIS];
  2361. line_to_destination();
  2362. st_synchronize();
  2363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2364. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2365. #endif
  2366. }
  2367. #endif
  2368. feedrate = saved_feedrate;
  2369. feedrate_multiplier = saved_feedrate_multiplier;
  2370. refresh_cmd_timeout();
  2371. endstops_hit_on_purpose(); // clear endstop hit flags
  2372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2373. if (DEBUGGING(LEVELING)) {
  2374. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2375. }
  2376. #endif
  2377. gcode_M114(); // Send end position to RepetierHost
  2378. }
  2379. #if ENABLED(MESH_BED_LEVELING)
  2380. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2381. inline void _mbl_goto_xy(float x, float y) {
  2382. saved_feedrate = feedrate;
  2383. feedrate = homing_feedrate[X_AXIS];
  2384. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2385. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2386. + MIN_Z_HEIGHT_FOR_HOMING
  2387. #endif
  2388. ;
  2389. line_to_current_position();
  2390. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2391. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2392. line_to_current_position();
  2393. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2394. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2395. line_to_current_position();
  2396. #endif
  2397. feedrate = saved_feedrate;
  2398. st_synchronize();
  2399. }
  2400. /**
  2401. * G29: Mesh-based Z probe, probes a grid and produces a
  2402. * mesh to compensate for variable bed height
  2403. *
  2404. * Parameters With MESH_BED_LEVELING:
  2405. *
  2406. * S0 Produce a mesh report
  2407. * S1 Start probing mesh points
  2408. * S2 Probe the next mesh point
  2409. * S3 Xn Yn Zn.nn Manually modify a single point
  2410. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2411. *
  2412. * The S0 report the points as below
  2413. *
  2414. * +----> X-axis 1-n
  2415. * |
  2416. * |
  2417. * v Y-axis 1-n
  2418. *
  2419. */
  2420. inline void gcode_G29() {
  2421. static int probe_point = -1;
  2422. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2423. if (state < 0 || state > 4) {
  2424. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2425. return;
  2426. }
  2427. int ix, iy;
  2428. float z;
  2429. switch (state) {
  2430. case MeshReport:
  2431. if (mbl.active) {
  2432. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2433. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2434. SERIAL_PROTOCOLCHAR(',');
  2435. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2436. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2437. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2438. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2439. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2440. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2441. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2442. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2443. SERIAL_PROTOCOLPGM(" ");
  2444. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2445. }
  2446. SERIAL_EOL;
  2447. }
  2448. }
  2449. else
  2450. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2451. break;
  2452. case MeshStart:
  2453. mbl.reset();
  2454. probe_point = 0;
  2455. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2456. break;
  2457. case MeshNext:
  2458. if (probe_point < 0) {
  2459. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2460. return;
  2461. }
  2462. // For each G29 S2...
  2463. if (probe_point == 0) {
  2464. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2465. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2466. sync_plan_position();
  2467. }
  2468. else {
  2469. // For G29 S2 after adjusting Z.
  2470. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2471. }
  2472. // If there's another point to sample, move there with optional lift.
  2473. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2474. mbl.zigzag(probe_point, ix, iy);
  2475. _mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
  2476. probe_point++;
  2477. }
  2478. else {
  2479. // One last "return to the bed" (as originally coded) at completion
  2480. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2481. line_to_current_position();
  2482. st_synchronize();
  2483. // After recording the last point, activate the mbl and home
  2484. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2485. probe_point = -1;
  2486. mbl.active = true;
  2487. enqueue_and_echo_commands_P(PSTR("G28"));
  2488. }
  2489. break;
  2490. case MeshSet:
  2491. if (code_seen('X')) {
  2492. ix = code_value_long() - 1;
  2493. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2494. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2495. return;
  2496. }
  2497. }
  2498. else {
  2499. SERIAL_PROTOCOLPGM("X not entered.\n");
  2500. return;
  2501. }
  2502. if (code_seen('Y')) {
  2503. iy = code_value_long() - 1;
  2504. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2505. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2506. return;
  2507. }
  2508. }
  2509. else {
  2510. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2511. return;
  2512. }
  2513. if (code_seen('Z')) {
  2514. z = code_value();
  2515. }
  2516. else {
  2517. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2518. return;
  2519. }
  2520. mbl.z_values[iy][ix] = z;
  2521. break;
  2522. case MeshSetZOffset:
  2523. if (code_seen('Z')) {
  2524. z = code_value();
  2525. }
  2526. else {
  2527. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2528. return;
  2529. }
  2530. mbl.z_offset = z;
  2531. } // switch(state)
  2532. }
  2533. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2534. void out_of_range_error(const char* p_edge) {
  2535. SERIAL_PROTOCOLPGM("?Probe ");
  2536. serialprintPGM(p_edge);
  2537. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2538. }
  2539. /**
  2540. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2541. * Will fail if the printer has not been homed with G28.
  2542. *
  2543. * Enhanced G29 Auto Bed Leveling Probe Routine
  2544. *
  2545. * Parameters With AUTO_BED_LEVELING_GRID:
  2546. *
  2547. * P Set the size of the grid that will be probed (P x P points).
  2548. * Not supported by non-linear delta printer bed leveling.
  2549. * Example: "G29 P4"
  2550. *
  2551. * S Set the XY travel speed between probe points (in mm/min)
  2552. *
  2553. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2554. * or clean the rotation Matrix. Useful to check the topology
  2555. * after a first run of G29.
  2556. *
  2557. * V Set the verbose level (0-4). Example: "G29 V3"
  2558. *
  2559. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2560. * This is useful for manual bed leveling and finding flaws in the bed (to
  2561. * assist with part placement).
  2562. * Not supported by non-linear delta printer bed leveling.
  2563. *
  2564. * F Set the Front limit of the probing grid
  2565. * B Set the Back limit of the probing grid
  2566. * L Set the Left limit of the probing grid
  2567. * R Set the Right limit of the probing grid
  2568. *
  2569. * Global Parameters:
  2570. *
  2571. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2572. * Include "E" to engage/disengage the Z probe for each sample.
  2573. * There's no extra effect if you have a fixed Z probe.
  2574. * Usage: "G29 E" or "G29 e"
  2575. *
  2576. */
  2577. inline void gcode_G29() {
  2578. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2579. if (DEBUGGING(LEVELING)) {
  2580. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2581. DEBUG_POS("", current_position);
  2582. }
  2583. #endif
  2584. // Don't allow auto-leveling without homing first
  2585. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2586. axis_unhomed_error();
  2587. return;
  2588. }
  2589. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2590. if (verbose_level < 0 || verbose_level > 4) {
  2591. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2592. return;
  2593. }
  2594. bool dryrun = code_seen('D'),
  2595. deploy_probe_for_each_reading = code_seen('E');
  2596. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2597. #if DISABLED(DELTA)
  2598. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2599. #endif
  2600. if (verbose_level > 0) {
  2601. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2602. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2603. }
  2604. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2605. #if DISABLED(DELTA)
  2606. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2607. if (auto_bed_leveling_grid_points < 2) {
  2608. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2609. return;
  2610. }
  2611. #endif
  2612. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2613. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2614. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2615. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2616. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2617. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2618. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2619. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2620. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2621. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2622. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2623. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2624. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2625. if (left_out || right_out || front_out || back_out) {
  2626. if (left_out) {
  2627. out_of_range_error(PSTR("(L)eft"));
  2628. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2629. }
  2630. if (right_out) {
  2631. out_of_range_error(PSTR("(R)ight"));
  2632. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2633. }
  2634. if (front_out) {
  2635. out_of_range_error(PSTR("(F)ront"));
  2636. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2637. }
  2638. if (back_out) {
  2639. out_of_range_error(PSTR("(B)ack"));
  2640. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2641. }
  2642. return;
  2643. }
  2644. #endif // AUTO_BED_LEVELING_GRID
  2645. if (!dryrun) {
  2646. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2647. plan_bed_level_matrix.set_to_identity();
  2648. #if ENABLED(DELTA)
  2649. reset_bed_level();
  2650. #else //!DELTA
  2651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2652. if (DEBUGGING(LEVELING)) {
  2653. vector_3 corrected_position = plan_get_position();
  2654. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2655. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2656. }
  2657. #endif
  2658. //vector_3 corrected_position = plan_get_position();
  2659. //corrected_position.debug("position before G29");
  2660. vector_3 uncorrected_position = plan_get_position();
  2661. //uncorrected_position.debug("position during G29");
  2662. current_position[X_AXIS] = uncorrected_position.x;
  2663. current_position[Y_AXIS] = uncorrected_position.y;
  2664. current_position[Z_AXIS] = uncorrected_position.z;
  2665. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2666. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2667. #endif
  2668. sync_plan_position();
  2669. #endif // !DELTA
  2670. }
  2671. #if ENABLED(Z_PROBE_SLED)
  2672. dock_sled(false); // engage (un-dock) the Z probe
  2673. #elif ENABLED(MECHANICAL_PROBE) || (ENABLED(DELTA) && SERVO_LEVELING)
  2674. deploy_z_probe();
  2675. #endif
  2676. st_synchronize();
  2677. setup_for_endstop_move();
  2678. feedrate = homing_feedrate[Z_AXIS];
  2679. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2680. // probe at the points of a lattice grid
  2681. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2682. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2683. #if ENABLED(DELTA)
  2684. delta_grid_spacing[0] = xGridSpacing;
  2685. delta_grid_spacing[1] = yGridSpacing;
  2686. float zoffset = zprobe_zoffset;
  2687. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2688. #else // !DELTA
  2689. /**
  2690. * solve the plane equation ax + by + d = z
  2691. * A is the matrix with rows [x y 1] for all the probed points
  2692. * B is the vector of the Z positions
  2693. * the normal vector to the plane is formed by the coefficients of the
  2694. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2695. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2696. */
  2697. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2698. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2699. eqnBVector[abl2], // "B" vector of Z points
  2700. mean = 0.0;
  2701. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2702. #endif // !DELTA
  2703. int probePointCounter = 0;
  2704. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2705. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2706. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2707. int xStart, xStop, xInc;
  2708. if (zig) {
  2709. xStart = 0;
  2710. xStop = auto_bed_leveling_grid_points;
  2711. xInc = 1;
  2712. }
  2713. else {
  2714. xStart = auto_bed_leveling_grid_points - 1;
  2715. xStop = -1;
  2716. xInc = -1;
  2717. }
  2718. zig = !zig;
  2719. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2720. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2721. // raise extruder
  2722. float measured_z,
  2723. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2724. if (probePointCounter) {
  2725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2726. if (DEBUGGING(LEVELING)) {
  2727. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2728. SERIAL_EOL;
  2729. }
  2730. #endif
  2731. }
  2732. else {
  2733. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2734. if (DEBUGGING(LEVELING)) {
  2735. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2736. SERIAL_EOL;
  2737. }
  2738. #endif
  2739. }
  2740. #if ENABLED(DELTA)
  2741. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2742. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2743. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2744. #endif //DELTA
  2745. ProbeAction act;
  2746. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2747. act = ProbeDeployAndStow;
  2748. else if (yCount == 0 && xCount == xStart)
  2749. act = ProbeDeploy;
  2750. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2751. act = ProbeStow;
  2752. else
  2753. act = ProbeStay;
  2754. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2755. #if DISABLED(DELTA)
  2756. mean += measured_z;
  2757. eqnBVector[probePointCounter] = measured_z;
  2758. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2759. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2760. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2761. indexIntoAB[xCount][yCount] = probePointCounter;
  2762. #else
  2763. bed_level[xCount][yCount] = measured_z + zoffset;
  2764. #endif
  2765. probePointCounter++;
  2766. idle();
  2767. } //xProbe
  2768. } //yProbe
  2769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2770. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2771. #endif
  2772. clean_up_after_endstop_move();
  2773. #if ENABLED(DELTA)
  2774. if (!dryrun) extrapolate_unprobed_bed_level();
  2775. print_bed_level();
  2776. #else // !DELTA
  2777. // solve lsq problem
  2778. double plane_equation_coefficients[3];
  2779. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2780. mean /= abl2;
  2781. if (verbose_level) {
  2782. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2783. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2784. SERIAL_PROTOCOLPGM(" b: ");
  2785. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2786. SERIAL_PROTOCOLPGM(" d: ");
  2787. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2788. SERIAL_EOL;
  2789. if (verbose_level > 2) {
  2790. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2791. SERIAL_PROTOCOL_F(mean, 8);
  2792. SERIAL_EOL;
  2793. }
  2794. }
  2795. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2796. // Show the Topography map if enabled
  2797. if (do_topography_map) {
  2798. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2799. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2800. SERIAL_PROTOCOLPGM(" | |\n");
  2801. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2802. SERIAL_PROTOCOLPGM(" E | | I\n");
  2803. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2804. SERIAL_PROTOCOLPGM(" T | | H\n");
  2805. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2806. SERIAL_PROTOCOLPGM(" | |\n");
  2807. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2808. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2809. float min_diff = 999;
  2810. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2811. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2812. int ind = indexIntoAB[xx][yy];
  2813. float diff = eqnBVector[ind] - mean;
  2814. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2815. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2816. z_tmp = 0;
  2817. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2818. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2819. if (diff >= 0.0)
  2820. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2821. else
  2822. SERIAL_PROTOCOLCHAR(' ');
  2823. SERIAL_PROTOCOL_F(diff, 5);
  2824. } // xx
  2825. SERIAL_EOL;
  2826. } // yy
  2827. SERIAL_EOL;
  2828. if (verbose_level > 3) {
  2829. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2830. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2831. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2832. int ind = indexIntoAB[xx][yy];
  2833. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2834. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2835. z_tmp = 0;
  2836. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2837. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2838. if (diff >= 0.0)
  2839. SERIAL_PROTOCOLPGM(" +");
  2840. // Include + for column alignment
  2841. else
  2842. SERIAL_PROTOCOLCHAR(' ');
  2843. SERIAL_PROTOCOL_F(diff, 5);
  2844. } // xx
  2845. SERIAL_EOL;
  2846. } // yy
  2847. SERIAL_EOL;
  2848. }
  2849. } //do_topography_map
  2850. #endif //!DELTA
  2851. #else // !AUTO_BED_LEVELING_GRID
  2852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2853. if (DEBUGGING(LEVELING)) {
  2854. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2855. }
  2856. #endif
  2857. // Actions for each probe
  2858. ProbeAction p1, p2, p3;
  2859. if (deploy_probe_for_each_reading)
  2860. p1 = p2 = p3 = ProbeDeployAndStow;
  2861. else
  2862. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2863. // Probe at 3 arbitrary points
  2864. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2865. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2866. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2867. p1, verbose_level),
  2868. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2869. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2870. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2871. p2, verbose_level),
  2872. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2873. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2874. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2875. p3, verbose_level);
  2876. clean_up_after_endstop_move();
  2877. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2878. #endif // !AUTO_BED_LEVELING_GRID
  2879. #if ENABLED(DELTA)
  2880. // Allen Key Probe for Delta
  2881. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2882. stow_z_probe();
  2883. #elif Z_RAISE_AFTER_PROBING > 0
  2884. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2885. #endif
  2886. #else // !DELTA
  2887. if (verbose_level > 0)
  2888. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2889. if (!dryrun) {
  2890. /**
  2891. * Correct the Z height difference from Z probe position and nozzle tip position.
  2892. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2893. * from the nozzle. When the bed is uneven, this height must be corrected.
  2894. */
  2895. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2896. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2897. z_tmp = current_position[Z_AXIS],
  2898. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2900. if (DEBUGGING(LEVELING)) {
  2901. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2902. SERIAL_EOL;
  2903. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2904. SERIAL_EOL;
  2905. }
  2906. #endif
  2907. // Apply the correction sending the Z probe offset
  2908. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2909. /*
  2910. * Get the current Z position and send it to the planner.
  2911. *
  2912. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2913. * (most recent plan_set_position/sync_plan_position)
  2914. *
  2915. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2916. * (set by default, M851, EEPROM, or Menu)
  2917. *
  2918. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2919. * after the last probe
  2920. *
  2921. * >> Should home_offset[Z_AXIS] be included?
  2922. *
  2923. *
  2924. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2925. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2926. * not actually "homing" Z... then perhaps it should not be included
  2927. * here. The purpose of home_offset[] is to adjust for inaccurate
  2928. * endstops, not for reasonably accurate probes. If it were added
  2929. * here, it could be seen as a compensating factor for the Z probe.
  2930. */
  2931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2932. if (DEBUGGING(LEVELING)) {
  2933. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2934. SERIAL_EOL;
  2935. }
  2936. #endif
  2937. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2938. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2939. + Z_RAISE_AFTER_PROBING
  2940. #endif
  2941. ;
  2942. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2943. sync_plan_position();
  2944. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2945. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2946. #endif
  2947. }
  2948. // Sled assembly for Cartesian bots
  2949. #if ENABLED(Z_PROBE_SLED)
  2950. dock_sled(true); // dock the sled
  2951. #elif Z_RAISE_AFTER_PROBING > 0
  2952. // Raise Z axis for non-delta and non servo based probes
  2953. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2954. raise_z_after_probing();
  2955. #endif
  2956. #endif
  2957. #endif // !DELTA
  2958. #ifdef Z_PROBE_END_SCRIPT
  2959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2960. if (DEBUGGING(LEVELING)) {
  2961. SERIAL_ECHO("Z Probe End Script: ");
  2962. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2963. }
  2964. #endif
  2965. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2966. #if ENABLED(HAS_Z_MIN_PROBE)
  2967. z_probe_is_active = false;
  2968. #endif
  2969. st_synchronize();
  2970. #endif
  2971. KEEPALIVE_STATE(IN_HANDLER);
  2972. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2973. if (DEBUGGING(LEVELING)) {
  2974. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2975. }
  2976. #endif
  2977. gcode_M114(); // Send end position to RepetierHost
  2978. }
  2979. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2980. /**
  2981. * G30: Do a single Z probe at the current XY
  2982. */
  2983. inline void gcode_G30() {
  2984. #if HAS_SERVO_ENDSTOPS
  2985. raise_z_for_servo();
  2986. #endif
  2987. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2988. st_synchronize();
  2989. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2990. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2991. feedrate = homing_feedrate[Z_AXIS];
  2992. run_z_probe();
  2993. SERIAL_PROTOCOLPGM("Bed X: ");
  2994. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2995. SERIAL_PROTOCOLPGM(" Y: ");
  2996. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2997. SERIAL_PROTOCOLPGM(" Z: ");
  2998. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2999. SERIAL_EOL;
  3000. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3001. #if HAS_SERVO_ENDSTOPS
  3002. raise_z_for_servo();
  3003. #endif
  3004. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3005. gcode_M114(); // Send end position to RepetierHost
  3006. }
  3007. #endif //!Z_PROBE_SLED
  3008. #endif //AUTO_BED_LEVELING_FEATURE
  3009. /**
  3010. * G92: Set current position to given X Y Z E
  3011. */
  3012. inline void gcode_G92() {
  3013. if (!code_seen(axis_codes[E_AXIS]))
  3014. st_synchronize();
  3015. bool didXYZ = false;
  3016. for (int i = 0; i < NUM_AXIS; i++) {
  3017. if (code_seen(axis_codes[i])) {
  3018. float p = current_position[i],
  3019. v = code_value();
  3020. current_position[i] = v;
  3021. position_shift[i] += v - p; // Offset the coordinate space
  3022. update_software_endstops((AxisEnum)i);
  3023. if (i == E_AXIS)
  3024. plan_set_e_position(v);
  3025. else
  3026. didXYZ = true;
  3027. }
  3028. }
  3029. if (didXYZ) {
  3030. #if ENABLED(DELTA) || ENABLED(SCARA)
  3031. sync_plan_position_delta();
  3032. #else
  3033. sync_plan_position();
  3034. #endif
  3035. }
  3036. }
  3037. #if ENABLED(ULTIPANEL)
  3038. /**
  3039. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3040. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3041. */
  3042. inline void gcode_M0_M1() {
  3043. char* args = current_command_args;
  3044. uint8_t test_value = 12;
  3045. SERIAL_ECHOPAIR("TEST", test_value);
  3046. millis_t codenum = 0;
  3047. bool hasP = false, hasS = false;
  3048. if (code_seen('P')) {
  3049. codenum = code_value_short(); // milliseconds to wait
  3050. hasP = codenum > 0;
  3051. }
  3052. if (code_seen('S')) {
  3053. codenum = code_value() * 1000UL; // seconds to wait
  3054. hasS = codenum > 0;
  3055. }
  3056. if (!hasP && !hasS && *args != '\0')
  3057. lcd_setstatus(args, true);
  3058. else {
  3059. LCD_MESSAGEPGM(MSG_USERWAIT);
  3060. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3061. dontExpireStatus();
  3062. #endif
  3063. }
  3064. lcd_ignore_click();
  3065. st_synchronize();
  3066. refresh_cmd_timeout();
  3067. if (codenum > 0) {
  3068. codenum += previous_cmd_ms; // wait until this time for a click
  3069. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3070. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3071. KEEPALIVE_STATE(IN_HANDLER);
  3072. lcd_ignore_click(false);
  3073. }
  3074. else {
  3075. if (!lcd_detected()) return;
  3076. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3077. while (!lcd_clicked()) idle();
  3078. KEEPALIVE_STATE(IN_HANDLER);
  3079. }
  3080. if (IS_SD_PRINTING)
  3081. LCD_MESSAGEPGM(MSG_RESUMING);
  3082. else
  3083. LCD_MESSAGEPGM(WELCOME_MSG);
  3084. }
  3085. #endif // ULTIPANEL
  3086. /**
  3087. * M17: Enable power on all stepper motors
  3088. */
  3089. inline void gcode_M17() {
  3090. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3091. enable_all_steppers();
  3092. }
  3093. #if ENABLED(SDSUPPORT)
  3094. /**
  3095. * M20: List SD card to serial output
  3096. */
  3097. inline void gcode_M20() {
  3098. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3099. card.ls();
  3100. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3101. }
  3102. /**
  3103. * M21: Init SD Card
  3104. */
  3105. inline void gcode_M21() {
  3106. card.initsd();
  3107. }
  3108. /**
  3109. * M22: Release SD Card
  3110. */
  3111. inline void gcode_M22() {
  3112. card.release();
  3113. }
  3114. /**
  3115. * M23: Open a file
  3116. */
  3117. inline void gcode_M23() {
  3118. card.openFile(current_command_args, true);
  3119. }
  3120. /**
  3121. * M24: Start SD Print
  3122. */
  3123. inline void gcode_M24() {
  3124. card.startFileprint();
  3125. print_job_timer.start();
  3126. }
  3127. /**
  3128. * M25: Pause SD Print
  3129. */
  3130. inline void gcode_M25() {
  3131. card.pauseSDPrint();
  3132. }
  3133. /**
  3134. * M26: Set SD Card file index
  3135. */
  3136. inline void gcode_M26() {
  3137. if (card.cardOK && code_seen('S'))
  3138. card.setIndex(code_value_short());
  3139. }
  3140. /**
  3141. * M27: Get SD Card status
  3142. */
  3143. inline void gcode_M27() {
  3144. card.getStatus();
  3145. }
  3146. /**
  3147. * M28: Start SD Write
  3148. */
  3149. inline void gcode_M28() {
  3150. card.openFile(current_command_args, false);
  3151. }
  3152. /**
  3153. * M29: Stop SD Write
  3154. * Processed in write to file routine above
  3155. */
  3156. inline void gcode_M29() {
  3157. // card.saving = false;
  3158. }
  3159. /**
  3160. * M30 <filename>: Delete SD Card file
  3161. */
  3162. inline void gcode_M30() {
  3163. if (card.cardOK) {
  3164. card.closefile();
  3165. card.removeFile(current_command_args);
  3166. }
  3167. }
  3168. #endif //SDSUPPORT
  3169. /**
  3170. * M31: Get the time since the start of SD Print (or last M109)
  3171. */
  3172. inline void gcode_M31() {
  3173. millis_t t = print_job_timer.duration();
  3174. int min = t / 60, sec = t % 60;
  3175. char time[30];
  3176. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3177. SERIAL_ECHO_START;
  3178. SERIAL_ECHOLN(time);
  3179. lcd_setstatus(time);
  3180. autotempShutdown();
  3181. }
  3182. #if ENABLED(SDSUPPORT)
  3183. /**
  3184. * M32: Select file and start SD Print
  3185. */
  3186. inline void gcode_M32() {
  3187. if (card.sdprinting)
  3188. st_synchronize();
  3189. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3190. if (!namestartpos)
  3191. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3192. else
  3193. namestartpos++; //to skip the '!'
  3194. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3195. if (card.cardOK) {
  3196. card.openFile(namestartpos, true, call_procedure);
  3197. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3198. card.setIndex(code_value_short());
  3199. card.startFileprint();
  3200. // Procedure calls count as normal print time.
  3201. if (!call_procedure) print_job_timer.start();
  3202. }
  3203. }
  3204. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3205. /**
  3206. * M33: Get the long full path of a file or folder
  3207. *
  3208. * Parameters:
  3209. * <dospath> Case-insensitive DOS-style path to a file or folder
  3210. *
  3211. * Example:
  3212. * M33 miscel~1/armchair/armcha~1.gco
  3213. *
  3214. * Output:
  3215. * /Miscellaneous/Armchair/Armchair.gcode
  3216. */
  3217. inline void gcode_M33() {
  3218. card.printLongPath(current_command_args);
  3219. }
  3220. #endif
  3221. /**
  3222. * M928: Start SD Write
  3223. */
  3224. inline void gcode_M928() {
  3225. card.openLogFile(current_command_args);
  3226. }
  3227. #endif // SDSUPPORT
  3228. /**
  3229. * M42: Change pin status via GCode
  3230. *
  3231. * P<pin> Pin number (LED if omitted)
  3232. * S<byte> Pin status from 0 - 255
  3233. */
  3234. inline void gcode_M42() {
  3235. if (code_seen('S')) {
  3236. int pin_status = code_value_short();
  3237. if (pin_status < 0 || pin_status > 255) return;
  3238. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3239. if (pin_number < 0) return;
  3240. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3241. if (pin_number == sensitive_pins[i]) return;
  3242. pinMode(pin_number, OUTPUT);
  3243. digitalWrite(pin_number, pin_status);
  3244. analogWrite(pin_number, pin_status);
  3245. #if FAN_COUNT > 0
  3246. switch (pin_number) {
  3247. #if HAS_FAN0
  3248. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3249. #endif
  3250. #if HAS_FAN1
  3251. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3252. #endif
  3253. #if HAS_FAN2
  3254. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3255. #endif
  3256. }
  3257. #endif
  3258. } // code_seen('S')
  3259. }
  3260. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3261. /**
  3262. * This is redundant since the SanityCheck.h already checks for a valid
  3263. * Z_MIN_PROBE_PIN, but here for clarity.
  3264. */
  3265. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3266. #if !HAS_Z_PROBE
  3267. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3268. #endif
  3269. #elif !HAS_Z_MIN
  3270. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3271. #endif
  3272. /**
  3273. * M48: Z probe repeatability measurement function.
  3274. *
  3275. * Usage:
  3276. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3277. * P = Number of sampled points (4-50, default 10)
  3278. * X = Sample X position
  3279. * Y = Sample Y position
  3280. * V = Verbose level (0-4, default=1)
  3281. * E = Engage Z probe for each reading
  3282. * L = Number of legs of movement before probe
  3283. * S = Schizoid (Or Star if you prefer)
  3284. *
  3285. * This function assumes the bed has been homed. Specifically, that a G28 command
  3286. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3287. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3288. * regenerated.
  3289. */
  3290. inline void gcode_M48() {
  3291. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3292. axis_unhomed_error();
  3293. return;
  3294. }
  3295. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3296. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3297. if (code_seen('V')) {
  3298. verbose_level = code_value_short();
  3299. if (verbose_level < 0 || verbose_level > 4) {
  3300. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3301. return;
  3302. }
  3303. }
  3304. if (verbose_level > 0)
  3305. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3306. if (code_seen('P')) {
  3307. n_samples = code_value_short();
  3308. if (n_samples < 4 || n_samples > 50) {
  3309. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3310. return;
  3311. }
  3312. }
  3313. float X_current = current_position[X_AXIS],
  3314. Y_current = current_position[Y_AXIS],
  3315. Z_current = current_position[Z_AXIS],
  3316. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3317. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3318. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3319. bool deploy_probe_for_each_reading = code_seen('E');
  3320. if (code_seen('X')) {
  3321. X_probe_location = code_value();
  3322. #if DISABLED(DELTA)
  3323. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3324. out_of_range_error(PSTR("X"));
  3325. return;
  3326. }
  3327. #endif
  3328. }
  3329. if (code_seen('Y')) {
  3330. Y_probe_location = code_value();
  3331. #if DISABLED(DELTA)
  3332. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3333. out_of_range_error(PSTR("Y"));
  3334. return;
  3335. }
  3336. #endif
  3337. }
  3338. #if ENABLED(DELTA)
  3339. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3340. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3341. return;
  3342. }
  3343. #endif
  3344. bool seen_L = code_seen('L');
  3345. if (seen_L) {
  3346. n_legs = code_value_short();
  3347. if (n_legs < 0 || n_legs > 15) {
  3348. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3349. return;
  3350. }
  3351. if (n_legs == 1) n_legs = 2;
  3352. }
  3353. if (code_seen('S')) {
  3354. schizoid_flag++;
  3355. if (!seen_L) n_legs = 7;
  3356. }
  3357. /**
  3358. * Now get everything to the specified probe point So we can safely do a
  3359. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3360. * we don't want to use that as a starting point for each probe.
  3361. */
  3362. if (verbose_level > 2)
  3363. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3364. #if ENABLED(DELTA)
  3365. // we don't do bed level correction in M48 because we want the raw data when we probe
  3366. reset_bed_level();
  3367. #else
  3368. // we don't do bed level correction in M48 because we want the raw data when we probe
  3369. plan_bed_level_matrix.set_to_identity();
  3370. #endif
  3371. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3372. do_blocking_move_to_z(Z_start_location);
  3373. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3374. /**
  3375. * OK, do the initial probe to get us close to the bed.
  3376. * Then retrace the right amount and use that in subsequent probes
  3377. */
  3378. setup_for_endstop_move();
  3379. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3380. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3381. verbose_level);
  3382. raise_z_after_probing();
  3383. for (uint8_t n = 0; n < n_samples; n++) {
  3384. randomSeed(millis());
  3385. delay(500);
  3386. if (n_legs) {
  3387. float radius, angle = random(0.0, 360.0);
  3388. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3389. radius = random(
  3390. #if ENABLED(DELTA)
  3391. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3392. #else
  3393. 5, X_MAX_LENGTH / 8
  3394. #endif
  3395. );
  3396. if (verbose_level > 3) {
  3397. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3398. SERIAL_ECHOPAIR(" angle: ", angle);
  3399. delay(100);
  3400. if (dir > 0)
  3401. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3402. else
  3403. SERIAL_ECHO(" Direction: Clockwise \n");
  3404. delay(100);
  3405. }
  3406. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3407. double delta_angle;
  3408. if (schizoid_flag)
  3409. // The points of a 5 point star are 72 degrees apart. We need to
  3410. // skip a point and go to the next one on the star.
  3411. delta_angle = dir * 2.0 * 72.0;
  3412. else
  3413. // If we do this line, we are just trying to move further
  3414. // around the circle.
  3415. delta_angle = dir * (float) random(25, 45);
  3416. angle += delta_angle;
  3417. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3418. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3419. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3420. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3421. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3422. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3423. #if DISABLED(DELTA)
  3424. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3425. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3426. #else
  3427. // If we have gone out too far, we can do a simple fix and scale the numbers
  3428. // back in closer to the origin.
  3429. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3430. X_current /= 1.25;
  3431. Y_current /= 1.25;
  3432. if (verbose_level > 3) {
  3433. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3434. SERIAL_ECHOPAIR(", ", Y_current);
  3435. SERIAL_EOL;
  3436. delay(50);
  3437. }
  3438. }
  3439. #endif
  3440. if (verbose_level > 3) {
  3441. SERIAL_PROTOCOL("Going to:");
  3442. SERIAL_ECHOPAIR("x: ", X_current);
  3443. SERIAL_ECHOPAIR("y: ", Y_current);
  3444. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3445. SERIAL_EOL;
  3446. delay(55);
  3447. }
  3448. do_blocking_move_to_xy(X_current, Y_current);
  3449. } // n_legs loop
  3450. } // n_legs
  3451. /**
  3452. * We don't really have to do this move, but if we don't we can see a
  3453. * funny shift in the Z Height because the user might not have the
  3454. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3455. * height. This gets us back to the probe location at the same height that
  3456. * we have been running around the circle at.
  3457. */
  3458. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3459. if (deploy_probe_for_each_reading)
  3460. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3461. else {
  3462. if (n == n_samples - 1)
  3463. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3464. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3465. }
  3466. /**
  3467. * Get the current mean for the data points we have so far
  3468. */
  3469. sum = 0.0;
  3470. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3471. mean = sum / (n + 1);
  3472. /**
  3473. * Now, use that mean to calculate the standard deviation for the
  3474. * data points we have so far
  3475. */
  3476. sum = 0.0;
  3477. for (uint8_t j = 0; j <= n; j++) {
  3478. float ss = sample_set[j] - mean;
  3479. sum += ss * ss;
  3480. }
  3481. sigma = sqrt(sum / (n + 1));
  3482. if (verbose_level > 1) {
  3483. SERIAL_PROTOCOL(n + 1);
  3484. SERIAL_PROTOCOLPGM(" of ");
  3485. SERIAL_PROTOCOL((int)n_samples);
  3486. SERIAL_PROTOCOLPGM(" z: ");
  3487. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3488. delay(50);
  3489. if (verbose_level > 2) {
  3490. SERIAL_PROTOCOLPGM(" mean: ");
  3491. SERIAL_PROTOCOL_F(mean, 6);
  3492. SERIAL_PROTOCOLPGM(" sigma: ");
  3493. SERIAL_PROTOCOL_F(sigma, 6);
  3494. }
  3495. }
  3496. if (verbose_level > 0) SERIAL_EOL;
  3497. delay(50);
  3498. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3499. } // End of probe loop code
  3500. // raise_z_after_probing();
  3501. if (verbose_level > 0) {
  3502. SERIAL_PROTOCOLPGM("Mean: ");
  3503. SERIAL_PROTOCOL_F(mean, 6);
  3504. SERIAL_EOL;
  3505. delay(25);
  3506. }
  3507. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3508. SERIAL_PROTOCOL_F(sigma, 6);
  3509. SERIAL_EOL; SERIAL_EOL;
  3510. delay(25);
  3511. clean_up_after_endstop_move();
  3512. gcode_M114(); // Send end position to RepetierHost
  3513. }
  3514. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3515. /**
  3516. * M75: Start print timer
  3517. */
  3518. inline void gcode_M75() {
  3519. print_job_timer.start();
  3520. }
  3521. /**
  3522. * M76: Pause print timer
  3523. */
  3524. inline void gcode_M76() {
  3525. print_job_timer.pause();
  3526. }
  3527. /**
  3528. * M77: Stop print timer
  3529. */
  3530. inline void gcode_M77() {
  3531. print_job_timer.stop();
  3532. }
  3533. /**
  3534. * M104: Set hot end temperature
  3535. */
  3536. inline void gcode_M104() {
  3537. if (setTargetedHotend(104)) return;
  3538. if (DEBUGGING(DRYRUN)) return;
  3539. if (code_seen('S')) {
  3540. float temp = code_value();
  3541. setTargetHotend(temp, target_extruder);
  3542. #if ENABLED(DUAL_X_CARRIAGE)
  3543. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3544. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3545. #endif
  3546. /**
  3547. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3548. * stand by mode, for instance in a dual extruder setup, without affecting
  3549. * the running print timer.
  3550. */
  3551. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3552. print_job_timer.stop();
  3553. LCD_MESSAGEPGM(WELCOME_MSG);
  3554. }
  3555. /**
  3556. * We do not check if the timer is already running because this check will
  3557. * be done for us inside the Stopwatch::start() method thus a running timer
  3558. * will not restart.
  3559. */
  3560. else print_job_timer.start();
  3561. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3562. }
  3563. }
  3564. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3565. void print_heaterstates() {
  3566. #if HAS_TEMP_HOTEND
  3567. SERIAL_PROTOCOLPGM(" T:");
  3568. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3569. SERIAL_PROTOCOLPGM(" /");
  3570. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3571. #endif
  3572. #if HAS_TEMP_BED
  3573. SERIAL_PROTOCOLPGM(" B:");
  3574. SERIAL_PROTOCOL_F(degBed(), 1);
  3575. SERIAL_PROTOCOLPGM(" /");
  3576. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3577. #endif
  3578. #if EXTRUDERS > 1
  3579. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3580. SERIAL_PROTOCOLPGM(" T");
  3581. SERIAL_PROTOCOL(e);
  3582. SERIAL_PROTOCOLCHAR(':');
  3583. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3584. SERIAL_PROTOCOLPGM(" /");
  3585. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3586. }
  3587. #endif
  3588. #if HAS_TEMP_BED
  3589. SERIAL_PROTOCOLPGM(" B@:");
  3590. #ifdef BED_WATTS
  3591. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3592. SERIAL_PROTOCOLCHAR('W');
  3593. #else
  3594. SERIAL_PROTOCOL(getHeaterPower(-1));
  3595. #endif
  3596. #endif
  3597. SERIAL_PROTOCOLPGM(" @:");
  3598. #ifdef EXTRUDER_WATTS
  3599. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3600. SERIAL_PROTOCOLCHAR('W');
  3601. #else
  3602. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3603. #endif
  3604. #if EXTRUDERS > 1
  3605. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3606. SERIAL_PROTOCOLPGM(" @");
  3607. SERIAL_PROTOCOL(e);
  3608. SERIAL_PROTOCOLCHAR(':');
  3609. #ifdef EXTRUDER_WATTS
  3610. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3611. SERIAL_PROTOCOLCHAR('W');
  3612. #else
  3613. SERIAL_PROTOCOL(getHeaterPower(e));
  3614. #endif
  3615. }
  3616. #endif
  3617. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3618. #if HAS_TEMP_BED
  3619. SERIAL_PROTOCOLPGM(" ADC B:");
  3620. SERIAL_PROTOCOL_F(degBed(), 1);
  3621. SERIAL_PROTOCOLPGM("C->");
  3622. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3623. #endif
  3624. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3625. SERIAL_PROTOCOLPGM(" T");
  3626. SERIAL_PROTOCOL(cur_extruder);
  3627. SERIAL_PROTOCOLCHAR(':');
  3628. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3629. SERIAL_PROTOCOLPGM("C->");
  3630. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3631. }
  3632. #endif
  3633. }
  3634. #endif
  3635. /**
  3636. * M105: Read hot end and bed temperature
  3637. */
  3638. inline void gcode_M105() {
  3639. if (setTargetedHotend(105)) return;
  3640. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3641. SERIAL_PROTOCOLPGM(MSG_OK);
  3642. print_heaterstates();
  3643. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3644. SERIAL_ERROR_START;
  3645. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3646. #endif
  3647. SERIAL_EOL;
  3648. }
  3649. #if FAN_COUNT > 0
  3650. /**
  3651. * M106: Set Fan Speed
  3652. *
  3653. * S<int> Speed between 0-255
  3654. * P<index> Fan index, if more than one fan
  3655. */
  3656. inline void gcode_M106() {
  3657. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3658. p = code_seen('P') ? code_value_short() : 0;
  3659. NOMORE(s, 255);
  3660. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3661. }
  3662. /**
  3663. * M107: Fan Off
  3664. */
  3665. inline void gcode_M107() {
  3666. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3667. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3668. }
  3669. #endif // FAN_COUNT > 0
  3670. /**
  3671. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3672. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3673. */
  3674. inline void gcode_M109() {
  3675. if (setTargetedHotend(109)) return;
  3676. if (DEBUGGING(DRYRUN)) return;
  3677. bool no_wait_for_cooling = code_seen('S');
  3678. if (no_wait_for_cooling || code_seen('R')) {
  3679. float temp = code_value();
  3680. setTargetHotend(temp, target_extruder);
  3681. #if ENABLED(DUAL_X_CARRIAGE)
  3682. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3683. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3684. #endif
  3685. /**
  3686. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3687. * stand by mode, for instance in a dual extruder setup, without affecting
  3688. * the running print timer.
  3689. */
  3690. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3691. print_job_timer.stop();
  3692. LCD_MESSAGEPGM(WELCOME_MSG);
  3693. }
  3694. /**
  3695. * We do not check if the timer is already running because this check will
  3696. * be done for us inside the Stopwatch::start() method thus a running timer
  3697. * will not restart.
  3698. */
  3699. else print_job_timer.start();
  3700. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3701. }
  3702. #if ENABLED(AUTOTEMP)
  3703. autotemp_enabled = code_seen('F');
  3704. if (autotemp_enabled) autotemp_factor = code_value();
  3705. if (code_seen('S')) autotemp_min = code_value();
  3706. if (code_seen('B')) autotemp_max = code_value();
  3707. #endif
  3708. bool wants_to_cool = isCoolingHotend(target_extruder);
  3709. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3710. if (no_wait_for_cooling && wants_to_cool) return;
  3711. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3712. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3713. if (wants_to_cool && degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3714. #if TEMP_RESIDENCY_TIME > 0
  3715. millis_t residency_start_ms = 0;
  3716. // Loop until the temperature has stabilized
  3717. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3718. #else
  3719. // Loop until the temperature is very close target
  3720. #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
  3721. #endif //TEMP_RESIDENCY_TIME > 0
  3722. cancel_heatup = false;
  3723. millis_t now, next_temp_ms = 0;
  3724. do {
  3725. now = millis();
  3726. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3727. next_temp_ms = now + 1000UL;
  3728. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3729. print_heaterstates();
  3730. #endif
  3731. #if TEMP_RESIDENCY_TIME > 0
  3732. SERIAL_PROTOCOLPGM(" W:");
  3733. if (residency_start_ms) {
  3734. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3735. SERIAL_PROTOCOLLN(rem);
  3736. }
  3737. else {
  3738. SERIAL_PROTOCOLLNPGM("?");
  3739. }
  3740. #else
  3741. SERIAL_EOL;
  3742. #endif
  3743. }
  3744. idle();
  3745. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3746. #if TEMP_RESIDENCY_TIME > 0
  3747. float temp_diff = fabs(degTargetHotend(target_extruder) - degHotend(target_extruder));
  3748. if (!residency_start_ms) {
  3749. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3750. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3751. }
  3752. else if (temp_diff > TEMP_HYSTERESIS) {
  3753. // Restart the timer whenever the temperature falls outside the hysteresis.
  3754. residency_start_ms = millis();
  3755. }
  3756. #endif //TEMP_RESIDENCY_TIME > 0
  3757. } while (!cancel_heatup && TEMP_CONDITIONS);
  3758. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3759. }
  3760. #if HAS_TEMP_BED
  3761. /**
  3762. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3763. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3764. */
  3765. inline void gcode_M190() {
  3766. if (DEBUGGING(DRYRUN)) return;
  3767. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3768. bool no_wait_for_cooling = code_seen('S');
  3769. if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value());
  3770. bool wants_to_cool = isCoolingBed();
  3771. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3772. if (no_wait_for_cooling && wants_to_cool) return;
  3773. #if TEMP_BED_RESIDENCY_TIME > 0
  3774. millis_t residency_start_ms = 0;
  3775. // Loop until the temperature has stabilized
  3776. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3777. #else
  3778. // Loop until the temperature is very close target
  3779. #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
  3780. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3781. cancel_heatup = false;
  3782. millis_t now, next_temp_ms = 0;
  3783. // Wait for temperature to come close enough
  3784. do {
  3785. now = millis();
  3786. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3787. next_temp_ms = now + 1000UL;
  3788. print_heaterstates();
  3789. #if TEMP_BED_RESIDENCY_TIME > 0
  3790. SERIAL_PROTOCOLPGM(" W:");
  3791. if (residency_start_ms) {
  3792. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3793. SERIAL_PROTOCOLLN(rem);
  3794. }
  3795. else {
  3796. SERIAL_PROTOCOLLNPGM("?");
  3797. }
  3798. #else
  3799. SERIAL_EOL;
  3800. #endif
  3801. }
  3802. idle();
  3803. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3804. #if TEMP_BED_RESIDENCY_TIME > 0
  3805. float temp_diff = fabs(degBed() - degTargetBed());
  3806. if (!residency_start_ms) {
  3807. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3808. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  3809. }
  3810. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3811. // Restart the timer whenever the temperature falls outside the hysteresis.
  3812. residency_start_ms = millis();
  3813. }
  3814. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3815. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3816. LCD_MESSAGEPGM(MSG_BED_DONE);
  3817. }
  3818. #endif // HAS_TEMP_BED
  3819. /**
  3820. * M110: Set Current Line Number
  3821. */
  3822. inline void gcode_M110() {
  3823. if (code_seen('N')) gcode_N = code_value_long();
  3824. }
  3825. /**
  3826. * M111: Set the debug level
  3827. */
  3828. inline void gcode_M111() {
  3829. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3830. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3831. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3832. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3833. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3834. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3835. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3836. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3837. #endif
  3838. const static char* const debug_strings[] PROGMEM = {
  3839. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3841. str_debug_32
  3842. #endif
  3843. };
  3844. SERIAL_ECHO_START;
  3845. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3846. if (marlin_debug_flags) {
  3847. uint8_t comma = 0;
  3848. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3849. if (TEST(marlin_debug_flags, i)) {
  3850. if (comma++) SERIAL_CHAR(',');
  3851. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3852. }
  3853. }
  3854. }
  3855. else {
  3856. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3857. }
  3858. SERIAL_EOL;
  3859. }
  3860. /**
  3861. * M112: Emergency Stop
  3862. */
  3863. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3864. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3865. /**
  3866. * M113: Get or set Host Keepalive interval (0 to disable)
  3867. *
  3868. * S<seconds> Optional. Set the keepalive interval.
  3869. */
  3870. inline void gcode_M113() {
  3871. if (code_seen('S')) {
  3872. host_keepalive_interval = (uint8_t)code_value_short();
  3873. NOMORE(host_keepalive_interval, 60);
  3874. }
  3875. else {
  3876. SERIAL_ECHO_START;
  3877. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3878. SERIAL_EOL;
  3879. }
  3880. }
  3881. #endif
  3882. #if ENABLED(BARICUDA)
  3883. #if HAS_HEATER_1
  3884. /**
  3885. * M126: Heater 1 valve open
  3886. */
  3887. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3888. /**
  3889. * M127: Heater 1 valve close
  3890. */
  3891. inline void gcode_M127() { ValvePressure = 0; }
  3892. #endif
  3893. #if HAS_HEATER_2
  3894. /**
  3895. * M128: Heater 2 valve open
  3896. */
  3897. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3898. /**
  3899. * M129: Heater 2 valve close
  3900. */
  3901. inline void gcode_M129() { EtoPPressure = 0; }
  3902. #endif
  3903. #endif //BARICUDA
  3904. /**
  3905. * M140: Set bed temperature
  3906. */
  3907. inline void gcode_M140() {
  3908. if (DEBUGGING(DRYRUN)) return;
  3909. if (code_seen('S')) setTargetBed(code_value());
  3910. }
  3911. #if ENABLED(ULTIPANEL)
  3912. /**
  3913. * M145: Set the heatup state for a material in the LCD menu
  3914. * S<material> (0=PLA, 1=ABS)
  3915. * H<hotend temp>
  3916. * B<bed temp>
  3917. * F<fan speed>
  3918. */
  3919. inline void gcode_M145() {
  3920. int8_t material = code_seen('S') ? code_value_short() : 0;
  3921. if (material < 0 || material > 1) {
  3922. SERIAL_ERROR_START;
  3923. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3924. }
  3925. else {
  3926. int v;
  3927. switch (material) {
  3928. case 0:
  3929. if (code_seen('H')) {
  3930. v = code_value_short();
  3931. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3932. }
  3933. if (code_seen('F')) {
  3934. v = code_value_short();
  3935. plaPreheatFanSpeed = constrain(v, 0, 255);
  3936. }
  3937. #if TEMP_SENSOR_BED != 0
  3938. if (code_seen('B')) {
  3939. v = code_value_short();
  3940. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3941. }
  3942. #endif
  3943. break;
  3944. case 1:
  3945. if (code_seen('H')) {
  3946. v = code_value_short();
  3947. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3948. }
  3949. if (code_seen('F')) {
  3950. v = code_value_short();
  3951. absPreheatFanSpeed = constrain(v, 0, 255);
  3952. }
  3953. #if TEMP_SENSOR_BED != 0
  3954. if (code_seen('B')) {
  3955. v = code_value_short();
  3956. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3957. }
  3958. #endif
  3959. break;
  3960. }
  3961. }
  3962. }
  3963. #endif
  3964. #if HAS_POWER_SWITCH
  3965. /**
  3966. * M80: Turn on Power Supply
  3967. */
  3968. inline void gcode_M80() {
  3969. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3970. /**
  3971. * If you have a switch on suicide pin, this is useful
  3972. * if you want to start another print with suicide feature after
  3973. * a print without suicide...
  3974. */
  3975. #if HAS_SUICIDE
  3976. OUT_WRITE(SUICIDE_PIN, HIGH);
  3977. #endif
  3978. #if ENABLED(ULTIPANEL)
  3979. powersupply = true;
  3980. LCD_MESSAGEPGM(WELCOME_MSG);
  3981. lcd_update();
  3982. #endif
  3983. }
  3984. #endif // HAS_POWER_SWITCH
  3985. /**
  3986. * M81: Turn off Power, including Power Supply, if there is one.
  3987. *
  3988. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3989. */
  3990. inline void gcode_M81() {
  3991. disable_all_heaters();
  3992. finishAndDisableSteppers();
  3993. #if FAN_COUNT > 0
  3994. #if FAN_COUNT > 1
  3995. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3996. #else
  3997. fanSpeeds[0] = 0;
  3998. #endif
  3999. #endif
  4000. delay(1000); // Wait 1 second before switching off
  4001. #if HAS_SUICIDE
  4002. st_synchronize();
  4003. suicide();
  4004. #elif HAS_POWER_SWITCH
  4005. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4006. #endif
  4007. #if ENABLED(ULTIPANEL)
  4008. #if HAS_POWER_SWITCH
  4009. powersupply = false;
  4010. #endif
  4011. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4012. lcd_update();
  4013. #endif
  4014. }
  4015. /**
  4016. * M82: Set E codes absolute (default)
  4017. */
  4018. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4019. /**
  4020. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4021. */
  4022. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4023. /**
  4024. * M18, M84: Disable all stepper motors
  4025. */
  4026. inline void gcode_M18_M84() {
  4027. if (code_seen('S')) {
  4028. stepper_inactive_time = code_value() * 1000UL;
  4029. }
  4030. else {
  4031. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4032. if (all_axis) {
  4033. finishAndDisableSteppers();
  4034. }
  4035. else {
  4036. st_synchronize();
  4037. if (code_seen('X')) disable_x();
  4038. if (code_seen('Y')) disable_y();
  4039. if (code_seen('Z')) disable_z();
  4040. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4041. if (code_seen('E')) {
  4042. disable_e0();
  4043. disable_e1();
  4044. disable_e2();
  4045. disable_e3();
  4046. }
  4047. #endif
  4048. }
  4049. }
  4050. }
  4051. /**
  4052. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4053. */
  4054. inline void gcode_M85() {
  4055. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4056. }
  4057. /**
  4058. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4059. * (Follows the same syntax as G92)
  4060. */
  4061. inline void gcode_M92() {
  4062. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4063. if (code_seen(axis_codes[i])) {
  4064. if (i == E_AXIS) {
  4065. float value = code_value();
  4066. if (value < 20.0) {
  4067. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4068. max_e_jerk *= factor;
  4069. max_feedrate[i] *= factor;
  4070. axis_steps_per_sqr_second[i] *= factor;
  4071. }
  4072. axis_steps_per_unit[i] = value;
  4073. }
  4074. else {
  4075. axis_steps_per_unit[i] = code_value();
  4076. }
  4077. }
  4078. }
  4079. }
  4080. /**
  4081. * M114: Output current position to serial port
  4082. */
  4083. inline void gcode_M114() {
  4084. SERIAL_PROTOCOLPGM("X:");
  4085. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4086. SERIAL_PROTOCOLPGM(" Y:");
  4087. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4088. SERIAL_PROTOCOLPGM(" Z:");
  4089. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4090. SERIAL_PROTOCOLPGM(" E:");
  4091. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4092. CRITICAL_SECTION_START;
  4093. extern volatile long count_position[NUM_AXIS];
  4094. long xpos = count_position[X_AXIS],
  4095. ypos = count_position[Y_AXIS],
  4096. zpos = count_position[Z_AXIS];
  4097. CRITICAL_SECTION_END;
  4098. #if ENABLED(COREXY) || ENABLED(COREXZ)
  4099. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  4100. #else
  4101. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  4102. #endif
  4103. SERIAL_PROTOCOL(xpos);
  4104. #if ENABLED(COREXY)
  4105. SERIAL_PROTOCOLPGM(" B:");
  4106. #else
  4107. SERIAL_PROTOCOLPGM(" Y:");
  4108. #endif
  4109. SERIAL_PROTOCOL(ypos);
  4110. #if ENABLED(COREXZ)
  4111. SERIAL_PROTOCOLPGM(" C:");
  4112. #else
  4113. SERIAL_PROTOCOLPGM(" Z:");
  4114. #endif
  4115. SERIAL_PROTOCOL(zpos);
  4116. SERIAL_EOL;
  4117. #if ENABLED(SCARA)
  4118. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4119. SERIAL_PROTOCOL(delta[X_AXIS]);
  4120. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4121. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4122. SERIAL_EOL;
  4123. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4124. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4125. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4126. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4127. SERIAL_EOL;
  4128. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4129. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  4130. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4131. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  4132. SERIAL_EOL; SERIAL_EOL;
  4133. #endif
  4134. }
  4135. /**
  4136. * M115: Capabilities string
  4137. */
  4138. inline void gcode_M115() {
  4139. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4140. }
  4141. /**
  4142. * M117: Set LCD Status Message
  4143. */
  4144. inline void gcode_M117() {
  4145. lcd_setstatus(current_command_args);
  4146. }
  4147. /**
  4148. * M119: Output endstop states to serial output
  4149. */
  4150. inline void gcode_M119() {
  4151. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4152. #if HAS_X_MIN
  4153. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4154. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4155. #endif
  4156. #if HAS_X_MAX
  4157. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4158. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4159. #endif
  4160. #if HAS_Y_MIN
  4161. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4162. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4163. #endif
  4164. #if HAS_Y_MAX
  4165. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4166. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4167. #endif
  4168. #if HAS_Z_MIN
  4169. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4170. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4171. #endif
  4172. #if HAS_Z_MAX
  4173. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4174. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4175. #endif
  4176. #if HAS_Z2_MAX
  4177. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4178. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4179. #endif
  4180. #if HAS_Z_PROBE
  4181. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4182. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4183. #endif
  4184. }
  4185. /**
  4186. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4187. */
  4188. inline void gcode_M120() { enable_endstops_globally(true); }
  4189. /**
  4190. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4191. */
  4192. inline void gcode_M121() { enable_endstops_globally(false); }
  4193. #if ENABLED(BLINKM)
  4194. /**
  4195. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4196. */
  4197. inline void gcode_M150() {
  4198. SendColors(
  4199. code_seen('R') ? (byte)code_value_short() : 0,
  4200. code_seen('U') ? (byte)code_value_short() : 0,
  4201. code_seen('B') ? (byte)code_value_short() : 0
  4202. );
  4203. }
  4204. #endif // BLINKM
  4205. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4206. /**
  4207. * M155: Send data to a I2C slave device
  4208. *
  4209. * This is a PoC, the formating and arguments for the GCODE will
  4210. * change to be more compatible, the current proposal is:
  4211. *
  4212. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4213. *
  4214. * M155 B<byte-1 value in base 10>
  4215. * M155 B<byte-2 value in base 10>
  4216. * M155 B<byte-3 value in base 10>
  4217. *
  4218. * M155 S1 ; Send the buffered data and reset the buffer
  4219. * M155 R1 ; Reset the buffer without sending data
  4220. *
  4221. */
  4222. inline void gcode_M155() {
  4223. // Set the target address
  4224. if (code_seen('A'))
  4225. i2c.address((uint8_t) code_value_short());
  4226. // Add a new byte to the buffer
  4227. else if (code_seen('B'))
  4228. i2c.addbyte((int) code_value_short());
  4229. // Flush the buffer to the bus
  4230. else if (code_seen('S')) i2c.send();
  4231. // Reset and rewind the buffer
  4232. else if (code_seen('R')) i2c.reset();
  4233. }
  4234. /**
  4235. * M156: Request X bytes from I2C slave device
  4236. *
  4237. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4238. */
  4239. inline void gcode_M156() {
  4240. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4241. int bytes = code_seen('B') ? code_value_short() : 0;
  4242. if (addr && bytes) {
  4243. i2c.address(addr);
  4244. i2c.reqbytes(bytes);
  4245. }
  4246. }
  4247. #endif //EXPERIMENTAL_I2CBUS
  4248. /**
  4249. * M200: Set filament diameter and set E axis units to cubic millimeters
  4250. *
  4251. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4252. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4253. */
  4254. inline void gcode_M200() {
  4255. if (setTargetedHotend(200)) return;
  4256. if (code_seen('D')) {
  4257. float diameter = code_value();
  4258. // setting any extruder filament size disables volumetric on the assumption that
  4259. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4260. // for all extruders
  4261. volumetric_enabled = (diameter != 0.0);
  4262. if (volumetric_enabled) {
  4263. filament_size[target_extruder] = diameter;
  4264. // make sure all extruders have some sane value for the filament size
  4265. for (int i = 0; i < EXTRUDERS; i++)
  4266. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4267. }
  4268. }
  4269. else {
  4270. //reserved for setting filament diameter via UFID or filament measuring device
  4271. return;
  4272. }
  4273. calculate_volumetric_multipliers();
  4274. }
  4275. /**
  4276. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4277. */
  4278. inline void gcode_M201() {
  4279. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4280. if (code_seen(axis_codes[i])) {
  4281. max_acceleration_units_per_sq_second[i] = code_value();
  4282. }
  4283. }
  4284. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4285. reset_acceleration_rates();
  4286. }
  4287. #if 0 // Not used for Sprinter/grbl gen6
  4288. inline void gcode_M202() {
  4289. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4290. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4291. }
  4292. }
  4293. #endif
  4294. /**
  4295. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4296. */
  4297. inline void gcode_M203() {
  4298. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4299. if (code_seen(axis_codes[i])) {
  4300. max_feedrate[i] = code_value();
  4301. }
  4302. }
  4303. }
  4304. /**
  4305. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4306. *
  4307. * P = Printing moves
  4308. * R = Retract only (no X, Y, Z) moves
  4309. * T = Travel (non printing) moves
  4310. *
  4311. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4312. */
  4313. inline void gcode_M204() {
  4314. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4315. travel_acceleration = acceleration = code_value();
  4316. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4317. SERIAL_EOL;
  4318. }
  4319. if (code_seen('P')) {
  4320. acceleration = code_value();
  4321. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4322. SERIAL_EOL;
  4323. }
  4324. if (code_seen('R')) {
  4325. retract_acceleration = code_value();
  4326. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4327. SERIAL_EOL;
  4328. }
  4329. if (code_seen('T')) {
  4330. travel_acceleration = code_value();
  4331. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4332. SERIAL_EOL;
  4333. }
  4334. }
  4335. /**
  4336. * M205: Set Advanced Settings
  4337. *
  4338. * S = Min Feed Rate (mm/s)
  4339. * T = Min Travel Feed Rate (mm/s)
  4340. * B = Min Segment Time (µs)
  4341. * X = Max XY Jerk (mm/s/s)
  4342. * Z = Max Z Jerk (mm/s/s)
  4343. * E = Max E Jerk (mm/s/s)
  4344. */
  4345. inline void gcode_M205() {
  4346. if (code_seen('S')) minimumfeedrate = code_value();
  4347. if (code_seen('T')) mintravelfeedrate = code_value();
  4348. if (code_seen('B')) minsegmenttime = code_value();
  4349. if (code_seen('X')) max_xy_jerk = code_value();
  4350. if (code_seen('Z')) max_z_jerk = code_value();
  4351. if (code_seen('E')) max_e_jerk = code_value();
  4352. }
  4353. /**
  4354. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4355. */
  4356. inline void gcode_M206() {
  4357. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4358. if (code_seen(axis_codes[i]))
  4359. set_home_offset((AxisEnum)i, code_value());
  4360. #if ENABLED(SCARA)
  4361. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4362. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4363. #endif
  4364. sync_plan_position();
  4365. }
  4366. #if ENABLED(DELTA)
  4367. /**
  4368. * M665: Set delta configurations
  4369. *
  4370. * L = diagonal rod
  4371. * R = delta radius
  4372. * S = segments per second
  4373. * A = Alpha (Tower 1) diagonal rod trim
  4374. * B = Beta (Tower 2) diagonal rod trim
  4375. * C = Gamma (Tower 3) diagonal rod trim
  4376. */
  4377. inline void gcode_M665() {
  4378. if (code_seen('L')) delta_diagonal_rod = code_value();
  4379. if (code_seen('R')) delta_radius = code_value();
  4380. if (code_seen('S')) delta_segments_per_second = code_value();
  4381. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4382. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4383. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4384. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4385. }
  4386. /**
  4387. * M666: Set delta endstop adjustment
  4388. */
  4389. inline void gcode_M666() {
  4390. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4391. if (DEBUGGING(LEVELING)) {
  4392. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4393. }
  4394. #endif
  4395. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4396. if (code_seen(axis_codes[i])) {
  4397. endstop_adj[i] = code_value();
  4398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4399. if (DEBUGGING(LEVELING)) {
  4400. SERIAL_ECHOPGM("endstop_adj[");
  4401. SERIAL_ECHO(axis_codes[i]);
  4402. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4403. SERIAL_EOL;
  4404. }
  4405. #endif
  4406. }
  4407. }
  4408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4409. if (DEBUGGING(LEVELING)) {
  4410. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4411. }
  4412. #endif
  4413. }
  4414. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4415. /**
  4416. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4417. */
  4418. inline void gcode_M666() {
  4419. if (code_seen('Z')) z_endstop_adj = code_value();
  4420. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4421. SERIAL_EOL;
  4422. }
  4423. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4424. #if ENABLED(FWRETRACT)
  4425. /**
  4426. * M207: Set firmware retraction values
  4427. *
  4428. * S[+mm] retract_length
  4429. * W[+mm] retract_length_swap (multi-extruder)
  4430. * F[mm/min] retract_feedrate
  4431. * Z[mm] retract_zlift
  4432. */
  4433. inline void gcode_M207() {
  4434. if (code_seen('S')) retract_length = code_value();
  4435. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4436. if (code_seen('Z')) retract_zlift = code_value();
  4437. #if EXTRUDERS > 1
  4438. if (code_seen('W')) retract_length_swap = code_value();
  4439. #endif
  4440. }
  4441. /**
  4442. * M208: Set firmware un-retraction values
  4443. *
  4444. * S[+mm] retract_recover_length (in addition to M207 S*)
  4445. * W[+mm] retract_recover_length_swap (multi-extruder)
  4446. * F[mm/min] retract_recover_feedrate
  4447. */
  4448. inline void gcode_M208() {
  4449. if (code_seen('S')) retract_recover_length = code_value();
  4450. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4451. #if EXTRUDERS > 1
  4452. if (code_seen('W')) retract_recover_length_swap = code_value();
  4453. #endif
  4454. }
  4455. /**
  4456. * M209: Enable automatic retract (M209 S1)
  4457. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4458. */
  4459. inline void gcode_M209() {
  4460. if (code_seen('S')) {
  4461. int t = code_value_short();
  4462. switch (t) {
  4463. case 0:
  4464. autoretract_enabled = false;
  4465. break;
  4466. case 1:
  4467. autoretract_enabled = true;
  4468. break;
  4469. default:
  4470. unknown_command_error();
  4471. return;
  4472. }
  4473. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4474. }
  4475. }
  4476. #endif // FWRETRACT
  4477. #if EXTRUDERS > 1
  4478. /**
  4479. * M218 - set hotend offset (in mm)
  4480. *
  4481. * T<tool>
  4482. * X<xoffset>
  4483. * Y<yoffset>
  4484. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4485. */
  4486. inline void gcode_M218() {
  4487. if (setTargetedHotend(218)) return;
  4488. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4489. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4490. #if ENABLED(DUAL_X_CARRIAGE)
  4491. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4492. #endif
  4493. SERIAL_ECHO_START;
  4494. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4495. for (int e = 0; e < EXTRUDERS; e++) {
  4496. SERIAL_CHAR(' ');
  4497. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4498. SERIAL_CHAR(',');
  4499. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4500. #if ENABLED(DUAL_X_CARRIAGE)
  4501. SERIAL_CHAR(',');
  4502. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4503. #endif
  4504. }
  4505. SERIAL_EOL;
  4506. }
  4507. #endif // EXTRUDERS > 1
  4508. /**
  4509. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4510. */
  4511. inline void gcode_M220() {
  4512. if (code_seen('S')) feedrate_multiplier = code_value();
  4513. }
  4514. /**
  4515. * M221: Set extrusion percentage (M221 T0 S95)
  4516. */
  4517. inline void gcode_M221() {
  4518. if (code_seen('S')) {
  4519. int sval = code_value();
  4520. if (setTargetedHotend(221)) return;
  4521. extruder_multiplier[target_extruder] = sval;
  4522. }
  4523. }
  4524. /**
  4525. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4526. */
  4527. inline void gcode_M226() {
  4528. if (code_seen('P')) {
  4529. int pin_number = code_value();
  4530. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4531. if (pin_state >= -1 && pin_state <= 1) {
  4532. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4533. if (sensitive_pins[i] == pin_number) {
  4534. pin_number = -1;
  4535. break;
  4536. }
  4537. }
  4538. if (pin_number > -1) {
  4539. int target = LOW;
  4540. st_synchronize();
  4541. pinMode(pin_number, INPUT);
  4542. switch (pin_state) {
  4543. case 1:
  4544. target = HIGH;
  4545. break;
  4546. case 0:
  4547. target = LOW;
  4548. break;
  4549. case -1:
  4550. target = !digitalRead(pin_number);
  4551. break;
  4552. }
  4553. while (digitalRead(pin_number) != target) idle();
  4554. } // pin_number > -1
  4555. } // pin_state -1 0 1
  4556. } // code_seen('P')
  4557. }
  4558. #if HAS_SERVOS
  4559. /**
  4560. * M280: Get or set servo position. P<index> S<angle>
  4561. */
  4562. inline void gcode_M280() {
  4563. int servo_index = code_seen('P') ? code_value_short() : -1;
  4564. int servo_position = 0;
  4565. if (code_seen('S')) {
  4566. servo_position = code_value_short();
  4567. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4568. servo[servo_index].move(servo_position);
  4569. else {
  4570. SERIAL_ERROR_START;
  4571. SERIAL_ERROR("Servo ");
  4572. SERIAL_ERROR(servo_index);
  4573. SERIAL_ERRORLN(" out of range");
  4574. }
  4575. }
  4576. else if (servo_index >= 0) {
  4577. SERIAL_ECHO_START;
  4578. SERIAL_ECHO(" Servo ");
  4579. SERIAL_ECHO(servo_index);
  4580. SERIAL_ECHO(": ");
  4581. SERIAL_ECHOLN(servo[servo_index].read());
  4582. }
  4583. }
  4584. #endif // HAS_SERVOS
  4585. #if HAS_BUZZER
  4586. /**
  4587. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4588. */
  4589. inline void gcode_M300() {
  4590. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4591. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4592. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4593. buzz(beepP, beepS);
  4594. }
  4595. #endif // HAS_BUZZER
  4596. #if ENABLED(PIDTEMP)
  4597. /**
  4598. * M301: Set PID parameters P I D (and optionally C, L)
  4599. *
  4600. * P[float] Kp term
  4601. * I[float] Ki term (unscaled)
  4602. * D[float] Kd term (unscaled)
  4603. *
  4604. * With PID_ADD_EXTRUSION_RATE:
  4605. *
  4606. * C[float] Kc term
  4607. * L[float] LPQ length
  4608. */
  4609. inline void gcode_M301() {
  4610. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4611. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4612. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4613. if (e < EXTRUDERS) { // catch bad input value
  4614. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4615. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4616. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4617. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4618. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4619. if (code_seen('L')) lpq_len = code_value();
  4620. NOMORE(lpq_len, LPQ_MAX_LEN);
  4621. #endif
  4622. updatePID();
  4623. SERIAL_ECHO_START;
  4624. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4625. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4626. SERIAL_ECHO(e);
  4627. #endif // PID_PARAMS_PER_EXTRUDER
  4628. SERIAL_ECHO(" p:");
  4629. SERIAL_ECHO(PID_PARAM(Kp, e));
  4630. SERIAL_ECHO(" i:");
  4631. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4632. SERIAL_ECHO(" d:");
  4633. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4634. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4635. SERIAL_ECHO(" c:");
  4636. //Kc does not have scaling applied above, or in resetting defaults
  4637. SERIAL_ECHO(PID_PARAM(Kc, e));
  4638. #endif
  4639. SERIAL_EOL;
  4640. }
  4641. else {
  4642. SERIAL_ERROR_START;
  4643. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4644. }
  4645. }
  4646. #endif // PIDTEMP
  4647. #if ENABLED(PIDTEMPBED)
  4648. inline void gcode_M304() {
  4649. if (code_seen('P')) bedKp = code_value();
  4650. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4651. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4652. updatePID();
  4653. SERIAL_ECHO_START;
  4654. SERIAL_ECHO(" p:");
  4655. SERIAL_ECHO(bedKp);
  4656. SERIAL_ECHO(" i:");
  4657. SERIAL_ECHO(unscalePID_i(bedKi));
  4658. SERIAL_ECHO(" d:");
  4659. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4660. }
  4661. #endif // PIDTEMPBED
  4662. #if defined(CHDK) || HAS_PHOTOGRAPH
  4663. /**
  4664. * M240: Trigger a camera by emulating a Canon RC-1
  4665. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4666. */
  4667. inline void gcode_M240() {
  4668. #ifdef CHDK
  4669. OUT_WRITE(CHDK, HIGH);
  4670. chdkHigh = millis();
  4671. chdkActive = true;
  4672. #elif HAS_PHOTOGRAPH
  4673. const uint8_t NUM_PULSES = 16;
  4674. const float PULSE_LENGTH = 0.01524;
  4675. for (int i = 0; i < NUM_PULSES; i++) {
  4676. WRITE(PHOTOGRAPH_PIN, HIGH);
  4677. _delay_ms(PULSE_LENGTH);
  4678. WRITE(PHOTOGRAPH_PIN, LOW);
  4679. _delay_ms(PULSE_LENGTH);
  4680. }
  4681. delay(7.33);
  4682. for (int i = 0; i < NUM_PULSES; i++) {
  4683. WRITE(PHOTOGRAPH_PIN, HIGH);
  4684. _delay_ms(PULSE_LENGTH);
  4685. WRITE(PHOTOGRAPH_PIN, LOW);
  4686. _delay_ms(PULSE_LENGTH);
  4687. }
  4688. #endif // !CHDK && HAS_PHOTOGRAPH
  4689. }
  4690. #endif // CHDK || PHOTOGRAPH_PIN
  4691. #if ENABLED(HAS_LCD_CONTRAST)
  4692. /**
  4693. * M250: Read and optionally set the LCD contrast
  4694. */
  4695. inline void gcode_M250() {
  4696. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4697. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4698. SERIAL_PROTOCOL(lcd_contrast);
  4699. SERIAL_EOL;
  4700. }
  4701. #endif // HAS_LCD_CONTRAST
  4702. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4703. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4704. /**
  4705. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4706. */
  4707. inline void gcode_M302() {
  4708. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4709. }
  4710. #endif // PREVENT_DANGEROUS_EXTRUDE
  4711. /**
  4712. * M303: PID relay autotune
  4713. *
  4714. * S<temperature> sets the target temperature. (default 150C)
  4715. * E<extruder> (-1 for the bed) (default 0)
  4716. * C<cycles>
  4717. * U<bool> with a non-zero value will apply the result to current settings
  4718. */
  4719. inline void gcode_M303() {
  4720. int e = code_seen('E') ? code_value_short() : 0;
  4721. int c = code_seen('C') ? code_value_short() : 5;
  4722. bool u = code_seen('U') && code_value_short() != 0;
  4723. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4724. if (e >= 0 && e < EXTRUDERS)
  4725. target_extruder = e;
  4726. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4727. PID_autotune(temp, e, c, u);
  4728. KEEPALIVE_STATE(IN_HANDLER);
  4729. }
  4730. #if ENABLED(SCARA)
  4731. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4732. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4733. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4734. if (IsRunning()) {
  4735. //gcode_get_destination(); // For X Y Z E F
  4736. delta[X_AXIS] = delta_x;
  4737. delta[Y_AXIS] = delta_y;
  4738. calculate_SCARA_forward_Transform(delta);
  4739. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4740. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4741. prepare_move();
  4742. //ok_to_send();
  4743. return true;
  4744. }
  4745. return false;
  4746. }
  4747. /**
  4748. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4749. */
  4750. inline bool gcode_M360() {
  4751. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4752. return SCARA_move_to_cal(0, 120);
  4753. }
  4754. /**
  4755. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4756. */
  4757. inline bool gcode_M361() {
  4758. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4759. return SCARA_move_to_cal(90, 130);
  4760. }
  4761. /**
  4762. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4763. */
  4764. inline bool gcode_M362() {
  4765. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4766. return SCARA_move_to_cal(60, 180);
  4767. }
  4768. /**
  4769. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4770. */
  4771. inline bool gcode_M363() {
  4772. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4773. return SCARA_move_to_cal(50, 90);
  4774. }
  4775. /**
  4776. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4777. */
  4778. inline bool gcode_M364() {
  4779. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4780. return SCARA_move_to_cal(45, 135);
  4781. }
  4782. /**
  4783. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4784. */
  4785. inline void gcode_M365() {
  4786. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4787. if (code_seen(axis_codes[i])) {
  4788. axis_scaling[i] = code_value();
  4789. }
  4790. }
  4791. }
  4792. #endif // SCARA
  4793. #if ENABLED(EXT_SOLENOID)
  4794. void enable_solenoid(uint8_t num) {
  4795. switch (num) {
  4796. case 0:
  4797. OUT_WRITE(SOL0_PIN, HIGH);
  4798. break;
  4799. #if HAS_SOLENOID_1
  4800. case 1:
  4801. OUT_WRITE(SOL1_PIN, HIGH);
  4802. break;
  4803. #endif
  4804. #if HAS_SOLENOID_2
  4805. case 2:
  4806. OUT_WRITE(SOL2_PIN, HIGH);
  4807. break;
  4808. #endif
  4809. #if HAS_SOLENOID_3
  4810. case 3:
  4811. OUT_WRITE(SOL3_PIN, HIGH);
  4812. break;
  4813. #endif
  4814. default:
  4815. SERIAL_ECHO_START;
  4816. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4817. break;
  4818. }
  4819. }
  4820. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4821. void disable_all_solenoids() {
  4822. OUT_WRITE(SOL0_PIN, LOW);
  4823. OUT_WRITE(SOL1_PIN, LOW);
  4824. OUT_WRITE(SOL2_PIN, LOW);
  4825. OUT_WRITE(SOL3_PIN, LOW);
  4826. }
  4827. /**
  4828. * M380: Enable solenoid on the active extruder
  4829. */
  4830. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4831. /**
  4832. * M381: Disable all solenoids
  4833. */
  4834. inline void gcode_M381() { disable_all_solenoids(); }
  4835. #endif // EXT_SOLENOID
  4836. /**
  4837. * M400: Finish all moves
  4838. */
  4839. inline void gcode_M400() { st_synchronize(); }
  4840. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4841. /**
  4842. * M401: Engage Z Servo endstop if available
  4843. */
  4844. inline void gcode_M401() {
  4845. #if HAS_SERVO_ENDSTOPS
  4846. raise_z_for_servo();
  4847. #endif
  4848. deploy_z_probe();
  4849. }
  4850. /**
  4851. * M402: Retract Z Servo endstop if enabled
  4852. */
  4853. inline void gcode_M402() {
  4854. #if HAS_SERVO_ENDSTOPS
  4855. raise_z_for_servo();
  4856. #endif
  4857. stow_z_probe(false);
  4858. }
  4859. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4860. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4861. /**
  4862. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4863. */
  4864. inline void gcode_M404() {
  4865. if (code_seen('W')) {
  4866. filament_width_nominal = code_value();
  4867. }
  4868. else {
  4869. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4870. SERIAL_PROTOCOLLN(filament_width_nominal);
  4871. }
  4872. }
  4873. /**
  4874. * M405: Turn on filament sensor for control
  4875. */
  4876. inline void gcode_M405() {
  4877. if (code_seen('D')) meas_delay_cm = code_value();
  4878. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4879. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4880. int temp_ratio = widthFil_to_size_ratio();
  4881. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4882. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4883. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4884. }
  4885. filament_sensor = true;
  4886. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4887. //SERIAL_PROTOCOL(filament_width_meas);
  4888. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4889. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4890. }
  4891. /**
  4892. * M406: Turn off filament sensor for control
  4893. */
  4894. inline void gcode_M406() { filament_sensor = false; }
  4895. /**
  4896. * M407: Get measured filament diameter on serial output
  4897. */
  4898. inline void gcode_M407() {
  4899. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4900. SERIAL_PROTOCOLLN(filament_width_meas);
  4901. }
  4902. #endif // FILAMENT_WIDTH_SENSOR
  4903. /**
  4904. * M410: Quickstop - Abort all planned moves
  4905. *
  4906. * This will stop the carriages mid-move, so most likely they
  4907. * will be out of sync with the stepper position after this.
  4908. */
  4909. inline void gcode_M410() { quickStop(); }
  4910. #if ENABLED(MESH_BED_LEVELING)
  4911. /**
  4912. * M420: Enable/Disable Mesh Bed Leveling
  4913. */
  4914. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4915. /**
  4916. * M421: Set a single Mesh Bed Leveling Z coordinate
  4917. */
  4918. inline void gcode_M421() {
  4919. float x = 0, y = 0, z = 0;
  4920. bool err = false, hasX, hasY, hasZ;
  4921. if ((hasX = code_seen('X'))) x = code_value();
  4922. if ((hasY = code_seen('Y'))) y = code_value();
  4923. if ((hasZ = code_seen('Z'))) z = code_value();
  4924. if (!hasX || !hasY || !hasZ) {
  4925. SERIAL_ERROR_START;
  4926. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4927. err = true;
  4928. }
  4929. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4930. SERIAL_ERROR_START;
  4931. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4932. err = true;
  4933. }
  4934. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4935. }
  4936. #endif
  4937. /**
  4938. * M428: Set home_offset based on the distance between the
  4939. * current_position and the nearest "reference point."
  4940. * If an axis is past center its endstop position
  4941. * is the reference-point. Otherwise it uses 0. This allows
  4942. * the Z offset to be set near the bed when using a max endstop.
  4943. *
  4944. * M428 can't be used more than 2cm away from 0 or an endstop.
  4945. *
  4946. * Use M206 to set these values directly.
  4947. */
  4948. inline void gcode_M428() {
  4949. bool err = false;
  4950. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4951. if (axis_homed[i]) {
  4952. float base = (current_position[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4953. diff = current_position[i] - base;
  4954. if (diff > -20 && diff < 20) {
  4955. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  4956. }
  4957. else {
  4958. SERIAL_ERROR_START;
  4959. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4960. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4961. #if HAS_BUZZER
  4962. buzz(200, 40);
  4963. #endif
  4964. err = true;
  4965. break;
  4966. }
  4967. }
  4968. }
  4969. if (!err) {
  4970. sync_plan_position();
  4971. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4972. #if HAS_BUZZER
  4973. buzz(200, 659);
  4974. buzz(200, 698);
  4975. #endif
  4976. }
  4977. }
  4978. /**
  4979. * M500: Store settings in EEPROM
  4980. */
  4981. inline void gcode_M500() {
  4982. Config_StoreSettings();
  4983. }
  4984. /**
  4985. * M501: Read settings from EEPROM
  4986. */
  4987. inline void gcode_M501() {
  4988. Config_RetrieveSettings();
  4989. }
  4990. /**
  4991. * M502: Revert to default settings
  4992. */
  4993. inline void gcode_M502() {
  4994. Config_ResetDefault();
  4995. }
  4996. /**
  4997. * M503: print settings currently in memory
  4998. */
  4999. inline void gcode_M503() {
  5000. Config_PrintSettings(code_seen('S') && code_value() == 0);
  5001. }
  5002. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5003. /**
  5004. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5005. */
  5006. inline void gcode_M540() {
  5007. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  5008. }
  5009. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5010. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5011. inline void gcode_SET_Z_PROBE_OFFSET() {
  5012. SERIAL_ECHO_START;
  5013. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5014. SERIAL_CHAR(' ');
  5015. if (code_seen('Z')) {
  5016. float value = code_value();
  5017. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5018. zprobe_zoffset = value;
  5019. SERIAL_ECHO(zprobe_zoffset);
  5020. }
  5021. else {
  5022. SERIAL_ECHOPGM(MSG_Z_MIN);
  5023. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5024. SERIAL_ECHOPGM(MSG_Z_MAX);
  5025. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5026. }
  5027. }
  5028. else {
  5029. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5030. }
  5031. SERIAL_EOL;
  5032. }
  5033. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5034. #if ENABLED(FILAMENTCHANGEENABLE)
  5035. /**
  5036. * M600: Pause for filament change
  5037. *
  5038. * E[distance] - Retract the filament this far (negative value)
  5039. * Z[distance] - Move the Z axis by this distance
  5040. * X[position] - Move to this X position, with Y
  5041. * Y[position] - Move to this Y position, with X
  5042. * L[distance] - Retract distance for removal (manual reload)
  5043. *
  5044. * Default values are used for omitted arguments.
  5045. *
  5046. */
  5047. inline void gcode_M600() {
  5048. if (degHotend(active_extruder) < extrude_min_temp) {
  5049. SERIAL_ERROR_START;
  5050. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5051. return;
  5052. }
  5053. float lastpos[NUM_AXIS];
  5054. #if ENABLED(DELTA)
  5055. float fr60 = feedrate / 60;
  5056. #endif
  5057. for (int i = 0; i < NUM_AXIS; i++)
  5058. lastpos[i] = destination[i] = current_position[i];
  5059. #if ENABLED(DELTA)
  5060. #define RUNPLAN calculate_delta(destination); \
  5061. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5062. #else
  5063. #define RUNPLAN line_to_destination();
  5064. #endif
  5065. //retract by E
  5066. if (code_seen('E')) destination[E_AXIS] += code_value();
  5067. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5068. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5069. #endif
  5070. RUNPLAN;
  5071. //lift Z
  5072. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5073. #ifdef FILAMENTCHANGE_ZADD
  5074. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5075. #endif
  5076. RUNPLAN;
  5077. //move xy
  5078. if (code_seen('X')) destination[X_AXIS] = code_value();
  5079. #ifdef FILAMENTCHANGE_XPOS
  5080. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5081. #endif
  5082. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5083. #ifdef FILAMENTCHANGE_YPOS
  5084. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5085. #endif
  5086. RUNPLAN;
  5087. if (code_seen('L')) destination[E_AXIS] += code_value();
  5088. #ifdef FILAMENTCHANGE_FINALRETRACT
  5089. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5090. #endif
  5091. RUNPLAN;
  5092. //finish moves
  5093. st_synchronize();
  5094. //disable extruder steppers so filament can be removed
  5095. disable_e0();
  5096. disable_e1();
  5097. disable_e2();
  5098. disable_e3();
  5099. delay(100);
  5100. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5101. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5102. millis_t next_tick = 0;
  5103. #endif
  5104. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5105. while (!lcd_clicked()) {
  5106. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5107. millis_t ms = millis();
  5108. if (ELAPSED(ms, next_tick)) {
  5109. lcd_quick_feedback();
  5110. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5111. }
  5112. idle(true);
  5113. #else
  5114. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5115. destination[E_AXIS] = current_position[E_AXIS];
  5116. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5117. st_synchronize();
  5118. #endif
  5119. } // while(!lcd_clicked)
  5120. KEEPALIVE_STATE(IN_HANDLER);
  5121. lcd_quick_feedback(); // click sound feedback
  5122. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5123. current_position[E_AXIS] = 0;
  5124. st_synchronize();
  5125. #endif
  5126. //return to normal
  5127. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5128. #ifdef FILAMENTCHANGE_FINALRETRACT
  5129. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5130. #endif
  5131. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5132. plan_set_e_position(current_position[E_AXIS]);
  5133. RUNPLAN; //should do nothing
  5134. lcd_reset_alert_level();
  5135. #if ENABLED(DELTA)
  5136. // Move XYZ to starting position, then E
  5137. calculate_delta(lastpos);
  5138. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5139. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5140. #else
  5141. // Move XY to starting position, then Z, then E
  5142. destination[X_AXIS] = lastpos[X_AXIS];
  5143. destination[Y_AXIS] = lastpos[Y_AXIS];
  5144. line_to_destination();
  5145. destination[Z_AXIS] = lastpos[Z_AXIS];
  5146. line_to_destination();
  5147. destination[E_AXIS] = lastpos[E_AXIS];
  5148. line_to_destination();
  5149. #endif
  5150. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5151. filrunoutEnqueued = false;
  5152. #endif
  5153. }
  5154. #endif // FILAMENTCHANGEENABLE
  5155. #if ENABLED(DUAL_X_CARRIAGE)
  5156. /**
  5157. * M605: Set dual x-carriage movement mode
  5158. *
  5159. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5160. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5161. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5162. * millimeters x-offset and an optional differential hotend temperature of
  5163. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5164. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5165. *
  5166. * Note: the X axis should be homed after changing dual x-carriage mode.
  5167. */
  5168. inline void gcode_M605() {
  5169. st_synchronize();
  5170. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5171. switch (dual_x_carriage_mode) {
  5172. case DXC_DUPLICATION_MODE:
  5173. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5174. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5175. SERIAL_ECHO_START;
  5176. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5177. SERIAL_CHAR(' ');
  5178. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5179. SERIAL_CHAR(',');
  5180. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5181. SERIAL_CHAR(' ');
  5182. SERIAL_ECHO(duplicate_extruder_x_offset);
  5183. SERIAL_CHAR(',');
  5184. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5185. break;
  5186. case DXC_FULL_CONTROL_MODE:
  5187. case DXC_AUTO_PARK_MODE:
  5188. break;
  5189. default:
  5190. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5191. break;
  5192. }
  5193. active_extruder_parked = false;
  5194. extruder_duplication_enabled = false;
  5195. delayed_move_time = 0;
  5196. }
  5197. #endif // DUAL_X_CARRIAGE
  5198. /**
  5199. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5200. */
  5201. inline void gcode_M907() {
  5202. #if HAS_DIGIPOTSS
  5203. for (int i = 0; i < NUM_AXIS; i++)
  5204. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5205. if (code_seen('B')) digipot_current(4, code_value());
  5206. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5207. #endif
  5208. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5209. if (code_seen('X')) digipot_current(0, code_value());
  5210. #endif
  5211. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5212. if (code_seen('Z')) digipot_current(1, code_value());
  5213. #endif
  5214. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5215. if (code_seen('E')) digipot_current(2, code_value());
  5216. #endif
  5217. #if ENABLED(DIGIPOT_I2C)
  5218. // this one uses actual amps in floating point
  5219. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5220. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5221. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5222. #endif
  5223. #if ENABLED(DAC_STEPPER_CURRENT)
  5224. if (code_seen('S')) {
  5225. float dac_percent = code_value();
  5226. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5227. }
  5228. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5229. #endif
  5230. }
  5231. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5232. /**
  5233. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5234. */
  5235. inline void gcode_M908() {
  5236. #if HAS_DIGIPOTSS
  5237. digitalPotWrite(
  5238. code_seen('P') ? code_value() : 0,
  5239. code_seen('S') ? code_value() : 0
  5240. );
  5241. #endif
  5242. #ifdef DAC_STEPPER_CURRENT
  5243. dac_current_raw(
  5244. code_seen('P') ? code_value_long() : -1,
  5245. code_seen('S') ? code_value_short() : 0
  5246. );
  5247. #endif
  5248. }
  5249. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5250. inline void gcode_M909() { dac_print_values(); }
  5251. inline void gcode_M910() { dac_commit_eeprom(); }
  5252. #endif
  5253. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5254. #if HAS_MICROSTEPS
  5255. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5256. inline void gcode_M350() {
  5257. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5258. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5259. if (code_seen('B')) microstep_mode(4, code_value());
  5260. microstep_readings();
  5261. }
  5262. /**
  5263. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5264. * S# determines MS1 or MS2, X# sets the pin high/low.
  5265. */
  5266. inline void gcode_M351() {
  5267. if (code_seen('S')) switch (code_value_short()) {
  5268. case 1:
  5269. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5270. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5271. break;
  5272. case 2:
  5273. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5274. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5275. break;
  5276. }
  5277. microstep_readings();
  5278. }
  5279. #endif // HAS_MICROSTEPS
  5280. /**
  5281. * M999: Restart after being stopped
  5282. */
  5283. inline void gcode_M999() {
  5284. Running = true;
  5285. lcd_reset_alert_level();
  5286. // gcode_LastN = Stopped_gcode_LastN;
  5287. FlushSerialRequestResend();
  5288. }
  5289. /**
  5290. * T0-T3: Switch tool, usually switching extruders
  5291. *
  5292. * F[mm/min] Set the movement feedrate
  5293. */
  5294. inline void gcode_T(uint8_t tmp_extruder) {
  5295. if (tmp_extruder >= EXTRUDERS) {
  5296. SERIAL_ECHO_START;
  5297. SERIAL_CHAR('T');
  5298. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5299. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5300. }
  5301. else {
  5302. target_extruder = tmp_extruder;
  5303. #if EXTRUDERS > 1
  5304. bool make_move = false;
  5305. #endif
  5306. if (code_seen('F')) {
  5307. #if EXTRUDERS > 1
  5308. make_move = true;
  5309. #endif
  5310. float next_feedrate = code_value();
  5311. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5312. }
  5313. #if EXTRUDERS > 1
  5314. if (tmp_extruder != active_extruder) {
  5315. // Save current position to return to after applying extruder offset
  5316. set_destination_to_current();
  5317. #if ENABLED(DUAL_X_CARRIAGE)
  5318. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5319. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5320. // Park old head: 1) raise 2) move to park position 3) lower
  5321. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5322. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5323. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5324. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5325. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5326. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5327. st_synchronize();
  5328. }
  5329. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5330. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5331. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5332. active_extruder = tmp_extruder;
  5333. // This function resets the max/min values - the current position may be overwritten below.
  5334. set_axis_is_at_home(X_AXIS);
  5335. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5336. current_position[X_AXIS] = inactive_extruder_x_pos;
  5337. inactive_extruder_x_pos = destination[X_AXIS];
  5338. }
  5339. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5340. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5341. if (active_extruder == 0 || active_extruder_parked)
  5342. current_position[X_AXIS] = inactive_extruder_x_pos;
  5343. else
  5344. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5345. inactive_extruder_x_pos = destination[X_AXIS];
  5346. extruder_duplication_enabled = false;
  5347. }
  5348. else {
  5349. // record raised toolhead position for use by unpark
  5350. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5351. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5352. active_extruder_parked = true;
  5353. delayed_move_time = 0;
  5354. }
  5355. #else // !DUAL_X_CARRIAGE
  5356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5357. // Offset extruder, make sure to apply the bed level rotation matrix
  5358. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5359. extruder_offset[Y_AXIS][tmp_extruder],
  5360. 0),
  5361. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5362. extruder_offset[Y_AXIS][active_extruder],
  5363. 0),
  5364. offset_vec = tmp_offset_vec - act_offset_vec;
  5365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5366. if (DEBUGGING(LEVELING)) {
  5367. SERIAL_ECHOLNPGM(">>> gcode_T");
  5368. tmp_offset_vec.debug("tmp_offset_vec");
  5369. act_offset_vec.debug("act_offset_vec");
  5370. offset_vec.debug("offset_vec (BEFORE)");
  5371. DEBUG_POS("BEFORE rotation", current_position);
  5372. }
  5373. #endif
  5374. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5375. current_position[X_AXIS] += offset_vec.x;
  5376. current_position[Y_AXIS] += offset_vec.y;
  5377. current_position[Z_AXIS] += offset_vec.z;
  5378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5379. if (DEBUGGING(LEVELING)) {
  5380. offset_vec.debug("offset_vec (AFTER)");
  5381. DEBUG_POS("AFTER rotation", current_position);
  5382. SERIAL_ECHOLNPGM("<<< gcode_T");
  5383. }
  5384. #endif
  5385. #else // !AUTO_BED_LEVELING_FEATURE
  5386. // Offset extruder (only by XY)
  5387. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5388. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5389. #endif // !AUTO_BED_LEVELING_FEATURE
  5390. // Set the new active extruder and position
  5391. active_extruder = tmp_extruder;
  5392. #endif // !DUAL_X_CARRIAGE
  5393. #if ENABLED(DELTA)
  5394. sync_plan_position_delta();
  5395. #else
  5396. sync_plan_position();
  5397. #endif
  5398. // Move to the old position if 'F' was in the parameters
  5399. if (make_move && IsRunning()) prepare_move();
  5400. }
  5401. #if ENABLED(EXT_SOLENOID)
  5402. st_synchronize();
  5403. disable_all_solenoids();
  5404. enable_solenoid_on_active_extruder();
  5405. #endif // EXT_SOLENOID
  5406. #endif // EXTRUDERS > 1
  5407. SERIAL_ECHO_START;
  5408. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5409. SERIAL_PROTOCOLLN((int)active_extruder);
  5410. }
  5411. }
  5412. /**
  5413. * Process a single command and dispatch it to its handler
  5414. * This is called from the main loop()
  5415. */
  5416. void process_next_command() {
  5417. current_command = command_queue[cmd_queue_index_r];
  5418. if (DEBUGGING(ECHO)) {
  5419. SERIAL_ECHO_START;
  5420. SERIAL_ECHOLN(current_command);
  5421. }
  5422. // Sanitize the current command:
  5423. // - Skip leading spaces
  5424. // - Bypass N[-0-9][0-9]*[ ]*
  5425. // - Overwrite * with nul to mark the end
  5426. while (*current_command == ' ') ++current_command;
  5427. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5428. current_command += 2; // skip N[-0-9]
  5429. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5430. while (*current_command == ' ') ++current_command; // skip [ ]*
  5431. }
  5432. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5433. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5434. char *cmd_ptr = current_command;
  5435. // Get the command code, which must be G, M, or T
  5436. char command_code = *cmd_ptr++;
  5437. // Skip spaces to get the numeric part
  5438. while (*cmd_ptr == ' ') cmd_ptr++;
  5439. uint16_t codenum = 0; // define ahead of goto
  5440. // Bail early if there's no code
  5441. bool code_is_good = NUMERIC(*cmd_ptr);
  5442. if (!code_is_good) goto ExitUnknownCommand;
  5443. // Get and skip the code number
  5444. do {
  5445. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5446. cmd_ptr++;
  5447. } while (NUMERIC(*cmd_ptr));
  5448. // Skip all spaces to get to the first argument, or nul
  5449. while (*cmd_ptr == ' ') cmd_ptr++;
  5450. // The command's arguments (if any) start here, for sure!
  5451. current_command_args = cmd_ptr;
  5452. KEEPALIVE_STATE(IN_HANDLER);
  5453. // Handle a known G, M, or T
  5454. switch (command_code) {
  5455. case 'G': switch (codenum) {
  5456. // G0, G1
  5457. case 0:
  5458. case 1:
  5459. gcode_G0_G1();
  5460. break;
  5461. // G2, G3
  5462. #if DISABLED(SCARA)
  5463. case 2: // G2 - CW ARC
  5464. case 3: // G3 - CCW ARC
  5465. gcode_G2_G3(codenum == 2);
  5466. break;
  5467. #endif
  5468. // G4 Dwell
  5469. case 4:
  5470. gcode_G4();
  5471. break;
  5472. #if ENABLED(FWRETRACT)
  5473. case 10: // G10: retract
  5474. case 11: // G11: retract_recover
  5475. gcode_G10_G11(codenum == 10);
  5476. break;
  5477. #endif //FWRETRACT
  5478. case 28: // G28: Home all axes, one at a time
  5479. gcode_G28();
  5480. break;
  5481. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5482. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5483. gcode_G29();
  5484. break;
  5485. #endif
  5486. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5487. #if DISABLED(Z_PROBE_SLED)
  5488. case 30: // G30 Single Z probe
  5489. gcode_G30();
  5490. break;
  5491. #else // Z_PROBE_SLED
  5492. case 31: // G31: dock the sled
  5493. case 32: // G32: undock the sled
  5494. dock_sled(codenum == 31);
  5495. break;
  5496. #endif // Z_PROBE_SLED
  5497. #endif // AUTO_BED_LEVELING_FEATURE
  5498. case 90: // G90
  5499. relative_mode = false;
  5500. break;
  5501. case 91: // G91
  5502. relative_mode = true;
  5503. break;
  5504. case 92: // G92
  5505. gcode_G92();
  5506. break;
  5507. }
  5508. break;
  5509. case 'M': switch (codenum) {
  5510. #if ENABLED(ULTIPANEL)
  5511. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5512. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5513. gcode_M0_M1();
  5514. break;
  5515. #endif // ULTIPANEL
  5516. case 17:
  5517. gcode_M17();
  5518. break;
  5519. #if ENABLED(SDSUPPORT)
  5520. case 20: // M20 - list SD card
  5521. gcode_M20(); break;
  5522. case 21: // M21 - init SD card
  5523. gcode_M21(); break;
  5524. case 22: //M22 - release SD card
  5525. gcode_M22(); break;
  5526. case 23: //M23 - Select file
  5527. gcode_M23(); break;
  5528. case 24: //M24 - Start SD print
  5529. gcode_M24(); break;
  5530. case 25: //M25 - Pause SD print
  5531. gcode_M25(); break;
  5532. case 26: //M26 - Set SD index
  5533. gcode_M26(); break;
  5534. case 27: //M27 - Get SD status
  5535. gcode_M27(); break;
  5536. case 28: //M28 - Start SD write
  5537. gcode_M28(); break;
  5538. case 29: //M29 - Stop SD write
  5539. gcode_M29(); break;
  5540. case 30: //M30 <filename> Delete File
  5541. gcode_M30(); break;
  5542. case 32: //M32 - Select file and start SD print
  5543. gcode_M32(); break;
  5544. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5545. case 33: //M33 - Get the long full path to a file or folder
  5546. gcode_M33(); break;
  5547. #endif // LONG_FILENAME_HOST_SUPPORT
  5548. case 928: //M928 - Start SD write
  5549. gcode_M928(); break;
  5550. #endif //SDSUPPORT
  5551. case 31: //M31 take time since the start of the SD print or an M109 command
  5552. gcode_M31();
  5553. break;
  5554. case 42: //M42 -Change pin status via gcode
  5555. gcode_M42();
  5556. break;
  5557. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5558. case 48: // M48 Z probe repeatability
  5559. gcode_M48();
  5560. break;
  5561. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5562. case 75: // Start print timer
  5563. gcode_M75();
  5564. break;
  5565. case 76: // Pause print timer
  5566. gcode_M76();
  5567. break;
  5568. case 77: // Stop print timer
  5569. gcode_M77();
  5570. break;
  5571. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5572. case 100:
  5573. gcode_M100();
  5574. break;
  5575. #endif
  5576. case 104: // M104
  5577. gcode_M104();
  5578. break;
  5579. case 110: // M110: Set Current Line Number
  5580. gcode_M110();
  5581. break;
  5582. case 111: // M111: Set debug level
  5583. gcode_M111();
  5584. break;
  5585. case 112: // M112: Emergency Stop
  5586. gcode_M112();
  5587. break;
  5588. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5589. case 113: // M113: Set Host Keepalive interval
  5590. gcode_M113();
  5591. break;
  5592. #endif
  5593. case 140: // M140: Set bed temp
  5594. gcode_M140();
  5595. break;
  5596. case 105: // M105: Read current temperature
  5597. gcode_M105();
  5598. KEEPALIVE_STATE(NOT_BUSY);
  5599. return; // "ok" already printed
  5600. case 109: // M109: Wait for temperature
  5601. gcode_M109();
  5602. break;
  5603. #if HAS_TEMP_BED
  5604. case 190: // M190: Wait for bed heater to reach target
  5605. gcode_M190();
  5606. break;
  5607. #endif // HAS_TEMP_BED
  5608. #if FAN_COUNT > 0
  5609. case 106: // M106: Fan On
  5610. gcode_M106();
  5611. break;
  5612. case 107: // M107: Fan Off
  5613. gcode_M107();
  5614. break;
  5615. #endif // FAN_COUNT > 0
  5616. #if ENABLED(BARICUDA)
  5617. // PWM for HEATER_1_PIN
  5618. #if HAS_HEATER_1
  5619. case 126: // M126: valve open
  5620. gcode_M126();
  5621. break;
  5622. case 127: // M127: valve closed
  5623. gcode_M127();
  5624. break;
  5625. #endif // HAS_HEATER_1
  5626. // PWM for HEATER_2_PIN
  5627. #if HAS_HEATER_2
  5628. case 128: // M128: valve open
  5629. gcode_M128();
  5630. break;
  5631. case 129: // M129: valve closed
  5632. gcode_M129();
  5633. break;
  5634. #endif // HAS_HEATER_2
  5635. #endif // BARICUDA
  5636. #if HAS_POWER_SWITCH
  5637. case 80: // M80: Turn on Power Supply
  5638. gcode_M80();
  5639. break;
  5640. #endif // HAS_POWER_SWITCH
  5641. case 81: // M81: Turn off Power, including Power Supply, if possible
  5642. gcode_M81();
  5643. break;
  5644. case 82:
  5645. gcode_M82();
  5646. break;
  5647. case 83:
  5648. gcode_M83();
  5649. break;
  5650. case 18: // (for compatibility)
  5651. case 84: // M84
  5652. gcode_M18_M84();
  5653. break;
  5654. case 85: // M85
  5655. gcode_M85();
  5656. break;
  5657. case 92: // M92: Set the steps-per-unit for one or more axes
  5658. gcode_M92();
  5659. break;
  5660. case 115: // M115: Report capabilities
  5661. gcode_M115();
  5662. break;
  5663. case 117: // M117: Set LCD message text, if possible
  5664. gcode_M117();
  5665. break;
  5666. case 114: // M114: Report current position
  5667. gcode_M114();
  5668. break;
  5669. case 120: // M120: Enable endstops
  5670. gcode_M120();
  5671. break;
  5672. case 121: // M121: Disable endstops
  5673. gcode_M121();
  5674. break;
  5675. case 119: // M119: Report endstop states
  5676. gcode_M119();
  5677. break;
  5678. #if ENABLED(ULTIPANEL)
  5679. case 145: // M145: Set material heatup parameters
  5680. gcode_M145();
  5681. break;
  5682. #endif
  5683. #if ENABLED(BLINKM)
  5684. case 150: // M150
  5685. gcode_M150();
  5686. break;
  5687. #endif //BLINKM
  5688. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5689. case 155:
  5690. gcode_M155();
  5691. break;
  5692. case 156:
  5693. gcode_M156();
  5694. break;
  5695. #endif //EXPERIMENTAL_I2CBUS
  5696. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5697. gcode_M200();
  5698. break;
  5699. case 201: // M201
  5700. gcode_M201();
  5701. break;
  5702. #if 0 // Not used for Sprinter/grbl gen6
  5703. case 202: // M202
  5704. gcode_M202();
  5705. break;
  5706. #endif
  5707. case 203: // M203 max feedrate mm/sec
  5708. gcode_M203();
  5709. break;
  5710. case 204: // M204 acclereration S normal moves T filmanent only moves
  5711. gcode_M204();
  5712. break;
  5713. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5714. gcode_M205();
  5715. break;
  5716. case 206: // M206 additional homing offset
  5717. gcode_M206();
  5718. break;
  5719. #if ENABLED(DELTA)
  5720. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5721. gcode_M665();
  5722. break;
  5723. #endif
  5724. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5725. case 666: // M666 set delta / dual endstop adjustment
  5726. gcode_M666();
  5727. break;
  5728. #endif
  5729. #if ENABLED(FWRETRACT)
  5730. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5731. gcode_M207();
  5732. break;
  5733. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5734. gcode_M208();
  5735. break;
  5736. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5737. gcode_M209();
  5738. break;
  5739. #endif // FWRETRACT
  5740. #if EXTRUDERS > 1
  5741. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5742. gcode_M218();
  5743. break;
  5744. #endif
  5745. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5746. gcode_M220();
  5747. break;
  5748. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5749. gcode_M221();
  5750. break;
  5751. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5752. gcode_M226();
  5753. break;
  5754. #if HAS_SERVOS
  5755. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5756. gcode_M280();
  5757. break;
  5758. #endif // HAS_SERVOS
  5759. #if HAS_BUZZER
  5760. case 300: // M300 - Play beep tone
  5761. gcode_M300();
  5762. break;
  5763. #endif // HAS_BUZZER
  5764. #if ENABLED(PIDTEMP)
  5765. case 301: // M301
  5766. gcode_M301();
  5767. break;
  5768. #endif // PIDTEMP
  5769. #if ENABLED(PIDTEMPBED)
  5770. case 304: // M304
  5771. gcode_M304();
  5772. break;
  5773. #endif // PIDTEMPBED
  5774. #if defined(CHDK) || HAS_PHOTOGRAPH
  5775. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5776. gcode_M240();
  5777. break;
  5778. #endif // CHDK || PHOTOGRAPH_PIN
  5779. #if ENABLED(HAS_LCD_CONTRAST)
  5780. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5781. gcode_M250();
  5782. break;
  5783. #endif // HAS_LCD_CONTRAST
  5784. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5785. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5786. gcode_M302();
  5787. break;
  5788. #endif // PREVENT_DANGEROUS_EXTRUDE
  5789. case 303: // M303 PID autotune
  5790. gcode_M303();
  5791. break;
  5792. #if ENABLED(SCARA)
  5793. case 360: // M360 SCARA Theta pos1
  5794. if (gcode_M360()) return;
  5795. break;
  5796. case 361: // M361 SCARA Theta pos2
  5797. if (gcode_M361()) return;
  5798. break;
  5799. case 362: // M362 SCARA Psi pos1
  5800. if (gcode_M362()) return;
  5801. break;
  5802. case 363: // M363 SCARA Psi pos2
  5803. if (gcode_M363()) return;
  5804. break;
  5805. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5806. if (gcode_M364()) return;
  5807. break;
  5808. case 365: // M365 Set SCARA scaling for X Y Z
  5809. gcode_M365();
  5810. break;
  5811. #endif // SCARA
  5812. case 400: // M400 finish all moves
  5813. gcode_M400();
  5814. break;
  5815. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5816. case 401:
  5817. gcode_M401();
  5818. break;
  5819. case 402:
  5820. gcode_M402();
  5821. break;
  5822. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5823. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5824. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5825. gcode_M404();
  5826. break;
  5827. case 405: //M405 Turn on filament sensor for control
  5828. gcode_M405();
  5829. break;
  5830. case 406: //M406 Turn off filament sensor for control
  5831. gcode_M406();
  5832. break;
  5833. case 407: //M407 Display measured filament diameter
  5834. gcode_M407();
  5835. break;
  5836. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5837. case 410: // M410 quickstop - Abort all the planned moves.
  5838. gcode_M410();
  5839. break;
  5840. #if ENABLED(MESH_BED_LEVELING)
  5841. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5842. gcode_M420();
  5843. break;
  5844. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5845. gcode_M421();
  5846. break;
  5847. #endif
  5848. case 428: // M428 Apply current_position to home_offset
  5849. gcode_M428();
  5850. break;
  5851. case 500: // M500 Store settings in EEPROM
  5852. gcode_M500();
  5853. break;
  5854. case 501: // M501 Read settings from EEPROM
  5855. gcode_M501();
  5856. break;
  5857. case 502: // M502 Revert to default settings
  5858. gcode_M502();
  5859. break;
  5860. case 503: // M503 print settings currently in memory
  5861. gcode_M503();
  5862. break;
  5863. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5864. case 540:
  5865. gcode_M540();
  5866. break;
  5867. #endif
  5868. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5869. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5870. gcode_SET_Z_PROBE_OFFSET();
  5871. break;
  5872. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5873. #if ENABLED(FILAMENTCHANGEENABLE)
  5874. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5875. gcode_M600();
  5876. break;
  5877. #endif // FILAMENTCHANGEENABLE
  5878. #if ENABLED(DUAL_X_CARRIAGE)
  5879. case 605:
  5880. gcode_M605();
  5881. break;
  5882. #endif // DUAL_X_CARRIAGE
  5883. case 907: // M907 Set digital trimpot motor current using axis codes.
  5884. gcode_M907();
  5885. break;
  5886. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5887. case 908: // M908 Control digital trimpot directly.
  5888. gcode_M908();
  5889. break;
  5890. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5891. case 909: // M909 Print digipot/DAC current value
  5892. gcode_M909();
  5893. break;
  5894. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5895. gcode_M910();
  5896. break;
  5897. #endif
  5898. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5899. #if HAS_MICROSTEPS
  5900. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5901. gcode_M350();
  5902. break;
  5903. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5904. gcode_M351();
  5905. break;
  5906. #endif // HAS_MICROSTEPS
  5907. case 999: // M999: Restart after being Stopped
  5908. gcode_M999();
  5909. break;
  5910. }
  5911. break;
  5912. case 'T':
  5913. gcode_T(codenum);
  5914. break;
  5915. default: code_is_good = false;
  5916. }
  5917. KEEPALIVE_STATE(NOT_BUSY);
  5918. ExitUnknownCommand:
  5919. // Still unknown command? Throw an error
  5920. if (!code_is_good) unknown_command_error();
  5921. ok_to_send();
  5922. }
  5923. void FlushSerialRequestResend() {
  5924. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5925. MYSERIAL.flush();
  5926. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5927. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5928. ok_to_send();
  5929. }
  5930. void ok_to_send() {
  5931. refresh_cmd_timeout();
  5932. if (!send_ok[cmd_queue_index_r]) return;
  5933. SERIAL_PROTOCOLPGM(MSG_OK);
  5934. #if ENABLED(ADVANCED_OK)
  5935. char* p = command_queue[cmd_queue_index_r];
  5936. if (*p == 'N') {
  5937. SERIAL_PROTOCOL(' ');
  5938. SERIAL_ECHO(*p++);
  5939. while (NUMERIC_SIGNED(*p))
  5940. SERIAL_ECHO(*p++);
  5941. }
  5942. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5943. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5944. #endif
  5945. SERIAL_EOL;
  5946. }
  5947. void clamp_to_software_endstops(float target[3]) {
  5948. if (min_software_endstops) {
  5949. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5950. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5951. float negative_z_offset = 0;
  5952. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5953. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5954. if (home_offset[Z_AXIS] < 0) {
  5955. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5956. if (DEBUGGING(LEVELING)) {
  5957. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5958. SERIAL_EOL;
  5959. }
  5960. #endif
  5961. negative_z_offset += home_offset[Z_AXIS];
  5962. }
  5963. #endif
  5964. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5965. }
  5966. if (max_software_endstops) {
  5967. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5968. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5969. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5970. }
  5971. }
  5972. #if ENABLED(DELTA)
  5973. void recalc_delta_settings(float radius, float diagonal_rod) {
  5974. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5975. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5976. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5977. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5978. delta_tower3_x = 0.0; // back middle tower
  5979. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5980. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5981. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5982. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5983. }
  5984. void calculate_delta(float cartesian[3]) {
  5985. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5986. - sq(delta_tower1_x - cartesian[X_AXIS])
  5987. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5988. ) + cartesian[Z_AXIS];
  5989. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5990. - sq(delta_tower2_x - cartesian[X_AXIS])
  5991. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5992. ) + cartesian[Z_AXIS];
  5993. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5994. - sq(delta_tower3_x - cartesian[X_AXIS])
  5995. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5996. ) + cartesian[Z_AXIS];
  5997. /**
  5998. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5999. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6000. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6001. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6002. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6003. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6004. */
  6005. }
  6006. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6007. // Adjust print surface height by linear interpolation over the bed_level array.
  6008. void adjust_delta(float cartesian[3]) {
  6009. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6010. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6011. float h1 = 0.001 - half, h2 = half - 0.001,
  6012. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6013. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6014. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6015. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6016. z1 = bed_level[floor_x + half][floor_y + half],
  6017. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6018. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6019. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6020. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6021. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6022. offset = (1 - ratio_x) * left + ratio_x * right;
  6023. delta[X_AXIS] += offset;
  6024. delta[Y_AXIS] += offset;
  6025. delta[Z_AXIS] += offset;
  6026. /**
  6027. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6028. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6029. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6030. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6031. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6032. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6033. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6034. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6035. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6036. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6037. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6038. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6039. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6040. */
  6041. }
  6042. #endif // AUTO_BED_LEVELING_FEATURE
  6043. #endif // DELTA
  6044. #if ENABLED(MESH_BED_LEVELING)
  6045. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6046. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6047. if (!mbl.active) {
  6048. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6049. set_current_to_destination();
  6050. return;
  6051. }
  6052. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  6053. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6054. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  6055. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  6056. pix = min(pix, MESH_NUM_X_POINTS - 2);
  6057. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  6058. ix = min(ix, MESH_NUM_X_POINTS - 2);
  6059. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  6060. if (pix == ix && piy == iy) {
  6061. // Start and end on same mesh square
  6062. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6063. set_current_to_destination();
  6064. return;
  6065. }
  6066. float nx, ny, nz, ne, normalized_dist;
  6067. if (ix > pix && TEST(x_splits, ix)) {
  6068. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  6069. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6070. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6071. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6072. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6073. CBI(x_splits, ix);
  6074. }
  6075. else if (ix < pix && TEST(x_splits, pix)) {
  6076. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  6077. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6078. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6079. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6080. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6081. CBI(x_splits, pix);
  6082. }
  6083. else if (iy > piy && TEST(y_splits, iy)) {
  6084. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6085. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6086. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6087. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6088. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6089. CBI(y_splits, iy);
  6090. }
  6091. else if (iy < piy && TEST(y_splits, piy)) {
  6092. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6093. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6094. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6095. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6096. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6097. CBI(y_splits, piy);
  6098. }
  6099. else {
  6100. // Already split on a border
  6101. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6102. set_current_to_destination();
  6103. return;
  6104. }
  6105. // Do the split and look for more borders
  6106. destination[X_AXIS] = nx;
  6107. destination[Y_AXIS] = ny;
  6108. destination[Z_AXIS] = nz;
  6109. destination[E_AXIS] = ne;
  6110. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6111. destination[X_AXIS] = x;
  6112. destination[Y_AXIS] = y;
  6113. destination[Z_AXIS] = z;
  6114. destination[E_AXIS] = e;
  6115. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6116. }
  6117. #endif // MESH_BED_LEVELING
  6118. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6119. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6120. if (DEBUGGING(DRYRUN)) return;
  6121. float de = dest_e - curr_e;
  6122. if (de) {
  6123. if (degHotend(active_extruder) < extrude_min_temp) {
  6124. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6125. SERIAL_ECHO_START;
  6126. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6127. }
  6128. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6129. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6130. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6131. SERIAL_ECHO_START;
  6132. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6133. }
  6134. #endif
  6135. }
  6136. }
  6137. #endif // PREVENT_DANGEROUS_EXTRUDE
  6138. #if ENABLED(DELTA) || ENABLED(SCARA)
  6139. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6140. float difference[NUM_AXIS];
  6141. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6142. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6143. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6144. if (cartesian_mm < 0.000001) return false;
  6145. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6146. int steps = max(1, int(delta_segments_per_second * seconds));
  6147. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6148. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6149. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6150. for (int s = 1; s <= steps; s++) {
  6151. float fraction = float(s) / float(steps);
  6152. for (int8_t i = 0; i < NUM_AXIS; i++)
  6153. target[i] = current_position[i] + difference[i] * fraction;
  6154. calculate_delta(target);
  6155. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6156. adjust_delta(target);
  6157. #endif
  6158. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  6159. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  6160. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  6161. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  6162. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6163. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6164. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6165. }
  6166. return true;
  6167. }
  6168. #endif // DELTA || SCARA
  6169. #if ENABLED(SCARA)
  6170. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6171. #endif
  6172. #if ENABLED(DUAL_X_CARRIAGE)
  6173. inline bool prepare_move_dual_x_carriage() {
  6174. if (active_extruder_parked) {
  6175. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6176. // move duplicate extruder into correct duplication position.
  6177. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6178. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6179. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6180. sync_plan_position();
  6181. st_synchronize();
  6182. extruder_duplication_enabled = true;
  6183. active_extruder_parked = false;
  6184. }
  6185. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6186. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6187. // This is a travel move (with no extrusion)
  6188. // Skip it, but keep track of the current position
  6189. // (so it can be used as the start of the next non-travel move)
  6190. if (delayed_move_time != 0xFFFFFFFFUL) {
  6191. set_current_to_destination();
  6192. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6193. delayed_move_time = millis();
  6194. return false;
  6195. }
  6196. }
  6197. delayed_move_time = 0;
  6198. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6199. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6200. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6202. active_extruder_parked = false;
  6203. }
  6204. }
  6205. return true;
  6206. }
  6207. #endif // DUAL_X_CARRIAGE
  6208. #if DISABLED(DELTA) && DISABLED(SCARA)
  6209. inline bool prepare_move_cartesian() {
  6210. // Do not use feedrate_multiplier for E or Z only moves
  6211. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6212. line_to_destination();
  6213. }
  6214. else {
  6215. #if ENABLED(MESH_BED_LEVELING)
  6216. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6217. return false;
  6218. #else
  6219. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6220. #endif
  6221. }
  6222. return true;
  6223. }
  6224. #endif // !DELTA && !SCARA
  6225. /**
  6226. * Prepare a single move and get ready for the next one
  6227. *
  6228. * (This may call plan_buffer_line several times to put
  6229. * smaller moves into the planner for DELTA or SCARA.)
  6230. */
  6231. void prepare_move() {
  6232. clamp_to_software_endstops(destination);
  6233. refresh_cmd_timeout();
  6234. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6235. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6236. #endif
  6237. #if ENABLED(SCARA)
  6238. if (!prepare_move_scara(destination)) return;
  6239. #elif ENABLED(DELTA)
  6240. if (!prepare_move_delta(destination)) return;
  6241. #endif
  6242. #if ENABLED(DUAL_X_CARRIAGE)
  6243. if (!prepare_move_dual_x_carriage()) return;
  6244. #endif
  6245. #if DISABLED(DELTA) && DISABLED(SCARA)
  6246. if (!prepare_move_cartesian()) return;
  6247. #endif
  6248. set_current_to_destination();
  6249. }
  6250. /**
  6251. * Plan an arc in 2 dimensions
  6252. *
  6253. * The arc is approximated by generating many small linear segments.
  6254. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6255. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6256. * larger segments will tend to be more efficient. Your slicer should have
  6257. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6258. */
  6259. void plan_arc(
  6260. float target[NUM_AXIS], // Destination position
  6261. float* offset, // Center of rotation relative to current_position
  6262. uint8_t clockwise // Clockwise?
  6263. ) {
  6264. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6265. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6266. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6267. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6268. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6269. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6270. r_Y = -offset[Y_AXIS],
  6271. rt_X = target[X_AXIS] - center_X,
  6272. rt_Y = target[Y_AXIS] - center_Y;
  6273. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6274. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6275. if (angular_travel < 0) angular_travel += RADIANS(360);
  6276. if (clockwise) angular_travel -= RADIANS(360);
  6277. // Make a circle if the angular rotation is 0
  6278. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6279. angular_travel += RADIANS(360);
  6280. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6281. if (mm_of_travel < 0.001) return;
  6282. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6283. if (segments == 0) segments = 1;
  6284. float theta_per_segment = angular_travel / segments;
  6285. float linear_per_segment = linear_travel / segments;
  6286. float extruder_per_segment = extruder_travel / segments;
  6287. /**
  6288. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6289. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6290. * r_T = [cos(phi) -sin(phi);
  6291. * sin(phi) cos(phi] * r ;
  6292. *
  6293. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6294. * defined from the circle center to the initial position. Each line segment is formed by successive
  6295. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6296. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6297. * all double numbers are single precision on the Arduino. (True double precision will not have
  6298. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6299. * tool precision in some cases. Therefore, arc path correction is implemented.
  6300. *
  6301. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6302. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6303. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6304. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6305. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6306. * issue for CNC machines with the single precision Arduino calculations.
  6307. *
  6308. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6309. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6310. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6311. * This is important when there are successive arc motions.
  6312. */
  6313. // Vector rotation matrix values
  6314. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6315. float sin_T = theta_per_segment;
  6316. float arc_target[NUM_AXIS];
  6317. float sin_Ti, cos_Ti, r_new_Y;
  6318. uint16_t i;
  6319. int8_t count = 0;
  6320. // Initialize the linear axis
  6321. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6322. // Initialize the extruder axis
  6323. arc_target[E_AXIS] = current_position[E_AXIS];
  6324. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6325. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6326. if (++count < N_ARC_CORRECTION) {
  6327. // Apply vector rotation matrix to previous r_X / 1
  6328. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6329. r_X = r_X * cos_T - r_Y * sin_T;
  6330. r_Y = r_new_Y;
  6331. }
  6332. else {
  6333. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6334. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6335. // To reduce stuttering, the sin and cos could be computed at different times.
  6336. // For now, compute both at the same time.
  6337. cos_Ti = cos(i * theta_per_segment);
  6338. sin_Ti = sin(i * theta_per_segment);
  6339. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6340. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6341. count = 0;
  6342. }
  6343. // Update arc_target location
  6344. arc_target[X_AXIS] = center_X + r_X;
  6345. arc_target[Y_AXIS] = center_Y + r_Y;
  6346. arc_target[Z_AXIS] += linear_per_segment;
  6347. arc_target[E_AXIS] += extruder_per_segment;
  6348. clamp_to_software_endstops(arc_target);
  6349. #if ENABLED(DELTA) || ENABLED(SCARA)
  6350. calculate_delta(arc_target);
  6351. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6352. adjust_delta(arc_target);
  6353. #endif
  6354. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6355. #else
  6356. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6357. #endif
  6358. }
  6359. // Ensure last segment arrives at target location.
  6360. #if ENABLED(DELTA) || ENABLED(SCARA)
  6361. calculate_delta(target);
  6362. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6363. adjust_delta(target);
  6364. #endif
  6365. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6366. #else
  6367. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6368. #endif
  6369. // As far as the parser is concerned, the position is now == target. In reality the
  6370. // motion control system might still be processing the action and the real tool position
  6371. // in any intermediate location.
  6372. set_current_to_destination();
  6373. }
  6374. #if HAS_CONTROLLERFAN
  6375. void controllerFan() {
  6376. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6377. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6378. millis_t ms = millis();
  6379. if (ELAPSED(ms, nextMotorCheck)) {
  6380. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6381. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6382. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6383. #if EXTRUDERS > 1
  6384. || E1_ENABLE_READ == E_ENABLE_ON
  6385. #if HAS_X2_ENABLE
  6386. || X2_ENABLE_READ == X_ENABLE_ON
  6387. #endif
  6388. #if EXTRUDERS > 2
  6389. || E2_ENABLE_READ == E_ENABLE_ON
  6390. #if EXTRUDERS > 3
  6391. || E3_ENABLE_READ == E_ENABLE_ON
  6392. #endif
  6393. #endif
  6394. #endif
  6395. ) {
  6396. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6397. }
  6398. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6399. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6400. // allows digital or PWM fan output to be used (see M42 handling)
  6401. digitalWrite(CONTROLLERFAN_PIN, speed);
  6402. analogWrite(CONTROLLERFAN_PIN, speed);
  6403. }
  6404. }
  6405. #endif // HAS_CONTROLLERFAN
  6406. #if ENABLED(SCARA)
  6407. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6408. // Perform forward kinematics, and place results in delta[3]
  6409. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6410. float x_sin, x_cos, y_sin, y_cos;
  6411. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6412. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6413. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6414. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6415. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6416. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6417. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6418. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6419. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6420. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6421. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6422. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6423. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6424. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6425. }
  6426. void calculate_delta(float cartesian[3]) {
  6427. //reverse kinematics.
  6428. // Perform reversed kinematics, and place results in delta[3]
  6429. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6430. float SCARA_pos[2];
  6431. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6432. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6433. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6434. #if (Linkage_1 == Linkage_2)
  6435. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6436. #else
  6437. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6438. #endif
  6439. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6440. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6441. SCARA_K2 = Linkage_2 * SCARA_S2;
  6442. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6443. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6444. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6445. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6446. delta[Z_AXIS] = cartesian[Z_AXIS];
  6447. /**
  6448. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6449. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6450. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6451. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6452. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6453. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6454. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6455. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6456. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6457. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6458. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6459. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6460. SERIAL_EOL;
  6461. */
  6462. }
  6463. #endif // SCARA
  6464. #if ENABLED(TEMP_STAT_LEDS)
  6465. static bool red_led = false;
  6466. static millis_t next_status_led_update_ms = 0;
  6467. void handle_status_leds(void) {
  6468. float max_temp = 0.0;
  6469. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6470. next_status_led_update_ms += 500; // Update every 0.5s
  6471. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6472. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6473. #if HAS_TEMP_BED
  6474. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6475. #endif
  6476. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6477. if (new_led != red_led) {
  6478. red_led = new_led;
  6479. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6480. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6481. }
  6482. }
  6483. }
  6484. #endif
  6485. void enable_all_steppers() {
  6486. enable_x();
  6487. enable_y();
  6488. enable_z();
  6489. enable_e0();
  6490. enable_e1();
  6491. enable_e2();
  6492. enable_e3();
  6493. }
  6494. void disable_all_steppers() {
  6495. disable_x();
  6496. disable_y();
  6497. disable_z();
  6498. disable_e0();
  6499. disable_e1();
  6500. disable_e2();
  6501. disable_e3();
  6502. }
  6503. /**
  6504. * Standard idle routine keeps the machine alive
  6505. */
  6506. void idle(
  6507. #if ENABLED(FILAMENTCHANGEENABLE)
  6508. bool no_stepper_sleep/*=false*/
  6509. #endif
  6510. ) {
  6511. manage_heater();
  6512. manage_inactivity(
  6513. #if ENABLED(FILAMENTCHANGEENABLE)
  6514. no_stepper_sleep
  6515. #endif
  6516. );
  6517. host_keepalive();
  6518. lcd_update();
  6519. }
  6520. /**
  6521. * Manage several activities:
  6522. * - Check for Filament Runout
  6523. * - Keep the command buffer full
  6524. * - Check for maximum inactive time between commands
  6525. * - Check for maximum inactive time between stepper commands
  6526. * - Check if pin CHDK needs to go LOW
  6527. * - Check for KILL button held down
  6528. * - Check for HOME button held down
  6529. * - Check if cooling fan needs to be switched on
  6530. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6531. */
  6532. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6533. #if HAS_FILRUNOUT
  6534. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6535. filrunout();
  6536. #endif
  6537. if (commands_in_queue < BUFSIZE) get_available_commands();
  6538. millis_t ms = millis();
  6539. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6540. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6541. && !ignore_stepper_queue && !blocks_queued()) {
  6542. #if ENABLED(DISABLE_INACTIVE_X)
  6543. disable_x();
  6544. #endif
  6545. #if ENABLED(DISABLE_INACTIVE_Y)
  6546. disable_y();
  6547. #endif
  6548. #if ENABLED(DISABLE_INACTIVE_Z)
  6549. disable_z();
  6550. #endif
  6551. #if ENABLED(DISABLE_INACTIVE_E)
  6552. disable_e0();
  6553. disable_e1();
  6554. disable_e2();
  6555. disable_e3();
  6556. #endif
  6557. }
  6558. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6559. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6560. chdkActive = false;
  6561. WRITE(CHDK, LOW);
  6562. }
  6563. #endif
  6564. #if HAS_KILL
  6565. // Check if the kill button was pressed and wait just in case it was an accidental
  6566. // key kill key press
  6567. // -------------------------------------------------------------------------------
  6568. static int killCount = 0; // make the inactivity button a bit less responsive
  6569. const int KILL_DELAY = 750;
  6570. if (!READ(KILL_PIN))
  6571. killCount++;
  6572. else if (killCount > 0)
  6573. killCount--;
  6574. // Exceeded threshold and we can confirm that it was not accidental
  6575. // KILL the machine
  6576. // ----------------------------------------------------------------
  6577. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6578. #endif
  6579. #if HAS_HOME
  6580. // Check to see if we have to home, use poor man's debouncer
  6581. // ---------------------------------------------------------
  6582. static int homeDebounceCount = 0; // poor man's debouncing count
  6583. const int HOME_DEBOUNCE_DELAY = 2500;
  6584. if (!READ(HOME_PIN)) {
  6585. if (!homeDebounceCount) {
  6586. enqueue_and_echo_commands_P(PSTR("G28"));
  6587. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6588. }
  6589. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6590. homeDebounceCount++;
  6591. else
  6592. homeDebounceCount = 0;
  6593. }
  6594. #endif
  6595. #if HAS_CONTROLLERFAN
  6596. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6597. #endif
  6598. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6599. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6600. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6601. bool oldstatus;
  6602. switch (active_extruder) {
  6603. case 0:
  6604. oldstatus = E0_ENABLE_READ;
  6605. enable_e0();
  6606. break;
  6607. #if EXTRUDERS > 1
  6608. case 1:
  6609. oldstatus = E1_ENABLE_READ;
  6610. enable_e1();
  6611. break;
  6612. #if EXTRUDERS > 2
  6613. case 2:
  6614. oldstatus = E2_ENABLE_READ;
  6615. enable_e2();
  6616. break;
  6617. #if EXTRUDERS > 3
  6618. case 3:
  6619. oldstatus = E3_ENABLE_READ;
  6620. enable_e3();
  6621. break;
  6622. #endif
  6623. #endif
  6624. #endif
  6625. }
  6626. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6627. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6628. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6629. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6630. current_position[E_AXIS] = oldepos;
  6631. destination[E_AXIS] = oldedes;
  6632. plan_set_e_position(oldepos);
  6633. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6634. st_synchronize();
  6635. switch (active_extruder) {
  6636. case 0:
  6637. E0_ENABLE_WRITE(oldstatus);
  6638. break;
  6639. #if EXTRUDERS > 1
  6640. case 1:
  6641. E1_ENABLE_WRITE(oldstatus);
  6642. break;
  6643. #if EXTRUDERS > 2
  6644. case 2:
  6645. E2_ENABLE_WRITE(oldstatus);
  6646. break;
  6647. #if EXTRUDERS > 3
  6648. case 3:
  6649. E3_ENABLE_WRITE(oldstatus);
  6650. break;
  6651. #endif
  6652. #endif
  6653. #endif
  6654. }
  6655. }
  6656. #endif
  6657. #if ENABLED(DUAL_X_CARRIAGE)
  6658. // handle delayed move timeout
  6659. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6660. // travel moves have been received so enact them
  6661. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6662. set_destination_to_current();
  6663. prepare_move();
  6664. }
  6665. #endif
  6666. #if ENABLED(TEMP_STAT_LEDS)
  6667. handle_status_leds();
  6668. #endif
  6669. check_axes_activity();
  6670. }
  6671. void kill(const char* lcd_msg) {
  6672. #if ENABLED(ULTRA_LCD)
  6673. lcd_setalertstatuspgm(lcd_msg);
  6674. #else
  6675. UNUSED(lcd_msg);
  6676. #endif
  6677. cli(); // Stop interrupts
  6678. disable_all_heaters();
  6679. disable_all_steppers();
  6680. #if HAS_POWER_SWITCH
  6681. pinMode(PS_ON_PIN, INPUT);
  6682. #endif
  6683. SERIAL_ERROR_START;
  6684. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6685. // FMC small patch to update the LCD before ending
  6686. sei(); // enable interrupts
  6687. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6688. cli(); // disable interrupts
  6689. suicide();
  6690. while (1) {
  6691. #if ENABLED(USE_WATCHDOG)
  6692. watchdog_reset();
  6693. #endif
  6694. } // Wait for reset
  6695. }
  6696. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6697. void filrunout() {
  6698. if (!filrunoutEnqueued) {
  6699. filrunoutEnqueued = true;
  6700. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6701. st_synchronize();
  6702. }
  6703. }
  6704. #endif // FILAMENT_RUNOUT_SENSOR
  6705. #if ENABLED(FAST_PWM_FAN)
  6706. void setPwmFrequency(uint8_t pin, int val) {
  6707. val &= 0x07;
  6708. switch (digitalPinToTimer(pin)) {
  6709. #if defined(TCCR0A)
  6710. case TIMER0A:
  6711. case TIMER0B:
  6712. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6713. // TCCR0B |= val;
  6714. break;
  6715. #endif
  6716. #if defined(TCCR1A)
  6717. case TIMER1A:
  6718. case TIMER1B:
  6719. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6720. // TCCR1B |= val;
  6721. break;
  6722. #endif
  6723. #if defined(TCCR2)
  6724. case TIMER2:
  6725. case TIMER2:
  6726. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6727. TCCR2 |= val;
  6728. break;
  6729. #endif
  6730. #if defined(TCCR2A)
  6731. case TIMER2A:
  6732. case TIMER2B:
  6733. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6734. TCCR2B |= val;
  6735. break;
  6736. #endif
  6737. #if defined(TCCR3A)
  6738. case TIMER3A:
  6739. case TIMER3B:
  6740. case TIMER3C:
  6741. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6742. TCCR3B |= val;
  6743. break;
  6744. #endif
  6745. #if defined(TCCR4A)
  6746. case TIMER4A:
  6747. case TIMER4B:
  6748. case TIMER4C:
  6749. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6750. TCCR4B |= val;
  6751. break;
  6752. #endif
  6753. #if defined(TCCR5A)
  6754. case TIMER5A:
  6755. case TIMER5B:
  6756. case TIMER5C:
  6757. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6758. TCCR5B |= val;
  6759. break;
  6760. #endif
  6761. }
  6762. }
  6763. #endif // FAST_PWM_FAN
  6764. void Stop() {
  6765. disable_all_heaters();
  6766. if (IsRunning()) {
  6767. Running = false;
  6768. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6769. SERIAL_ERROR_START;
  6770. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6771. LCD_MESSAGEPGM(MSG_STOPPED);
  6772. }
  6773. }
  6774. /**
  6775. * Set target_extruder from the T parameter or the active_extruder
  6776. *
  6777. * Returns TRUE if the target is invalid
  6778. */
  6779. bool setTargetedHotend(int code) {
  6780. target_extruder = active_extruder;
  6781. if (code_seen('T')) {
  6782. target_extruder = code_value_short();
  6783. if (target_extruder >= EXTRUDERS) {
  6784. SERIAL_ECHO_START;
  6785. SERIAL_CHAR('M');
  6786. SERIAL_ECHO(code);
  6787. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6788. SERIAL_ECHOLN((int)target_extruder);
  6789. return true;
  6790. }
  6791. }
  6792. return false;
  6793. }
  6794. float calculate_volumetric_multiplier(float diameter) {
  6795. if (!volumetric_enabled || diameter == 0) return 1.0;
  6796. float d2 = diameter * 0.5;
  6797. return 1.0 / (M_PI * d2 * d2);
  6798. }
  6799. void calculate_volumetric_multipliers() {
  6800. for (int i = 0; i < EXTRUDERS; i++)
  6801. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6802. }