My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * planner.h
  24. *
  25. * Buffer movement commands and manage the acceleration profile plan
  26. *
  27. * Derived from Grbl
  28. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  29. */
  30. #ifndef PLANNER_H
  31. #define PLANNER_H
  32. #include "types.h"
  33. #include "enum.h"
  34. #include "Marlin.h"
  35. #if HAS_ABL
  36. #include "vector_3.h"
  37. #endif
  38. enum BlockFlagBit {
  39. // Recalculate trapezoids on entry junction. For optimization.
  40. BLOCK_BIT_RECALCULATE,
  41. // Nominal speed always reached.
  42. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
  43. // from a safe speed (in consideration of jerking from zero speed).
  44. BLOCK_BIT_NOMINAL_LENGTH,
  45. // Start from a halt at the start of this block, respecting the maximum allowed jerk.
  46. BLOCK_BIT_START_FROM_FULL_HALT,
  47. // The block is busy
  48. BLOCK_BIT_BUSY
  49. };
  50. enum BlockFlag {
  51. BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
  52. BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
  53. BLOCK_FLAG_START_FROM_FULL_HALT = _BV(BLOCK_BIT_START_FROM_FULL_HALT),
  54. BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY)
  55. };
  56. /**
  57. * struct block_t
  58. *
  59. * A single entry in the planner buffer.
  60. * Tracks linear movement over multiple axes.
  61. *
  62. * The "nominal" values are as-specified by gcode, and
  63. * may never actually be reached due to acceleration limits.
  64. */
  65. typedef struct {
  66. uint8_t flag; // Block flags (See BlockFlag enum above)
  67. unsigned char active_extruder; // The extruder to move (if E move)
  68. // Fields used by the Bresenham algorithm for tracing the line
  69. int32_t steps[NUM_AXIS]; // Step count along each axis
  70. uint32_t step_event_count; // The number of step events required to complete this block
  71. #if ENABLED(MIXING_EXTRUDER)
  72. uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
  73. #endif
  74. int32_t accelerate_until, // The index of the step event on which to stop acceleration
  75. decelerate_after, // The index of the step event on which to start decelerating
  76. acceleration_rate; // The acceleration rate used for acceleration calculation
  77. uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  78. // Advance extrusion
  79. #if ENABLED(LIN_ADVANCE)
  80. bool use_advance_lead;
  81. uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
  82. #elif ENABLED(ADVANCE)
  83. int32_t advance_rate;
  84. volatile int32_t initial_advance;
  85. volatile int32_t final_advance;
  86. float advance;
  87. #endif
  88. // Fields used by the motion planner to manage acceleration
  89. float nominal_speed, // The nominal speed for this block in mm/sec
  90. entry_speed, // Entry speed at previous-current junction in mm/sec
  91. max_entry_speed, // Maximum allowable junction entry speed in mm/sec
  92. millimeters, // The total travel of this block in mm
  93. acceleration; // acceleration mm/sec^2
  94. // Settings for the trapezoid generator
  95. uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
  96. initial_rate, // The jerk-adjusted step rate at start of block
  97. final_rate, // The minimal rate at exit
  98. acceleration_steps_per_s2; // acceleration steps/sec^2
  99. #if FAN_COUNT > 0
  100. uint16_t fan_speed[FAN_COUNT];
  101. #endif
  102. #if ENABLED(BARICUDA)
  103. uint32_t valve_pressure, e_to_p_pressure;
  104. #endif
  105. uint32_t segment_time;
  106. } block_t;
  107. #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
  108. class Planner {
  109. public:
  110. /**
  111. * A ring buffer of moves described in steps
  112. */
  113. static block_t block_buffer[BLOCK_BUFFER_SIZE];
  114. static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
  115. block_buffer_tail;
  116. #if ENABLED(DISTINCT_E_FACTORS)
  117. static uint8_t last_extruder; // Respond to extruder change
  118. #endif
  119. static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
  120. axis_steps_per_mm[XYZE_N],
  121. steps_to_mm[XYZE_N];
  122. static uint32_t max_acceleration_steps_per_s2[XYZE_N],
  123. max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
  124. static millis_t min_segment_time;
  125. static float min_feedrate_mm_s,
  126. acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  127. retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  128. travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  129. max_jerk[XYZE], // The largest speed change requiring no acceleration
  130. min_travel_feedrate_mm_s;
  131. #if HAS_ABL
  132. static bool abl_enabled; // Flag that bed leveling is enabled
  133. static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
  134. #endif
  135. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  136. static float z_fade_height, inverse_z_fade_height;
  137. #endif
  138. #if ENABLED(LIN_ADVANCE)
  139. static float extruder_advance_k, advance_ed_ratio;
  140. #endif
  141. private:
  142. /**
  143. * The current position of the tool in absolute steps
  144. * Recalculated if any axis_steps_per_mm are changed by gcode
  145. */
  146. static long position[NUM_AXIS];
  147. /**
  148. * Speed of previous path line segment
  149. */
  150. static float previous_speed[NUM_AXIS];
  151. /**
  152. * Nominal speed of previous path line segment
  153. */
  154. static float previous_nominal_speed;
  155. /**
  156. * Limit where 64bit math is necessary for acceleration calculation
  157. */
  158. static uint32_t cutoff_long;
  159. #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
  160. /**
  161. * Counters to manage disabling inactive extruders
  162. */
  163. static uint8_t g_uc_extruder_last_move[EXTRUDERS];
  164. #endif // DISABLE_INACTIVE_EXTRUDER
  165. #ifdef XY_FREQUENCY_LIMIT
  166. // Used for the frequency limit
  167. #define MAX_FREQ_TIME long(1000000.0/XY_FREQUENCY_LIMIT)
  168. // Old direction bits. Used for speed calculations
  169. static unsigned char old_direction_bits;
  170. // Segment times (in µs). Used for speed calculations
  171. static long axis_segment_time[2][3];
  172. #endif
  173. #if ENABLED(LIN_ADVANCE)
  174. static float position_float[NUM_AXIS];
  175. #endif
  176. #if ENABLED(ULTRA_LCD)
  177. volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
  178. #endif
  179. public:
  180. /**
  181. * Instance Methods
  182. */
  183. Planner();
  184. void init();
  185. /**
  186. * Static (class) Methods
  187. */
  188. static void reset_acceleration_rates();
  189. static void refresh_positioning();
  190. // Manage fans, paste pressure, etc.
  191. static void check_axes_activity();
  192. /**
  193. * Number of moves currently in the planner
  194. */
  195. static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
  196. static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); }
  197. #if PLANNER_LEVELING
  198. #define ARG_X float lx
  199. #define ARG_Y float ly
  200. #define ARG_Z float lz
  201. /**
  202. * Apply leveling to transform a cartesian position
  203. * as it will be given to the planner and steppers.
  204. */
  205. static void apply_leveling(float &lx, float &ly, float &lz);
  206. static void apply_leveling(float logical[XYZ]) { apply_leveling(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS]); }
  207. static void unapply_leveling(float logical[XYZ]);
  208. #else
  209. #define ARG_X const float &lx
  210. #define ARG_Y const float &ly
  211. #define ARG_Z const float &lz
  212. #endif
  213. /**
  214. * Planner::_buffer_line
  215. *
  216. * Add a new direct linear movement to the buffer.
  217. *
  218. * Leveling and kinematics should be applied ahead of this.
  219. *
  220. * a,b,c,e - target position in mm or degrees
  221. * fr_mm_s - (target) speed of the move (mm/s)
  222. * extruder - target extruder
  223. */
  224. static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
  225. static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
  226. /**
  227. * Add a new linear movement to the buffer.
  228. * The target is NOT translated to delta/scara
  229. *
  230. * Leveling will be applied to input on cartesians.
  231. * Kinematic machines should call buffer_line_kinematic (for leveled moves).
  232. * (Cartesians may also call buffer_line_kinematic.)
  233. *
  234. * lx,ly,lz,e - target position in mm or degrees
  235. * fr_mm_s - (target) speed of the move (mm/s)
  236. * extruder - target extruder
  237. */
  238. static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder) {
  239. #if PLANNER_LEVELING && IS_CARTESIAN
  240. apply_leveling(lx, ly, lz);
  241. #endif
  242. _buffer_line(lx, ly, lz, e, fr_mm_s, extruder);
  243. }
  244. /**
  245. * Add a new linear movement to the buffer.
  246. * The target is cartesian, it's translated to delta/scara if
  247. * needed.
  248. *
  249. * ltarget - x,y,z,e CARTESIAN target in mm
  250. * fr_mm_s - (target) speed of the move (mm/s)
  251. * extruder - target extruder
  252. */
  253. static FORCE_INLINE void buffer_line_kinematic(const float ltarget[XYZE], const float &fr_mm_s, const uint8_t extruder) {
  254. #if PLANNER_LEVELING
  255. float lpos[XYZ] = { ltarget[X_AXIS], ltarget[Y_AXIS], ltarget[Z_AXIS] };
  256. apply_leveling(lpos);
  257. #else
  258. const float * const lpos = ltarget;
  259. #endif
  260. #if IS_KINEMATIC
  261. inverse_kinematics(lpos);
  262. _buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], fr_mm_s, extruder);
  263. #else
  264. _buffer_line(lpos[X_AXIS], lpos[Y_AXIS], lpos[Z_AXIS], ltarget[E_AXIS], fr_mm_s, extruder);
  265. #endif
  266. }
  267. /**
  268. * Set the planner.position and individual stepper positions.
  269. * Used by G92, G28, G29, and other procedures.
  270. *
  271. * Multiplies by axis_steps_per_mm[] and does necessary conversion
  272. * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
  273. *
  274. * Clears previous speed values.
  275. */
  276. static FORCE_INLINE void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
  277. #if PLANNER_LEVELING && IS_CARTESIAN
  278. apply_leveling(lx, ly, lz);
  279. #endif
  280. _set_position_mm(lx, ly, lz, e);
  281. }
  282. static void set_position_mm_kinematic(const float position[NUM_AXIS]);
  283. static void set_position_mm(const AxisEnum axis, const float &v);
  284. static FORCE_INLINE void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
  285. static FORCE_INLINE void set_e_position_mm(const float &e) { set_position_mm(AxisEnum(E_AXIS), e); }
  286. /**
  287. * Sync from the stepper positions. (e.g., after an interrupted move)
  288. */
  289. static void sync_from_steppers();
  290. /**
  291. * Does the buffer have any blocks queued?
  292. */
  293. static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
  294. /**
  295. * "Discards" the block and "releases" the memory.
  296. * Called when the current block is no longer needed.
  297. */
  298. static void discard_current_block() {
  299. if (blocks_queued())
  300. block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
  301. }
  302. /**
  303. * The current block. NULL if the buffer is empty.
  304. * This also marks the block as busy.
  305. */
  306. static block_t* get_current_block() {
  307. if (blocks_queued()) {
  308. block_t* block = &block_buffer[block_buffer_tail];
  309. #if ENABLED(ULTRA_LCD)
  310. block_buffer_runtime_us -= block->segment_time; //We can't be sure how long an active block will take, so don't count it.
  311. #endif
  312. SBI(block->flag, BLOCK_BIT_BUSY);
  313. return block;
  314. }
  315. else {
  316. #if ENABLED(ULTRA_LCD)
  317. clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
  318. #endif
  319. return NULL;
  320. }
  321. }
  322. #if ENABLED(ULTRA_LCD)
  323. static uint16_t block_buffer_runtime() {
  324. CRITICAL_SECTION_START
  325. millis_t bbru = block_buffer_runtime_us;
  326. CRITICAL_SECTION_END
  327. // To translate µs to ms a division by 1000 would be required.
  328. // We introduce 2.4% error here by dividing by 1024.
  329. // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
  330. bbru >>= 10;
  331. // limit to about a minute.
  332. NOMORE(bbru, 0xFFFFul);
  333. return bbru;
  334. }
  335. static void clear_block_buffer_runtime(){
  336. CRITICAL_SECTION_START
  337. block_buffer_runtime_us = 0;
  338. CRITICAL_SECTION_END
  339. }
  340. #endif
  341. #if ENABLED(AUTOTEMP)
  342. static float autotemp_min, autotemp_max, autotemp_factor;
  343. static bool autotemp_enabled;
  344. static void getHighESpeed();
  345. static void autotemp_M104_M109();
  346. #endif
  347. private:
  348. /**
  349. * Get the index of the next / previous block in the ring buffer
  350. */
  351. static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  352. static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  353. /**
  354. * Calculate the distance (not time) it takes to accelerate
  355. * from initial_rate to target_rate using the given acceleration:
  356. */
  357. static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
  358. if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
  359. return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
  360. }
  361. /**
  362. * Return the point at which you must start braking (at the rate of -'acceleration') if
  363. * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
  364. * 'final_rate' after traveling 'distance'.
  365. *
  366. * This is used to compute the intersection point between acceleration and deceleration
  367. * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
  368. */
  369. static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
  370. if (accel == 0) return 0; // accel was 0, set intersection distance to 0
  371. return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
  372. }
  373. /**
  374. * Calculate the maximum allowable speed at this point, in order
  375. * to reach 'target_velocity' using 'acceleration' within a given
  376. * 'distance'.
  377. */
  378. static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
  379. return sqrt(sq(target_velocity) - 2 * accel * distance);
  380. }
  381. static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
  382. static void reverse_pass_kernel(block_t* const current, const block_t *next);
  383. static void forward_pass_kernel(const block_t *previous, block_t* const current);
  384. static void reverse_pass();
  385. static void forward_pass();
  386. static void recalculate_trapezoids();
  387. static void recalculate();
  388. };
  389. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  390. extern Planner planner;
  391. #endif // PLANNER_H