My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 241KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. /**
  70. * Look here for descriptions of G-codes:
  71. * - http://linuxcnc.org/handbook/gcode/g-code.html
  72. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  73. *
  74. * Help us document these G-codes online:
  75. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  76. * - http://reprap.org/wiki/G-code
  77. *
  78. * -----------------
  79. * Implemented Codes
  80. * -----------------
  81. *
  82. * "G" Codes
  83. *
  84. * G0 -> G1
  85. * G1 - Coordinated Movement X Y Z E
  86. * G2 - CW ARC
  87. * G3 - CCW ARC
  88. * G4 - Dwell S<seconds> or P<milliseconds>
  89. * G10 - retract filament according to settings of M207
  90. * G11 - retract recover filament according to settings of M208
  91. * G28 - Home one or more axes
  92. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  93. * G30 - Single Z probe, probes bed at current XY location.
  94. * G31 - Dock sled (Z_PROBE_SLED only)
  95. * G32 - Undock sled (Z_PROBE_SLED only)
  96. * G90 - Use Absolute Coordinates
  97. * G91 - Use Relative Coordinates
  98. * G92 - Set current position to coordinates given
  99. *
  100. * "M" Codes
  101. *
  102. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  103. * M1 - Same as M0
  104. * M17 - Enable/Power all stepper motors
  105. * M18 - Disable all stepper motors; same as M84
  106. * M20 - List SD card
  107. * M21 - Init SD card
  108. * M22 - Release SD card
  109. * M23 - Select SD file (M23 filename.g)
  110. * M24 - Start/resume SD print
  111. * M25 - Pause SD print
  112. * M26 - Set SD position in bytes (M26 S12345)
  113. * M27 - Report SD print status
  114. * M28 - Start SD write (M28 filename.g)
  115. * M29 - Stop SD write
  116. * M30 - Delete file from SD (M30 filename.g)
  117. * M31 - Output time since last M109 or SD card start to serial
  118. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  119. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  120. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  121. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  122. * M33 - Get the longname version of a path
  123. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  124. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  125. * M80 - Turn on Power Supply
  126. * M81 - Turn off Power Supply
  127. * M82 - Set E codes absolute (default)
  128. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  129. * M84 - Disable steppers until next move,
  130. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  131. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  132. * M92 - Set axis_steps_per_unit - same syntax as G92
  133. * M104 - Set extruder target temp
  134. * M105 - Read current temp
  135. * M106 - Fan on
  136. * M107 - Fan off
  137. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  138. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  139. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  140. * M110 - Set the current line number
  141. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  142. * M112 - Emergency stop
  143. * M114 - Output current position to serial port
  144. * M115 - Capabilities string
  145. * M117 - Display a message on the controller screen
  146. * M119 - Output Endstop status to serial port
  147. * M120 - Enable endstop detection
  148. * M121 - Disable endstop detection
  149. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  150. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  151. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  152. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  153. * M140 - Set bed target temp
  154. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  155. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  156. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  157. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  158. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  159. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  160. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  161. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  162. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  163. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  164. * M206 - Set additional homing offset
  165. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  166. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  167. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  168. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  169. * M220 - Set speed factor override percentage: S<factor in percent>
  170. * M221 - Set extrude factor override percentage: S<factor in percent>
  171. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  172. * M240 - Trigger a camera to take a photograph
  173. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  174. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  179. * M304 - Set bed PID parameters P I and D
  180. * M380 - Activate solenoid on active extruder
  181. * M381 - Disable all solenoids
  182. * M400 - Finish all moves
  183. * M401 - Lower Z probe if present
  184. * M402 - Raise Z probe if present
  185. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  186. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  187. * M406 - Turn off Filament Sensor extrusion control
  188. * M407 - Display measured filament diameter
  189. * M410 - Quickstop. Abort all the planned moves
  190. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  191. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  192. * M428 - Set the home_offset logically based on the current_position
  193. * M500 - Store parameters in EEPROM
  194. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  197. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  198. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  199. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  200. * M666 - Set delta endstop adjustment
  201. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  202. * M907 - Set digital trimpot motor current using axis codes.
  203. * M908 - Control digital trimpot directly.
  204. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  205. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  206. * M350 - Set microstepping mode.
  207. * M351 - Toggle MS1 MS2 pins directly.
  208. *
  209. * ************ SCARA Specific - This can change to suit future G-code regulations
  210. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  211. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  212. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  213. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  214. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  215. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  216. * ************* SCARA End ***************
  217. *
  218. * ************ Custom codes - This can change to suit future G-code regulations
  219. * M100 - Watch Free Memory (For Debugging Only)
  220. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  221. * M928 - Start SD logging (M928 filename.g) - ended by M29
  222. * M999 - Restart after being stopped by error
  223. *
  224. * "T" Codes
  225. *
  226. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  227. *
  228. */
  229. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  230. void gcode_M100();
  231. #endif
  232. #if ENABLED(SDSUPPORT)
  233. CardReader card;
  234. #endif
  235. bool Running = true;
  236. uint8_t marlin_debug_flags = DEBUG_NONE;
  237. static float feedrate = 1500.0, saved_feedrate;
  238. float current_position[NUM_AXIS] = { 0.0 };
  239. static float destination[NUM_AXIS] = { 0.0 };
  240. bool axis_known_position[3] = { false };
  241. bool axis_homed[3] = { false };
  242. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  243. static char* current_command, *current_command_args;
  244. static int cmd_queue_index_r = 0;
  245. static int cmd_queue_index_w = 0;
  246. static int commands_in_queue = 0;
  247. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  248. const float homing_feedrate[] = HOMING_FEEDRATE;
  249. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  250. int feedrate_multiplier = 100; //100->1 200->2
  251. int saved_feedrate_multiplier;
  252. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  253. bool volumetric_enabled = false;
  254. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  255. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  256. float home_offset[3] = { 0 };
  257. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  258. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  259. #if FAN_COUNT > 0
  260. int fanSpeeds[FAN_COUNT] = { 0 };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. bool cancel_heatup = false;
  264. const char errormagic[] PROGMEM = "Error:";
  265. const char echomagic[] PROGMEM = "echo:";
  266. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  267. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  268. static int serial_count = 0;
  269. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  270. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  271. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  272. // Inactivity shutdown
  273. millis_t previous_cmd_ms = 0;
  274. static millis_t max_inactive_time = 0;
  275. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  276. millis_t print_job_start_ms = 0; ///< Print job start time
  277. millis_t print_job_stop_ms = 0; ///< Print job stop time
  278. static uint8_t target_extruder;
  279. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  280. int xy_travel_speed = XY_TRAVEL_SPEED;
  281. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  282. #endif
  283. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  284. float z_endstop_adj = 0;
  285. #endif
  286. // Extruder offsets
  287. #if EXTRUDERS > 1
  288. #ifndef EXTRUDER_OFFSET_X
  289. #define EXTRUDER_OFFSET_X { 0 }
  290. #endif
  291. #ifndef EXTRUDER_OFFSET_Y
  292. #define EXTRUDER_OFFSET_Y { 0 }
  293. #endif
  294. float extruder_offset[][EXTRUDERS] = {
  295. EXTRUDER_OFFSET_X,
  296. EXTRUDER_OFFSET_Y
  297. #if ENABLED(DUAL_X_CARRIAGE)
  298. , { 0 } // supports offsets in XYZ plane
  299. #endif
  300. };
  301. #endif
  302. #if HAS_SERVO_ENDSTOPS
  303. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  304. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  305. #endif
  306. #if ENABLED(BARICUDA)
  307. int ValvePressure = 0;
  308. int EtoPPressure = 0;
  309. #endif
  310. #if ENABLED(FWRETRACT)
  311. bool autoretract_enabled = false;
  312. bool retracted[EXTRUDERS] = { false };
  313. bool retracted_swap[EXTRUDERS] = { false };
  314. float retract_length = RETRACT_LENGTH;
  315. float retract_length_swap = RETRACT_LENGTH_SWAP;
  316. float retract_feedrate = RETRACT_FEEDRATE;
  317. float retract_zlift = RETRACT_ZLIFT;
  318. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  319. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  320. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  321. #endif // FWRETRACT
  322. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  323. bool powersupply =
  324. #if ENABLED(PS_DEFAULT_OFF)
  325. false
  326. #else
  327. true
  328. #endif
  329. ;
  330. #endif
  331. #if ENABLED(DELTA)
  332. #define TOWER_1 X_AXIS
  333. #define TOWER_2 Y_AXIS
  334. #define TOWER_3 Z_AXIS
  335. float delta[3] = { 0 };
  336. #define SIN_60 0.8660254037844386
  337. #define COS_60 0.5
  338. float endstop_adj[3] = { 0 };
  339. // these are the default values, can be overriden with M665
  340. float delta_radius = DELTA_RADIUS;
  341. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  342. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  343. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  344. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  345. float delta_tower3_x = 0; // back middle tower
  346. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  347. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  348. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  349. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  350. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  351. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  352. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  353. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  354. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  355. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  357. int delta_grid_spacing[2] = { 0, 0 };
  358. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  359. #endif
  360. #else
  361. static bool home_all_axis = true;
  362. #endif
  363. #if ENABLED(SCARA)
  364. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  365. static float delta[3] = { 0 };
  366. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  367. #endif
  368. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  369. //Variables for Filament Sensor input
  370. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  371. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  372. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  373. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  374. int delay_index1 = 0; //index into ring buffer
  375. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  376. float delay_dist = 0; //delay distance counter
  377. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  378. #endif
  379. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  380. static bool filrunoutEnqueued = false;
  381. #endif
  382. static bool send_ok[BUFSIZE];
  383. #if HAS_SERVOS
  384. Servo servo[NUM_SERVOS];
  385. #endif
  386. #ifdef CHDK
  387. unsigned long chdkHigh = 0;
  388. boolean chdkActive = false;
  389. #endif
  390. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  391. int lpq_len = 20;
  392. #endif
  393. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  394. // States for managing Marlin and host communication
  395. // Marlin sends messages if blocked or busy
  396. enum MarlinBusyState {
  397. NOT_BUSY, // Not in a handler
  398. IN_HANDLER, // Processing a GCode
  399. IN_PROCESS, // Known to be blocking command input (as in G29)
  400. PAUSED_FOR_USER, // Blocking pending any input
  401. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  402. };
  403. static MarlinBusyState busy_state = NOT_BUSY;
  404. static millis_t next_busy_signal_ms = -1;
  405. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  406. #else
  407. #define host_keepalive() ;
  408. #define KEEPALIVE_STATE(n) ;
  409. #endif // HOST_KEEPALIVE_FEATURE
  410. /**
  411. * ***************************************************************************
  412. * ******************************** FUNCTIONS ********************************
  413. * ***************************************************************************
  414. */
  415. void get_available_commands();
  416. void process_next_command();
  417. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  418. bool setTargetedHotend(int code);
  419. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  420. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  421. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  422. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  423. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  424. void gcode_M114();
  425. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  426. float extrude_min_temp = EXTRUDE_MINTEMP;
  427. #endif
  428. #if ENABLED(HAS_Z_MIN_PROBE)
  429. extern volatile bool z_probe_is_active;
  430. #endif
  431. #if ENABLED(SDSUPPORT)
  432. #include "SdFatUtil.h"
  433. int freeMemory() { return SdFatUtil::FreeRam(); }
  434. #else
  435. extern "C" {
  436. extern unsigned int __bss_end;
  437. extern unsigned int __heap_start;
  438. extern void* __brkval;
  439. int freeMemory() {
  440. int free_memory;
  441. if ((int)__brkval == 0)
  442. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  443. else
  444. free_memory = ((int)&free_memory) - ((int)__brkval);
  445. return free_memory;
  446. }
  447. }
  448. #endif //!SDSUPPORT
  449. /**
  450. * Inject the next "immediate" command, when possible.
  451. * Return true if any immediate commands remain to inject.
  452. */
  453. static bool drain_queued_commands_P() {
  454. if (queued_commands_P != NULL) {
  455. size_t i = 0;
  456. char c, cmd[30];
  457. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  458. cmd[sizeof(cmd) - 1] = '\0';
  459. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  460. cmd[i] = '\0';
  461. if (enqueue_and_echo_command(cmd)) { // success?
  462. if (c) // newline char?
  463. queued_commands_P += i + 1; // advance to the next command
  464. else
  465. queued_commands_P = NULL; // nul char? no more commands
  466. }
  467. }
  468. return (queued_commands_P != NULL); // return whether any more remain
  469. }
  470. /**
  471. * Record one or many commands to run from program memory.
  472. * Aborts the current queue, if any.
  473. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  474. */
  475. void enqueue_and_echo_commands_P(const char* pgcode) {
  476. queued_commands_P = pgcode;
  477. drain_queued_commands_P(); // first command executed asap (when possible)
  478. }
  479. /**
  480. * Once a new command is in the ring buffer, call this to commit it
  481. */
  482. inline void _commit_command(bool say_ok) {
  483. send_ok[cmd_queue_index_w] = say_ok;
  484. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  485. commands_in_queue++;
  486. }
  487. /**
  488. * Copy a command directly into the main command buffer, from RAM.
  489. * Returns true if successfully adds the command
  490. */
  491. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  492. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  493. strcpy(command_queue[cmd_queue_index_w], cmd);
  494. _commit_command(say_ok);
  495. return true;
  496. }
  497. void enqueue_and_echo_command_now(const char* cmd) {
  498. while (!enqueue_and_echo_command(cmd)) idle();
  499. }
  500. /**
  501. * Enqueue with Serial Echo
  502. */
  503. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  504. if (_enqueuecommand(cmd, say_ok)) {
  505. SERIAL_ECHO_START;
  506. SERIAL_ECHOPGM(MSG_Enqueueing);
  507. SERIAL_ECHO(cmd);
  508. SERIAL_ECHOLNPGM("\"");
  509. return true;
  510. }
  511. return false;
  512. }
  513. void setup_killpin() {
  514. #if HAS_KILL
  515. SET_INPUT(KILL_PIN);
  516. WRITE(KILL_PIN, HIGH);
  517. #endif
  518. }
  519. void setup_filrunoutpin() {
  520. #if HAS_FILRUNOUT
  521. pinMode(FILRUNOUT_PIN, INPUT);
  522. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  523. WRITE(FILRUNOUT_PIN, HIGH);
  524. #endif
  525. #endif
  526. }
  527. // Set home pin
  528. void setup_homepin(void) {
  529. #if HAS_HOME
  530. SET_INPUT(HOME_PIN);
  531. WRITE(HOME_PIN, HIGH);
  532. #endif
  533. }
  534. void setup_photpin() {
  535. #if HAS_PHOTOGRAPH
  536. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  537. #endif
  538. }
  539. void setup_powerhold() {
  540. #if HAS_SUICIDE
  541. OUT_WRITE(SUICIDE_PIN, HIGH);
  542. #endif
  543. #if HAS_POWER_SWITCH
  544. #if ENABLED(PS_DEFAULT_OFF)
  545. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  546. #else
  547. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  548. #endif
  549. #endif
  550. }
  551. void suicide() {
  552. #if HAS_SUICIDE
  553. OUT_WRITE(SUICIDE_PIN, LOW);
  554. #endif
  555. }
  556. void servo_init() {
  557. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  558. servo[0].attach(SERVO0_PIN);
  559. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  560. #endif
  561. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  562. servo[1].attach(SERVO1_PIN);
  563. servo[1].detach();
  564. #endif
  565. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  566. servo[2].attach(SERVO2_PIN);
  567. servo[2].detach();
  568. #endif
  569. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  570. servo[3].attach(SERVO3_PIN);
  571. servo[3].detach();
  572. #endif
  573. #if HAS_SERVO_ENDSTOPS
  574. z_probe_is_active = false;
  575. /**
  576. * Set position of all defined Servo Endstops
  577. *
  578. * ** UNSAFE! - NEEDS UPDATE! **
  579. *
  580. * The servo might be deployed and positioned too low to stow
  581. * when starting up the machine or rebooting the board.
  582. * There's no way to know where the nozzle is positioned until
  583. * homing has been done - no homing with z-probe without init!
  584. *
  585. */
  586. for (int i = 0; i < 3; i++)
  587. if (servo_endstop_id[i] >= 0)
  588. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  589. #endif // HAS_SERVO_ENDSTOPS
  590. }
  591. /**
  592. * Stepper Reset (RigidBoard, et.al.)
  593. */
  594. #if HAS_STEPPER_RESET
  595. void disableStepperDrivers() {
  596. pinMode(STEPPER_RESET_PIN, OUTPUT);
  597. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  598. }
  599. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  600. #endif
  601. /**
  602. * Marlin entry-point: Set up before the program loop
  603. * - Set up the kill pin, filament runout, power hold
  604. * - Start the serial port
  605. * - Print startup messages and diagnostics
  606. * - Get EEPROM or default settings
  607. * - Initialize managers for:
  608. * • temperature
  609. * • planner
  610. * • watchdog
  611. * • stepper
  612. * • photo pin
  613. * • servos
  614. * • LCD controller
  615. * • Digipot I2C
  616. * • Z probe sled
  617. * • status LEDs
  618. */
  619. void setup() {
  620. #ifdef DISABLE_JTAG
  621. // Disable JTAG on AT90USB chips to free up pins for IO
  622. MCUCR = 0x80;
  623. MCUCR = 0x80;
  624. #endif
  625. setup_killpin();
  626. setup_filrunoutpin();
  627. setup_powerhold();
  628. #if HAS_STEPPER_RESET
  629. disableStepperDrivers();
  630. #endif
  631. MYSERIAL.begin(BAUDRATE);
  632. SERIAL_PROTOCOLLNPGM("start");
  633. SERIAL_ECHO_START;
  634. // Check startup - does nothing if bootloader sets MCUSR to 0
  635. byte mcu = MCUSR;
  636. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  637. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  638. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  639. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  640. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  641. MCUSR = 0;
  642. SERIAL_ECHOPGM(MSG_MARLIN);
  643. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  644. #ifdef STRING_DISTRIBUTION_DATE
  645. #ifdef STRING_CONFIG_H_AUTHOR
  646. SERIAL_ECHO_START;
  647. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  648. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  649. SERIAL_ECHOPGM(MSG_AUTHOR);
  650. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  651. SERIAL_ECHOPGM("Compiled: ");
  652. SERIAL_ECHOLNPGM(__DATE__);
  653. #endif // STRING_CONFIG_H_AUTHOR
  654. #endif // STRING_DISTRIBUTION_DATE
  655. SERIAL_ECHO_START;
  656. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  657. SERIAL_ECHO(freeMemory());
  658. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  659. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  660. // Send "ok" after commands by default
  661. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  662. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  663. Config_RetrieveSettings();
  664. lcd_init();
  665. tp_init(); // Initialize temperature loop
  666. plan_init(); // Initialize planner;
  667. #if ENABLED(USE_WATCHDOG)
  668. watchdog_init();
  669. #endif
  670. st_init(); // Initialize stepper, this enables interrupts!
  671. setup_photpin();
  672. servo_init();
  673. #if HAS_CONTROLLERFAN
  674. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  675. #endif
  676. #if HAS_STEPPER_RESET
  677. enableStepperDrivers();
  678. #endif
  679. #if ENABLED(DIGIPOT_I2C)
  680. digipot_i2c_init();
  681. #endif
  682. #if ENABLED(Z_PROBE_SLED)
  683. pinMode(SLED_PIN, OUTPUT);
  684. digitalWrite(SLED_PIN, LOW); // turn it off
  685. #endif // Z_PROBE_SLED
  686. setup_homepin();
  687. #ifdef STAT_LED_RED
  688. pinMode(STAT_LED_RED, OUTPUT);
  689. digitalWrite(STAT_LED_RED, LOW); // turn it off
  690. #endif
  691. #ifdef STAT_LED_BLUE
  692. pinMode(STAT_LED_BLUE, OUTPUT);
  693. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  694. #endif
  695. }
  696. /**
  697. * The main Marlin program loop
  698. *
  699. * - Save or log commands to SD
  700. * - Process available commands (if not saving)
  701. * - Call heater manager
  702. * - Call inactivity manager
  703. * - Call endstop manager
  704. * - Call LCD update
  705. */
  706. void loop() {
  707. if (commands_in_queue < BUFSIZE) get_available_commands();
  708. #if ENABLED(SDSUPPORT)
  709. card.checkautostart(false);
  710. #endif
  711. if (commands_in_queue) {
  712. #if ENABLED(SDSUPPORT)
  713. if (card.saving) {
  714. char* command = command_queue[cmd_queue_index_r];
  715. if (strstr_P(command, PSTR("M29"))) {
  716. // M29 closes the file
  717. card.closefile();
  718. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  719. ok_to_send();
  720. }
  721. else {
  722. // Write the string from the read buffer to SD
  723. card.write_command(command);
  724. if (card.logging)
  725. process_next_command(); // The card is saving because it's logging
  726. else
  727. ok_to_send();
  728. }
  729. }
  730. else
  731. process_next_command();
  732. #else
  733. process_next_command();
  734. #endif // SDSUPPORT
  735. commands_in_queue--;
  736. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  737. }
  738. checkHitEndstops();
  739. idle();
  740. }
  741. void gcode_line_error(const char* err, bool doFlush = true) {
  742. SERIAL_ERROR_START;
  743. serialprintPGM(err);
  744. SERIAL_ERRORLN(gcode_LastN);
  745. //Serial.println(gcode_N);
  746. if (doFlush) FlushSerialRequestResend();
  747. serial_count = 0;
  748. }
  749. inline void get_serial_commands() {
  750. static char serial_line_buffer[MAX_CMD_SIZE];
  751. static boolean serial_comment_mode = false;
  752. // If the command buffer is empty for too long,
  753. // send "wait" to indicate Marlin is still waiting.
  754. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  755. static millis_t last_command_time = 0;
  756. millis_t ms = millis();
  757. if (commands_in_queue == 0 && !MYSERIAL.available() && ms > last_command_time + NO_TIMEOUTS) {
  758. SERIAL_ECHOLNPGM(MSG_WAIT);
  759. last_command_time = ms;
  760. }
  761. #endif
  762. /**
  763. * Loop while serial characters are incoming and the queue is not full
  764. */
  765. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  766. char serial_char = MYSERIAL.read();
  767. /**
  768. * If the character ends the line
  769. */
  770. if (serial_char == '\n' || serial_char == '\r') {
  771. serial_comment_mode = false; // end of line == end of comment
  772. if (!serial_count) continue; // skip empty lines
  773. serial_line_buffer[serial_count] = 0; // terminate string
  774. serial_count = 0; //reset buffer
  775. char* command = serial_line_buffer;
  776. while (*command == ' ') command++; // skip any leading spaces
  777. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  778. char* apos = strchr(command, '*');
  779. if (npos) {
  780. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  781. if (M110) {
  782. char* n2pos = strchr(command + 4, 'N');
  783. if (n2pos) npos = n2pos;
  784. }
  785. gcode_N = strtol(npos + 1, NULL, 10);
  786. if (gcode_N != gcode_LastN + 1 && !M110) {
  787. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  788. return;
  789. }
  790. if (apos) {
  791. byte checksum = 0, count = 0;
  792. while (command[count] != '*') checksum ^= command[count++];
  793. if (strtol(apos + 1, NULL, 10) != checksum) {
  794. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  795. return;
  796. }
  797. // if no errors, continue parsing
  798. }
  799. else {
  800. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  801. return;
  802. }
  803. gcode_LastN = gcode_N;
  804. // if no errors, continue parsing
  805. }
  806. else if (apos) { // No '*' without 'N'
  807. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  808. return;
  809. }
  810. // Movement commands alert when stopped
  811. if (IsStopped()) {
  812. char* gpos = strchr(command, 'G');
  813. if (gpos) {
  814. int codenum = strtol(gpos + 1, NULL, 10);
  815. switch (codenum) {
  816. case 0:
  817. case 1:
  818. case 2:
  819. case 3:
  820. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  821. LCD_MESSAGEPGM(MSG_STOPPED);
  822. break;
  823. }
  824. }
  825. }
  826. // If command was e-stop process now
  827. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  828. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  829. last_command_time = ms;
  830. #endif
  831. // Add the command to the queue
  832. _enqueuecommand(serial_line_buffer, true);
  833. }
  834. else if (serial_count >= MAX_CMD_SIZE - 1) {
  835. // Keep fetching, but ignore normal characters beyond the max length
  836. // The command will be injected when EOL is reached
  837. }
  838. else if (serial_char == '\\') { // Handle escapes
  839. if (MYSERIAL.available() > 0) {
  840. // if we have one more character, copy it over
  841. serial_char = MYSERIAL.read();
  842. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  843. }
  844. // otherwise do nothing
  845. }
  846. else { // it's not a newline, carriage return or escape char
  847. if (serial_char == ';') serial_comment_mode = true;
  848. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  849. }
  850. } // queue has space, serial has data
  851. }
  852. #if ENABLED(SDSUPPORT)
  853. inline void get_sdcard_commands() {
  854. static bool stop_buffering = false,
  855. sd_comment_mode = false;
  856. if (!card.sdprinting) return;
  857. /**
  858. * '#' stops reading from SD to the buffer prematurely, so procedural
  859. * macro calls are possible. If it occurs, stop_buffering is triggered
  860. * and the buffer is run dry; this character _can_ occur in serial com
  861. * due to checksums, however, no checksums are used in SD printing.
  862. */
  863. if (commands_in_queue == 0) stop_buffering = false;
  864. uint16_t sd_count = 0;
  865. bool card_eof = card.eof();
  866. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  867. int16_t n = card.get();
  868. char sd_char = (char)n;
  869. card_eof = card.eof();
  870. if (card_eof || n == -1
  871. || sd_char == '\n' || sd_char == '\r'
  872. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  873. ) {
  874. if (card_eof) {
  875. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  876. print_job_stop(true);
  877. char time[30];
  878. millis_t t = print_job_timer();
  879. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  880. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  881. SERIAL_ECHO_START;
  882. SERIAL_ECHOLN(time);
  883. lcd_setstatus(time, true);
  884. card.printingHasFinished();
  885. card.checkautostart(true);
  886. }
  887. if (sd_char == '#') stop_buffering = true;
  888. sd_comment_mode = false; //for new command
  889. if (!sd_count) continue; //skip empty lines
  890. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  891. sd_count = 0; //clear buffer
  892. _commit_command(false);
  893. }
  894. else if (sd_count >= MAX_CMD_SIZE - 1) {
  895. /**
  896. * Keep fetching, but ignore normal characters beyond the max length
  897. * The command will be injected when EOL is reached
  898. */
  899. }
  900. else {
  901. if (sd_char == ';') sd_comment_mode = true;
  902. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  903. }
  904. }
  905. }
  906. #endif // SDSUPPORT
  907. /**
  908. * Add to the circular command queue the next command from:
  909. * - The command-injection queue (queued_commands_P)
  910. * - The active serial input (usually USB)
  911. * - The SD card file being actively printed
  912. */
  913. void get_available_commands() {
  914. // if any immediate commands remain, don't get other commands yet
  915. if (drain_queued_commands_P()) return;
  916. get_serial_commands();
  917. #if ENABLED(SDSUPPORT)
  918. get_sdcard_commands();
  919. #endif
  920. }
  921. bool code_has_value() {
  922. int i = 1;
  923. char c = seen_pointer[i];
  924. while (c == ' ') c = seen_pointer[++i];
  925. if (c == '-' || c == '+') c = seen_pointer[++i];
  926. if (c == '.') c = seen_pointer[++i];
  927. return NUMERIC(c);
  928. }
  929. float code_value() {
  930. float ret;
  931. char* e = strchr(seen_pointer, 'E');
  932. if (e) {
  933. *e = 0;
  934. ret = strtod(seen_pointer + 1, NULL);
  935. *e = 'E';
  936. }
  937. else
  938. ret = strtod(seen_pointer + 1, NULL);
  939. return ret;
  940. }
  941. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  942. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  943. bool code_seen(char code) {
  944. seen_pointer = strchr(current_command_args, code);
  945. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  946. }
  947. #define DEFINE_PGM_READ_ANY(type, reader) \
  948. static inline type pgm_read_any(const type *p) \
  949. { return pgm_read_##reader##_near(p); }
  950. DEFINE_PGM_READ_ANY(float, float);
  951. DEFINE_PGM_READ_ANY(signed char, byte);
  952. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  953. static const PROGMEM type array##_P[3] = \
  954. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  955. static inline type array(int axis) \
  956. { return pgm_read_any(&array##_P[axis]); }
  957. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  958. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  959. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  960. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  961. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  962. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  963. #if ENABLED(DUAL_X_CARRIAGE)
  964. #define DXC_FULL_CONTROL_MODE 0
  965. #define DXC_AUTO_PARK_MODE 1
  966. #define DXC_DUPLICATION_MODE 2
  967. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  968. static float x_home_pos(int extruder) {
  969. if (extruder == 0)
  970. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  971. else
  972. /**
  973. * In dual carriage mode the extruder offset provides an override of the
  974. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  975. * This allow soft recalibration of the second extruder offset position
  976. * without firmware reflash (through the M218 command).
  977. */
  978. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  979. }
  980. static int x_home_dir(int extruder) {
  981. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  982. }
  983. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  984. static bool active_extruder_parked = false; // used in mode 1 & 2
  985. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  986. static millis_t delayed_move_time = 0; // used in mode 1
  987. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  988. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  989. bool extruder_duplication_enabled = false; // used in mode 2
  990. #endif //DUAL_X_CARRIAGE
  991. #if ENABLED(DEBUG_LEVELING_FEATURE)
  992. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  993. SERIAL_ECHO(prefix);
  994. SERIAL_ECHOPAIR(": (", x);
  995. SERIAL_ECHOPAIR(", ", y);
  996. SERIAL_ECHOPAIR(", ", z);
  997. SERIAL_ECHOLNPGM(")");
  998. }
  999. void print_xyz(const char* prefix, const float xyz[]) {
  1000. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  1001. }
  1002. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  1003. #endif
  1004. static void set_axis_is_at_home(AxisEnum axis) {
  1005. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1006. if (DEBUGGING(LEVELING)) {
  1007. SERIAL_ECHOPAIR("set_axis_is_at_home(", (unsigned long)axis);
  1008. SERIAL_ECHOLNPGM(") >>>");
  1009. }
  1010. #endif
  1011. #if ENABLED(DUAL_X_CARRIAGE)
  1012. if (axis == X_AXIS) {
  1013. if (active_extruder != 0) {
  1014. current_position[X_AXIS] = x_home_pos(active_extruder);
  1015. min_pos[X_AXIS] = X2_MIN_POS;
  1016. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1017. return;
  1018. }
  1019. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1020. float xoff = home_offset[X_AXIS];
  1021. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1022. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1023. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1024. return;
  1025. }
  1026. }
  1027. #endif
  1028. #if ENABLED(SCARA)
  1029. if (axis == X_AXIS || axis == Y_AXIS) {
  1030. float homeposition[3];
  1031. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1032. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1033. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1034. /**
  1035. * Works out real Homeposition angles using inverse kinematics,
  1036. * and calculates homing offset using forward kinematics
  1037. */
  1038. calculate_delta(homeposition);
  1039. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1040. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1041. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1042. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1043. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1044. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1045. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1046. calculate_SCARA_forward_Transform(delta);
  1047. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1048. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1049. current_position[axis] = delta[axis];
  1050. /**
  1051. * SCARA home positions are based on configuration since the actual
  1052. * limits are determined by the inverse kinematic transform.
  1053. */
  1054. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1055. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1056. }
  1057. else
  1058. #endif
  1059. {
  1060. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1061. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1062. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1063. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1064. if (axis == Z_AXIS) {
  1065. current_position[Z_AXIS] -= zprobe_zoffset;
  1066. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1067. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1068. #endif
  1069. }
  1070. #endif
  1071. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1072. if (DEBUGGING(LEVELING)) {
  1073. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1074. DEBUG_POS("", current_position);
  1075. }
  1076. #endif
  1077. }
  1078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1079. if (DEBUGGING(LEVELING)) {
  1080. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", (unsigned long)axis);
  1081. SERIAL_ECHOLNPGM(")");
  1082. }
  1083. #endif
  1084. }
  1085. /**
  1086. * Some planner shorthand inline functions
  1087. */
  1088. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1089. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1090. int hbd = homing_bump_divisor[axis];
  1091. if (hbd < 1) {
  1092. hbd = 10;
  1093. SERIAL_ECHO_START;
  1094. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1095. }
  1096. feedrate = homing_feedrate[axis] / hbd;
  1097. }
  1098. inline void line_to_current_position() {
  1099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1100. }
  1101. inline void line_to_z(float zPosition) {
  1102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1103. }
  1104. inline void line_to_destination(float mm_m) {
  1105. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1106. }
  1107. inline void line_to_destination() {
  1108. line_to_destination(feedrate);
  1109. }
  1110. inline void sync_plan_position() {
  1111. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1112. }
  1113. #if ENABLED(DELTA) || ENABLED(SCARA)
  1114. inline void sync_plan_position_delta() {
  1115. calculate_delta(current_position);
  1116. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1117. }
  1118. #endif
  1119. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1120. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1121. static void setup_for_endstop_move() {
  1122. saved_feedrate = feedrate;
  1123. saved_feedrate_multiplier = feedrate_multiplier;
  1124. feedrate_multiplier = 100;
  1125. refresh_cmd_timeout();
  1126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1127. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1128. #endif
  1129. enable_endstops(true);
  1130. }
  1131. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1132. #if ENABLED(DELTA)
  1133. /**
  1134. * Calculate delta, start a line, and set current_position to destination
  1135. */
  1136. void prepare_move_raw() {
  1137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1138. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1139. #endif
  1140. refresh_cmd_timeout();
  1141. calculate_delta(destination);
  1142. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1143. set_current_to_destination();
  1144. }
  1145. #endif
  1146. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1147. #if DISABLED(DELTA)
  1148. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1149. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1150. planeNormal.debug("planeNormal");
  1151. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1152. //bedLevel.debug("bedLevel");
  1153. //plan_bed_level_matrix.debug("bed level before");
  1154. //vector_3 uncorrected_position = plan_get_position_mm();
  1155. //uncorrected_position.debug("position before");
  1156. vector_3 corrected_position = plan_get_position();
  1157. //corrected_position.debug("position after");
  1158. current_position[X_AXIS] = corrected_position.x;
  1159. current_position[Y_AXIS] = corrected_position.y;
  1160. current_position[Z_AXIS] = corrected_position.z;
  1161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1162. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_lsq", current_position);
  1163. #endif
  1164. sync_plan_position();
  1165. }
  1166. #endif // !DELTA
  1167. #else // !AUTO_BED_LEVELING_GRID
  1168. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1169. plan_bed_level_matrix.set_to_identity();
  1170. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1171. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1172. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1173. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1174. if (planeNormal.z < 0) {
  1175. planeNormal.x = -planeNormal.x;
  1176. planeNormal.y = -planeNormal.y;
  1177. planeNormal.z = -planeNormal.z;
  1178. }
  1179. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1180. vector_3 corrected_position = plan_get_position();
  1181. current_position[X_AXIS] = corrected_position.x;
  1182. current_position[Y_AXIS] = corrected_position.y;
  1183. current_position[Z_AXIS] = corrected_position.z;
  1184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1185. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position);
  1186. #endif
  1187. sync_plan_position();
  1188. }
  1189. #endif // !AUTO_BED_LEVELING_GRID
  1190. static void run_z_probe() {
  1191. /**
  1192. * To prevent stepper_inactive_time from running out and
  1193. * EXTRUDER_RUNOUT_PREVENT from extruding
  1194. */
  1195. refresh_cmd_timeout();
  1196. #if ENABLED(DELTA)
  1197. float start_z = current_position[Z_AXIS];
  1198. long start_steps = st_get_position(Z_AXIS);
  1199. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1200. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1201. #endif
  1202. // move down slowly until you find the bed
  1203. feedrate = homing_feedrate[Z_AXIS] / 4;
  1204. destination[Z_AXIS] = -10;
  1205. prepare_move_raw(); // this will also set_current_to_destination
  1206. st_synchronize();
  1207. endstops_hit_on_purpose(); // clear endstop hit flags
  1208. /**
  1209. * We have to let the planner know where we are right now as it
  1210. * is not where we said to go.
  1211. */
  1212. long stop_steps = st_get_position(Z_AXIS);
  1213. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1214. current_position[Z_AXIS] = mm;
  1215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1216. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1217. #endif
  1218. sync_plan_position_delta();
  1219. #else // !DELTA
  1220. plan_bed_level_matrix.set_to_identity();
  1221. feedrate = homing_feedrate[Z_AXIS];
  1222. // Move down until the Z probe (or endstop?) is triggered
  1223. float zPosition = -(Z_MAX_LENGTH + 10);
  1224. line_to_z(zPosition);
  1225. st_synchronize();
  1226. // Tell the planner where we ended up - Get this from the stepper handler
  1227. zPosition = st_get_axis_position_mm(Z_AXIS);
  1228. plan_set_position(
  1229. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1230. current_position[E_AXIS]
  1231. );
  1232. // move up the retract distance
  1233. zPosition += home_bump_mm(Z_AXIS);
  1234. line_to_z(zPosition);
  1235. st_synchronize();
  1236. endstops_hit_on_purpose(); // clear endstop hit flags
  1237. // move back down slowly to find bed
  1238. set_homing_bump_feedrate(Z_AXIS);
  1239. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1240. line_to_z(zPosition);
  1241. st_synchronize();
  1242. endstops_hit_on_purpose(); // clear endstop hit flags
  1243. // Get the current stepper position after bumping an endstop
  1244. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1245. sync_plan_position();
  1246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1247. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1248. #endif
  1249. #endif // !DELTA
  1250. }
  1251. /**
  1252. * Plan a move to (X, Y, Z) and set the current_position
  1253. * The final current_position may not be the one that was requested
  1254. */
  1255. static void do_blocking_move_to(float x, float y, float z) {
  1256. float oldFeedRate = feedrate;
  1257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1258. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1259. #endif
  1260. #if ENABLED(DELTA)
  1261. feedrate = XY_TRAVEL_SPEED;
  1262. destination[X_AXIS] = x;
  1263. destination[Y_AXIS] = y;
  1264. destination[Z_AXIS] = z;
  1265. prepare_move_raw(); // this will also set_current_to_destination
  1266. st_synchronize();
  1267. #else
  1268. feedrate = homing_feedrate[Z_AXIS];
  1269. current_position[Z_AXIS] = z;
  1270. line_to_current_position();
  1271. st_synchronize();
  1272. feedrate = xy_travel_speed;
  1273. current_position[X_AXIS] = x;
  1274. current_position[Y_AXIS] = y;
  1275. line_to_current_position();
  1276. st_synchronize();
  1277. #endif
  1278. feedrate = oldFeedRate;
  1279. }
  1280. inline void do_blocking_move_to_xy(float x, float y) {
  1281. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1282. }
  1283. inline void do_blocking_move_to_x(float x) {
  1284. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1285. }
  1286. inline void do_blocking_move_to_z(float z) {
  1287. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1288. }
  1289. inline void raise_z_after_probing() {
  1290. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1291. }
  1292. static void clean_up_after_endstop_move() {
  1293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1294. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1295. #endif
  1296. endstops_not_homing();
  1297. feedrate = saved_feedrate;
  1298. feedrate_multiplier = saved_feedrate_multiplier;
  1299. refresh_cmd_timeout();
  1300. }
  1301. #if ENABLED(HAS_Z_MIN_PROBE)
  1302. static void deploy_z_probe() {
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1305. #endif
  1306. if (z_probe_is_active) return;
  1307. #if HAS_SERVO_ENDSTOPS
  1308. // Engage Z Servo endstop if enabled
  1309. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1310. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1311. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1312. // If endstop is already false, the Z probe is deployed
  1313. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1314. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1315. if (z_probe_endstop)
  1316. #else
  1317. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1318. if (z_min_endstop)
  1319. #endif
  1320. {
  1321. // Move to the start position to initiate deployment
  1322. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1323. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1324. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1325. prepare_move_raw(); // this will also set_current_to_destination
  1326. // Move to engage deployment
  1327. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1328. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1329. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1330. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1331. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1332. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1333. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1334. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1335. prepare_move_raw();
  1336. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1337. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1338. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1339. // Move to trigger deployment
  1340. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1341. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1342. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1343. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1344. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1345. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1346. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1347. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1348. prepare_move_raw();
  1349. #endif
  1350. }
  1351. // Partially Home X,Y for safety
  1352. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1353. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1354. prepare_move_raw(); // this will also set_current_to_destination
  1355. st_synchronize();
  1356. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1357. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1358. if (z_probe_endstop)
  1359. #else
  1360. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1361. if (z_min_endstop)
  1362. #endif
  1363. {
  1364. if (IsRunning()) {
  1365. SERIAL_ERROR_START;
  1366. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1367. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1368. }
  1369. Stop();
  1370. }
  1371. #endif // Z_PROBE_ALLEN_KEY
  1372. #if ENABLED(FIX_MOUNTED_PROBE)
  1373. // Noting to be done. Just set z_probe_is_active
  1374. #endif
  1375. z_probe_is_active = true;
  1376. }
  1377. static void stow_z_probe(bool doRaise = true) {
  1378. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1379. UNUSED(doRaise);
  1380. #endif
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1383. #endif
  1384. if (!z_probe_is_active) return;
  1385. #if HAS_SERVO_ENDSTOPS
  1386. // Retract Z Servo endstop if enabled
  1387. if (servo_endstop_id[Z_AXIS] >= 0) {
  1388. #if Z_RAISE_AFTER_PROBING > 0
  1389. if (doRaise) {
  1390. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1391. if (DEBUGGING(LEVELING)) {
  1392. SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
  1393. SERIAL_EOL;
  1394. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1395. SERIAL_EOL;
  1396. }
  1397. #endif
  1398. raise_z_after_probing(); // this also updates current_position
  1399. st_synchronize();
  1400. }
  1401. #endif
  1402. // Change the Z servo angle
  1403. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1404. }
  1405. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1406. // Move up for safety
  1407. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1408. #if Z_RAISE_AFTER_PROBING > 0
  1409. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1410. prepare_move_raw(); // this will also set_current_to_destination
  1411. #endif
  1412. // Move to the start position to initiate retraction
  1413. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1414. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1415. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1416. prepare_move_raw();
  1417. // Move the nozzle down to push the Z probe into retracted position
  1418. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1419. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1420. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1421. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1422. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1423. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1424. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1425. prepare_move_raw();
  1426. // Move up for safety
  1427. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1428. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1429. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1430. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1431. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1432. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1433. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1434. prepare_move_raw();
  1435. // Home XY for safety
  1436. feedrate = homing_feedrate[X_AXIS] / 2;
  1437. destination[X_AXIS] = 0;
  1438. destination[Y_AXIS] = 0;
  1439. prepare_move_raw(); // this will also set_current_to_destination
  1440. st_synchronize();
  1441. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1442. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1443. if (!z_probe_endstop)
  1444. #else
  1445. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1446. if (!z_min_endstop)
  1447. #endif
  1448. {
  1449. if (IsRunning()) {
  1450. SERIAL_ERROR_START;
  1451. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1452. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1453. }
  1454. Stop();
  1455. }
  1456. #endif // Z_PROBE_ALLEN_KEY
  1457. #if ENABLED(FIX_MOUNTED_PROBE)
  1458. // Noting to be done. Just set z_probe_is_active
  1459. #endif
  1460. z_probe_is_active = false;
  1461. }
  1462. #endif // HAS_Z_MIN_PROBE
  1463. enum ProbeAction {
  1464. ProbeStay = 0,
  1465. ProbeDeploy = _BV(0),
  1466. ProbeStow = _BV(1),
  1467. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1468. };
  1469. // Probe bed height at position (x,y), returns the measured z value
  1470. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1471. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1472. if (DEBUGGING(LEVELING)) {
  1473. SERIAL_ECHOLNPGM("probe_pt >>>");
  1474. SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
  1475. SERIAL_EOL;
  1476. DEBUG_POS("", current_position);
  1477. }
  1478. #endif
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (DEBUGGING(LEVELING)) {
  1481. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1482. SERIAL_EOL;
  1483. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1484. SERIAL_EOL;
  1485. }
  1486. #endif
  1487. // Move Z up to the z_before height, then move the Z probe to the given XY
  1488. do_blocking_move_to_z(z_before); // this also updates current_position
  1489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1490. if (DEBUGGING(LEVELING)) {
  1491. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1492. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1493. SERIAL_EOL;
  1494. }
  1495. #endif
  1496. // this also updates current_position
  1497. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1498. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1499. if (probe_action & ProbeDeploy) {
  1500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1501. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1502. #endif
  1503. deploy_z_probe();
  1504. }
  1505. #endif
  1506. run_z_probe();
  1507. float measured_z = current_position[Z_AXIS];
  1508. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1509. if (probe_action & ProbeStow) {
  1510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1511. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1512. #endif
  1513. stow_z_probe();
  1514. }
  1515. #endif
  1516. if (verbose_level > 2) {
  1517. SERIAL_PROTOCOLPGM("Bed X: ");
  1518. SERIAL_PROTOCOL_F(x, 3);
  1519. SERIAL_PROTOCOLPGM(" Y: ");
  1520. SERIAL_PROTOCOL_F(y, 3);
  1521. SERIAL_PROTOCOLPGM(" Z: ");
  1522. SERIAL_PROTOCOL_F(measured_z, 3);
  1523. SERIAL_EOL;
  1524. }
  1525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1526. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1527. #endif
  1528. return measured_z;
  1529. }
  1530. #if ENABLED(DELTA)
  1531. /**
  1532. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1533. */
  1534. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1535. if (bed_level[x][y] != 0.0) {
  1536. return; // Don't overwrite good values.
  1537. }
  1538. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1539. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1540. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1541. float median = c; // Median is robust (ignores outliers).
  1542. if (a < b) {
  1543. if (b < c) median = b;
  1544. if (c < a) median = a;
  1545. }
  1546. else { // b <= a
  1547. if (c < b) median = b;
  1548. if (a < c) median = a;
  1549. }
  1550. bed_level[x][y] = median;
  1551. }
  1552. /**
  1553. * Fill in the unprobed points (corners of circular print surface)
  1554. * using linear extrapolation, away from the center.
  1555. */
  1556. static void extrapolate_unprobed_bed_level() {
  1557. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1558. for (int y = 0; y <= half; y++) {
  1559. for (int x = 0; x <= half; x++) {
  1560. if (x + y < 3) continue;
  1561. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1562. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1563. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1564. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1565. }
  1566. }
  1567. }
  1568. /**
  1569. * Print calibration results for plotting or manual frame adjustment.
  1570. */
  1571. static void print_bed_level() {
  1572. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1573. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1574. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1575. SERIAL_PROTOCOLCHAR(' ');
  1576. }
  1577. SERIAL_EOL;
  1578. }
  1579. }
  1580. /**
  1581. * Reset calibration results to zero.
  1582. */
  1583. void reset_bed_level() {
  1584. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1585. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1586. #endif
  1587. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1588. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1589. bed_level[x][y] = 0.0;
  1590. }
  1591. }
  1592. }
  1593. #endif // DELTA
  1594. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1595. void raise_z_for_servo() {
  1596. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1597. /**
  1598. * The zprobe_zoffset is negative any switch below the nozzle, so
  1599. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1600. */
  1601. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1602. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1603. }
  1604. #endif
  1605. #endif // AUTO_BED_LEVELING_FEATURE
  1606. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1607. static void axis_unhomed_error() {
  1608. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1609. SERIAL_ECHO_START;
  1610. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1611. }
  1612. #endif
  1613. #if ENABLED(Z_PROBE_SLED)
  1614. #ifndef SLED_DOCKING_OFFSET
  1615. #define SLED_DOCKING_OFFSET 0
  1616. #endif
  1617. /**
  1618. * Method to dock/undock a sled designed by Charles Bell.
  1619. *
  1620. * dock[in] If true, move to MAX_X and engage the electromagnet
  1621. * offset[in] The additional distance to move to adjust docking location
  1622. */
  1623. static void dock_sled(bool dock, int offset = 0) {
  1624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1625. if (DEBUGGING(LEVELING)) {
  1626. SERIAL_ECHOPAIR("dock_sled(", dock);
  1627. SERIAL_ECHOLNPGM(")");
  1628. }
  1629. #endif
  1630. if (z_probe_is_active == dock) return;
  1631. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1632. axis_unhomed_error();
  1633. return;
  1634. }
  1635. float oldXpos = current_position[X_AXIS]; // save x position
  1636. if (dock) {
  1637. #if Z_RAISE_AFTER_PROBING > 0
  1638. raise_z_after_probing(); // raise Z
  1639. #endif
  1640. // Dock sled a bit closer to ensure proper capturing
  1641. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1642. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1643. }
  1644. else {
  1645. float z_loc = current_position[Z_AXIS];
  1646. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1647. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1648. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1649. }
  1650. do_blocking_move_to_x(oldXpos); // return to position before docking
  1651. z_probe_is_active = dock;
  1652. }
  1653. #endif // Z_PROBE_SLED
  1654. /**
  1655. * Home an individual axis
  1656. */
  1657. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1658. static void homeaxis(AxisEnum axis) {
  1659. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1660. if (DEBUGGING(LEVELING)) {
  1661. SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
  1662. SERIAL_ECHOLNPGM(")");
  1663. }
  1664. #endif
  1665. #define HOMEAXIS_DO(LETTER) \
  1666. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1667. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1668. int axis_home_dir =
  1669. #if ENABLED(DUAL_X_CARRIAGE)
  1670. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1671. #endif
  1672. home_dir(axis);
  1673. // Set the axis position as setup for the move
  1674. current_position[axis] = 0;
  1675. sync_plan_position();
  1676. #if ENABLED(Z_PROBE_SLED)
  1677. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1678. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1679. #define _Z_DEPLOY (dock_sled(false))
  1680. #define _Z_STOW (dock_sled(true))
  1681. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1682. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1683. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1684. #define _Z_DEPLOY (deploy_z_probe())
  1685. #define _Z_STOW (stow_z_probe())
  1686. #elif HAS_SERVO_ENDSTOPS
  1687. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1688. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1689. #endif
  1690. if (axis == Z_AXIS) {
  1691. // If there's a Z probe that needs deployment...
  1692. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1693. // ...and homing Z towards the bed? Deploy it.
  1694. if (axis_home_dir < 0) _Z_DEPLOY;
  1695. #endif
  1696. }
  1697. #if HAS_SERVO_ENDSTOPS
  1698. // Engage an X or Y Servo endstop if enabled
  1699. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1700. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1701. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1702. }
  1703. #endif
  1704. // Set a flag for Z motor locking
  1705. #if ENABLED(Z_DUAL_ENDSTOPS)
  1706. if (axis == Z_AXIS) In_Homing_Process(true);
  1707. #endif
  1708. // Move towards the endstop until an endstop is triggered
  1709. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1710. feedrate = homing_feedrate[axis];
  1711. line_to_destination();
  1712. st_synchronize();
  1713. // Set the axis position as setup for the move
  1714. current_position[axis] = 0;
  1715. sync_plan_position();
  1716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1717. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1718. #endif
  1719. enable_endstops(false); // Disable endstops while moving away
  1720. // Move away from the endstop by the axis HOME_BUMP_MM
  1721. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1722. line_to_destination();
  1723. st_synchronize();
  1724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1725. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1726. #endif
  1727. enable_endstops(true); // Enable endstops for next homing move
  1728. // Slow down the feedrate for the next move
  1729. set_homing_bump_feedrate(axis);
  1730. // Move slowly towards the endstop until triggered
  1731. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1732. line_to_destination();
  1733. st_synchronize();
  1734. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1735. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1736. #endif
  1737. #if ENABLED(Z_DUAL_ENDSTOPS)
  1738. if (axis == Z_AXIS) {
  1739. float adj = fabs(z_endstop_adj);
  1740. bool lockZ1;
  1741. if (axis_home_dir > 0) {
  1742. adj = -adj;
  1743. lockZ1 = (z_endstop_adj > 0);
  1744. }
  1745. else
  1746. lockZ1 = (z_endstop_adj < 0);
  1747. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1748. sync_plan_position();
  1749. // Move to the adjusted endstop height
  1750. feedrate = homing_feedrate[axis];
  1751. destination[Z_AXIS] = adj;
  1752. line_to_destination();
  1753. st_synchronize();
  1754. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1755. In_Homing_Process(false);
  1756. } // Z_AXIS
  1757. #endif
  1758. #if ENABLED(DELTA)
  1759. // retrace by the amount specified in endstop_adj
  1760. if (endstop_adj[axis] * axis_home_dir < 0) {
  1761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1762. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1763. #endif
  1764. enable_endstops(false); // Disable endstops while moving away
  1765. sync_plan_position();
  1766. destination[axis] = endstop_adj[axis];
  1767. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1768. if (DEBUGGING(LEVELING)) {
  1769. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1770. DEBUG_POS("", destination);
  1771. }
  1772. #endif
  1773. line_to_destination();
  1774. st_synchronize();
  1775. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1776. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1777. #endif
  1778. enable_endstops(true); // Enable endstops for next homing move
  1779. }
  1780. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1781. else {
  1782. if (DEBUGGING(LEVELING)) {
  1783. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1784. SERIAL_EOL;
  1785. }
  1786. }
  1787. #endif
  1788. #endif
  1789. // Set the axis position to its home position (plus home offsets)
  1790. set_axis_is_at_home(axis);
  1791. sync_plan_position();
  1792. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1793. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1794. #endif
  1795. destination[axis] = current_position[axis];
  1796. feedrate = 0.0;
  1797. endstops_hit_on_purpose(); // clear endstop hit flags
  1798. axis_known_position[axis] = true;
  1799. axis_homed[axis] = true;
  1800. // Put away the Z probe
  1801. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1802. if (axis == Z_AXIS && axis_home_dir < 0) {
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1805. #endif
  1806. _Z_STOW;
  1807. }
  1808. #endif
  1809. // Retract Servo endstop if enabled
  1810. #if HAS_SERVO_ENDSTOPS
  1811. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1812. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1813. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1814. #endif
  1815. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1816. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1817. }
  1818. #endif
  1819. }
  1820. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1821. if (DEBUGGING(LEVELING)) {
  1822. SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
  1823. SERIAL_ECHOLNPGM(")");
  1824. }
  1825. #endif
  1826. }
  1827. #if ENABLED(FWRETRACT)
  1828. void retract(bool retracting, bool swapping = false) {
  1829. if (retracting == retracted[active_extruder]) return;
  1830. float oldFeedrate = feedrate;
  1831. set_destination_to_current();
  1832. if (retracting) {
  1833. feedrate = retract_feedrate * 60;
  1834. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1835. plan_set_e_position(current_position[E_AXIS]);
  1836. prepare_move();
  1837. if (retract_zlift > 0.01) {
  1838. current_position[Z_AXIS] -= retract_zlift;
  1839. #if ENABLED(DELTA)
  1840. sync_plan_position_delta();
  1841. #else
  1842. sync_plan_position();
  1843. #endif
  1844. prepare_move();
  1845. }
  1846. }
  1847. else {
  1848. if (retract_zlift > 0.01) {
  1849. current_position[Z_AXIS] += retract_zlift;
  1850. #if ENABLED(DELTA)
  1851. sync_plan_position_delta();
  1852. #else
  1853. sync_plan_position();
  1854. #endif
  1855. //prepare_move();
  1856. }
  1857. feedrate = retract_recover_feedrate * 60;
  1858. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1859. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1860. plan_set_e_position(current_position[E_AXIS]);
  1861. prepare_move();
  1862. }
  1863. feedrate = oldFeedrate;
  1864. retracted[active_extruder] = retracting;
  1865. } // retract()
  1866. #endif // FWRETRACT
  1867. /**
  1868. * ***************************************************************************
  1869. * ***************************** G-CODE HANDLING *****************************
  1870. * ***************************************************************************
  1871. */
  1872. /**
  1873. * Set XYZE destination and feedrate from the current GCode command
  1874. *
  1875. * - Set destination from included axis codes
  1876. * - Set to current for missing axis codes
  1877. * - Set the feedrate, if included
  1878. */
  1879. void gcode_get_destination() {
  1880. for (int i = 0; i < NUM_AXIS; i++) {
  1881. if (code_seen(axis_codes[i]))
  1882. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1883. else
  1884. destination[i] = current_position[i];
  1885. }
  1886. if (code_seen('F')) {
  1887. float next_feedrate = code_value();
  1888. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1889. }
  1890. }
  1891. void unknown_command_error() {
  1892. SERIAL_ECHO_START;
  1893. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1894. SERIAL_ECHO(current_command);
  1895. SERIAL_ECHOPGM("\"\n");
  1896. }
  1897. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1898. /**
  1899. * Output a "busy" message at regular intervals
  1900. * while the machine is not accepting commands.
  1901. */
  1902. void host_keepalive() {
  1903. millis_t ms = millis();
  1904. if (busy_state != NOT_BUSY) {
  1905. if (ms < next_busy_signal_ms) return;
  1906. switch (busy_state) {
  1907. case IN_HANDLER:
  1908. case IN_PROCESS:
  1909. SERIAL_ECHO_START;
  1910. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1911. break;
  1912. case PAUSED_FOR_USER:
  1913. SERIAL_ECHO_START;
  1914. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1915. break;
  1916. case PAUSED_FOR_INPUT:
  1917. SERIAL_ECHO_START;
  1918. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1919. break;
  1920. default:
  1921. break;
  1922. }
  1923. }
  1924. next_busy_signal_ms = ms + 10000UL; // "busy: ..." message every 10s
  1925. }
  1926. #endif //HOST_KEEPALIVE_FEATURE
  1927. /**
  1928. * G0, G1: Coordinated movement of X Y Z E axes
  1929. */
  1930. inline void gcode_G0_G1() {
  1931. if (IsRunning()) {
  1932. gcode_get_destination(); // For X Y Z E F
  1933. #if ENABLED(FWRETRACT)
  1934. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1935. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1936. // Is this move an attempt to retract or recover?
  1937. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1938. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1939. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1940. retract(!retracted[active_extruder]);
  1941. return;
  1942. }
  1943. }
  1944. #endif //FWRETRACT
  1945. prepare_move();
  1946. }
  1947. }
  1948. /**
  1949. * G2: Clockwise Arc
  1950. * G3: Counterclockwise Arc
  1951. */
  1952. inline void gcode_G2_G3(bool clockwise) {
  1953. if (IsRunning()) {
  1954. #if ENABLED(SF_ARC_FIX)
  1955. bool relative_mode_backup = relative_mode;
  1956. relative_mode = true;
  1957. #endif
  1958. gcode_get_destination();
  1959. #if ENABLED(SF_ARC_FIX)
  1960. relative_mode = relative_mode_backup;
  1961. #endif
  1962. // Center of arc as offset from current_position
  1963. float arc_offset[2] = {
  1964. code_seen('I') ? code_value() : 0,
  1965. code_seen('J') ? code_value() : 0
  1966. };
  1967. // Send an arc to the planner
  1968. plan_arc(destination, arc_offset, clockwise);
  1969. refresh_cmd_timeout();
  1970. }
  1971. }
  1972. /**
  1973. * G4: Dwell S<seconds> or P<milliseconds>
  1974. */
  1975. inline void gcode_G4() {
  1976. millis_t codenum = 0;
  1977. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1978. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1979. st_synchronize();
  1980. refresh_cmd_timeout();
  1981. codenum += previous_cmd_ms; // keep track of when we started waiting
  1982. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1983. while (millis() < codenum) idle();
  1984. }
  1985. #if ENABLED(FWRETRACT)
  1986. /**
  1987. * G10 - Retract filament according to settings of M207
  1988. * G11 - Recover filament according to settings of M208
  1989. */
  1990. inline void gcode_G10_G11(bool doRetract=false) {
  1991. #if EXTRUDERS > 1
  1992. if (doRetract) {
  1993. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1994. }
  1995. #endif
  1996. retract(doRetract
  1997. #if EXTRUDERS > 1
  1998. , retracted_swap[active_extruder]
  1999. #endif
  2000. );
  2001. }
  2002. #endif //FWRETRACT
  2003. /**
  2004. * G28: Home all axes according to settings
  2005. *
  2006. * Parameters
  2007. *
  2008. * None Home to all axes with no parameters.
  2009. * With QUICK_HOME enabled XY will home together, then Z.
  2010. *
  2011. * Cartesian parameters
  2012. *
  2013. * X Home to the X endstop
  2014. * Y Home to the Y endstop
  2015. * Z Home to the Z endstop
  2016. *
  2017. */
  2018. inline void gcode_G28() {
  2019. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2020. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2021. #endif
  2022. // Wait for planner moves to finish!
  2023. st_synchronize();
  2024. // For auto bed leveling, clear the level matrix
  2025. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2026. plan_bed_level_matrix.set_to_identity();
  2027. #if ENABLED(DELTA)
  2028. reset_bed_level();
  2029. #endif
  2030. #endif
  2031. /**
  2032. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2033. * on again when homing all axis
  2034. */
  2035. #if ENABLED(MESH_BED_LEVELING)
  2036. uint8_t mbl_was_active = mbl.active;
  2037. mbl.active = 0;
  2038. #endif
  2039. setup_for_endstop_move();
  2040. /**
  2041. * Directly after a reset this is all 0. Later we get a hint if we have
  2042. * to raise z or not.
  2043. */
  2044. set_destination_to_current();
  2045. feedrate = 0.0;
  2046. #if ENABLED(DELTA)
  2047. /**
  2048. * A delta can only safely home all axis at the same time
  2049. * all axis have to home at the same time
  2050. */
  2051. // Pretend the current position is 0,0,0
  2052. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2053. sync_plan_position();
  2054. // Move all carriages up together until the first endstop is hit.
  2055. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2056. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2057. line_to_destination();
  2058. st_synchronize();
  2059. endstops_hit_on_purpose(); // clear endstop hit flags
  2060. // Destination reached
  2061. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2062. // take care of back off and rehome now we are all at the top
  2063. HOMEAXIS(X);
  2064. HOMEAXIS(Y);
  2065. HOMEAXIS(Z);
  2066. sync_plan_position_delta();
  2067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2068. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2069. #endif
  2070. #else // NOT DELTA
  2071. bool homeX = code_seen(axis_codes[X_AXIS]),
  2072. homeY = code_seen(axis_codes[Y_AXIS]),
  2073. homeZ = code_seen(axis_codes[Z_AXIS]);
  2074. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2075. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2076. if (home_all_axis || homeZ) {
  2077. HOMEAXIS(Z);
  2078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2079. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2080. #endif
  2081. }
  2082. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2083. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2084. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2085. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2086. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2088. if (DEBUGGING(LEVELING)) {
  2089. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (float)(MIN_Z_HEIGHT_FOR_HOMING));
  2090. SERIAL_EOL;
  2091. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2092. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2093. }
  2094. #endif
  2095. line_to_destination();
  2096. st_synchronize();
  2097. /**
  2098. * Update the current Z position even if it currently not real from
  2099. * Z-home otherwise each call to line_to_destination() will want to
  2100. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2101. */
  2102. current_position[Z_AXIS] = destination[Z_AXIS];
  2103. }
  2104. #endif
  2105. #if ENABLED(QUICK_HOME)
  2106. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2107. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2108. #if ENABLED(DUAL_X_CARRIAGE)
  2109. int x_axis_home_dir = x_home_dir(active_extruder);
  2110. extruder_duplication_enabled = false;
  2111. #else
  2112. int x_axis_home_dir = home_dir(X_AXIS);
  2113. #endif
  2114. sync_plan_position();
  2115. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2116. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2117. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2118. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2119. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2120. line_to_destination();
  2121. st_synchronize();
  2122. set_axis_is_at_home(X_AXIS);
  2123. set_axis_is_at_home(Y_AXIS);
  2124. sync_plan_position();
  2125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2126. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2127. #endif
  2128. destination[X_AXIS] = current_position[X_AXIS];
  2129. destination[Y_AXIS] = current_position[Y_AXIS];
  2130. line_to_destination();
  2131. feedrate = 0.0;
  2132. st_synchronize();
  2133. endstops_hit_on_purpose(); // clear endstop hit flags
  2134. current_position[X_AXIS] = destination[X_AXIS];
  2135. current_position[Y_AXIS] = destination[Y_AXIS];
  2136. #if DISABLED(SCARA)
  2137. current_position[Z_AXIS] = destination[Z_AXIS];
  2138. #endif
  2139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2140. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2141. #endif
  2142. }
  2143. #endif // QUICK_HOME
  2144. #if ENABLED(HOME_Y_BEFORE_X)
  2145. // Home Y
  2146. if (home_all_axis || homeY) HOMEAXIS(Y);
  2147. #endif
  2148. // Home X
  2149. if (home_all_axis || homeX) {
  2150. #if ENABLED(DUAL_X_CARRIAGE)
  2151. int tmp_extruder = active_extruder;
  2152. extruder_duplication_enabled = false;
  2153. active_extruder = !active_extruder;
  2154. HOMEAXIS(X);
  2155. inactive_extruder_x_pos = current_position[X_AXIS];
  2156. active_extruder = tmp_extruder;
  2157. HOMEAXIS(X);
  2158. // reset state used by the different modes
  2159. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2160. delayed_move_time = 0;
  2161. active_extruder_parked = true;
  2162. #else
  2163. HOMEAXIS(X);
  2164. #endif
  2165. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2166. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2167. #endif
  2168. }
  2169. #if DISABLED(HOME_Y_BEFORE_X)
  2170. // Home Y
  2171. if (home_all_axis || homeY) {
  2172. HOMEAXIS(Y);
  2173. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2174. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2175. #endif
  2176. }
  2177. #endif
  2178. // Home Z last if homing towards the bed
  2179. #if Z_HOME_DIR < 0
  2180. if (home_all_axis || homeZ) {
  2181. #if ENABLED(Z_SAFE_HOMING)
  2182. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2183. if (DEBUGGING(LEVELING)) {
  2184. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2185. }
  2186. #endif
  2187. if (home_all_axis) {
  2188. /**
  2189. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2190. * No need to move Z any more as this height should already be safe
  2191. * enough to reach Z_SAFE_HOMING XY positions.
  2192. * Just make sure the planner is in sync.
  2193. */
  2194. sync_plan_position();
  2195. /**
  2196. * Set the Z probe (or just the nozzle) destination to the safe
  2197. * homing point
  2198. */
  2199. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2200. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2201. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2202. feedrate = XY_TRAVEL_SPEED;
  2203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2204. if (DEBUGGING(LEVELING)) {
  2205. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2206. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2207. }
  2208. #endif
  2209. // Move in the XY plane
  2210. line_to_destination();
  2211. st_synchronize();
  2212. /**
  2213. * Update the current positions for XY, Z is still at least at
  2214. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2215. */
  2216. current_position[X_AXIS] = destination[X_AXIS];
  2217. current_position[Y_AXIS] = destination[Y_AXIS];
  2218. // Home the Z axis
  2219. HOMEAXIS(Z);
  2220. }
  2221. else if (homeZ) { // Don't need to Home Z twice
  2222. // Let's see if X and Y are homed
  2223. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2224. /**
  2225. * Make sure the Z probe is within the physical limits
  2226. * NOTE: This doesn't necessarily ensure the Z probe is also
  2227. * within the bed!
  2228. */
  2229. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2230. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2231. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2232. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2233. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2234. // Home the Z axis
  2235. HOMEAXIS(Z);
  2236. }
  2237. else {
  2238. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2239. SERIAL_ECHO_START;
  2240. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2241. }
  2242. }
  2243. else {
  2244. axis_unhomed_error();
  2245. }
  2246. } // !home_all_axes && homeZ
  2247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2248. if (DEBUGGING(LEVELING)) {
  2249. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2250. }
  2251. #endif
  2252. #else // !Z_SAFE_HOMING
  2253. HOMEAXIS(Z);
  2254. #endif // !Z_SAFE_HOMING
  2255. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2256. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2257. #endif
  2258. } // home_all_axis || homeZ
  2259. #endif // Z_HOME_DIR < 0
  2260. sync_plan_position();
  2261. #endif // else DELTA
  2262. #if ENABLED(SCARA)
  2263. sync_plan_position_delta();
  2264. #endif
  2265. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2266. enable_endstops(false);
  2267. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2268. if (DEBUGGING(LEVELING)) {
  2269. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2270. }
  2271. #endif
  2272. #endif
  2273. // For mesh leveling move back to Z=0
  2274. #if ENABLED(MESH_BED_LEVELING)
  2275. if (mbl_was_active && home_all_axis) {
  2276. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2277. sync_plan_position();
  2278. mbl.active = 1;
  2279. current_position[Z_AXIS] = 0.0;
  2280. set_destination_to_current();
  2281. feedrate = homing_feedrate[Z_AXIS];
  2282. line_to_destination();
  2283. st_synchronize();
  2284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2285. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2286. #endif
  2287. }
  2288. #endif
  2289. feedrate = saved_feedrate;
  2290. feedrate_multiplier = saved_feedrate_multiplier;
  2291. refresh_cmd_timeout();
  2292. endstops_hit_on_purpose(); // clear endstop hit flags
  2293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2294. if (DEBUGGING(LEVELING)) {
  2295. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2296. }
  2297. #endif
  2298. gcode_M114(); // Send end position to RepetierHost
  2299. }
  2300. #if ENABLED(MESH_BED_LEVELING)
  2301. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2302. /**
  2303. * G29: Mesh-based Z probe, probes a grid and produces a
  2304. * mesh to compensate for variable bed height
  2305. *
  2306. * Parameters With MESH_BED_LEVELING:
  2307. *
  2308. * S0 Produce a mesh report
  2309. * S1 Start probing mesh points
  2310. * S2 Probe the next mesh point
  2311. * S3 Xn Yn Zn.nn Manually modify a single point
  2312. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2313. *
  2314. * The S0 report the points as below
  2315. *
  2316. * +----> X-axis 1-n
  2317. * |
  2318. * |
  2319. * v Y-axis 1-n
  2320. *
  2321. */
  2322. inline void gcode_G29() {
  2323. static int probe_point = -1;
  2324. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2325. if (state < 0 || state > 4) {
  2326. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2327. return;
  2328. }
  2329. int ix, iy;
  2330. float z;
  2331. switch (state) {
  2332. case MeshReport:
  2333. if (mbl.active) {
  2334. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2335. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2336. SERIAL_PROTOCOLCHAR(',');
  2337. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2338. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2339. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2340. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2341. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2342. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2343. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2344. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2345. SERIAL_PROTOCOLPGM(" ");
  2346. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2347. }
  2348. SERIAL_EOL;
  2349. }
  2350. }
  2351. else
  2352. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2353. break;
  2354. case MeshStart:
  2355. mbl.reset();
  2356. probe_point = 0;
  2357. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2358. break;
  2359. case MeshNext:
  2360. if (probe_point < 0) {
  2361. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2362. return;
  2363. }
  2364. if (probe_point == 0) {
  2365. // Set Z to a positive value before recording the first Z.
  2366. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2367. sync_plan_position();
  2368. }
  2369. else {
  2370. // For others, save the Z of the previous point, then raise Z again.
  2371. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2372. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2373. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2374. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2375. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2377. st_synchronize();
  2378. }
  2379. // Is there another point to sample? Move there.
  2380. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2381. ix = probe_point % (MESH_NUM_X_POINTS);
  2382. iy = probe_point / (MESH_NUM_X_POINTS);
  2383. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2384. current_position[X_AXIS] = mbl.get_x(ix);
  2385. current_position[Y_AXIS] = mbl.get_y(iy);
  2386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2387. st_synchronize();
  2388. probe_point++;
  2389. }
  2390. else {
  2391. // After recording the last point, activate the mbl and home
  2392. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2393. probe_point = -1;
  2394. mbl.active = 1;
  2395. enqueue_and_echo_commands_P(PSTR("G28"));
  2396. }
  2397. break;
  2398. case MeshSet:
  2399. if (code_seen('X')) {
  2400. ix = code_value_long() - 1;
  2401. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2402. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2403. return;
  2404. }
  2405. }
  2406. else {
  2407. SERIAL_PROTOCOLPGM("X not entered.\n");
  2408. return;
  2409. }
  2410. if (code_seen('Y')) {
  2411. iy = code_value_long() - 1;
  2412. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2413. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2414. return;
  2415. }
  2416. }
  2417. else {
  2418. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2419. return;
  2420. }
  2421. if (code_seen('Z')) {
  2422. z = code_value();
  2423. }
  2424. else {
  2425. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2426. return;
  2427. }
  2428. mbl.z_values[iy][ix] = z;
  2429. break;
  2430. case MeshSetZOffset:
  2431. if (code_seen('Z')) {
  2432. z = code_value();
  2433. }
  2434. else {
  2435. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2436. return;
  2437. }
  2438. mbl.z_offset = z;
  2439. } // switch(state)
  2440. }
  2441. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2442. void out_of_range_error(const char* p_edge) {
  2443. SERIAL_PROTOCOLPGM("?Probe ");
  2444. serialprintPGM(p_edge);
  2445. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2446. }
  2447. /**
  2448. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2449. * Will fail if the printer has not been homed with G28.
  2450. *
  2451. * Enhanced G29 Auto Bed Leveling Probe Routine
  2452. *
  2453. * Parameters With AUTO_BED_LEVELING_GRID:
  2454. *
  2455. * P Set the size of the grid that will be probed (P x P points).
  2456. * Not supported by non-linear delta printer bed leveling.
  2457. * Example: "G29 P4"
  2458. *
  2459. * S Set the XY travel speed between probe points (in mm/min)
  2460. *
  2461. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2462. * or clean the rotation Matrix. Useful to check the topology
  2463. * after a first run of G29.
  2464. *
  2465. * V Set the verbose level (0-4). Example: "G29 V3"
  2466. *
  2467. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2468. * This is useful for manual bed leveling and finding flaws in the bed (to
  2469. * assist with part placement).
  2470. * Not supported by non-linear delta printer bed leveling.
  2471. *
  2472. * F Set the Front limit of the probing grid
  2473. * B Set the Back limit of the probing grid
  2474. * L Set the Left limit of the probing grid
  2475. * R Set the Right limit of the probing grid
  2476. *
  2477. * Global Parameters:
  2478. *
  2479. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2480. * Include "E" to engage/disengage the Z probe for each sample.
  2481. * There's no extra effect if you have a fixed Z probe.
  2482. * Usage: "G29 E" or "G29 e"
  2483. *
  2484. */
  2485. inline void gcode_G29() {
  2486. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2487. if (DEBUGGING(LEVELING)) {
  2488. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2489. DEBUG_POS("", current_position);
  2490. }
  2491. #endif
  2492. // Don't allow auto-leveling without homing first
  2493. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2494. axis_unhomed_error();
  2495. return;
  2496. }
  2497. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2498. if (verbose_level < 0 || verbose_level > 4) {
  2499. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2500. return;
  2501. }
  2502. bool dryrun = code_seen('D'),
  2503. deploy_probe_for_each_reading = code_seen('E');
  2504. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2505. #if DISABLED(DELTA)
  2506. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2507. #endif
  2508. if (verbose_level > 0) {
  2509. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2510. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2511. }
  2512. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2513. #if DISABLED(DELTA)
  2514. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2515. if (auto_bed_leveling_grid_points < 2) {
  2516. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2517. return;
  2518. }
  2519. #endif
  2520. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2521. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2522. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2523. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2524. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2525. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2526. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2527. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2528. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2529. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2530. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2531. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2532. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2533. if (left_out || right_out || front_out || back_out) {
  2534. if (left_out) {
  2535. out_of_range_error(PSTR("(L)eft"));
  2536. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2537. }
  2538. if (right_out) {
  2539. out_of_range_error(PSTR("(R)ight"));
  2540. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2541. }
  2542. if (front_out) {
  2543. out_of_range_error(PSTR("(F)ront"));
  2544. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2545. }
  2546. if (back_out) {
  2547. out_of_range_error(PSTR("(B)ack"));
  2548. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2549. }
  2550. return;
  2551. }
  2552. #endif // AUTO_BED_LEVELING_GRID
  2553. #if ENABLED(Z_PROBE_SLED)
  2554. dock_sled(false); // engage (un-dock) the Z probe
  2555. #elif ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2556. deploy_z_probe();
  2557. #endif
  2558. st_synchronize();
  2559. if (!dryrun) {
  2560. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2561. plan_bed_level_matrix.set_to_identity();
  2562. #if ENABLED(DELTA)
  2563. reset_bed_level();
  2564. #else //!DELTA
  2565. //vector_3 corrected_position = plan_get_position_mm();
  2566. //corrected_position.debug("position before G29");
  2567. vector_3 uncorrected_position = plan_get_position();
  2568. //uncorrected_position.debug("position during G29");
  2569. current_position[X_AXIS] = uncorrected_position.x;
  2570. current_position[Y_AXIS] = uncorrected_position.y;
  2571. current_position[Z_AXIS] = uncorrected_position.z;
  2572. sync_plan_position();
  2573. #endif // !DELTA
  2574. }
  2575. setup_for_endstop_move();
  2576. feedrate = homing_feedrate[Z_AXIS];
  2577. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2578. // probe at the points of a lattice grid
  2579. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2580. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2581. #if ENABLED(DELTA)
  2582. delta_grid_spacing[0] = xGridSpacing;
  2583. delta_grid_spacing[1] = yGridSpacing;
  2584. float z_offset = zprobe_zoffset;
  2585. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2586. #else // !DELTA
  2587. /**
  2588. * solve the plane equation ax + by + d = z
  2589. * A is the matrix with rows [x y 1] for all the probed points
  2590. * B is the vector of the Z positions
  2591. * the normal vector to the plane is formed by the coefficients of the
  2592. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2593. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2594. */
  2595. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2596. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2597. eqnBVector[abl2], // "B" vector of Z points
  2598. mean = 0.0;
  2599. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2600. #endif // !DELTA
  2601. int probePointCounter = 0;
  2602. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2603. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2604. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2605. int xStart, xStop, xInc;
  2606. if (zig) {
  2607. xStart = 0;
  2608. xStop = auto_bed_leveling_grid_points;
  2609. xInc = 1;
  2610. }
  2611. else {
  2612. xStart = auto_bed_leveling_grid_points - 1;
  2613. xStop = -1;
  2614. xInc = -1;
  2615. }
  2616. zig = !zig;
  2617. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2618. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2619. // raise extruder
  2620. float measured_z,
  2621. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2622. if (probePointCounter) {
  2623. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2624. if (DEBUGGING(LEVELING)) {
  2625. SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2626. SERIAL_EOL;
  2627. }
  2628. #endif
  2629. }
  2630. else {
  2631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2632. if (DEBUGGING(LEVELING)) {
  2633. SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
  2634. SERIAL_EOL;
  2635. }
  2636. #endif
  2637. }
  2638. #if ENABLED(DELTA)
  2639. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2640. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2641. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2642. #endif //DELTA
  2643. ProbeAction act;
  2644. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2645. act = ProbeDeployAndStow;
  2646. else if (yCount == 0 && xCount == xStart)
  2647. act = ProbeDeploy;
  2648. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2649. act = ProbeStow;
  2650. else
  2651. act = ProbeStay;
  2652. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2653. #if DISABLED(DELTA)
  2654. mean += measured_z;
  2655. eqnBVector[probePointCounter] = measured_z;
  2656. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2657. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2658. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2659. indexIntoAB[xCount][yCount] = probePointCounter;
  2660. #else
  2661. bed_level[xCount][yCount] = measured_z + z_offset;
  2662. #endif
  2663. probePointCounter++;
  2664. idle();
  2665. } //xProbe
  2666. } //yProbe
  2667. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2668. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2669. #endif
  2670. clean_up_after_endstop_move();
  2671. #if ENABLED(DELTA)
  2672. if (!dryrun) extrapolate_unprobed_bed_level();
  2673. print_bed_level();
  2674. #else // !DELTA
  2675. // solve lsq problem
  2676. double plane_equation_coefficients[3];
  2677. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2678. mean /= abl2;
  2679. if (verbose_level) {
  2680. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2681. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2682. SERIAL_PROTOCOLPGM(" b: ");
  2683. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2684. SERIAL_PROTOCOLPGM(" d: ");
  2685. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2686. SERIAL_EOL;
  2687. if (verbose_level > 2) {
  2688. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2689. SERIAL_PROTOCOL_F(mean, 8);
  2690. SERIAL_EOL;
  2691. }
  2692. }
  2693. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2694. // Show the Topography map if enabled
  2695. if (do_topography_map) {
  2696. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2697. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2698. SERIAL_PROTOCOLPGM(" | |\n");
  2699. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2700. SERIAL_PROTOCOLPGM(" E | | I\n");
  2701. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2702. SERIAL_PROTOCOLPGM(" T | | H\n");
  2703. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2704. SERIAL_PROTOCOLPGM(" | |\n");
  2705. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2706. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2707. float min_diff = 999;
  2708. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2709. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2710. int ind = indexIntoAB[xx][yy];
  2711. float diff = eqnBVector[ind] - mean;
  2712. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2713. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2714. z_tmp = 0;
  2715. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2716. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2717. if (diff >= 0.0)
  2718. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2719. else
  2720. SERIAL_PROTOCOLCHAR(' ');
  2721. SERIAL_PROTOCOL_F(diff, 5);
  2722. } // xx
  2723. SERIAL_EOL;
  2724. } // yy
  2725. SERIAL_EOL;
  2726. if (verbose_level > 3) {
  2727. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2728. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2729. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2730. int ind = indexIntoAB[xx][yy];
  2731. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2732. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2733. z_tmp = 0;
  2734. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2735. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2736. if (diff >= 0.0)
  2737. SERIAL_PROTOCOLPGM(" +");
  2738. // Include + for column alignment
  2739. else
  2740. SERIAL_PROTOCOLCHAR(' ');
  2741. SERIAL_PROTOCOL_F(diff, 5);
  2742. } // xx
  2743. SERIAL_EOL;
  2744. } // yy
  2745. SERIAL_EOL;
  2746. }
  2747. } //do_topography_map
  2748. #endif //!DELTA
  2749. #else // !AUTO_BED_LEVELING_GRID
  2750. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2751. if (DEBUGGING(LEVELING)) {
  2752. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2753. }
  2754. #endif
  2755. // Actions for each probe
  2756. ProbeAction p1, p2, p3;
  2757. if (deploy_probe_for_each_reading)
  2758. p1 = p2 = p3 = ProbeDeployAndStow;
  2759. else
  2760. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2761. // Probe at 3 arbitrary points
  2762. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2763. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2764. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2765. clean_up_after_endstop_move();
  2766. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2767. #endif // !AUTO_BED_LEVELING_GRID
  2768. #if ENABLED(DELTA)
  2769. // Allen Key Probe for Delta
  2770. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2771. stow_z_probe();
  2772. #elif Z_RAISE_AFTER_PROBING > 0
  2773. raise_z_after_probing(); // ???
  2774. #endif
  2775. #else // !DELTA
  2776. if (verbose_level > 0)
  2777. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2778. if (!dryrun) {
  2779. /**
  2780. * Correct the Z height difference from Z probe position and nozzle tip position.
  2781. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2782. * from the nozzle. When the bed is uneven, this height must be corrected.
  2783. */
  2784. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2785. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2786. z_tmp = current_position[Z_AXIS],
  2787. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2788. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2789. if (DEBUGGING(LEVELING)) {
  2790. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2791. SERIAL_EOL;
  2792. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2793. SERIAL_EOL;
  2794. }
  2795. #endif
  2796. // Apply the correction sending the Z probe offset
  2797. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2798. /*
  2799. * Get the current Z position and send it to the planner.
  2800. *
  2801. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2802. * (most recent plan_set_position/sync_plan_position)
  2803. *
  2804. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2805. * (set by default, M851, EEPROM, or Menu)
  2806. *
  2807. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2808. * after the last probe
  2809. *
  2810. * >> Should home_offset[Z_AXIS] be included?
  2811. *
  2812. *
  2813. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2814. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2815. * not actually "homing" Z... then perhaps it should not be included
  2816. * here. The purpose of home_offset[] is to adjust for inaccurate
  2817. * endstops, not for reasonably accurate probes. If it were added
  2818. * here, it could be seen as a compensating factor for the Z probe.
  2819. */
  2820. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2821. if (DEBUGGING(LEVELING)) {
  2822. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2823. SERIAL_EOL;
  2824. }
  2825. #endif
  2826. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2827. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2828. + Z_RAISE_AFTER_PROBING
  2829. #endif
  2830. ;
  2831. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2832. sync_plan_position();
  2833. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2834. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2835. #endif
  2836. }
  2837. // Sled assembly for Cartesian bots
  2838. #if ENABLED(Z_PROBE_SLED)
  2839. dock_sled(true); // dock the sled
  2840. #elif Z_RAISE_AFTER_PROBING > 0
  2841. // Raise Z axis for non-delta and non servo based probes
  2842. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2843. raise_z_after_probing();
  2844. #endif
  2845. #endif
  2846. #endif // !DELTA
  2847. #ifdef Z_PROBE_END_SCRIPT
  2848. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2849. if (DEBUGGING(LEVELING)) {
  2850. SERIAL_ECHO("Z Probe End Script: ");
  2851. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2852. }
  2853. #endif
  2854. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2855. #if ENABLED(HAS_Z_MIN_PROBE)
  2856. z_probe_is_active = false;
  2857. #endif
  2858. st_synchronize();
  2859. #endif
  2860. KEEPALIVE_STATE(IN_HANDLER);
  2861. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2862. if (DEBUGGING(LEVELING)) {
  2863. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2864. }
  2865. #endif
  2866. gcode_M114(); // Send end position to RepetierHost
  2867. }
  2868. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2869. /**
  2870. * G30: Do a single Z probe at the current XY
  2871. */
  2872. inline void gcode_G30() {
  2873. #if HAS_SERVO_ENDSTOPS
  2874. raise_z_for_servo();
  2875. #endif
  2876. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2877. st_synchronize();
  2878. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2879. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2880. feedrate = homing_feedrate[Z_AXIS];
  2881. run_z_probe();
  2882. SERIAL_PROTOCOLPGM("Bed X: ");
  2883. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2884. SERIAL_PROTOCOLPGM(" Y: ");
  2885. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2886. SERIAL_PROTOCOLPGM(" Z: ");
  2887. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2888. SERIAL_EOL;
  2889. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2890. #if HAS_SERVO_ENDSTOPS
  2891. raise_z_for_servo();
  2892. #endif
  2893. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2894. gcode_M114(); // Send end position to RepetierHost
  2895. }
  2896. #endif //!Z_PROBE_SLED
  2897. #endif //AUTO_BED_LEVELING_FEATURE
  2898. /**
  2899. * G92: Set current position to given X Y Z E
  2900. */
  2901. inline void gcode_G92() {
  2902. if (!code_seen(axis_codes[E_AXIS]))
  2903. st_synchronize();
  2904. bool didXYZ = false;
  2905. for (int i = 0; i < NUM_AXIS; i++) {
  2906. if (code_seen(axis_codes[i])) {
  2907. float v = current_position[i] = code_value();
  2908. if (i == E_AXIS)
  2909. plan_set_e_position(v);
  2910. else
  2911. didXYZ = true;
  2912. }
  2913. }
  2914. if (didXYZ) {
  2915. #if ENABLED(DELTA) || ENABLED(SCARA)
  2916. sync_plan_position_delta();
  2917. #else
  2918. sync_plan_position();
  2919. #endif
  2920. }
  2921. }
  2922. #if ENABLED(ULTIPANEL)
  2923. /**
  2924. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2925. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2926. */
  2927. inline void gcode_M0_M1() {
  2928. char* args = current_command_args;
  2929. millis_t codenum = 0;
  2930. bool hasP = false, hasS = false;
  2931. if (code_seen('P')) {
  2932. codenum = code_value_short(); // milliseconds to wait
  2933. hasP = codenum > 0;
  2934. }
  2935. if (code_seen('S')) {
  2936. codenum = code_value() * 1000; // seconds to wait
  2937. hasS = codenum > 0;
  2938. }
  2939. if (!hasP && !hasS && *args != '\0')
  2940. lcd_setstatus(args, true);
  2941. else {
  2942. LCD_MESSAGEPGM(MSG_USERWAIT);
  2943. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2944. dontExpireStatus();
  2945. #endif
  2946. }
  2947. lcd_ignore_click();
  2948. st_synchronize();
  2949. refresh_cmd_timeout();
  2950. if (codenum > 0) {
  2951. codenum += previous_cmd_ms; // wait until this time for a click
  2952. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2953. while (millis() < codenum && !lcd_clicked()) idle();
  2954. KEEPALIVE_STATE(IN_HANDLER);
  2955. lcd_ignore_click(false);
  2956. }
  2957. else {
  2958. if (!lcd_detected()) return;
  2959. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2960. while (!lcd_clicked()) idle();
  2961. KEEPALIVE_STATE(IN_HANDLER);
  2962. }
  2963. if (IS_SD_PRINTING)
  2964. LCD_MESSAGEPGM(MSG_RESUMING);
  2965. else
  2966. LCD_MESSAGEPGM(WELCOME_MSG);
  2967. }
  2968. #endif // ULTIPANEL
  2969. /**
  2970. * M17: Enable power on all stepper motors
  2971. */
  2972. inline void gcode_M17() {
  2973. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2974. enable_all_steppers();
  2975. }
  2976. #if ENABLED(SDSUPPORT)
  2977. /**
  2978. * M20: List SD card to serial output
  2979. */
  2980. inline void gcode_M20() {
  2981. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2982. card.ls();
  2983. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2984. }
  2985. /**
  2986. * M21: Init SD Card
  2987. */
  2988. inline void gcode_M21() {
  2989. card.initsd();
  2990. }
  2991. /**
  2992. * M22: Release SD Card
  2993. */
  2994. inline void gcode_M22() {
  2995. card.release();
  2996. }
  2997. /**
  2998. * M23: Open a file
  2999. */
  3000. inline void gcode_M23() {
  3001. card.openFile(current_command_args, true);
  3002. }
  3003. /**
  3004. * M24: Start SD Print
  3005. */
  3006. inline void gcode_M24() {
  3007. card.startFileprint();
  3008. print_job_start();
  3009. }
  3010. /**
  3011. * M25: Pause SD Print
  3012. */
  3013. inline void gcode_M25() {
  3014. card.pauseSDPrint();
  3015. }
  3016. /**
  3017. * M26: Set SD Card file index
  3018. */
  3019. inline void gcode_M26() {
  3020. if (card.cardOK && code_seen('S'))
  3021. card.setIndex(code_value_short());
  3022. }
  3023. /**
  3024. * M27: Get SD Card status
  3025. */
  3026. inline void gcode_M27() {
  3027. card.getStatus();
  3028. }
  3029. /**
  3030. * M28: Start SD Write
  3031. */
  3032. inline void gcode_M28() {
  3033. card.openFile(current_command_args, false);
  3034. }
  3035. /**
  3036. * M29: Stop SD Write
  3037. * Processed in write to file routine above
  3038. */
  3039. inline void gcode_M29() {
  3040. // card.saving = false;
  3041. }
  3042. /**
  3043. * M30 <filename>: Delete SD Card file
  3044. */
  3045. inline void gcode_M30() {
  3046. if (card.cardOK) {
  3047. card.closefile();
  3048. card.removeFile(current_command_args);
  3049. }
  3050. }
  3051. #endif //SDSUPPORT
  3052. /**
  3053. * M31: Get the time since the start of SD Print (or last M109)
  3054. */
  3055. inline void gcode_M31() {
  3056. millis_t t = print_job_timer();
  3057. int min = t / 60, sec = t % 60;
  3058. char time[30];
  3059. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3060. SERIAL_ECHO_START;
  3061. SERIAL_ECHOLN(time);
  3062. lcd_setstatus(time);
  3063. autotempShutdown();
  3064. }
  3065. #if ENABLED(SDSUPPORT)
  3066. /**
  3067. * M32: Select file and start SD Print
  3068. */
  3069. inline void gcode_M32() {
  3070. if (card.sdprinting)
  3071. st_synchronize();
  3072. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3073. if (!namestartpos)
  3074. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3075. else
  3076. namestartpos++; //to skip the '!'
  3077. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3078. if (card.cardOK) {
  3079. card.openFile(namestartpos, true, call_procedure);
  3080. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3081. card.setIndex(code_value_short());
  3082. card.startFileprint();
  3083. // Procedure calls count as normal print time.
  3084. if (!call_procedure) print_job_start();
  3085. }
  3086. }
  3087. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3088. /**
  3089. * M33: Get the long full path of a file or folder
  3090. *
  3091. * Parameters:
  3092. * <dospath> Case-insensitive DOS-style path to a file or folder
  3093. *
  3094. * Example:
  3095. * M33 miscel~1/armchair/armcha~1.gco
  3096. *
  3097. * Output:
  3098. * /Miscellaneous/Armchair/Armchair.gcode
  3099. */
  3100. inline void gcode_M33() {
  3101. card.printLongPath(current_command_args);
  3102. }
  3103. #endif
  3104. /**
  3105. * M928: Start SD Write
  3106. */
  3107. inline void gcode_M928() {
  3108. card.openLogFile(current_command_args);
  3109. }
  3110. #endif // SDSUPPORT
  3111. /**
  3112. * M42: Change pin status via GCode
  3113. *
  3114. * P<pin> Pin number (LED if omitted)
  3115. * S<byte> Pin status from 0 - 255
  3116. */
  3117. inline void gcode_M42() {
  3118. if (code_seen('S')) {
  3119. int pin_status = code_value_short();
  3120. if (pin_status < 0 || pin_status > 255) return;
  3121. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3122. if (pin_number < 0) return;
  3123. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3124. if (pin_number == sensitive_pins[i]) return;
  3125. pinMode(pin_number, OUTPUT);
  3126. digitalWrite(pin_number, pin_status);
  3127. analogWrite(pin_number, pin_status);
  3128. #if FAN_COUNT > 0
  3129. switch (pin_number) {
  3130. #if HAS_FAN0
  3131. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3132. #endif
  3133. #if HAS_FAN1
  3134. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3135. #endif
  3136. #if HAS_FAN2
  3137. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3138. #endif
  3139. }
  3140. #endif
  3141. } // code_seen('S')
  3142. }
  3143. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3144. /**
  3145. * This is redundant since the SanityCheck.h already checks for a valid
  3146. * Z_MIN_PROBE_PIN, but here for clarity.
  3147. */
  3148. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3149. #if !HAS_Z_PROBE
  3150. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3151. #endif
  3152. #elif !HAS_Z_MIN
  3153. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3154. #endif
  3155. /**
  3156. * M48: Z probe repeatability measurement function.
  3157. *
  3158. * Usage:
  3159. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3160. * P = Number of sampled points (4-50, default 10)
  3161. * X = Sample X position
  3162. * Y = Sample Y position
  3163. * V = Verbose level (0-4, default=1)
  3164. * E = Engage Z probe for each reading
  3165. * L = Number of legs of movement before probe
  3166. * S = Schizoid (Or Star if you prefer)
  3167. *
  3168. * This function assumes the bed has been homed. Specifically, that a G28 command
  3169. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3170. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3171. * regenerated.
  3172. */
  3173. inline void gcode_M48() {
  3174. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3175. axis_unhomed_error();
  3176. return;
  3177. }
  3178. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3179. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3180. if (code_seen('V')) {
  3181. verbose_level = code_value_short();
  3182. if (verbose_level < 0 || verbose_level > 4) {
  3183. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3184. return;
  3185. }
  3186. }
  3187. if (verbose_level > 0)
  3188. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3189. if (code_seen('P')) {
  3190. n_samples = code_value_short();
  3191. if (n_samples < 4 || n_samples > 50) {
  3192. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3193. return;
  3194. }
  3195. }
  3196. float X_current = current_position[X_AXIS],
  3197. Y_current = current_position[Y_AXIS],
  3198. Z_current = current_position[Z_AXIS],
  3199. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3200. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3201. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3202. bool deploy_probe_for_each_reading = code_seen('E');
  3203. if (code_seen('X')) {
  3204. X_probe_location = code_value();
  3205. #if DISABLED(DELTA)
  3206. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3207. out_of_range_error(PSTR("X"));
  3208. return;
  3209. }
  3210. #endif
  3211. }
  3212. if (code_seen('Y')) {
  3213. Y_probe_location = code_value();
  3214. #if DISABLED(DELTA)
  3215. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3216. out_of_range_error(PSTR("Y"));
  3217. return;
  3218. }
  3219. #endif
  3220. }
  3221. #if ENABLED(DELTA)
  3222. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3223. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3224. return;
  3225. }
  3226. #endif
  3227. bool seen_L = code_seen('L');
  3228. if (seen_L) {
  3229. n_legs = code_value_short();
  3230. if (n_legs < 0 || n_legs > 15) {
  3231. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3232. return;
  3233. }
  3234. if (n_legs == 1) n_legs = 2;
  3235. }
  3236. if (code_seen('S')) {
  3237. schizoid_flag++;
  3238. if (!seen_L) n_legs = 7;
  3239. }
  3240. /**
  3241. * Now get everything to the specified probe point So we can safely do a
  3242. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3243. * we don't want to use that as a starting point for each probe.
  3244. */
  3245. if (verbose_level > 2)
  3246. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3247. #if ENABLED(DELTA)
  3248. // we don't do bed level correction in M48 because we want the raw data when we probe
  3249. reset_bed_level();
  3250. #else
  3251. // we don't do bed level correction in M48 because we want the raw data when we probe
  3252. plan_bed_level_matrix.set_to_identity();
  3253. #endif
  3254. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3255. do_blocking_move_to_z(Z_start_location);
  3256. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3257. /**
  3258. * OK, do the initial probe to get us close to the bed.
  3259. * Then retrace the right amount and use that in subsequent probes
  3260. */
  3261. setup_for_endstop_move();
  3262. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3263. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3264. verbose_level);
  3265. raise_z_after_probing();
  3266. for (uint8_t n = 0; n < n_samples; n++) {
  3267. randomSeed(millis());
  3268. delay(500);
  3269. if (n_legs) {
  3270. float radius, angle = random(0.0, 360.0);
  3271. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3272. radius = random(
  3273. #if ENABLED(DELTA)
  3274. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3275. #else
  3276. 5, X_MAX_LENGTH / 8
  3277. #endif
  3278. );
  3279. if (verbose_level > 3) {
  3280. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3281. SERIAL_ECHOPAIR(" angle: ", angle);
  3282. delay(100);
  3283. if (dir > 0)
  3284. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3285. else
  3286. SERIAL_ECHO(" Direction: Clockwise \n");
  3287. delay(100);
  3288. }
  3289. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3290. double delta_angle;
  3291. if (schizoid_flag)
  3292. // The points of a 5 point star are 72 degrees apart. We need to
  3293. // skip a point and go to the next one on the star.
  3294. delta_angle = dir * 2.0 * 72.0;
  3295. else
  3296. // If we do this line, we are just trying to move further
  3297. // around the circle.
  3298. delta_angle = dir * (float) random(25, 45);
  3299. angle += delta_angle;
  3300. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3301. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3302. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3303. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3304. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3305. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3306. #if DISABLED(DELTA)
  3307. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3308. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3309. #else
  3310. // If we have gone out too far, we can do a simple fix and scale the numbers
  3311. // back in closer to the origin.
  3312. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3313. X_current /= 1.25;
  3314. Y_current /= 1.25;
  3315. if (verbose_level > 3) {
  3316. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3317. SERIAL_ECHOPAIR(", ", Y_current);
  3318. SERIAL_EOL;
  3319. delay(50);
  3320. }
  3321. }
  3322. #endif
  3323. if (verbose_level > 3) {
  3324. SERIAL_PROTOCOL("Going to:");
  3325. SERIAL_ECHOPAIR("x: ", X_current);
  3326. SERIAL_ECHOPAIR("y: ", Y_current);
  3327. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3328. SERIAL_EOL;
  3329. delay(55);
  3330. }
  3331. do_blocking_move_to_xy(X_current, Y_current);
  3332. } // n_legs loop
  3333. } // n_legs
  3334. /**
  3335. * We don't really have to do this move, but if we don't we can see a
  3336. * funny shift in the Z Height because the user might not have the
  3337. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3338. * height. This gets us back to the probe location at the same height that
  3339. * we have been running around the circle at.
  3340. */
  3341. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3342. if (deploy_probe_for_each_reading)
  3343. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3344. else {
  3345. if (n == n_samples - 1)
  3346. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3347. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3348. }
  3349. /**
  3350. * Get the current mean for the data points we have so far
  3351. */
  3352. sum = 0.0;
  3353. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3354. mean = sum / (n + 1);
  3355. /**
  3356. * Now, use that mean to calculate the standard deviation for the
  3357. * data points we have so far
  3358. */
  3359. sum = 0.0;
  3360. for (uint8_t j = 0; j <= n; j++) {
  3361. float ss = sample_set[j] - mean;
  3362. sum += ss * ss;
  3363. }
  3364. sigma = sqrt(sum / (n + 1));
  3365. if (verbose_level > 1) {
  3366. SERIAL_PROTOCOL(n + 1);
  3367. SERIAL_PROTOCOLPGM(" of ");
  3368. SERIAL_PROTOCOL((int)n_samples);
  3369. SERIAL_PROTOCOLPGM(" z: ");
  3370. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3371. delay(50);
  3372. if (verbose_level > 2) {
  3373. SERIAL_PROTOCOLPGM(" mean: ");
  3374. SERIAL_PROTOCOL_F(mean, 6);
  3375. SERIAL_PROTOCOLPGM(" sigma: ");
  3376. SERIAL_PROTOCOL_F(sigma, 6);
  3377. }
  3378. }
  3379. if (verbose_level > 0) SERIAL_EOL;
  3380. delay(50);
  3381. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3382. } // End of probe loop code
  3383. // raise_z_after_probing();
  3384. if (verbose_level > 0) {
  3385. SERIAL_PROTOCOLPGM("Mean: ");
  3386. SERIAL_PROTOCOL_F(mean, 6);
  3387. SERIAL_EOL;
  3388. delay(25);
  3389. }
  3390. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3391. SERIAL_PROTOCOL_F(sigma, 6);
  3392. SERIAL_EOL; SERIAL_EOL;
  3393. delay(25);
  3394. clean_up_after_endstop_move();
  3395. gcode_M114(); // Send end position to RepetierHost
  3396. }
  3397. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3398. /**
  3399. * M104: Set hot end temperature
  3400. */
  3401. inline void gcode_M104() {
  3402. if (setTargetedHotend(104)) return;
  3403. if (DEBUGGING(DRYRUN)) return;
  3404. // Start hook must happen before setTargetHotend()
  3405. print_job_start();
  3406. if (code_seen('S')) {
  3407. float temp = code_value();
  3408. setTargetHotend(temp, target_extruder);
  3409. #if ENABLED(DUAL_X_CARRIAGE)
  3410. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3411. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3412. #endif
  3413. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3414. }
  3415. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3416. }
  3417. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3418. void print_heaterstates() {
  3419. #if HAS_TEMP_HOTEND
  3420. SERIAL_PROTOCOLPGM(" T:");
  3421. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3422. SERIAL_PROTOCOLPGM(" /");
  3423. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3424. #endif
  3425. #if HAS_TEMP_BED
  3426. SERIAL_PROTOCOLPGM(" B:");
  3427. SERIAL_PROTOCOL_F(degBed(), 1);
  3428. SERIAL_PROTOCOLPGM(" /");
  3429. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3430. #endif
  3431. #if EXTRUDERS > 1
  3432. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3433. SERIAL_PROTOCOLPGM(" T");
  3434. SERIAL_PROTOCOL(e);
  3435. SERIAL_PROTOCOLCHAR(':');
  3436. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3437. SERIAL_PROTOCOLPGM(" /");
  3438. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3439. }
  3440. #endif
  3441. #if HAS_TEMP_BED
  3442. SERIAL_PROTOCOLPGM(" B@:");
  3443. #ifdef BED_WATTS
  3444. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3445. SERIAL_PROTOCOLCHAR('W');
  3446. #else
  3447. SERIAL_PROTOCOL(getHeaterPower(-1));
  3448. #endif
  3449. #endif
  3450. SERIAL_PROTOCOLPGM(" @:");
  3451. #ifdef EXTRUDER_WATTS
  3452. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3453. SERIAL_PROTOCOLCHAR('W');
  3454. #else
  3455. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3456. #endif
  3457. #if EXTRUDERS > 1
  3458. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3459. SERIAL_PROTOCOLPGM(" @");
  3460. SERIAL_PROTOCOL(e);
  3461. SERIAL_PROTOCOLCHAR(':');
  3462. #ifdef EXTRUDER_WATTS
  3463. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3464. SERIAL_PROTOCOLCHAR('W');
  3465. #else
  3466. SERIAL_PROTOCOL(getHeaterPower(e));
  3467. #endif
  3468. }
  3469. #endif
  3470. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3471. #if HAS_TEMP_BED
  3472. SERIAL_PROTOCOLPGM(" ADC B:");
  3473. SERIAL_PROTOCOL_F(degBed(), 1);
  3474. SERIAL_PROTOCOLPGM("C->");
  3475. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3476. #endif
  3477. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3478. SERIAL_PROTOCOLPGM(" T");
  3479. SERIAL_PROTOCOL(cur_extruder);
  3480. SERIAL_PROTOCOLCHAR(':');
  3481. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3482. SERIAL_PROTOCOLPGM("C->");
  3483. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3484. }
  3485. #endif
  3486. }
  3487. #endif
  3488. /**
  3489. * M105: Read hot end and bed temperature
  3490. */
  3491. inline void gcode_M105() {
  3492. if (setTargetedHotend(105)) return;
  3493. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3494. SERIAL_PROTOCOLPGM(MSG_OK);
  3495. print_heaterstates();
  3496. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3497. SERIAL_ERROR_START;
  3498. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3499. #endif
  3500. SERIAL_EOL;
  3501. }
  3502. #if FAN_COUNT > 0
  3503. /**
  3504. * M106: Set Fan Speed
  3505. *
  3506. * S<int> Speed between 0-255
  3507. * P<index> Fan index, if more than one fan
  3508. */
  3509. inline void gcode_M106() {
  3510. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3511. p = code_seen('P') ? code_value_short() : 0;
  3512. NOMORE(s, 255);
  3513. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3514. }
  3515. /**
  3516. * M107: Fan Off
  3517. */
  3518. inline void gcode_M107() {
  3519. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3520. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3521. }
  3522. #endif // FAN_COUNT > 0
  3523. /**
  3524. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3525. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3526. */
  3527. inline void gcode_M109() {
  3528. bool no_wait_for_cooling = true;
  3529. if (setTargetedHotend(109)) return;
  3530. if (DEBUGGING(DRYRUN)) return;
  3531. // Start hook must happen before setTargetHotend()
  3532. print_job_start();
  3533. no_wait_for_cooling = code_seen('S');
  3534. if (no_wait_for_cooling || code_seen('R')) {
  3535. float temp = code_value();
  3536. setTargetHotend(temp, target_extruder);
  3537. #if ENABLED(DUAL_X_CARRIAGE)
  3538. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3539. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3540. #endif
  3541. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3542. }
  3543. if (print_job_stop()) LCD_MESSAGEPGM(WELCOME_MSG);
  3544. #if ENABLED(AUTOTEMP)
  3545. autotemp_enabled = code_seen('F');
  3546. if (autotemp_enabled) autotemp_factor = code_value();
  3547. if (code_seen('S')) autotemp_min = code_value();
  3548. if (code_seen('B')) autotemp_max = code_value();
  3549. #endif
  3550. // Exit if the temperature is above target and not waiting for cooling
  3551. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3552. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3553. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3554. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP/2)) return;
  3555. #ifdef TEMP_RESIDENCY_TIME
  3556. long residency_start_ms = -1;
  3557. // Loop until the temperature has stabilized
  3558. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3559. #else
  3560. // Loop until the temperature is very close target
  3561. #define TEMP_CONDITIONS (isHeatingHotend(target_extruder))
  3562. #endif //TEMP_RESIDENCY_TIME
  3563. cancel_heatup = false;
  3564. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3565. while (!cancel_heatup && TEMP_CONDITIONS) {
  3566. now = millis();
  3567. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3568. next_temp_ms = now + 1000UL;
  3569. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3570. print_heaterstates();
  3571. #endif
  3572. #ifdef TEMP_RESIDENCY_TIME
  3573. SERIAL_PROTOCOLPGM(" W:");
  3574. if (residency_start_ms >= 0) {
  3575. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3576. SERIAL_PROTOCOLLN(rem);
  3577. }
  3578. else {
  3579. SERIAL_PROTOCOLLNPGM("?");
  3580. }
  3581. #else
  3582. SERIAL_EOL;
  3583. #endif
  3584. }
  3585. idle();
  3586. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3587. #ifdef TEMP_RESIDENCY_TIME
  3588. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3589. // Restart the timer whenever the temperature falls outside the hysteresis.
  3590. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3591. residency_start_ms = millis();
  3592. #endif //TEMP_RESIDENCY_TIME
  3593. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3594. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3595. }
  3596. #if HAS_TEMP_BED
  3597. /**
  3598. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3599. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3600. */
  3601. inline void gcode_M190() {
  3602. if (DEBUGGING(DRYRUN)) return;
  3603. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3604. bool no_wait_for_cooling = code_seen('S');
  3605. if (no_wait_for_cooling || code_seen('R'))
  3606. setTargetBed(code_value());
  3607. // Exit if the temperature is above target and not waiting for cooling
  3608. if (no_wait_for_cooling && !isHeatingBed()) return;
  3609. cancel_heatup = false;
  3610. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3611. while (!cancel_heatup && isHeatingBed()) {
  3612. millis_t now = millis();
  3613. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3614. next_temp_ms = now + 1000UL;
  3615. print_heaterstates();
  3616. SERIAL_EOL;
  3617. }
  3618. idle();
  3619. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3620. }
  3621. LCD_MESSAGEPGM(MSG_BED_DONE);
  3622. }
  3623. #endif // HAS_TEMP_BED
  3624. /**
  3625. * M110: Set Current Line Number
  3626. */
  3627. inline void gcode_M110() {
  3628. if (code_seen('N')) gcode_N = code_value_long();
  3629. }
  3630. /**
  3631. * M111: Set the debug level
  3632. */
  3633. inline void gcode_M111() {
  3634. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3635. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3636. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3637. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3638. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3639. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3641. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3642. #endif
  3643. const static char* const debug_strings[] PROGMEM = {
  3644. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3646. str_debug_32
  3647. #endif
  3648. };
  3649. SERIAL_ECHO_START;
  3650. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3651. if (marlin_debug_flags) {
  3652. uint8_t comma = 0;
  3653. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3654. if (TEST(marlin_debug_flags, i)) {
  3655. if (comma++) SERIAL_CHAR(',');
  3656. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3657. }
  3658. }
  3659. }
  3660. else {
  3661. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3662. }
  3663. SERIAL_EOL;
  3664. }
  3665. /**
  3666. * M112: Emergency Stop
  3667. */
  3668. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3669. #if ENABLED(BARICUDA)
  3670. #if HAS_HEATER_1
  3671. /**
  3672. * M126: Heater 1 valve open
  3673. */
  3674. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3675. /**
  3676. * M127: Heater 1 valve close
  3677. */
  3678. inline void gcode_M127() { ValvePressure = 0; }
  3679. #endif
  3680. #if HAS_HEATER_2
  3681. /**
  3682. * M128: Heater 2 valve open
  3683. */
  3684. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3685. /**
  3686. * M129: Heater 2 valve close
  3687. */
  3688. inline void gcode_M129() { EtoPPressure = 0; }
  3689. #endif
  3690. #endif //BARICUDA
  3691. /**
  3692. * M140: Set bed temperature
  3693. */
  3694. inline void gcode_M140() {
  3695. if (DEBUGGING(DRYRUN)) return;
  3696. if (code_seen('S')) setTargetBed(code_value());
  3697. }
  3698. #if ENABLED(ULTIPANEL)
  3699. /**
  3700. * M145: Set the heatup state for a material in the LCD menu
  3701. * S<material> (0=PLA, 1=ABS)
  3702. * H<hotend temp>
  3703. * B<bed temp>
  3704. * F<fan speed>
  3705. */
  3706. inline void gcode_M145() {
  3707. int8_t material = code_seen('S') ? code_value_short() : 0;
  3708. if (material < 0 || material > 1) {
  3709. SERIAL_ERROR_START;
  3710. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3711. }
  3712. else {
  3713. int v;
  3714. switch (material) {
  3715. case 0:
  3716. if (code_seen('H')) {
  3717. v = code_value_short();
  3718. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3719. }
  3720. if (code_seen('F')) {
  3721. v = code_value_short();
  3722. plaPreheatFanSpeed = constrain(v, 0, 255);
  3723. }
  3724. #if TEMP_SENSOR_BED != 0
  3725. if (code_seen('B')) {
  3726. v = code_value_short();
  3727. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3728. }
  3729. #endif
  3730. break;
  3731. case 1:
  3732. if (code_seen('H')) {
  3733. v = code_value_short();
  3734. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3735. }
  3736. if (code_seen('F')) {
  3737. v = code_value_short();
  3738. absPreheatFanSpeed = constrain(v, 0, 255);
  3739. }
  3740. #if TEMP_SENSOR_BED != 0
  3741. if (code_seen('B')) {
  3742. v = code_value_short();
  3743. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3744. }
  3745. #endif
  3746. break;
  3747. }
  3748. }
  3749. }
  3750. #endif
  3751. #if HAS_POWER_SWITCH
  3752. /**
  3753. * M80: Turn on Power Supply
  3754. */
  3755. inline void gcode_M80() {
  3756. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3757. /**
  3758. * If you have a switch on suicide pin, this is useful
  3759. * if you want to start another print with suicide feature after
  3760. * a print without suicide...
  3761. */
  3762. #if HAS_SUICIDE
  3763. OUT_WRITE(SUICIDE_PIN, HIGH);
  3764. #endif
  3765. #if ENABLED(ULTIPANEL)
  3766. powersupply = true;
  3767. LCD_MESSAGEPGM(WELCOME_MSG);
  3768. lcd_update();
  3769. #endif
  3770. }
  3771. #endif // HAS_POWER_SWITCH
  3772. /**
  3773. * M81: Turn off Power, including Power Supply, if there is one.
  3774. *
  3775. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3776. */
  3777. inline void gcode_M81() {
  3778. disable_all_heaters();
  3779. finishAndDisableSteppers();
  3780. #if FAN_COUNT > 0
  3781. #if FAN_COUNT > 1
  3782. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3783. #else
  3784. fanSpeeds[0] = 0;
  3785. #endif
  3786. #endif
  3787. delay(1000); // Wait 1 second before switching off
  3788. #if HAS_SUICIDE
  3789. st_synchronize();
  3790. suicide();
  3791. #elif HAS_POWER_SWITCH
  3792. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3793. #endif
  3794. #if ENABLED(ULTIPANEL)
  3795. #if HAS_POWER_SWITCH
  3796. powersupply = false;
  3797. #endif
  3798. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3799. lcd_update();
  3800. #endif
  3801. }
  3802. /**
  3803. * M82: Set E codes absolute (default)
  3804. */
  3805. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3806. /**
  3807. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3808. */
  3809. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3810. /**
  3811. * M18, M84: Disable all stepper motors
  3812. */
  3813. inline void gcode_M18_M84() {
  3814. if (code_seen('S')) {
  3815. stepper_inactive_time = code_value() * 1000;
  3816. }
  3817. else {
  3818. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3819. if (all_axis) {
  3820. finishAndDisableSteppers();
  3821. }
  3822. else {
  3823. st_synchronize();
  3824. if (code_seen('X')) disable_x();
  3825. if (code_seen('Y')) disable_y();
  3826. if (code_seen('Z')) disable_z();
  3827. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3828. if (code_seen('E')) {
  3829. disable_e0();
  3830. disable_e1();
  3831. disable_e2();
  3832. disable_e3();
  3833. }
  3834. #endif
  3835. }
  3836. }
  3837. }
  3838. /**
  3839. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3840. */
  3841. inline void gcode_M85() {
  3842. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3843. }
  3844. /**
  3845. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3846. * (Follows the same syntax as G92)
  3847. */
  3848. inline void gcode_M92() {
  3849. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3850. if (code_seen(axis_codes[i])) {
  3851. if (i == E_AXIS) {
  3852. float value = code_value();
  3853. if (value < 20.0) {
  3854. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3855. max_e_jerk *= factor;
  3856. max_feedrate[i] *= factor;
  3857. axis_steps_per_sqr_second[i] *= factor;
  3858. }
  3859. axis_steps_per_unit[i] = value;
  3860. }
  3861. else {
  3862. axis_steps_per_unit[i] = code_value();
  3863. }
  3864. }
  3865. }
  3866. }
  3867. /**
  3868. * M114: Output current position to serial port
  3869. */
  3870. inline void gcode_M114() {
  3871. SERIAL_PROTOCOLPGM("X:");
  3872. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3873. SERIAL_PROTOCOLPGM(" Y:");
  3874. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3875. SERIAL_PROTOCOLPGM(" Z:");
  3876. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3877. SERIAL_PROTOCOLPGM(" E:");
  3878. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3879. CRITICAL_SECTION_START;
  3880. extern volatile long count_position[NUM_AXIS];
  3881. long xpos = count_position[X_AXIS],
  3882. ypos = count_position[Y_AXIS],
  3883. zpos = count_position[Z_AXIS];
  3884. CRITICAL_SECTION_END;
  3885. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3886. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3887. #else
  3888. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3889. #endif
  3890. SERIAL_PROTOCOL(xpos);
  3891. #if ENABLED(COREXY)
  3892. SERIAL_PROTOCOLPGM(" B:");
  3893. #else
  3894. SERIAL_PROTOCOLPGM(" Y:");
  3895. #endif
  3896. SERIAL_PROTOCOL(ypos);
  3897. #if ENABLED(COREXZ)
  3898. SERIAL_PROTOCOLPGM(" C:");
  3899. #else
  3900. SERIAL_PROTOCOLPGM(" Z:");
  3901. #endif
  3902. SERIAL_PROTOCOL(zpos);
  3903. SERIAL_EOL;
  3904. #if ENABLED(SCARA)
  3905. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3906. SERIAL_PROTOCOL(delta[X_AXIS]);
  3907. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3908. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3909. SERIAL_EOL;
  3910. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3911. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3912. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3913. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3914. SERIAL_EOL;
  3915. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3916. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3917. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3918. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3919. SERIAL_EOL; SERIAL_EOL;
  3920. #endif
  3921. }
  3922. /**
  3923. * M115: Capabilities string
  3924. */
  3925. inline void gcode_M115() {
  3926. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3927. }
  3928. /**
  3929. * M117: Set LCD Status Message
  3930. */
  3931. inline void gcode_M117() {
  3932. lcd_setstatus(current_command_args);
  3933. }
  3934. /**
  3935. * M119: Output endstop states to serial output
  3936. */
  3937. inline void gcode_M119() {
  3938. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3939. #if HAS_X_MIN
  3940. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3941. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3942. #endif
  3943. #if HAS_X_MAX
  3944. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3945. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3946. #endif
  3947. #if HAS_Y_MIN
  3948. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3949. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3950. #endif
  3951. #if HAS_Y_MAX
  3952. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3953. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3954. #endif
  3955. #if HAS_Z_MIN
  3956. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3957. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3958. #endif
  3959. #if HAS_Z_MAX
  3960. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3961. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3962. #endif
  3963. #if HAS_Z2_MAX
  3964. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3965. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3966. #endif
  3967. #if HAS_Z_PROBE
  3968. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3969. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  3970. #endif
  3971. }
  3972. /**
  3973. * M120: Enable endstops and set non-homing endstop state to "enabled"
  3974. */
  3975. inline void gcode_M120() { enable_endstops_globally(true); }
  3976. /**
  3977. * M121: Disable endstops and set non-homing endstop state to "disabled"
  3978. */
  3979. inline void gcode_M121() { enable_endstops_globally(false); }
  3980. #if ENABLED(BLINKM)
  3981. /**
  3982. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3983. */
  3984. inline void gcode_M150() {
  3985. SendColors(
  3986. code_seen('R') ? (byte)code_value_short() : 0,
  3987. code_seen('U') ? (byte)code_value_short() : 0,
  3988. code_seen('B') ? (byte)code_value_short() : 0
  3989. );
  3990. }
  3991. #endif // BLINKM
  3992. /**
  3993. * M200: Set filament diameter and set E axis units to cubic millimeters
  3994. *
  3995. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3996. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3997. */
  3998. inline void gcode_M200() {
  3999. if (setTargetedHotend(200)) return;
  4000. if (code_seen('D')) {
  4001. float diameter = code_value();
  4002. // setting any extruder filament size disables volumetric on the assumption that
  4003. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4004. // for all extruders
  4005. volumetric_enabled = (diameter != 0.0);
  4006. if (volumetric_enabled) {
  4007. filament_size[target_extruder] = diameter;
  4008. // make sure all extruders have some sane value for the filament size
  4009. for (int i = 0; i < EXTRUDERS; i++)
  4010. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4011. }
  4012. }
  4013. else {
  4014. //reserved for setting filament diameter via UFID or filament measuring device
  4015. return;
  4016. }
  4017. calculate_volumetric_multipliers();
  4018. }
  4019. /**
  4020. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4021. */
  4022. inline void gcode_M201() {
  4023. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4024. if (code_seen(axis_codes[i])) {
  4025. max_acceleration_units_per_sq_second[i] = code_value();
  4026. }
  4027. }
  4028. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4029. reset_acceleration_rates();
  4030. }
  4031. #if 0 // Not used for Sprinter/grbl gen6
  4032. inline void gcode_M202() {
  4033. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4034. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4035. }
  4036. }
  4037. #endif
  4038. /**
  4039. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4040. */
  4041. inline void gcode_M203() {
  4042. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4043. if (code_seen(axis_codes[i])) {
  4044. max_feedrate[i] = code_value();
  4045. }
  4046. }
  4047. }
  4048. /**
  4049. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4050. *
  4051. * P = Printing moves
  4052. * R = Retract only (no X, Y, Z) moves
  4053. * T = Travel (non printing) moves
  4054. *
  4055. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4056. */
  4057. inline void gcode_M204() {
  4058. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4059. travel_acceleration = acceleration = code_value();
  4060. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4061. SERIAL_EOL;
  4062. }
  4063. if (code_seen('P')) {
  4064. acceleration = code_value();
  4065. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4066. SERIAL_EOL;
  4067. }
  4068. if (code_seen('R')) {
  4069. retract_acceleration = code_value();
  4070. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4071. SERIAL_EOL;
  4072. }
  4073. if (code_seen('T')) {
  4074. travel_acceleration = code_value();
  4075. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4076. SERIAL_EOL;
  4077. }
  4078. }
  4079. /**
  4080. * M205: Set Advanced Settings
  4081. *
  4082. * S = Min Feed Rate (mm/s)
  4083. * T = Min Travel Feed Rate (mm/s)
  4084. * B = Min Segment Time (µs)
  4085. * X = Max XY Jerk (mm/s/s)
  4086. * Z = Max Z Jerk (mm/s/s)
  4087. * E = Max E Jerk (mm/s/s)
  4088. */
  4089. inline void gcode_M205() {
  4090. if (code_seen('S')) minimumfeedrate = code_value();
  4091. if (code_seen('T')) mintravelfeedrate = code_value();
  4092. if (code_seen('B')) minsegmenttime = code_value();
  4093. if (code_seen('X')) max_xy_jerk = code_value();
  4094. if (code_seen('Z')) max_z_jerk = code_value();
  4095. if (code_seen('E')) max_e_jerk = code_value();
  4096. }
  4097. /**
  4098. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4099. */
  4100. inline void gcode_M206() {
  4101. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4102. if (code_seen(axis_codes[i])) {
  4103. home_offset[i] = code_value();
  4104. }
  4105. }
  4106. #if ENABLED(SCARA)
  4107. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4108. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4109. #endif
  4110. }
  4111. #if ENABLED(DELTA)
  4112. /**
  4113. * M665: Set delta configurations
  4114. *
  4115. * L = diagonal rod
  4116. * R = delta radius
  4117. * S = segments per second
  4118. * A = Alpha (Tower 1) diagonal rod trim
  4119. * B = Beta (Tower 2) diagonal rod trim
  4120. * C = Gamma (Tower 3) diagonal rod trim
  4121. */
  4122. inline void gcode_M665() {
  4123. if (code_seen('L')) delta_diagonal_rod = code_value();
  4124. if (code_seen('R')) delta_radius = code_value();
  4125. if (code_seen('S')) delta_segments_per_second = code_value();
  4126. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4127. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4128. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4129. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4130. }
  4131. /**
  4132. * M666: Set delta endstop adjustment
  4133. */
  4134. inline void gcode_M666() {
  4135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4136. if (DEBUGGING(LEVELING)) {
  4137. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4138. }
  4139. #endif
  4140. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4141. if (code_seen(axis_codes[i])) {
  4142. endstop_adj[i] = code_value();
  4143. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4144. if (DEBUGGING(LEVELING)) {
  4145. SERIAL_ECHOPGM("endstop_adj[");
  4146. SERIAL_ECHO(axis_codes[i]);
  4147. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4148. SERIAL_EOL;
  4149. }
  4150. #endif
  4151. }
  4152. }
  4153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4154. if (DEBUGGING(LEVELING)) {
  4155. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4156. }
  4157. #endif
  4158. }
  4159. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4160. /**
  4161. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4162. */
  4163. inline void gcode_M666() {
  4164. if (code_seen('Z')) z_endstop_adj = code_value();
  4165. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4166. SERIAL_EOL;
  4167. }
  4168. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4169. #if ENABLED(FWRETRACT)
  4170. /**
  4171. * M207: Set firmware retraction values
  4172. *
  4173. * S[+mm] retract_length
  4174. * W[+mm] retract_length_swap (multi-extruder)
  4175. * F[mm/min] retract_feedrate
  4176. * Z[mm] retract_zlift
  4177. */
  4178. inline void gcode_M207() {
  4179. if (code_seen('S')) retract_length = code_value();
  4180. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4181. if (code_seen('Z')) retract_zlift = code_value();
  4182. #if EXTRUDERS > 1
  4183. if (code_seen('W')) retract_length_swap = code_value();
  4184. #endif
  4185. }
  4186. /**
  4187. * M208: Set firmware un-retraction values
  4188. *
  4189. * S[+mm] retract_recover_length (in addition to M207 S*)
  4190. * W[+mm] retract_recover_length_swap (multi-extruder)
  4191. * F[mm/min] retract_recover_feedrate
  4192. */
  4193. inline void gcode_M208() {
  4194. if (code_seen('S')) retract_recover_length = code_value();
  4195. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4196. #if EXTRUDERS > 1
  4197. if (code_seen('W')) retract_recover_length_swap = code_value();
  4198. #endif
  4199. }
  4200. /**
  4201. * M209: Enable automatic retract (M209 S1)
  4202. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4203. */
  4204. inline void gcode_M209() {
  4205. if (code_seen('S')) {
  4206. int t = code_value_short();
  4207. switch (t) {
  4208. case 0:
  4209. autoretract_enabled = false;
  4210. break;
  4211. case 1:
  4212. autoretract_enabled = true;
  4213. break;
  4214. default:
  4215. unknown_command_error();
  4216. return;
  4217. }
  4218. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4219. }
  4220. }
  4221. #endif // FWRETRACT
  4222. #if EXTRUDERS > 1
  4223. /**
  4224. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4225. */
  4226. inline void gcode_M218() {
  4227. if (setTargetedHotend(218)) return;
  4228. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4229. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4230. #if ENABLED(DUAL_X_CARRIAGE)
  4231. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4232. #endif
  4233. SERIAL_ECHO_START;
  4234. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4235. for (int e = 0; e < EXTRUDERS; e++) {
  4236. SERIAL_CHAR(' ');
  4237. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4238. SERIAL_CHAR(',');
  4239. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4240. #if ENABLED(DUAL_X_CARRIAGE)
  4241. SERIAL_CHAR(',');
  4242. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4243. #endif
  4244. }
  4245. SERIAL_EOL;
  4246. }
  4247. #endif // EXTRUDERS > 1
  4248. /**
  4249. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4250. */
  4251. inline void gcode_M220() {
  4252. if (code_seen('S')) feedrate_multiplier = code_value();
  4253. }
  4254. /**
  4255. * M221: Set extrusion percentage (M221 T0 S95)
  4256. */
  4257. inline void gcode_M221() {
  4258. if (code_seen('S')) {
  4259. int sval = code_value();
  4260. if (setTargetedHotend(221)) return;
  4261. extruder_multiplier[target_extruder] = sval;
  4262. }
  4263. }
  4264. /**
  4265. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4266. */
  4267. inline void gcode_M226() {
  4268. if (code_seen('P')) {
  4269. int pin_number = code_value();
  4270. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4271. if (pin_state >= -1 && pin_state <= 1) {
  4272. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4273. if (sensitive_pins[i] == pin_number) {
  4274. pin_number = -1;
  4275. break;
  4276. }
  4277. }
  4278. if (pin_number > -1) {
  4279. int target = LOW;
  4280. st_synchronize();
  4281. pinMode(pin_number, INPUT);
  4282. switch (pin_state) {
  4283. case 1:
  4284. target = HIGH;
  4285. break;
  4286. case 0:
  4287. target = LOW;
  4288. break;
  4289. case -1:
  4290. target = !digitalRead(pin_number);
  4291. break;
  4292. }
  4293. while (digitalRead(pin_number) != target) idle();
  4294. } // pin_number > -1
  4295. } // pin_state -1 0 1
  4296. } // code_seen('P')
  4297. }
  4298. #if HAS_SERVOS
  4299. /**
  4300. * M280: Get or set servo position. P<index> S<angle>
  4301. */
  4302. inline void gcode_M280() {
  4303. int servo_index = code_seen('P') ? code_value_short() : -1;
  4304. int servo_position = 0;
  4305. if (code_seen('S')) {
  4306. servo_position = code_value_short();
  4307. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4308. servo[servo_index].move(servo_position);
  4309. else {
  4310. SERIAL_ERROR_START;
  4311. SERIAL_ERROR("Servo ");
  4312. SERIAL_ERROR(servo_index);
  4313. SERIAL_ERRORLN(" out of range");
  4314. }
  4315. }
  4316. else if (servo_index >= 0) {
  4317. SERIAL_ECHO_START;
  4318. SERIAL_ECHO(" Servo ");
  4319. SERIAL_ECHO(servo_index);
  4320. SERIAL_ECHO(": ");
  4321. SERIAL_ECHOLN(servo[servo_index].read());
  4322. }
  4323. }
  4324. #endif // HAS_SERVOS
  4325. #if HAS_BUZZER
  4326. /**
  4327. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4328. */
  4329. inline void gcode_M300() {
  4330. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4331. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4332. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4333. buzz(beepP, beepS);
  4334. }
  4335. #endif // HAS_BUZZER
  4336. #if ENABLED(PIDTEMP)
  4337. /**
  4338. * M301: Set PID parameters P I D (and optionally C, L)
  4339. *
  4340. * P[float] Kp term
  4341. * I[float] Ki term (unscaled)
  4342. * D[float] Kd term (unscaled)
  4343. *
  4344. * With PID_ADD_EXTRUSION_RATE:
  4345. *
  4346. * C[float] Kc term
  4347. * L[float] LPQ length
  4348. */
  4349. inline void gcode_M301() {
  4350. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4351. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4352. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4353. if (e < EXTRUDERS) { // catch bad input value
  4354. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4355. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4356. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4357. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4358. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4359. if (code_seen('L')) lpq_len = code_value();
  4360. NOMORE(lpq_len, LPQ_MAX_LEN);
  4361. #endif
  4362. updatePID();
  4363. SERIAL_ECHO_START;
  4364. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4365. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4366. SERIAL_ECHO(e);
  4367. #endif // PID_PARAMS_PER_EXTRUDER
  4368. SERIAL_ECHO(" p:");
  4369. SERIAL_ECHO(PID_PARAM(Kp, e));
  4370. SERIAL_ECHO(" i:");
  4371. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4372. SERIAL_ECHO(" d:");
  4373. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4374. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4375. SERIAL_ECHO(" c:");
  4376. //Kc does not have scaling applied above, or in resetting defaults
  4377. SERIAL_ECHO(PID_PARAM(Kc, e));
  4378. #endif
  4379. SERIAL_EOL;
  4380. }
  4381. else {
  4382. SERIAL_ERROR_START;
  4383. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4384. }
  4385. }
  4386. #endif // PIDTEMP
  4387. #if ENABLED(PIDTEMPBED)
  4388. inline void gcode_M304() {
  4389. if (code_seen('P')) bedKp = code_value();
  4390. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4391. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4392. updatePID();
  4393. SERIAL_ECHO_START;
  4394. SERIAL_ECHO(" p:");
  4395. SERIAL_ECHO(bedKp);
  4396. SERIAL_ECHO(" i:");
  4397. SERIAL_ECHO(unscalePID_i(bedKi));
  4398. SERIAL_ECHO(" d:");
  4399. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4400. }
  4401. #endif // PIDTEMPBED
  4402. #if defined(CHDK) || HAS_PHOTOGRAPH
  4403. /**
  4404. * M240: Trigger a camera by emulating a Canon RC-1
  4405. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4406. */
  4407. inline void gcode_M240() {
  4408. #ifdef CHDK
  4409. OUT_WRITE(CHDK, HIGH);
  4410. chdkHigh = millis();
  4411. chdkActive = true;
  4412. #elif HAS_PHOTOGRAPH
  4413. const uint8_t NUM_PULSES = 16;
  4414. const float PULSE_LENGTH = 0.01524;
  4415. for (int i = 0; i < NUM_PULSES; i++) {
  4416. WRITE(PHOTOGRAPH_PIN, HIGH);
  4417. _delay_ms(PULSE_LENGTH);
  4418. WRITE(PHOTOGRAPH_PIN, LOW);
  4419. _delay_ms(PULSE_LENGTH);
  4420. }
  4421. delay(7.33);
  4422. for (int i = 0; i < NUM_PULSES; i++) {
  4423. WRITE(PHOTOGRAPH_PIN, HIGH);
  4424. _delay_ms(PULSE_LENGTH);
  4425. WRITE(PHOTOGRAPH_PIN, LOW);
  4426. _delay_ms(PULSE_LENGTH);
  4427. }
  4428. #endif // !CHDK && HAS_PHOTOGRAPH
  4429. }
  4430. #endif // CHDK || PHOTOGRAPH_PIN
  4431. #if ENABLED(HAS_LCD_CONTRAST)
  4432. /**
  4433. * M250: Read and optionally set the LCD contrast
  4434. */
  4435. inline void gcode_M250() {
  4436. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4437. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4438. SERIAL_PROTOCOL(lcd_contrast);
  4439. SERIAL_EOL;
  4440. }
  4441. #endif // HAS_LCD_CONTRAST
  4442. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4443. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4444. /**
  4445. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4446. */
  4447. inline void gcode_M302() {
  4448. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4449. }
  4450. #endif // PREVENT_DANGEROUS_EXTRUDE
  4451. /**
  4452. * M303: PID relay autotune
  4453. *
  4454. * S<temperature> sets the target temperature. (default 150C)
  4455. * E<extruder> (-1 for the bed) (default 0)
  4456. * C<cycles>
  4457. * U<bool> with a non-zero value will apply the result to current settings
  4458. */
  4459. inline void gcode_M303() {
  4460. int e = code_seen('E') ? code_value_short() : 0;
  4461. int c = code_seen('C') ? code_value_short() : 5;
  4462. bool u = code_seen('U') && code_value_short() != 0;
  4463. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4464. if (e >= 0 && e < EXTRUDERS)
  4465. target_extruder = e;
  4466. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4467. PID_autotune(temp, e, c, u);
  4468. KEEPALIVE_STATE(IN_HANDLER);
  4469. }
  4470. #if ENABLED(SCARA)
  4471. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4472. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4473. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4474. if (IsRunning()) {
  4475. //gcode_get_destination(); // For X Y Z E F
  4476. delta[X_AXIS] = delta_x;
  4477. delta[Y_AXIS] = delta_y;
  4478. calculate_SCARA_forward_Transform(delta);
  4479. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4480. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4481. prepare_move();
  4482. //ok_to_send();
  4483. return true;
  4484. }
  4485. return false;
  4486. }
  4487. /**
  4488. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4489. */
  4490. inline bool gcode_M360() {
  4491. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4492. return SCARA_move_to_cal(0, 120);
  4493. }
  4494. /**
  4495. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4496. */
  4497. inline bool gcode_M361() {
  4498. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4499. return SCARA_move_to_cal(90, 130);
  4500. }
  4501. /**
  4502. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4503. */
  4504. inline bool gcode_M362() {
  4505. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4506. return SCARA_move_to_cal(60, 180);
  4507. }
  4508. /**
  4509. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4510. */
  4511. inline bool gcode_M363() {
  4512. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4513. return SCARA_move_to_cal(50, 90);
  4514. }
  4515. /**
  4516. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4517. */
  4518. inline bool gcode_M364() {
  4519. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4520. return SCARA_move_to_cal(45, 135);
  4521. }
  4522. /**
  4523. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4524. */
  4525. inline void gcode_M365() {
  4526. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4527. if (code_seen(axis_codes[i])) {
  4528. axis_scaling[i] = code_value();
  4529. }
  4530. }
  4531. }
  4532. #endif // SCARA
  4533. #if ENABLED(EXT_SOLENOID)
  4534. void enable_solenoid(uint8_t num) {
  4535. switch (num) {
  4536. case 0:
  4537. OUT_WRITE(SOL0_PIN, HIGH);
  4538. break;
  4539. #if HAS_SOLENOID_1
  4540. case 1:
  4541. OUT_WRITE(SOL1_PIN, HIGH);
  4542. break;
  4543. #endif
  4544. #if HAS_SOLENOID_2
  4545. case 2:
  4546. OUT_WRITE(SOL2_PIN, HIGH);
  4547. break;
  4548. #endif
  4549. #if HAS_SOLENOID_3
  4550. case 3:
  4551. OUT_WRITE(SOL3_PIN, HIGH);
  4552. break;
  4553. #endif
  4554. default:
  4555. SERIAL_ECHO_START;
  4556. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4557. break;
  4558. }
  4559. }
  4560. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4561. void disable_all_solenoids() {
  4562. OUT_WRITE(SOL0_PIN, LOW);
  4563. OUT_WRITE(SOL1_PIN, LOW);
  4564. OUT_WRITE(SOL2_PIN, LOW);
  4565. OUT_WRITE(SOL3_PIN, LOW);
  4566. }
  4567. /**
  4568. * M380: Enable solenoid on the active extruder
  4569. */
  4570. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4571. /**
  4572. * M381: Disable all solenoids
  4573. */
  4574. inline void gcode_M381() { disable_all_solenoids(); }
  4575. #endif // EXT_SOLENOID
  4576. /**
  4577. * M400: Finish all moves
  4578. */
  4579. inline void gcode_M400() { st_synchronize(); }
  4580. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4581. /**
  4582. * M401: Engage Z Servo endstop if available
  4583. */
  4584. inline void gcode_M401() {
  4585. #if HAS_SERVO_ENDSTOPS
  4586. raise_z_for_servo();
  4587. #endif
  4588. deploy_z_probe();
  4589. }
  4590. /**
  4591. * M402: Retract Z Servo endstop if enabled
  4592. */
  4593. inline void gcode_M402() {
  4594. #if HAS_SERVO_ENDSTOPS
  4595. raise_z_for_servo();
  4596. #endif
  4597. stow_z_probe(false);
  4598. }
  4599. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4600. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4601. /**
  4602. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4603. */
  4604. inline void gcode_M404() {
  4605. if (code_seen('W')) {
  4606. filament_width_nominal = code_value();
  4607. }
  4608. else {
  4609. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4610. SERIAL_PROTOCOLLN(filament_width_nominal);
  4611. }
  4612. }
  4613. /**
  4614. * M405: Turn on filament sensor for control
  4615. */
  4616. inline void gcode_M405() {
  4617. if (code_seen('D')) meas_delay_cm = code_value();
  4618. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4619. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  4620. int temp_ratio = widthFil_to_size_ratio();
  4621. for (delay_index1 = 0; delay_index1 < (int)COUNT(measurement_delay); ++delay_index1)
  4622. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  4623. delay_index1 = delay_index2 = 0;
  4624. }
  4625. filament_sensor = true;
  4626. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4627. //SERIAL_PROTOCOL(filament_width_meas);
  4628. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4629. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4630. }
  4631. /**
  4632. * M406: Turn off filament sensor for control
  4633. */
  4634. inline void gcode_M406() { filament_sensor = false; }
  4635. /**
  4636. * M407: Get measured filament diameter on serial output
  4637. */
  4638. inline void gcode_M407() {
  4639. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4640. SERIAL_PROTOCOLLN(filament_width_meas);
  4641. }
  4642. #endif // FILAMENT_WIDTH_SENSOR
  4643. /**
  4644. * M410: Quickstop - Abort all planned moves
  4645. *
  4646. * This will stop the carriages mid-move, so most likely they
  4647. * will be out of sync with the stepper position after this.
  4648. */
  4649. inline void gcode_M410() { quickStop(); }
  4650. #if ENABLED(MESH_BED_LEVELING)
  4651. /**
  4652. * M420: Enable/Disable Mesh Bed Leveling
  4653. */
  4654. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4655. /**
  4656. * M421: Set a single Mesh Bed Leveling Z coordinate
  4657. */
  4658. inline void gcode_M421() {
  4659. float x = 0, y = 0, z = 0;
  4660. bool err = false, hasX, hasY, hasZ;
  4661. if ((hasX = code_seen('X'))) x = code_value();
  4662. if ((hasY = code_seen('Y'))) y = code_value();
  4663. if ((hasZ = code_seen('Z'))) z = code_value();
  4664. if (!hasX || !hasY || !hasZ) {
  4665. SERIAL_ERROR_START;
  4666. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4667. err = true;
  4668. }
  4669. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4670. SERIAL_ERROR_START;
  4671. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4672. err = true;
  4673. }
  4674. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4675. }
  4676. #endif
  4677. /**
  4678. * M428: Set home_offset based on the distance between the
  4679. * current_position and the nearest "reference point."
  4680. * If an axis is past center its endstop position
  4681. * is the reference-point. Otherwise it uses 0. This allows
  4682. * the Z offset to be set near the bed when using a max endstop.
  4683. *
  4684. * M428 can't be used more than 2cm away from 0 or an endstop.
  4685. *
  4686. * Use M206 to set these values directly.
  4687. */
  4688. inline void gcode_M428() {
  4689. bool err = false;
  4690. float new_offs[3], new_pos[3];
  4691. memcpy(new_pos, current_position, sizeof(new_pos));
  4692. memcpy(new_offs, home_offset, sizeof(new_offs));
  4693. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4694. if (axis_homed[i]) {
  4695. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4696. diff = new_pos[i] - base;
  4697. if (diff > -20 && diff < 20) {
  4698. new_offs[i] -= diff;
  4699. new_pos[i] = base;
  4700. }
  4701. else {
  4702. SERIAL_ERROR_START;
  4703. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4704. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4705. #if HAS_BUZZER
  4706. buzz(200, 40);
  4707. #endif
  4708. err = true;
  4709. break;
  4710. }
  4711. }
  4712. }
  4713. if (!err) {
  4714. memcpy(current_position, new_pos, sizeof(new_pos));
  4715. memcpy(home_offset, new_offs, sizeof(new_offs));
  4716. sync_plan_position();
  4717. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4718. #if HAS_BUZZER
  4719. buzz(200, 659);
  4720. buzz(200, 698);
  4721. #endif
  4722. }
  4723. }
  4724. /**
  4725. * M500: Store settings in EEPROM
  4726. */
  4727. inline void gcode_M500() {
  4728. Config_StoreSettings();
  4729. }
  4730. /**
  4731. * M501: Read settings from EEPROM
  4732. */
  4733. inline void gcode_M501() {
  4734. Config_RetrieveSettings();
  4735. }
  4736. /**
  4737. * M502: Revert to default settings
  4738. */
  4739. inline void gcode_M502() {
  4740. Config_ResetDefault();
  4741. }
  4742. /**
  4743. * M503: print settings currently in memory
  4744. */
  4745. inline void gcode_M503() {
  4746. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4747. }
  4748. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4749. /**
  4750. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4751. */
  4752. inline void gcode_M540() {
  4753. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4754. }
  4755. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4756. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4757. inline void gcode_SET_Z_PROBE_OFFSET() {
  4758. SERIAL_ECHO_START;
  4759. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4760. SERIAL_CHAR(' ');
  4761. if (code_seen('Z')) {
  4762. float value = code_value();
  4763. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4764. zprobe_zoffset = value;
  4765. SERIAL_ECHO(zprobe_zoffset);
  4766. }
  4767. else {
  4768. SERIAL_ECHOPGM(MSG_Z_MIN);
  4769. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4770. SERIAL_ECHOPGM(MSG_Z_MAX);
  4771. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4772. }
  4773. }
  4774. else {
  4775. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4776. }
  4777. SERIAL_EOL;
  4778. }
  4779. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4780. #if ENABLED(FILAMENTCHANGEENABLE)
  4781. /**
  4782. * M600: Pause for filament change
  4783. *
  4784. * E[distance] - Retract the filament this far (negative value)
  4785. * Z[distance] - Move the Z axis by this distance
  4786. * X[position] - Move to this X position, with Y
  4787. * Y[position] - Move to this Y position, with X
  4788. * L[distance] - Retract distance for removal (manual reload)
  4789. *
  4790. * Default values are used for omitted arguments.
  4791. *
  4792. */
  4793. inline void gcode_M600() {
  4794. if (degHotend(active_extruder) < extrude_min_temp) {
  4795. SERIAL_ERROR_START;
  4796. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4797. return;
  4798. }
  4799. float lastpos[NUM_AXIS];
  4800. #if ENABLED(DELTA)
  4801. float fr60 = feedrate / 60;
  4802. #endif
  4803. for (int i = 0; i < NUM_AXIS; i++)
  4804. lastpos[i] = destination[i] = current_position[i];
  4805. #if ENABLED(DELTA)
  4806. #define RUNPLAN calculate_delta(destination); \
  4807. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4808. #else
  4809. #define RUNPLAN line_to_destination();
  4810. #endif
  4811. //retract by E
  4812. if (code_seen('E')) destination[E_AXIS] += code_value();
  4813. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4814. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4815. #endif
  4816. RUNPLAN;
  4817. //lift Z
  4818. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4819. #ifdef FILAMENTCHANGE_ZADD
  4820. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4821. #endif
  4822. RUNPLAN;
  4823. //move xy
  4824. if (code_seen('X')) destination[X_AXIS] = code_value();
  4825. #ifdef FILAMENTCHANGE_XPOS
  4826. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4827. #endif
  4828. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4829. #ifdef FILAMENTCHANGE_YPOS
  4830. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4831. #endif
  4832. RUNPLAN;
  4833. if (code_seen('L')) destination[E_AXIS] += code_value();
  4834. #ifdef FILAMENTCHANGE_FINALRETRACT
  4835. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4836. #endif
  4837. RUNPLAN;
  4838. //finish moves
  4839. st_synchronize();
  4840. //disable extruder steppers so filament can be removed
  4841. disable_e0();
  4842. disable_e1();
  4843. disable_e2();
  4844. disable_e3();
  4845. delay(100);
  4846. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4847. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4848. millis_t next_tick = 0;
  4849. #endif
  4850. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4851. while (!lcd_clicked()) {
  4852. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4853. millis_t ms = millis();
  4854. if (ms >= next_tick) {
  4855. lcd_quick_feedback();
  4856. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4857. }
  4858. idle(true);
  4859. #else
  4860. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4861. destination[E_AXIS] = current_position[E_AXIS];
  4862. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4863. st_synchronize();
  4864. #endif
  4865. } // while(!lcd_clicked)
  4866. KEEPALIVE_STATE(IN_HANDLER);
  4867. lcd_quick_feedback(); // click sound feedback
  4868. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4869. current_position[E_AXIS] = 0;
  4870. st_synchronize();
  4871. #endif
  4872. //return to normal
  4873. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4874. #ifdef FILAMENTCHANGE_FINALRETRACT
  4875. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4876. #endif
  4877. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4878. plan_set_e_position(current_position[E_AXIS]);
  4879. RUNPLAN; //should do nothing
  4880. lcd_reset_alert_level();
  4881. #if ENABLED(DELTA)
  4882. // Move XYZ to starting position, then E
  4883. calculate_delta(lastpos);
  4884. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4885. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4886. #else
  4887. // Move XY to starting position, then Z, then E
  4888. destination[X_AXIS] = lastpos[X_AXIS];
  4889. destination[Y_AXIS] = lastpos[Y_AXIS];
  4890. line_to_destination();
  4891. destination[Z_AXIS] = lastpos[Z_AXIS];
  4892. line_to_destination();
  4893. destination[E_AXIS] = lastpos[E_AXIS];
  4894. line_to_destination();
  4895. #endif
  4896. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4897. filrunoutEnqueued = false;
  4898. #endif
  4899. }
  4900. #endif // FILAMENTCHANGEENABLE
  4901. #if ENABLED(DUAL_X_CARRIAGE)
  4902. /**
  4903. * M605: Set dual x-carriage movement mode
  4904. *
  4905. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4906. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4907. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4908. * millimeters x-offset and an optional differential hotend temperature of
  4909. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4910. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4911. *
  4912. * Note: the X axis should be homed after changing dual x-carriage mode.
  4913. */
  4914. inline void gcode_M605() {
  4915. st_synchronize();
  4916. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4917. switch (dual_x_carriage_mode) {
  4918. case DXC_DUPLICATION_MODE:
  4919. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4920. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4921. SERIAL_ECHO_START;
  4922. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4923. SERIAL_CHAR(' ');
  4924. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4925. SERIAL_CHAR(',');
  4926. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4927. SERIAL_CHAR(' ');
  4928. SERIAL_ECHO(duplicate_extruder_x_offset);
  4929. SERIAL_CHAR(',');
  4930. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4931. break;
  4932. case DXC_FULL_CONTROL_MODE:
  4933. case DXC_AUTO_PARK_MODE:
  4934. break;
  4935. default:
  4936. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4937. break;
  4938. }
  4939. active_extruder_parked = false;
  4940. extruder_duplication_enabled = false;
  4941. delayed_move_time = 0;
  4942. }
  4943. #endif // DUAL_X_CARRIAGE
  4944. /**
  4945. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4946. */
  4947. inline void gcode_M907() {
  4948. #if HAS_DIGIPOTSS
  4949. for (int i = 0; i < NUM_AXIS; i++)
  4950. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4951. if (code_seen('B')) digipot_current(4, code_value());
  4952. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  4953. #endif
  4954. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  4955. if (code_seen('X')) digipot_current(0, code_value());
  4956. #endif
  4957. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  4958. if (code_seen('Z')) digipot_current(1, code_value());
  4959. #endif
  4960. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  4961. if (code_seen('E')) digipot_current(2, code_value());
  4962. #endif
  4963. #if ENABLED(DIGIPOT_I2C)
  4964. // this one uses actual amps in floating point
  4965. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4966. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4967. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  4968. #endif
  4969. #if ENABLED(DAC_STEPPER_CURRENT)
  4970. if (code_seen('S')) {
  4971. float dac_percent = code_value();
  4972. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  4973. }
  4974. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  4975. #endif
  4976. }
  4977. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  4978. /**
  4979. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4980. */
  4981. inline void gcode_M908() {
  4982. #if HAS_DIGIPOTSS
  4983. digitalPotWrite(
  4984. code_seen('P') ? code_value() : 0,
  4985. code_seen('S') ? code_value() : 0
  4986. );
  4987. #endif
  4988. #ifdef DAC_STEPPER_CURRENT
  4989. dac_current_raw(
  4990. code_seen('P') ? code_value_long() : -1,
  4991. code_seen('S') ? code_value_short() : 0
  4992. );
  4993. #endif
  4994. }
  4995. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  4996. inline void gcode_M909() { dac_print_values(); }
  4997. inline void gcode_M910() { dac_commit_eeprom(); }
  4998. #endif
  4999. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5000. #if HAS_MICROSTEPS
  5001. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5002. inline void gcode_M350() {
  5003. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5004. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5005. if (code_seen('B')) microstep_mode(4, code_value());
  5006. microstep_readings();
  5007. }
  5008. /**
  5009. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5010. * S# determines MS1 or MS2, X# sets the pin high/low.
  5011. */
  5012. inline void gcode_M351() {
  5013. if (code_seen('S')) switch (code_value_short()) {
  5014. case 1:
  5015. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5016. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5017. break;
  5018. case 2:
  5019. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5020. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5021. break;
  5022. }
  5023. microstep_readings();
  5024. }
  5025. #endif // HAS_MICROSTEPS
  5026. /**
  5027. * M999: Restart after being stopped
  5028. */
  5029. inline void gcode_M999() {
  5030. Running = true;
  5031. lcd_reset_alert_level();
  5032. // gcode_LastN = Stopped_gcode_LastN;
  5033. FlushSerialRequestResend();
  5034. }
  5035. /**
  5036. * T0-T3: Switch tool, usually switching extruders
  5037. *
  5038. * F[mm/min] Set the movement feedrate
  5039. */
  5040. inline void gcode_T(uint8_t tmp_extruder) {
  5041. if (tmp_extruder >= EXTRUDERS) {
  5042. SERIAL_ECHO_START;
  5043. SERIAL_CHAR('T');
  5044. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5045. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5046. }
  5047. else {
  5048. target_extruder = tmp_extruder;
  5049. #if EXTRUDERS > 1
  5050. bool make_move = false;
  5051. #endif
  5052. if (code_seen('F')) {
  5053. #if EXTRUDERS > 1
  5054. make_move = true;
  5055. #endif
  5056. float next_feedrate = code_value();
  5057. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5058. }
  5059. #if EXTRUDERS > 1
  5060. if (tmp_extruder != active_extruder) {
  5061. // Save current position to return to after applying extruder offset
  5062. set_destination_to_current();
  5063. #if ENABLED(DUAL_X_CARRIAGE)
  5064. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5065. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5066. // Park old head: 1) raise 2) move to park position 3) lower
  5067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5068. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5069. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5070. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5071. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5072. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5073. st_synchronize();
  5074. }
  5075. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5076. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5077. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5078. active_extruder = tmp_extruder;
  5079. // This function resets the max/min values - the current position may be overwritten below.
  5080. set_axis_is_at_home(X_AXIS);
  5081. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5082. current_position[X_AXIS] = inactive_extruder_x_pos;
  5083. inactive_extruder_x_pos = destination[X_AXIS];
  5084. }
  5085. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5086. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5087. if (active_extruder == 0 || active_extruder_parked)
  5088. current_position[X_AXIS] = inactive_extruder_x_pos;
  5089. else
  5090. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5091. inactive_extruder_x_pos = destination[X_AXIS];
  5092. extruder_duplication_enabled = false;
  5093. }
  5094. else {
  5095. // record raised toolhead position for use by unpark
  5096. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5097. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5098. active_extruder_parked = true;
  5099. delayed_move_time = 0;
  5100. }
  5101. #else // !DUAL_X_CARRIAGE
  5102. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5103. // Offset extruder, make sure to apply the bed level rotation matrix
  5104. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5105. extruder_offset[Y_AXIS][tmp_extruder],
  5106. extruder_offset[Z_AXIS][tmp_extruder]),
  5107. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5108. extruder_offset[Y_AXIS][active_extruder],
  5109. extruder_offset[Z_AXIS][active_extruder]),
  5110. offset_vec = tmp_offset_vec - act_offset_vec;
  5111. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5112. current_position[X_AXIS] += offset_vec.x;
  5113. current_position[Y_AXIS] += offset_vec.y;
  5114. current_position[Z_AXIS] += offset_vec.z;
  5115. #else // !AUTO_BED_LEVELING_FEATURE
  5116. // Offset extruder (only by XY)
  5117. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5118. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5119. #endif // !AUTO_BED_LEVELING_FEATURE
  5120. // Set the new active extruder and position
  5121. active_extruder = tmp_extruder;
  5122. #endif // !DUAL_X_CARRIAGE
  5123. #if ENABLED(DELTA)
  5124. sync_plan_position_delta();
  5125. #else
  5126. sync_plan_position();
  5127. #endif
  5128. // Move to the old position if 'F' was in the parameters
  5129. if (make_move && IsRunning()) prepare_move();
  5130. }
  5131. #if ENABLED(EXT_SOLENOID)
  5132. st_synchronize();
  5133. disable_all_solenoids();
  5134. enable_solenoid_on_active_extruder();
  5135. #endif // EXT_SOLENOID
  5136. #endif // EXTRUDERS > 1
  5137. SERIAL_ECHO_START;
  5138. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5139. SERIAL_PROTOCOLLN((int)active_extruder);
  5140. }
  5141. }
  5142. /**
  5143. * Process a single command and dispatch it to its handler
  5144. * This is called from the main loop()
  5145. */
  5146. void process_next_command() {
  5147. current_command = command_queue[cmd_queue_index_r];
  5148. if (DEBUGGING(ECHO)) {
  5149. SERIAL_ECHO_START;
  5150. SERIAL_ECHOLN(current_command);
  5151. }
  5152. // Sanitize the current command:
  5153. // - Skip leading spaces
  5154. // - Bypass N[-0-9][0-9]*[ ]*
  5155. // - Overwrite * with nul to mark the end
  5156. while (*current_command == ' ') ++current_command;
  5157. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5158. current_command += 2; // skip N[-0-9]
  5159. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5160. while (*current_command == ' ') ++current_command; // skip [ ]*
  5161. }
  5162. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5163. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5164. char *cmd_ptr = current_command;
  5165. // Get the command code, which must be G, M, or T
  5166. char command_code = *cmd_ptr++;
  5167. // Skip spaces to get the numeric part
  5168. while (*cmd_ptr == ' ') cmd_ptr++;
  5169. uint16_t codenum = 0; // define ahead of goto
  5170. // Bail early if there's no code
  5171. bool code_is_good = NUMERIC(*cmd_ptr);
  5172. if (!code_is_good) goto ExitUnknownCommand;
  5173. // Get and skip the code number
  5174. do {
  5175. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5176. cmd_ptr++;
  5177. } while (NUMERIC(*cmd_ptr));
  5178. // Skip all spaces to get to the first argument, or nul
  5179. while (*cmd_ptr == ' ') cmd_ptr++;
  5180. // The command's arguments (if any) start here, for sure!
  5181. current_command_args = cmd_ptr;
  5182. KEEPALIVE_STATE(IN_HANDLER);
  5183. // Handle a known G, M, or T
  5184. switch (command_code) {
  5185. case 'G': switch (codenum) {
  5186. // G0, G1
  5187. case 0:
  5188. case 1:
  5189. gcode_G0_G1();
  5190. break;
  5191. // G2, G3
  5192. #if DISABLED(SCARA)
  5193. case 2: // G2 - CW ARC
  5194. case 3: // G3 - CCW ARC
  5195. gcode_G2_G3(codenum == 2);
  5196. break;
  5197. #endif
  5198. // G4 Dwell
  5199. case 4:
  5200. gcode_G4();
  5201. break;
  5202. #if ENABLED(FWRETRACT)
  5203. case 10: // G10: retract
  5204. case 11: // G11: retract_recover
  5205. gcode_G10_G11(codenum == 10);
  5206. break;
  5207. #endif //FWRETRACT
  5208. case 28: // G28: Home all axes, one at a time
  5209. gcode_G28();
  5210. break;
  5211. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5212. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5213. gcode_G29();
  5214. break;
  5215. #endif
  5216. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5217. #if DISABLED(Z_PROBE_SLED)
  5218. case 30: // G30 Single Z probe
  5219. gcode_G30();
  5220. break;
  5221. #else // Z_PROBE_SLED
  5222. case 31: // G31: dock the sled
  5223. case 32: // G32: undock the sled
  5224. dock_sled(codenum == 31);
  5225. break;
  5226. #endif // Z_PROBE_SLED
  5227. #endif // AUTO_BED_LEVELING_FEATURE
  5228. case 90: // G90
  5229. relative_mode = false;
  5230. break;
  5231. case 91: // G91
  5232. relative_mode = true;
  5233. break;
  5234. case 92: // G92
  5235. gcode_G92();
  5236. break;
  5237. }
  5238. break;
  5239. case 'M': switch (codenum) {
  5240. #if ENABLED(ULTIPANEL)
  5241. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5242. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5243. gcode_M0_M1();
  5244. break;
  5245. #endif // ULTIPANEL
  5246. case 17:
  5247. gcode_M17();
  5248. break;
  5249. #if ENABLED(SDSUPPORT)
  5250. case 20: // M20 - list SD card
  5251. gcode_M20(); break;
  5252. case 21: // M21 - init SD card
  5253. gcode_M21(); break;
  5254. case 22: //M22 - release SD card
  5255. gcode_M22(); break;
  5256. case 23: //M23 - Select file
  5257. gcode_M23(); break;
  5258. case 24: //M24 - Start SD print
  5259. gcode_M24(); break;
  5260. case 25: //M25 - Pause SD print
  5261. gcode_M25(); break;
  5262. case 26: //M26 - Set SD index
  5263. gcode_M26(); break;
  5264. case 27: //M27 - Get SD status
  5265. gcode_M27(); break;
  5266. case 28: //M28 - Start SD write
  5267. gcode_M28(); break;
  5268. case 29: //M29 - Stop SD write
  5269. gcode_M29(); break;
  5270. case 30: //M30 <filename> Delete File
  5271. gcode_M30(); break;
  5272. case 32: //M32 - Select file and start SD print
  5273. gcode_M32(); break;
  5274. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5275. case 33: //M33 - Get the long full path to a file or folder
  5276. gcode_M33(); break;
  5277. #endif // LONG_FILENAME_HOST_SUPPORT
  5278. case 928: //M928 - Start SD write
  5279. gcode_M928(); break;
  5280. #endif //SDSUPPORT
  5281. case 31: //M31 take time since the start of the SD print or an M109 command
  5282. gcode_M31();
  5283. break;
  5284. case 42: //M42 -Change pin status via gcode
  5285. gcode_M42();
  5286. break;
  5287. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5288. case 48: // M48 Z probe repeatability
  5289. gcode_M48();
  5290. break;
  5291. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5292. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5293. case 100:
  5294. gcode_M100();
  5295. break;
  5296. #endif
  5297. case 104: // M104
  5298. gcode_M104();
  5299. break;
  5300. case 110: // M110: Set Current Line Number
  5301. gcode_M110();
  5302. break;
  5303. case 111: // M111: Set debug level
  5304. gcode_M111();
  5305. break;
  5306. case 112: // M112: Emergency Stop
  5307. gcode_M112();
  5308. break;
  5309. case 140: // M140: Set bed temp
  5310. gcode_M140();
  5311. break;
  5312. case 105: // M105: Read current temperature
  5313. gcode_M105();
  5314. KEEPALIVE_STATE(NOT_BUSY);
  5315. return; // "ok" already printed
  5316. case 109: // M109: Wait for temperature
  5317. gcode_M109();
  5318. break;
  5319. #if HAS_TEMP_BED
  5320. case 190: // M190: Wait for bed heater to reach target
  5321. gcode_M190();
  5322. break;
  5323. #endif // HAS_TEMP_BED
  5324. #if FAN_COUNT > 0
  5325. case 106: // M106: Fan On
  5326. gcode_M106();
  5327. break;
  5328. case 107: // M107: Fan Off
  5329. gcode_M107();
  5330. break;
  5331. #endif // FAN_COUNT > 0
  5332. #if ENABLED(BARICUDA)
  5333. // PWM for HEATER_1_PIN
  5334. #if HAS_HEATER_1
  5335. case 126: // M126: valve open
  5336. gcode_M126();
  5337. break;
  5338. case 127: // M127: valve closed
  5339. gcode_M127();
  5340. break;
  5341. #endif // HAS_HEATER_1
  5342. // PWM for HEATER_2_PIN
  5343. #if HAS_HEATER_2
  5344. case 128: // M128: valve open
  5345. gcode_M128();
  5346. break;
  5347. case 129: // M129: valve closed
  5348. gcode_M129();
  5349. break;
  5350. #endif // HAS_HEATER_2
  5351. #endif // BARICUDA
  5352. #if HAS_POWER_SWITCH
  5353. case 80: // M80: Turn on Power Supply
  5354. gcode_M80();
  5355. break;
  5356. #endif // HAS_POWER_SWITCH
  5357. case 81: // M81: Turn off Power, including Power Supply, if possible
  5358. gcode_M81();
  5359. break;
  5360. case 82:
  5361. gcode_M82();
  5362. break;
  5363. case 83:
  5364. gcode_M83();
  5365. break;
  5366. case 18: // (for compatibility)
  5367. case 84: // M84
  5368. gcode_M18_M84();
  5369. break;
  5370. case 85: // M85
  5371. gcode_M85();
  5372. break;
  5373. case 92: // M92: Set the steps-per-unit for one or more axes
  5374. gcode_M92();
  5375. break;
  5376. case 115: // M115: Report capabilities
  5377. gcode_M115();
  5378. break;
  5379. case 117: // M117: Set LCD message text, if possible
  5380. gcode_M117();
  5381. break;
  5382. case 114: // M114: Report current position
  5383. gcode_M114();
  5384. break;
  5385. case 120: // M120: Enable endstops
  5386. gcode_M120();
  5387. break;
  5388. case 121: // M121: Disable endstops
  5389. gcode_M121();
  5390. break;
  5391. case 119: // M119: Report endstop states
  5392. gcode_M119();
  5393. break;
  5394. #if ENABLED(ULTIPANEL)
  5395. case 145: // M145: Set material heatup parameters
  5396. gcode_M145();
  5397. break;
  5398. #endif
  5399. #if ENABLED(BLINKM)
  5400. case 150: // M150
  5401. gcode_M150();
  5402. break;
  5403. #endif //BLINKM
  5404. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5405. gcode_M200();
  5406. break;
  5407. case 201: // M201
  5408. gcode_M201();
  5409. break;
  5410. #if 0 // Not used for Sprinter/grbl gen6
  5411. case 202: // M202
  5412. gcode_M202();
  5413. break;
  5414. #endif
  5415. case 203: // M203 max feedrate mm/sec
  5416. gcode_M203();
  5417. break;
  5418. case 204: // M204 acclereration S normal moves T filmanent only moves
  5419. gcode_M204();
  5420. break;
  5421. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5422. gcode_M205();
  5423. break;
  5424. case 206: // M206 additional homing offset
  5425. gcode_M206();
  5426. break;
  5427. #if ENABLED(DELTA)
  5428. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5429. gcode_M665();
  5430. break;
  5431. #endif
  5432. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5433. case 666: // M666 set delta / dual endstop adjustment
  5434. gcode_M666();
  5435. break;
  5436. #endif
  5437. #if ENABLED(FWRETRACT)
  5438. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5439. gcode_M207();
  5440. break;
  5441. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5442. gcode_M208();
  5443. break;
  5444. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5445. gcode_M209();
  5446. break;
  5447. #endif // FWRETRACT
  5448. #if EXTRUDERS > 1
  5449. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5450. gcode_M218();
  5451. break;
  5452. #endif
  5453. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5454. gcode_M220();
  5455. break;
  5456. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5457. gcode_M221();
  5458. break;
  5459. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5460. gcode_M226();
  5461. break;
  5462. #if HAS_SERVOS
  5463. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5464. gcode_M280();
  5465. break;
  5466. #endif // HAS_SERVOS
  5467. #if HAS_BUZZER
  5468. case 300: // M300 - Play beep tone
  5469. gcode_M300();
  5470. break;
  5471. #endif // HAS_BUZZER
  5472. #if ENABLED(PIDTEMP)
  5473. case 301: // M301
  5474. gcode_M301();
  5475. break;
  5476. #endif // PIDTEMP
  5477. #if ENABLED(PIDTEMPBED)
  5478. case 304: // M304
  5479. gcode_M304();
  5480. break;
  5481. #endif // PIDTEMPBED
  5482. #if defined(CHDK) || HAS_PHOTOGRAPH
  5483. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5484. gcode_M240();
  5485. break;
  5486. #endif // CHDK || PHOTOGRAPH_PIN
  5487. #if ENABLED(HAS_LCD_CONTRAST)
  5488. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5489. gcode_M250();
  5490. break;
  5491. #endif // HAS_LCD_CONTRAST
  5492. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5493. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5494. gcode_M302();
  5495. break;
  5496. #endif // PREVENT_DANGEROUS_EXTRUDE
  5497. case 303: // M303 PID autotune
  5498. gcode_M303();
  5499. break;
  5500. #if ENABLED(SCARA)
  5501. case 360: // M360 SCARA Theta pos1
  5502. if (gcode_M360()) return;
  5503. break;
  5504. case 361: // M361 SCARA Theta pos2
  5505. if (gcode_M361()) return;
  5506. break;
  5507. case 362: // M362 SCARA Psi pos1
  5508. if (gcode_M362()) return;
  5509. break;
  5510. case 363: // M363 SCARA Psi pos2
  5511. if (gcode_M363()) return;
  5512. break;
  5513. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5514. if (gcode_M364()) return;
  5515. break;
  5516. case 365: // M365 Set SCARA scaling for X Y Z
  5517. gcode_M365();
  5518. break;
  5519. #endif // SCARA
  5520. case 400: // M400 finish all moves
  5521. gcode_M400();
  5522. break;
  5523. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5524. case 401:
  5525. gcode_M401();
  5526. break;
  5527. case 402:
  5528. gcode_M402();
  5529. break;
  5530. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5531. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5532. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5533. gcode_M404();
  5534. break;
  5535. case 405: //M405 Turn on filament sensor for control
  5536. gcode_M405();
  5537. break;
  5538. case 406: //M406 Turn off filament sensor for control
  5539. gcode_M406();
  5540. break;
  5541. case 407: //M407 Display measured filament diameter
  5542. gcode_M407();
  5543. break;
  5544. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5545. case 410: // M410 quickstop - Abort all the planned moves.
  5546. gcode_M410();
  5547. break;
  5548. #if ENABLED(MESH_BED_LEVELING)
  5549. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5550. gcode_M420();
  5551. break;
  5552. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5553. gcode_M421();
  5554. break;
  5555. #endif
  5556. case 428: // M428 Apply current_position to home_offset
  5557. gcode_M428();
  5558. break;
  5559. case 500: // M500 Store settings in EEPROM
  5560. gcode_M500();
  5561. break;
  5562. case 501: // M501 Read settings from EEPROM
  5563. gcode_M501();
  5564. break;
  5565. case 502: // M502 Revert to default settings
  5566. gcode_M502();
  5567. break;
  5568. case 503: // M503 print settings currently in memory
  5569. gcode_M503();
  5570. break;
  5571. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5572. case 540:
  5573. gcode_M540();
  5574. break;
  5575. #endif
  5576. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5577. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5578. gcode_SET_Z_PROBE_OFFSET();
  5579. break;
  5580. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5581. #if ENABLED(FILAMENTCHANGEENABLE)
  5582. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5583. gcode_M600();
  5584. break;
  5585. #endif // FILAMENTCHANGEENABLE
  5586. #if ENABLED(DUAL_X_CARRIAGE)
  5587. case 605:
  5588. gcode_M605();
  5589. break;
  5590. #endif // DUAL_X_CARRIAGE
  5591. case 907: // M907 Set digital trimpot motor current using axis codes.
  5592. gcode_M907();
  5593. break;
  5594. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5595. case 908: // M908 Control digital trimpot directly.
  5596. gcode_M908();
  5597. break;
  5598. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5599. case 909: // M909 Print digipot/DAC current value
  5600. gcode_M909();
  5601. break;
  5602. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5603. gcode_M910();
  5604. break;
  5605. #endif
  5606. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5607. #if HAS_MICROSTEPS
  5608. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5609. gcode_M350();
  5610. break;
  5611. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5612. gcode_M351();
  5613. break;
  5614. #endif // HAS_MICROSTEPS
  5615. case 999: // M999: Restart after being Stopped
  5616. gcode_M999();
  5617. break;
  5618. }
  5619. break;
  5620. case 'T':
  5621. gcode_T(codenum);
  5622. break;
  5623. default: code_is_good = false;
  5624. }
  5625. KEEPALIVE_STATE(NOT_BUSY);
  5626. ExitUnknownCommand:
  5627. // Still unknown command? Throw an error
  5628. if (!code_is_good) unknown_command_error();
  5629. ok_to_send();
  5630. }
  5631. void FlushSerialRequestResend() {
  5632. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5633. MYSERIAL.flush();
  5634. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5635. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5636. ok_to_send();
  5637. }
  5638. void ok_to_send() {
  5639. refresh_cmd_timeout();
  5640. if (!send_ok[cmd_queue_index_r]) return;
  5641. SERIAL_PROTOCOLPGM(MSG_OK);
  5642. #if ENABLED(ADVANCED_OK)
  5643. char* p = command_queue[cmd_queue_index_r];
  5644. if (*p == 'N') {
  5645. SERIAL_PROTOCOL(' ');
  5646. SERIAL_ECHO(*p++);
  5647. while (NUMERIC_SIGNED(*p))
  5648. SERIAL_ECHO(*p++);
  5649. }
  5650. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5651. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5652. #endif
  5653. SERIAL_EOL;
  5654. }
  5655. void clamp_to_software_endstops(float target[3]) {
  5656. if (min_software_endstops) {
  5657. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5658. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5659. float negative_z_offset = 0;
  5660. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5661. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5662. if (home_offset[Z_AXIS] < 0) {
  5663. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5664. if (DEBUGGING(LEVELING)) {
  5665. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5666. SERIAL_EOL;
  5667. }
  5668. #endif
  5669. negative_z_offset += home_offset[Z_AXIS];
  5670. }
  5671. #endif
  5672. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5673. }
  5674. if (max_software_endstops) {
  5675. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5676. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5677. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5678. }
  5679. }
  5680. #if ENABLED(DELTA)
  5681. void recalc_delta_settings(float radius, float diagonal_rod) {
  5682. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5683. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5684. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5685. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5686. delta_tower3_x = 0.0; // back middle tower
  5687. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5688. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5689. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5690. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5691. }
  5692. void calculate_delta(float cartesian[3]) {
  5693. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5694. - sq(delta_tower1_x - cartesian[X_AXIS])
  5695. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5696. ) + cartesian[Z_AXIS];
  5697. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5698. - sq(delta_tower2_x - cartesian[X_AXIS])
  5699. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5700. ) + cartesian[Z_AXIS];
  5701. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5702. - sq(delta_tower3_x - cartesian[X_AXIS])
  5703. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5704. ) + cartesian[Z_AXIS];
  5705. /**
  5706. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5707. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5708. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5709. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5710. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5711. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5712. */
  5713. }
  5714. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5715. // Adjust print surface height by linear interpolation over the bed_level array.
  5716. void adjust_delta(float cartesian[3]) {
  5717. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5718. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5719. float h1 = 0.001 - half, h2 = half - 0.001,
  5720. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5721. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5722. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5723. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5724. z1 = bed_level[floor_x + half][floor_y + half],
  5725. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5726. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5727. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5728. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5729. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5730. offset = (1 - ratio_x) * left + ratio_x * right;
  5731. delta[X_AXIS] += offset;
  5732. delta[Y_AXIS] += offset;
  5733. delta[Z_AXIS] += offset;
  5734. /**
  5735. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5736. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5737. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5738. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5739. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5740. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5741. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5742. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5743. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5744. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5745. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5746. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5747. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5748. */
  5749. }
  5750. #endif // AUTO_BED_LEVELING_FEATURE
  5751. #endif // DELTA
  5752. #if ENABLED(MESH_BED_LEVELING)
  5753. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5754. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5755. if (!mbl.active) {
  5756. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5757. set_current_to_destination();
  5758. return;
  5759. }
  5760. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5761. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5762. int ix = mbl.select_x_index(x);
  5763. int iy = mbl.select_y_index(y);
  5764. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5765. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5766. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5767. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5768. if (pix == ix && piy == iy) {
  5769. // Start and end on same mesh square
  5770. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5771. set_current_to_destination();
  5772. return;
  5773. }
  5774. float nx, ny, nz, ne, normalized_dist;
  5775. if (ix > pix && TEST(x_splits, ix)) {
  5776. nx = mbl.get_x(ix);
  5777. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5778. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5779. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5780. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5781. CBI(x_splits, ix);
  5782. }
  5783. else if (ix < pix && TEST(x_splits, pix)) {
  5784. nx = mbl.get_x(pix);
  5785. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5786. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5787. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5788. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5789. CBI(x_splits, pix);
  5790. }
  5791. else if (iy > piy && TEST(y_splits, iy)) {
  5792. ny = mbl.get_y(iy);
  5793. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5794. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5795. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5796. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5797. CBI(y_splits, iy);
  5798. }
  5799. else if (iy < piy && TEST(y_splits, piy)) {
  5800. ny = mbl.get_y(piy);
  5801. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5802. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5803. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5804. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5805. CBI(y_splits, piy);
  5806. }
  5807. else {
  5808. // Already split on a border
  5809. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5810. set_current_to_destination();
  5811. return;
  5812. }
  5813. // Do the split and look for more borders
  5814. destination[X_AXIS] = nx;
  5815. destination[Y_AXIS] = ny;
  5816. destination[Z_AXIS] = nz;
  5817. destination[E_AXIS] = ne;
  5818. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5819. destination[X_AXIS] = x;
  5820. destination[Y_AXIS] = y;
  5821. destination[Z_AXIS] = z;
  5822. destination[E_AXIS] = e;
  5823. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5824. }
  5825. #endif // MESH_BED_LEVELING
  5826. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5827. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5828. if (DEBUGGING(DRYRUN)) return;
  5829. float de = dest_e - curr_e;
  5830. if (de) {
  5831. if (degHotend(active_extruder) < extrude_min_temp) {
  5832. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5833. SERIAL_ECHO_START;
  5834. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5835. }
  5836. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5837. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5838. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5839. SERIAL_ECHO_START;
  5840. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5841. }
  5842. #endif
  5843. }
  5844. }
  5845. #endif // PREVENT_DANGEROUS_EXTRUDE
  5846. #if ENABLED(DELTA) || ENABLED(SCARA)
  5847. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5848. float difference[NUM_AXIS];
  5849. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5850. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5851. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5852. if (cartesian_mm < 0.000001) return false;
  5853. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5854. int steps = max(1, int(delta_segments_per_second * seconds));
  5855. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5856. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5857. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5858. for (int s = 1; s <= steps; s++) {
  5859. float fraction = float(s) / float(steps);
  5860. for (int8_t i = 0; i < NUM_AXIS; i++)
  5861. target[i] = current_position[i] + difference[i] * fraction;
  5862. calculate_delta(target);
  5863. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5864. adjust_delta(target);
  5865. #endif
  5866. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5867. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5868. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5869. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5870. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5871. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5872. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5873. }
  5874. return true;
  5875. }
  5876. #endif // DELTA || SCARA
  5877. #if ENABLED(SCARA)
  5878. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5879. #endif
  5880. #if ENABLED(DUAL_X_CARRIAGE)
  5881. inline bool prepare_move_dual_x_carriage() {
  5882. if (active_extruder_parked) {
  5883. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5884. // move duplicate extruder into correct duplication position.
  5885. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5886. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5887. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5888. sync_plan_position();
  5889. st_synchronize();
  5890. extruder_duplication_enabled = true;
  5891. active_extruder_parked = false;
  5892. }
  5893. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5894. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5895. // This is a travel move (with no extrusion)
  5896. // Skip it, but keep track of the current position
  5897. // (so it can be used as the start of the next non-travel move)
  5898. if (delayed_move_time != 0xFFFFFFFFUL) {
  5899. set_current_to_destination();
  5900. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5901. delayed_move_time = millis();
  5902. return false;
  5903. }
  5904. }
  5905. delayed_move_time = 0;
  5906. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5907. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5910. active_extruder_parked = false;
  5911. }
  5912. }
  5913. return true;
  5914. }
  5915. #endif // DUAL_X_CARRIAGE
  5916. #if DISABLED(DELTA) && DISABLED(SCARA)
  5917. inline bool prepare_move_cartesian() {
  5918. // Do not use feedrate_multiplier for E or Z only moves
  5919. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5920. line_to_destination();
  5921. }
  5922. else {
  5923. #if ENABLED(MESH_BED_LEVELING)
  5924. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  5925. return false;
  5926. #else
  5927. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5928. #endif
  5929. }
  5930. return true;
  5931. }
  5932. #endif // !DELTA && !SCARA
  5933. /**
  5934. * Prepare a single move and get ready for the next one
  5935. *
  5936. * (This may call plan_buffer_line several times to put
  5937. * smaller moves into the planner for DELTA or SCARA.)
  5938. */
  5939. void prepare_move() {
  5940. clamp_to_software_endstops(destination);
  5941. refresh_cmd_timeout();
  5942. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5943. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5944. #endif
  5945. #if ENABLED(SCARA)
  5946. if (!prepare_move_scara(destination)) return;
  5947. #elif ENABLED(DELTA)
  5948. if (!prepare_move_delta(destination)) return;
  5949. #endif
  5950. #if ENABLED(DUAL_X_CARRIAGE)
  5951. if (!prepare_move_dual_x_carriage()) return;
  5952. #endif
  5953. #if DISABLED(DELTA) && DISABLED(SCARA)
  5954. if (!prepare_move_cartesian()) return;
  5955. #endif
  5956. set_current_to_destination();
  5957. }
  5958. /**
  5959. * Plan an arc in 2 dimensions
  5960. *
  5961. * The arc is approximated by generating many small linear segments.
  5962. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5963. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5964. * larger segments will tend to be more efficient. Your slicer should have
  5965. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5966. */
  5967. void plan_arc(
  5968. float target[NUM_AXIS], // Destination position
  5969. float* offset, // Center of rotation relative to current_position
  5970. uint8_t clockwise // Clockwise?
  5971. ) {
  5972. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5973. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5974. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5975. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5976. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5977. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5978. r_axis1 = -offset[Y_AXIS],
  5979. rt_axis0 = target[X_AXIS] - center_axis0,
  5980. rt_axis1 = target[Y_AXIS] - center_axis1;
  5981. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5982. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  5983. if (angular_travel < 0) angular_travel += RADIANS(360);
  5984. if (clockwise) angular_travel -= RADIANS(360);
  5985. // Make a circle if the angular rotation is 0
  5986. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5987. angular_travel += RADIANS(360);
  5988. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  5989. if (mm_of_travel < 0.001) return;
  5990. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  5991. if (segments == 0) segments = 1;
  5992. float theta_per_segment = angular_travel / segments;
  5993. float linear_per_segment = linear_travel / segments;
  5994. float extruder_per_segment = extruder_travel / segments;
  5995. /**
  5996. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5997. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5998. * r_T = [cos(phi) -sin(phi);
  5999. * sin(phi) cos(phi] * r ;
  6000. *
  6001. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6002. * defined from the circle center to the initial position. Each line segment is formed by successive
  6003. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6004. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6005. * all double numbers are single precision on the Arduino. (True double precision will not have
  6006. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6007. * tool precision in some cases. Therefore, arc path correction is implemented.
  6008. *
  6009. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6010. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6011. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6012. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6013. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6014. * issue for CNC machines with the single precision Arduino calculations.
  6015. *
  6016. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6017. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6018. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6019. * This is important when there are successive arc motions.
  6020. */
  6021. // Vector rotation matrix values
  6022. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6023. float sin_T = theta_per_segment;
  6024. float arc_target[NUM_AXIS];
  6025. float sin_Ti;
  6026. float cos_Ti;
  6027. float r_axisi;
  6028. uint16_t i;
  6029. int8_t count = 0;
  6030. // Initialize the linear axis
  6031. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6032. // Initialize the extruder axis
  6033. arc_target[E_AXIS] = current_position[E_AXIS];
  6034. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6035. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6036. if (count < N_ARC_CORRECTION) {
  6037. // Apply vector rotation matrix to previous r_axis0 / 1
  6038. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6039. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6040. r_axis1 = r_axisi;
  6041. count++;
  6042. }
  6043. else {
  6044. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6045. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6046. cos_Ti = cos(i * theta_per_segment);
  6047. sin_Ti = sin(i * theta_per_segment);
  6048. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6049. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6050. count = 0;
  6051. }
  6052. // Update arc_target location
  6053. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6054. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6055. arc_target[Z_AXIS] += linear_per_segment;
  6056. arc_target[E_AXIS] += extruder_per_segment;
  6057. clamp_to_software_endstops(arc_target);
  6058. #if ENABLED(DELTA) || ENABLED(SCARA)
  6059. calculate_delta(arc_target);
  6060. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6061. adjust_delta(arc_target);
  6062. #endif
  6063. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6064. #else
  6065. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6066. #endif
  6067. }
  6068. // Ensure last segment arrives at target location.
  6069. #if ENABLED(DELTA) || ENABLED(SCARA)
  6070. calculate_delta(target);
  6071. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6072. adjust_delta(target);
  6073. #endif
  6074. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6075. #else
  6076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6077. #endif
  6078. // As far as the parser is concerned, the position is now == target. In reality the
  6079. // motion control system might still be processing the action and the real tool position
  6080. // in any intermediate location.
  6081. set_current_to_destination();
  6082. }
  6083. #if HAS_CONTROLLERFAN
  6084. void controllerFan() {
  6085. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6086. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6087. millis_t ms = millis();
  6088. if (ms >= nextMotorCheck) {
  6089. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6090. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6091. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6092. #if EXTRUDERS > 1
  6093. || E1_ENABLE_READ == E_ENABLE_ON
  6094. #if HAS_X2_ENABLE
  6095. || X2_ENABLE_READ == X_ENABLE_ON
  6096. #endif
  6097. #if EXTRUDERS > 2
  6098. || E2_ENABLE_READ == E_ENABLE_ON
  6099. #if EXTRUDERS > 3
  6100. || E3_ENABLE_READ == E_ENABLE_ON
  6101. #endif
  6102. #endif
  6103. #endif
  6104. ) {
  6105. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6106. }
  6107. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6108. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6109. // allows digital or PWM fan output to be used (see M42 handling)
  6110. digitalWrite(CONTROLLERFAN_PIN, speed);
  6111. analogWrite(CONTROLLERFAN_PIN, speed);
  6112. }
  6113. }
  6114. #endif // HAS_CONTROLLERFAN
  6115. #if ENABLED(SCARA)
  6116. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6117. // Perform forward kinematics, and place results in delta[3]
  6118. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6119. float x_sin, x_cos, y_sin, y_cos;
  6120. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6121. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6122. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6123. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6124. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6125. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6126. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6127. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6128. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6129. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6130. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6131. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6132. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6133. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6134. }
  6135. void calculate_delta(float cartesian[3]) {
  6136. //reverse kinematics.
  6137. // Perform reversed kinematics, and place results in delta[3]
  6138. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6139. float SCARA_pos[2];
  6140. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6141. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6142. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6143. #if (Linkage_1 == Linkage_2)
  6144. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6145. #else
  6146. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6147. #endif
  6148. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6149. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6150. SCARA_K2 = Linkage_2 * SCARA_S2;
  6151. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6152. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6153. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6154. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6155. delta[Z_AXIS] = cartesian[Z_AXIS];
  6156. /**
  6157. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6158. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6159. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6160. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6161. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6162. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6163. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6164. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6165. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6166. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6167. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6168. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6169. SERIAL_EOL;
  6170. */
  6171. }
  6172. #endif // SCARA
  6173. #if ENABLED(TEMP_STAT_LEDS)
  6174. static bool red_led = false;
  6175. static millis_t next_status_led_update_ms = 0;
  6176. void handle_status_leds(void) {
  6177. float max_temp = 0.0;
  6178. if (millis() > next_status_led_update_ms) {
  6179. next_status_led_update_ms += 500; // Update every 0.5s
  6180. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6181. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6182. #if HAS_TEMP_BED
  6183. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6184. #endif
  6185. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6186. if (new_led != red_led) {
  6187. red_led = new_led;
  6188. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6189. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6190. }
  6191. }
  6192. }
  6193. #endif
  6194. void enable_all_steppers() {
  6195. enable_x();
  6196. enable_y();
  6197. enable_z();
  6198. enable_e0();
  6199. enable_e1();
  6200. enable_e2();
  6201. enable_e3();
  6202. }
  6203. void disable_all_steppers() {
  6204. disable_x();
  6205. disable_y();
  6206. disable_z();
  6207. disable_e0();
  6208. disable_e1();
  6209. disable_e2();
  6210. disable_e3();
  6211. }
  6212. /**
  6213. * Standard idle routine keeps the machine alive
  6214. */
  6215. void idle(
  6216. #if ENABLED(FILAMENTCHANGEENABLE)
  6217. bool no_stepper_sleep/*=false*/
  6218. #endif
  6219. ) {
  6220. manage_heater();
  6221. manage_inactivity(
  6222. #if ENABLED(FILAMENTCHANGEENABLE)
  6223. no_stepper_sleep
  6224. #endif
  6225. );
  6226. host_keepalive();
  6227. lcd_update();
  6228. }
  6229. /**
  6230. * Manage several activities:
  6231. * - Check for Filament Runout
  6232. * - Keep the command buffer full
  6233. * - Check for maximum inactive time between commands
  6234. * - Check for maximum inactive time between stepper commands
  6235. * - Check if pin CHDK needs to go LOW
  6236. * - Check for KILL button held down
  6237. * - Check for HOME button held down
  6238. * - Check if cooling fan needs to be switched on
  6239. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6240. */
  6241. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6242. #if HAS_FILRUNOUT
  6243. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6244. filrunout();
  6245. #endif
  6246. if (commands_in_queue < BUFSIZE) get_available_commands();
  6247. millis_t ms = millis();
  6248. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6249. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6250. && !ignore_stepper_queue && !blocks_queued()) {
  6251. #if ENABLED(DISABLE_INACTIVE_X)
  6252. disable_x();
  6253. #endif
  6254. #if ENABLED(DISABLE_INACTIVE_Y)
  6255. disable_y();
  6256. #endif
  6257. #if ENABLED(DISABLE_INACTIVE_Z)
  6258. disable_z();
  6259. #endif
  6260. #if ENABLED(DISABLE_INACTIVE_E)
  6261. disable_e0();
  6262. disable_e1();
  6263. disable_e2();
  6264. disable_e3();
  6265. #endif
  6266. }
  6267. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6268. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6269. chdkActive = false;
  6270. WRITE(CHDK, LOW);
  6271. }
  6272. #endif
  6273. #if HAS_KILL
  6274. // Check if the kill button was pressed and wait just in case it was an accidental
  6275. // key kill key press
  6276. // -------------------------------------------------------------------------------
  6277. static int killCount = 0; // make the inactivity button a bit less responsive
  6278. const int KILL_DELAY = 750;
  6279. if (!READ(KILL_PIN))
  6280. killCount++;
  6281. else if (killCount > 0)
  6282. killCount--;
  6283. // Exceeded threshold and we can confirm that it was not accidental
  6284. // KILL the machine
  6285. // ----------------------------------------------------------------
  6286. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6287. #endif
  6288. #if HAS_HOME
  6289. // Check to see if we have to home, use poor man's debouncer
  6290. // ---------------------------------------------------------
  6291. static int homeDebounceCount = 0; // poor man's debouncing count
  6292. const int HOME_DEBOUNCE_DELAY = 2500;
  6293. if (!READ(HOME_PIN)) {
  6294. if (!homeDebounceCount) {
  6295. enqueue_and_echo_commands_P(PSTR("G28"));
  6296. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6297. }
  6298. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6299. homeDebounceCount++;
  6300. else
  6301. homeDebounceCount = 0;
  6302. }
  6303. #endif
  6304. #if HAS_CONTROLLERFAN
  6305. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6306. #endif
  6307. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6308. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6309. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6310. bool oldstatus;
  6311. switch (active_extruder) {
  6312. case 0:
  6313. oldstatus = E0_ENABLE_READ;
  6314. enable_e0();
  6315. break;
  6316. #if EXTRUDERS > 1
  6317. case 1:
  6318. oldstatus = E1_ENABLE_READ;
  6319. enable_e1();
  6320. break;
  6321. #if EXTRUDERS > 2
  6322. case 2:
  6323. oldstatus = E2_ENABLE_READ;
  6324. enable_e2();
  6325. break;
  6326. #if EXTRUDERS > 3
  6327. case 3:
  6328. oldstatus = E3_ENABLE_READ;
  6329. enable_e3();
  6330. break;
  6331. #endif
  6332. #endif
  6333. #endif
  6334. }
  6335. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6337. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6338. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6339. current_position[E_AXIS] = oldepos;
  6340. destination[E_AXIS] = oldedes;
  6341. plan_set_e_position(oldepos);
  6342. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6343. st_synchronize();
  6344. switch (active_extruder) {
  6345. case 0:
  6346. E0_ENABLE_WRITE(oldstatus);
  6347. break;
  6348. #if EXTRUDERS > 1
  6349. case 1:
  6350. E1_ENABLE_WRITE(oldstatus);
  6351. break;
  6352. #if EXTRUDERS > 2
  6353. case 2:
  6354. E2_ENABLE_WRITE(oldstatus);
  6355. break;
  6356. #if EXTRUDERS > 3
  6357. case 3:
  6358. E3_ENABLE_WRITE(oldstatus);
  6359. break;
  6360. #endif
  6361. #endif
  6362. #endif
  6363. }
  6364. }
  6365. #endif
  6366. #if ENABLED(DUAL_X_CARRIAGE)
  6367. // handle delayed move timeout
  6368. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6369. // travel moves have been received so enact them
  6370. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6371. set_destination_to_current();
  6372. prepare_move();
  6373. }
  6374. #endif
  6375. #if ENABLED(TEMP_STAT_LEDS)
  6376. handle_status_leds();
  6377. #endif
  6378. check_axes_activity();
  6379. }
  6380. void kill(const char* lcd_msg) {
  6381. #if ENABLED(ULTRA_LCD)
  6382. lcd_setalertstatuspgm(lcd_msg);
  6383. #else
  6384. UNUSED(lcd_msg);
  6385. #endif
  6386. cli(); // Stop interrupts
  6387. disable_all_heaters();
  6388. disable_all_steppers();
  6389. #if HAS_POWER_SWITCH
  6390. pinMode(PS_ON_PIN, INPUT);
  6391. #endif
  6392. SERIAL_ERROR_START;
  6393. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6394. // FMC small patch to update the LCD before ending
  6395. sei(); // enable interrupts
  6396. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6397. cli(); // disable interrupts
  6398. suicide();
  6399. while (1) {
  6400. #if ENABLED(USE_WATCHDOG)
  6401. watchdog_reset();
  6402. #endif
  6403. } // Wait for reset
  6404. }
  6405. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6406. void filrunout() {
  6407. if (!filrunoutEnqueued) {
  6408. filrunoutEnqueued = true;
  6409. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6410. st_synchronize();
  6411. }
  6412. }
  6413. #endif // FILAMENT_RUNOUT_SENSOR
  6414. #if ENABLED(FAST_PWM_FAN)
  6415. void setPwmFrequency(uint8_t pin, int val) {
  6416. val &= 0x07;
  6417. switch (digitalPinToTimer(pin)) {
  6418. #if defined(TCCR0A)
  6419. case TIMER0A:
  6420. case TIMER0B:
  6421. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6422. // TCCR0B |= val;
  6423. break;
  6424. #endif
  6425. #if defined(TCCR1A)
  6426. case TIMER1A:
  6427. case TIMER1B:
  6428. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6429. // TCCR1B |= val;
  6430. break;
  6431. #endif
  6432. #if defined(TCCR2)
  6433. case TIMER2:
  6434. case TIMER2:
  6435. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6436. TCCR2 |= val;
  6437. break;
  6438. #endif
  6439. #if defined(TCCR2A)
  6440. case TIMER2A:
  6441. case TIMER2B:
  6442. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6443. TCCR2B |= val;
  6444. break;
  6445. #endif
  6446. #if defined(TCCR3A)
  6447. case TIMER3A:
  6448. case TIMER3B:
  6449. case TIMER3C:
  6450. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6451. TCCR3B |= val;
  6452. break;
  6453. #endif
  6454. #if defined(TCCR4A)
  6455. case TIMER4A:
  6456. case TIMER4B:
  6457. case TIMER4C:
  6458. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6459. TCCR4B |= val;
  6460. break;
  6461. #endif
  6462. #if defined(TCCR5A)
  6463. case TIMER5A:
  6464. case TIMER5B:
  6465. case TIMER5C:
  6466. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6467. TCCR5B |= val;
  6468. break;
  6469. #endif
  6470. }
  6471. }
  6472. #endif // FAST_PWM_FAN
  6473. void Stop() {
  6474. disable_all_heaters();
  6475. if (IsRunning()) {
  6476. Running = false;
  6477. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6478. SERIAL_ERROR_START;
  6479. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6480. LCD_MESSAGEPGM(MSG_STOPPED);
  6481. }
  6482. }
  6483. /**
  6484. * Set target_extruder from the T parameter or the active_extruder
  6485. *
  6486. * Returns TRUE if the target is invalid
  6487. */
  6488. bool setTargetedHotend(int code) {
  6489. target_extruder = active_extruder;
  6490. if (code_seen('T')) {
  6491. target_extruder = code_value_short();
  6492. if (target_extruder >= EXTRUDERS) {
  6493. SERIAL_ECHO_START;
  6494. SERIAL_CHAR('M');
  6495. SERIAL_ECHO(code);
  6496. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6497. SERIAL_ECHOLN((int)target_extruder);
  6498. return true;
  6499. }
  6500. }
  6501. return false;
  6502. }
  6503. float calculate_volumetric_multiplier(float diameter) {
  6504. if (!volumetric_enabled || diameter == 0) return 1.0;
  6505. float d2 = diameter * 0.5;
  6506. return 1.0 / (M_PI * d2 * d2);
  6507. }
  6508. void calculate_volumetric_multipliers() {
  6509. for (int i = 0; i < EXTRUDERS; i++)
  6510. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6511. }
  6512. /**
  6513. * Start the print job timer
  6514. *
  6515. * The print job is only started if all extruders have their target temp at zero
  6516. * otherwise the print job timew would be reset everytime a M109 is received.
  6517. *
  6518. * @param t start timer timestamp
  6519. *
  6520. * @return true if the timer was started at function call
  6521. */
  6522. bool print_job_start(millis_t t /* = 0 */) {
  6523. for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6524. print_job_start_ms = (t) ? t : millis();
  6525. print_job_stop_ms = 0;
  6526. return true;
  6527. }
  6528. /**
  6529. * Check if the running print job has finished and stop the timer
  6530. *
  6531. * When the target temperature for all extruders is zero then we assume that the
  6532. * print job has finished printing. There are some special conditions under which
  6533. * this assumption may not be valid: If during a print job for some reason the
  6534. * user decides to bring a nozzle temp down and only then heat the other afterwards.
  6535. *
  6536. * @param force stops the timer ignoring all pre-checks
  6537. *
  6538. * @return boolean true if the print job has finished printing
  6539. */
  6540. bool print_job_stop(bool force /* = false */) {
  6541. if (!print_job_start_ms) return false;
  6542. if (!force) for (int i = 0; i < EXTRUDERS; i++) if (degTargetHotend(i) > 0) return false;
  6543. print_job_stop_ms = millis();
  6544. return true;
  6545. }
  6546. /**
  6547. * Output the print job timer in seconds
  6548. *
  6549. * @return the number of seconds
  6550. */
  6551. millis_t print_job_timer() {
  6552. if (!print_job_start_ms) return 0;
  6553. return (((print_job_stop_ms > print_job_start_ms)
  6554. ? print_job_stop_ms : millis()) - print_job_start_ms) / 1000;
  6555. }