My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Marlin_main.cpp 449KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Set print fan speed.
  119. * M107 - Print fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M290 - Babystepping (Requires BABYSTEPPING)
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  179. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  180. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  181. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  182. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  183. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  184. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  185. * M400 - Finish all moves.
  186. * M401 - Lower Z probe. (Requires a probe)
  187. * M402 - Raise Z probe. (Requires a probe)
  188. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  190. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  192. * M410 - Quickstop. Abort all planned moves.
  193. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  194. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  195. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  196. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  197. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  198. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  199. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  200. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  201. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  202. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  203. * M666 - Set delta endstop adjustment. (Requires DELTA)
  204. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  205. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  206. * M860 - Report the position of position encoder modules.
  207. * M861 - Report the status of position encoder modules.
  208. * M862 - Perform an axis continuity test for position encoder modules.
  209. * M863 - Perform steps-per-mm calibration for position encoder modules.
  210. * M864 - Change position encoder module I2C address.
  211. * M865 - Check position encoder module firmware version.
  212. * M866 - Report or reset position encoder module error count.
  213. * M867 - Enable/disable or toggle error correction for position encoder modules.
  214. * M868 - Report or set position encoder module error correction threshold.
  215. * M869 - Report position encoder module error.
  216. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  217. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  218. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  219. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  220. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  221. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  222. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  223. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  224. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  225. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  226. *
  227. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  228. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  229. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  230. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  231. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  232. *
  233. * ************ Custom codes - This can change to suit future G-code regulations
  234. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  235. * M999 - Restart after being stopped by error
  236. *
  237. * "T" Codes
  238. *
  239. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  240. *
  241. */
  242. #include "Marlin.h"
  243. #include "ultralcd.h"
  244. #include "planner.h"
  245. #include "stepper.h"
  246. #include "endstops.h"
  247. #include "temperature.h"
  248. #include "cardreader.h"
  249. #include "configuration_store.h"
  250. #include "language.h"
  251. #include "pins_arduino.h"
  252. #include "math.h"
  253. #include "nozzle.h"
  254. #include "duration_t.h"
  255. #include "types.h"
  256. #include "gcode.h"
  257. #if HAS_ABL
  258. #include "vector_3.h"
  259. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  260. #include "least_squares_fit.h"
  261. #endif
  262. #elif ENABLED(MESH_BED_LEVELING)
  263. #include "mesh_bed_leveling.h"
  264. #endif
  265. #if ENABLED(BEZIER_CURVE_SUPPORT)
  266. #include "planner_bezier.h"
  267. #endif
  268. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  269. #include "buzzer.h"
  270. #endif
  271. #if ENABLED(USE_WATCHDOG)
  272. #include "watchdog.h"
  273. #endif
  274. #if ENABLED(MAX7219_DEBUG)
  275. #include "Max7219_Debug_LEDs.h"
  276. #endif
  277. #if ENABLED(NEOPIXEL_LED)
  278. #include <Adafruit_NeoPixel.h>
  279. #endif
  280. #if ENABLED(BLINKM)
  281. #include "blinkm.h"
  282. #include "Wire.h"
  283. #endif
  284. #if ENABLED(PCA9632)
  285. #include "pca9632.h"
  286. #endif
  287. #if HAS_SERVOS
  288. #include "servo.h"
  289. #endif
  290. #if HAS_DIGIPOTSS
  291. #include <SPI.h>
  292. #endif
  293. #if ENABLED(DAC_STEPPER_CURRENT)
  294. #include "stepper_dac.h"
  295. #endif
  296. #if ENABLED(EXPERIMENTAL_I2CBUS)
  297. #include "twibus.h"
  298. #endif
  299. #if ENABLED(I2C_POSITION_ENCODERS)
  300. #include "I2CPositionEncoder.h"
  301. #endif
  302. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  303. #include "endstop_interrupts.h"
  304. #endif
  305. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  306. void gcode_M100();
  307. void M100_dump_routine(const char * const title, const char *start, const char *end);
  308. #endif
  309. #if ENABLED(G26_MESH_VALIDATION)
  310. bool g26_debug_flag; // =false
  311. void gcode_G26();
  312. #endif
  313. #if ENABLED(SDSUPPORT)
  314. CardReader card;
  315. #endif
  316. #if ENABLED(EXPERIMENTAL_I2CBUS)
  317. TWIBus i2c;
  318. #endif
  319. #if ENABLED(G38_PROBE_TARGET)
  320. bool G38_move = false,
  321. G38_endstop_hit = false;
  322. #endif
  323. #if ENABLED(AUTO_BED_LEVELING_UBL)
  324. #include "ubl.h"
  325. extern bool defer_return_to_status;
  326. unified_bed_leveling ubl;
  327. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  328. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  329. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  330. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  331. || isnan(ubl.z_values[0][0]))
  332. #endif
  333. #if ENABLED(NEOPIXEL_LED)
  334. #if NEOPIXEL_TYPE == NEO_RGB || NEOPIXEL_TYPE == NEO_RBG || NEOPIXEL_TYPE == NEO_GRB || NEOPIXEL_TYPE == NEO_GBR || NEOPIXEL_TYPE == NEO_BRG || NEOPIXEL_TYPE == NEO_BGR
  335. #define NEO_WHITE 255, 255, 255
  336. #else
  337. #define NEO_WHITE 0, 0, 0, 255
  338. #endif
  339. #endif
  340. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632)
  341. #define LED_WHITE 255, 255, 255
  342. #elif ENABLED(RGBW_LED)
  343. #define LED_WHITE 0, 0, 0, 255
  344. #endif
  345. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  346. int8_t active_coordinate_system = -1; // machine space
  347. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  348. #endif
  349. bool Running = true;
  350. uint8_t marlin_debug_flags = DEBUG_NONE;
  351. /**
  352. * Cartesian Current Position
  353. * Used to track the native machine position as moves are queued.
  354. * Used by 'buffer_line_to_current_position' to do a move after changing it.
  355. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  356. */
  357. float current_position[XYZE] = { 0.0 };
  358. /**
  359. * Cartesian Destination
  360. * The destination for a move, filled in by G-code movement commands,
  361. * and expected by functions like 'prepare_move_to_destination'.
  362. * Set with 'gcode_get_destination' or 'set_destination_from_current'.
  363. */
  364. float destination[XYZE] = { 0.0 };
  365. /**
  366. * axis_homed
  367. * Flags that each linear axis was homed.
  368. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  369. *
  370. * axis_known_position
  371. * Flags that the position is known in each linear axis. Set when homed.
  372. * Cleared whenever a stepper powers off, potentially losing its position.
  373. */
  374. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  375. /**
  376. * GCode line number handling. Hosts may opt to include line numbers when
  377. * sending commands to Marlin, and lines will be checked for sequentiality.
  378. * M110 N<int> sets the current line number.
  379. */
  380. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  381. /**
  382. * GCode Command Queue
  383. * A simple ring buffer of BUFSIZE command strings.
  384. *
  385. * Commands are copied into this buffer by the command injectors
  386. * (immediate, serial, sd card) and they are processed sequentially by
  387. * the main loop. The process_next_command function parses the next
  388. * command and hands off execution to individual handler functions.
  389. */
  390. uint8_t commands_in_queue = 0; // Count of commands in the queue
  391. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  392. cmd_queue_index_w = 0; // Ring buffer write position
  393. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  394. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  395. #else // This can be collapsed back to the way it was soon.
  396. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  397. #endif
  398. /**
  399. * Next Injected Command pointer. NULL if no commands are being injected.
  400. * Used by Marlin internally to ensure that commands initiated from within
  401. * are enqueued ahead of any pending serial or sd card commands.
  402. */
  403. static const char *injected_commands_P = NULL;
  404. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  405. TempUnit input_temp_units = TEMPUNIT_C;
  406. #endif
  407. /**
  408. * Feed rates are often configured with mm/m
  409. * but the planner and stepper like mm/s units.
  410. */
  411. static const float homing_feedrate_mm_s[] PROGMEM = {
  412. #if ENABLED(DELTA)
  413. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  414. #else
  415. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  416. #endif
  417. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  418. };
  419. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  420. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  421. static float saved_feedrate_mm_s;
  422. int16_t feedrate_percentage = 100, saved_feedrate_percentage;
  423. // Initialized by settings.load()
  424. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  425. #if HAS_WORKSPACE_OFFSET
  426. #if HAS_POSITION_SHIFT
  427. // The distance that XYZ has been offset by G92. Reset by G28.
  428. float position_shift[XYZ] = { 0 };
  429. #endif
  430. #if HAS_HOME_OFFSET
  431. // This offset is added to the configured home position.
  432. // Set by M206, M428, or menu item. Saved to EEPROM.
  433. float home_offset[XYZ] = { 0 };
  434. #endif
  435. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  436. // The above two are combined to save on computes
  437. float workspace_offset[XYZ] = { 0 };
  438. #endif
  439. #endif
  440. // Software Endstops are based on the configured limits.
  441. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  442. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  443. #if HAS_SOFTWARE_ENDSTOPS
  444. bool soft_endstops_enabled = true;
  445. #if IS_KINEMATIC
  446. float soft_endstop_radius, soft_endstop_radius_2;
  447. #endif
  448. #endif
  449. #if FAN_COUNT > 0
  450. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  451. #if ENABLED(EXTRA_FAN_SPEED)
  452. int16_t old_fanSpeeds[FAN_COUNT],
  453. new_fanSpeeds[FAN_COUNT];
  454. #endif
  455. #if ENABLED(PROBING_FANS_OFF)
  456. bool fans_paused = false;
  457. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  458. #endif
  459. #endif
  460. // The active extruder (tool). Set with T<extruder> command.
  461. uint8_t active_extruder = 0;
  462. // Relative Mode. Enable with G91, disable with G90.
  463. static bool relative_mode = false;
  464. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  465. volatile bool wait_for_heatup = true;
  466. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  467. #if HAS_RESUME_CONTINUE
  468. volatile bool wait_for_user = false;
  469. #endif
  470. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  471. // Number of characters read in the current line of serial input
  472. static int serial_count = 0;
  473. // Inactivity shutdown
  474. millis_t previous_cmd_ms = 0;
  475. static millis_t max_inactive_time = 0;
  476. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  477. // Print Job Timer
  478. #if ENABLED(PRINTCOUNTER)
  479. PrintCounter print_job_timer = PrintCounter();
  480. #else
  481. Stopwatch print_job_timer = Stopwatch();
  482. #endif
  483. // Buzzer - I2C on the LCD or a BEEPER_PIN
  484. #if ENABLED(LCD_USE_I2C_BUZZER)
  485. #define BUZZ(d,f) lcd_buzz(d, f)
  486. #elif PIN_EXISTS(BEEPER)
  487. Buzzer buzzer;
  488. #define BUZZ(d,f) buzzer.tone(d, f)
  489. #else
  490. #define BUZZ(d,f) NOOP
  491. #endif
  492. static uint8_t target_extruder;
  493. #if HAS_BED_PROBE
  494. float zprobe_zoffset; // Initialized by settings.load()
  495. #endif
  496. #if HAS_ABL
  497. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  498. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  499. #elif defined(XY_PROBE_SPEED)
  500. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  501. #else
  502. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  503. #endif
  504. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  505. #if ENABLED(DELTA)
  506. #define ADJUST_DELTA(V) \
  507. if (planner.leveling_active) { \
  508. const float zadj = bilinear_z_offset(V); \
  509. delta[A_AXIS] += zadj; \
  510. delta[B_AXIS] += zadj; \
  511. delta[C_AXIS] += zadj; \
  512. }
  513. #else
  514. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  515. #endif
  516. #elif IS_KINEMATIC
  517. #define ADJUST_DELTA(V) NOOP
  518. #endif
  519. #if ENABLED(X_DUAL_ENDSTOPS)
  520. float x_endstop_adj; // Initialized by settings.load()
  521. #endif
  522. #if ENABLED(Y_DUAL_ENDSTOPS)
  523. float y_endstop_adj; // Initialized by settings.load()
  524. #endif
  525. #if ENABLED(Z_DUAL_ENDSTOPS)
  526. float z_endstop_adj; // Initialized by settings.load()
  527. #endif
  528. // Extruder offsets
  529. #if HOTENDS > 1
  530. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  531. #endif
  532. #if HAS_Z_SERVO_ENDSTOP
  533. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  534. #endif
  535. #if ENABLED(BARICUDA)
  536. uint8_t baricuda_valve_pressure = 0,
  537. baricuda_e_to_p_pressure = 0;
  538. #endif
  539. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  540. bool autoretract_enabled, // M209 S - Autoretract switch
  541. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  542. float retract_length, // M207 S - G10 Retract length
  543. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  544. retract_zlift, // M207 Z - G10 Retract hop size
  545. retract_recover_length, // M208 S - G11 Recover length
  546. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  547. swap_retract_length, // M207 W - G10 Swap Retract length
  548. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  549. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  550. #if EXTRUDERS > 1
  551. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  552. #else
  553. constexpr bool retracted_swap[1] = { false };
  554. #endif
  555. #endif // FWRETRACT
  556. #if HAS_POWER_SWITCH
  557. bool powersupply_on =
  558. #if ENABLED(PS_DEFAULT_OFF)
  559. false
  560. #else
  561. true
  562. #endif
  563. ;
  564. #endif
  565. #if ENABLED(DELTA)
  566. float delta[ABC];
  567. // Initialized by settings.load()
  568. float delta_height,
  569. delta_endstop_adj[ABC] = { 0 },
  570. delta_radius,
  571. delta_tower_angle_trim[ABC],
  572. delta_tower[ABC][2],
  573. delta_diagonal_rod,
  574. delta_calibration_radius,
  575. delta_diagonal_rod_2_tower[ABC],
  576. delta_segments_per_second,
  577. delta_clip_start_height = Z_MAX_POS;
  578. float delta_safe_distance_from_top();
  579. #endif
  580. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  581. int bilinear_grid_spacing[2], bilinear_start[2];
  582. float bilinear_grid_factor[2],
  583. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  584. #endif
  585. #if IS_SCARA
  586. // Float constants for SCARA calculations
  587. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  588. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  589. L2_2 = sq(float(L2));
  590. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  591. delta[ABC];
  592. #endif
  593. float cartes[XYZ] = { 0 };
  594. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  595. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  596. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  597. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  598. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  599. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  600. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  601. #endif
  602. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  603. static bool filament_ran_out = false;
  604. #endif
  605. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  606. AdvancedPauseMenuResponse advanced_pause_menu_response;
  607. #endif
  608. #if ENABLED(MIXING_EXTRUDER)
  609. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  610. #if MIXING_VIRTUAL_TOOLS > 1
  611. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  612. #endif
  613. #endif
  614. static bool send_ok[BUFSIZE];
  615. #if HAS_SERVOS
  616. Servo servo[NUM_SERVOS];
  617. #define MOVE_SERVO(I, P) servo[I].move(P)
  618. #if HAS_Z_SERVO_ENDSTOP
  619. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  620. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  621. #endif
  622. #endif
  623. #ifdef CHDK
  624. millis_t chdkHigh = 0;
  625. bool chdkActive = false;
  626. #endif
  627. #ifdef AUTOMATIC_CURRENT_CONTROL
  628. bool auto_current_control = 0;
  629. #endif
  630. #if ENABLED(PID_EXTRUSION_SCALING)
  631. int lpq_len = 20;
  632. #endif
  633. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  634. MarlinBusyState busy_state = NOT_BUSY;
  635. static millis_t next_busy_signal_ms = 0;
  636. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  637. #else
  638. #define host_keepalive() NOOP
  639. #endif
  640. #if ENABLED(I2C_POSITION_ENCODERS)
  641. I2CPositionEncodersMgr I2CPEM;
  642. uint8_t blockBufferIndexRef = 0;
  643. millis_t lastUpdateMillis;
  644. #endif
  645. #if ENABLED(CNC_WORKSPACE_PLANES)
  646. static WorkspacePlane workspace_plane = PLANE_XY;
  647. #endif
  648. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  649. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  650. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  651. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  652. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  653. typedef void __void_##CONFIG##__
  654. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  655. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  656. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  657. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  658. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  659. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  660. /**
  661. * ***************************************************************************
  662. * ******************************** FUNCTIONS ********************************
  663. * ***************************************************************************
  664. */
  665. void stop();
  666. void get_available_commands();
  667. void process_next_command();
  668. void process_parsed_command();
  669. void prepare_move_to_destination();
  670. void get_cartesian_from_steppers();
  671. void set_current_from_steppers_for_axis(const AxisEnum axis);
  672. #if ENABLED(ARC_SUPPORT)
  673. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  674. #endif
  675. #if ENABLED(BEZIER_CURVE_SUPPORT)
  676. void plan_cubic_move(const float offset[4]);
  677. #endif
  678. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  679. void report_current_position();
  680. void report_current_position_detail();
  681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  682. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  683. serialprintPGM(prefix);
  684. SERIAL_CHAR('(');
  685. SERIAL_ECHO(x);
  686. SERIAL_ECHOPAIR(", ", y);
  687. SERIAL_ECHOPAIR(", ", z);
  688. SERIAL_CHAR(')');
  689. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  690. }
  691. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  692. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  693. }
  694. #if HAS_ABL
  695. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  696. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  697. }
  698. #endif
  699. #define DEBUG_POS(SUFFIX,VAR) do { \
  700. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  701. #endif
  702. /**
  703. * sync_plan_position
  704. *
  705. * Set the planner/stepper positions directly from current_position with
  706. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  707. */
  708. void sync_plan_position() {
  709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  710. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  711. #endif
  712. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  713. }
  714. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  715. #if IS_KINEMATIC
  716. inline void sync_plan_position_kinematic() {
  717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  718. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  719. #endif
  720. planner.set_position_mm_kinematic(current_position);
  721. }
  722. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  723. #else
  724. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  725. #endif
  726. #if ENABLED(SDSUPPORT)
  727. #include "SdFatUtil.h"
  728. int freeMemory() { return SdFatUtil::FreeRam(); }
  729. #else
  730. extern "C" {
  731. extern char __bss_end;
  732. extern char __heap_start;
  733. extern void* __brkval;
  734. int freeMemory() {
  735. int free_memory;
  736. if ((int)__brkval == 0)
  737. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  738. else
  739. free_memory = ((int)&free_memory) - ((int)__brkval);
  740. return free_memory;
  741. }
  742. }
  743. #endif // !SDSUPPORT
  744. #if ENABLED(DIGIPOT_I2C)
  745. extern void digipot_i2c_set_current(uint8_t channel, float current);
  746. extern void digipot_i2c_init();
  747. #endif
  748. /**
  749. * Inject the next "immediate" command, when possible, onto the front of the queue.
  750. * Return true if any immediate commands remain to inject.
  751. */
  752. static bool drain_injected_commands_P() {
  753. if (injected_commands_P != NULL) {
  754. size_t i = 0;
  755. char c, cmd[30];
  756. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  757. cmd[sizeof(cmd) - 1] = '\0';
  758. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  759. cmd[i] = '\0';
  760. if (enqueue_and_echo_command(cmd)) // success?
  761. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  762. }
  763. return (injected_commands_P != NULL); // return whether any more remain
  764. }
  765. /**
  766. * Record one or many commands to run from program memory.
  767. * Aborts the current queue, if any.
  768. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  769. */
  770. void enqueue_and_echo_commands_P(const char * const pgcode) {
  771. injected_commands_P = pgcode;
  772. drain_injected_commands_P(); // first command executed asap (when possible)
  773. }
  774. /**
  775. * Clear the Marlin command queue
  776. */
  777. void clear_command_queue() {
  778. cmd_queue_index_r = cmd_queue_index_w;
  779. commands_in_queue = 0;
  780. }
  781. /**
  782. * Once a new command is in the ring buffer, call this to commit it
  783. */
  784. inline void _commit_command(bool say_ok) {
  785. send_ok[cmd_queue_index_w] = say_ok;
  786. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  787. commands_in_queue++;
  788. }
  789. /**
  790. * Copy a command from RAM into the main command buffer.
  791. * Return true if the command was successfully added.
  792. * Return false for a full buffer, or if the 'command' is a comment.
  793. */
  794. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  795. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  796. strcpy(command_queue[cmd_queue_index_w], cmd);
  797. _commit_command(say_ok);
  798. return true;
  799. }
  800. /**
  801. * Enqueue with Serial Echo
  802. */
  803. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  804. if (_enqueuecommand(cmd, say_ok)) {
  805. SERIAL_ECHO_START();
  806. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  807. SERIAL_CHAR('"');
  808. SERIAL_EOL();
  809. return true;
  810. }
  811. return false;
  812. }
  813. void setup_killpin() {
  814. #if HAS_KILL
  815. SET_INPUT_PULLUP(KILL_PIN);
  816. #endif
  817. }
  818. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  819. void setup_filrunoutpin() {
  820. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  821. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  822. #else
  823. SET_INPUT(FIL_RUNOUT_PIN);
  824. #endif
  825. }
  826. #endif
  827. void setup_powerhold() {
  828. #if HAS_SUICIDE
  829. OUT_WRITE(SUICIDE_PIN, HIGH);
  830. #endif
  831. #if HAS_POWER_SWITCH
  832. #if ENABLED(PS_DEFAULT_OFF)
  833. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  834. #else
  835. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  836. #endif
  837. #endif
  838. }
  839. void suicide() {
  840. #if HAS_SUICIDE
  841. OUT_WRITE(SUICIDE_PIN, LOW);
  842. #endif
  843. }
  844. void servo_init() {
  845. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  846. servo[0].attach(SERVO0_PIN);
  847. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  848. #endif
  849. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  850. servo[1].attach(SERVO1_PIN);
  851. servo[1].detach();
  852. #endif
  853. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  854. servo[2].attach(SERVO2_PIN);
  855. servo[2].detach();
  856. #endif
  857. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  858. servo[3].attach(SERVO3_PIN);
  859. servo[3].detach();
  860. #endif
  861. #if HAS_Z_SERVO_ENDSTOP
  862. /**
  863. * Set position of Z Servo Endstop
  864. *
  865. * The servo might be deployed and positioned too low to stow
  866. * when starting up the machine or rebooting the board.
  867. * There's no way to know where the nozzle is positioned until
  868. * homing has been done - no homing with z-probe without init!
  869. *
  870. */
  871. STOW_Z_SERVO();
  872. #endif
  873. }
  874. /**
  875. * Stepper Reset (RigidBoard, et.al.)
  876. */
  877. #if HAS_STEPPER_RESET
  878. void disableStepperDrivers() {
  879. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  880. }
  881. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  882. #endif
  883. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  884. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  885. i2c.receive(bytes);
  886. }
  887. void i2c_on_request() { // just send dummy data for now
  888. i2c.reply("Hello World!\n");
  889. }
  890. #endif
  891. #if HAS_COLOR_LEDS
  892. #if ENABLED(NEOPIXEL_LED)
  893. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEOPIXEL_TYPE + NEO_KHZ800);
  894. void set_neopixel_color(const uint32_t color) {
  895. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  896. pixels.setPixelColor(i, color);
  897. pixels.show();
  898. }
  899. void setup_neopixel() {
  900. pixels.setBrightness(NEOPIXEL_BRIGHTNESS); // 0 - 255 range
  901. pixels.begin();
  902. pixels.show(); // initialize to all off
  903. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  904. safe_delay(1000);
  905. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  906. safe_delay(1000);
  907. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  908. safe_delay(1000);
  909. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  910. safe_delay(1000);
  911. #endif
  912. set_neopixel_color(pixels.Color(NEO_WHITE)); // white
  913. }
  914. #endif // NEOPIXEL_LED
  915. void set_led_color(
  916. const uint8_t r, const uint8_t g, const uint8_t b
  917. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  918. , const uint8_t w = 0
  919. #if ENABLED(NEOPIXEL_LED)
  920. , const uint8_t p = NEOPIXEL_BRIGHTNESS
  921. , bool isSequence = false
  922. #endif
  923. #endif
  924. ) {
  925. #if ENABLED(NEOPIXEL_LED)
  926. const uint32_t color = pixels.Color(r, g, b, w);
  927. static uint16_t nextLed = 0;
  928. pixels.setBrightness(p);
  929. if (!isSequence)
  930. set_neopixel_color(color);
  931. else {
  932. pixels.setPixelColor(nextLed, color);
  933. pixels.show();
  934. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  935. return;
  936. }
  937. #endif
  938. #if ENABLED(BLINKM)
  939. // This variant uses i2c to send the RGB components to the device.
  940. SendColors(r, g, b);
  941. #endif
  942. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  943. // This variant uses 3 separate pins for the RGB components.
  944. // If the pins can do PWM then their intensity will be set.
  945. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  946. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  947. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  948. analogWrite(RGB_LED_R_PIN, r);
  949. analogWrite(RGB_LED_G_PIN, g);
  950. analogWrite(RGB_LED_B_PIN, b);
  951. #if ENABLED(RGBW_LED)
  952. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  953. analogWrite(RGB_LED_W_PIN, w);
  954. #endif
  955. #endif
  956. #if ENABLED(PCA9632)
  957. // Update I2C LED driver
  958. PCA9632_SetColor(r, g, b);
  959. #endif
  960. }
  961. #endif // HAS_COLOR_LEDS
  962. void gcode_line_error(const char* err, bool doFlush = true) {
  963. SERIAL_ERROR_START();
  964. serialprintPGM(err);
  965. SERIAL_ERRORLN(gcode_LastN);
  966. //Serial.println(gcode_N);
  967. if (doFlush) FlushSerialRequestResend();
  968. serial_count = 0;
  969. }
  970. /**
  971. * Get all commands waiting on the serial port and queue them.
  972. * Exit when the buffer is full or when no more characters are
  973. * left on the serial port.
  974. */
  975. inline void get_serial_commands() {
  976. static char serial_line_buffer[MAX_CMD_SIZE];
  977. static bool serial_comment_mode = false;
  978. // If the command buffer is empty for too long,
  979. // send "wait" to indicate Marlin is still waiting.
  980. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  981. static millis_t last_command_time = 0;
  982. const millis_t ms = millis();
  983. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  984. SERIAL_ECHOLNPGM(MSG_WAIT);
  985. last_command_time = ms;
  986. }
  987. #endif
  988. /**
  989. * Loop while serial characters are incoming and the queue is not full
  990. */
  991. int c;
  992. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  993. char serial_char = c;
  994. /**
  995. * If the character ends the line
  996. */
  997. if (serial_char == '\n' || serial_char == '\r') {
  998. serial_comment_mode = false; // end of line == end of comment
  999. if (!serial_count) continue; // Skip empty lines
  1000. serial_line_buffer[serial_count] = 0; // Terminate string
  1001. serial_count = 0; // Reset buffer
  1002. char* command = serial_line_buffer;
  1003. while (*command == ' ') command++; // Skip leading spaces
  1004. char *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  1005. if (npos) {
  1006. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  1007. if (M110) {
  1008. char* n2pos = strchr(command + 4, 'N');
  1009. if (n2pos) npos = n2pos;
  1010. }
  1011. gcode_N = strtol(npos + 1, NULL, 10);
  1012. if (gcode_N != gcode_LastN + 1 && !M110) {
  1013. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  1014. return;
  1015. }
  1016. char *apos = strrchr(command, '*');
  1017. if (apos) {
  1018. uint8_t checksum = 0, count = uint8_t(apos - command);
  1019. while (count) checksum ^= command[--count];
  1020. if (strtol(apos + 1, NULL, 10) != checksum) {
  1021. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  1022. return;
  1023. }
  1024. }
  1025. else {
  1026. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  1027. return;
  1028. }
  1029. gcode_LastN = gcode_N;
  1030. }
  1031. // Movement commands alert when stopped
  1032. if (IsStopped()) {
  1033. char* gpos = strchr(command, 'G');
  1034. if (gpos) {
  1035. const int codenum = strtol(gpos + 1, NULL, 10);
  1036. switch (codenum) {
  1037. case 0:
  1038. case 1:
  1039. case 2:
  1040. case 3:
  1041. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1042. LCD_MESSAGEPGM(MSG_STOPPED);
  1043. break;
  1044. }
  1045. }
  1046. }
  1047. #if DISABLED(EMERGENCY_PARSER)
  1048. // If command was e-stop process now
  1049. if (strcmp(command, "M108") == 0) {
  1050. wait_for_heatup = false;
  1051. #if ENABLED(ULTIPANEL)
  1052. wait_for_user = false;
  1053. #endif
  1054. }
  1055. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1056. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1057. #endif
  1058. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1059. last_command_time = ms;
  1060. #endif
  1061. // Add the command to the queue
  1062. _enqueuecommand(serial_line_buffer, true);
  1063. }
  1064. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1065. // Keep fetching, but ignore normal characters beyond the max length
  1066. // The command will be injected when EOL is reached
  1067. }
  1068. else if (serial_char == '\\') { // Handle escapes
  1069. if ((c = MYSERIAL.read()) >= 0) {
  1070. // if we have one more character, copy it over
  1071. serial_char = c;
  1072. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1073. }
  1074. // otherwise do nothing
  1075. }
  1076. else { // it's not a newline, carriage return or escape char
  1077. if (serial_char == ';') serial_comment_mode = true;
  1078. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1079. }
  1080. } // queue has space, serial has data
  1081. }
  1082. #if ENABLED(SDSUPPORT)
  1083. /**
  1084. * Get commands from the SD Card until the command buffer is full
  1085. * or until the end of the file is reached. The special character '#'
  1086. * can also interrupt buffering.
  1087. */
  1088. inline void get_sdcard_commands() {
  1089. static bool stop_buffering = false,
  1090. sd_comment_mode = false;
  1091. if (!card.sdprinting) return;
  1092. /**
  1093. * '#' stops reading from SD to the buffer prematurely, so procedural
  1094. * macro calls are possible. If it occurs, stop_buffering is triggered
  1095. * and the buffer is run dry; this character _can_ occur in serial com
  1096. * due to checksums, however, no checksums are used in SD printing.
  1097. */
  1098. if (commands_in_queue == 0) stop_buffering = false;
  1099. uint16_t sd_count = 0;
  1100. bool card_eof = card.eof();
  1101. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1102. const int16_t n = card.get();
  1103. char sd_char = (char)n;
  1104. card_eof = card.eof();
  1105. if (card_eof || n == -1
  1106. || sd_char == '\n' || sd_char == '\r'
  1107. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1108. ) {
  1109. if (card_eof) {
  1110. card.printingHasFinished();
  1111. if (card.sdprinting)
  1112. sd_count = 0; // If a sub-file was printing, continue from call point
  1113. else {
  1114. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1115. #if ENABLED(PRINTER_EVENT_LEDS)
  1116. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1117. set_led_color(0, 255, 0); // Green
  1118. #if HAS_RESUME_CONTINUE
  1119. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1120. #else
  1121. safe_delay(1000);
  1122. #endif
  1123. set_led_color(0, 0, 0); // OFF
  1124. #endif
  1125. card.checkautostart(true);
  1126. }
  1127. }
  1128. else if (n == -1) {
  1129. SERIAL_ERROR_START();
  1130. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1131. }
  1132. if (sd_char == '#') stop_buffering = true;
  1133. sd_comment_mode = false; // for new command
  1134. if (!sd_count) continue; // skip empty lines (and comment lines)
  1135. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1136. sd_count = 0; // clear sd line buffer
  1137. _commit_command(false);
  1138. }
  1139. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1140. /**
  1141. * Keep fetching, but ignore normal characters beyond the max length
  1142. * The command will be injected when EOL is reached
  1143. */
  1144. }
  1145. else {
  1146. if (sd_char == ';') sd_comment_mode = true;
  1147. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1148. }
  1149. }
  1150. }
  1151. #endif // SDSUPPORT
  1152. /**
  1153. * Add to the circular command queue the next command from:
  1154. * - The command-injection queue (injected_commands_P)
  1155. * - The active serial input (usually USB)
  1156. * - The SD card file being actively printed
  1157. */
  1158. void get_available_commands() {
  1159. // if any immediate commands remain, don't get other commands yet
  1160. if (drain_injected_commands_P()) return;
  1161. get_serial_commands();
  1162. #if ENABLED(SDSUPPORT)
  1163. get_sdcard_commands();
  1164. #endif
  1165. }
  1166. /**
  1167. * Set target_extruder from the T parameter or the active_extruder
  1168. *
  1169. * Returns TRUE if the target is invalid
  1170. */
  1171. bool get_target_extruder_from_command(const uint16_t code) {
  1172. if (parser.seenval('T')) {
  1173. const int8_t e = parser.value_byte();
  1174. if (e >= EXTRUDERS) {
  1175. SERIAL_ECHO_START();
  1176. SERIAL_CHAR('M');
  1177. SERIAL_ECHO(code);
  1178. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1179. return true;
  1180. }
  1181. target_extruder = e;
  1182. }
  1183. else
  1184. target_extruder = active_extruder;
  1185. return false;
  1186. }
  1187. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1188. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1189. #endif
  1190. #if ENABLED(DUAL_X_CARRIAGE)
  1191. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1192. static float x_home_pos(const int extruder) {
  1193. if (extruder == 0)
  1194. return base_home_pos(X_AXIS);
  1195. else
  1196. /**
  1197. * In dual carriage mode the extruder offset provides an override of the
  1198. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1199. * This allows soft recalibration of the second extruder home position
  1200. * without firmware reflash (through the M218 command).
  1201. */
  1202. return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1203. }
  1204. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1205. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1206. static bool active_extruder_parked = false; // used in mode 1 & 2
  1207. static float raised_parked_position[XYZE]; // used in mode 1
  1208. static millis_t delayed_move_time = 0; // used in mode 1
  1209. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1210. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1211. #endif // DUAL_X_CARRIAGE
  1212. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1213. /**
  1214. * Software endstops can be used to monitor the open end of
  1215. * an axis that has a hardware endstop on the other end. Or
  1216. * they can prevent axes from moving past endstops and grinding.
  1217. *
  1218. * To keep doing their job as the coordinate system changes,
  1219. * the software endstop positions must be refreshed to remain
  1220. * at the same positions relative to the machine.
  1221. */
  1222. void update_software_endstops(const AxisEnum axis) {
  1223. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1224. workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1225. #endif
  1226. #if ENABLED(DUAL_X_CARRIAGE)
  1227. if (axis == X_AXIS) {
  1228. // In Dual X mode hotend_offset[X] is T1's home position
  1229. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1230. if (active_extruder != 0) {
  1231. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1232. soft_endstop_min[X_AXIS] = X2_MIN_POS;
  1233. soft_endstop_max[X_AXIS] = dual_max_x;
  1234. }
  1235. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1236. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1237. // but not so far to the right that T1 would move past the end
  1238. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS);
  1239. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset);
  1240. }
  1241. else {
  1242. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1243. soft_endstop_min[axis] = base_min_pos(axis);
  1244. soft_endstop_max[axis] = base_max_pos(axis);
  1245. }
  1246. }
  1247. #elif ENABLED(DELTA)
  1248. soft_endstop_min[axis] = base_min_pos(axis);
  1249. soft_endstop_max[axis] = axis == Z_AXIS ? delta_height : base_max_pos(axis);
  1250. #else
  1251. soft_endstop_min[axis] = base_min_pos(axis);
  1252. soft_endstop_max[axis] = base_max_pos(axis);
  1253. #endif
  1254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1255. if (DEBUGGING(LEVELING)) {
  1256. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1257. #if HAS_HOME_OFFSET
  1258. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1259. #endif
  1260. #if HAS_POSITION_SHIFT
  1261. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1262. #endif
  1263. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1264. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1265. }
  1266. #endif
  1267. #if ENABLED(DELTA)
  1268. switch(axis) {
  1269. case X_AXIS:
  1270. case Y_AXIS:
  1271. // Get a minimum radius for clamping
  1272. soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
  1273. soft_endstop_radius_2 = sq(soft_endstop_radius);
  1274. break;
  1275. case Z_AXIS:
  1276. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1277. default: break;
  1278. }
  1279. #endif
  1280. }
  1281. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1282. #if HAS_M206_COMMAND
  1283. /**
  1284. * Change the home offset for an axis, update the current
  1285. * position and the software endstops to retain the same
  1286. * relative distance to the new home.
  1287. *
  1288. * Since this changes the current_position, code should
  1289. * call sync_plan_position soon after this.
  1290. */
  1291. static void set_home_offset(const AxisEnum axis, const float v) {
  1292. home_offset[axis] = v;
  1293. update_software_endstops(axis);
  1294. }
  1295. #endif // HAS_M206_COMMAND
  1296. /**
  1297. * Set an axis' current position to its home position (after homing).
  1298. *
  1299. * For Core and Cartesian robots this applies one-to-one when an
  1300. * individual axis has been homed.
  1301. *
  1302. * DELTA should wait until all homing is done before setting the XYZ
  1303. * current_position to home, because homing is a single operation.
  1304. * In the case where the axis positions are already known and previously
  1305. * homed, DELTA could home to X or Y individually by moving either one
  1306. * to the center. However, homing Z always homes XY and Z.
  1307. *
  1308. * SCARA should wait until all XY homing is done before setting the XY
  1309. * current_position to home, because neither X nor Y is at home until
  1310. * both are at home. Z can however be homed individually.
  1311. *
  1312. * Callers must sync the planner position after calling this!
  1313. */
  1314. static void set_axis_is_at_home(const AxisEnum axis) {
  1315. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1316. if (DEBUGGING(LEVELING)) {
  1317. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1318. SERIAL_CHAR(')');
  1319. SERIAL_EOL();
  1320. }
  1321. #endif
  1322. axis_known_position[axis] = axis_homed[axis] = true;
  1323. #if HAS_POSITION_SHIFT
  1324. position_shift[axis] = 0;
  1325. update_software_endstops(axis);
  1326. #endif
  1327. #if ENABLED(DUAL_X_CARRIAGE)
  1328. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1329. current_position[X_AXIS] = x_home_pos(active_extruder);
  1330. return;
  1331. }
  1332. #endif
  1333. #if ENABLED(MORGAN_SCARA)
  1334. /**
  1335. * Morgan SCARA homes XY at the same time
  1336. */
  1337. if (axis == X_AXIS || axis == Y_AXIS) {
  1338. float homeposition[XYZ] = {
  1339. base_home_pos(X_AXIS),
  1340. base_home_pos(Y_AXIS),
  1341. base_home_pos(Z_AXIS)
  1342. };
  1343. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1344. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1345. /**
  1346. * Get Home position SCARA arm angles using inverse kinematics,
  1347. * and calculate homing offset using forward kinematics
  1348. */
  1349. inverse_kinematics(homeposition);
  1350. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1351. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1352. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1353. current_position[axis] = cartes[axis];
  1354. /**
  1355. * SCARA home positions are based on configuration since the actual
  1356. * limits are determined by the inverse kinematic transform.
  1357. */
  1358. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1359. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1360. }
  1361. else
  1362. #elif ENABLED(DELTA)
  1363. if (axis == Z_AXIS)
  1364. current_position[axis] = delta_height;
  1365. else
  1366. #endif
  1367. {
  1368. current_position[axis] = base_home_pos(axis);
  1369. }
  1370. /**
  1371. * Z Probe Z Homing? Account for the probe's Z offset.
  1372. */
  1373. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1374. if (axis == Z_AXIS) {
  1375. #if HOMING_Z_WITH_PROBE
  1376. current_position[Z_AXIS] -= zprobe_zoffset;
  1377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1378. if (DEBUGGING(LEVELING)) {
  1379. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1380. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1381. }
  1382. #endif
  1383. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1384. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1385. #endif
  1386. }
  1387. #endif
  1388. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1389. if (DEBUGGING(LEVELING)) {
  1390. #if HAS_HOME_OFFSET
  1391. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1392. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1393. #endif
  1394. DEBUG_POS("", current_position);
  1395. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1396. SERIAL_CHAR(')');
  1397. SERIAL_EOL();
  1398. }
  1399. #endif
  1400. #if ENABLED(I2C_POSITION_ENCODERS)
  1401. I2CPEM.homed(axis);
  1402. #endif
  1403. }
  1404. /**
  1405. * Some planner shorthand inline functions
  1406. */
  1407. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1408. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1409. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1410. if (hbd < 1) {
  1411. hbd = 10;
  1412. SERIAL_ECHO_START();
  1413. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1414. }
  1415. return homing_feedrate(axis) / hbd;
  1416. }
  1417. /**
  1418. * Move the planner to the current position from wherever it last moved
  1419. * (or from wherever it has been told it is located).
  1420. */
  1421. inline void buffer_line_to_current_position() {
  1422. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1423. }
  1424. /**
  1425. * Move the planner to the position stored in the destination array, which is
  1426. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1427. */
  1428. inline void buffer_line_to_destination(const float fr_mm_s) {
  1429. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1430. }
  1431. inline void set_current_from_destination() { COPY(current_position, destination); }
  1432. inline void set_destination_from_current() { COPY(destination, current_position); }
  1433. #if IS_KINEMATIC
  1434. /**
  1435. * Calculate delta, start a line, and set current_position to destination
  1436. */
  1437. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1439. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1440. #endif
  1441. refresh_cmd_timeout();
  1442. #if UBL_DELTA
  1443. // ubl segmented line will do z-only moves in single segment
  1444. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1445. #else
  1446. if ( current_position[X_AXIS] == destination[X_AXIS]
  1447. && current_position[Y_AXIS] == destination[Y_AXIS]
  1448. && current_position[Z_AXIS] == destination[Z_AXIS]
  1449. && current_position[E_AXIS] == destination[E_AXIS]
  1450. ) return;
  1451. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1452. #endif
  1453. set_current_from_destination();
  1454. }
  1455. #endif // IS_KINEMATIC
  1456. /**
  1457. * Plan a move to (X, Y, Z) and set the current_position
  1458. * The final current_position may not be the one that was requested
  1459. */
  1460. void do_blocking_move_to(const float &rx, const float &ry, const float &rz, const float &fr_mm_s/*=0.0*/) {
  1461. const float old_feedrate_mm_s = feedrate_mm_s;
  1462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1463. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz));
  1464. #endif
  1465. #if ENABLED(DELTA)
  1466. if (!position_is_reachable(rx, ry)) return;
  1467. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1468. set_destination_from_current(); // sync destination at the start
  1469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1470. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
  1471. #endif
  1472. // when in the danger zone
  1473. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1474. if (rz > delta_clip_start_height) { // staying in the danger zone
  1475. destination[X_AXIS] = rx; // move directly (uninterpolated)
  1476. destination[Y_AXIS] = ry;
  1477. destination[Z_AXIS] = rz;
  1478. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1481. #endif
  1482. return;
  1483. }
  1484. else {
  1485. destination[Z_AXIS] = delta_clip_start_height;
  1486. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1488. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1489. #endif
  1490. }
  1491. }
  1492. if (rz > current_position[Z_AXIS]) { // raising?
  1493. destination[Z_AXIS] = rz;
  1494. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1496. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1497. #endif
  1498. }
  1499. destination[X_AXIS] = rx;
  1500. destination[Y_AXIS] = ry;
  1501. prepare_move_to_destination(); // set_current_from_destination
  1502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1503. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1504. #endif
  1505. if (rz < current_position[Z_AXIS]) { // lowering?
  1506. destination[Z_AXIS] = rz;
  1507. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1509. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1510. #endif
  1511. }
  1512. #elif IS_SCARA
  1513. if (!position_is_reachable(rx, ry)) return;
  1514. set_destination_from_current();
  1515. // If Z needs to raise, do it before moving XY
  1516. if (destination[Z_AXIS] < rz) {
  1517. destination[Z_AXIS] = rz;
  1518. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1519. }
  1520. destination[X_AXIS] = rx;
  1521. destination[Y_AXIS] = ry;
  1522. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1523. // If Z needs to lower, do it after moving XY
  1524. if (destination[Z_AXIS] > rz) {
  1525. destination[Z_AXIS] = rz;
  1526. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
  1527. }
  1528. #else
  1529. // If Z needs to raise, do it before moving XY
  1530. if (current_position[Z_AXIS] < rz) {
  1531. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1532. current_position[Z_AXIS] = rz;
  1533. buffer_line_to_current_position();
  1534. }
  1535. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1536. current_position[X_AXIS] = rx;
  1537. current_position[Y_AXIS] = ry;
  1538. buffer_line_to_current_position();
  1539. // If Z needs to lower, do it after moving XY
  1540. if (current_position[Z_AXIS] > rz) {
  1541. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1542. current_position[Z_AXIS] = rz;
  1543. buffer_line_to_current_position();
  1544. }
  1545. #endif
  1546. stepper.synchronize();
  1547. feedrate_mm_s = old_feedrate_mm_s;
  1548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1549. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1550. #endif
  1551. }
  1552. void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
  1553. do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1554. }
  1555. void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
  1556. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
  1557. }
  1558. void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
  1559. do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
  1560. }
  1561. //
  1562. // Prepare to do endstop or probe moves
  1563. // with custom feedrates.
  1564. //
  1565. // - Save current feedrates
  1566. // - Reset the rate multiplier
  1567. // - Reset the command timeout
  1568. // - Enable the endstops (for endstop moves)
  1569. //
  1570. static void setup_for_endstop_or_probe_move() {
  1571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1572. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1573. #endif
  1574. saved_feedrate_mm_s = feedrate_mm_s;
  1575. saved_feedrate_percentage = feedrate_percentage;
  1576. feedrate_percentage = 100;
  1577. refresh_cmd_timeout();
  1578. }
  1579. static void clean_up_after_endstop_or_probe_move() {
  1580. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1581. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1582. #endif
  1583. feedrate_mm_s = saved_feedrate_mm_s;
  1584. feedrate_percentage = saved_feedrate_percentage;
  1585. refresh_cmd_timeout();
  1586. }
  1587. #if HAS_BED_PROBE
  1588. /**
  1589. * Raise Z to a minimum height to make room for a probe to move
  1590. */
  1591. inline void do_probe_raise(const float z_raise) {
  1592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1593. if (DEBUGGING(LEVELING)) {
  1594. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1595. SERIAL_CHAR(')');
  1596. SERIAL_EOL();
  1597. }
  1598. #endif
  1599. float z_dest = z_raise;
  1600. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1601. if (z_dest > current_position[Z_AXIS])
  1602. do_blocking_move_to_z(z_dest);
  1603. }
  1604. #endif // HAS_BED_PROBE
  1605. #if HAS_AXIS_UNHOMED_ERR
  1606. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1607. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1608. const bool xx = x && !axis_known_position[X_AXIS],
  1609. yy = y && !axis_known_position[Y_AXIS],
  1610. zz = z && !axis_known_position[Z_AXIS];
  1611. #else
  1612. const bool xx = x && !axis_homed[X_AXIS],
  1613. yy = y && !axis_homed[Y_AXIS],
  1614. zz = z && !axis_homed[Z_AXIS];
  1615. #endif
  1616. if (xx || yy || zz) {
  1617. SERIAL_ECHO_START();
  1618. SERIAL_ECHOPGM(MSG_HOME " ");
  1619. if (xx) SERIAL_ECHOPGM(MSG_X);
  1620. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1621. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1622. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1623. #if ENABLED(ULTRA_LCD)
  1624. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1625. #endif
  1626. return true;
  1627. }
  1628. return false;
  1629. }
  1630. #endif // HAS_AXIS_UNHOMED_ERR
  1631. #if ENABLED(Z_PROBE_SLED)
  1632. #ifndef SLED_DOCKING_OFFSET
  1633. #define SLED_DOCKING_OFFSET 0
  1634. #endif
  1635. /**
  1636. * Method to dock/undock a sled designed by Charles Bell.
  1637. *
  1638. * stow[in] If false, move to MAX_X and engage the solenoid
  1639. * If true, move to MAX_X and release the solenoid
  1640. */
  1641. static void dock_sled(bool stow) {
  1642. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1643. if (DEBUGGING(LEVELING)) {
  1644. SERIAL_ECHOPAIR("dock_sled(", stow);
  1645. SERIAL_CHAR(')');
  1646. SERIAL_EOL();
  1647. }
  1648. #endif
  1649. // Dock sled a bit closer to ensure proper capturing
  1650. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1651. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1652. WRITE(SOL1_PIN, !stow); // switch solenoid
  1653. #endif
  1654. }
  1655. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1656. FORCE_INLINE void do_blocking_move_to(const float raw[XYZ], const float &fr_mm_s) {
  1657. do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
  1658. }
  1659. void run_deploy_moves_script() {
  1660. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1662. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1665. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1668. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1672. #endif
  1673. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1674. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1675. #endif
  1676. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1681. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1682. #endif
  1683. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1684. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1685. #endif
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1688. #endif
  1689. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1690. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1691. #endif
  1692. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1693. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1694. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1695. #endif
  1696. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1697. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1698. #endif
  1699. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1700. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1701. #endif
  1702. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1703. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1704. #endif
  1705. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1706. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1707. #endif
  1708. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1709. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1710. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1711. #endif
  1712. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1713. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1714. #endif
  1715. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1716. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1717. #endif
  1718. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1719. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1720. #endif
  1721. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1722. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1723. #endif
  1724. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1725. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1726. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1727. #endif
  1728. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1729. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1730. #endif
  1731. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1732. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1733. #endif
  1734. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1735. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1736. #endif
  1737. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1738. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1739. #endif
  1740. }
  1741. void run_stow_moves_script() {
  1742. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1743. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1744. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1745. #endif
  1746. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1747. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1748. #endif
  1749. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1750. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1751. #endif
  1752. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1753. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1754. #endif
  1755. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1756. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1757. #endif
  1758. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1759. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1760. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1761. #endif
  1762. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1763. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1764. #endif
  1765. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1766. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1767. #endif
  1768. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1769. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1770. #endif
  1771. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1772. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1773. #endif
  1774. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1775. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1776. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1777. #endif
  1778. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1779. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1780. #endif
  1781. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1782. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1783. #endif
  1784. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1785. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1786. #endif
  1787. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1788. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1789. #endif
  1790. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1791. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1792. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1793. #endif
  1794. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1795. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1796. #endif
  1797. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1798. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1799. #endif
  1800. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1801. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1802. #endif
  1803. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1804. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1805. #endif
  1806. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1807. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1808. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1809. #endif
  1810. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1811. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1812. #endif
  1813. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1814. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1815. #endif
  1816. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1817. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1818. #endif
  1819. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1820. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1821. #endif
  1822. }
  1823. #endif // Z_PROBE_ALLEN_KEY
  1824. #if ENABLED(PROBING_FANS_OFF)
  1825. void fans_pause(const bool p) {
  1826. if (p != fans_paused) {
  1827. fans_paused = p;
  1828. if (p)
  1829. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1830. paused_fanSpeeds[x] = fanSpeeds[x];
  1831. fanSpeeds[x] = 0;
  1832. }
  1833. else
  1834. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1835. fanSpeeds[x] = paused_fanSpeeds[x];
  1836. }
  1837. }
  1838. #endif // PROBING_FANS_OFF
  1839. #if HAS_BED_PROBE
  1840. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1841. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1842. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1843. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1844. #else
  1845. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1846. #endif
  1847. #endif
  1848. #if QUIET_PROBING
  1849. void probing_pause(const bool p) {
  1850. #if ENABLED(PROBING_HEATERS_OFF)
  1851. thermalManager.pause(p);
  1852. #endif
  1853. #if ENABLED(PROBING_FANS_OFF)
  1854. fans_pause(p);
  1855. #endif
  1856. if (p) safe_delay(
  1857. #if DELAY_BEFORE_PROBING > 25
  1858. DELAY_BEFORE_PROBING
  1859. #else
  1860. 25
  1861. #endif
  1862. );
  1863. }
  1864. #endif // QUIET_PROBING
  1865. #if ENABLED(BLTOUCH)
  1866. void bltouch_command(int angle) {
  1867. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1868. safe_delay(BLTOUCH_DELAY);
  1869. }
  1870. bool set_bltouch_deployed(const bool deploy) {
  1871. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1872. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1873. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1874. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1875. safe_delay(1500); // Wait for internal self-test to complete.
  1876. // (Measured completion time was 0.65 seconds
  1877. // after reset, deploy, and stow sequence)
  1878. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1879. SERIAL_ERROR_START();
  1880. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1881. stop(); // punt!
  1882. return true;
  1883. }
  1884. }
  1885. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1887. if (DEBUGGING(LEVELING)) {
  1888. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1889. SERIAL_CHAR(')');
  1890. SERIAL_EOL();
  1891. }
  1892. #endif
  1893. return false;
  1894. }
  1895. #endif // BLTOUCH
  1896. // returns false for ok and true for failure
  1897. bool set_probe_deployed(bool deploy) {
  1898. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1899. if (DEBUGGING(LEVELING)) {
  1900. DEBUG_POS("set_probe_deployed", current_position);
  1901. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1902. }
  1903. #endif
  1904. if (endstops.z_probe_enabled == deploy) return false;
  1905. // Make room for probe
  1906. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1907. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1908. #if ENABLED(Z_PROBE_SLED)
  1909. #define _AUE_ARGS true, false, false
  1910. #else
  1911. #define _AUE_ARGS
  1912. #endif
  1913. if (axis_unhomed_error(_AUE_ARGS)) {
  1914. SERIAL_ERROR_START();
  1915. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1916. stop();
  1917. return true;
  1918. }
  1919. #endif
  1920. const float oldXpos = current_position[X_AXIS],
  1921. oldYpos = current_position[Y_AXIS];
  1922. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1923. // If endstop is already false, the Z probe is deployed
  1924. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1925. // Would a goto be less ugly?
  1926. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1927. // for a triggered when stowed manual probe.
  1928. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1929. // otherwise an Allen-Key probe can't be stowed.
  1930. #endif
  1931. #if ENABLED(SOLENOID_PROBE)
  1932. #if HAS_SOLENOID_1
  1933. WRITE(SOL1_PIN, deploy);
  1934. #endif
  1935. #elif ENABLED(Z_PROBE_SLED)
  1936. dock_sled(!deploy);
  1937. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1938. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1939. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1940. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1941. #endif
  1942. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1943. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1944. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1945. if (IsRunning()) {
  1946. SERIAL_ERROR_START();
  1947. SERIAL_ERRORLNPGM("Z-Probe failed");
  1948. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1949. }
  1950. stop();
  1951. return true;
  1952. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1953. #endif
  1954. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1955. endstops.enable_z_probe(deploy);
  1956. return false;
  1957. }
  1958. /**
  1959. * @brief Used by run_z_probe to do a single Z probe move.
  1960. *
  1961. * @param z Z destination
  1962. * @param fr_mm_s Feedrate in mm/s
  1963. * @return true to indicate an error
  1964. */
  1965. static bool do_probe_move(const float z, const float fr_mm_m) {
  1966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1967. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1968. #endif
  1969. // Deploy BLTouch at the start of any probe
  1970. #if ENABLED(BLTOUCH)
  1971. if (set_bltouch_deployed(true)) return true;
  1972. #endif
  1973. #if QUIET_PROBING
  1974. probing_pause(true);
  1975. #endif
  1976. // Move down until probe triggered
  1977. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1978. // Check to see if the probe was triggered
  1979. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1980. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1981. Z_MIN
  1982. #else
  1983. Z_MIN_PROBE
  1984. #endif
  1985. );
  1986. #if QUIET_PROBING
  1987. probing_pause(false);
  1988. #endif
  1989. // Retract BLTouch immediately after a probe if it was triggered
  1990. #if ENABLED(BLTOUCH)
  1991. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1992. #endif
  1993. // Clear endstop flags
  1994. endstops.hit_on_purpose();
  1995. // Get Z where the steppers were interrupted
  1996. set_current_from_steppers_for_axis(Z_AXIS);
  1997. // Tell the planner where we actually are
  1998. SYNC_PLAN_POSITION_KINEMATIC();
  1999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2000. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  2001. #endif
  2002. return !probe_triggered;
  2003. }
  2004. /**
  2005. * @details Used by probe_pt to do a single Z probe.
  2006. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  2007. *
  2008. * @return The raw Z position where the probe was triggered
  2009. */
  2010. static float run_z_probe() {
  2011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2012. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  2013. #endif
  2014. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  2015. refresh_cmd_timeout();
  2016. #if ENABLED(PROBE_DOUBLE_TOUCH)
  2017. // Do a first probe at the fast speed
  2018. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  2019. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2020. float first_probe_z = current_position[Z_AXIS];
  2021. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  2022. #endif
  2023. // move up to make clearance for the probe
  2024. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2025. #else
  2026. // If the nozzle is above the travel height then
  2027. // move down quickly before doing the slow probe
  2028. float z = Z_CLEARANCE_DEPLOY_PROBE;
  2029. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  2030. if (z < current_position[Z_AXIS]) {
  2031. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  2032. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  2033. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2034. }
  2035. #endif
  2036. // move down slowly to find bed
  2037. if (do_probe_move(-10, Z_PROBE_SPEED_SLOW)) return NAN;
  2038. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2039. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  2040. #endif
  2041. // Debug: compare probe heights
  2042. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2043. if (DEBUGGING(LEVELING)) {
  2044. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2045. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2046. }
  2047. #endif
  2048. return current_position[Z_AXIS] + zprobe_zoffset;
  2049. }
  2050. /**
  2051. * - Move to the given XY
  2052. * - Deploy the probe, if not already deployed
  2053. * - Probe the bed, get the Z position
  2054. * - Depending on the 'stow' flag
  2055. * - Stow the probe, or
  2056. * - Raise to the BETWEEN height
  2057. * - Return the probed Z position
  2058. */
  2059. float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool printable=true) {
  2060. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2061. if (DEBUGGING(LEVELING)) {
  2062. SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));
  2063. SERIAL_ECHOPAIR(", ", LOGICAL_Y_POSITION(ry));
  2064. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2065. SERIAL_ECHOLNPGM("stow)");
  2066. DEBUG_POS("", current_position);
  2067. }
  2068. #endif
  2069. const float nx = rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ry - (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2070. if (!printable
  2071. ? !position_is_reachable(nx, ny)
  2072. : !position_is_reachable_by_probe(rx, ry)
  2073. ) return NAN;
  2074. // Move the probe to the given XY
  2075. do_blocking_move_to_xy(nx, ny, XY_PROBE_FEEDRATE_MM_S);
  2076. float measured_z = NAN;
  2077. if (!DEPLOY_PROBE()) {
  2078. measured_z = run_z_probe();
  2079. if (!stow)
  2080. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2081. else
  2082. if (STOW_PROBE()) measured_z = NAN;
  2083. }
  2084. if (verbose_level > 2) {
  2085. SERIAL_PROTOCOLPGM("Bed X: ");
  2086. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
  2087. SERIAL_PROTOCOLPGM(" Y: ");
  2088. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 3);
  2089. SERIAL_PROTOCOLPGM(" Z: ");
  2090. SERIAL_PROTOCOL_F(measured_z, 3);
  2091. SERIAL_EOL();
  2092. }
  2093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2094. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2095. #endif
  2096. if (isnan(measured_z)) {
  2097. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2098. SERIAL_ERROR_START();
  2099. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2100. }
  2101. return measured_z;
  2102. }
  2103. #endif // HAS_BED_PROBE
  2104. #if HAS_LEVELING
  2105. bool leveling_is_valid() {
  2106. return
  2107. #if ENABLED(MESH_BED_LEVELING)
  2108. mbl.has_mesh
  2109. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2110. !!bilinear_grid_spacing[X_AXIS]
  2111. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2112. true
  2113. #else // 3POINT, LINEAR
  2114. true
  2115. #endif
  2116. ;
  2117. }
  2118. /**
  2119. * Turn bed leveling on or off, fixing the current
  2120. * position as-needed.
  2121. *
  2122. * Disable: Current position = physical position
  2123. * Enable: Current position = "unleveled" physical position
  2124. */
  2125. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2126. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2127. const bool can_change = (!enable || leveling_is_valid());
  2128. #else
  2129. constexpr bool can_change = true;
  2130. #endif
  2131. if (can_change && enable != planner.leveling_active) {
  2132. #if ENABLED(MESH_BED_LEVELING)
  2133. if (!enable)
  2134. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2135. const bool enabling = enable && leveling_is_valid();
  2136. planner.leveling_active = enabling;
  2137. if (enabling) planner.unapply_leveling(current_position);
  2138. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2139. #if PLANNER_LEVELING
  2140. if (planner.leveling_active) { // leveling from on to off
  2141. // change unleveled current_position to physical current_position without moving steppers.
  2142. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2143. planner.leveling_active = false; // disable only AFTER calling apply_leveling
  2144. }
  2145. else { // leveling from off to on
  2146. planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2147. // change physical current_position to unleveled current_position without moving steppers.
  2148. planner.unapply_leveling(current_position);
  2149. }
  2150. #else
  2151. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
  2152. #endif
  2153. #else // ABL
  2154. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2155. // Force bilinear_z_offset to re-calculate next time
  2156. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2157. (void)bilinear_z_offset(reset);
  2158. #endif
  2159. // Enable or disable leveling compensation in the planner
  2160. planner.leveling_active = enable;
  2161. if (!enable)
  2162. // When disabling just get the current position from the steppers.
  2163. // This will yield the smallest error when first converted back to steps.
  2164. set_current_from_steppers_for_axis(
  2165. #if ABL_PLANAR
  2166. ALL_AXES
  2167. #else
  2168. Z_AXIS
  2169. #endif
  2170. );
  2171. else
  2172. // When enabling, remove compensation from the current position,
  2173. // so compensation will give the right stepper counts.
  2174. planner.unapply_leveling(current_position);
  2175. #endif // ABL
  2176. }
  2177. }
  2178. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2179. void set_z_fade_height(const float zfh) {
  2180. const bool level_active = planner.leveling_active;
  2181. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2182. if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2183. #endif
  2184. planner.set_z_fade_height(zfh);
  2185. if (level_active) {
  2186. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2187. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2188. #else
  2189. set_current_from_steppers_for_axis(
  2190. #if ABL_PLANAR
  2191. ALL_AXES
  2192. #else
  2193. Z_AXIS
  2194. #endif
  2195. );
  2196. #endif
  2197. }
  2198. }
  2199. #endif // LEVELING_FADE_HEIGHT
  2200. /**
  2201. * Reset calibration results to zero.
  2202. */
  2203. void reset_bed_level() {
  2204. set_bed_leveling_enabled(false);
  2205. #if ENABLED(MESH_BED_LEVELING)
  2206. if (leveling_is_valid()) {
  2207. mbl.reset();
  2208. mbl.has_mesh = false;
  2209. }
  2210. #else
  2211. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2212. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2213. #endif
  2214. #if ABL_PLANAR
  2215. planner.bed_level_matrix.set_to_identity();
  2216. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2217. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2218. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2219. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2220. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2221. z_values[x][y] = NAN;
  2222. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2223. ubl.reset();
  2224. #endif
  2225. #endif
  2226. }
  2227. #endif // HAS_LEVELING
  2228. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2229. /**
  2230. * Enable to produce output in JSON format suitable
  2231. * for SCAD or JavaScript mesh visualizers.
  2232. *
  2233. * Visualize meshes in OpenSCAD using the included script.
  2234. *
  2235. * buildroot/shared/scripts/MarlinMesh.scad
  2236. */
  2237. //#define SCAD_MESH_OUTPUT
  2238. /**
  2239. * Print calibration results for plotting or manual frame adjustment.
  2240. */
  2241. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2242. #ifndef SCAD_MESH_OUTPUT
  2243. for (uint8_t x = 0; x < sx; x++) {
  2244. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2245. SERIAL_PROTOCOLCHAR(' ');
  2246. SERIAL_PROTOCOL((int)x);
  2247. }
  2248. SERIAL_EOL();
  2249. #endif
  2250. #ifdef SCAD_MESH_OUTPUT
  2251. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2252. #endif
  2253. for (uint8_t y = 0; y < sy; y++) {
  2254. #ifdef SCAD_MESH_OUTPUT
  2255. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2256. #else
  2257. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2258. SERIAL_PROTOCOL((int)y);
  2259. #endif
  2260. for (uint8_t x = 0; x < sx; x++) {
  2261. SERIAL_PROTOCOLCHAR(' ');
  2262. const float offset = fn(x, y);
  2263. if (!isnan(offset)) {
  2264. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2265. SERIAL_PROTOCOL_F(offset, precision);
  2266. }
  2267. else {
  2268. #ifdef SCAD_MESH_OUTPUT
  2269. for (uint8_t i = 3; i < precision + 3; i++)
  2270. SERIAL_PROTOCOLCHAR(' ');
  2271. SERIAL_PROTOCOLPGM("NAN");
  2272. #else
  2273. for (uint8_t i = 0; i < precision + 3; i++)
  2274. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2275. #endif
  2276. }
  2277. #ifdef SCAD_MESH_OUTPUT
  2278. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2279. #endif
  2280. }
  2281. #ifdef SCAD_MESH_OUTPUT
  2282. SERIAL_PROTOCOLCHAR(' ');
  2283. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2284. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2285. #endif
  2286. SERIAL_EOL();
  2287. }
  2288. #ifdef SCAD_MESH_OUTPUT
  2289. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2290. #endif
  2291. SERIAL_EOL();
  2292. }
  2293. #endif
  2294. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2295. /**
  2296. * Extrapolate a single point from its neighbors
  2297. */
  2298. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2299. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2300. if (DEBUGGING(LEVELING)) {
  2301. SERIAL_ECHOPGM("Extrapolate [");
  2302. if (x < 10) SERIAL_CHAR(' ');
  2303. SERIAL_ECHO((int)x);
  2304. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2305. SERIAL_CHAR(' ');
  2306. if (y < 10) SERIAL_CHAR(' ');
  2307. SERIAL_ECHO((int)y);
  2308. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2309. SERIAL_CHAR(']');
  2310. }
  2311. #endif
  2312. if (!isnan(z_values[x][y])) {
  2313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2314. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2315. #endif
  2316. return; // Don't overwrite good values.
  2317. }
  2318. SERIAL_EOL();
  2319. // Get X neighbors, Y neighbors, and XY neighbors
  2320. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2321. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2322. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2323. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2324. // Treat far unprobed points as zero, near as equal to far
  2325. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2326. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2327. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2328. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2329. // Take the average instead of the median
  2330. z_values[x][y] = (a + b + c) / 3.0;
  2331. // Median is robust (ignores outliers).
  2332. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2333. // : ((c < b) ? b : (a < c) ? a : c);
  2334. }
  2335. //Enable this if your SCARA uses 180° of total area
  2336. //#define EXTRAPOLATE_FROM_EDGE
  2337. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2338. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2339. #define HALF_IN_X
  2340. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2341. #define HALF_IN_Y
  2342. #endif
  2343. #endif
  2344. /**
  2345. * Fill in the unprobed points (corners of circular print surface)
  2346. * using linear extrapolation, away from the center.
  2347. */
  2348. static void extrapolate_unprobed_bed_level() {
  2349. #ifdef HALF_IN_X
  2350. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2351. #else
  2352. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2353. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2354. xlen = ctrx1;
  2355. #endif
  2356. #ifdef HALF_IN_Y
  2357. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2358. #else
  2359. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2360. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2361. ylen = ctry1;
  2362. #endif
  2363. for (uint8_t xo = 0; xo <= xlen; xo++)
  2364. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2365. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2366. #ifndef HALF_IN_X
  2367. const uint8_t x1 = ctrx1 - xo;
  2368. #endif
  2369. #ifndef HALF_IN_Y
  2370. const uint8_t y1 = ctry1 - yo;
  2371. #ifndef HALF_IN_X
  2372. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2373. #endif
  2374. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2375. #endif
  2376. #ifndef HALF_IN_X
  2377. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2378. #endif
  2379. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2380. }
  2381. }
  2382. static void print_bilinear_leveling_grid() {
  2383. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2384. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2385. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2386. );
  2387. }
  2388. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2389. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2390. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2391. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2392. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2393. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2394. int bilinear_grid_spacing_virt[2] = { 0 };
  2395. float bilinear_grid_factor_virt[2] = { 0 };
  2396. static void print_bilinear_leveling_grid_virt() {
  2397. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2398. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2399. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2400. );
  2401. }
  2402. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2403. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2404. uint8_t ep = 0, ip = 1;
  2405. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2406. if (x) {
  2407. ep = GRID_MAX_POINTS_X - 1;
  2408. ip = GRID_MAX_POINTS_X - 2;
  2409. }
  2410. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2411. return LINEAR_EXTRAPOLATION(
  2412. z_values[ep][y - 1],
  2413. z_values[ip][y - 1]
  2414. );
  2415. else
  2416. return LINEAR_EXTRAPOLATION(
  2417. bed_level_virt_coord(ep + 1, y),
  2418. bed_level_virt_coord(ip + 1, y)
  2419. );
  2420. }
  2421. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2422. if (y) {
  2423. ep = GRID_MAX_POINTS_Y - 1;
  2424. ip = GRID_MAX_POINTS_Y - 2;
  2425. }
  2426. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2427. return LINEAR_EXTRAPOLATION(
  2428. z_values[x - 1][ep],
  2429. z_values[x - 1][ip]
  2430. );
  2431. else
  2432. return LINEAR_EXTRAPOLATION(
  2433. bed_level_virt_coord(x, ep + 1),
  2434. bed_level_virt_coord(x, ip + 1)
  2435. );
  2436. }
  2437. return z_values[x - 1][y - 1];
  2438. }
  2439. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2440. return (
  2441. p[i-1] * -t * sq(1 - t)
  2442. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2443. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2444. - p[i+2] * sq(t) * (1 - t)
  2445. ) * 0.5;
  2446. }
  2447. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2448. float row[4], column[4];
  2449. for (uint8_t i = 0; i < 4; i++) {
  2450. for (uint8_t j = 0; j < 4; j++) {
  2451. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2452. }
  2453. row[i] = bed_level_virt_cmr(column, 1, ty);
  2454. }
  2455. return bed_level_virt_cmr(row, 1, tx);
  2456. }
  2457. void bed_level_virt_interpolate() {
  2458. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2459. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2460. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2461. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2462. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2463. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2464. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2465. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2466. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2467. continue;
  2468. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2469. bed_level_virt_2cmr(
  2470. x + 1,
  2471. y + 1,
  2472. (float)tx / (BILINEAR_SUBDIVISIONS),
  2473. (float)ty / (BILINEAR_SUBDIVISIONS)
  2474. );
  2475. }
  2476. }
  2477. #endif // ABL_BILINEAR_SUBDIVISION
  2478. // Refresh after other values have been updated
  2479. void refresh_bed_level() {
  2480. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2481. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2482. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2483. bed_level_virt_interpolate();
  2484. #endif
  2485. }
  2486. #endif // AUTO_BED_LEVELING_BILINEAR
  2487. /**
  2488. * Home an individual linear axis
  2489. */
  2490. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2492. if (DEBUGGING(LEVELING)) {
  2493. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2494. SERIAL_ECHOPAIR(", ", distance);
  2495. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2496. SERIAL_CHAR(')');
  2497. SERIAL_EOL();
  2498. }
  2499. #endif
  2500. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2501. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2502. if (deploy_bltouch) set_bltouch_deployed(true);
  2503. #endif
  2504. #if QUIET_PROBING
  2505. if (axis == Z_AXIS) probing_pause(true);
  2506. #endif
  2507. // Tell the planner we're at Z=0
  2508. current_position[axis] = 0;
  2509. #if IS_SCARA
  2510. SYNC_PLAN_POSITION_KINEMATIC();
  2511. current_position[axis] = distance;
  2512. inverse_kinematics(current_position);
  2513. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2514. #else
  2515. sync_plan_position();
  2516. current_position[axis] = distance;
  2517. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2518. #endif
  2519. stepper.synchronize();
  2520. #if QUIET_PROBING
  2521. if (axis == Z_AXIS) probing_pause(false);
  2522. #endif
  2523. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2524. if (deploy_bltouch) set_bltouch_deployed(false);
  2525. #endif
  2526. endstops.hit_on_purpose();
  2527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2528. if (DEBUGGING(LEVELING)) {
  2529. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2530. SERIAL_CHAR(')');
  2531. SERIAL_EOL();
  2532. }
  2533. #endif
  2534. }
  2535. /**
  2536. * TMC2130 specific sensorless homing using stallGuard2.
  2537. * stallGuard2 only works when in spreadCycle mode.
  2538. * spreadCycle and stealthChop are mutually exclusive.
  2539. */
  2540. #if ENABLED(SENSORLESS_HOMING)
  2541. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2542. #if ENABLED(STEALTHCHOP)
  2543. if (enable) {
  2544. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2545. st.stealthChop(0);
  2546. }
  2547. else {
  2548. st.coolstep_min_speed(0);
  2549. st.stealthChop(1);
  2550. }
  2551. #endif
  2552. st.diag1_stall(enable ? 1 : 0);
  2553. }
  2554. #endif
  2555. /**
  2556. * Home an individual "raw axis" to its endstop.
  2557. * This applies to XYZ on Cartesian and Core robots, and
  2558. * to the individual ABC steppers on DELTA and SCARA.
  2559. *
  2560. * At the end of the procedure the axis is marked as
  2561. * homed and the current position of that axis is updated.
  2562. * Kinematic robots should wait till all axes are homed
  2563. * before updating the current position.
  2564. */
  2565. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2566. static void homeaxis(const AxisEnum axis) {
  2567. #if IS_SCARA
  2568. // Only Z homing (with probe) is permitted
  2569. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2570. #else
  2571. #define CAN_HOME(A) \
  2572. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2573. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2574. #endif
  2575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2576. if (DEBUGGING(LEVELING)) {
  2577. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2578. SERIAL_CHAR(')');
  2579. SERIAL_EOL();
  2580. }
  2581. #endif
  2582. const int axis_home_dir =
  2583. #if ENABLED(DUAL_X_CARRIAGE)
  2584. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2585. #endif
  2586. home_dir(axis);
  2587. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2588. #if HOMING_Z_WITH_PROBE
  2589. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2590. #endif
  2591. // Set flags for X, Y, Z motor locking
  2592. #if ENABLED(X_DUAL_ENDSTOPS)
  2593. if (axis == X_AXIS) stepper.set_homing_flag_x(true);
  2594. #endif
  2595. #if ENABLED(Y_DUAL_ENDSTOPS)
  2596. if (axis == Y_AXIS) stepper.set_homing_flag_y(true);
  2597. #endif
  2598. #if ENABLED(Z_DUAL_ENDSTOPS)
  2599. if (axis == Z_AXIS) stepper.set_homing_flag_z(true);
  2600. #endif
  2601. // Disable stealthChop if used. Enable diag1 pin on driver.
  2602. #if ENABLED(SENSORLESS_HOMING)
  2603. #if ENABLED(X_IS_TMC2130)
  2604. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2605. #endif
  2606. #if ENABLED(Y_IS_TMC2130)
  2607. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2608. #endif
  2609. #endif
  2610. // Fast move towards endstop until triggered
  2611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2612. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2613. #endif
  2614. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2615. // When homing Z with probe respect probe clearance
  2616. const float bump = axis_home_dir * (
  2617. #if HOMING_Z_WITH_PROBE
  2618. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2619. #endif
  2620. home_bump_mm(axis)
  2621. );
  2622. // If a second homing move is configured...
  2623. if (bump) {
  2624. // Move away from the endstop by the axis HOME_BUMP_MM
  2625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2626. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2627. #endif
  2628. do_homing_move(axis, -bump);
  2629. // Slow move towards endstop until triggered
  2630. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2631. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2632. #endif
  2633. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2634. }
  2635. /**
  2636. * Home axes that have dual endstops... differently
  2637. */
  2638. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2639. const bool pos_dir = axis_home_dir > 0;
  2640. #if ENABLED(X_DUAL_ENDSTOPS)
  2641. if (axis == X_AXIS) {
  2642. const bool lock_x1 = pos_dir ? (x_endstop_adj > 0) : (x_endstop_adj < 0);
  2643. const float adj = FABS(x_endstop_adj);
  2644. if (lock_x1) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
  2645. do_homing_move(axis, pos_dir ? -adj : adj);
  2646. if (lock_x1) stepper.set_x_lock(false); else stepper.set_x2_lock(false);
  2647. stepper.set_homing_flag_x(false);
  2648. }
  2649. #endif
  2650. #if ENABLED(Y_DUAL_ENDSTOPS)
  2651. if (axis == Y_AXIS) {
  2652. const bool lock_y1 = pos_dir ? (y_endstop_adj > 0) : (y_endstop_adj < 0);
  2653. const float adj = FABS(y_endstop_adj);
  2654. if (lock_y1) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
  2655. do_homing_move(axis, pos_dir ? -adj : adj);
  2656. if (lock_y1) stepper.set_y_lock(false); else stepper.set_y2_lock(false);
  2657. stepper.set_homing_flag_y(false);
  2658. }
  2659. #endif
  2660. #if ENABLED(Z_DUAL_ENDSTOPS)
  2661. if (axis == Z_AXIS) {
  2662. const bool lock_z1 = pos_dir ? (z_endstop_adj > 0) : (z_endstop_adj < 0);
  2663. const float adj = FABS(z_endstop_adj);
  2664. if (lock_z1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2665. do_homing_move(axis, pos_dir ? -adj : adj);
  2666. if (lock_z1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2667. stepper.set_homing_flag_z(false);
  2668. }
  2669. #endif
  2670. #endif
  2671. #if IS_SCARA
  2672. set_axis_is_at_home(axis);
  2673. SYNC_PLAN_POSITION_KINEMATIC();
  2674. #elif ENABLED(DELTA)
  2675. // Delta has already moved all three towers up in G28
  2676. // so here it re-homes each tower in turn.
  2677. // Delta homing treats the axes as normal linear axes.
  2678. // retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
  2679. if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2680. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2681. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
  2682. #endif
  2683. do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2684. }
  2685. #else
  2686. // For cartesian/core machines,
  2687. // set the axis to its home position
  2688. set_axis_is_at_home(axis);
  2689. sync_plan_position();
  2690. destination[axis] = current_position[axis];
  2691. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2692. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2693. #endif
  2694. #endif
  2695. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2696. #if ENABLED(SENSORLESS_HOMING)
  2697. #if ENABLED(X_IS_TMC2130)
  2698. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2699. #endif
  2700. #if ENABLED(Y_IS_TMC2130)
  2701. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2702. #endif
  2703. #endif
  2704. // Put away the Z probe
  2705. #if HOMING_Z_WITH_PROBE
  2706. if (axis == Z_AXIS && STOW_PROBE()) return;
  2707. #endif
  2708. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2709. if (DEBUGGING(LEVELING)) {
  2710. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2711. SERIAL_CHAR(')');
  2712. SERIAL_EOL();
  2713. }
  2714. #endif
  2715. } // homeaxis()
  2716. #if ENABLED(FWRETRACT)
  2717. /**
  2718. * Retract or recover according to firmware settings
  2719. *
  2720. * This function handles retract/recover moves for G10 and G11,
  2721. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2722. *
  2723. * To simplify the logic, doubled retract/recover moves are ignored.
  2724. *
  2725. * Note: Z lift is done transparently to the planner. Aborting
  2726. * a print between G10 and G11 may corrupt the Z position.
  2727. *
  2728. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2729. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2730. */
  2731. void retract(const bool retracting
  2732. #if EXTRUDERS > 1
  2733. , bool swapping = false
  2734. #endif
  2735. ) {
  2736. static float hop_amount = 0.0; // Total amount lifted, for use in recover
  2737. // Prevent two retracts or recovers in a row
  2738. if (retracted[active_extruder] == retracting) return;
  2739. // Prevent two swap-retract or recovers in a row
  2740. #if EXTRUDERS > 1
  2741. // Allow G10 S1 only after G10
  2742. if (swapping && retracted_swap[active_extruder] == retracting) return;
  2743. // G11 priority to recover the long retract if activated
  2744. if (!retracting) swapping = retracted_swap[active_extruder];
  2745. #else
  2746. const bool swapping = false;
  2747. #endif
  2748. /* // debugging
  2749. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2750. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2751. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2752. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2753. SERIAL_ECHOPAIR("retracted[", i);
  2754. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2755. SERIAL_ECHOPAIR("retracted_swap[", i);
  2756. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2757. }
  2758. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2759. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2760. //*/
  2761. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2762. const float old_feedrate_mm_s = feedrate_mm_s;
  2763. // The current position will be the destination for E and Z moves
  2764. set_destination_from_current();
  2765. stepper.synchronize(); // Wait for buffered moves to complete
  2766. const float renormalize = 1.0 / planner.e_factor[active_extruder];
  2767. if (retracting) {
  2768. // Retract by moving from a faux E position back to the current E position
  2769. feedrate_mm_s = retract_feedrate_mm_s;
  2770. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) * renormalize;
  2771. sync_plan_position_e();
  2772. prepare_move_to_destination();
  2773. // Is a Z hop set, and has the hop not yet been done?
  2774. if (has_zhop && !hop_amount) {
  2775. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2776. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2777. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2778. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2779. prepare_move_to_destination(); // Raise up to the old current pos
  2780. feedrate_mm_s = retract_feedrate_mm_s; // Restore feedrate
  2781. }
  2782. }
  2783. else {
  2784. // If a hop was done and Z hasn't changed, undo the Z hop
  2785. if (hop_amount) {
  2786. current_position[Z_AXIS] += retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2787. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2788. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2789. prepare_move_to_destination(); // Raise up to the old current pos
  2790. hop_amount = 0.0; // Clear hop
  2791. }
  2792. // A retract multiplier has been added here to get faster swap recovery
  2793. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2794. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2795. current_position[E_AXIS] -= move_e * renormalize;
  2796. sync_plan_position_e();
  2797. prepare_move_to_destination(); // Recover E
  2798. }
  2799. feedrate_mm_s = old_feedrate_mm_s; // Restore original feedrate
  2800. retracted[active_extruder] = retracting; // Active extruder now retracted / recovered
  2801. // If swap retract/recover update the retracted_swap flag too
  2802. #if EXTRUDERS > 1
  2803. if (swapping) retracted_swap[active_extruder] = retracting;
  2804. #endif
  2805. /* // debugging
  2806. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2807. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2808. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2809. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2810. SERIAL_ECHOPAIR("retracted[", i);
  2811. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2812. SERIAL_ECHOPAIR("retracted_swap[", i);
  2813. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2814. }
  2815. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2816. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2817. //*/
  2818. }
  2819. #endif // FWRETRACT
  2820. #if ENABLED(MIXING_EXTRUDER)
  2821. void normalize_mix() {
  2822. float mix_total = 0.0;
  2823. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2824. // Scale all values if they don't add up to ~1.0
  2825. if (!NEAR(mix_total, 1.0)) {
  2826. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2827. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2828. }
  2829. }
  2830. #if ENABLED(DIRECT_MIXING_IN_G1)
  2831. // Get mixing parameters from the GCode
  2832. // The total "must" be 1.0 (but it will be normalized)
  2833. // If no mix factors are given, the old mix is preserved
  2834. void gcode_get_mix() {
  2835. const char* mixing_codes = "ABCDHI";
  2836. byte mix_bits = 0;
  2837. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2838. if (parser.seenval(mixing_codes[i])) {
  2839. SBI(mix_bits, i);
  2840. float v = parser.value_float();
  2841. NOLESS(v, 0.0);
  2842. mixing_factor[i] = RECIPROCAL(v);
  2843. }
  2844. }
  2845. // If any mixing factors were included, clear the rest
  2846. // If none were included, preserve the last mix
  2847. if (mix_bits) {
  2848. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2849. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2850. normalize_mix();
  2851. }
  2852. }
  2853. #endif
  2854. #endif
  2855. /**
  2856. * ***************************************************************************
  2857. * ***************************** G-CODE HANDLING *****************************
  2858. * ***************************************************************************
  2859. */
  2860. /**
  2861. * Set XYZE destination and feedrate from the current GCode command
  2862. *
  2863. * - Set destination from included axis codes
  2864. * - Set to current for missing axis codes
  2865. * - Set the feedrate, if included
  2866. */
  2867. void gcode_get_destination() {
  2868. LOOP_XYZE(i) {
  2869. if (parser.seen(axis_codes[i])) {
  2870. const float v = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2871. destination[i] = i == E_AXIS ? v : LOGICAL_TO_NATIVE(v, i);
  2872. }
  2873. else
  2874. destination[i] = current_position[i];
  2875. }
  2876. if (parser.linearval('F') > 0.0)
  2877. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2878. #if ENABLED(PRINTCOUNTER)
  2879. if (!DEBUGGING(DRYRUN))
  2880. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2881. #endif
  2882. // Get ABCDHI mixing factors
  2883. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2884. gcode_get_mix();
  2885. #endif
  2886. }
  2887. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2888. /**
  2889. * Output a "busy" message at regular intervals
  2890. * while the machine is not accepting commands.
  2891. */
  2892. void host_keepalive() {
  2893. const millis_t ms = millis();
  2894. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2895. if (PENDING(ms, next_busy_signal_ms)) return;
  2896. switch (busy_state) {
  2897. case IN_HANDLER:
  2898. case IN_PROCESS:
  2899. SERIAL_ECHO_START();
  2900. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2901. break;
  2902. case PAUSED_FOR_USER:
  2903. SERIAL_ECHO_START();
  2904. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2905. break;
  2906. case PAUSED_FOR_INPUT:
  2907. SERIAL_ECHO_START();
  2908. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2909. break;
  2910. default:
  2911. break;
  2912. }
  2913. }
  2914. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2915. }
  2916. #endif // HOST_KEEPALIVE_FEATURE
  2917. /**************************************************
  2918. ***************** GCode Handlers *****************
  2919. **************************************************/
  2920. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2921. #define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))
  2922. #else
  2923. #define G0_G1_CONDITION true
  2924. #endif
  2925. /**
  2926. * G0, G1: Coordinated movement of X Y Z E axes
  2927. */
  2928. inline void gcode_G0_G1(
  2929. #if IS_SCARA
  2930. bool fast_move=false
  2931. #endif
  2932. ) {
  2933. if (IsRunning() && G0_G1_CONDITION) {
  2934. gcode_get_destination(); // For X Y Z E F
  2935. #if ENABLED(FWRETRACT)
  2936. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2937. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2938. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2939. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2940. // Is this a retract or recover move?
  2941. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2942. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2943. sync_plan_position_e(); // AND from the planner
  2944. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2945. }
  2946. }
  2947. }
  2948. #endif // FWRETRACT
  2949. #if IS_SCARA
  2950. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2951. #else
  2952. prepare_move_to_destination();
  2953. #endif
  2954. #if ENABLED(NANODLP_Z_SYNC)
  2955. // If G0/G1 command include Z-axis, wait for move and output sync text.
  2956. if (parser.seenval('Z')) {
  2957. stepper.synchronize();
  2958. SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
  2959. }
  2960. #endif
  2961. }
  2962. }
  2963. /**
  2964. * G2: Clockwise Arc
  2965. * G3: Counterclockwise Arc
  2966. *
  2967. * This command has two forms: IJ-form and R-form.
  2968. *
  2969. * - I specifies an X offset. J specifies a Y offset.
  2970. * At least one of the IJ parameters is required.
  2971. * X and Y can be omitted to do a complete circle.
  2972. * The given XY is not error-checked. The arc ends
  2973. * based on the angle of the destination.
  2974. * Mixing I or J with R will throw an error.
  2975. *
  2976. * - R specifies the radius. X or Y is required.
  2977. * Omitting both X and Y will throw an error.
  2978. * X or Y must differ from the current XY.
  2979. * Mixing R with I or J will throw an error.
  2980. *
  2981. * - P specifies the number of full circles to do
  2982. * before the specified arc move.
  2983. *
  2984. * Examples:
  2985. *
  2986. * G2 I10 ; CW circle centered at X+10
  2987. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2988. */
  2989. #if ENABLED(ARC_SUPPORT)
  2990. inline void gcode_G2_G3(const bool clockwise) {
  2991. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2992. if (axis_unhomed_error()) return;
  2993. #endif
  2994. if (IsRunning()) {
  2995. #if ENABLED(SF_ARC_FIX)
  2996. const bool relative_mode_backup = relative_mode;
  2997. relative_mode = true;
  2998. #endif
  2999. gcode_get_destination();
  3000. #if ENABLED(SF_ARC_FIX)
  3001. relative_mode = relative_mode_backup;
  3002. #endif
  3003. float arc_offset[2] = { 0.0, 0.0 };
  3004. if (parser.seenval('R')) {
  3005. const float r = parser.value_linear_units(),
  3006. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  3007. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  3008. if (r && (p2 != p1 || q2 != q1)) {
  3009. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  3010. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  3011. d = HYPOT(dx, dy), // Linear distance between the points
  3012. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  3013. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  3014. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  3015. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  3016. arc_offset[0] = cx - p1;
  3017. arc_offset[1] = cy - q1;
  3018. }
  3019. }
  3020. else {
  3021. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  3022. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  3023. }
  3024. if (arc_offset[0] || arc_offset[1]) {
  3025. #if ENABLED(ARC_P_CIRCLES)
  3026. // P indicates number of circles to do
  3027. int8_t circles_to_do = parser.byteval('P');
  3028. if (!WITHIN(circles_to_do, 0, 100)) {
  3029. SERIAL_ERROR_START();
  3030. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3031. }
  3032. while (circles_to_do--)
  3033. plan_arc(current_position, arc_offset, clockwise);
  3034. #endif
  3035. // Send the arc to the planner
  3036. plan_arc(destination, arc_offset, clockwise);
  3037. refresh_cmd_timeout();
  3038. }
  3039. else {
  3040. // Bad arguments
  3041. SERIAL_ERROR_START();
  3042. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3043. }
  3044. }
  3045. }
  3046. #endif // ARC_SUPPORT
  3047. void dwell(millis_t time) {
  3048. refresh_cmd_timeout();
  3049. time += previous_cmd_ms;
  3050. while (PENDING(millis(), time)) idle();
  3051. }
  3052. /**
  3053. * G4: Dwell S<seconds> or P<milliseconds>
  3054. */
  3055. inline void gcode_G4() {
  3056. millis_t dwell_ms = 0;
  3057. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  3058. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  3059. stepper.synchronize();
  3060. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  3061. dwell(dwell_ms);
  3062. }
  3063. #if ENABLED(BEZIER_CURVE_SUPPORT)
  3064. /**
  3065. * Parameters interpreted according to:
  3066. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3067. * However I, J omission is not supported at this point; all
  3068. * parameters can be omitted and default to zero.
  3069. */
  3070. /**
  3071. * G5: Cubic B-spline
  3072. */
  3073. inline void gcode_G5() {
  3074. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3075. if (axis_unhomed_error()) return;
  3076. #endif
  3077. if (IsRunning()) {
  3078. #if ENABLED(CNC_WORKSPACE_PLANES)
  3079. if (workspace_plane != PLANE_XY) {
  3080. SERIAL_ERROR_START();
  3081. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3082. return;
  3083. }
  3084. #endif
  3085. gcode_get_destination();
  3086. const float offset[] = {
  3087. parser.linearval('I'),
  3088. parser.linearval('J'),
  3089. parser.linearval('P'),
  3090. parser.linearval('Q')
  3091. };
  3092. plan_cubic_move(offset);
  3093. }
  3094. }
  3095. #endif // BEZIER_CURVE_SUPPORT
  3096. #if ENABLED(FWRETRACT)
  3097. /**
  3098. * G10 - Retract filament according to settings of M207
  3099. */
  3100. inline void gcode_G10() {
  3101. #if EXTRUDERS > 1
  3102. const bool rs = parser.boolval('S');
  3103. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3104. #endif
  3105. retract(true
  3106. #if EXTRUDERS > 1
  3107. , rs
  3108. #endif
  3109. );
  3110. }
  3111. /**
  3112. * G11 - Recover filament according to settings of M208
  3113. */
  3114. inline void gcode_G11() { retract(false); }
  3115. #endif // FWRETRACT
  3116. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3117. /**
  3118. * G12: Clean the nozzle
  3119. */
  3120. inline void gcode_G12() {
  3121. // Don't allow nozzle cleaning without homing first
  3122. if (axis_unhomed_error()) return;
  3123. const uint8_t pattern = parser.ushortval('P', 0),
  3124. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3125. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3126. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3127. Nozzle::clean(pattern, strokes, radius, objects);
  3128. }
  3129. #endif
  3130. #if ENABLED(CNC_WORKSPACE_PLANES)
  3131. inline void report_workspace_plane() {
  3132. SERIAL_ECHO_START();
  3133. SERIAL_ECHOPGM("Workspace Plane ");
  3134. serialprintPGM(
  3135. workspace_plane == PLANE_YZ ? PSTR("YZ\n") :
  3136. workspace_plane == PLANE_ZX ? PSTR("ZX\n") :
  3137. PSTR("XY\n")
  3138. );
  3139. }
  3140. inline void set_workspace_plane(const WorkspacePlane plane) {
  3141. workspace_plane = plane;
  3142. if (DEBUGGING(INFO)) report_workspace_plane();
  3143. }
  3144. /**
  3145. * G17: Select Plane XY
  3146. * G18: Select Plane ZX
  3147. * G19: Select Plane YZ
  3148. */
  3149. inline void gcode_G17() { set_workspace_plane(PLANE_XY); }
  3150. inline void gcode_G18() { set_workspace_plane(PLANE_ZX); }
  3151. inline void gcode_G19() { set_workspace_plane(PLANE_YZ); }
  3152. #endif // CNC_WORKSPACE_PLANES
  3153. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  3154. /**
  3155. * Select a coordinate system and update the workspace offset.
  3156. * System index -1 is used to specify machine-native.
  3157. */
  3158. bool select_coordinate_system(const int8_t _new) {
  3159. if (active_coordinate_system == _new) return false;
  3160. float old_offset[XYZ] = { 0 }, new_offset[XYZ] = { 0 };
  3161. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  3162. COPY(old_offset, coordinate_system[active_coordinate_system]);
  3163. if (WITHIN(_new, 0, MAX_COORDINATE_SYSTEMS - 1))
  3164. COPY(new_offset, coordinate_system[_new]);
  3165. active_coordinate_system = _new;
  3166. LOOP_XYZ(i) {
  3167. const float diff = new_offset[i] - old_offset[i];
  3168. if (diff) {
  3169. position_shift[i] += diff;
  3170. update_software_endstops((AxisEnum)i);
  3171. }
  3172. }
  3173. return true;
  3174. }
  3175. /**
  3176. * In CNC G-code G53 is like a modifier
  3177. * It precedes a movement command (or other modifiers) on the same line.
  3178. * This is the first command to use parser.chain() to make this possible.
  3179. */
  3180. inline void gcode_G53() {
  3181. // If this command has more following...
  3182. if (parser.chain()) {
  3183. const int8_t _system = active_coordinate_system;
  3184. active_coordinate_system = -1;
  3185. process_parsed_command();
  3186. active_coordinate_system = _system;
  3187. }
  3188. }
  3189. /**
  3190. * G54-G59.3: Select a new workspace
  3191. *
  3192. * A workspace is an XYZ offset to the machine native space.
  3193. * All workspaces default to 0,0,0 at start, or with EEPROM
  3194. * support they may be restored from a previous session.
  3195. *
  3196. * G92 is used to set the current workspace's offset.
  3197. */
  3198. inline void gcode_G54_59(uint8_t subcode=0) {
  3199. const int8_t _space = parser.codenum - 54 + subcode;
  3200. if (select_coordinate_system(_space)) {
  3201. SERIAL_PROTOCOLLNPAIR("Select workspace ", _space);
  3202. report_current_position();
  3203. }
  3204. }
  3205. FORCE_INLINE void gcode_G54() { gcode_G54_59(); }
  3206. FORCE_INLINE void gcode_G55() { gcode_G54_59(); }
  3207. FORCE_INLINE void gcode_G56() { gcode_G54_59(); }
  3208. FORCE_INLINE void gcode_G57() { gcode_G54_59(); }
  3209. FORCE_INLINE void gcode_G58() { gcode_G54_59(); }
  3210. FORCE_INLINE void gcode_G59() { gcode_G54_59(parser.subcode); }
  3211. #endif
  3212. #if ENABLED(INCH_MODE_SUPPORT)
  3213. /**
  3214. * G20: Set input mode to inches
  3215. */
  3216. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3217. /**
  3218. * G21: Set input mode to millimeters
  3219. */
  3220. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3221. #endif
  3222. #if ENABLED(NOZZLE_PARK_FEATURE)
  3223. /**
  3224. * G27: Park the nozzle
  3225. */
  3226. inline void gcode_G27() {
  3227. // Don't allow nozzle parking without homing first
  3228. if (axis_unhomed_error()) return;
  3229. Nozzle::park(parser.ushortval('P'));
  3230. }
  3231. #endif // NOZZLE_PARK_FEATURE
  3232. #if ENABLED(QUICK_HOME)
  3233. static void quick_home_xy() {
  3234. // Pretend the current position is 0,0
  3235. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3236. sync_plan_position();
  3237. const int x_axis_home_dir =
  3238. #if ENABLED(DUAL_X_CARRIAGE)
  3239. x_home_dir(active_extruder)
  3240. #else
  3241. home_dir(X_AXIS)
  3242. #endif
  3243. ;
  3244. const float mlx = max_length(X_AXIS),
  3245. mly = max_length(Y_AXIS),
  3246. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3247. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3248. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3249. endstops.hit_on_purpose(); // clear endstop hit flags
  3250. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3251. }
  3252. #endif // QUICK_HOME
  3253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3254. void log_machine_info() {
  3255. SERIAL_ECHOPGM("Machine Type: ");
  3256. #if ENABLED(DELTA)
  3257. SERIAL_ECHOLNPGM("Delta");
  3258. #elif IS_SCARA
  3259. SERIAL_ECHOLNPGM("SCARA");
  3260. #elif IS_CORE
  3261. SERIAL_ECHOLNPGM("Core");
  3262. #else
  3263. SERIAL_ECHOLNPGM("Cartesian");
  3264. #endif
  3265. SERIAL_ECHOPGM("Probe: ");
  3266. #if ENABLED(PROBE_MANUALLY)
  3267. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3268. #elif ENABLED(FIX_MOUNTED_PROBE)
  3269. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3270. #elif ENABLED(BLTOUCH)
  3271. SERIAL_ECHOLNPGM("BLTOUCH");
  3272. #elif HAS_Z_SERVO_ENDSTOP
  3273. SERIAL_ECHOLNPGM("SERVO PROBE");
  3274. #elif ENABLED(Z_PROBE_SLED)
  3275. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3276. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3277. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3278. #else
  3279. SERIAL_ECHOLNPGM("NONE");
  3280. #endif
  3281. #if HAS_BED_PROBE
  3282. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3283. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3284. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3285. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3286. SERIAL_ECHOPGM(" (Right");
  3287. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3288. SERIAL_ECHOPGM(" (Left");
  3289. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3290. SERIAL_ECHOPGM(" (Middle");
  3291. #else
  3292. SERIAL_ECHOPGM(" (Aligned With");
  3293. #endif
  3294. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3295. SERIAL_ECHOPGM("-Back");
  3296. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3297. SERIAL_ECHOPGM("-Front");
  3298. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3299. SERIAL_ECHOPGM("-Center");
  3300. #endif
  3301. if (zprobe_zoffset < 0)
  3302. SERIAL_ECHOPGM(" & Below");
  3303. else if (zprobe_zoffset > 0)
  3304. SERIAL_ECHOPGM(" & Above");
  3305. else
  3306. SERIAL_ECHOPGM(" & Same Z as");
  3307. SERIAL_ECHOLNPGM(" Nozzle)");
  3308. #endif
  3309. #if HAS_ABL
  3310. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3311. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3312. SERIAL_ECHOPGM("LINEAR");
  3313. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3314. SERIAL_ECHOPGM("BILINEAR");
  3315. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3316. SERIAL_ECHOPGM("3POINT");
  3317. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3318. SERIAL_ECHOPGM("UBL");
  3319. #endif
  3320. if (planner.leveling_active) {
  3321. SERIAL_ECHOLNPGM(" (enabled)");
  3322. #if ABL_PLANAR
  3323. const float diff[XYZ] = {
  3324. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3325. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3326. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3327. };
  3328. SERIAL_ECHOPGM("ABL Adjustment X");
  3329. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3330. SERIAL_ECHO(diff[X_AXIS]);
  3331. SERIAL_ECHOPGM(" Y");
  3332. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3333. SERIAL_ECHO(diff[Y_AXIS]);
  3334. SERIAL_ECHOPGM(" Z");
  3335. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3336. SERIAL_ECHO(diff[Z_AXIS]);
  3337. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3338. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3339. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3340. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3341. #endif
  3342. }
  3343. else
  3344. SERIAL_ECHOLNPGM(" (disabled)");
  3345. SERIAL_EOL();
  3346. #elif ENABLED(MESH_BED_LEVELING)
  3347. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3348. if (planner.leveling_active) {
  3349. float rz = current_position[Z_AXIS];
  3350. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], rz);
  3351. SERIAL_ECHOLNPGM(" (enabled)");
  3352. SERIAL_ECHOPAIR("MBL Adjustment Z", rz);
  3353. }
  3354. else
  3355. SERIAL_ECHOPGM(" (disabled)");
  3356. SERIAL_EOL();
  3357. #endif // MESH_BED_LEVELING
  3358. }
  3359. #endif // DEBUG_LEVELING_FEATURE
  3360. #if ENABLED(DELTA)
  3361. /**
  3362. * A delta can only safely home all axes at the same time
  3363. * This is like quick_home_xy() but for 3 towers.
  3364. */
  3365. inline bool home_delta() {
  3366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3367. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3368. #endif
  3369. // Init the current position of all carriages to 0,0,0
  3370. ZERO(current_position);
  3371. sync_plan_position();
  3372. // Move all carriages together linearly until an endstop is hit.
  3373. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10);
  3374. feedrate_mm_s = homing_feedrate(X_AXIS);
  3375. buffer_line_to_current_position();
  3376. stepper.synchronize();
  3377. // If an endstop was not hit, then damage can occur if homing is continued.
  3378. // This can occur if the delta height not set correctly.
  3379. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3380. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3381. SERIAL_ERROR_START();
  3382. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3383. return false;
  3384. }
  3385. endstops.hit_on_purpose(); // clear endstop hit flags
  3386. // At least one carriage has reached the top.
  3387. // Now re-home each carriage separately.
  3388. HOMEAXIS(A);
  3389. HOMEAXIS(B);
  3390. HOMEAXIS(C);
  3391. // Set all carriages to their home positions
  3392. // Do this here all at once for Delta, because
  3393. // XYZ isn't ABC. Applying this per-tower would
  3394. // give the impression that they are the same.
  3395. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3396. SYNC_PLAN_POSITION_KINEMATIC();
  3397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3398. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3399. #endif
  3400. return true;
  3401. }
  3402. #endif // DELTA
  3403. #if ENABLED(Z_SAFE_HOMING)
  3404. inline void home_z_safely() {
  3405. // Disallow Z homing if X or Y are unknown
  3406. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3407. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3408. SERIAL_ECHO_START();
  3409. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3410. return;
  3411. }
  3412. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3413. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3414. #endif
  3415. SYNC_PLAN_POSITION_KINEMATIC();
  3416. /**
  3417. * Move the Z probe (or just the nozzle) to the safe homing point
  3418. */
  3419. destination[X_AXIS] = Z_SAFE_HOMING_X_POINT;
  3420. destination[Y_AXIS] = Z_SAFE_HOMING_Y_POINT;
  3421. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3422. #if HOMING_Z_WITH_PROBE
  3423. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3424. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3425. #endif
  3426. if (position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) {
  3427. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3428. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3429. #endif
  3430. // This causes the carriage on Dual X to unpark
  3431. #if ENABLED(DUAL_X_CARRIAGE)
  3432. active_extruder_parked = false;
  3433. #endif
  3434. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3435. HOMEAXIS(Z);
  3436. }
  3437. else {
  3438. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3439. SERIAL_ECHO_START();
  3440. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3441. }
  3442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3443. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3444. #endif
  3445. }
  3446. #endif // Z_SAFE_HOMING
  3447. #if ENABLED(PROBE_MANUALLY)
  3448. bool g29_in_progress = false;
  3449. #else
  3450. constexpr bool g29_in_progress = false;
  3451. #endif
  3452. /**
  3453. * G28: Home all axes according to settings
  3454. *
  3455. * Parameters
  3456. *
  3457. * None Home to all axes with no parameters.
  3458. * With QUICK_HOME enabled XY will home together, then Z.
  3459. *
  3460. * Cartesian parameters
  3461. *
  3462. * X Home to the X endstop
  3463. * Y Home to the Y endstop
  3464. * Z Home to the Z endstop
  3465. *
  3466. */
  3467. inline void gcode_G28(const bool always_home_all) {
  3468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3469. if (DEBUGGING(LEVELING)) {
  3470. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3471. log_machine_info();
  3472. }
  3473. #endif
  3474. // Wait for planner moves to finish!
  3475. stepper.synchronize();
  3476. // Cancel the active G29 session
  3477. #if ENABLED(PROBE_MANUALLY)
  3478. g29_in_progress = false;
  3479. #endif
  3480. // Disable the leveling matrix before homing
  3481. #if HAS_LEVELING
  3482. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3483. const bool ubl_state_at_entry = planner.leveling_active;
  3484. #endif
  3485. set_bed_leveling_enabled(false);
  3486. #endif
  3487. #if ENABLED(CNC_WORKSPACE_PLANES)
  3488. workspace_plane = PLANE_XY;
  3489. #endif
  3490. // Always home with tool 0 active
  3491. #if HOTENDS > 1
  3492. const uint8_t old_tool_index = active_extruder;
  3493. tool_change(0, 0, true);
  3494. #endif
  3495. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3496. extruder_duplication_enabled = false;
  3497. #endif
  3498. setup_for_endstop_or_probe_move();
  3499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3500. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3501. #endif
  3502. endstops.enable(true); // Enable endstops for next homing move
  3503. #if ENABLED(DELTA)
  3504. home_delta();
  3505. UNUSED(always_home_all);
  3506. #else // NOT DELTA
  3507. const bool homeX = always_home_all || parser.seen('X'),
  3508. homeY = always_home_all || parser.seen('Y'),
  3509. homeZ = always_home_all || parser.seen('Z'),
  3510. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3511. set_destination_from_current();
  3512. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3513. if (home_all || homeZ) {
  3514. HOMEAXIS(Z);
  3515. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3516. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3517. #endif
  3518. }
  3519. #else
  3520. if (home_all || homeX || homeY) {
  3521. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3522. destination[Z_AXIS] = Z_HOMING_HEIGHT;
  3523. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3524. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3525. if (DEBUGGING(LEVELING))
  3526. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3527. #endif
  3528. do_blocking_move_to_z(destination[Z_AXIS]);
  3529. }
  3530. }
  3531. #endif
  3532. #if ENABLED(QUICK_HOME)
  3533. if (home_all || (homeX && homeY)) quick_home_xy();
  3534. #endif
  3535. #if ENABLED(HOME_Y_BEFORE_X)
  3536. // Home Y
  3537. if (home_all || homeY) {
  3538. HOMEAXIS(Y);
  3539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3540. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3541. #endif
  3542. }
  3543. #endif
  3544. // Home X
  3545. if (home_all || homeX) {
  3546. #if ENABLED(DUAL_X_CARRIAGE)
  3547. // Always home the 2nd (right) extruder first
  3548. active_extruder = 1;
  3549. HOMEAXIS(X);
  3550. // Remember this extruder's position for later tool change
  3551. inactive_extruder_x_pos = current_position[X_AXIS];
  3552. // Home the 1st (left) extruder
  3553. active_extruder = 0;
  3554. HOMEAXIS(X);
  3555. // Consider the active extruder to be parked
  3556. COPY(raised_parked_position, current_position);
  3557. delayed_move_time = 0;
  3558. active_extruder_parked = true;
  3559. #else
  3560. HOMEAXIS(X);
  3561. #endif
  3562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3563. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3564. #endif
  3565. }
  3566. #if DISABLED(HOME_Y_BEFORE_X)
  3567. // Home Y
  3568. if (home_all || homeY) {
  3569. HOMEAXIS(Y);
  3570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3571. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3572. #endif
  3573. }
  3574. #endif
  3575. // Home Z last if homing towards the bed
  3576. #if Z_HOME_DIR < 0
  3577. if (home_all || homeZ) {
  3578. #if ENABLED(Z_SAFE_HOMING)
  3579. home_z_safely();
  3580. #else
  3581. HOMEAXIS(Z);
  3582. #endif
  3583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3584. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3585. #endif
  3586. } // home_all || homeZ
  3587. #endif // Z_HOME_DIR < 0
  3588. SYNC_PLAN_POSITION_KINEMATIC();
  3589. #endif // !DELTA (gcode_G28)
  3590. endstops.not_homing();
  3591. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3592. // move to a height where we can use the full xy-area
  3593. do_blocking_move_to_z(delta_clip_start_height);
  3594. #endif
  3595. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3596. set_bed_leveling_enabled(ubl_state_at_entry);
  3597. #endif
  3598. clean_up_after_endstop_or_probe_move();
  3599. // Restore the active tool after homing
  3600. #if HOTENDS > 1
  3601. #if ENABLED(PARKING_EXTRUDER)
  3602. #define NO_FETCH false // fetch the previous toolhead
  3603. #else
  3604. #define NO_FETCH true
  3605. #endif
  3606. tool_change(old_tool_index, 0, NO_FETCH);
  3607. #endif
  3608. lcd_refresh();
  3609. report_current_position();
  3610. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3611. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3612. #endif
  3613. } // G28
  3614. void home_all_axes() { gcode_G28(true); }
  3615. #if HAS_PROBING_PROCEDURE
  3616. void out_of_range_error(const char* p_edge) {
  3617. SERIAL_PROTOCOLPGM("?Probe ");
  3618. serialprintPGM(p_edge);
  3619. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3620. }
  3621. #endif
  3622. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3623. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3624. extern bool lcd_wait_for_move;
  3625. #endif
  3626. inline void _manual_goto_xy(const float &rx, const float &ry) {
  3627. #if MANUAL_PROBE_HEIGHT > 0
  3628. const float prev_z = current_position[Z_AXIS];
  3629. do_blocking_move_to_z(MANUAL_PROBE_HEIGHT, homing_feedrate(Z_AXIS));
  3630. #endif
  3631. do_blocking_move_to_xy(rx, ry, MMM_TO_MMS(XY_PROBE_SPEED));
  3632. #if MANUAL_PROBE_HEIGHT > 0
  3633. do_blocking_move_to_z(prev_z, homing_feedrate(Z_AXIS));
  3634. #endif
  3635. current_position[X_AXIS] = rx;
  3636. current_position[Y_AXIS] = ry;
  3637. #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
  3638. lcd_wait_for_move = false;
  3639. #endif
  3640. }
  3641. #endif
  3642. #if ENABLED(MESH_BED_LEVELING)
  3643. // Save 130 bytes with non-duplication of PSTR
  3644. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3645. void mbl_mesh_report() {
  3646. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3647. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3648. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3649. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3650. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3651. );
  3652. }
  3653. void mesh_probing_done() {
  3654. mbl.has_mesh = true;
  3655. home_all_axes();
  3656. set_bed_leveling_enabled(true);
  3657. #if ENABLED(MESH_G28_REST_ORIGIN)
  3658. current_position[Z_AXIS] = Z_MIN_POS;
  3659. set_destination_from_current();
  3660. buffer_line_to_destination(homing_feedrate(Z_AXIS));
  3661. stepper.synchronize();
  3662. #endif
  3663. }
  3664. /**
  3665. * G29: Mesh-based Z probe, probes a grid and produces a
  3666. * mesh to compensate for variable bed height
  3667. *
  3668. * Parameters With MESH_BED_LEVELING:
  3669. *
  3670. * S0 Produce a mesh report
  3671. * S1 Start probing mesh points
  3672. * S2 Probe the next mesh point
  3673. * S3 Xn Yn Zn.nn Manually modify a single point
  3674. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3675. * S5 Reset and disable mesh
  3676. *
  3677. * The S0 report the points as below
  3678. *
  3679. * +----> X-axis 1-n
  3680. * |
  3681. * |
  3682. * v Y-axis 1-n
  3683. *
  3684. */
  3685. inline void gcode_G29() {
  3686. static int mbl_probe_index = -1;
  3687. #if HAS_SOFTWARE_ENDSTOPS
  3688. static bool enable_soft_endstops;
  3689. #endif
  3690. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3691. if (!WITHIN(state, 0, 5)) {
  3692. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3693. return;
  3694. }
  3695. int8_t px, py;
  3696. switch (state) {
  3697. case MeshReport:
  3698. if (leveling_is_valid()) {
  3699. SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
  3700. mbl_mesh_report();
  3701. }
  3702. else
  3703. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3704. break;
  3705. case MeshStart:
  3706. mbl.reset();
  3707. mbl_probe_index = 0;
  3708. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3709. break;
  3710. case MeshNext:
  3711. if (mbl_probe_index < 0) {
  3712. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3713. return;
  3714. }
  3715. // For each G29 S2...
  3716. if (mbl_probe_index == 0) {
  3717. #if HAS_SOFTWARE_ENDSTOPS
  3718. // For the initial G29 S2 save software endstop state
  3719. enable_soft_endstops = soft_endstops_enabled;
  3720. #endif
  3721. }
  3722. else {
  3723. // For G29 S2 after adjusting Z.
  3724. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3725. #if HAS_SOFTWARE_ENDSTOPS
  3726. soft_endstops_enabled = enable_soft_endstops;
  3727. #endif
  3728. }
  3729. // If there's another point to sample, move there with optional lift.
  3730. if (mbl_probe_index < GRID_MAX_POINTS) {
  3731. mbl.zigzag(mbl_probe_index, px, py);
  3732. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3733. #if HAS_SOFTWARE_ENDSTOPS
  3734. // Disable software endstops to allow manual adjustment
  3735. // If G29 is not completed, they will not be re-enabled
  3736. soft_endstops_enabled = false;
  3737. #endif
  3738. mbl_probe_index++;
  3739. }
  3740. else {
  3741. // One last "return to the bed" (as originally coded) at completion
  3742. current_position[Z_AXIS] = Z_MIN_POS + MANUAL_PROBE_HEIGHT;
  3743. buffer_line_to_current_position();
  3744. stepper.synchronize();
  3745. // After recording the last point, activate home and activate
  3746. mbl_probe_index = -1;
  3747. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3748. BUZZ(100, 659);
  3749. BUZZ(100, 698);
  3750. mesh_probing_done();
  3751. }
  3752. break;
  3753. case MeshSet:
  3754. if (parser.seenval('X')) {
  3755. px = parser.value_int() - 1;
  3756. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3757. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3758. return;
  3759. }
  3760. }
  3761. else {
  3762. SERIAL_CHAR('X'); echo_not_entered();
  3763. return;
  3764. }
  3765. if (parser.seenval('Y')) {
  3766. py = parser.value_int() - 1;
  3767. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3768. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3769. return;
  3770. }
  3771. }
  3772. else {
  3773. SERIAL_CHAR('Y'); echo_not_entered();
  3774. return;
  3775. }
  3776. if (parser.seenval('Z')) {
  3777. mbl.z_values[px][py] = parser.value_linear_units();
  3778. }
  3779. else {
  3780. SERIAL_CHAR('Z'); echo_not_entered();
  3781. return;
  3782. }
  3783. break;
  3784. case MeshSetZOffset:
  3785. if (parser.seenval('Z')) {
  3786. mbl.z_offset = parser.value_linear_units();
  3787. }
  3788. else {
  3789. SERIAL_CHAR('Z'); echo_not_entered();
  3790. return;
  3791. }
  3792. break;
  3793. case MeshReset:
  3794. reset_bed_level();
  3795. break;
  3796. } // switch(state)
  3797. report_current_position();
  3798. }
  3799. #elif OLDSCHOOL_ABL
  3800. #if ABL_GRID
  3801. #if ENABLED(PROBE_Y_FIRST)
  3802. #define PR_OUTER_VAR xCount
  3803. #define PR_OUTER_END abl_grid_points_x
  3804. #define PR_INNER_VAR yCount
  3805. #define PR_INNER_END abl_grid_points_y
  3806. #else
  3807. #define PR_OUTER_VAR yCount
  3808. #define PR_OUTER_END abl_grid_points_y
  3809. #define PR_INNER_VAR xCount
  3810. #define PR_INNER_END abl_grid_points_x
  3811. #endif
  3812. #endif
  3813. /**
  3814. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3815. * Will fail if the printer has not been homed with G28.
  3816. *
  3817. * Enhanced G29 Auto Bed Leveling Probe Routine
  3818. *
  3819. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3820. * or alter the bed level data. Useful to check the topology
  3821. * after a first run of G29.
  3822. *
  3823. * J Jettison current bed leveling data
  3824. *
  3825. * V Set the verbose level (0-4). Example: "G29 V3"
  3826. *
  3827. * Parameters With LINEAR leveling only:
  3828. *
  3829. * P Set the size of the grid that will be probed (P x P points).
  3830. * Example: "G29 P4"
  3831. *
  3832. * X Set the X size of the grid that will be probed (X x Y points).
  3833. * Example: "G29 X7 Y5"
  3834. *
  3835. * Y Set the Y size of the grid that will be probed (X x Y points).
  3836. *
  3837. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3838. * This is useful for manual bed leveling and finding flaws in the bed (to
  3839. * assist with part placement).
  3840. * Not supported by non-linear delta printer bed leveling.
  3841. *
  3842. * Parameters With LINEAR and BILINEAR leveling only:
  3843. *
  3844. * S Set the XY travel speed between probe points (in units/min)
  3845. *
  3846. * F Set the Front limit of the probing grid
  3847. * B Set the Back limit of the probing grid
  3848. * L Set the Left limit of the probing grid
  3849. * R Set the Right limit of the probing grid
  3850. *
  3851. * Parameters with DEBUG_LEVELING_FEATURE only:
  3852. *
  3853. * C Make a totally fake grid with no actual probing.
  3854. * For use in testing when no probing is possible.
  3855. *
  3856. * Parameters with BILINEAR leveling only:
  3857. *
  3858. * Z Supply an additional Z probe offset
  3859. *
  3860. * Extra parameters with PROBE_MANUALLY:
  3861. *
  3862. * To do manual probing simply repeat G29 until the procedure is complete.
  3863. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3864. *
  3865. * Q Query leveling and G29 state
  3866. *
  3867. * A Abort current leveling procedure
  3868. *
  3869. * Extra parameters with BILINEAR only:
  3870. *
  3871. * W Write a mesh point. (If G29 is idle.)
  3872. * I X index for mesh point
  3873. * J Y index for mesh point
  3874. * X X for mesh point, overrides I
  3875. * Y Y for mesh point, overrides J
  3876. * Z Z for mesh point. Otherwise, raw current Z.
  3877. *
  3878. * Without PROBE_MANUALLY:
  3879. *
  3880. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3881. * Include "E" to engage/disengage the Z probe for each sample.
  3882. * There's no extra effect if you have a fixed Z probe.
  3883. *
  3884. */
  3885. inline void gcode_G29() {
  3886. // G29 Q is also available if debugging
  3887. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3888. const bool query = parser.seen('Q');
  3889. const uint8_t old_debug_flags = marlin_debug_flags;
  3890. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3891. if (DEBUGGING(LEVELING)) {
  3892. DEBUG_POS(">>> gcode_G29", current_position);
  3893. log_machine_info();
  3894. }
  3895. marlin_debug_flags = old_debug_flags;
  3896. #if DISABLED(PROBE_MANUALLY)
  3897. if (query) return;
  3898. #endif
  3899. #endif
  3900. #if ENABLED(PROBE_MANUALLY)
  3901. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3902. #endif
  3903. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3904. const bool faux = parser.boolval('C');
  3905. #elif ENABLED(PROBE_MANUALLY)
  3906. const bool faux = no_action;
  3907. #else
  3908. bool constexpr faux = false;
  3909. #endif
  3910. // Don't allow auto-leveling without homing first
  3911. if (axis_unhomed_error()) return;
  3912. // Define local vars 'static' for manual probing, 'auto' otherwise
  3913. #if ENABLED(PROBE_MANUALLY)
  3914. #define ABL_VAR static
  3915. #else
  3916. #define ABL_VAR
  3917. #endif
  3918. ABL_VAR int verbose_level;
  3919. ABL_VAR float xProbe, yProbe, measured_z;
  3920. ABL_VAR bool dryrun, abl_should_enable;
  3921. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3922. ABL_VAR int abl_probe_index;
  3923. #endif
  3924. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3925. ABL_VAR bool enable_soft_endstops = true;
  3926. #endif
  3927. #if ABL_GRID
  3928. #if ENABLED(PROBE_MANUALLY)
  3929. ABL_VAR uint8_t PR_OUTER_VAR;
  3930. ABL_VAR int8_t PR_INNER_VAR;
  3931. #endif
  3932. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3933. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3934. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3935. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3936. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3937. ABL_VAR bool do_topography_map;
  3938. #else // Bilinear
  3939. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3940. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3941. #endif
  3942. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3943. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3944. ABL_VAR int abl2;
  3945. #else // Bilinear
  3946. int constexpr abl2 = GRID_MAX_POINTS;
  3947. #endif
  3948. #endif
  3949. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3950. ABL_VAR float zoffset;
  3951. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3952. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3953. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3954. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3955. mean;
  3956. #endif
  3957. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3958. int constexpr abl2 = 3;
  3959. // Probe at 3 arbitrary points
  3960. ABL_VAR vector_3 points[3] = {
  3961. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3962. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3963. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3964. };
  3965. #endif // AUTO_BED_LEVELING_3POINT
  3966. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3967. struct linear_fit_data lsf_results;
  3968. incremental_LSF_reset(&lsf_results);
  3969. #endif
  3970. /**
  3971. * On the initial G29 fetch command parameters.
  3972. */
  3973. if (!g29_in_progress) {
  3974. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3975. abl_probe_index = -1;
  3976. #endif
  3977. abl_should_enable = planner.leveling_active;
  3978. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3979. if (parser.seen('W')) {
  3980. if (!leveling_is_valid()) {
  3981. SERIAL_ERROR_START();
  3982. SERIAL_ERRORLNPGM("No bilinear grid");
  3983. return;
  3984. }
  3985. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position[Z_AXIS];
  3986. if (!WITHIN(rz, -10, 10)) {
  3987. SERIAL_ERROR_START();
  3988. SERIAL_ERRORLNPGM("Bad Z value");
  3989. return;
  3990. }
  3991. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  3992. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  3993. int8_t i = parser.byteval('I', -1),
  3994. j = parser.byteval('J', -1);
  3995. if (!isnan(rx) && !isnan(ry)) {
  3996. // Get nearest i / j from x / y
  3997. i = (rx - bilinear_start[X_AXIS] + 0.5 * xGridSpacing) / xGridSpacing;
  3998. j = (ry - bilinear_start[Y_AXIS] + 0.5 * yGridSpacing) / yGridSpacing;
  3999. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  4000. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  4001. }
  4002. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  4003. set_bed_leveling_enabled(false);
  4004. z_values[i][j] = rz;
  4005. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4006. bed_level_virt_interpolate();
  4007. #endif
  4008. set_bed_leveling_enabled(abl_should_enable);
  4009. }
  4010. return;
  4011. } // parser.seen('W')
  4012. #endif
  4013. #if HAS_LEVELING
  4014. // Jettison bed leveling data
  4015. if (parser.seen('J')) {
  4016. reset_bed_level();
  4017. return;
  4018. }
  4019. #endif
  4020. verbose_level = parser.intval('V');
  4021. if (!WITHIN(verbose_level, 0, 4)) {
  4022. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  4023. return;
  4024. }
  4025. dryrun = parser.boolval('D')
  4026. #if ENABLED(PROBE_MANUALLY)
  4027. || no_action
  4028. #endif
  4029. ;
  4030. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4031. do_topography_map = verbose_level > 2 || parser.boolval('T');
  4032. // X and Y specify points in each direction, overriding the default
  4033. // These values may be saved with the completed mesh
  4034. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  4035. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  4036. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  4037. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  4038. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  4039. return;
  4040. }
  4041. abl2 = abl_grid_points_x * abl_grid_points_y;
  4042. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4043. zoffset = parser.linearval('Z');
  4044. #endif
  4045. #if ABL_GRID
  4046. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  4047. left_probe_bed_position = parser.seenval('L') ? (int)RAW_X_POSITION(parser.value_linear_units()) : LEFT_PROBE_BED_POSITION;
  4048. right_probe_bed_position = parser.seenval('R') ? (int)RAW_X_POSITION(parser.value_linear_units()) : RIGHT_PROBE_BED_POSITION;
  4049. front_probe_bed_position = parser.seenval('F') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : FRONT_PROBE_BED_POSITION;
  4050. back_probe_bed_position = parser.seenval('B') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : BACK_PROBE_BED_POSITION;
  4051. const bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  4052. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  4053. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  4054. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  4055. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  4056. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  4057. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  4058. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  4059. if (left_out || right_out || front_out || back_out) {
  4060. if (left_out) {
  4061. out_of_range_error(PSTR("(L)eft"));
  4062. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  4063. }
  4064. if (right_out) {
  4065. out_of_range_error(PSTR("(R)ight"));
  4066. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  4067. }
  4068. if (front_out) {
  4069. out_of_range_error(PSTR("(F)ront"));
  4070. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  4071. }
  4072. if (back_out) {
  4073. out_of_range_error(PSTR("(B)ack"));
  4074. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  4075. }
  4076. return;
  4077. }
  4078. // probe at the points of a lattice grid
  4079. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  4080. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  4081. #endif // ABL_GRID
  4082. if (verbose_level > 0) {
  4083. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  4084. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  4085. }
  4086. stepper.synchronize();
  4087. // Disable auto bed leveling during G29
  4088. planner.leveling_active = false;
  4089. if (!dryrun) {
  4090. // Re-orient the current position without leveling
  4091. // based on where the steppers are positioned.
  4092. set_current_from_steppers_for_axis(ALL_AXES);
  4093. // Sync the planner to where the steppers stopped
  4094. SYNC_PLAN_POSITION_KINEMATIC();
  4095. }
  4096. #if HAS_BED_PROBE
  4097. // Deploy the probe. Probe will raise if needed.
  4098. if (DEPLOY_PROBE()) {
  4099. planner.leveling_active = abl_should_enable;
  4100. return;
  4101. }
  4102. #endif
  4103. if (!faux) setup_for_endstop_or_probe_move();
  4104. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4105. #if ENABLED(PROBE_MANUALLY)
  4106. if (!no_action)
  4107. #endif
  4108. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4109. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4110. || left_probe_bed_position != bilinear_start[X_AXIS]
  4111. || front_probe_bed_position != bilinear_start[Y_AXIS]
  4112. ) {
  4113. if (dryrun) {
  4114. // Before reset bed level, re-enable to correct the position
  4115. planner.leveling_active = abl_should_enable;
  4116. }
  4117. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4118. reset_bed_level();
  4119. // Initialize a grid with the given dimensions
  4120. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4121. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4122. bilinear_start[X_AXIS] = left_probe_bed_position;
  4123. bilinear_start[Y_AXIS] = front_probe_bed_position;
  4124. // Can't re-enable (on error) until the new grid is written
  4125. abl_should_enable = false;
  4126. }
  4127. #endif // AUTO_BED_LEVELING_BILINEAR
  4128. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4130. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4131. #endif
  4132. // Probe at 3 arbitrary points
  4133. points[0].z = points[1].z = points[2].z = 0;
  4134. #endif // AUTO_BED_LEVELING_3POINT
  4135. } // !g29_in_progress
  4136. #if ENABLED(PROBE_MANUALLY)
  4137. // For manual probing, get the next index to probe now.
  4138. // On the first probe this will be incremented to 0.
  4139. if (!no_action) {
  4140. ++abl_probe_index;
  4141. g29_in_progress = true;
  4142. }
  4143. // Abort current G29 procedure, go back to idle state
  4144. if (seenA && g29_in_progress) {
  4145. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4146. #if HAS_SOFTWARE_ENDSTOPS
  4147. soft_endstops_enabled = enable_soft_endstops;
  4148. #endif
  4149. planner.leveling_active = abl_should_enable;
  4150. g29_in_progress = false;
  4151. #if ENABLED(LCD_BED_LEVELING)
  4152. lcd_wait_for_move = false;
  4153. #endif
  4154. }
  4155. // Query G29 status
  4156. if (verbose_level || seenQ) {
  4157. SERIAL_PROTOCOLPGM("Manual G29 ");
  4158. if (g29_in_progress) {
  4159. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4160. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4161. }
  4162. else
  4163. SERIAL_PROTOCOLLNPGM("idle");
  4164. }
  4165. if (no_action) return;
  4166. if (abl_probe_index == 0) {
  4167. // For the initial G29 save software endstop state
  4168. #if HAS_SOFTWARE_ENDSTOPS
  4169. enable_soft_endstops = soft_endstops_enabled;
  4170. #endif
  4171. }
  4172. else {
  4173. // For G29 after adjusting Z.
  4174. // Save the previous Z before going to the next point
  4175. measured_z = current_position[Z_AXIS];
  4176. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4177. mean += measured_z;
  4178. eqnBVector[abl_probe_index] = measured_z;
  4179. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4180. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4181. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4182. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4183. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4184. z_values[xCount][yCount] = measured_z + zoffset;
  4185. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4186. if (DEBUGGING(LEVELING)) {
  4187. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4188. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4189. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4190. }
  4191. #endif
  4192. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4193. points[abl_probe_index].z = measured_z;
  4194. #endif
  4195. }
  4196. //
  4197. // If there's another point to sample, move there with optional lift.
  4198. //
  4199. #if ABL_GRID
  4200. // Skip any unreachable points
  4201. while (abl_probe_index < abl2) {
  4202. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4203. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4204. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4205. // Probe in reverse order for every other row/column
  4206. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4207. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4208. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4209. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4210. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4211. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4212. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4213. indexIntoAB[xCount][yCount] = abl_probe_index;
  4214. #endif
  4215. // Keep looping till a reachable point is found
  4216. if (position_is_reachable(xProbe, yProbe)) break;
  4217. ++abl_probe_index;
  4218. }
  4219. // Is there a next point to move to?
  4220. if (abl_probe_index < abl2) {
  4221. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4222. #if HAS_SOFTWARE_ENDSTOPS
  4223. // Disable software endstops to allow manual adjustment
  4224. // If G29 is not completed, they will not be re-enabled
  4225. soft_endstops_enabled = false;
  4226. #endif
  4227. return;
  4228. }
  4229. else {
  4230. // Leveling done! Fall through to G29 finishing code below
  4231. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4232. // Re-enable software endstops, if needed
  4233. #if HAS_SOFTWARE_ENDSTOPS
  4234. soft_endstops_enabled = enable_soft_endstops;
  4235. #endif
  4236. }
  4237. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4238. // Probe at 3 arbitrary points
  4239. if (abl_probe_index < 3) {
  4240. xProbe = points[abl_probe_index].x;
  4241. yProbe = points[abl_probe_index].y;
  4242. #if HAS_SOFTWARE_ENDSTOPS
  4243. // Disable software endstops to allow manual adjustment
  4244. // If G29 is not completed, they will not be re-enabled
  4245. soft_endstops_enabled = false;
  4246. #endif
  4247. return;
  4248. }
  4249. else {
  4250. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4251. // Re-enable software endstops, if needed
  4252. #if HAS_SOFTWARE_ENDSTOPS
  4253. soft_endstops_enabled = enable_soft_endstops;
  4254. #endif
  4255. if (!dryrun) {
  4256. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4257. if (planeNormal.z < 0) {
  4258. planeNormal.x *= -1;
  4259. planeNormal.y *= -1;
  4260. planeNormal.z *= -1;
  4261. }
  4262. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4263. // Can't re-enable (on error) until the new grid is written
  4264. abl_should_enable = false;
  4265. }
  4266. }
  4267. #endif // AUTO_BED_LEVELING_3POINT
  4268. #else // !PROBE_MANUALLY
  4269. {
  4270. const bool stow_probe_after_each = parser.boolval('E');
  4271. #if ABL_GRID
  4272. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4273. measured_z = 0;
  4274. // Outer loop is Y with PROBE_Y_FIRST disabled
  4275. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4276. int8_t inStart, inStop, inInc;
  4277. if (zig) { // away from origin
  4278. inStart = 0;
  4279. inStop = PR_INNER_END;
  4280. inInc = 1;
  4281. }
  4282. else { // towards origin
  4283. inStart = PR_INNER_END - 1;
  4284. inStop = -1;
  4285. inInc = -1;
  4286. }
  4287. zig ^= true; // zag
  4288. // Inner loop is Y with PROBE_Y_FIRST enabled
  4289. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4290. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4291. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4292. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4293. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4294. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4295. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4296. #endif
  4297. #if IS_KINEMATIC
  4298. // Avoid probing outside the round or hexagonal area
  4299. if (!position_is_reachable_by_probe(xProbe, yProbe)) continue;
  4300. #endif
  4301. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4302. if (isnan(measured_z)) {
  4303. planner.leveling_active = abl_should_enable;
  4304. break;
  4305. }
  4306. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4307. mean += measured_z;
  4308. eqnBVector[abl_probe_index] = measured_z;
  4309. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4310. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4311. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4312. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4313. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4314. z_values[xCount][yCount] = measured_z + zoffset;
  4315. #endif
  4316. abl_should_enable = false;
  4317. idle();
  4318. } // inner
  4319. } // outer
  4320. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4321. // Probe at 3 arbitrary points
  4322. for (uint8_t i = 0; i < 3; ++i) {
  4323. // Retain the last probe position
  4324. xProbe = points[i].x;
  4325. yProbe = points[i].y;
  4326. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4327. if (isnan(measured_z)) {
  4328. planner.leveling_active = abl_should_enable;
  4329. break;
  4330. }
  4331. points[i].z = measured_z;
  4332. }
  4333. if (!dryrun && !isnan(measured_z)) {
  4334. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4335. if (planeNormal.z < 0) {
  4336. planeNormal.x *= -1;
  4337. planeNormal.y *= -1;
  4338. planeNormal.z *= -1;
  4339. }
  4340. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4341. // Can't re-enable (on error) until the new grid is written
  4342. abl_should_enable = false;
  4343. }
  4344. #endif // AUTO_BED_LEVELING_3POINT
  4345. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4346. if (STOW_PROBE()) {
  4347. planner.leveling_active = abl_should_enable;
  4348. measured_z = NAN;
  4349. }
  4350. }
  4351. #endif // !PROBE_MANUALLY
  4352. //
  4353. // G29 Finishing Code
  4354. //
  4355. // Unless this is a dry run, auto bed leveling will
  4356. // definitely be enabled after this point.
  4357. //
  4358. // If code above wants to continue leveling, it should
  4359. // return or loop before this point.
  4360. //
  4361. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4362. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4363. #endif
  4364. #if ENABLED(PROBE_MANUALLY)
  4365. g29_in_progress = false;
  4366. #if ENABLED(LCD_BED_LEVELING)
  4367. lcd_wait_for_move = false;
  4368. #endif
  4369. #endif
  4370. // Calculate leveling, print reports, correct the position
  4371. if (!isnan(measured_z)) {
  4372. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4373. if (!dryrun) extrapolate_unprobed_bed_level();
  4374. print_bilinear_leveling_grid();
  4375. refresh_bed_level();
  4376. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4377. print_bilinear_leveling_grid_virt();
  4378. #endif
  4379. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4380. // For LINEAR leveling calculate matrix, print reports, correct the position
  4381. /**
  4382. * solve the plane equation ax + by + d = z
  4383. * A is the matrix with rows [x y 1] for all the probed points
  4384. * B is the vector of the Z positions
  4385. * the normal vector to the plane is formed by the coefficients of the
  4386. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4387. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4388. */
  4389. float plane_equation_coefficients[3];
  4390. finish_incremental_LSF(&lsf_results);
  4391. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4392. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4393. plane_equation_coefficients[2] = -lsf_results.D;
  4394. mean /= abl2;
  4395. if (verbose_level) {
  4396. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4397. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4398. SERIAL_PROTOCOLPGM(" b: ");
  4399. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4400. SERIAL_PROTOCOLPGM(" d: ");
  4401. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4402. SERIAL_EOL();
  4403. if (verbose_level > 2) {
  4404. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4405. SERIAL_PROTOCOL_F(mean, 8);
  4406. SERIAL_EOL();
  4407. }
  4408. }
  4409. // Create the matrix but don't correct the position yet
  4410. if (!dryrun)
  4411. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4412. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4413. );
  4414. // Show the Topography map if enabled
  4415. if (do_topography_map) {
  4416. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4417. " +--- BACK --+\n"
  4418. " | |\n"
  4419. " L | (+) | R\n"
  4420. " E | | I\n"
  4421. " F | (-) N (+) | G\n"
  4422. " T | | H\n"
  4423. " | (-) | T\n"
  4424. " | |\n"
  4425. " O-- FRONT --+\n"
  4426. " (0,0)");
  4427. float min_diff = 999;
  4428. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4429. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4430. int ind = indexIntoAB[xx][yy];
  4431. float diff = eqnBVector[ind] - mean,
  4432. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4433. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4434. z_tmp = 0;
  4435. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4436. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4437. if (diff >= 0.0)
  4438. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4439. else
  4440. SERIAL_PROTOCOLCHAR(' ');
  4441. SERIAL_PROTOCOL_F(diff, 5);
  4442. } // xx
  4443. SERIAL_EOL();
  4444. } // yy
  4445. SERIAL_EOL();
  4446. if (verbose_level > 3) {
  4447. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4448. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4449. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4450. int ind = indexIntoAB[xx][yy];
  4451. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4452. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4453. z_tmp = 0;
  4454. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4455. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4456. if (diff >= 0.0)
  4457. SERIAL_PROTOCOLPGM(" +");
  4458. // Include + for column alignment
  4459. else
  4460. SERIAL_PROTOCOLCHAR(' ');
  4461. SERIAL_PROTOCOL_F(diff, 5);
  4462. } // xx
  4463. SERIAL_EOL();
  4464. } // yy
  4465. SERIAL_EOL();
  4466. }
  4467. } //do_topography_map
  4468. #endif // AUTO_BED_LEVELING_LINEAR
  4469. #if ABL_PLANAR
  4470. // For LINEAR and 3POINT leveling correct the current position
  4471. if (verbose_level > 0)
  4472. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4473. if (!dryrun) {
  4474. //
  4475. // Correct the current XYZ position based on the tilted plane.
  4476. //
  4477. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4478. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4479. #endif
  4480. float converted[XYZ];
  4481. COPY(converted, current_position);
  4482. planner.leveling_active = true;
  4483. planner.unapply_leveling(converted); // use conversion machinery
  4484. planner.leveling_active = false;
  4485. // Use the last measured distance to the bed, if possible
  4486. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4487. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4488. ) {
  4489. const float simple_z = current_position[Z_AXIS] - measured_z;
  4490. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4491. if (DEBUGGING(LEVELING)) {
  4492. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4493. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4494. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4495. }
  4496. #endif
  4497. converted[Z_AXIS] = simple_z;
  4498. }
  4499. // The rotated XY and corrected Z are now current_position
  4500. COPY(current_position, converted);
  4501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4502. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4503. #endif
  4504. }
  4505. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4506. if (!dryrun) {
  4507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4508. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4509. #endif
  4510. // Unapply the offset because it is going to be immediately applied
  4511. // and cause compensation movement in Z
  4512. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4514. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4515. #endif
  4516. }
  4517. #endif // ABL_PLANAR
  4518. #ifdef Z_PROBE_END_SCRIPT
  4519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4521. #endif
  4522. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4523. stepper.synchronize();
  4524. #endif
  4525. // Auto Bed Leveling is complete! Enable if possible.
  4526. planner.leveling_active = dryrun ? abl_should_enable : true;
  4527. } // !isnan(measured_z)
  4528. // Restore state after probing
  4529. if (!faux) clean_up_after_endstop_or_probe_move();
  4530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4531. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4532. #endif
  4533. report_current_position();
  4534. KEEPALIVE_STATE(IN_HANDLER);
  4535. if (planner.leveling_active)
  4536. SYNC_PLAN_POSITION_KINEMATIC();
  4537. }
  4538. #endif // OLDSCHOOL_ABL
  4539. #if HAS_BED_PROBE
  4540. /**
  4541. * G30: Do a single Z probe at the current XY
  4542. *
  4543. * Parameters:
  4544. *
  4545. * X Probe X position (default current X)
  4546. * Y Probe Y position (default current Y)
  4547. * E Engage the probe for each probe
  4548. */
  4549. inline void gcode_G30() {
  4550. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4551. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4552. if (!position_is_reachable_by_probe(xpos, ypos)) return;
  4553. // Disable leveling so the planner won't mess with us
  4554. #if HAS_LEVELING
  4555. set_bed_leveling_enabled(false);
  4556. #endif
  4557. setup_for_endstop_or_probe_move();
  4558. const float measured_z = probe_pt(xpos, ypos, parser.boolval('E'), 1);
  4559. if (!isnan(measured_z)) {
  4560. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4561. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4562. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4563. }
  4564. clean_up_after_endstop_or_probe_move();
  4565. report_current_position();
  4566. }
  4567. #if ENABLED(Z_PROBE_SLED)
  4568. /**
  4569. * G31: Deploy the Z probe
  4570. */
  4571. inline void gcode_G31() { DEPLOY_PROBE(); }
  4572. /**
  4573. * G32: Stow the Z probe
  4574. */
  4575. inline void gcode_G32() { STOW_PROBE(); }
  4576. #endif // Z_PROBE_SLED
  4577. #endif // HAS_BED_PROBE
  4578. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4579. constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
  4580. _4P_STEP = _7P_STEP * 2, // 4-point step
  4581. NPP = _7P_STEP * 6; // number of calibration points on the radius
  4582. enum CalEnum { // the 7 main calibration points - add definitions if needed
  4583. CEN = 0,
  4584. __A = 1,
  4585. _AB = __A + _7P_STEP,
  4586. __B = _AB + _7P_STEP,
  4587. _BC = __B + _7P_STEP,
  4588. __C = _BC + _7P_STEP,
  4589. _CA = __C + _7P_STEP,
  4590. };
  4591. #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
  4592. #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
  4593. #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
  4594. #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
  4595. #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
  4596. #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
  4597. static void print_signed_float(const char * const prefix, const float &f) {
  4598. SERIAL_PROTOCOLPGM(" ");
  4599. serialprintPGM(prefix);
  4600. SERIAL_PROTOCOLCHAR(':');
  4601. if (f >= 0) SERIAL_CHAR('+');
  4602. SERIAL_PROTOCOL_F(f, 2);
  4603. }
  4604. static void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4605. SERIAL_PROTOCOLPAIR(".Height:", delta_height);
  4606. if (end_stops) {
  4607. print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
  4608. print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
  4609. print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
  4610. }
  4611. if (end_stops && tower_angles) {
  4612. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4613. SERIAL_EOL();
  4614. SERIAL_CHAR('.');
  4615. SERIAL_PROTOCOL_SP(13);
  4616. }
  4617. if (tower_angles) {
  4618. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4619. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4620. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4621. }
  4622. if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
  4623. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4624. }
  4625. SERIAL_EOL();
  4626. }
  4627. static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
  4628. SERIAL_PROTOCOLPGM(". ");
  4629. print_signed_float(PSTR("c"), z_at_pt[CEN]);
  4630. if (tower_points) {
  4631. print_signed_float(PSTR(" x"), z_at_pt[__A]);
  4632. print_signed_float(PSTR(" y"), z_at_pt[__B]);
  4633. print_signed_float(PSTR(" z"), z_at_pt[__C]);
  4634. }
  4635. if (tower_points && opposite_points) {
  4636. SERIAL_EOL();
  4637. SERIAL_CHAR('.');
  4638. SERIAL_PROTOCOL_SP(13);
  4639. }
  4640. if (opposite_points) {
  4641. print_signed_float(PSTR("yz"), z_at_pt[_BC]);
  4642. print_signed_float(PSTR("zx"), z_at_pt[_CA]);
  4643. print_signed_float(PSTR("xy"), z_at_pt[_AB]);
  4644. }
  4645. SERIAL_EOL();
  4646. }
  4647. /**
  4648. * After G33:
  4649. * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
  4650. * - Stow the probe
  4651. * - Restore endstops state
  4652. * - Select the old tool, if needed
  4653. */
  4654. static void G33_cleanup(
  4655. #if HOTENDS > 1
  4656. const uint8_t old_tool_index
  4657. #endif
  4658. ) {
  4659. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4660. do_blocking_move_to_z(delta_clip_start_height);
  4661. #endif
  4662. STOW_PROBE();
  4663. clean_up_after_endstop_or_probe_move();
  4664. #if HOTENDS > 1
  4665. tool_change(old_tool_index, 0, true);
  4666. #endif
  4667. }
  4668. static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
  4669. const bool _0p_calibration = probe_points == 0,
  4670. _1p_calibration = probe_points == 1,
  4671. _4p_calibration = probe_points == 2,
  4672. _4p_opposite_points = _4p_calibration && !towers_set,
  4673. _7p_calibration = probe_points >= 3 || probe_points == 0,
  4674. _7p_no_intermediates = probe_points == 3,
  4675. _7p_1_intermediates = probe_points == 4,
  4676. _7p_2_intermediates = probe_points == 5,
  4677. _7p_4_intermediates = probe_points == 6,
  4678. _7p_6_intermediates = probe_points == 7,
  4679. _7p_8_intermediates = probe_points == 8,
  4680. _7p_11_intermediates = probe_points == 9,
  4681. _7p_14_intermediates = probe_points == 10,
  4682. _7p_intermed_points = probe_points >= 4,
  4683. _7p_6_centre = probe_points >= 5 && probe_points <= 7,
  4684. _7p_9_centre = probe_points >= 8;
  4685. #if HAS_BED_PROBE
  4686. const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
  4687. dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
  4688. #endif
  4689. LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
  4690. if (!_0p_calibration) {
  4691. if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
  4692. z_at_pt[CEN] +=
  4693. #if HAS_BED_PROBE
  4694. probe_pt(dx, dy, stow_after_each, 1, false)
  4695. #else
  4696. lcd_probe_pt(0, 0)
  4697. #endif
  4698. ;
  4699. }
  4700. if (_7p_calibration) { // probe extra center points
  4701. const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
  4702. steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
  4703. I_LOOP_CAL_PT(axis, start, steps) {
  4704. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4705. r = delta_calibration_radius * 0.1;
  4706. z_at_pt[CEN] +=
  4707. #if HAS_BED_PROBE
  4708. probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
  4709. #else
  4710. lcd_probe_pt(cos(a) * r, sin(a) * r)
  4711. #endif
  4712. ;
  4713. }
  4714. z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
  4715. }
  4716. if (!_1p_calibration) { // probe the radius
  4717. const CalEnum start = _4p_opposite_points ? _AB : __A;
  4718. const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
  4719. _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
  4720. _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
  4721. _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
  4722. _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
  4723. _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
  4724. _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
  4725. _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
  4726. _4P_STEP; // .5r * 6 + 1c = 4
  4727. bool zig_zag = true;
  4728. F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
  4729. const int8_t offset = _7p_9_centre ? 1 : 0;
  4730. for (int8_t circle = -offset; circle <= offset; circle++) {
  4731. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4732. r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
  4733. interpol = fmod(axis, 1);
  4734. const float z_temp =
  4735. #if HAS_BED_PROBE
  4736. probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
  4737. #else
  4738. lcd_probe_pt(cos(a) * r, sin(a) * r)
  4739. #endif
  4740. ;
  4741. // split probe point to neighbouring calibration points
  4742. z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
  4743. z_at_pt[uint8_t(round(axis - interpol )) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
  4744. }
  4745. zig_zag = !zig_zag;
  4746. }
  4747. if (_7p_intermed_points)
  4748. LOOP_CAL_RAD(axis)
  4749. z_at_pt[axis] /= _7P_STEP / steps;
  4750. }
  4751. float S1 = z_at_pt[CEN],
  4752. S2 = sq(z_at_pt[CEN]);
  4753. int16_t N = 1;
  4754. if (!_1p_calibration) { // std dev from zero plane
  4755. LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
  4756. S1 += z_at_pt[axis];
  4757. S2 += sq(z_at_pt[axis]);
  4758. N++;
  4759. }
  4760. return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4761. }
  4762. }
  4763. return 0.00001;
  4764. }
  4765. #if HAS_BED_PROBE
  4766. static void G33_auto_tune() {
  4767. float z_at_pt[NPP + 1] = { 0.0 },
  4768. z_at_pt_base[NPP + 1] = { 0.0 },
  4769. z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
  4770. #define ZP(N,I) ((N) * z_at_pt[I])
  4771. #define Z06(I) ZP(6, I)
  4772. #define Z03(I) ZP(3, I)
  4773. #define Z02(I) ZP(2, I)
  4774. #define Z01(I) ZP(1, I)
  4775. #define Z32(I) ZP(3/2, I)
  4776. SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
  4777. SERIAL_EOL();
  4778. probe_G33_points(z_at_pt_base, 3, true, false);
  4779. print_G33_results(z_at_pt_base, true, true);
  4780. LOOP_XYZ(axis) {
  4781. delta_endstop_adj[axis] -= 1.0;
  4782. recalc_delta_settings();
  4783. endstops.enable(true);
  4784. if (!home_delta()) return;
  4785. endstops.not_homing();
  4786. SERIAL_PROTOCOLPGM("Tuning E");
  4787. SERIAL_CHAR(tolower(axis_codes[axis]));
  4788. SERIAL_EOL();
  4789. probe_G33_points(z_at_pt, 3, true, false);
  4790. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4791. print_G33_results(z_at_pt, true, true);
  4792. delta_endstop_adj[axis] += 1.0;
  4793. recalc_delta_settings();
  4794. switch (axis) {
  4795. case A_AXIS :
  4796. h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
  4797. break;
  4798. case B_AXIS :
  4799. h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
  4800. break;
  4801. case C_AXIS :
  4802. h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
  4803. break;
  4804. }
  4805. }
  4806. h_fac /= 3.0;
  4807. h_fac *= norm; // Normalize to 1.02 for Kossel mini
  4808. for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
  4809. delta_radius += 1.0 * zig_zag;
  4810. recalc_delta_settings();
  4811. endstops.enable(true);
  4812. if (!home_delta()) return;
  4813. endstops.not_homing();
  4814. SERIAL_PROTOCOLPGM("Tuning R");
  4815. SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
  4816. SERIAL_EOL();
  4817. probe_G33_points(z_at_pt, 3, true, false);
  4818. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4819. print_G33_results(z_at_pt, true, true);
  4820. delta_radius -= 1.0 * zig_zag;
  4821. recalc_delta_settings();
  4822. r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
  4823. }
  4824. r_fac /= 2.0;
  4825. r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
  4826. LOOP_XYZ(axis) {
  4827. delta_tower_angle_trim[axis] += 1.0;
  4828. delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
  4829. delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
  4830. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4831. delta_height -= z_temp;
  4832. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4833. recalc_delta_settings();
  4834. endstops.enable(true);
  4835. if (!home_delta()) return;
  4836. endstops.not_homing();
  4837. SERIAL_PROTOCOLPGM("Tuning T");
  4838. SERIAL_CHAR(tolower(axis_codes[axis]));
  4839. SERIAL_EOL();
  4840. probe_G33_points(z_at_pt, 3, true, false);
  4841. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4842. print_G33_results(z_at_pt, true, true);
  4843. delta_tower_angle_trim[axis] -= 1.0;
  4844. delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
  4845. delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
  4846. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4847. delta_height -= z_temp;
  4848. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4849. recalc_delta_settings();
  4850. switch (axis) {
  4851. case A_AXIS :
  4852. a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
  4853. break;
  4854. case B_AXIS :
  4855. a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
  4856. break;
  4857. case C_AXIS :
  4858. a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
  4859. break;
  4860. }
  4861. }
  4862. a_fac /= 3.0;
  4863. a_fac *= norm; // Normalize to 0.83 for Kossel mini
  4864. endstops.enable(true);
  4865. if (!home_delta()) return;
  4866. endstops.not_homing();
  4867. print_signed_float(PSTR( "H_FACTOR: "), h_fac);
  4868. print_signed_float(PSTR(" R_FACTOR: "), r_fac);
  4869. print_signed_float(PSTR(" A_FACTOR: "), a_fac);
  4870. SERIAL_EOL();
  4871. SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
  4872. SERIAL_EOL();
  4873. }
  4874. #endif // HAS_BED_PROBE
  4875. /**
  4876. * G33 - Delta '1-4-7-point' Auto-Calibration
  4877. * Calibrate height, endstops, delta radius, and tower angles.
  4878. *
  4879. * Parameters:
  4880. *
  4881. * Pn Number of probe points:
  4882. * P0 No probe. Normalize only.
  4883. * P1 Probe center and set height only.
  4884. * P2 Probe center and towers. Set height, endstops and delta radius.
  4885. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4886. * P4-P10 Probe all positions + at different itermediate locations and average them.
  4887. *
  4888. * T Don't calibrate tower angle corrections
  4889. *
  4890. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4891. *
  4892. * Fn Force to run at least n iterations and takes the best result
  4893. *
  4894. * A Auto tune calibartion factors (set in Configuration.h)
  4895. *
  4896. * Vn Verbose level:
  4897. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4898. * V1 Report settings
  4899. * V2 Report settings and probe results
  4900. *
  4901. * E Engage the probe for each point
  4902. */
  4903. inline void gcode_G33() {
  4904. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4905. if (!WITHIN(probe_points, 0, 10)) {
  4906. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
  4907. return;
  4908. }
  4909. const int8_t verbose_level = parser.byteval('V', 1);
  4910. if (!WITHIN(verbose_level, 0, 2)) {
  4911. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
  4912. return;
  4913. }
  4914. const float calibration_precision = parser.floatval('C');
  4915. if (calibration_precision < 0) {
  4916. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
  4917. return;
  4918. }
  4919. const int8_t force_iterations = parser.intval('F', 0);
  4920. if (!WITHIN(force_iterations, 0, 30)) {
  4921. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4922. return;
  4923. }
  4924. const bool towers_set = !parser.boolval('T'),
  4925. auto_tune = parser.boolval('A'),
  4926. stow_after_each = parser.boolval('E'),
  4927. _0p_calibration = probe_points == 0,
  4928. _1p_calibration = probe_points == 1,
  4929. _4p_calibration = probe_points == 2,
  4930. _7p_9_centre = probe_points >= 8,
  4931. _tower_results = (_4p_calibration && towers_set)
  4932. || probe_points >= 3 || probe_points == 0,
  4933. _opposite_results = (_4p_calibration && !towers_set)
  4934. || probe_points >= 3 || probe_points == 0,
  4935. _endstop_results = probe_points != 1,
  4936. _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
  4937. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4938. int8_t iterations = 0;
  4939. float test_precision,
  4940. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4941. zero_std_dev_min = zero_std_dev,
  4942. e_old[ABC] = {
  4943. delta_endstop_adj[A_AXIS],
  4944. delta_endstop_adj[B_AXIS],
  4945. delta_endstop_adj[C_AXIS]
  4946. },
  4947. dr_old = delta_radius,
  4948. zh_old = delta_height,
  4949. ta_old[ABC] = {
  4950. delta_tower_angle_trim[A_AXIS],
  4951. delta_tower_angle_trim[B_AXIS],
  4952. delta_tower_angle_trim[C_AXIS]
  4953. };
  4954. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4955. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4956. LOOP_CAL_RAD(axis) {
  4957. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4958. r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
  4959. if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
  4960. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4961. return;
  4962. }
  4963. }
  4964. }
  4965. stepper.synchronize();
  4966. #if HAS_LEVELING
  4967. reset_bed_level(); // After calibration bed-level data is no longer valid
  4968. #endif
  4969. #if HOTENDS > 1
  4970. const uint8_t old_tool_index = active_extruder;
  4971. tool_change(0, 0, true);
  4972. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4973. #else
  4974. #define G33_CLEANUP() G33_cleanup()
  4975. #endif
  4976. setup_for_endstop_or_probe_move();
  4977. endstops.enable(true);
  4978. if (!_0p_calibration) {
  4979. if (!home_delta())
  4980. return;
  4981. endstops.not_homing();
  4982. }
  4983. if (auto_tune) {
  4984. #if HAS_BED_PROBE
  4985. G33_auto_tune();
  4986. #else
  4987. SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
  4988. #endif
  4989. G33_CLEANUP();
  4990. return;
  4991. }
  4992. // Report settings
  4993. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  4994. serialprintPGM(checkingac);
  4995. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4996. SERIAL_EOL();
  4997. lcd_setstatusPGM(checkingac);
  4998. print_G33_settings(_endstop_results, _angle_results);
  4999. do {
  5000. float z_at_pt[NPP + 1] = { 0.0 };
  5001. test_precision = zero_std_dev;
  5002. iterations++;
  5003. // Probe the points
  5004. zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
  5005. // Solve matrices
  5006. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  5007. if (zero_std_dev < zero_std_dev_min) {
  5008. COPY(e_old, delta_endstop_adj);
  5009. dr_old = delta_radius;
  5010. zh_old = delta_height;
  5011. COPY(ta_old, delta_tower_angle_trim);
  5012. }
  5013. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  5014. const float r_diff = delta_radius - delta_calibration_radius,
  5015. h_factor = 1 / 6.0 *
  5016. #ifdef H_FACTOR
  5017. (H_FACTOR), // Set in Configuration.h
  5018. #else
  5019. (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
  5020. #endif
  5021. r_factor = 1 / 6.0 *
  5022. #ifdef R_FACTOR
  5023. -(R_FACTOR), // Set in Configuration.h
  5024. #else
  5025. -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
  5026. #endif
  5027. a_factor = 1 / 6.0 *
  5028. #ifdef A_FACTOR
  5029. (A_FACTOR); // Set in Configuration.h
  5030. #else
  5031. (66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
  5032. #endif
  5033. #define ZP(N,I) ((N) * z_at_pt[I])
  5034. #define Z6(I) ZP(6, I)
  5035. #define Z4(I) ZP(4, I)
  5036. #define Z2(I) ZP(2, I)
  5037. #define Z1(I) ZP(1, I)
  5038. #if !HAS_BED_PROBE
  5039. test_precision = 0.00; // forced end
  5040. #endif
  5041. switch (probe_points) {
  5042. case 0:
  5043. test_precision = 0.00; // forced end
  5044. break;
  5045. case 1:
  5046. test_precision = 0.00; // forced end
  5047. LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
  5048. break;
  5049. case 2:
  5050. if (towers_set) {
  5051. e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
  5052. e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
  5053. e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
  5054. r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
  5055. }
  5056. else {
  5057. e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
  5058. e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
  5059. e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
  5060. r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
  5061. }
  5062. break;
  5063. default:
  5064. e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
  5065. e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
  5066. e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
  5067. r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
  5068. if (towers_set) {
  5069. t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
  5070. t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
  5071. t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
  5072. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  5073. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  5074. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  5075. }
  5076. break;
  5077. }
  5078. LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
  5079. delta_radius += r_delta;
  5080. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  5081. }
  5082. else if (zero_std_dev >= test_precision) { // step one back
  5083. COPY(delta_endstop_adj, e_old);
  5084. delta_radius = dr_old;
  5085. delta_height = zh_old;
  5086. COPY(delta_tower_angle_trim, ta_old);
  5087. }
  5088. if (verbose_level != 0) { // !dry run
  5089. // normalise angles to least squares
  5090. if (_angle_results) {
  5091. float a_sum = 0.0;
  5092. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  5093. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  5094. }
  5095. // adjust delta_height and endstops by the max amount
  5096. const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  5097. delta_height -= z_temp;
  5098. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  5099. }
  5100. recalc_delta_settings();
  5101. NOMORE(zero_std_dev_min, zero_std_dev);
  5102. // print report
  5103. if (verbose_level != 1)
  5104. print_G33_results(z_at_pt, _tower_results, _opposite_results);
  5105. if (verbose_level != 0) { // !dry run
  5106. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  5107. SERIAL_PROTOCOLPGM("Calibration OK");
  5108. SERIAL_PROTOCOL_SP(32);
  5109. #if HAS_BED_PROBE
  5110. if (zero_std_dev >= test_precision && !_1p_calibration)
  5111. SERIAL_PROTOCOLPGM("rolling back.");
  5112. else
  5113. #endif
  5114. {
  5115. SERIAL_PROTOCOLPGM("std dev:");
  5116. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  5117. }
  5118. SERIAL_EOL();
  5119. char mess[21];
  5120. strcpy_P(mess, PSTR("Calibration sd:"));
  5121. if (zero_std_dev_min < 1)
  5122. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  5123. else
  5124. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  5125. lcd_setstatus(mess);
  5126. print_G33_settings(_endstop_results, _angle_results);
  5127. serialprintPGM(save_message);
  5128. SERIAL_EOL();
  5129. }
  5130. else { // !end iterations
  5131. char mess[15];
  5132. if (iterations < 31)
  5133. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  5134. else
  5135. strcpy_P(mess, PSTR("No convergence"));
  5136. SERIAL_PROTOCOL(mess);
  5137. SERIAL_PROTOCOL_SP(32);
  5138. SERIAL_PROTOCOLPGM("std dev:");
  5139. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5140. SERIAL_EOL();
  5141. lcd_setstatus(mess);
  5142. print_G33_settings(_endstop_results, _angle_results);
  5143. }
  5144. }
  5145. else { // dry run
  5146. const char *enddryrun = PSTR("End DRY-RUN");
  5147. serialprintPGM(enddryrun);
  5148. SERIAL_PROTOCOL_SP(35);
  5149. SERIAL_PROTOCOLPGM("std dev:");
  5150. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5151. SERIAL_EOL();
  5152. char mess[21];
  5153. strcpy_P(mess, enddryrun);
  5154. strcpy_P(&mess[11], PSTR(" sd:"));
  5155. if (zero_std_dev < 1)
  5156. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  5157. else
  5158. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  5159. lcd_setstatus(mess);
  5160. }
  5161. endstops.enable(true);
  5162. if (!home_delta())
  5163. return;
  5164. endstops.not_homing();
  5165. }
  5166. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  5167. G33_CLEANUP();
  5168. }
  5169. #endif // DELTA_AUTO_CALIBRATION
  5170. #if ENABLED(G38_PROBE_TARGET)
  5171. static bool G38_run_probe() {
  5172. bool G38_pass_fail = false;
  5173. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5174. // Get direction of move and retract
  5175. float retract_mm[XYZ];
  5176. LOOP_XYZ(i) {
  5177. float dist = destination[i] - current_position[i];
  5178. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  5179. }
  5180. #endif
  5181. stepper.synchronize(); // wait until the machine is idle
  5182. // Move until destination reached or target hit
  5183. endstops.enable(true);
  5184. G38_move = true;
  5185. G38_endstop_hit = false;
  5186. prepare_move_to_destination();
  5187. stepper.synchronize();
  5188. G38_move = false;
  5189. endstops.hit_on_purpose();
  5190. set_current_from_steppers_for_axis(ALL_AXES);
  5191. SYNC_PLAN_POSITION_KINEMATIC();
  5192. if (G38_endstop_hit) {
  5193. G38_pass_fail = true;
  5194. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5195. // Move away by the retract distance
  5196. set_destination_from_current();
  5197. LOOP_XYZ(i) destination[i] += retract_mm[i];
  5198. endstops.enable(false);
  5199. prepare_move_to_destination();
  5200. stepper.synchronize();
  5201. feedrate_mm_s /= 4;
  5202. // Bump the target more slowly
  5203. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  5204. endstops.enable(true);
  5205. G38_move = true;
  5206. prepare_move_to_destination();
  5207. stepper.synchronize();
  5208. G38_move = false;
  5209. set_current_from_steppers_for_axis(ALL_AXES);
  5210. SYNC_PLAN_POSITION_KINEMATIC();
  5211. #endif
  5212. }
  5213. endstops.hit_on_purpose();
  5214. endstops.not_homing();
  5215. return G38_pass_fail;
  5216. }
  5217. /**
  5218. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  5219. * G38.3 - probe toward workpiece, stop on contact
  5220. *
  5221. * Like G28 except uses Z min probe for all axes
  5222. */
  5223. inline void gcode_G38(bool is_38_2) {
  5224. // Get X Y Z E F
  5225. gcode_get_destination();
  5226. setup_for_endstop_or_probe_move();
  5227. // If any axis has enough movement, do the move
  5228. LOOP_XYZ(i)
  5229. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  5230. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  5231. // If G38.2 fails throw an error
  5232. if (!G38_run_probe() && is_38_2) {
  5233. SERIAL_ERROR_START();
  5234. SERIAL_ERRORLNPGM("Failed to reach target");
  5235. }
  5236. break;
  5237. }
  5238. clean_up_after_endstop_or_probe_move();
  5239. }
  5240. #endif // G38_PROBE_TARGET
  5241. #if HAS_MESH
  5242. /**
  5243. * G42: Move X & Y axes to mesh coordinates (I & J)
  5244. */
  5245. inline void gcode_G42() {
  5246. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  5247. if (axis_unhomed_error()) return;
  5248. #endif
  5249. if (IsRunning()) {
  5250. const bool hasI = parser.seenval('I');
  5251. const int8_t ix = hasI ? parser.value_int() : 0;
  5252. const bool hasJ = parser.seenval('J');
  5253. const int8_t iy = hasJ ? parser.value_int() : 0;
  5254. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  5255. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  5256. return;
  5257. }
  5258. set_destination_from_current();
  5259. if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);
  5260. if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);
  5261. if (parser.boolval('P')) {
  5262. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  5263. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  5264. }
  5265. const float fval = parser.linearval('F');
  5266. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  5267. // SCARA kinematic has "safe" XY raw moves
  5268. #if IS_SCARA
  5269. prepare_uninterpolated_move_to_destination();
  5270. #else
  5271. prepare_move_to_destination();
  5272. #endif
  5273. }
  5274. }
  5275. #endif // HAS_MESH
  5276. /**
  5277. * G92: Set current position to given X Y Z E
  5278. */
  5279. inline void gcode_G92() {
  5280. stepper.synchronize();
  5281. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5282. switch (parser.subcode) {
  5283. case 1:
  5284. // Zero the G92 values and restore current position
  5285. #if !IS_SCARA
  5286. LOOP_XYZ(i) {
  5287. const float v = position_shift[i];
  5288. if (v) {
  5289. position_shift[i] = 0;
  5290. update_software_endstops((AxisEnum)i);
  5291. }
  5292. }
  5293. #endif // Not SCARA
  5294. return;
  5295. }
  5296. #endif
  5297. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5298. #define IS_G92_0 (parser.subcode == 0)
  5299. #else
  5300. #define IS_G92_0 true
  5301. #endif
  5302. bool didE = false;
  5303. #if IS_SCARA || !HAS_POSITION_SHIFT
  5304. bool didXYZ = false;
  5305. #else
  5306. constexpr bool didXYZ = false;
  5307. #endif
  5308. if (IS_G92_0) LOOP_XYZE(i) {
  5309. if (parser.seenval(axis_codes[i])) {
  5310. const float l = parser.value_axis_units((AxisEnum)i),
  5311. v = i == E_AXIS ? l : LOGICAL_TO_NATIVE(l, i),
  5312. d = v - current_position[i];
  5313. if (!NEAR_ZERO(d)) {
  5314. #if IS_SCARA || !HAS_POSITION_SHIFT
  5315. if (i == E_AXIS) didE = true; else didXYZ = true;
  5316. current_position[i] = v; // Without workspaces revert to Marlin 1.0 behavior
  5317. #elif HAS_POSITION_SHIFT
  5318. if (i == E_AXIS) {
  5319. didE = true;
  5320. current_position[E_AXIS] = v; // When using coordinate spaces, only E is set directly
  5321. }
  5322. else {
  5323. position_shift[i] += d; // Other axes simply offset the coordinate space
  5324. update_software_endstops((AxisEnum)i);
  5325. }
  5326. #endif
  5327. }
  5328. }
  5329. }
  5330. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5331. // Apply workspace offset to the active coordinate system
  5332. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  5333. COPY(coordinate_system[active_coordinate_system], position_shift);
  5334. #endif
  5335. if (didXYZ)
  5336. SYNC_PLAN_POSITION_KINEMATIC();
  5337. else if (didE)
  5338. sync_plan_position_e();
  5339. report_current_position();
  5340. }
  5341. #if HAS_RESUME_CONTINUE
  5342. /**
  5343. * M0: Unconditional stop - Wait for user button press on LCD
  5344. * M1: Conditional stop - Wait for user button press on LCD
  5345. */
  5346. inline void gcode_M0_M1() {
  5347. const char * const args = parser.string_arg;
  5348. millis_t ms = 0;
  5349. bool hasP = false, hasS = false;
  5350. if (parser.seenval('P')) {
  5351. ms = parser.value_millis(); // milliseconds to wait
  5352. hasP = ms > 0;
  5353. }
  5354. if (parser.seenval('S')) {
  5355. ms = parser.value_millis_from_seconds(); // seconds to wait
  5356. hasS = ms > 0;
  5357. }
  5358. #if ENABLED(ULTIPANEL)
  5359. if (!hasP && !hasS && args && *args)
  5360. lcd_setstatus(args, true);
  5361. else {
  5362. LCD_MESSAGEPGM(MSG_USERWAIT);
  5363. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5364. dontExpireStatus();
  5365. #endif
  5366. }
  5367. #else
  5368. if (!hasP && !hasS && args && *args) {
  5369. SERIAL_ECHO_START();
  5370. SERIAL_ECHOLN(args);
  5371. }
  5372. #endif
  5373. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5374. wait_for_user = true;
  5375. stepper.synchronize();
  5376. refresh_cmd_timeout();
  5377. if (ms > 0) {
  5378. ms += previous_cmd_ms; // wait until this time for a click
  5379. while (PENDING(millis(), ms) && wait_for_user) idle();
  5380. }
  5381. else {
  5382. #if ENABLED(ULTIPANEL)
  5383. if (lcd_detected()) {
  5384. while (wait_for_user) idle();
  5385. print_job_timer.isPaused() ? LCD_MESSAGEPGM(WELCOME_MSG) : LCD_MESSAGEPGM(MSG_RESUMING);
  5386. }
  5387. #else
  5388. while (wait_for_user) idle();
  5389. #endif
  5390. }
  5391. wait_for_user = false;
  5392. KEEPALIVE_STATE(IN_HANDLER);
  5393. }
  5394. #endif // HAS_RESUME_CONTINUE
  5395. #if ENABLED(SPINDLE_LASER_ENABLE)
  5396. /**
  5397. * M3: Spindle Clockwise
  5398. * M4: Spindle Counter-clockwise
  5399. *
  5400. * S0 turns off spindle.
  5401. *
  5402. * If no speed PWM output is defined then M3/M4 just turns it on.
  5403. *
  5404. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5405. * Hardware PWM is required. ISRs are too slow.
  5406. *
  5407. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5408. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5409. *
  5410. * The system automatically sets WGM to Mode 1, so no special
  5411. * initialization is needed.
  5412. *
  5413. * WGM bits for timer 2 are automatically set by the system to
  5414. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5415. * No special initialization is needed.
  5416. *
  5417. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5418. * factors for timers 2, 3, 4, and 5 are acceptable.
  5419. *
  5420. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5421. * the spindle/laser during power-up or when connecting to the host
  5422. * (usually goes through a reset which sets all I/O pins to tri-state)
  5423. *
  5424. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5425. */
  5426. // Wait for spindle to come up to speed
  5427. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5428. // Wait for spindle to stop turning
  5429. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5430. /**
  5431. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5432. *
  5433. * it accepts inputs of 0-255
  5434. */
  5435. inline void ocr_val_mode() {
  5436. uint8_t spindle_laser_power = parser.value_byte();
  5437. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5438. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5439. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5440. }
  5441. inline void gcode_M3_M4(bool is_M3) {
  5442. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5443. #if SPINDLE_DIR_CHANGE
  5444. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5445. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5446. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5447. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5448. ) {
  5449. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5450. delay_for_power_down();
  5451. }
  5452. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5453. #endif
  5454. /**
  5455. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5456. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5457. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5458. */
  5459. #if ENABLED(SPINDLE_LASER_PWM)
  5460. if (parser.seen('O')) ocr_val_mode();
  5461. else {
  5462. const float spindle_laser_power = parser.floatval('S');
  5463. if (spindle_laser_power == 0) {
  5464. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5465. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // only write low byte
  5466. delay_for_power_down();
  5467. }
  5468. else {
  5469. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5470. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5471. if (spindle_laser_power <= SPEED_POWER_MIN)
  5472. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5473. if (spindle_laser_power >= SPEED_POWER_MAX)
  5474. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5475. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5476. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5477. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5478. delay_for_power_up();
  5479. }
  5480. }
  5481. #else
  5482. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5483. delay_for_power_up();
  5484. #endif
  5485. }
  5486. /**
  5487. * M5 turn off spindle
  5488. */
  5489. inline void gcode_M5() {
  5490. stepper.synchronize();
  5491. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5492. delay_for_power_down();
  5493. }
  5494. #endif // SPINDLE_LASER_ENABLE
  5495. /**
  5496. * M17: Enable power on all stepper motors
  5497. */
  5498. inline void gcode_M17() {
  5499. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5500. enable_all_steppers();
  5501. }
  5502. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5503. static float resume_position[XYZE];
  5504. static bool move_away_flag = false;
  5505. #if ENABLED(SDSUPPORT)
  5506. static bool sd_print_paused = false;
  5507. #endif
  5508. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5509. static millis_t next_buzz = 0;
  5510. static int8_t runout_beep = 0;
  5511. if (init) next_buzz = runout_beep = 0;
  5512. const millis_t ms = millis();
  5513. if (ELAPSED(ms, next_buzz)) {
  5514. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5515. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5516. BUZZ(300, 2000);
  5517. runout_beep++;
  5518. }
  5519. }
  5520. }
  5521. static void ensure_safe_temperature() {
  5522. bool heaters_heating = true;
  5523. wait_for_heatup = true; // M108 will clear this
  5524. while (wait_for_heatup && heaters_heating) {
  5525. idle();
  5526. heaters_heating = false;
  5527. HOTEND_LOOP() {
  5528. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5529. heaters_heating = true;
  5530. #if ENABLED(ULTIPANEL)
  5531. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5532. #endif
  5533. break;
  5534. }
  5535. }
  5536. }
  5537. }
  5538. #if IS_KINEMATIC
  5539. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5540. #else
  5541. #define RUNPLAN(RATE_MM_S) buffer_line_to_destination(RATE_MM_S)
  5542. #endif
  5543. void do_pause_e_move(const float &length, const float fr) {
  5544. current_position[E_AXIS] += length / planner.e_factor[active_extruder];
  5545. set_destination_from_current();
  5546. RUNPLAN(fr);
  5547. stepper.synchronize();
  5548. }
  5549. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5550. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5551. ) {
  5552. if (move_away_flag) return false; // already paused
  5553. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5554. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5555. if (!thermalManager.allow_cold_extrude &&
  5556. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5557. SERIAL_ERROR_START();
  5558. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5559. return false;
  5560. }
  5561. #endif
  5562. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5563. }
  5564. // Indicate that the printer is paused
  5565. move_away_flag = true;
  5566. // Pause the print job and timer
  5567. #if ENABLED(SDSUPPORT)
  5568. if (card.sdprinting) {
  5569. card.pauseSDPrint();
  5570. sd_print_paused = true;
  5571. }
  5572. #endif
  5573. print_job_timer.pause();
  5574. // Show initial message and wait for synchronize steppers
  5575. if (show_lcd) {
  5576. #if ENABLED(ULTIPANEL)
  5577. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5578. #endif
  5579. }
  5580. // Save current position
  5581. stepper.synchronize();
  5582. COPY(resume_position, current_position);
  5583. // Initial retract before move to filament change position
  5584. if (retract) do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);
  5585. // Lift Z axis
  5586. if (z_lift > 0)
  5587. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5588. // Move XY axes to filament exchange position
  5589. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5590. if (unload_length != 0) {
  5591. if (show_lcd) {
  5592. #if ENABLED(ULTIPANEL)
  5593. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5594. idle();
  5595. #endif
  5596. }
  5597. // Unload filament
  5598. do_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5599. }
  5600. if (show_lcd) {
  5601. #if ENABLED(ULTIPANEL)
  5602. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5603. #endif
  5604. }
  5605. #if HAS_BUZZER
  5606. filament_change_beep(max_beep_count, true);
  5607. #endif
  5608. idle();
  5609. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5610. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5611. disable_e_steppers();
  5612. safe_delay(100);
  5613. #endif
  5614. // Start the heater idle timers
  5615. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5616. HOTEND_LOOP()
  5617. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5618. return true;
  5619. }
  5620. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5621. bool nozzle_timed_out = false;
  5622. // Wait for filament insert by user and press button
  5623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5624. wait_for_user = true; // LCD click or M108 will clear this
  5625. while (wait_for_user) {
  5626. #if HAS_BUZZER
  5627. filament_change_beep(max_beep_count);
  5628. #endif
  5629. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5630. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5631. if (!nozzle_timed_out)
  5632. HOTEND_LOOP()
  5633. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5634. if (nozzle_timed_out) {
  5635. #if ENABLED(ULTIPANEL)
  5636. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5637. #endif
  5638. // Wait for LCD click or M108
  5639. while (wait_for_user) idle(true);
  5640. // Re-enable the heaters if they timed out
  5641. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5642. // Wait for the heaters to reach the target temperatures
  5643. ensure_safe_temperature();
  5644. #if ENABLED(ULTIPANEL)
  5645. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5646. #endif
  5647. // Start the heater idle timers
  5648. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5649. HOTEND_LOOP()
  5650. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5651. wait_for_user = true; /* Wait for user to load filament */
  5652. nozzle_timed_out = false;
  5653. #if HAS_BUZZER
  5654. filament_change_beep(max_beep_count, true);
  5655. #endif
  5656. }
  5657. idle(true);
  5658. }
  5659. KEEPALIVE_STATE(IN_HANDLER);
  5660. }
  5661. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5662. bool nozzle_timed_out = false;
  5663. if (!move_away_flag) return;
  5664. // Re-enable the heaters if they timed out
  5665. HOTEND_LOOP() {
  5666. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5667. thermalManager.reset_heater_idle_timer(e);
  5668. }
  5669. if (nozzle_timed_out) ensure_safe_temperature();
  5670. #if HAS_BUZZER
  5671. filament_change_beep(max_beep_count, true);
  5672. #endif
  5673. set_destination_from_current();
  5674. if (load_length != 0) {
  5675. #if ENABLED(ULTIPANEL)
  5676. // Show "insert filament"
  5677. if (nozzle_timed_out)
  5678. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5679. #endif
  5680. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5681. wait_for_user = true; // LCD click or M108 will clear this
  5682. while (wait_for_user && nozzle_timed_out) {
  5683. #if HAS_BUZZER
  5684. filament_change_beep(max_beep_count);
  5685. #endif
  5686. idle(true);
  5687. }
  5688. KEEPALIVE_STATE(IN_HANDLER);
  5689. #if ENABLED(ULTIPANEL)
  5690. // Show "load" message
  5691. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5692. #endif
  5693. // Load filament
  5694. do_pause_e_move(load_length, FILAMENT_CHANGE_LOAD_FEEDRATE);
  5695. }
  5696. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5697. float extrude_length = initial_extrude_length;
  5698. do {
  5699. if (extrude_length > 0) {
  5700. // "Wait for filament extrude"
  5701. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5702. // Extrude filament to get into hotend
  5703. do_pause_e_move(extrude_length, ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5704. }
  5705. // Show "Extrude More" / "Resume" menu and wait for reply
  5706. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5707. wait_for_user = false;
  5708. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5709. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5710. KEEPALIVE_STATE(IN_HANDLER);
  5711. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5712. // Keep looping if "Extrude More" was selected
  5713. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5714. #endif
  5715. #if ENABLED(ULTIPANEL)
  5716. // "Wait for print to resume"
  5717. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5718. #endif
  5719. // Set extruder to saved position
  5720. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5721. planner.set_e_position_mm(current_position[E_AXIS]);
  5722. // Move XY to starting position, then Z
  5723. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5724. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5725. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5726. filament_ran_out = false;
  5727. #endif
  5728. #if ENABLED(ULTIPANEL)
  5729. // Show status screen
  5730. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5731. #endif
  5732. #if ENABLED(SDSUPPORT)
  5733. if (sd_print_paused) {
  5734. card.startFileprint();
  5735. sd_print_paused = false;
  5736. }
  5737. #endif
  5738. move_away_flag = false;
  5739. }
  5740. #endif // ADVANCED_PAUSE_FEATURE
  5741. #if ENABLED(SDSUPPORT)
  5742. /**
  5743. * M20: List SD card to serial output
  5744. */
  5745. inline void gcode_M20() {
  5746. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5747. card.ls();
  5748. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5749. }
  5750. /**
  5751. * M21: Init SD Card
  5752. */
  5753. inline void gcode_M21() { card.initsd(); }
  5754. /**
  5755. * M22: Release SD Card
  5756. */
  5757. inline void gcode_M22() { card.release(); }
  5758. /**
  5759. * M23: Open a file
  5760. */
  5761. inline void gcode_M23() {
  5762. // Simplify3D includes the size, so zero out all spaces (#7227)
  5763. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5764. card.openFile(parser.string_arg, true);
  5765. }
  5766. /**
  5767. * M24: Start or Resume SD Print
  5768. */
  5769. inline void gcode_M24() {
  5770. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5771. resume_print();
  5772. #endif
  5773. card.startFileprint();
  5774. print_job_timer.start();
  5775. }
  5776. /**
  5777. * M25: Pause SD Print
  5778. */
  5779. inline void gcode_M25() {
  5780. card.pauseSDPrint();
  5781. print_job_timer.pause();
  5782. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5783. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5784. #endif
  5785. }
  5786. /**
  5787. * M26: Set SD Card file index
  5788. */
  5789. inline void gcode_M26() {
  5790. if (card.cardOK && parser.seenval('S'))
  5791. card.setIndex(parser.value_long());
  5792. }
  5793. /**
  5794. * M27: Get SD Card status
  5795. */
  5796. inline void gcode_M27() { card.getStatus(); }
  5797. /**
  5798. * M28: Start SD Write
  5799. */
  5800. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5801. /**
  5802. * M29: Stop SD Write
  5803. * Processed in write to file routine above
  5804. */
  5805. inline void gcode_M29() {
  5806. // card.saving = false;
  5807. }
  5808. /**
  5809. * M30 <filename>: Delete SD Card file
  5810. */
  5811. inline void gcode_M30() {
  5812. if (card.cardOK) {
  5813. card.closefile();
  5814. card.removeFile(parser.string_arg);
  5815. }
  5816. }
  5817. #endif // SDSUPPORT
  5818. /**
  5819. * M31: Get the time since the start of SD Print (or last M109)
  5820. */
  5821. inline void gcode_M31() {
  5822. char buffer[21];
  5823. duration_t elapsed = print_job_timer.duration();
  5824. elapsed.toString(buffer);
  5825. lcd_setstatus(buffer);
  5826. SERIAL_ECHO_START();
  5827. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5828. }
  5829. #if ENABLED(SDSUPPORT)
  5830. /**
  5831. * M32: Select file and start SD Print
  5832. *
  5833. * Examples:
  5834. *
  5835. * M32 !PATH/TO/FILE.GCO# ; Start FILE.GCO
  5836. * M32 P !PATH/TO/FILE.GCO# ; Start FILE.GCO as a procedure
  5837. * M32 S60 !PATH/TO/FILE.GCO# ; Start FILE.GCO at byte 60
  5838. *
  5839. */
  5840. inline void gcode_M32() {
  5841. if (card.sdprinting) stepper.synchronize();
  5842. if (card.cardOK) {
  5843. const bool call_procedure = parser.boolval('P');
  5844. card.openFile(parser.string_arg, true, call_procedure);
  5845. if (parser.seenval('S')) card.setIndex(parser.value_long());
  5846. card.startFileprint();
  5847. // Procedure calls count as normal print time.
  5848. if (!call_procedure) print_job_timer.start();
  5849. }
  5850. }
  5851. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5852. /**
  5853. * M33: Get the long full path of a file or folder
  5854. *
  5855. * Parameters:
  5856. * <dospath> Case-insensitive DOS-style path to a file or folder
  5857. *
  5858. * Example:
  5859. * M33 miscel~1/armchair/armcha~1.gco
  5860. *
  5861. * Output:
  5862. * /Miscellaneous/Armchair/Armchair.gcode
  5863. */
  5864. inline void gcode_M33() {
  5865. card.printLongPath(parser.string_arg);
  5866. }
  5867. #endif
  5868. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5869. /**
  5870. * M34: Set SD Card Sorting Options
  5871. */
  5872. inline void gcode_M34() {
  5873. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5874. if (parser.seenval('F')) {
  5875. const int v = parser.value_long();
  5876. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5877. }
  5878. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5879. }
  5880. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5881. /**
  5882. * M928: Start SD Write
  5883. */
  5884. inline void gcode_M928() {
  5885. card.openLogFile(parser.string_arg);
  5886. }
  5887. #endif // SDSUPPORT
  5888. /**
  5889. * Sensitive pin test for M42, M226
  5890. */
  5891. static bool pin_is_protected(const int8_t pin) {
  5892. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5893. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5894. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5895. return false;
  5896. }
  5897. /**
  5898. * M42: Change pin status via GCode
  5899. *
  5900. * P<pin> Pin number (LED if omitted)
  5901. * S<byte> Pin status from 0 - 255
  5902. */
  5903. inline void gcode_M42() {
  5904. if (!parser.seenval('S')) return;
  5905. const byte pin_status = parser.value_byte();
  5906. const int pin_number = parser.intval('P', LED_PIN);
  5907. if (pin_number < 0) return;
  5908. if (pin_is_protected(pin_number)) {
  5909. SERIAL_ERROR_START();
  5910. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5911. return;
  5912. }
  5913. pinMode(pin_number, OUTPUT);
  5914. digitalWrite(pin_number, pin_status);
  5915. analogWrite(pin_number, pin_status);
  5916. #if FAN_COUNT > 0
  5917. switch (pin_number) {
  5918. #if HAS_FAN0
  5919. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5920. #endif
  5921. #if HAS_FAN1
  5922. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5923. #endif
  5924. #if HAS_FAN2
  5925. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5926. #endif
  5927. }
  5928. #endif
  5929. }
  5930. #if ENABLED(PINS_DEBUGGING)
  5931. #include "pinsDebug.h"
  5932. inline void toggle_pins() {
  5933. const bool I_flag = parser.boolval('I');
  5934. const int repeat = parser.intval('R', 1),
  5935. start = parser.intval('S'),
  5936. end = parser.intval('L', NUM_DIGITAL_PINS - 1),
  5937. wait = parser.intval('W', 500);
  5938. for (uint8_t pin = start; pin <= end; pin++) {
  5939. //report_pin_state_extended(pin, I_flag, false);
  5940. if (!I_flag && pin_is_protected(pin)) {
  5941. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5942. SERIAL_EOL();
  5943. }
  5944. else {
  5945. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5946. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5947. if (pin == TEENSY_E2) {
  5948. SET_OUTPUT(TEENSY_E2);
  5949. for (int16_t j = 0; j < repeat; j++) {
  5950. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5951. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5952. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5953. }
  5954. }
  5955. else if (pin == TEENSY_E3) {
  5956. SET_OUTPUT(TEENSY_E3);
  5957. for (int16_t j = 0; j < repeat; j++) {
  5958. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5959. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5960. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5961. }
  5962. }
  5963. else
  5964. #endif
  5965. {
  5966. pinMode(pin, OUTPUT);
  5967. for (int16_t j = 0; j < repeat; j++) {
  5968. digitalWrite(pin, 0); safe_delay(wait);
  5969. digitalWrite(pin, 1); safe_delay(wait);
  5970. digitalWrite(pin, 0); safe_delay(wait);
  5971. }
  5972. }
  5973. }
  5974. SERIAL_EOL();
  5975. }
  5976. SERIAL_ECHOLNPGM("Done.");
  5977. } // toggle_pins
  5978. inline void servo_probe_test() {
  5979. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5980. SERIAL_ERROR_START();
  5981. SERIAL_ERRORLNPGM("SERVO not setup");
  5982. #elif !HAS_Z_SERVO_ENDSTOP
  5983. SERIAL_ERROR_START();
  5984. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5985. #else // HAS_Z_SERVO_ENDSTOP
  5986. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  5987. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5988. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5989. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5990. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5991. bool probe_inverting;
  5992. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5993. #define PROBE_TEST_PIN Z_MIN_PIN
  5994. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5995. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5996. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5997. #if Z_MIN_ENDSTOP_INVERTING
  5998. SERIAL_PROTOCOLLNPGM("true");
  5999. #else
  6000. SERIAL_PROTOCOLLNPGM("false");
  6001. #endif
  6002. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  6003. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  6004. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  6005. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  6006. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  6007. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  6008. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  6009. SERIAL_PROTOCOLLNPGM("true");
  6010. #else
  6011. SERIAL_PROTOCOLLNPGM("false");
  6012. #endif
  6013. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  6014. #endif
  6015. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  6016. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  6017. bool deploy_state, stow_state;
  6018. for (uint8_t i = 0; i < 4; i++) {
  6019. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  6020. safe_delay(500);
  6021. deploy_state = READ(PROBE_TEST_PIN);
  6022. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  6023. safe_delay(500);
  6024. stow_state = READ(PROBE_TEST_PIN);
  6025. }
  6026. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  6027. refresh_cmd_timeout();
  6028. if (deploy_state != stow_state) {
  6029. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  6030. if (deploy_state) {
  6031. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  6032. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  6033. }
  6034. else {
  6035. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  6036. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  6037. }
  6038. #if ENABLED(BLTOUCH)
  6039. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  6040. #endif
  6041. }
  6042. else { // measure active signal length
  6043. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  6044. safe_delay(500);
  6045. SERIAL_PROTOCOLLNPGM("please trigger probe");
  6046. uint16_t probe_counter = 0;
  6047. // Allow 30 seconds max for operator to trigger probe
  6048. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  6049. safe_delay(2);
  6050. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  6051. refresh_cmd_timeout();
  6052. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  6053. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  6054. safe_delay(2);
  6055. if (probe_counter == 50)
  6056. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  6057. else if (probe_counter >= 2)
  6058. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  6059. else
  6060. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  6061. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  6062. } // pulse detected
  6063. } // for loop waiting for trigger
  6064. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  6065. } // measure active signal length
  6066. #endif
  6067. } // servo_probe_test
  6068. /**
  6069. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  6070. *
  6071. * M43 - report name and state of pin(s)
  6072. * P<pin> Pin to read or watch. If omitted, reads all pins.
  6073. * I Flag to ignore Marlin's pin protection.
  6074. *
  6075. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  6076. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  6077. * I Flag to ignore Marlin's pin protection.
  6078. *
  6079. * M43 E<bool> - Enable / disable background endstop monitoring
  6080. * - Machine continues to operate
  6081. * - Reports changes to endstops
  6082. * - Toggles LED_PIN when an endstop changes
  6083. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  6084. *
  6085. * M43 T - Toggle pin(s) and report which pin is being toggled
  6086. * S<pin> - Start Pin number. If not given, will default to 0
  6087. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  6088. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  6089. * R - Repeat pulses on each pin this number of times before continueing to next pin
  6090. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  6091. *
  6092. * M43 S - Servo probe test
  6093. * P<index> - Probe index (optional - defaults to 0
  6094. */
  6095. inline void gcode_M43() {
  6096. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  6097. toggle_pins();
  6098. return;
  6099. }
  6100. // Enable or disable endstop monitoring
  6101. if (parser.seen('E')) {
  6102. endstop_monitor_flag = parser.value_bool();
  6103. SERIAL_PROTOCOLPGM("endstop monitor ");
  6104. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  6105. SERIAL_PROTOCOLLNPGM("abled");
  6106. return;
  6107. }
  6108. if (parser.seen('S')) {
  6109. servo_probe_test();
  6110. return;
  6111. }
  6112. // Get the range of pins to test or watch
  6113. const uint8_t first_pin = parser.byteval('P'),
  6114. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  6115. if (first_pin > last_pin) return;
  6116. const bool ignore_protection = parser.boolval('I');
  6117. // Watch until click, M108, or reset
  6118. if (parser.boolval('W')) {
  6119. SERIAL_PROTOCOLLNPGM("Watching pins");
  6120. byte pin_state[last_pin - first_pin + 1];
  6121. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6122. if (pin_is_protected(pin) && !ignore_protection) continue;
  6123. pinMode(pin, INPUT_PULLUP);
  6124. delay(1);
  6125. /*
  6126. if (IS_ANALOG(pin))
  6127. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  6128. else
  6129. //*/
  6130. pin_state[pin - first_pin] = digitalRead(pin);
  6131. }
  6132. #if HAS_RESUME_CONTINUE
  6133. wait_for_user = true;
  6134. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6135. #endif
  6136. for (;;) {
  6137. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6138. if (pin_is_protected(pin) && !ignore_protection) continue;
  6139. const byte val =
  6140. /*
  6141. IS_ANALOG(pin)
  6142. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  6143. :
  6144. //*/
  6145. digitalRead(pin);
  6146. if (val != pin_state[pin - first_pin]) {
  6147. report_pin_state_extended(pin, ignore_protection, false);
  6148. pin_state[pin - first_pin] = val;
  6149. }
  6150. }
  6151. #if HAS_RESUME_CONTINUE
  6152. if (!wait_for_user) {
  6153. KEEPALIVE_STATE(IN_HANDLER);
  6154. break;
  6155. }
  6156. #endif
  6157. safe_delay(200);
  6158. }
  6159. return;
  6160. }
  6161. // Report current state of selected pin(s)
  6162. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  6163. report_pin_state_extended(pin, ignore_protection, true);
  6164. }
  6165. #endif // PINS_DEBUGGING
  6166. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6167. /**
  6168. * M48: Z probe repeatability measurement function.
  6169. *
  6170. * Usage:
  6171. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  6172. * P = Number of sampled points (4-50, default 10)
  6173. * X = Sample X position
  6174. * Y = Sample Y position
  6175. * V = Verbose level (0-4, default=1)
  6176. * E = Engage Z probe for each reading
  6177. * L = Number of legs of movement before probe
  6178. * S = Schizoid (Or Star if you prefer)
  6179. *
  6180. * This function assumes the bed has been homed. Specifically, that a G28 command
  6181. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  6182. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  6183. * regenerated.
  6184. */
  6185. inline void gcode_M48() {
  6186. if (axis_unhomed_error()) return;
  6187. const int8_t verbose_level = parser.byteval('V', 1);
  6188. if (!WITHIN(verbose_level, 0, 4)) {
  6189. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  6190. return;
  6191. }
  6192. if (verbose_level > 0)
  6193. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  6194. const int8_t n_samples = parser.byteval('P', 10);
  6195. if (!WITHIN(n_samples, 4, 50)) {
  6196. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  6197. return;
  6198. }
  6199. const bool stow_probe_after_each = parser.boolval('E');
  6200. float X_current = current_position[X_AXIS],
  6201. Y_current = current_position[Y_AXIS];
  6202. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  6203. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6204. #if DISABLED(DELTA)
  6205. if (!WITHIN(X_probe_location, MIN_PROBE_X, MAX_PROBE_X)) {
  6206. out_of_range_error(PSTR("X"));
  6207. return;
  6208. }
  6209. if (!WITHIN(Y_probe_location, MIN_PROBE_Y, MAX_PROBE_Y)) {
  6210. out_of_range_error(PSTR("Y"));
  6211. return;
  6212. }
  6213. #else
  6214. if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {
  6215. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  6216. return;
  6217. }
  6218. #endif
  6219. bool seen_L = parser.seen('L');
  6220. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  6221. if (n_legs > 15) {
  6222. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  6223. return;
  6224. }
  6225. if (n_legs == 1) n_legs = 2;
  6226. const bool schizoid_flag = parser.boolval('S');
  6227. if (schizoid_flag && !seen_L) n_legs = 7;
  6228. /**
  6229. * Now get everything to the specified probe point So we can safely do a
  6230. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  6231. * we don't want to use that as a starting point for each probe.
  6232. */
  6233. if (verbose_level > 2)
  6234. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  6235. // Disable bed level correction in M48 because we want the raw data when we probe
  6236. #if HAS_LEVELING
  6237. const bool was_enabled = planner.leveling_active;
  6238. set_bed_leveling_enabled(false);
  6239. #endif
  6240. setup_for_endstop_or_probe_move();
  6241. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  6242. // Move to the first point, deploy, and probe
  6243. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  6244. bool probing_good = !isnan(t);
  6245. if (probing_good) {
  6246. randomSeed(millis());
  6247. for (uint8_t n = 0; n < n_samples; n++) {
  6248. if (n_legs) {
  6249. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  6250. float angle = random(0.0, 360.0);
  6251. const float radius = random(
  6252. #if ENABLED(DELTA)
  6253. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  6254. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  6255. #else
  6256. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  6257. #endif
  6258. );
  6259. if (verbose_level > 3) {
  6260. SERIAL_ECHOPAIR("Starting radius: ", radius);
  6261. SERIAL_ECHOPAIR(" angle: ", angle);
  6262. SERIAL_ECHOPGM(" Direction: ");
  6263. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  6264. SERIAL_ECHOLNPGM("Clockwise");
  6265. }
  6266. for (uint8_t l = 0; l < n_legs - 1; l++) {
  6267. double delta_angle;
  6268. if (schizoid_flag)
  6269. // The points of a 5 point star are 72 degrees apart. We need to
  6270. // skip a point and go to the next one on the star.
  6271. delta_angle = dir * 2.0 * 72.0;
  6272. else
  6273. // If we do this line, we are just trying to move further
  6274. // around the circle.
  6275. delta_angle = dir * (float) random(25, 45);
  6276. angle += delta_angle;
  6277. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  6278. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  6279. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  6280. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  6281. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  6282. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  6283. #if DISABLED(DELTA)
  6284. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  6285. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  6286. #else
  6287. // If we have gone out too far, we can do a simple fix and scale the numbers
  6288. // back in closer to the origin.
  6289. while (!position_is_reachable_by_probe(X_current, Y_current)) {
  6290. X_current *= 0.8;
  6291. Y_current *= 0.8;
  6292. if (verbose_level > 3) {
  6293. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  6294. SERIAL_ECHOLNPAIR(", ", Y_current);
  6295. }
  6296. }
  6297. #endif
  6298. if (verbose_level > 3) {
  6299. SERIAL_PROTOCOLPGM("Going to:");
  6300. SERIAL_ECHOPAIR(" X", X_current);
  6301. SERIAL_ECHOPAIR(" Y", Y_current);
  6302. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  6303. }
  6304. do_blocking_move_to_xy(X_current, Y_current);
  6305. } // n_legs loop
  6306. } // n_legs
  6307. // Probe a single point
  6308. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  6309. // Break the loop if the probe fails
  6310. probing_good = !isnan(sample_set[n]);
  6311. if (!probing_good) break;
  6312. /**
  6313. * Get the current mean for the data points we have so far
  6314. */
  6315. double sum = 0.0;
  6316. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6317. mean = sum / (n + 1);
  6318. NOMORE(min, sample_set[n]);
  6319. NOLESS(max, sample_set[n]);
  6320. /**
  6321. * Now, use that mean to calculate the standard deviation for the
  6322. * data points we have so far
  6323. */
  6324. sum = 0.0;
  6325. for (uint8_t j = 0; j <= n; j++)
  6326. sum += sq(sample_set[j] - mean);
  6327. sigma = SQRT(sum / (n + 1));
  6328. if (verbose_level > 0) {
  6329. if (verbose_level > 1) {
  6330. SERIAL_PROTOCOL(n + 1);
  6331. SERIAL_PROTOCOLPGM(" of ");
  6332. SERIAL_PROTOCOL((int)n_samples);
  6333. SERIAL_PROTOCOLPGM(": z: ");
  6334. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6335. if (verbose_level > 2) {
  6336. SERIAL_PROTOCOLPGM(" mean: ");
  6337. SERIAL_PROTOCOL_F(mean, 4);
  6338. SERIAL_PROTOCOLPGM(" sigma: ");
  6339. SERIAL_PROTOCOL_F(sigma, 6);
  6340. SERIAL_PROTOCOLPGM(" min: ");
  6341. SERIAL_PROTOCOL_F(min, 3);
  6342. SERIAL_PROTOCOLPGM(" max: ");
  6343. SERIAL_PROTOCOL_F(max, 3);
  6344. SERIAL_PROTOCOLPGM(" range: ");
  6345. SERIAL_PROTOCOL_F(max-min, 3);
  6346. }
  6347. SERIAL_EOL();
  6348. }
  6349. }
  6350. } // n_samples loop
  6351. }
  6352. STOW_PROBE();
  6353. if (probing_good) {
  6354. SERIAL_PROTOCOLLNPGM("Finished!");
  6355. if (verbose_level > 0) {
  6356. SERIAL_PROTOCOLPGM("Mean: ");
  6357. SERIAL_PROTOCOL_F(mean, 6);
  6358. SERIAL_PROTOCOLPGM(" Min: ");
  6359. SERIAL_PROTOCOL_F(min, 3);
  6360. SERIAL_PROTOCOLPGM(" Max: ");
  6361. SERIAL_PROTOCOL_F(max, 3);
  6362. SERIAL_PROTOCOLPGM(" Range: ");
  6363. SERIAL_PROTOCOL_F(max-min, 3);
  6364. SERIAL_EOL();
  6365. }
  6366. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6367. SERIAL_PROTOCOL_F(sigma, 6);
  6368. SERIAL_EOL();
  6369. SERIAL_EOL();
  6370. }
  6371. clean_up_after_endstop_or_probe_move();
  6372. // Re-enable bed level correction if it had been on
  6373. #if HAS_LEVELING
  6374. set_bed_leveling_enabled(was_enabled);
  6375. #endif
  6376. report_current_position();
  6377. }
  6378. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6379. #if ENABLED(G26_MESH_VALIDATION)
  6380. inline void gcode_M49() {
  6381. g26_debug_flag ^= true;
  6382. SERIAL_PROTOCOLPGM("G26 Debug ");
  6383. serialprintPGM(g26_debug_flag ? PSTR("on.") : PSTR("off."));
  6384. }
  6385. #endif // G26_MESH_VALIDATION
  6386. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  6387. /**
  6388. * M73: Set percentage complete (for display on LCD)
  6389. *
  6390. * Example:
  6391. * M73 P25 ; Set progress to 25%
  6392. *
  6393. * Notes:
  6394. * This has no effect during an SD print job
  6395. */
  6396. inline void gcode_M73() {
  6397. if (!IS_SD_PRINTING && parser.seen('P')) {
  6398. progress_bar_percent = parser.value_byte();
  6399. NOMORE(progress_bar_percent, 100);
  6400. }
  6401. }
  6402. #endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
  6403. /**
  6404. * M75: Start print timer
  6405. */
  6406. inline void gcode_M75() { print_job_timer.start(); }
  6407. /**
  6408. * M76: Pause print timer
  6409. */
  6410. inline void gcode_M76() { print_job_timer.pause(); }
  6411. /**
  6412. * M77: Stop print timer
  6413. */
  6414. inline void gcode_M77() { print_job_timer.stop(); }
  6415. #if ENABLED(PRINTCOUNTER)
  6416. /**
  6417. * M78: Show print statistics
  6418. */
  6419. inline void gcode_M78() {
  6420. // "M78 S78" will reset the statistics
  6421. if (parser.intval('S') == 78)
  6422. print_job_timer.initStats();
  6423. else
  6424. print_job_timer.showStats();
  6425. }
  6426. #endif
  6427. /**
  6428. * M104: Set hot end temperature
  6429. */
  6430. inline void gcode_M104() {
  6431. if (get_target_extruder_from_command(104)) return;
  6432. if (DEBUGGING(DRYRUN)) return;
  6433. #if ENABLED(SINGLENOZZLE)
  6434. if (target_extruder != active_extruder) return;
  6435. #endif
  6436. if (parser.seenval('S')) {
  6437. const int16_t temp = parser.value_celsius();
  6438. thermalManager.setTargetHotend(temp, target_extruder);
  6439. #if ENABLED(DUAL_X_CARRIAGE)
  6440. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6441. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6442. #endif
  6443. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6444. /**
  6445. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6446. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6447. * standby mode, for instance in a dual extruder setup, without affecting
  6448. * the running print timer.
  6449. */
  6450. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6451. print_job_timer.stop();
  6452. LCD_MESSAGEPGM(WELCOME_MSG);
  6453. }
  6454. #endif
  6455. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6456. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6457. }
  6458. #if ENABLED(AUTOTEMP)
  6459. planner.autotemp_M104_M109();
  6460. #endif
  6461. }
  6462. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6463. void print_heater_state(const float &c, const float &t,
  6464. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6465. const float r,
  6466. #endif
  6467. const int8_t e=-2
  6468. ) {
  6469. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6470. UNUSED(e);
  6471. #endif
  6472. SERIAL_PROTOCOLCHAR(' ');
  6473. SERIAL_PROTOCOLCHAR(
  6474. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6475. e == -1 ? 'B' : 'T'
  6476. #elif HAS_TEMP_HOTEND
  6477. 'T'
  6478. #else
  6479. 'B'
  6480. #endif
  6481. );
  6482. #if HOTENDS > 1
  6483. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6484. #endif
  6485. SERIAL_PROTOCOLCHAR(':');
  6486. SERIAL_PROTOCOL(c);
  6487. SERIAL_PROTOCOLPAIR(" /" , t);
  6488. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6489. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6490. SERIAL_PROTOCOLCHAR(')');
  6491. #endif
  6492. }
  6493. void print_heaterstates() {
  6494. #if HAS_TEMP_HOTEND
  6495. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6496. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6497. , thermalManager.rawHotendTemp(target_extruder)
  6498. #endif
  6499. );
  6500. #endif
  6501. #if HAS_TEMP_BED
  6502. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6503. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6504. thermalManager.rawBedTemp(),
  6505. #endif
  6506. -1 // BED
  6507. );
  6508. #endif
  6509. #if HOTENDS > 1
  6510. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6511. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6512. thermalManager.rawHotendTemp(e),
  6513. #endif
  6514. e
  6515. );
  6516. #endif
  6517. SERIAL_PROTOCOLPGM(" @:");
  6518. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6519. #if HAS_TEMP_BED
  6520. SERIAL_PROTOCOLPGM(" B@:");
  6521. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6522. #endif
  6523. #if HOTENDS > 1
  6524. HOTEND_LOOP() {
  6525. SERIAL_PROTOCOLPAIR(" @", e);
  6526. SERIAL_PROTOCOLCHAR(':');
  6527. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6528. }
  6529. #endif
  6530. }
  6531. #endif
  6532. /**
  6533. * M105: Read hot end and bed temperature
  6534. */
  6535. inline void gcode_M105() {
  6536. if (get_target_extruder_from_command(105)) return;
  6537. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6538. SERIAL_PROTOCOLPGM(MSG_OK);
  6539. print_heaterstates();
  6540. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6541. SERIAL_ERROR_START();
  6542. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6543. #endif
  6544. SERIAL_EOL();
  6545. }
  6546. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6547. static uint8_t auto_report_temp_interval;
  6548. static millis_t next_temp_report_ms;
  6549. /**
  6550. * M155: Set temperature auto-report interval. M155 S<seconds>
  6551. */
  6552. inline void gcode_M155() {
  6553. if (parser.seenval('S')) {
  6554. auto_report_temp_interval = parser.value_byte();
  6555. NOMORE(auto_report_temp_interval, 60);
  6556. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6557. }
  6558. }
  6559. inline void auto_report_temperatures() {
  6560. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6561. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6562. print_heaterstates();
  6563. SERIAL_EOL();
  6564. }
  6565. }
  6566. #endif // AUTO_REPORT_TEMPERATURES
  6567. #if FAN_COUNT > 0
  6568. /**
  6569. * M106: Set Fan Speed
  6570. *
  6571. * S<int> Speed between 0-255
  6572. * P<index> Fan index, if more than one fan
  6573. *
  6574. * With EXTRA_FAN_SPEED enabled:
  6575. *
  6576. * T<int> Restore/Use/Set Temporary Speed:
  6577. * 1 = Restore previous speed after T2
  6578. * 2 = Use temporary speed set with T3-255
  6579. * 3-255 = Set the speed for use with T2
  6580. */
  6581. inline void gcode_M106() {
  6582. const uint8_t p = parser.byteval('P');
  6583. if (p < FAN_COUNT) {
  6584. #if ENABLED(EXTRA_FAN_SPEED)
  6585. const int16_t t = parser.intval('T');
  6586. if (t > 0) {
  6587. switch (t) {
  6588. case 1:
  6589. fanSpeeds[p] = old_fanSpeeds[p];
  6590. break;
  6591. case 2:
  6592. old_fanSpeeds[p] = fanSpeeds[p];
  6593. fanSpeeds[p] = new_fanSpeeds[p];
  6594. break;
  6595. default:
  6596. new_fanSpeeds[p] = min(t, 255);
  6597. break;
  6598. }
  6599. return;
  6600. }
  6601. #endif // EXTRA_FAN_SPEED
  6602. const uint16_t s = parser.ushortval('S', 255);
  6603. fanSpeeds[p] = min(s, 255);
  6604. }
  6605. }
  6606. /**
  6607. * M107: Fan Off
  6608. */
  6609. inline void gcode_M107() {
  6610. const uint16_t p = parser.ushortval('P');
  6611. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6612. }
  6613. #endif // FAN_COUNT > 0
  6614. #if DISABLED(EMERGENCY_PARSER)
  6615. /**
  6616. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6617. */
  6618. inline void gcode_M108() { wait_for_heatup = false; }
  6619. /**
  6620. * M112: Emergency Stop
  6621. */
  6622. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6623. /**
  6624. * M410: Quickstop - Abort all planned moves
  6625. *
  6626. * This will stop the carriages mid-move, so most likely they
  6627. * will be out of sync with the stepper position after this.
  6628. */
  6629. inline void gcode_M410() { quickstop_stepper(); }
  6630. #endif
  6631. /**
  6632. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6633. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6634. */
  6635. #ifndef MIN_COOLING_SLOPE_DEG
  6636. #define MIN_COOLING_SLOPE_DEG 1.50
  6637. #endif
  6638. #ifndef MIN_COOLING_SLOPE_TIME
  6639. #define MIN_COOLING_SLOPE_TIME 60
  6640. #endif
  6641. inline void gcode_M109() {
  6642. if (get_target_extruder_from_command(109)) return;
  6643. if (DEBUGGING(DRYRUN)) return;
  6644. #if ENABLED(SINGLENOZZLE)
  6645. if (target_extruder != active_extruder) return;
  6646. #endif
  6647. const bool no_wait_for_cooling = parser.seenval('S');
  6648. if (no_wait_for_cooling || parser.seenval('R')) {
  6649. const int16_t temp = parser.value_celsius();
  6650. thermalManager.setTargetHotend(temp, target_extruder);
  6651. #if ENABLED(DUAL_X_CARRIAGE)
  6652. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6653. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6654. #endif
  6655. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6656. /**
  6657. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6658. * standby mode, (e.g., in a dual extruder setup) without affecting
  6659. * the running print timer.
  6660. */
  6661. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6662. print_job_timer.stop();
  6663. LCD_MESSAGEPGM(WELCOME_MSG);
  6664. }
  6665. else
  6666. print_job_timer.start();
  6667. #endif
  6668. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6669. }
  6670. else return;
  6671. #if ENABLED(AUTOTEMP)
  6672. planner.autotemp_M104_M109();
  6673. #endif
  6674. #if TEMP_RESIDENCY_TIME > 0
  6675. millis_t residency_start_ms = 0;
  6676. // Loop until the temperature has stabilized
  6677. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6678. #else
  6679. // Loop until the temperature is very close target
  6680. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6681. #endif
  6682. float target_temp = -1.0, old_temp = 9999.0;
  6683. bool wants_to_cool = false;
  6684. wait_for_heatup = true;
  6685. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6686. #if DISABLED(BUSY_WHILE_HEATING)
  6687. KEEPALIVE_STATE(NOT_BUSY);
  6688. #endif
  6689. #if ENABLED(PRINTER_EVENT_LEDS)
  6690. const float start_temp = thermalManager.degHotend(target_extruder);
  6691. uint8_t old_blue = 0;
  6692. #endif
  6693. do {
  6694. // Target temperature might be changed during the loop
  6695. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6696. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6697. target_temp = thermalManager.degTargetHotend(target_extruder);
  6698. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6699. if (no_wait_for_cooling && wants_to_cool) break;
  6700. }
  6701. now = millis();
  6702. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6703. next_temp_ms = now + 1000UL;
  6704. print_heaterstates();
  6705. #if TEMP_RESIDENCY_TIME > 0
  6706. SERIAL_PROTOCOLPGM(" W:");
  6707. if (residency_start_ms)
  6708. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6709. else
  6710. SERIAL_PROTOCOLCHAR('?');
  6711. #endif
  6712. SERIAL_EOL();
  6713. }
  6714. idle();
  6715. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6716. const float temp = thermalManager.degHotend(target_extruder);
  6717. #if ENABLED(PRINTER_EVENT_LEDS)
  6718. // Gradually change LED strip from violet to red as nozzle heats up
  6719. if (!wants_to_cool) {
  6720. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6721. if (blue != old_blue) {
  6722. old_blue = blue;
  6723. set_led_color(255, 0, blue
  6724. #if ENABLED(NEOPIXEL_LED)
  6725. , 0
  6726. , pixels.getBrightness()
  6727. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6728. , true
  6729. #endif
  6730. #endif
  6731. );
  6732. }
  6733. }
  6734. #endif
  6735. #if TEMP_RESIDENCY_TIME > 0
  6736. const float temp_diff = FABS(target_temp - temp);
  6737. if (!residency_start_ms) {
  6738. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6739. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6740. }
  6741. else if (temp_diff > TEMP_HYSTERESIS) {
  6742. // Restart the timer whenever the temperature falls outside the hysteresis.
  6743. residency_start_ms = now;
  6744. }
  6745. #endif
  6746. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6747. if (wants_to_cool) {
  6748. // break after MIN_COOLING_SLOPE_TIME seconds
  6749. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6750. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6751. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6752. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6753. old_temp = temp;
  6754. }
  6755. }
  6756. } while (wait_for_heatup && TEMP_CONDITIONS);
  6757. if (wait_for_heatup) {
  6758. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6759. #if ENABLED(PRINTER_EVENT_LEDS)
  6760. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632) || ENABLED(RGBW_LED)
  6761. set_led_color(LED_WHITE);
  6762. #endif
  6763. #if ENABLED(NEOPIXEL_LED)
  6764. set_neopixel_color(pixels.Color(NEO_WHITE));
  6765. #endif
  6766. #endif
  6767. }
  6768. #if DISABLED(BUSY_WHILE_HEATING)
  6769. KEEPALIVE_STATE(IN_HANDLER);
  6770. #endif
  6771. }
  6772. #if HAS_TEMP_BED
  6773. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6774. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6775. #endif
  6776. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6777. #define MIN_COOLING_SLOPE_TIME_BED 60
  6778. #endif
  6779. /**
  6780. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6781. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6782. */
  6783. inline void gcode_M190() {
  6784. if (DEBUGGING(DRYRUN)) return;
  6785. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6786. const bool no_wait_for_cooling = parser.seenval('S');
  6787. if (no_wait_for_cooling || parser.seenval('R')) {
  6788. thermalManager.setTargetBed(parser.value_celsius());
  6789. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6790. if (parser.value_celsius() > BED_MINTEMP)
  6791. print_job_timer.start();
  6792. #endif
  6793. }
  6794. else return;
  6795. #if TEMP_BED_RESIDENCY_TIME > 0
  6796. millis_t residency_start_ms = 0;
  6797. // Loop until the temperature has stabilized
  6798. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6799. #else
  6800. // Loop until the temperature is very close target
  6801. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6802. #endif
  6803. float target_temp = -1.0, old_temp = 9999.0;
  6804. bool wants_to_cool = false;
  6805. wait_for_heatup = true;
  6806. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6807. #if DISABLED(BUSY_WHILE_HEATING)
  6808. KEEPALIVE_STATE(NOT_BUSY);
  6809. #endif
  6810. target_extruder = active_extruder; // for print_heaterstates
  6811. #if ENABLED(PRINTER_EVENT_LEDS)
  6812. const float start_temp = thermalManager.degBed();
  6813. uint8_t old_red = 255;
  6814. #endif
  6815. do {
  6816. // Target temperature might be changed during the loop
  6817. if (target_temp != thermalManager.degTargetBed()) {
  6818. wants_to_cool = thermalManager.isCoolingBed();
  6819. target_temp = thermalManager.degTargetBed();
  6820. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6821. if (no_wait_for_cooling && wants_to_cool) break;
  6822. }
  6823. now = millis();
  6824. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6825. next_temp_ms = now + 1000UL;
  6826. print_heaterstates();
  6827. #if TEMP_BED_RESIDENCY_TIME > 0
  6828. SERIAL_PROTOCOLPGM(" W:");
  6829. if (residency_start_ms)
  6830. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6831. else
  6832. SERIAL_PROTOCOLCHAR('?');
  6833. #endif
  6834. SERIAL_EOL();
  6835. }
  6836. idle();
  6837. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6838. const float temp = thermalManager.degBed();
  6839. #if ENABLED(PRINTER_EVENT_LEDS)
  6840. // Gradually change LED strip from blue to violet as bed heats up
  6841. if (!wants_to_cool) {
  6842. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6843. if (red != old_red) {
  6844. old_red = red;
  6845. set_led_color(red, 0, 255
  6846. #if ENABLED(NEOPIXEL_LED)
  6847. , 0, pixels.getBrightness()
  6848. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6849. , true
  6850. #endif
  6851. #endif
  6852. );
  6853. }
  6854. }
  6855. #endif
  6856. #if TEMP_BED_RESIDENCY_TIME > 0
  6857. const float temp_diff = FABS(target_temp - temp);
  6858. if (!residency_start_ms) {
  6859. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6860. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6861. }
  6862. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6863. // Restart the timer whenever the temperature falls outside the hysteresis.
  6864. residency_start_ms = now;
  6865. }
  6866. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6867. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6868. if (wants_to_cool) {
  6869. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6870. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6871. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6872. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6873. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6874. old_temp = temp;
  6875. }
  6876. }
  6877. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6878. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6879. #if DISABLED(BUSY_WHILE_HEATING)
  6880. KEEPALIVE_STATE(IN_HANDLER);
  6881. #endif
  6882. }
  6883. #endif // HAS_TEMP_BED
  6884. /**
  6885. * M110: Set Current Line Number
  6886. */
  6887. inline void gcode_M110() {
  6888. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6889. }
  6890. /**
  6891. * M111: Set the debug level
  6892. */
  6893. inline void gcode_M111() {
  6894. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6895. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6896. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6897. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6898. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6899. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6900. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6901. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6902. #endif
  6903. ;
  6904. const static char* const debug_strings[] PROGMEM = {
  6905. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6907. , str_debug_32
  6908. #endif
  6909. };
  6910. SERIAL_ECHO_START();
  6911. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6912. if (marlin_debug_flags) {
  6913. uint8_t comma = 0;
  6914. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6915. if (TEST(marlin_debug_flags, i)) {
  6916. if (comma++) SERIAL_CHAR(',');
  6917. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6918. }
  6919. }
  6920. }
  6921. else {
  6922. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6923. }
  6924. SERIAL_EOL();
  6925. }
  6926. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6927. /**
  6928. * M113: Get or set Host Keepalive interval (0 to disable)
  6929. *
  6930. * S<seconds> Optional. Set the keepalive interval.
  6931. */
  6932. inline void gcode_M113() {
  6933. if (parser.seenval('S')) {
  6934. host_keepalive_interval = parser.value_byte();
  6935. NOMORE(host_keepalive_interval, 60);
  6936. }
  6937. else {
  6938. SERIAL_ECHO_START();
  6939. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6940. }
  6941. }
  6942. #endif
  6943. #if ENABLED(BARICUDA)
  6944. #if HAS_HEATER_1
  6945. /**
  6946. * M126: Heater 1 valve open
  6947. */
  6948. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6949. /**
  6950. * M127: Heater 1 valve close
  6951. */
  6952. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6953. #endif
  6954. #if HAS_HEATER_2
  6955. /**
  6956. * M128: Heater 2 valve open
  6957. */
  6958. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6959. /**
  6960. * M129: Heater 2 valve close
  6961. */
  6962. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6963. #endif
  6964. #endif // BARICUDA
  6965. /**
  6966. * M140: Set bed temperature
  6967. */
  6968. inline void gcode_M140() {
  6969. if (DEBUGGING(DRYRUN)) return;
  6970. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6971. }
  6972. #if ENABLED(ULTIPANEL)
  6973. /**
  6974. * M145: Set the heatup state for a material in the LCD menu
  6975. *
  6976. * S<material> (0=PLA, 1=ABS)
  6977. * H<hotend temp>
  6978. * B<bed temp>
  6979. * F<fan speed>
  6980. */
  6981. inline void gcode_M145() {
  6982. const uint8_t material = (uint8_t)parser.intval('S');
  6983. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6984. SERIAL_ERROR_START();
  6985. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6986. }
  6987. else {
  6988. int v;
  6989. if (parser.seenval('H')) {
  6990. v = parser.value_int();
  6991. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  6992. }
  6993. if (parser.seenval('F')) {
  6994. v = parser.value_int();
  6995. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  6996. }
  6997. #if TEMP_SENSOR_BED != 0
  6998. if (parser.seenval('B')) {
  6999. v = parser.value_int();
  7000. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  7001. }
  7002. #endif
  7003. }
  7004. }
  7005. #endif // ULTIPANEL
  7006. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7007. /**
  7008. * M149: Set temperature units
  7009. */
  7010. inline void gcode_M149() {
  7011. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  7012. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  7013. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  7014. }
  7015. #endif
  7016. #if HAS_POWER_SWITCH
  7017. /**
  7018. * M80 : Turn on the Power Supply
  7019. * M80 S : Report the current state and exit
  7020. */
  7021. inline void gcode_M80() {
  7022. // S: Report the current power supply state and exit
  7023. if (parser.seen('S')) {
  7024. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  7025. return;
  7026. }
  7027. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  7028. /**
  7029. * If you have a switch on suicide pin, this is useful
  7030. * if you want to start another print with suicide feature after
  7031. * a print without suicide...
  7032. */
  7033. #if HAS_SUICIDE
  7034. OUT_WRITE(SUICIDE_PIN, HIGH);
  7035. #endif
  7036. #if ENABLED(HAVE_TMC2130)
  7037. delay(100);
  7038. tmc2130_init(); // Settings only stick when the driver has power
  7039. #endif
  7040. powersupply_on = true;
  7041. #if ENABLED(ULTIPANEL)
  7042. LCD_MESSAGEPGM(WELCOME_MSG);
  7043. #endif
  7044. }
  7045. #endif // HAS_POWER_SWITCH
  7046. /**
  7047. * M81: Turn off Power, including Power Supply, if there is one.
  7048. *
  7049. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  7050. */
  7051. inline void gcode_M81() {
  7052. thermalManager.disable_all_heaters();
  7053. stepper.finish_and_disable();
  7054. #if FAN_COUNT > 0
  7055. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  7056. #if ENABLED(PROBING_FANS_OFF)
  7057. fans_paused = false;
  7058. ZERO(paused_fanSpeeds);
  7059. #endif
  7060. #endif
  7061. safe_delay(1000); // Wait 1 second before switching off
  7062. #if HAS_SUICIDE
  7063. stepper.synchronize();
  7064. suicide();
  7065. #elif HAS_POWER_SWITCH
  7066. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  7067. powersupply_on = false;
  7068. #endif
  7069. #if ENABLED(ULTIPANEL)
  7070. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  7071. #endif
  7072. }
  7073. /**
  7074. * M82: Set E codes absolute (default)
  7075. */
  7076. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  7077. /**
  7078. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  7079. */
  7080. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  7081. /**
  7082. * M18, M84: Disable stepper motors
  7083. */
  7084. inline void gcode_M18_M84() {
  7085. if (parser.seenval('S')) {
  7086. stepper_inactive_time = parser.value_millis_from_seconds();
  7087. }
  7088. else {
  7089. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  7090. if (all_axis) {
  7091. stepper.finish_and_disable();
  7092. }
  7093. else {
  7094. stepper.synchronize();
  7095. if (parser.seen('X')) disable_X();
  7096. if (parser.seen('Y')) disable_Y();
  7097. if (parser.seen('Z')) disable_Z();
  7098. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  7099. if (parser.seen('E')) disable_e_steppers();
  7100. #endif
  7101. }
  7102. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  7103. ubl.lcd_map_control = defer_return_to_status = false;
  7104. #endif
  7105. }
  7106. }
  7107. /**
  7108. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  7109. */
  7110. inline void gcode_M85() {
  7111. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  7112. }
  7113. /**
  7114. * Multi-stepper support for M92, M201, M203
  7115. */
  7116. #if ENABLED(DISTINCT_E_FACTORS)
  7117. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  7118. #define TARGET_EXTRUDER target_extruder
  7119. #else
  7120. #define GET_TARGET_EXTRUDER(CMD) NOOP
  7121. #define TARGET_EXTRUDER 0
  7122. #endif
  7123. /**
  7124. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  7125. * (Follows the same syntax as G92)
  7126. *
  7127. * With multiple extruders use T to specify which one.
  7128. */
  7129. inline void gcode_M92() {
  7130. GET_TARGET_EXTRUDER(92);
  7131. LOOP_XYZE(i) {
  7132. if (parser.seen(axis_codes[i])) {
  7133. if (i == E_AXIS) {
  7134. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  7135. if (value < 20.0) {
  7136. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  7137. planner.max_jerk[E_AXIS] *= factor;
  7138. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  7139. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  7140. }
  7141. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  7142. }
  7143. else {
  7144. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  7145. }
  7146. }
  7147. }
  7148. planner.refresh_positioning();
  7149. }
  7150. /**
  7151. * Output the current position to serial
  7152. */
  7153. void report_current_position() {
  7154. SERIAL_PROTOCOLPGM("X:");
  7155. SERIAL_PROTOCOL(LOGICAL_X_POSITION(current_position[X_AXIS]));
  7156. SERIAL_PROTOCOLPGM(" Y:");
  7157. SERIAL_PROTOCOL(LOGICAL_Y_POSITION(current_position[Y_AXIS]));
  7158. SERIAL_PROTOCOLPGM(" Z:");
  7159. SERIAL_PROTOCOL(LOGICAL_Z_POSITION(current_position[Z_AXIS]));
  7160. SERIAL_PROTOCOLPGM(" E:");
  7161. SERIAL_PROTOCOL(current_position[E_AXIS]);
  7162. stepper.report_positions();
  7163. #if IS_SCARA
  7164. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  7165. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  7166. SERIAL_EOL();
  7167. #endif
  7168. }
  7169. #ifdef M114_DETAIL
  7170. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  7171. char str[12];
  7172. for (uint8_t i = 0; i < n; i++) {
  7173. SERIAL_CHAR(' ');
  7174. SERIAL_CHAR(axis_codes[i]);
  7175. SERIAL_CHAR(':');
  7176. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  7177. }
  7178. SERIAL_EOL();
  7179. }
  7180. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  7181. void report_current_position_detail() {
  7182. stepper.synchronize();
  7183. SERIAL_PROTOCOLPGM("\nLogical:");
  7184. const float logical[XYZ] = {
  7185. LOGICAL_X_POSITION(current_position[X_AXIS]),
  7186. LOGICAL_Y_POSITION(current_position[Y_AXIS]),
  7187. LOGICAL_Z_POSITION(current_position[Z_AXIS])
  7188. };
  7189. report_xyze(logical);
  7190. SERIAL_PROTOCOLPGM("Raw: ");
  7191. report_xyz(current_position);
  7192. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  7193. #if PLANNER_LEVELING
  7194. SERIAL_PROTOCOLPGM("Leveled:");
  7195. planner.apply_leveling(leveled);
  7196. report_xyz(leveled);
  7197. SERIAL_PROTOCOLPGM("UnLevel:");
  7198. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  7199. planner.unapply_leveling(unleveled);
  7200. report_xyz(unleveled);
  7201. #endif
  7202. #if IS_KINEMATIC
  7203. #if IS_SCARA
  7204. SERIAL_PROTOCOLPGM("ScaraK: ");
  7205. #else
  7206. SERIAL_PROTOCOLPGM("DeltaK: ");
  7207. #endif
  7208. inverse_kinematics(leveled); // writes delta[]
  7209. report_xyz(delta);
  7210. #endif
  7211. SERIAL_PROTOCOLPGM("Stepper:");
  7212. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  7213. report_xyze(step_count, 4, 0);
  7214. #if IS_SCARA
  7215. const float deg[XYZ] = {
  7216. stepper.get_axis_position_degrees(A_AXIS),
  7217. stepper.get_axis_position_degrees(B_AXIS)
  7218. };
  7219. SERIAL_PROTOCOLPGM("Degrees:");
  7220. report_xyze(deg, 2);
  7221. #endif
  7222. SERIAL_PROTOCOLPGM("FromStp:");
  7223. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  7224. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  7225. report_xyze(from_steppers);
  7226. const float diff[XYZE] = {
  7227. from_steppers[X_AXIS] - leveled[X_AXIS],
  7228. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  7229. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  7230. from_steppers[E_AXIS] - current_position[E_AXIS]
  7231. };
  7232. SERIAL_PROTOCOLPGM("Differ: ");
  7233. report_xyze(diff);
  7234. }
  7235. #endif // M114_DETAIL
  7236. /**
  7237. * M114: Report current position to host
  7238. */
  7239. inline void gcode_M114() {
  7240. #ifdef M114_DETAIL
  7241. if (parser.seen('D')) {
  7242. report_current_position_detail();
  7243. return;
  7244. }
  7245. #endif
  7246. stepper.synchronize();
  7247. report_current_position();
  7248. }
  7249. /**
  7250. * M115: Capabilities string
  7251. */
  7252. inline void gcode_M115() {
  7253. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  7254. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  7255. // EEPROM (M500, M501)
  7256. #if ENABLED(EEPROM_SETTINGS)
  7257. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  7258. #else
  7259. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  7260. #endif
  7261. // AUTOREPORT_TEMP (M155)
  7262. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  7263. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  7264. #else
  7265. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  7266. #endif
  7267. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  7268. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  7269. // Print Job timer M75, M76, M77
  7270. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  7271. // AUTOLEVEL (G29)
  7272. #if HAS_ABL
  7273. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  7274. #else
  7275. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  7276. #endif
  7277. // Z_PROBE (G30)
  7278. #if HAS_BED_PROBE
  7279. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  7280. #else
  7281. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  7282. #endif
  7283. // MESH_REPORT (M420 V)
  7284. #if HAS_LEVELING
  7285. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  7286. #else
  7287. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  7288. #endif
  7289. // BUILD_PERCENT (M73)
  7290. #if ENABLED(LCD_SET_PROGRESS_MANUALLY)
  7291. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:1");
  7292. #else
  7293. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:0");
  7294. #endif
  7295. // SOFTWARE_POWER (M80, M81)
  7296. #if HAS_POWER_SWITCH
  7297. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  7298. #else
  7299. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  7300. #endif
  7301. // CASE LIGHTS (M355)
  7302. #if HAS_CASE_LIGHT
  7303. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  7304. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  7305. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  7306. }
  7307. else
  7308. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7309. #else
  7310. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  7311. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7312. #endif
  7313. // EMERGENCY_PARSER (M108, M112, M410)
  7314. #if ENABLED(EMERGENCY_PARSER)
  7315. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  7316. #else
  7317. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  7318. #endif
  7319. #endif // EXTENDED_CAPABILITIES_REPORT
  7320. }
  7321. /**
  7322. * M117: Set LCD Status Message
  7323. */
  7324. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  7325. /**
  7326. * M118: Display a message in the host console.
  7327. *
  7328. * A1 Append '// ' for an action command, as in OctoPrint
  7329. * E1 Have the host 'echo:' the text
  7330. */
  7331. inline void gcode_M118() {
  7332. if (parser.boolval('E')) SERIAL_ECHO_START();
  7333. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  7334. SERIAL_ECHOLN(parser.string_arg);
  7335. }
  7336. /**
  7337. * M119: Output endstop states to serial output
  7338. */
  7339. inline void gcode_M119() { endstops.M119(); }
  7340. /**
  7341. * M120: Enable endstops and set non-homing endstop state to "enabled"
  7342. */
  7343. inline void gcode_M120() { endstops.enable_globally(true); }
  7344. /**
  7345. * M121: Disable endstops and set non-homing endstop state to "disabled"
  7346. */
  7347. inline void gcode_M121() { endstops.enable_globally(false); }
  7348. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7349. /**
  7350. * M125: Store current position and move to filament change position.
  7351. * Called on pause (by M25) to prevent material leaking onto the
  7352. * object. On resume (M24) the head will be moved back and the
  7353. * print will resume.
  7354. *
  7355. * If Marlin is compiled without SD Card support, M125 can be
  7356. * used directly to pause the print and move to park position,
  7357. * resuming with a button click or M108.
  7358. *
  7359. * L = override retract length
  7360. * X = override X
  7361. * Y = override Y
  7362. * Z = override Z raise
  7363. */
  7364. inline void gcode_M125() {
  7365. // Initial retract before move to filament change position
  7366. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7367. #ifdef PAUSE_PARK_RETRACT_LENGTH
  7368. - (PAUSE_PARK_RETRACT_LENGTH)
  7369. #endif
  7370. ;
  7371. // Lift Z axis
  7372. const float z_lift = parser.linearval('Z')
  7373. #ifdef PAUSE_PARK_Z_ADD
  7374. + PAUSE_PARK_Z_ADD
  7375. #endif
  7376. ;
  7377. // Move XY axes to filament change position or given position
  7378. const float x_pos = parser.linearval('X')
  7379. #ifdef PAUSE_PARK_X_POS
  7380. + PAUSE_PARK_X_POS
  7381. #endif
  7382. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7383. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7384. #endif
  7385. ;
  7386. const float y_pos = parser.linearval('Y')
  7387. #ifdef PAUSE_PARK_Y_POS
  7388. + PAUSE_PARK_Y_POS
  7389. #endif
  7390. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7391. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7392. #endif
  7393. ;
  7394. #if DISABLED(SDSUPPORT)
  7395. const bool job_running = print_job_timer.isRunning();
  7396. #endif
  7397. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7398. #if DISABLED(SDSUPPORT)
  7399. // Wait for lcd click or M108
  7400. wait_for_filament_reload();
  7401. // Return to print position and continue
  7402. resume_print();
  7403. if (job_running) print_job_timer.start();
  7404. #endif
  7405. }
  7406. }
  7407. #endif // PARK_HEAD_ON_PAUSE
  7408. #if HAS_COLOR_LEDS
  7409. /**
  7410. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7411. * and Brightness - Use P (for NEOPIXEL only)
  7412. *
  7413. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7414. * If brightness is left out, no value changed
  7415. *
  7416. * Examples:
  7417. *
  7418. * M150 R255 ; Turn LED red
  7419. * M150 R255 U127 ; Turn LED orange (PWM only)
  7420. * M150 ; Turn LED off
  7421. * M150 R U B ; Turn LED white
  7422. * M150 W ; Turn LED white using a white LED
  7423. * M150 P127 ; Set LED 50% brightness
  7424. * M150 P ; Set LED full brightness
  7425. */
  7426. inline void gcode_M150() {
  7427. set_led_color(
  7428. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7429. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7430. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7431. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  7432. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7433. #if ENABLED(NEOPIXEL_LED)
  7434. , parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
  7435. #endif
  7436. #endif
  7437. );
  7438. }
  7439. #endif // HAS_COLOR_LEDS
  7440. /**
  7441. * M200: Set filament diameter and set E axis units to cubic units
  7442. *
  7443. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7444. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7445. */
  7446. inline void gcode_M200() {
  7447. if (get_target_extruder_from_command(200)) return;
  7448. if (parser.seen('D')) {
  7449. // setting any extruder filament size disables volumetric on the assumption that
  7450. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7451. // for all extruders
  7452. if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) ) {
  7453. planner.filament_size[target_extruder] = parser.value_linear_units();
  7454. // make sure all extruders have some sane value for the filament size
  7455. for (uint8_t i = 0; i < COUNT(planner.filament_size); i++)
  7456. if (!planner.filament_size[i]) planner.filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  7457. }
  7458. }
  7459. planner.calculate_volumetric_multipliers();
  7460. }
  7461. /**
  7462. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7463. *
  7464. * With multiple extruders use T to specify which one.
  7465. */
  7466. inline void gcode_M201() {
  7467. GET_TARGET_EXTRUDER(201);
  7468. LOOP_XYZE(i) {
  7469. if (parser.seen(axis_codes[i])) {
  7470. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7471. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7472. }
  7473. }
  7474. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7475. planner.reset_acceleration_rates();
  7476. }
  7477. #if 0 // Not used for Sprinter/grbl gen6
  7478. inline void gcode_M202() {
  7479. LOOP_XYZE(i) {
  7480. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7481. }
  7482. }
  7483. #endif
  7484. /**
  7485. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7486. *
  7487. * With multiple extruders use T to specify which one.
  7488. */
  7489. inline void gcode_M203() {
  7490. GET_TARGET_EXTRUDER(203);
  7491. LOOP_XYZE(i)
  7492. if (parser.seen(axis_codes[i])) {
  7493. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7494. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7495. }
  7496. }
  7497. /**
  7498. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7499. *
  7500. * P = Printing moves
  7501. * R = Retract only (no X, Y, Z) moves
  7502. * T = Travel (non printing) moves
  7503. *
  7504. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7505. */
  7506. inline void gcode_M204() {
  7507. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7508. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7509. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7510. }
  7511. if (parser.seen('P')) {
  7512. planner.acceleration = parser.value_linear_units();
  7513. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7514. }
  7515. if (parser.seen('R')) {
  7516. planner.retract_acceleration = parser.value_linear_units();
  7517. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7518. }
  7519. if (parser.seen('T')) {
  7520. planner.travel_acceleration = parser.value_linear_units();
  7521. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7522. }
  7523. }
  7524. /**
  7525. * M205: Set Advanced Settings
  7526. *
  7527. * S = Min Feed Rate (units/s)
  7528. * T = Min Travel Feed Rate (units/s)
  7529. * B = Min Segment Time (µs)
  7530. * X = Max X Jerk (units/sec^2)
  7531. * Y = Max Y Jerk (units/sec^2)
  7532. * Z = Max Z Jerk (units/sec^2)
  7533. * E = Max E Jerk (units/sec^2)
  7534. */
  7535. inline void gcode_M205() {
  7536. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7537. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7538. if (parser.seen('B')) planner.min_segment_time_us = parser.value_ulong();
  7539. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7540. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7541. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7542. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7543. }
  7544. #if HAS_M206_COMMAND
  7545. /**
  7546. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7547. *
  7548. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7549. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7550. * *** In the next 1.2 release, it will simply be disabled by default.
  7551. */
  7552. inline void gcode_M206() {
  7553. LOOP_XYZ(i)
  7554. if (parser.seen(axis_codes[i]))
  7555. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7556. #if ENABLED(MORGAN_SCARA)
  7557. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_float()); // Theta
  7558. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi
  7559. #endif
  7560. report_current_position();
  7561. }
  7562. #endif // HAS_M206_COMMAND
  7563. #if ENABLED(DELTA)
  7564. /**
  7565. * M665: Set delta configurations
  7566. *
  7567. * H = delta height
  7568. * L = diagonal rod
  7569. * R = delta radius
  7570. * S = segments per second
  7571. * B = delta calibration radius
  7572. * X = Alpha (Tower 1) angle trim
  7573. * Y = Beta (Tower 2) angle trim
  7574. * Z = Rotate A and B by this angle
  7575. */
  7576. inline void gcode_M665() {
  7577. if (parser.seen('H')) {
  7578. delta_height = parser.value_linear_units();
  7579. update_software_endstops(Z_AXIS);
  7580. }
  7581. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7582. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7583. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7584. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7585. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7586. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7587. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7588. recalc_delta_settings();
  7589. }
  7590. /**
  7591. * M666: Set delta endstop adjustment
  7592. */
  7593. inline void gcode_M666() {
  7594. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7595. if (DEBUGGING(LEVELING)) {
  7596. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7597. }
  7598. #endif
  7599. LOOP_XYZ(i) {
  7600. if (parser.seen(axis_codes[i])) {
  7601. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7602. delta_endstop_adj[i] = parser.value_linear_units();
  7603. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7604. if (DEBUGGING(LEVELING)) {
  7605. SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
  7606. SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
  7607. }
  7608. #endif
  7609. }
  7610. }
  7611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7612. if (DEBUGGING(LEVELING)) {
  7613. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7614. }
  7615. #endif
  7616. }
  7617. #elif IS_SCARA
  7618. /**
  7619. * M665: Set SCARA settings
  7620. *
  7621. * Parameters:
  7622. *
  7623. * S[segments-per-second] - Segments-per-second
  7624. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7625. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7626. *
  7627. * A, P, and X are all aliases for the shoulder angle
  7628. * B, T, and Y are all aliases for the elbow angle
  7629. */
  7630. inline void gcode_M665() {
  7631. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7632. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7633. const uint8_t sumAPX = hasA + hasP + hasX;
  7634. if (sumAPX == 1)
  7635. home_offset[A_AXIS] = parser.value_float();
  7636. else if (sumAPX > 1) {
  7637. SERIAL_ERROR_START();
  7638. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7639. return;
  7640. }
  7641. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7642. const uint8_t sumBTY = hasB + hasT + hasY;
  7643. if (sumBTY == 1)
  7644. home_offset[B_AXIS] = parser.value_float();
  7645. else if (sumBTY > 1) {
  7646. SERIAL_ERROR_START();
  7647. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7648. return;
  7649. }
  7650. }
  7651. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  7652. /**
  7653. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7654. */
  7655. inline void gcode_M666() {
  7656. SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
  7657. #if ENABLED(X_DUAL_ENDSTOPS)
  7658. if (parser.seen('X')) x_endstop_adj = parser.value_linear_units();
  7659. SERIAL_ECHOPAIR(" X", x_endstop_adj);
  7660. #endif
  7661. #if ENABLED(Y_DUAL_ENDSTOPS)
  7662. if (parser.seen('Y')) y_endstop_adj = parser.value_linear_units();
  7663. SERIAL_ECHOPAIR(" Y", y_endstop_adj);
  7664. #endif
  7665. #if ENABLED(Z_DUAL_ENDSTOPS)
  7666. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7667. SERIAL_ECHOPAIR(" Z", z_endstop_adj);
  7668. #endif
  7669. SERIAL_EOL();
  7670. }
  7671. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7672. #if ENABLED(FWRETRACT)
  7673. /**
  7674. * M207: Set firmware retraction values
  7675. *
  7676. * S[+units] retract_length
  7677. * W[+units] swap_retract_length (multi-extruder)
  7678. * F[units/min] retract_feedrate_mm_s
  7679. * Z[units] retract_zlift
  7680. */
  7681. inline void gcode_M207() {
  7682. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7683. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7684. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7685. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7686. }
  7687. /**
  7688. * M208: Set firmware un-retraction values
  7689. *
  7690. * S[+units] retract_recover_length (in addition to M207 S*)
  7691. * W[+units] swap_retract_recover_length (multi-extruder)
  7692. * F[units/min] retract_recover_feedrate_mm_s
  7693. * R[units/min] swap_retract_recover_feedrate_mm_s
  7694. */
  7695. inline void gcode_M208() {
  7696. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7697. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7698. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7699. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7700. }
  7701. /**
  7702. * M209: Enable automatic retract (M209 S1)
  7703. * For slicers that don't support G10/11, reversed extrude-only
  7704. * moves will be classified as retraction.
  7705. */
  7706. inline void gcode_M209() {
  7707. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7708. if (parser.seen('S')) {
  7709. autoretract_enabled = parser.value_bool();
  7710. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7711. }
  7712. }
  7713. }
  7714. #endif // FWRETRACT
  7715. /**
  7716. * M211: Enable, Disable, and/or Report software endstops
  7717. *
  7718. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7719. */
  7720. inline void gcode_M211() {
  7721. SERIAL_ECHO_START();
  7722. #if HAS_SOFTWARE_ENDSTOPS
  7723. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7724. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7725. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7726. #else
  7727. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7728. SERIAL_ECHOPGM(MSG_OFF);
  7729. #endif
  7730. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7731. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  7732. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  7733. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  7734. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7735. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  7736. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  7737. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  7738. }
  7739. #if HOTENDS > 1
  7740. /**
  7741. * M218 - set hotend offset (in linear units)
  7742. *
  7743. * T<tool>
  7744. * X<xoffset>
  7745. * Y<yoffset>
  7746. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7747. */
  7748. inline void gcode_M218() {
  7749. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7750. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7751. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7752. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7753. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7754. #endif
  7755. SERIAL_ECHO_START();
  7756. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7757. HOTEND_LOOP() {
  7758. SERIAL_CHAR(' ');
  7759. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7760. SERIAL_CHAR(',');
  7761. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7762. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7763. SERIAL_CHAR(',');
  7764. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7765. #endif
  7766. }
  7767. SERIAL_EOL();
  7768. }
  7769. #endif // HOTENDS > 1
  7770. /**
  7771. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7772. */
  7773. inline void gcode_M220() {
  7774. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7775. }
  7776. /**
  7777. * M221: Set extrusion percentage (M221 T0 S95)
  7778. */
  7779. inline void gcode_M221() {
  7780. if (get_target_extruder_from_command(221)) return;
  7781. if (parser.seenval('S')) {
  7782. planner.flow_percentage[target_extruder] = parser.value_int();
  7783. planner.refresh_e_factor(target_extruder);
  7784. }
  7785. }
  7786. /**
  7787. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7788. */
  7789. inline void gcode_M226() {
  7790. if (parser.seen('P')) {
  7791. const int pin_number = parser.value_int(),
  7792. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7793. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7794. int target = LOW;
  7795. stepper.synchronize();
  7796. pinMode(pin_number, INPUT);
  7797. switch (pin_state) {
  7798. case 1:
  7799. target = HIGH;
  7800. break;
  7801. case 0:
  7802. target = LOW;
  7803. break;
  7804. case -1:
  7805. target = !digitalRead(pin_number);
  7806. break;
  7807. }
  7808. while (digitalRead(pin_number) != target) idle();
  7809. } // pin_state -1 0 1 && pin_number > -1
  7810. } // parser.seen('P')
  7811. }
  7812. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7813. /**
  7814. * M260: Send data to a I2C slave device
  7815. *
  7816. * This is a PoC, the formating and arguments for the GCODE will
  7817. * change to be more compatible, the current proposal is:
  7818. *
  7819. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7820. *
  7821. * M260 B<byte-1 value in base 10>
  7822. * M260 B<byte-2 value in base 10>
  7823. * M260 B<byte-3 value in base 10>
  7824. *
  7825. * M260 S1 ; Send the buffered data and reset the buffer
  7826. * M260 R1 ; Reset the buffer without sending data
  7827. *
  7828. */
  7829. inline void gcode_M260() {
  7830. // Set the target address
  7831. if (parser.seen('A')) i2c.address(parser.value_byte());
  7832. // Add a new byte to the buffer
  7833. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7834. // Flush the buffer to the bus
  7835. if (parser.seen('S')) i2c.send();
  7836. // Reset and rewind the buffer
  7837. else if (parser.seen('R')) i2c.reset();
  7838. }
  7839. /**
  7840. * M261: Request X bytes from I2C slave device
  7841. *
  7842. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7843. */
  7844. inline void gcode_M261() {
  7845. if (parser.seen('A')) i2c.address(parser.value_byte());
  7846. uint8_t bytes = parser.byteval('B', 1);
  7847. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7848. i2c.relay(bytes);
  7849. }
  7850. else {
  7851. SERIAL_ERROR_START();
  7852. SERIAL_ERRORLN("Bad i2c request");
  7853. }
  7854. }
  7855. #endif // EXPERIMENTAL_I2CBUS
  7856. #if HAS_SERVOS
  7857. /**
  7858. * M280: Get or set servo position. P<index> [S<angle>]
  7859. */
  7860. inline void gcode_M280() {
  7861. if (!parser.seen('P')) return;
  7862. const int servo_index = parser.value_int();
  7863. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7864. if (parser.seen('S'))
  7865. MOVE_SERVO(servo_index, parser.value_int());
  7866. else {
  7867. SERIAL_ECHO_START();
  7868. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7869. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7870. }
  7871. }
  7872. else {
  7873. SERIAL_ERROR_START();
  7874. SERIAL_ECHOPAIR("Servo ", servo_index);
  7875. SERIAL_ECHOLNPGM(" out of range");
  7876. }
  7877. }
  7878. #endif // HAS_SERVOS
  7879. #if ENABLED(BABYSTEPPING)
  7880. /**
  7881. * M290: Babystepping
  7882. */
  7883. inline void gcode_M290() {
  7884. #if ENABLED(BABYSTEP_XY)
  7885. for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)
  7886. if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {
  7887. const float offs = constrain(parser.value_axis_units((AxisEnum)a), -2, 2);
  7888. thermalManager.babystep_axis((AxisEnum)a, offs * planner.axis_steps_per_mm[a]);
  7889. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7890. zprobe_zoffset += offs;
  7891. #endif
  7892. }
  7893. #else
  7894. if (parser.seenval('Z') || parser.seenval('S')) {
  7895. const float offs = constrain(parser.value_axis_units(Z_AXIS), -2, 2);
  7896. thermalManager.babystep_axis(Z_AXIS, offs * planner.axis_steps_per_mm[Z_AXIS]);
  7897. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7898. zprobe_zoffset += offs;
  7899. #endif
  7900. }
  7901. #endif
  7902. }
  7903. #endif // BABYSTEPPING
  7904. #if HAS_BUZZER
  7905. /**
  7906. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7907. */
  7908. inline void gcode_M300() {
  7909. uint16_t const frequency = parser.ushortval('S', 260);
  7910. uint16_t duration = parser.ushortval('P', 1000);
  7911. // Limits the tone duration to 0-5 seconds.
  7912. NOMORE(duration, 5000);
  7913. BUZZ(duration, frequency);
  7914. }
  7915. #endif // HAS_BUZZER
  7916. #if ENABLED(PIDTEMP)
  7917. /**
  7918. * M301: Set PID parameters P I D (and optionally C, L)
  7919. *
  7920. * P[float] Kp term
  7921. * I[float] Ki term (unscaled)
  7922. * D[float] Kd term (unscaled)
  7923. *
  7924. * With PID_EXTRUSION_SCALING:
  7925. *
  7926. * C[float] Kc term
  7927. * L[float] LPQ length
  7928. */
  7929. inline void gcode_M301() {
  7930. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7931. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7932. const uint8_t e = parser.byteval('E'); // extruder being updated
  7933. if (e < HOTENDS) { // catch bad input value
  7934. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7935. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7936. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7937. #if ENABLED(PID_EXTRUSION_SCALING)
  7938. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7939. if (parser.seen('L')) lpq_len = parser.value_float();
  7940. NOMORE(lpq_len, LPQ_MAX_LEN);
  7941. #endif
  7942. thermalManager.updatePID();
  7943. SERIAL_ECHO_START();
  7944. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7945. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7946. #endif // PID_PARAMS_PER_HOTEND
  7947. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7948. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7949. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7950. #if ENABLED(PID_EXTRUSION_SCALING)
  7951. //Kc does not have scaling applied above, or in resetting defaults
  7952. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7953. #endif
  7954. SERIAL_EOL();
  7955. }
  7956. else {
  7957. SERIAL_ERROR_START();
  7958. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7959. }
  7960. }
  7961. #endif // PIDTEMP
  7962. #if ENABLED(PIDTEMPBED)
  7963. inline void gcode_M304() {
  7964. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7965. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7966. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7967. SERIAL_ECHO_START();
  7968. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7969. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7970. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7971. }
  7972. #endif // PIDTEMPBED
  7973. #if defined(CHDK) || HAS_PHOTOGRAPH
  7974. /**
  7975. * M240: Trigger a camera by emulating a Canon RC-1
  7976. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7977. */
  7978. inline void gcode_M240() {
  7979. #ifdef CHDK
  7980. OUT_WRITE(CHDK, HIGH);
  7981. chdkHigh = millis();
  7982. chdkActive = true;
  7983. #elif HAS_PHOTOGRAPH
  7984. const uint8_t NUM_PULSES = 16;
  7985. const float PULSE_LENGTH = 0.01524;
  7986. for (int i = 0; i < NUM_PULSES; i++) {
  7987. WRITE(PHOTOGRAPH_PIN, HIGH);
  7988. _delay_ms(PULSE_LENGTH);
  7989. WRITE(PHOTOGRAPH_PIN, LOW);
  7990. _delay_ms(PULSE_LENGTH);
  7991. }
  7992. delay(7.33);
  7993. for (int i = 0; i < NUM_PULSES; i++) {
  7994. WRITE(PHOTOGRAPH_PIN, HIGH);
  7995. _delay_ms(PULSE_LENGTH);
  7996. WRITE(PHOTOGRAPH_PIN, LOW);
  7997. _delay_ms(PULSE_LENGTH);
  7998. }
  7999. #endif // !CHDK && HAS_PHOTOGRAPH
  8000. }
  8001. #endif // CHDK || PHOTOGRAPH_PIN
  8002. #if HAS_LCD_CONTRAST
  8003. /**
  8004. * M250: Read and optionally set the LCD contrast
  8005. */
  8006. inline void gcode_M250() {
  8007. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  8008. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  8009. SERIAL_PROTOCOL(lcd_contrast);
  8010. SERIAL_EOL();
  8011. }
  8012. #endif // HAS_LCD_CONTRAST
  8013. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8014. /**
  8015. * M302: Allow cold extrudes, or set the minimum extrude temperature
  8016. *
  8017. * S<temperature> sets the minimum extrude temperature
  8018. * P<bool> enables (1) or disables (0) cold extrusion
  8019. *
  8020. * Examples:
  8021. *
  8022. * M302 ; report current cold extrusion state
  8023. * M302 P0 ; enable cold extrusion checking
  8024. * M302 P1 ; disables cold extrusion checking
  8025. * M302 S0 ; always allow extrusion (disables checking)
  8026. * M302 S170 ; only allow extrusion above 170
  8027. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  8028. */
  8029. inline void gcode_M302() {
  8030. const bool seen_S = parser.seen('S');
  8031. if (seen_S) {
  8032. thermalManager.extrude_min_temp = parser.value_celsius();
  8033. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  8034. }
  8035. if (parser.seen('P'))
  8036. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  8037. else if (!seen_S) {
  8038. // Report current state
  8039. SERIAL_ECHO_START();
  8040. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  8041. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  8042. SERIAL_ECHOLNPGM("C)");
  8043. }
  8044. }
  8045. #endif // PREVENT_COLD_EXTRUSION
  8046. /**
  8047. * M303: PID relay autotune
  8048. *
  8049. * S<temperature> sets the target temperature. (default 150C)
  8050. * E<extruder> (-1 for the bed) (default 0)
  8051. * C<cycles>
  8052. * U<bool> with a non-zero value will apply the result to current settings
  8053. */
  8054. inline void gcode_M303() {
  8055. #if HAS_PID_HEATING
  8056. const int e = parser.intval('E'), c = parser.intval('C', 5);
  8057. const bool u = parser.boolval('U');
  8058. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  8059. if (WITHIN(e, 0, HOTENDS - 1))
  8060. target_extruder = e;
  8061. #if DISABLED(BUSY_WHILE_HEATING)
  8062. KEEPALIVE_STATE(NOT_BUSY);
  8063. #endif
  8064. thermalManager.PID_autotune(temp, e, c, u);
  8065. #if DISABLED(BUSY_WHILE_HEATING)
  8066. KEEPALIVE_STATE(IN_HANDLER);
  8067. #endif
  8068. #else
  8069. SERIAL_ERROR_START();
  8070. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  8071. #endif
  8072. }
  8073. #if ENABLED(MORGAN_SCARA)
  8074. bool SCARA_move_to_cal(const uint8_t delta_a, const uint8_t delta_b) {
  8075. if (IsRunning()) {
  8076. forward_kinematics_SCARA(delta_a, delta_b);
  8077. destination[X_AXIS] = cartes[X_AXIS];
  8078. destination[Y_AXIS] = cartes[Y_AXIS];
  8079. destination[Z_AXIS] = current_position[Z_AXIS];
  8080. prepare_move_to_destination();
  8081. return true;
  8082. }
  8083. return false;
  8084. }
  8085. /**
  8086. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  8087. */
  8088. inline bool gcode_M360() {
  8089. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  8090. return SCARA_move_to_cal(0, 120);
  8091. }
  8092. /**
  8093. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  8094. */
  8095. inline bool gcode_M361() {
  8096. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  8097. return SCARA_move_to_cal(90, 130);
  8098. }
  8099. /**
  8100. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  8101. */
  8102. inline bool gcode_M362() {
  8103. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  8104. return SCARA_move_to_cal(60, 180);
  8105. }
  8106. /**
  8107. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  8108. */
  8109. inline bool gcode_M363() {
  8110. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  8111. return SCARA_move_to_cal(50, 90);
  8112. }
  8113. /**
  8114. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  8115. */
  8116. inline bool gcode_M364() {
  8117. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  8118. return SCARA_move_to_cal(45, 135);
  8119. }
  8120. #endif // SCARA
  8121. #if ENABLED(EXT_SOLENOID)
  8122. void enable_solenoid(const uint8_t num) {
  8123. switch (num) {
  8124. case 0:
  8125. OUT_WRITE(SOL0_PIN, HIGH);
  8126. break;
  8127. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8128. case 1:
  8129. OUT_WRITE(SOL1_PIN, HIGH);
  8130. break;
  8131. #endif
  8132. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8133. case 2:
  8134. OUT_WRITE(SOL2_PIN, HIGH);
  8135. break;
  8136. #endif
  8137. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8138. case 3:
  8139. OUT_WRITE(SOL3_PIN, HIGH);
  8140. break;
  8141. #endif
  8142. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8143. case 4:
  8144. OUT_WRITE(SOL4_PIN, HIGH);
  8145. break;
  8146. #endif
  8147. default:
  8148. SERIAL_ECHO_START();
  8149. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  8150. break;
  8151. }
  8152. }
  8153. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  8154. void disable_all_solenoids() {
  8155. OUT_WRITE(SOL0_PIN, LOW);
  8156. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8157. OUT_WRITE(SOL1_PIN, LOW);
  8158. #endif
  8159. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8160. OUT_WRITE(SOL2_PIN, LOW);
  8161. #endif
  8162. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8163. OUT_WRITE(SOL3_PIN, LOW);
  8164. #endif
  8165. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8166. OUT_WRITE(SOL4_PIN, LOW);
  8167. #endif
  8168. }
  8169. /**
  8170. * M380: Enable solenoid on the active extruder
  8171. */
  8172. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  8173. /**
  8174. * M381: Disable all solenoids
  8175. */
  8176. inline void gcode_M381() { disable_all_solenoids(); }
  8177. #endif // EXT_SOLENOID
  8178. /**
  8179. * M400: Finish all moves
  8180. */
  8181. inline void gcode_M400() { stepper.synchronize(); }
  8182. #if HAS_BED_PROBE
  8183. /**
  8184. * M401: Engage Z Servo endstop if available
  8185. */
  8186. inline void gcode_M401() { DEPLOY_PROBE(); }
  8187. /**
  8188. * M402: Retract Z Servo endstop if enabled
  8189. */
  8190. inline void gcode_M402() { STOW_PROBE(); }
  8191. #endif // HAS_BED_PROBE
  8192. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8193. /**
  8194. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  8195. */
  8196. inline void gcode_M404() {
  8197. if (parser.seen('W')) {
  8198. filament_width_nominal = parser.value_linear_units();
  8199. planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5);
  8200. }
  8201. else {
  8202. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  8203. SERIAL_PROTOCOLLN(filament_width_nominal);
  8204. }
  8205. }
  8206. /**
  8207. * M405: Turn on filament sensor for control
  8208. */
  8209. inline void gcode_M405() {
  8210. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  8211. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  8212. if (parser.seen('D')) {
  8213. meas_delay_cm = parser.value_byte();
  8214. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  8215. }
  8216. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  8217. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  8218. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  8219. measurement_delay[i] = temp_ratio;
  8220. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  8221. }
  8222. filament_sensor = true;
  8223. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8224. //SERIAL_PROTOCOL(filament_width_meas);
  8225. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  8226. //SERIAL_PROTOCOL(planner.flow_percentage[active_extruder]);
  8227. }
  8228. /**
  8229. * M406: Turn off filament sensor for control
  8230. */
  8231. inline void gcode_M406() {
  8232. filament_sensor = false;
  8233. planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  8234. }
  8235. /**
  8236. * M407: Get measured filament diameter on serial output
  8237. */
  8238. inline void gcode_M407() {
  8239. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8240. SERIAL_PROTOCOLLN(filament_width_meas);
  8241. }
  8242. #endif // FILAMENT_WIDTH_SENSOR
  8243. void quickstop_stepper() {
  8244. stepper.quick_stop();
  8245. stepper.synchronize();
  8246. set_current_from_steppers_for_axis(ALL_AXES);
  8247. SYNC_PLAN_POSITION_KINEMATIC();
  8248. }
  8249. #if HAS_LEVELING
  8250. /**
  8251. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  8252. *
  8253. * S[bool] Turns leveling on or off
  8254. * Z[height] Sets the Z fade height (0 or none to disable)
  8255. * V[bool] Verbose - Print the leveling grid
  8256. *
  8257. * With AUTO_BED_LEVELING_UBL only:
  8258. *
  8259. * L[index] Load UBL mesh from index (0 is default)
  8260. */
  8261. inline void gcode_M420() {
  8262. #if ENABLED(AUTO_BED_LEVELING_UBL)
  8263. // L to load a mesh from the EEPROM
  8264. if (parser.seen('L')) {
  8265. #if ENABLED(EEPROM_SETTINGS)
  8266. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
  8267. const int16_t a = settings.calc_num_meshes();
  8268. if (!a) {
  8269. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8270. return;
  8271. }
  8272. if (!WITHIN(storage_slot, 0, a - 1)) {
  8273. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  8274. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  8275. return;
  8276. }
  8277. settings.load_mesh(storage_slot);
  8278. ubl.storage_slot = storage_slot;
  8279. #else
  8280. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8281. return;
  8282. #endif
  8283. }
  8284. // L to load a mesh from the EEPROM
  8285. if (parser.seen('L') || parser.seen('V')) {
  8286. ubl.display_map(0); // Currently only supports one map type
  8287. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  8288. SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
  8289. }
  8290. #endif // AUTO_BED_LEVELING_UBL
  8291. // V to print the matrix or mesh
  8292. if (parser.seen('V')) {
  8293. #if ABL_PLANAR
  8294. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  8295. #else
  8296. if (leveling_is_valid()) {
  8297. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8298. print_bilinear_leveling_grid();
  8299. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8300. print_bilinear_leveling_grid_virt();
  8301. #endif
  8302. #elif ENABLED(MESH_BED_LEVELING)
  8303. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  8304. mbl_mesh_report();
  8305. #endif
  8306. }
  8307. #endif
  8308. }
  8309. const bool to_enable = parser.boolval('S');
  8310. if (parser.seen('S'))
  8311. set_bed_leveling_enabled(to_enable);
  8312. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8313. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  8314. #endif
  8315. const bool new_status = planner.leveling_active;
  8316. if (to_enable && !new_status) {
  8317. SERIAL_ERROR_START();
  8318. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  8319. }
  8320. SERIAL_ECHO_START();
  8321. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  8322. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8323. SERIAL_ECHO_START();
  8324. SERIAL_ECHOPGM("Fade Height ");
  8325. if (planner.z_fade_height > 0.0)
  8326. SERIAL_ECHOLN(planner.z_fade_height);
  8327. else
  8328. SERIAL_ECHOLNPGM(MSG_OFF);
  8329. #endif
  8330. }
  8331. #endif
  8332. #if ENABLED(MESH_BED_LEVELING)
  8333. /**
  8334. * M421: Set a single Mesh Bed Leveling Z coordinate
  8335. *
  8336. * Usage:
  8337. * M421 X<linear> Y<linear> Z<linear>
  8338. * M421 X<linear> Y<linear> Q<offset>
  8339. * M421 I<xindex> J<yindex> Z<linear>
  8340. * M421 I<xindex> J<yindex> Q<offset>
  8341. */
  8342. inline void gcode_M421() {
  8343. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  8344. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(parser.value_linear_units()) : -1;
  8345. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  8346. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(parser.value_linear_units()) : -1;
  8347. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  8348. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  8349. SERIAL_ERROR_START();
  8350. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8351. }
  8352. else if (ix < 0 || iy < 0) {
  8353. SERIAL_ERROR_START();
  8354. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8355. }
  8356. else
  8357. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  8358. }
  8359. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8360. /**
  8361. * M421: Set a single Mesh Bed Leveling Z coordinate
  8362. *
  8363. * Usage:
  8364. * M421 I<xindex> J<yindex> Z<linear>
  8365. * M421 I<xindex> J<yindex> Q<offset>
  8366. */
  8367. inline void gcode_M421() {
  8368. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8369. const bool hasI = ix >= 0,
  8370. hasJ = iy >= 0,
  8371. hasZ = parser.seen('Z'),
  8372. hasQ = !hasZ && parser.seen('Q');
  8373. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  8374. SERIAL_ERROR_START();
  8375. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8376. }
  8377. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8378. SERIAL_ERROR_START();
  8379. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8380. }
  8381. else {
  8382. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  8383. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8384. bed_level_virt_interpolate();
  8385. #endif
  8386. }
  8387. }
  8388. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8389. /**
  8390. * M421: Set a single Mesh Bed Leveling Z coordinate
  8391. *
  8392. * Usage:
  8393. * M421 I<xindex> J<yindex> Z<linear>
  8394. * M421 I<xindex> J<yindex> Q<offset>
  8395. * M421 C Z<linear>
  8396. * M421 C Q<offset>
  8397. */
  8398. inline void gcode_M421() {
  8399. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8400. const bool hasI = ix >= 0,
  8401. hasJ = iy >= 0,
  8402. hasC = parser.seen('C'),
  8403. hasZ = parser.seen('Z'),
  8404. hasQ = !hasZ && parser.seen('Q');
  8405. if (hasC) {
  8406. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);
  8407. ix = location.x_index;
  8408. iy = location.y_index;
  8409. }
  8410. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  8411. SERIAL_ERROR_START();
  8412. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8413. }
  8414. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8415. SERIAL_ERROR_START();
  8416. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8417. }
  8418. else
  8419. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8420. }
  8421. #endif // AUTO_BED_LEVELING_UBL
  8422. #if HAS_M206_COMMAND
  8423. /**
  8424. * M428: Set home_offset based on the distance between the
  8425. * current_position and the nearest "reference point."
  8426. * If an axis is past center its endstop position
  8427. * is the reference-point. Otherwise it uses 0. This allows
  8428. * the Z offset to be set near the bed when using a max endstop.
  8429. *
  8430. * M428 can't be used more than 2cm away from 0 or an endstop.
  8431. *
  8432. * Use M206 to set these values directly.
  8433. */
  8434. inline void gcode_M428() {
  8435. if (axis_unhomed_error()) return;
  8436. float diff[XYZ];
  8437. LOOP_XYZ(i) {
  8438. diff[i] = base_home_pos((AxisEnum)i) - current_position[i];
  8439. if (!WITHIN(diff[i], -20, 20) && home_dir((AxisEnum)i) > 0)
  8440. diff[i] = -current_position[i];
  8441. if (!WITHIN(diff[i], -20, 20)) {
  8442. SERIAL_ERROR_START();
  8443. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8444. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8445. BUZZ(200, 40);
  8446. return;
  8447. }
  8448. }
  8449. LOOP_XYZ(i) set_home_offset((AxisEnum)i, diff[i]);
  8450. report_current_position();
  8451. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8452. BUZZ(100, 659);
  8453. BUZZ(100, 698);
  8454. }
  8455. #endif // HAS_M206_COMMAND
  8456. /**
  8457. * M500: Store settings in EEPROM
  8458. */
  8459. inline void gcode_M500() {
  8460. (void)settings.save();
  8461. }
  8462. /**
  8463. * M501: Read settings from EEPROM
  8464. */
  8465. inline void gcode_M501() {
  8466. (void)settings.load();
  8467. }
  8468. /**
  8469. * M502: Revert to default settings
  8470. */
  8471. inline void gcode_M502() {
  8472. (void)settings.reset();
  8473. }
  8474. #if DISABLED(DISABLE_M503)
  8475. /**
  8476. * M503: print settings currently in memory
  8477. */
  8478. inline void gcode_M503() {
  8479. (void)settings.report(parser.boolval('S'));
  8480. }
  8481. #endif
  8482. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8483. /**
  8484. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8485. */
  8486. inline void gcode_M540() {
  8487. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8488. }
  8489. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8490. #if HAS_BED_PROBE
  8491. inline void gcode_M851() {
  8492. SERIAL_ECHO_START();
  8493. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  8494. if (parser.seen('Z')) {
  8495. const float value = parser.value_linear_units();
  8496. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8497. zprobe_zoffset = value;
  8498. SERIAL_ECHO(zprobe_zoffset);
  8499. }
  8500. else
  8501. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8502. }
  8503. else
  8504. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  8505. SERIAL_EOL();
  8506. }
  8507. #endif // HAS_BED_PROBE
  8508. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8509. /**
  8510. * M600: Pause for filament change
  8511. *
  8512. * E[distance] - Retract the filament this far (negative value)
  8513. * Z[distance] - Move the Z axis by this distance
  8514. * X[position] - Move to this X position, with Y
  8515. * Y[position] - Move to this Y position, with X
  8516. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8517. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8518. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8519. *
  8520. * Default values are used for omitted arguments.
  8521. *
  8522. */
  8523. inline void gcode_M600() {
  8524. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8525. // Don't allow filament change without homing first
  8526. if (axis_unhomed_error()) home_all_axes();
  8527. #endif
  8528. // Initial retract before move to filament change position
  8529. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8530. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8531. - (PAUSE_PARK_RETRACT_LENGTH)
  8532. #endif
  8533. ;
  8534. // Lift Z axis
  8535. const float z_lift = parser.linearval('Z', 0
  8536. #ifdef PAUSE_PARK_Z_ADD
  8537. + PAUSE_PARK_Z_ADD
  8538. #endif
  8539. );
  8540. // Move XY axes to filament exchange position
  8541. const float x_pos = parser.linearval('X', 0
  8542. #ifdef PAUSE_PARK_X_POS
  8543. + PAUSE_PARK_X_POS
  8544. #endif
  8545. );
  8546. const float y_pos = parser.linearval('Y', 0
  8547. #ifdef PAUSE_PARK_Y_POS
  8548. + PAUSE_PARK_Y_POS
  8549. #endif
  8550. );
  8551. // Unload filament
  8552. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8553. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8554. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8555. #endif
  8556. ;
  8557. // Load filament
  8558. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8559. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8560. + FILAMENT_CHANGE_LOAD_LENGTH
  8561. #endif
  8562. ;
  8563. const int beep_count = parser.intval('B',
  8564. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8565. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8566. #else
  8567. -1
  8568. #endif
  8569. );
  8570. const bool job_running = print_job_timer.isRunning();
  8571. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8572. wait_for_filament_reload(beep_count);
  8573. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8574. }
  8575. // Resume the print job timer if it was running
  8576. if (job_running) print_job_timer.start();
  8577. }
  8578. #endif // ADVANCED_PAUSE_FEATURE
  8579. #if ENABLED(MK2_MULTIPLEXER)
  8580. inline void select_multiplexed_stepper(const uint8_t e) {
  8581. stepper.synchronize();
  8582. disable_e_steppers();
  8583. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8584. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8585. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8586. safe_delay(100);
  8587. }
  8588. /**
  8589. * M702: Unload all extruders
  8590. */
  8591. inline void gcode_M702() {
  8592. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8593. select_multiplexed_stepper(e);
  8594. // TODO: standard unload filament function
  8595. // MK2 firmware behavior:
  8596. // - Make sure temperature is high enough
  8597. // - Raise Z to at least 15 to make room
  8598. // - Extrude 1cm of filament in 1 second
  8599. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8600. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8601. // - Restore E max feedrate to 50
  8602. }
  8603. // Go back to the last active extruder
  8604. select_multiplexed_stepper(active_extruder);
  8605. disable_e_steppers();
  8606. }
  8607. #endif // MK2_MULTIPLEXER
  8608. #if ENABLED(DUAL_X_CARRIAGE)
  8609. /**
  8610. * M605: Set dual x-carriage movement mode
  8611. *
  8612. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8613. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8614. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8615. * units x-offset and an optional differential hotend temperature of
  8616. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8617. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8618. *
  8619. * Note: the X axis should be homed after changing dual x-carriage mode.
  8620. */
  8621. inline void gcode_M605() {
  8622. stepper.synchronize();
  8623. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8624. switch (dual_x_carriage_mode) {
  8625. case DXC_FULL_CONTROL_MODE:
  8626. case DXC_AUTO_PARK_MODE:
  8627. break;
  8628. case DXC_DUPLICATION_MODE:
  8629. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8630. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8631. SERIAL_ECHO_START();
  8632. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8633. SERIAL_CHAR(' ');
  8634. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8635. SERIAL_CHAR(',');
  8636. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8637. SERIAL_CHAR(' ');
  8638. SERIAL_ECHO(duplicate_extruder_x_offset);
  8639. SERIAL_CHAR(',');
  8640. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8641. break;
  8642. default:
  8643. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8644. break;
  8645. }
  8646. active_extruder_parked = false;
  8647. extruder_duplication_enabled = false;
  8648. delayed_move_time = 0;
  8649. }
  8650. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8651. inline void gcode_M605() {
  8652. stepper.synchronize();
  8653. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8654. SERIAL_ECHO_START();
  8655. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8656. }
  8657. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8658. #if ENABLED(LIN_ADVANCE)
  8659. /**
  8660. * M900: Set and/or Get advance K factor and WH/D ratio
  8661. *
  8662. * K<factor> Set advance K factor
  8663. * R<ratio> Set ratio directly (overrides WH/D)
  8664. * W<width> H<height> D<diam> Set ratio from WH/D
  8665. */
  8666. inline void gcode_M900() {
  8667. stepper.synchronize();
  8668. const float newK = parser.floatval('K', -1);
  8669. if (newK >= 0) planner.extruder_advance_k = newK;
  8670. float newR = parser.floatval('R', -1);
  8671. if (newR < 0) {
  8672. const float newD = parser.floatval('D', -1),
  8673. newW = parser.floatval('W', -1),
  8674. newH = parser.floatval('H', -1);
  8675. if (newD >= 0 && newW >= 0 && newH >= 0)
  8676. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8677. }
  8678. if (newR >= 0) planner.advance_ed_ratio = newR;
  8679. SERIAL_ECHO_START();
  8680. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8681. SERIAL_ECHOPGM(" E/D=");
  8682. const float ratio = planner.advance_ed_ratio;
  8683. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8684. SERIAL_EOL();
  8685. }
  8686. #endif // LIN_ADVANCE
  8687. #if ENABLED(HAVE_TMC2130)
  8688. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8689. SERIAL_CHAR(name);
  8690. SERIAL_ECHOPGM(" axis driver current: ");
  8691. SERIAL_ECHOLN(st.getCurrent());
  8692. }
  8693. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8694. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8695. tmc2130_get_current(st, name);
  8696. }
  8697. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8698. SERIAL_CHAR(name);
  8699. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8700. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8701. SERIAL_EOL();
  8702. }
  8703. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8704. st.clear_otpw();
  8705. SERIAL_CHAR(name);
  8706. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8707. }
  8708. #if ENABLED(HYBRID_THRESHOLD)
  8709. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8710. SERIAL_CHAR(name);
  8711. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8712. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8713. }
  8714. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8715. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8716. tmc2130_get_pwmthrs(st, name, spmm);
  8717. }
  8718. #endif
  8719. #if ENABLED(SENSORLESS_HOMING)
  8720. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8721. SERIAL_CHAR(name);
  8722. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8723. SERIAL_ECHOLN(st.sgt());
  8724. }
  8725. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8726. st.sgt(sgt_val);
  8727. tmc2130_get_sgt(st, name);
  8728. }
  8729. #endif
  8730. /**
  8731. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8732. * Report driver currents when no axis specified
  8733. *
  8734. * S1: Enable automatic current control
  8735. * S0: Disable
  8736. */
  8737. inline void gcode_M906() {
  8738. uint16_t values[XYZE];
  8739. LOOP_XYZE(i)
  8740. values[i] = parser.intval(axis_codes[i]);
  8741. #if ENABLED(X_IS_TMC2130)
  8742. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8743. else tmc2130_get_current(stepperX, 'X');
  8744. #endif
  8745. #if ENABLED(Y_IS_TMC2130)
  8746. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8747. else tmc2130_get_current(stepperY, 'Y');
  8748. #endif
  8749. #if ENABLED(Z_IS_TMC2130)
  8750. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8751. else tmc2130_get_current(stepperZ, 'Z');
  8752. #endif
  8753. #if ENABLED(E0_IS_TMC2130)
  8754. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8755. else tmc2130_get_current(stepperE0, 'E');
  8756. #endif
  8757. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8758. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8759. #endif
  8760. }
  8761. /**
  8762. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8763. * The flag is held by the library and persist until manually cleared by M912
  8764. */
  8765. inline void gcode_M911() {
  8766. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8767. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8768. #if ENABLED(X_IS_TMC2130)
  8769. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8770. #endif
  8771. #if ENABLED(Y_IS_TMC2130)
  8772. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8773. #endif
  8774. #if ENABLED(Z_IS_TMC2130)
  8775. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8776. #endif
  8777. #if ENABLED(E0_IS_TMC2130)
  8778. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8779. #endif
  8780. }
  8781. /**
  8782. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8783. */
  8784. inline void gcode_M912() {
  8785. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8786. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8787. #if ENABLED(X_IS_TMC2130)
  8788. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8789. #endif
  8790. #if ENABLED(Y_IS_TMC2130)
  8791. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8792. #endif
  8793. #if ENABLED(Z_IS_TMC2130)
  8794. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8795. #endif
  8796. #if ENABLED(E0_IS_TMC2130)
  8797. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8798. #endif
  8799. }
  8800. /**
  8801. * M913: Set HYBRID_THRESHOLD speed.
  8802. */
  8803. #if ENABLED(HYBRID_THRESHOLD)
  8804. inline void gcode_M913() {
  8805. uint16_t values[XYZE];
  8806. LOOP_XYZE(i)
  8807. values[i] = parser.intval(axis_codes[i]);
  8808. #if ENABLED(X_IS_TMC2130)
  8809. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8810. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8811. #endif
  8812. #if ENABLED(Y_IS_TMC2130)
  8813. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8814. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8815. #endif
  8816. #if ENABLED(Z_IS_TMC2130)
  8817. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8818. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8819. #endif
  8820. #if ENABLED(E0_IS_TMC2130)
  8821. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8822. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8823. #endif
  8824. }
  8825. #endif // HYBRID_THRESHOLD
  8826. /**
  8827. * M914: Set SENSORLESS_HOMING sensitivity.
  8828. */
  8829. #if ENABLED(SENSORLESS_HOMING)
  8830. inline void gcode_M914() {
  8831. #if ENABLED(X_IS_TMC2130)
  8832. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8833. else tmc2130_get_sgt(stepperX, 'X');
  8834. #endif
  8835. #if ENABLED(Y_IS_TMC2130)
  8836. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8837. else tmc2130_get_sgt(stepperY, 'Y');
  8838. #endif
  8839. }
  8840. #endif // SENSORLESS_HOMING
  8841. #endif // HAVE_TMC2130
  8842. /**
  8843. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8844. */
  8845. inline void gcode_M907() {
  8846. #if HAS_DIGIPOTSS
  8847. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8848. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8849. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8850. #elif HAS_MOTOR_CURRENT_PWM
  8851. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8852. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8853. #endif
  8854. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8855. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8856. #endif
  8857. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8858. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8859. #endif
  8860. #endif
  8861. #if ENABLED(DIGIPOT_I2C)
  8862. // this one uses actual amps in floating point
  8863. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8864. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8865. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8866. #endif
  8867. #if ENABLED(DAC_STEPPER_CURRENT)
  8868. if (parser.seen('S')) {
  8869. const float dac_percent = parser.value_float();
  8870. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8871. }
  8872. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8873. #endif
  8874. }
  8875. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8876. /**
  8877. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8878. */
  8879. inline void gcode_M908() {
  8880. #if HAS_DIGIPOTSS
  8881. stepper.digitalPotWrite(
  8882. parser.intval('P'),
  8883. parser.intval('S')
  8884. );
  8885. #endif
  8886. #ifdef DAC_STEPPER_CURRENT
  8887. dac_current_raw(
  8888. parser.byteval('P', -1),
  8889. parser.ushortval('S', 0)
  8890. );
  8891. #endif
  8892. }
  8893. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8894. inline void gcode_M909() { dac_print_values(); }
  8895. inline void gcode_M910() { dac_commit_eeprom(); }
  8896. #endif
  8897. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8898. #if HAS_MICROSTEPS
  8899. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8900. inline void gcode_M350() {
  8901. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8902. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8903. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8904. stepper.microstep_readings();
  8905. }
  8906. /**
  8907. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8908. * S# determines MS1 or MS2, X# sets the pin high/low.
  8909. */
  8910. inline void gcode_M351() {
  8911. if (parser.seenval('S')) switch (parser.value_byte()) {
  8912. case 1:
  8913. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8914. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8915. break;
  8916. case 2:
  8917. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8918. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8919. break;
  8920. }
  8921. stepper.microstep_readings();
  8922. }
  8923. #endif // HAS_MICROSTEPS
  8924. #if HAS_CASE_LIGHT
  8925. #ifndef INVERT_CASE_LIGHT
  8926. #define INVERT_CASE_LIGHT false
  8927. #endif
  8928. uint8_t case_light_brightness; // LCD routine wants INT
  8929. bool case_light_on;
  8930. void update_case_light() {
  8931. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8932. if (case_light_on) {
  8933. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8934. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  8935. else
  8936. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8937. }
  8938. else {
  8939. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8940. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 : 0);
  8941. else
  8942. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8943. }
  8944. }
  8945. #endif // HAS_CASE_LIGHT
  8946. /**
  8947. * M355: Turn case light on/off and set brightness
  8948. *
  8949. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8950. *
  8951. * S<bool> Set case light on/off
  8952. *
  8953. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8954. *
  8955. * M355 P200 S0 turns off the light & sets the brightness level
  8956. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8957. */
  8958. inline void gcode_M355() {
  8959. #if HAS_CASE_LIGHT
  8960. uint8_t args = 0;
  8961. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8962. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8963. if (args) update_case_light();
  8964. // always report case light status
  8965. SERIAL_ECHO_START();
  8966. if (!case_light_on) {
  8967. SERIAL_ECHOLN("Case light: off");
  8968. }
  8969. else {
  8970. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8971. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  8972. }
  8973. #else
  8974. SERIAL_ERROR_START();
  8975. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8976. #endif // HAS_CASE_LIGHT
  8977. }
  8978. #if ENABLED(MIXING_EXTRUDER)
  8979. /**
  8980. * M163: Set a single mix factor for a mixing extruder
  8981. * This is called "weight" by some systems.
  8982. *
  8983. * S[index] The channel index to set
  8984. * P[float] The mix value
  8985. *
  8986. */
  8987. inline void gcode_M163() {
  8988. const int mix_index = parser.intval('S');
  8989. if (mix_index < MIXING_STEPPERS) {
  8990. float mix_value = parser.floatval('P');
  8991. NOLESS(mix_value, 0.0);
  8992. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  8993. }
  8994. }
  8995. #if MIXING_VIRTUAL_TOOLS > 1
  8996. /**
  8997. * M164: Store the current mix factors as a virtual tool.
  8998. *
  8999. * S[index] The virtual tool to store
  9000. *
  9001. */
  9002. inline void gcode_M164() {
  9003. const int tool_index = parser.intval('S');
  9004. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  9005. normalize_mix();
  9006. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9007. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  9008. }
  9009. }
  9010. #endif
  9011. #if ENABLED(DIRECT_MIXING_IN_G1)
  9012. /**
  9013. * M165: Set multiple mix factors for a mixing extruder.
  9014. * Factors that are left out will be set to 0.
  9015. * All factors together must add up to 1.0.
  9016. *
  9017. * A[factor] Mix factor for extruder stepper 1
  9018. * B[factor] Mix factor for extruder stepper 2
  9019. * C[factor] Mix factor for extruder stepper 3
  9020. * D[factor] Mix factor for extruder stepper 4
  9021. * H[factor] Mix factor for extruder stepper 5
  9022. * I[factor] Mix factor for extruder stepper 6
  9023. *
  9024. */
  9025. inline void gcode_M165() { gcode_get_mix(); }
  9026. #endif
  9027. #endif // MIXING_EXTRUDER
  9028. /**
  9029. * M999: Restart after being stopped
  9030. *
  9031. * Default behaviour is to flush the serial buffer and request
  9032. * a resend to the host starting on the last N line received.
  9033. *
  9034. * Sending "M999 S1" will resume printing without flushing the
  9035. * existing command buffer.
  9036. *
  9037. */
  9038. inline void gcode_M999() {
  9039. Running = true;
  9040. lcd_reset_alert_level();
  9041. if (parser.boolval('S')) return;
  9042. // gcode_LastN = Stopped_gcode_LastN;
  9043. FlushSerialRequestResend();
  9044. }
  9045. #if ENABLED(SWITCHING_EXTRUDER)
  9046. #if EXTRUDERS > 3
  9047. #define REQ_ANGLES 4
  9048. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  9049. #else
  9050. #define REQ_ANGLES 2
  9051. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  9052. #endif
  9053. inline void move_extruder_servo(const uint8_t e) {
  9054. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  9055. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  9056. stepper.synchronize();
  9057. #if EXTRUDERS & 1
  9058. if (e < EXTRUDERS - 1)
  9059. #endif
  9060. {
  9061. MOVE_SERVO(_SERVO_NR, angles[e]);
  9062. safe_delay(500);
  9063. }
  9064. }
  9065. #endif // SWITCHING_EXTRUDER
  9066. #if ENABLED(SWITCHING_NOZZLE)
  9067. inline void move_nozzle_servo(const uint8_t e) {
  9068. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  9069. stepper.synchronize();
  9070. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  9071. safe_delay(500);
  9072. }
  9073. #endif
  9074. inline void invalid_extruder_error(const uint8_t e) {
  9075. SERIAL_ECHO_START();
  9076. SERIAL_CHAR('T');
  9077. SERIAL_ECHO_F(e, DEC);
  9078. SERIAL_CHAR(' ');
  9079. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  9080. }
  9081. #if ENABLED(PARKING_EXTRUDER)
  9082. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9083. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9084. #else
  9085. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9086. #endif
  9087. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  9088. switch (extruder_num) {
  9089. case 1: OUT_WRITE(SOL1_PIN, state); break;
  9090. default: OUT_WRITE(SOL0_PIN, state); break;
  9091. }
  9092. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  9093. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  9094. #endif
  9095. }
  9096. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  9097. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  9098. #endif // PARKING_EXTRUDER
  9099. #if HAS_FANMUX
  9100. void fanmux_switch(const uint8_t e) {
  9101. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  9102. #if PIN_EXISTS(FANMUX1)
  9103. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  9104. #if PIN_EXISTS(FANMUX2)
  9105. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  9106. #endif
  9107. #endif
  9108. }
  9109. FORCE_INLINE void fanmux_init(void) {
  9110. SET_OUTPUT(FANMUX0_PIN);
  9111. #if PIN_EXISTS(FANMUX1)
  9112. SET_OUTPUT(FANMUX1_PIN);
  9113. #if PIN_EXISTS(FANMUX2)
  9114. SET_OUTPUT(FANMUX2_PIN);
  9115. #endif
  9116. #endif
  9117. fanmux_switch(0);
  9118. }
  9119. #endif // HAS_FANMUX
  9120. /**
  9121. * Perform a tool-change, which may result in moving the
  9122. * previous tool out of the way and the new tool into place.
  9123. */
  9124. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  9125. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9126. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  9127. return invalid_extruder_error(tmp_extruder);
  9128. // T0-Tnnn: Switch virtual tool by changing the mix
  9129. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  9130. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  9131. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9132. if (tmp_extruder >= EXTRUDERS)
  9133. return invalid_extruder_error(tmp_extruder);
  9134. #if HOTENDS > 1
  9135. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  9136. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  9137. if (tmp_extruder != active_extruder) {
  9138. if (!no_move && axis_unhomed_error()) {
  9139. no_move = true;
  9140. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9141. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  9142. #endif
  9143. }
  9144. // Save current position to destination, for use later
  9145. set_destination_from_current();
  9146. #if ENABLED(DUAL_X_CARRIAGE)
  9147. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9148. if (DEBUGGING(LEVELING)) {
  9149. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  9150. switch (dual_x_carriage_mode) {
  9151. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  9152. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  9153. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  9154. }
  9155. }
  9156. #endif
  9157. const float xhome = x_home_pos(active_extruder);
  9158. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  9159. && IsRunning()
  9160. && (delayed_move_time || current_position[X_AXIS] != xhome)
  9161. ) {
  9162. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  9163. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9164. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  9165. #endif
  9166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9167. if (DEBUGGING(LEVELING)) {
  9168. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  9169. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  9170. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  9171. }
  9172. #endif
  9173. // Park old head: 1) raise 2) move to park position 3) lower
  9174. for (uint8_t i = 0; i < 3; i++)
  9175. planner.buffer_line(
  9176. i == 0 ? current_position[X_AXIS] : xhome,
  9177. current_position[Y_AXIS],
  9178. i == 2 ? current_position[Z_AXIS] : raised_z,
  9179. current_position[E_AXIS],
  9180. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  9181. active_extruder
  9182. );
  9183. stepper.synchronize();
  9184. }
  9185. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  9186. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  9187. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9188. // Activate the new extruder ahead of calling set_axis_is_at_home!
  9189. active_extruder = tmp_extruder;
  9190. // This function resets the max/min values - the current position may be overwritten below.
  9191. set_axis_is_at_home(X_AXIS);
  9192. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9193. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  9194. #endif
  9195. // Only when auto-parking are carriages safe to move
  9196. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  9197. switch (dual_x_carriage_mode) {
  9198. case DXC_FULL_CONTROL_MODE:
  9199. // New current position is the position of the activated extruder
  9200. current_position[X_AXIS] = inactive_extruder_x_pos;
  9201. // Save the inactive extruder's position (from the old current_position)
  9202. inactive_extruder_x_pos = destination[X_AXIS];
  9203. break;
  9204. case DXC_AUTO_PARK_MODE:
  9205. // record raised toolhead position for use by unpark
  9206. COPY(raised_parked_position, current_position);
  9207. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  9208. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9209. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9210. #endif
  9211. active_extruder_parked = true;
  9212. delayed_move_time = 0;
  9213. break;
  9214. case DXC_DUPLICATION_MODE:
  9215. // If the new extruder is the left one, set it "parked"
  9216. // This triggers the second extruder to move into the duplication position
  9217. active_extruder_parked = (active_extruder == 0);
  9218. if (active_extruder_parked)
  9219. current_position[X_AXIS] = inactive_extruder_x_pos;
  9220. else
  9221. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  9222. inactive_extruder_x_pos = destination[X_AXIS];
  9223. extruder_duplication_enabled = false;
  9224. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9225. if (DEBUGGING(LEVELING)) {
  9226. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  9227. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  9228. }
  9229. #endif
  9230. break;
  9231. }
  9232. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9233. if (DEBUGGING(LEVELING)) {
  9234. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  9235. DEBUG_POS("New extruder (parked)", current_position);
  9236. }
  9237. #endif
  9238. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  9239. #else // !DUAL_X_CARRIAGE
  9240. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  9241. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9242. float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  9243. if (!no_move) {
  9244. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  9245. midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder],
  9246. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  9247. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  9248. /**
  9249. * Steps:
  9250. * 1. Raise Z-Axis to give enough clearance
  9251. * 2. Move to park position of old extruder
  9252. * 3. Disengage magnetic field, wait for delay
  9253. * 4. Move near new extruder
  9254. * 5. Engage magnetic field for new extruder
  9255. * 6. Move to parking incl. offset of new extruder
  9256. * 7. Lower Z-Axis
  9257. */
  9258. // STEP 1
  9259. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9260. SERIAL_ECHOLNPGM("Starting Autopark");
  9261. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  9262. #endif
  9263. current_position[Z_AXIS] += z_raise;
  9264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9265. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  9266. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  9267. #endif
  9268. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9269. stepper.synchronize();
  9270. // STEP 2
  9271. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  9272. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9273. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  9274. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  9275. #endif
  9276. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9277. stepper.synchronize();
  9278. // STEP 3
  9279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9280. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  9281. #endif
  9282. pe_deactivate_magnet(active_extruder);
  9283. // STEP 4
  9284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9285. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  9286. #endif
  9287. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  9288. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9289. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  9290. #endif
  9291. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9292. stepper.synchronize();
  9293. // STEP 5
  9294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9295. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  9296. #endif
  9297. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9298. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  9299. #endif
  9300. pe_activate_magnet(tmp_extruder);
  9301. // STEP 6
  9302. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  9303. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9304. current_position[X_AXIS] = grabpos;
  9305. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9306. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  9307. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  9308. #endif
  9309. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  9310. stepper.synchronize();
  9311. // Step 7
  9312. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  9313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9314. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  9315. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  9316. #endif
  9317. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9318. stepper.synchronize();
  9319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9320. SERIAL_ECHOLNPGM("Autopark done.");
  9321. #endif
  9322. }
  9323. else { // nomove == true
  9324. // Only engage magnetic field for new extruder
  9325. pe_activate_magnet(tmp_extruder);
  9326. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9327. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  9328. #endif
  9329. }
  9330. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  9331. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9332. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  9333. #endif
  9334. #endif // dualParking extruder
  9335. #if ENABLED(SWITCHING_NOZZLE)
  9336. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  9337. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  9338. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  9339. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  9340. // Always raise by some amount (destination copied from current_position earlier)
  9341. current_position[Z_AXIS] += z_raise;
  9342. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9343. move_nozzle_servo(tmp_extruder);
  9344. #endif
  9345. /**
  9346. * Set current_position to the position of the new nozzle.
  9347. * Offsets are based on linear distance, so we need to get
  9348. * the resulting position in coordinate space.
  9349. *
  9350. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  9351. * - With mesh leveling, update Z for the new position
  9352. * - Otherwise, just use the raw linear distance
  9353. *
  9354. * Software endstops are altered here too. Consider a case where:
  9355. * E0 at X=0 ... E1 at X=10
  9356. * When we switch to E1 now X=10, but E1 can't move left.
  9357. * To express this we apply the change in XY to the software endstops.
  9358. * E1 can move farther right than E0, so the right limit is extended.
  9359. *
  9360. * Note that we don't adjust the Z software endstops. Why not?
  9361. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  9362. * because the bed is 1mm lower at the new position. As long as
  9363. * the first nozzle is out of the way, the carriage should be
  9364. * allowed to move 1mm lower. This technically "breaks" the
  9365. * Z software endstop. But this is technically correct (and
  9366. * there is no viable alternative).
  9367. */
  9368. #if ABL_PLANAR
  9369. // Offset extruder, make sure to apply the bed level rotation matrix
  9370. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  9371. hotend_offset[Y_AXIS][tmp_extruder],
  9372. 0),
  9373. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  9374. hotend_offset[Y_AXIS][active_extruder],
  9375. 0),
  9376. offset_vec = tmp_offset_vec - act_offset_vec;
  9377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9378. if (DEBUGGING(LEVELING)) {
  9379. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  9380. act_offset_vec.debug(PSTR("act_offset_vec"));
  9381. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  9382. }
  9383. #endif
  9384. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  9385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9386. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  9387. #endif
  9388. // Adjustments to the current position
  9389. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9390. current_position[Z_AXIS] += offset_vec.z;
  9391. #else // !ABL_PLANAR
  9392. const float xydiff[2] = {
  9393. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9394. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9395. };
  9396. #if ENABLED(MESH_BED_LEVELING)
  9397. if (planner.leveling_active) {
  9398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9399. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9400. #endif
  9401. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9402. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9403. z1 = current_position[Z_AXIS], z2 = z1;
  9404. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9405. planner.apply_leveling(x2, y2, z2);
  9406. current_position[Z_AXIS] += z2 - z1;
  9407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9408. if (DEBUGGING(LEVELING))
  9409. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9410. #endif
  9411. }
  9412. #endif // MESH_BED_LEVELING
  9413. #endif // !HAS_ABL
  9414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9415. if (DEBUGGING(LEVELING)) {
  9416. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9417. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9418. SERIAL_ECHOLNPGM(" }");
  9419. }
  9420. #endif
  9421. // The newly-selected extruder XY is actually at...
  9422. current_position[X_AXIS] += xydiff[X_AXIS];
  9423. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9424. // Set the new active extruder
  9425. active_extruder = tmp_extruder;
  9426. #endif // !DUAL_X_CARRIAGE
  9427. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9428. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9429. #endif
  9430. // Tell the planner the new "current position"
  9431. SYNC_PLAN_POSITION_KINEMATIC();
  9432. // Move to the "old position" (move the extruder into place)
  9433. #if ENABLED(SWITCHING_NOZZLE)
  9434. destination[Z_AXIS] += z_diff; // Include the Z restore with the "move back"
  9435. #endif
  9436. if (!no_move && IsRunning()) {
  9437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9438. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9439. #endif
  9440. // Move back to the original (or tweaked) position
  9441. do_blocking_move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS]);
  9442. }
  9443. #if ENABLED(SWITCHING_NOZZLE)
  9444. else {
  9445. // Move back down. (Including when the new tool is higher.)
  9446. do_blocking_move_to_z(destination[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS]);
  9447. }
  9448. #endif
  9449. } // (tmp_extruder != active_extruder)
  9450. stepper.synchronize();
  9451. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9452. disable_all_solenoids();
  9453. enable_solenoid_on_active_extruder();
  9454. #endif // EXT_SOLENOID
  9455. feedrate_mm_s = old_feedrate_mm_s;
  9456. #else // HOTENDS <= 1
  9457. UNUSED(fr_mm_s);
  9458. UNUSED(no_move);
  9459. #if ENABLED(MK2_MULTIPLEXER)
  9460. if (tmp_extruder >= E_STEPPERS)
  9461. return invalid_extruder_error(tmp_extruder);
  9462. select_multiplexed_stepper(tmp_extruder);
  9463. #endif
  9464. // Set the new active extruder
  9465. active_extruder = tmp_extruder;
  9466. #endif // HOTENDS <= 1
  9467. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9468. stepper.synchronize();
  9469. move_extruder_servo(active_extruder);
  9470. #endif
  9471. #if HAS_FANMUX
  9472. fanmux_switch(active_extruder);
  9473. #endif
  9474. SERIAL_ECHO_START();
  9475. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9476. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9477. }
  9478. /**
  9479. * T0-T3: Switch tool, usually switching extruders
  9480. *
  9481. * F[units/min] Set the movement feedrate
  9482. * S1 Don't move the tool in XY after change
  9483. */
  9484. inline void gcode_T(const uint8_t tmp_extruder) {
  9485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9486. if (DEBUGGING(LEVELING)) {
  9487. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9488. SERIAL_CHAR(')');
  9489. SERIAL_EOL();
  9490. DEBUG_POS("BEFORE", current_position);
  9491. }
  9492. #endif
  9493. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9494. tool_change(tmp_extruder);
  9495. #elif HOTENDS > 1
  9496. tool_change(
  9497. tmp_extruder,
  9498. MMM_TO_MMS(parser.linearval('F')),
  9499. (tmp_extruder == active_extruder) || parser.boolval('S')
  9500. );
  9501. #endif
  9502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9503. if (DEBUGGING(LEVELING)) {
  9504. DEBUG_POS("AFTER", current_position);
  9505. SERIAL_ECHOLNPGM("<<< gcode_T");
  9506. }
  9507. #endif
  9508. }
  9509. /**
  9510. * Process the parsed command and dispatch it to its handler
  9511. */
  9512. void process_parsed_command() {
  9513. KEEPALIVE_STATE(IN_HANDLER);
  9514. // Handle a known G, M, or T
  9515. switch (parser.command_letter) {
  9516. case 'G': switch (parser.codenum) {
  9517. // G0, G1
  9518. case 0:
  9519. case 1:
  9520. #if IS_SCARA
  9521. gcode_G0_G1(parser.codenum == 0);
  9522. #else
  9523. gcode_G0_G1();
  9524. #endif
  9525. break;
  9526. // G2, G3
  9527. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9528. case 2: // G2: CW ARC
  9529. case 3: // G3: CCW ARC
  9530. gcode_G2_G3(parser.codenum == 2);
  9531. break;
  9532. #endif
  9533. // G4 Dwell
  9534. case 4:
  9535. gcode_G4();
  9536. break;
  9537. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9538. case 5: // G5: Cubic B_spline
  9539. gcode_G5();
  9540. break;
  9541. #endif // BEZIER_CURVE_SUPPORT
  9542. #if ENABLED(FWRETRACT)
  9543. case 10: // G10: retract
  9544. gcode_G10();
  9545. break;
  9546. case 11: // G11: retract_recover
  9547. gcode_G11();
  9548. break;
  9549. #endif // FWRETRACT
  9550. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9551. case 12:
  9552. gcode_G12(); // G12: Nozzle Clean
  9553. break;
  9554. #endif // NOZZLE_CLEAN_FEATURE
  9555. #if ENABLED(CNC_WORKSPACE_PLANES)
  9556. case 17: // G17: Select Plane XY
  9557. gcode_G17();
  9558. break;
  9559. case 18: // G18: Select Plane ZX
  9560. gcode_G18();
  9561. break;
  9562. case 19: // G19: Select Plane YZ
  9563. gcode_G19();
  9564. break;
  9565. #endif // CNC_WORKSPACE_PLANES
  9566. #if ENABLED(INCH_MODE_SUPPORT)
  9567. case 20: // G20: Inch Mode
  9568. gcode_G20();
  9569. break;
  9570. case 21: // G21: MM Mode
  9571. gcode_G21();
  9572. break;
  9573. #endif // INCH_MODE_SUPPORT
  9574. #if ENABLED(G26_MESH_VALIDATION)
  9575. case 26: // G26: Mesh Validation Pattern generation
  9576. gcode_G26();
  9577. break;
  9578. #endif // G26_MESH_VALIDATION
  9579. #if ENABLED(NOZZLE_PARK_FEATURE)
  9580. case 27: // G27: Nozzle Park
  9581. gcode_G27();
  9582. break;
  9583. #endif // NOZZLE_PARK_FEATURE
  9584. case 28: // G28: Home all axes, one at a time
  9585. gcode_G28(false);
  9586. break;
  9587. #if HAS_LEVELING
  9588. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9589. // or provides access to the UBL System if enabled.
  9590. gcode_G29();
  9591. break;
  9592. #endif // HAS_LEVELING
  9593. #if HAS_BED_PROBE
  9594. case 30: // G30 Single Z probe
  9595. gcode_G30();
  9596. break;
  9597. #if ENABLED(Z_PROBE_SLED)
  9598. case 31: // G31: dock the sled
  9599. gcode_G31();
  9600. break;
  9601. case 32: // G32: undock the sled
  9602. gcode_G32();
  9603. break;
  9604. #endif // Z_PROBE_SLED
  9605. #endif // HAS_BED_PROBE
  9606. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9607. case 33: // G33: Delta Auto-Calibration
  9608. gcode_G33();
  9609. break;
  9610. #endif // DELTA_AUTO_CALIBRATION
  9611. #if ENABLED(G38_PROBE_TARGET)
  9612. case 38: // G38.2 & G38.3
  9613. if (parser.subcode == 2 || parser.subcode == 3)
  9614. gcode_G38(parser.subcode == 2);
  9615. break;
  9616. #endif
  9617. case 90: // G90
  9618. relative_mode = false;
  9619. break;
  9620. case 91: // G91
  9621. relative_mode = true;
  9622. break;
  9623. case 92: // G92
  9624. gcode_G92();
  9625. break;
  9626. #if HAS_MESH
  9627. case 42:
  9628. gcode_G42();
  9629. break;
  9630. #endif
  9631. #if ENABLED(DEBUG_GCODE_PARSER)
  9632. case 800:
  9633. parser.debug(); // GCode Parser Test for G
  9634. break;
  9635. #endif
  9636. }
  9637. break;
  9638. case 'M': switch (parser.codenum) {
  9639. #if HAS_RESUME_CONTINUE
  9640. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9641. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9642. gcode_M0_M1();
  9643. break;
  9644. #endif // ULTIPANEL
  9645. #if ENABLED(SPINDLE_LASER_ENABLE)
  9646. case 3:
  9647. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9648. break; // synchronizes with movement commands
  9649. case 4:
  9650. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9651. break; // synchronizes with movement commands
  9652. case 5:
  9653. gcode_M5(); // M5 - turn spindle/laser off
  9654. break; // synchronizes with movement commands
  9655. #endif
  9656. case 17: // M17: Enable all stepper motors
  9657. gcode_M17();
  9658. break;
  9659. #if ENABLED(SDSUPPORT)
  9660. case 20: // M20: list SD card
  9661. gcode_M20(); break;
  9662. case 21: // M21: init SD card
  9663. gcode_M21(); break;
  9664. case 22: // M22: release SD card
  9665. gcode_M22(); break;
  9666. case 23: // M23: Select file
  9667. gcode_M23(); break;
  9668. case 24: // M24: Start SD print
  9669. gcode_M24(); break;
  9670. case 25: // M25: Pause SD print
  9671. gcode_M25(); break;
  9672. case 26: // M26: Set SD index
  9673. gcode_M26(); break;
  9674. case 27: // M27: Get SD status
  9675. gcode_M27(); break;
  9676. case 28: // M28: Start SD write
  9677. gcode_M28(); break;
  9678. case 29: // M29: Stop SD write
  9679. gcode_M29(); break;
  9680. case 30: // M30 <filename> Delete File
  9681. gcode_M30(); break;
  9682. case 32: // M32: Select file and start SD print
  9683. gcode_M32(); break;
  9684. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9685. case 33: // M33: Get the long full path to a file or folder
  9686. gcode_M33(); break;
  9687. #endif
  9688. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9689. case 34: // M34: Set SD card sorting options
  9690. gcode_M34(); break;
  9691. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9692. case 928: // M928: Start SD write
  9693. gcode_M928(); break;
  9694. #endif // SDSUPPORT
  9695. case 31: // M31: Report time since the start of SD print or last M109
  9696. gcode_M31(); break;
  9697. case 42: // M42: Change pin state
  9698. gcode_M42(); break;
  9699. #if ENABLED(PINS_DEBUGGING)
  9700. case 43: // M43: Read pin state
  9701. gcode_M43(); break;
  9702. #endif
  9703. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9704. case 48: // M48: Z probe repeatability test
  9705. gcode_M48();
  9706. break;
  9707. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9708. #if ENABLED(G26_MESH_VALIDATION)
  9709. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9710. gcode_M49();
  9711. break;
  9712. #endif // G26_MESH_VALIDATION
  9713. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  9714. case 73: // M73: Set print progress percentage
  9715. gcode_M73(); break;
  9716. #endif
  9717. case 75: // M75: Start print timer
  9718. gcode_M75(); break;
  9719. case 76: // M76: Pause print timer
  9720. gcode_M76(); break;
  9721. case 77: // M77: Stop print timer
  9722. gcode_M77(); break;
  9723. #if ENABLED(PRINTCOUNTER)
  9724. case 78: // M78: Show print statistics
  9725. gcode_M78(); break;
  9726. #endif
  9727. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9728. case 100: // M100: Free Memory Report
  9729. gcode_M100();
  9730. break;
  9731. #endif
  9732. case 104: // M104: Set hot end temperature
  9733. gcode_M104();
  9734. break;
  9735. case 110: // M110: Set Current Line Number
  9736. gcode_M110();
  9737. break;
  9738. case 111: // M111: Set debug level
  9739. gcode_M111();
  9740. break;
  9741. #if DISABLED(EMERGENCY_PARSER)
  9742. case 108: // M108: Cancel Waiting
  9743. gcode_M108();
  9744. break;
  9745. case 112: // M112: Emergency Stop
  9746. gcode_M112();
  9747. break;
  9748. case 410: // M410 quickstop - Abort all the planned moves.
  9749. gcode_M410();
  9750. break;
  9751. #endif
  9752. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9753. case 113: // M113: Set Host Keepalive interval
  9754. gcode_M113();
  9755. break;
  9756. #endif
  9757. case 140: // M140: Set bed temperature
  9758. gcode_M140();
  9759. break;
  9760. case 105: // M105: Report current temperature
  9761. gcode_M105();
  9762. KEEPALIVE_STATE(NOT_BUSY);
  9763. return; // "ok" already printed
  9764. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9765. case 155: // M155: Set temperature auto-report interval
  9766. gcode_M155();
  9767. break;
  9768. #endif
  9769. case 109: // M109: Wait for hotend temperature to reach target
  9770. gcode_M109();
  9771. break;
  9772. #if HAS_TEMP_BED
  9773. case 190: // M190: Wait for bed temperature to reach target
  9774. gcode_M190();
  9775. break;
  9776. #endif // HAS_TEMP_BED
  9777. #if FAN_COUNT > 0
  9778. case 106: // M106: Fan On
  9779. gcode_M106();
  9780. break;
  9781. case 107: // M107: Fan Off
  9782. gcode_M107();
  9783. break;
  9784. #endif // FAN_COUNT > 0
  9785. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9786. case 125: // M125: Store current position and move to filament change position
  9787. gcode_M125(); break;
  9788. #endif
  9789. #if ENABLED(BARICUDA)
  9790. // PWM for HEATER_1_PIN
  9791. #if HAS_HEATER_1
  9792. case 126: // M126: valve open
  9793. gcode_M126();
  9794. break;
  9795. case 127: // M127: valve closed
  9796. gcode_M127();
  9797. break;
  9798. #endif // HAS_HEATER_1
  9799. // PWM for HEATER_2_PIN
  9800. #if HAS_HEATER_2
  9801. case 128: // M128: valve open
  9802. gcode_M128();
  9803. break;
  9804. case 129: // M129: valve closed
  9805. gcode_M129();
  9806. break;
  9807. #endif // HAS_HEATER_2
  9808. #endif // BARICUDA
  9809. #if HAS_POWER_SWITCH
  9810. case 80: // M80: Turn on Power Supply
  9811. gcode_M80();
  9812. break;
  9813. #endif // HAS_POWER_SWITCH
  9814. case 81: // M81: Turn off Power, including Power Supply, if possible
  9815. gcode_M81();
  9816. break;
  9817. case 82: // M82: Set E axis normal mode (same as other axes)
  9818. gcode_M82();
  9819. break;
  9820. case 83: // M83: Set E axis relative mode
  9821. gcode_M83();
  9822. break;
  9823. case 18: // M18 => M84
  9824. case 84: // M84: Disable all steppers or set timeout
  9825. gcode_M18_M84();
  9826. break;
  9827. case 85: // M85: Set inactivity stepper shutdown timeout
  9828. gcode_M85();
  9829. break;
  9830. case 92: // M92: Set the steps-per-unit for one or more axes
  9831. gcode_M92();
  9832. break;
  9833. case 114: // M114: Report current position
  9834. gcode_M114();
  9835. break;
  9836. case 115: // M115: Report capabilities
  9837. gcode_M115();
  9838. break;
  9839. case 117: // M117: Set LCD message text, if possible
  9840. gcode_M117();
  9841. break;
  9842. case 118: // M118: Display a message in the host console
  9843. gcode_M118();
  9844. break;
  9845. case 119: // M119: Report endstop states
  9846. gcode_M119();
  9847. break;
  9848. case 120: // M120: Enable endstops
  9849. gcode_M120();
  9850. break;
  9851. case 121: // M121: Disable endstops
  9852. gcode_M121();
  9853. break;
  9854. #if ENABLED(ULTIPANEL)
  9855. case 145: // M145: Set material heatup parameters
  9856. gcode_M145();
  9857. break;
  9858. #endif
  9859. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9860. case 149: // M149: Set temperature units
  9861. gcode_M149();
  9862. break;
  9863. #endif
  9864. #if HAS_COLOR_LEDS
  9865. case 150: // M150: Set Status LED Color
  9866. gcode_M150();
  9867. break;
  9868. #endif // HAS_COLOR_LEDS
  9869. #if ENABLED(MIXING_EXTRUDER)
  9870. case 163: // M163: Set a component weight for mixing extruder
  9871. gcode_M163();
  9872. break;
  9873. #if MIXING_VIRTUAL_TOOLS > 1
  9874. case 164: // M164: Save current mix as a virtual extruder
  9875. gcode_M164();
  9876. break;
  9877. #endif
  9878. #if ENABLED(DIRECT_MIXING_IN_G1)
  9879. case 165: // M165: Set multiple mix weights
  9880. gcode_M165();
  9881. break;
  9882. #endif
  9883. #endif
  9884. case 200: // M200: Set filament diameter, E to cubic units
  9885. gcode_M200();
  9886. break;
  9887. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9888. gcode_M201();
  9889. break;
  9890. #if 0 // Not used for Sprinter/grbl gen6
  9891. case 202: // M202
  9892. gcode_M202();
  9893. break;
  9894. #endif
  9895. case 203: // M203: Set max feedrate (units/sec)
  9896. gcode_M203();
  9897. break;
  9898. case 204: // M204: Set acceleration
  9899. gcode_M204();
  9900. break;
  9901. case 205: // M205: Set advanced settings
  9902. gcode_M205();
  9903. break;
  9904. #if HAS_M206_COMMAND
  9905. case 206: // M206: Set home offsets
  9906. gcode_M206();
  9907. break;
  9908. #endif
  9909. #if ENABLED(DELTA)
  9910. case 665: // M665: Set delta configurations
  9911. gcode_M665();
  9912. break;
  9913. #endif
  9914. #if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  9915. case 666: // M666: Set delta or dual endstop adjustment
  9916. gcode_M666();
  9917. break;
  9918. #endif
  9919. #if ENABLED(FWRETRACT)
  9920. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9921. gcode_M207();
  9922. break;
  9923. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9924. gcode_M208();
  9925. break;
  9926. case 209: // M209: Turn Automatic Retract Detection on/off
  9927. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9928. break;
  9929. #endif // FWRETRACT
  9930. case 211: // M211: Enable, Disable, and/or Report software endstops
  9931. gcode_M211();
  9932. break;
  9933. #if HOTENDS > 1
  9934. case 218: // M218: Set a tool offset
  9935. gcode_M218();
  9936. break;
  9937. #endif // HOTENDS > 1
  9938. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9939. gcode_M220();
  9940. break;
  9941. case 221: // M221: Set Flow Percentage
  9942. gcode_M221();
  9943. break;
  9944. case 226: // M226: Wait until a pin reaches a state
  9945. gcode_M226();
  9946. break;
  9947. #if HAS_SERVOS
  9948. case 280: // M280: Set servo position absolute
  9949. gcode_M280();
  9950. break;
  9951. #endif // HAS_SERVOS
  9952. #if ENABLED(BABYSTEPPING)
  9953. case 290: // M290: Babystepping
  9954. gcode_M290();
  9955. break;
  9956. #endif // BABYSTEPPING
  9957. #if HAS_BUZZER
  9958. case 300: // M300: Play beep tone
  9959. gcode_M300();
  9960. break;
  9961. #endif // HAS_BUZZER
  9962. #if ENABLED(PIDTEMP)
  9963. case 301: // M301: Set hotend PID parameters
  9964. gcode_M301();
  9965. break;
  9966. #endif // PIDTEMP
  9967. #if ENABLED(PIDTEMPBED)
  9968. case 304: // M304: Set bed PID parameters
  9969. gcode_M304();
  9970. break;
  9971. #endif // PIDTEMPBED
  9972. #if defined(CHDK) || HAS_PHOTOGRAPH
  9973. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9974. gcode_M240();
  9975. break;
  9976. #endif // CHDK || PHOTOGRAPH_PIN
  9977. #if HAS_LCD_CONTRAST
  9978. case 250: // M250: Set LCD contrast
  9979. gcode_M250();
  9980. break;
  9981. #endif // HAS_LCD_CONTRAST
  9982. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9983. case 260: // M260: Send data to an i2c slave
  9984. gcode_M260();
  9985. break;
  9986. case 261: // M261: Request data from an i2c slave
  9987. gcode_M261();
  9988. break;
  9989. #endif // EXPERIMENTAL_I2CBUS
  9990. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9991. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  9992. gcode_M302();
  9993. break;
  9994. #endif // PREVENT_COLD_EXTRUSION
  9995. case 303: // M303: PID autotune
  9996. gcode_M303();
  9997. break;
  9998. #if ENABLED(MORGAN_SCARA)
  9999. case 360: // M360: SCARA Theta pos1
  10000. if (gcode_M360()) return;
  10001. break;
  10002. case 361: // M361: SCARA Theta pos2
  10003. if (gcode_M361()) return;
  10004. break;
  10005. case 362: // M362: SCARA Psi pos1
  10006. if (gcode_M362()) return;
  10007. break;
  10008. case 363: // M363: SCARA Psi pos2
  10009. if (gcode_M363()) return;
  10010. break;
  10011. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  10012. if (gcode_M364()) return;
  10013. break;
  10014. #endif // SCARA
  10015. case 400: // M400: Finish all moves
  10016. gcode_M400();
  10017. break;
  10018. #if HAS_BED_PROBE
  10019. case 401: // M401: Deploy probe
  10020. gcode_M401();
  10021. break;
  10022. case 402: // M402: Stow probe
  10023. gcode_M402();
  10024. break;
  10025. #endif // HAS_BED_PROBE
  10026. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  10027. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  10028. gcode_M404();
  10029. break;
  10030. case 405: // M405: Turn on filament sensor for control
  10031. gcode_M405();
  10032. break;
  10033. case 406: // M406: Turn off filament sensor for control
  10034. gcode_M406();
  10035. break;
  10036. case 407: // M407: Display measured filament diameter
  10037. gcode_M407();
  10038. break;
  10039. #endif // FILAMENT_WIDTH_SENSOR
  10040. #if HAS_LEVELING
  10041. case 420: // M420: Enable/Disable Bed Leveling
  10042. gcode_M420();
  10043. break;
  10044. #endif
  10045. #if HAS_MESH
  10046. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  10047. gcode_M421();
  10048. break;
  10049. #endif
  10050. #if HAS_M206_COMMAND
  10051. case 428: // M428: Apply current_position to home_offset
  10052. gcode_M428();
  10053. break;
  10054. #endif
  10055. case 500: // M500: Store settings in EEPROM
  10056. gcode_M500();
  10057. break;
  10058. case 501: // M501: Read settings from EEPROM
  10059. gcode_M501();
  10060. break;
  10061. case 502: // M502: Revert to default settings
  10062. gcode_M502();
  10063. break;
  10064. #if DISABLED(DISABLE_M503)
  10065. case 503: // M503: print settings currently in memory
  10066. gcode_M503();
  10067. break;
  10068. #endif
  10069. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  10070. case 540: // M540: Set abort on endstop hit for SD printing
  10071. gcode_M540();
  10072. break;
  10073. #endif
  10074. #if HAS_BED_PROBE
  10075. case 851: // M851: Set Z Probe Z Offset
  10076. gcode_M851();
  10077. break;
  10078. #endif // HAS_BED_PROBE
  10079. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10080. case 600: // M600: Pause for filament change
  10081. gcode_M600();
  10082. break;
  10083. #endif // ADVANCED_PAUSE_FEATURE
  10084. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  10085. case 605: // M605: Set Dual X Carriage movement mode
  10086. gcode_M605();
  10087. break;
  10088. #endif // DUAL_X_CARRIAGE
  10089. #if ENABLED(MK2_MULTIPLEXER)
  10090. case 702: // M702: Unload all extruders
  10091. gcode_M702();
  10092. break;
  10093. #endif
  10094. #if ENABLED(LIN_ADVANCE)
  10095. case 900: // M900: Set advance K factor.
  10096. gcode_M900();
  10097. break;
  10098. #endif
  10099. #if ENABLED(HAVE_TMC2130)
  10100. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  10101. gcode_M906();
  10102. break;
  10103. #endif
  10104. case 907: // M907: Set digital trimpot motor current using axis codes.
  10105. gcode_M907();
  10106. break;
  10107. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  10108. case 908: // M908: Control digital trimpot directly.
  10109. gcode_M908();
  10110. break;
  10111. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  10112. case 909: // M909: Print digipot/DAC current value
  10113. gcode_M909();
  10114. break;
  10115. case 910: // M910: Commit digipot/DAC value to external EEPROM
  10116. gcode_M910();
  10117. break;
  10118. #endif
  10119. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  10120. #if ENABLED(HAVE_TMC2130)
  10121. case 911: // M911: Report TMC2130 prewarn triggered flags
  10122. gcode_M911();
  10123. break;
  10124. case 912: // M911: Clear TMC2130 prewarn triggered flags
  10125. gcode_M912();
  10126. break;
  10127. #if ENABLED(HYBRID_THRESHOLD)
  10128. case 913: // M913: Set HYBRID_THRESHOLD speed.
  10129. gcode_M913();
  10130. break;
  10131. #endif
  10132. #if ENABLED(SENSORLESS_HOMING)
  10133. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  10134. gcode_M914();
  10135. break;
  10136. #endif
  10137. #endif
  10138. #if HAS_MICROSTEPS
  10139. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  10140. gcode_M350();
  10141. break;
  10142. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  10143. gcode_M351();
  10144. break;
  10145. #endif // HAS_MICROSTEPS
  10146. case 355: // M355 set case light brightness
  10147. gcode_M355();
  10148. break;
  10149. #if ENABLED(DEBUG_GCODE_PARSER)
  10150. case 800:
  10151. parser.debug(); // GCode Parser Test for M
  10152. break;
  10153. #endif
  10154. #if ENABLED(I2C_POSITION_ENCODERS)
  10155. case 860: // M860 Report encoder module position
  10156. gcode_M860();
  10157. break;
  10158. case 861: // M861 Report encoder module status
  10159. gcode_M861();
  10160. break;
  10161. case 862: // M862 Perform axis test
  10162. gcode_M862();
  10163. break;
  10164. case 863: // M863 Calibrate steps/mm
  10165. gcode_M863();
  10166. break;
  10167. case 864: // M864 Change module address
  10168. gcode_M864();
  10169. break;
  10170. case 865: // M865 Check module firmware version
  10171. gcode_M865();
  10172. break;
  10173. case 866: // M866 Report axis error count
  10174. gcode_M866();
  10175. break;
  10176. case 867: // M867 Toggle error correction
  10177. gcode_M867();
  10178. break;
  10179. case 868: // M868 Set error correction threshold
  10180. gcode_M868();
  10181. break;
  10182. case 869: // M869 Report axis error
  10183. gcode_M869();
  10184. break;
  10185. #endif // I2C_POSITION_ENCODERS
  10186. case 999: // M999: Restart after being Stopped
  10187. gcode_M999();
  10188. break;
  10189. }
  10190. break;
  10191. case 'T':
  10192. gcode_T(parser.codenum);
  10193. break;
  10194. default: parser.unknown_command_error();
  10195. }
  10196. KEEPALIVE_STATE(NOT_BUSY);
  10197. ok_to_send();
  10198. }
  10199. void process_next_command() {
  10200. char * const current_command = command_queue[cmd_queue_index_r];
  10201. if (DEBUGGING(ECHO)) {
  10202. SERIAL_ECHO_START();
  10203. SERIAL_ECHOLN(current_command);
  10204. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  10205. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  10206. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  10207. #endif
  10208. }
  10209. // Parse the next command in the queue
  10210. parser.parse(current_command);
  10211. process_parsed_command();
  10212. }
  10213. /**
  10214. * Send a "Resend: nnn" message to the host to
  10215. * indicate that a command needs to be re-sent.
  10216. */
  10217. void FlushSerialRequestResend() {
  10218. //char command_queue[cmd_queue_index_r][100]="Resend:";
  10219. MYSERIAL.flush();
  10220. SERIAL_PROTOCOLPGM(MSG_RESEND);
  10221. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  10222. ok_to_send();
  10223. }
  10224. /**
  10225. * Send an "ok" message to the host, indicating
  10226. * that a command was successfully processed.
  10227. *
  10228. * If ADVANCED_OK is enabled also include:
  10229. * N<int> Line number of the command, if any
  10230. * P<int> Planner space remaining
  10231. * B<int> Block queue space remaining
  10232. */
  10233. void ok_to_send() {
  10234. refresh_cmd_timeout();
  10235. if (!send_ok[cmd_queue_index_r]) return;
  10236. SERIAL_PROTOCOLPGM(MSG_OK);
  10237. #if ENABLED(ADVANCED_OK)
  10238. char* p = command_queue[cmd_queue_index_r];
  10239. if (*p == 'N') {
  10240. SERIAL_PROTOCOL(' ');
  10241. SERIAL_ECHO(*p++);
  10242. while (NUMERIC_SIGNED(*p))
  10243. SERIAL_ECHO(*p++);
  10244. }
  10245. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  10246. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  10247. #endif
  10248. SERIAL_EOL();
  10249. }
  10250. #if HAS_SOFTWARE_ENDSTOPS
  10251. /**
  10252. * Constrain the given coordinates to the software endstops.
  10253. *
  10254. * For DELTA/SCARA the XY constraint is based on the smallest
  10255. * radius within the set software endstops.
  10256. */
  10257. void clamp_to_software_endstops(float target[XYZ]) {
  10258. if (!soft_endstops_enabled) return;
  10259. #if IS_KINEMATIC
  10260. const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
  10261. if (dist_2 > soft_endstop_radius_2) {
  10262. const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
  10263. target[X_AXIS] *= ratio;
  10264. target[Y_AXIS] *= ratio;
  10265. }
  10266. #else
  10267. #if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  10268. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  10269. #endif
  10270. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  10271. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  10272. #endif
  10273. #if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  10274. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  10275. #endif
  10276. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  10277. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  10278. #endif
  10279. #endif
  10280. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  10281. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  10282. #endif
  10283. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  10284. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  10285. #endif
  10286. }
  10287. #endif
  10288. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10289. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  10290. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  10291. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  10292. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  10293. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  10294. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  10295. #else
  10296. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  10297. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  10298. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  10299. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  10300. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  10301. #endif
  10302. // Get the Z adjustment for non-linear bed leveling
  10303. float bilinear_z_offset(const float raw[XYZ]) {
  10304. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  10305. last_x = -999.999, last_y = -999.999;
  10306. // Whole units for the grid line indices. Constrained within bounds.
  10307. static int8_t gridx, gridy, nextx, nexty,
  10308. last_gridx = -99, last_gridy = -99;
  10309. // XY relative to the probed area
  10310. const float rx = raw[X_AXIS] - bilinear_start[X_AXIS],
  10311. ry = raw[Y_AXIS] - bilinear_start[Y_AXIS];
  10312. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  10313. // Keep using the last grid box
  10314. #define FAR_EDGE_OR_BOX 2
  10315. #else
  10316. // Just use the grid far edge
  10317. #define FAR_EDGE_OR_BOX 1
  10318. #endif
  10319. if (last_x != rx) {
  10320. last_x = rx;
  10321. ratio_x = rx * ABL_BG_FACTOR(X_AXIS);
  10322. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  10323. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  10324. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10325. // Beyond the grid maintain height at grid edges
  10326. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  10327. #endif
  10328. gridx = gx;
  10329. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  10330. }
  10331. if (last_y != ry || last_gridx != gridx) {
  10332. if (last_y != ry) {
  10333. last_y = ry;
  10334. ratio_y = ry * ABL_BG_FACTOR(Y_AXIS);
  10335. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  10336. ratio_y -= gy;
  10337. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10338. // Beyond the grid maintain height at grid edges
  10339. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  10340. #endif
  10341. gridy = gy;
  10342. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  10343. }
  10344. if (last_gridx != gridx || last_gridy != gridy) {
  10345. last_gridx = gridx;
  10346. last_gridy = gridy;
  10347. // Z at the box corners
  10348. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  10349. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  10350. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  10351. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  10352. }
  10353. // Bilinear interpolate. Needed since ry or gridx has changed.
  10354. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  10355. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  10356. D = R - L;
  10357. }
  10358. const float offset = L + ratio_x * D; // the offset almost always changes
  10359. /*
  10360. static float last_offset = 0;
  10361. if (FABS(last_offset - offset) > 0.2) {
  10362. SERIAL_ECHOPGM("Sudden Shift at ");
  10363. SERIAL_ECHOPAIR("x=", rx);
  10364. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  10365. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  10366. SERIAL_ECHOPAIR(" y=", ry);
  10367. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  10368. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  10369. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  10370. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  10371. SERIAL_ECHOPAIR(" z1=", z1);
  10372. SERIAL_ECHOPAIR(" z2=", z2);
  10373. SERIAL_ECHOPAIR(" z3=", z3);
  10374. SERIAL_ECHOLNPAIR(" z4=", z4);
  10375. SERIAL_ECHOPAIR(" L=", L);
  10376. SERIAL_ECHOPAIR(" R=", R);
  10377. SERIAL_ECHOLNPAIR(" offset=", offset);
  10378. }
  10379. last_offset = offset;
  10380. //*/
  10381. return offset;
  10382. }
  10383. #endif // AUTO_BED_LEVELING_BILINEAR
  10384. #if ENABLED(DELTA)
  10385. /**
  10386. * Recalculate factors used for delta kinematics whenever
  10387. * settings have been changed (e.g., by M665).
  10388. */
  10389. void recalc_delta_settings() {
  10390. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  10391. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  10392. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
  10393. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
  10394. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
  10395. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
  10396. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
  10397. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
  10398. delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
  10399. delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
  10400. delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
  10401. update_software_endstops(Z_AXIS);
  10402. axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
  10403. }
  10404. #if ENABLED(DELTA_FAST_SQRT)
  10405. /**
  10406. * Fast inverse sqrt from Quake III Arena
  10407. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10408. */
  10409. float Q_rsqrt(float number) {
  10410. long i;
  10411. float x2, y;
  10412. const float threehalfs = 1.5f;
  10413. x2 = number * 0.5f;
  10414. y = number;
  10415. i = * ( long * ) &y; // evil floating point bit level hacking
  10416. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10417. y = * ( float * ) &i;
  10418. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10419. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10420. return y;
  10421. }
  10422. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  10423. #else
  10424. #define _SQRT(n) SQRT(n)
  10425. #endif
  10426. /**
  10427. * Delta Inverse Kinematics
  10428. *
  10429. * Calculate the tower positions for a given machine
  10430. * position, storing the result in the delta[] array.
  10431. *
  10432. * This is an expensive calculation, requiring 3 square
  10433. * roots per segmented linear move, and strains the limits
  10434. * of a Mega2560 with a Graphical Display.
  10435. *
  10436. * Suggested optimizations include:
  10437. *
  10438. * - Disable the home_offset (M206) and/or position_shift (G92)
  10439. * features to remove up to 12 float additions.
  10440. *
  10441. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10442. * (see above)
  10443. */
  10444. // Macro to obtain the Z position of an individual tower
  10445. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  10446. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  10447. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  10448. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  10449. ) \
  10450. )
  10451. #define DELTA_RAW_IK() do { \
  10452. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  10453. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  10454. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  10455. }while(0)
  10456. #define DELTA_DEBUG() do { \
  10457. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10458. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10459. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10460. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10461. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10462. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10463. }while(0)
  10464. void inverse_kinematics(const float raw[XYZ]) {
  10465. DELTA_RAW_IK();
  10466. // DELTA_DEBUG();
  10467. }
  10468. /**
  10469. * Calculate the highest Z position where the
  10470. * effector has the full range of XY motion.
  10471. */
  10472. float delta_safe_distance_from_top() {
  10473. float cartesian[XYZ] = { 0, 0, 0 };
  10474. inverse_kinematics(cartesian);
  10475. float distance = delta[A_AXIS];
  10476. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  10477. inverse_kinematics(cartesian);
  10478. return FABS(distance - delta[A_AXIS]);
  10479. }
  10480. /**
  10481. * Delta Forward Kinematics
  10482. *
  10483. * See the Wikipedia article "Trilateration"
  10484. * https://en.wikipedia.org/wiki/Trilateration
  10485. *
  10486. * Establish a new coordinate system in the plane of the
  10487. * three carriage points. This system has its origin at
  10488. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10489. * plane with a Z component of zero.
  10490. * We will define unit vectors in this coordinate system
  10491. * in our original coordinate system. Then when we calculate
  10492. * the Xnew, Ynew and Znew values, we can translate back into
  10493. * the original system by moving along those unit vectors
  10494. * by the corresponding values.
  10495. *
  10496. * Variable names matched to Marlin, c-version, and avoid the
  10497. * use of any vector library.
  10498. *
  10499. * by Andreas Hardtung 2016-06-07
  10500. * based on a Java function from "Delta Robot Kinematics V3"
  10501. * by Steve Graves
  10502. *
  10503. * The result is stored in the cartes[] array.
  10504. */
  10505. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10506. // Create a vector in old coordinates along x axis of new coordinate
  10507. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  10508. // Get the Magnitude of vector.
  10509. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  10510. // Create unit vector by dividing by magnitude.
  10511. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  10512. // Get the vector from the origin of the new system to the third point.
  10513. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  10514. // Use the dot product to find the component of this vector on the X axis.
  10515. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  10516. // Create a vector along the x axis that represents the x component of p13.
  10517. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10518. // Subtract the X component from the original vector leaving only Y. We use the
  10519. // variable that will be the unit vector after we scale it.
  10520. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10521. // The magnitude of Y component
  10522. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  10523. // Convert to a unit vector
  10524. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10525. // The cross product of the unit x and y is the unit z
  10526. // float[] ez = vectorCrossProd(ex, ey);
  10527. float ez[3] = {
  10528. ex[1] * ey[2] - ex[2] * ey[1],
  10529. ex[2] * ey[0] - ex[0] * ey[2],
  10530. ex[0] * ey[1] - ex[1] * ey[0]
  10531. };
  10532. // We now have the d, i and j values defined in Wikipedia.
  10533. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10534. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10535. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10536. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10537. // Start from the origin of the old coordinates and add vectors in the
  10538. // old coords that represent the Xnew, Ynew and Znew to find the point
  10539. // in the old system.
  10540. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10541. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10542. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10543. }
  10544. void forward_kinematics_DELTA(float point[ABC]) {
  10545. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10546. }
  10547. #endif // DELTA
  10548. /**
  10549. * Get the stepper positions in the cartes[] array.
  10550. * Forward kinematics are applied for DELTA and SCARA.
  10551. *
  10552. * The result is in the current coordinate space with
  10553. * leveling applied. The coordinates need to be run through
  10554. * unapply_leveling to obtain machine coordinates suitable
  10555. * for current_position, etc.
  10556. */
  10557. void get_cartesian_from_steppers() {
  10558. #if ENABLED(DELTA)
  10559. forward_kinematics_DELTA(
  10560. stepper.get_axis_position_mm(A_AXIS),
  10561. stepper.get_axis_position_mm(B_AXIS),
  10562. stepper.get_axis_position_mm(C_AXIS)
  10563. );
  10564. #else
  10565. #if IS_SCARA
  10566. forward_kinematics_SCARA(
  10567. stepper.get_axis_position_degrees(A_AXIS),
  10568. stepper.get_axis_position_degrees(B_AXIS)
  10569. );
  10570. #else
  10571. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10572. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10573. #endif
  10574. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10575. #endif
  10576. }
  10577. /**
  10578. * Set the current_position for an axis based on
  10579. * the stepper positions, removing any leveling that
  10580. * may have been applied.
  10581. */
  10582. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10583. get_cartesian_from_steppers();
  10584. #if PLANNER_LEVELING
  10585. planner.unapply_leveling(cartes);
  10586. #endif
  10587. if (axis == ALL_AXES)
  10588. COPY(current_position, cartes);
  10589. else
  10590. current_position[axis] = cartes[axis];
  10591. }
  10592. #if ENABLED(MESH_BED_LEVELING)
  10593. /**
  10594. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10595. * splitting the move where it crosses mesh borders.
  10596. */
  10597. void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  10598. int cx1 = mbl.cell_index_x(current_position[X_AXIS]),
  10599. cy1 = mbl.cell_index_y(current_position[Y_AXIS]),
  10600. cx2 = mbl.cell_index_x(destination[X_AXIS]),
  10601. cy2 = mbl.cell_index_y(destination[Y_AXIS]);
  10602. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10603. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10604. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  10605. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  10606. if (cx1 == cx2 && cy1 == cy2) {
  10607. // Start and end on same mesh square
  10608. buffer_line_to_destination(fr_mm_s);
  10609. set_current_from_destination();
  10610. return;
  10611. }
  10612. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10613. float normalized_dist, end[XYZE];
  10614. // Split at the left/front border of the right/top square
  10615. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10616. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10617. COPY(end, destination);
  10618. destination[X_AXIS] = mbl.index_to_xpos[gcx];
  10619. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10620. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10621. CBI(x_splits, gcx);
  10622. }
  10623. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10624. COPY(end, destination);
  10625. destination[Y_AXIS] = mbl.index_to_ypos[gcy];
  10626. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10627. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10628. CBI(y_splits, gcy);
  10629. }
  10630. else {
  10631. // Already split on a border
  10632. buffer_line_to_destination(fr_mm_s);
  10633. set_current_from_destination();
  10634. return;
  10635. }
  10636. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10637. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10638. // Do the split and look for more borders
  10639. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10640. // Restore destination from stack
  10641. COPY(destination, end);
  10642. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10643. }
  10644. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  10645. #define CELL_INDEX(A,V) ((V - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10646. /**
  10647. * Prepare a bilinear-leveled linear move on Cartesian,
  10648. * splitting the move where it crosses grid borders.
  10649. */
  10650. void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10651. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10652. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10653. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10654. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10655. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10656. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10657. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10658. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10659. if (cx1 == cx2 && cy1 == cy2) {
  10660. // Start and end on same mesh square
  10661. buffer_line_to_destination(fr_mm_s);
  10662. set_current_from_destination();
  10663. return;
  10664. }
  10665. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10666. float normalized_dist, end[XYZE];
  10667. // Split at the left/front border of the right/top square
  10668. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10669. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10670. COPY(end, destination);
  10671. destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
  10672. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10673. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10674. CBI(x_splits, gcx);
  10675. }
  10676. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10677. COPY(end, destination);
  10678. destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
  10679. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10680. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10681. CBI(y_splits, gcy);
  10682. }
  10683. else {
  10684. // Already split on a border
  10685. buffer_line_to_destination(fr_mm_s);
  10686. set_current_from_destination();
  10687. return;
  10688. }
  10689. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10690. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10691. // Do the split and look for more borders
  10692. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10693. // Restore destination from stack
  10694. COPY(destination, end);
  10695. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10696. }
  10697. #endif // AUTO_BED_LEVELING_BILINEAR
  10698. #if !UBL_DELTA
  10699. #if IS_KINEMATIC
  10700. /**
  10701. * Prepare a linear move in a DELTA or SCARA setup.
  10702. *
  10703. * This calls planner.buffer_line several times, adding
  10704. * small incremental moves for DELTA or SCARA.
  10705. *
  10706. * For Unified Bed Leveling (Delta or Segmented Cartesian)
  10707. * the ubl.prepare_segmented_line_to method replaces this.
  10708. */
  10709. inline bool prepare_kinematic_move_to(float rtarget[XYZE]) {
  10710. // Get the top feedrate of the move in the XY plane
  10711. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10712. // If the move is only in Z/E don't split up the move
  10713. if (rtarget[X_AXIS] == current_position[X_AXIS] && rtarget[Y_AXIS] == current_position[Y_AXIS]) {
  10714. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  10715. return false;
  10716. }
  10717. // Fail if attempting move outside printable radius
  10718. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
  10719. // Get the cartesian distances moved in XYZE
  10720. const float difference[XYZE] = {
  10721. rtarget[X_AXIS] - current_position[X_AXIS],
  10722. rtarget[Y_AXIS] - current_position[Y_AXIS],
  10723. rtarget[Z_AXIS] - current_position[Z_AXIS],
  10724. rtarget[E_AXIS] - current_position[E_AXIS]
  10725. };
  10726. // Get the linear distance in XYZ
  10727. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10728. // If the move is very short, check the E move distance
  10729. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10730. // No E move either? Game over.
  10731. if (UNEAR_ZERO(cartesian_mm)) return true;
  10732. // Minimum number of seconds to move the given distance
  10733. const float seconds = cartesian_mm / _feedrate_mm_s;
  10734. // The number of segments-per-second times the duration
  10735. // gives the number of segments
  10736. uint16_t segments = delta_segments_per_second * seconds;
  10737. // For SCARA minimum segment size is 0.25mm
  10738. #if IS_SCARA
  10739. NOMORE(segments, cartesian_mm * 4);
  10740. #endif
  10741. // At least one segment is required
  10742. NOLESS(segments, 1);
  10743. // The approximate length of each segment
  10744. const float inv_segments = 1.0 / float(segments),
  10745. segment_distance[XYZE] = {
  10746. difference[X_AXIS] * inv_segments,
  10747. difference[Y_AXIS] * inv_segments,
  10748. difference[Z_AXIS] * inv_segments,
  10749. difference[E_AXIS] * inv_segments
  10750. };
  10751. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10752. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10753. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10754. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10755. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10756. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10757. feed_factor = inv_segment_length * _feedrate_mm_s;
  10758. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10759. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10760. #endif
  10761. // Get the raw current position as starting point
  10762. float raw[XYZE];
  10763. COPY(raw, current_position);
  10764. // Drop one segment so the last move is to the exact target.
  10765. // If there's only 1 segment, loops will be skipped entirely.
  10766. --segments;
  10767. // Calculate and execute the segments
  10768. for (uint16_t s = segments + 1; --s;) {
  10769. LOOP_XYZE(i) raw[i] += segment_distance[i];
  10770. #if ENABLED(DELTA)
  10771. DELTA_RAW_IK(); // Delta can inline its kinematics
  10772. #else
  10773. inverse_kinematics(raw);
  10774. #endif
  10775. ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
  10776. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10777. // For SCARA scale the feed rate from mm/s to degrees/s
  10778. // Use ratio between the length of the move and the larger angle change
  10779. const float adiff = abs(delta[A_AXIS] - oldA),
  10780. bdiff = abs(delta[B_AXIS] - oldB);
  10781. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10782. oldA = delta[A_AXIS];
  10783. oldB = delta[B_AXIS];
  10784. #else
  10785. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
  10786. #endif
  10787. }
  10788. // Since segment_distance is only approximate,
  10789. // the final move must be to the exact destination.
  10790. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10791. // For SCARA scale the feed rate from mm/s to degrees/s
  10792. // With segments > 1 length is 1 segment, otherwise total length
  10793. inverse_kinematics(rtarget);
  10794. ADJUST_DELTA(rtarget);
  10795. const float adiff = abs(delta[A_AXIS] - oldA),
  10796. bdiff = abs(delta[B_AXIS] - oldB);
  10797. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10798. #else
  10799. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  10800. #endif
  10801. return false;
  10802. }
  10803. #else // !IS_KINEMATIC
  10804. /**
  10805. * Prepare a linear move in a Cartesian setup.
  10806. *
  10807. * When a mesh-based leveling system is active, moves are segmented
  10808. * according to the configuration of the leveling system.
  10809. *
  10810. * Returns true if current_position[] was set to destination[]
  10811. */
  10812. inline bool prepare_move_to_destination_cartesian() {
  10813. #if HAS_MESH
  10814. if (planner.leveling_active) {
  10815. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10816. ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
  10817. return true; // all moves, including Z-only moves.
  10818. #else
  10819. /**
  10820. * For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
  10821. * Otherwise fall through to do a direct single move.
  10822. */
  10823. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  10824. #if ENABLED(MESH_BED_LEVELING)
  10825. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10826. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10827. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10828. #endif
  10829. return true;
  10830. }
  10831. #endif
  10832. }
  10833. #endif // HAS_MESH
  10834. buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10835. return false;
  10836. }
  10837. #endif // !IS_KINEMATIC
  10838. #endif // !UBL_DELTA
  10839. #if ENABLED(DUAL_X_CARRIAGE)
  10840. /**
  10841. * Prepare a linear move in a dual X axis setup
  10842. */
  10843. inline bool prepare_move_to_destination_dualx() {
  10844. if (active_extruder_parked) {
  10845. switch (dual_x_carriage_mode) {
  10846. case DXC_FULL_CONTROL_MODE:
  10847. break;
  10848. case DXC_AUTO_PARK_MODE:
  10849. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10850. // This is a travel move (with no extrusion)
  10851. // Skip it, but keep track of the current position
  10852. // (so it can be used as the start of the next non-travel move)
  10853. if (delayed_move_time != 0xFFFFFFFFUL) {
  10854. set_current_from_destination();
  10855. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10856. delayed_move_time = millis();
  10857. return true;
  10858. }
  10859. }
  10860. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10861. for (uint8_t i = 0; i < 3; i++)
  10862. planner.buffer_line(
  10863. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10864. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10865. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10866. current_position[E_AXIS],
  10867. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10868. active_extruder
  10869. );
  10870. delayed_move_time = 0;
  10871. active_extruder_parked = false;
  10872. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10873. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10874. #endif
  10875. break;
  10876. case DXC_DUPLICATION_MODE:
  10877. if (active_extruder == 0) {
  10878. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10879. if (DEBUGGING(LEVELING)) {
  10880. SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);
  10881. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10882. }
  10883. #endif
  10884. // move duplicate extruder into correct duplication position.
  10885. planner.set_position_mm(
  10886. inactive_extruder_x_pos,
  10887. current_position[Y_AXIS],
  10888. current_position[Z_AXIS],
  10889. current_position[E_AXIS]
  10890. );
  10891. planner.buffer_line(
  10892. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10893. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10894. planner.max_feedrate_mm_s[X_AXIS], 1
  10895. );
  10896. SYNC_PLAN_POSITION_KINEMATIC();
  10897. stepper.synchronize();
  10898. extruder_duplication_enabled = true;
  10899. active_extruder_parked = false;
  10900. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10901. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10902. #endif
  10903. }
  10904. else {
  10905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10906. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10907. #endif
  10908. }
  10909. break;
  10910. }
  10911. }
  10912. return prepare_move_to_destination_cartesian();
  10913. }
  10914. #endif // DUAL_X_CARRIAGE
  10915. /**
  10916. * Prepare a single move and get ready for the next one
  10917. *
  10918. * This may result in several calls to planner.buffer_line to
  10919. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10920. *
  10921. * Make sure current_position[E] and destination[E] are good
  10922. * before calling or cold/lengthy extrusion may get missed.
  10923. */
  10924. void prepare_move_to_destination() {
  10925. clamp_to_software_endstops(destination);
  10926. refresh_cmd_timeout();
  10927. #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10928. if (!DEBUGGING(DRYRUN)) {
  10929. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10930. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10931. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10932. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10933. SERIAL_ECHO_START();
  10934. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10935. }
  10936. #endif // PREVENT_COLD_EXTRUSION
  10937. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10938. if (FABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
  10939. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10940. SERIAL_ECHO_START();
  10941. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10942. }
  10943. #endif // PREVENT_LENGTHY_EXTRUDE
  10944. }
  10945. }
  10946. #endif
  10947. if (
  10948. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10949. ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
  10950. #elif IS_KINEMATIC
  10951. prepare_kinematic_move_to(destination)
  10952. #elif ENABLED(DUAL_X_CARRIAGE)
  10953. prepare_move_to_destination_dualx()
  10954. #else
  10955. prepare_move_to_destination_cartesian()
  10956. #endif
  10957. ) return;
  10958. set_current_from_destination();
  10959. }
  10960. #if ENABLED(ARC_SUPPORT)
  10961. #if N_ARC_CORRECTION < 1
  10962. #undef N_ARC_CORRECTION
  10963. #define N_ARC_CORRECTION 1
  10964. #endif
  10965. /**
  10966. * Plan an arc in 2 dimensions
  10967. *
  10968. * The arc is approximated by generating many small linear segments.
  10969. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10970. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10971. * larger segments will tend to be more efficient. Your slicer should have
  10972. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10973. */
  10974. void plan_arc(
  10975. float raw[XYZE], // Destination position
  10976. float *offset, // Center of rotation relative to current_position
  10977. uint8_t clockwise // Clockwise?
  10978. ) {
  10979. #if ENABLED(CNC_WORKSPACE_PLANES)
  10980. AxisEnum p_axis, q_axis, l_axis;
  10981. switch (workspace_plane) {
  10982. default:
  10983. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  10984. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  10985. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  10986. }
  10987. #else
  10988. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  10989. #endif
  10990. // Radius vector from center to current location
  10991. float r_P = -offset[0], r_Q = -offset[1];
  10992. const float radius = HYPOT(r_P, r_Q),
  10993. center_P = current_position[p_axis] - r_P,
  10994. center_Q = current_position[q_axis] - r_Q,
  10995. rt_X = raw[p_axis] - center_P,
  10996. rt_Y = raw[q_axis] - center_Q,
  10997. linear_travel = raw[l_axis] - current_position[l_axis],
  10998. extruder_travel = raw[E_AXIS] - current_position[E_AXIS];
  10999. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  11000. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  11001. if (angular_travel < 0) angular_travel += RADIANS(360);
  11002. if (clockwise) angular_travel -= RADIANS(360);
  11003. // Make a circle if the angular rotation is 0 and the target is current position
  11004. if (angular_travel == 0 && current_position[p_axis] == raw[p_axis] && current_position[q_axis] == raw[q_axis])
  11005. angular_travel = RADIANS(360);
  11006. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  11007. if (mm_of_travel < 0.001) return;
  11008. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  11009. if (segments == 0) segments = 1;
  11010. /**
  11011. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  11012. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  11013. * r_T = [cos(phi) -sin(phi);
  11014. * sin(phi) cos(phi)] * r ;
  11015. *
  11016. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  11017. * defined from the circle center to the initial position. Each line segment is formed by successive
  11018. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  11019. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  11020. * all double numbers are single precision on the Arduino. (True double precision will not have
  11021. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  11022. * tool precision in some cases. Therefore, arc path correction is implemented.
  11023. *
  11024. * Small angle approximation may be used to reduce computation overhead further. This approximation
  11025. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  11026. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  11027. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  11028. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  11029. * issue for CNC machines with the single precision Arduino calculations.
  11030. *
  11031. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  11032. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  11033. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  11034. * This is important when there are successive arc motions.
  11035. */
  11036. // Vector rotation matrix values
  11037. float arc_target[XYZE];
  11038. const float theta_per_segment = angular_travel / segments,
  11039. linear_per_segment = linear_travel / segments,
  11040. extruder_per_segment = extruder_travel / segments,
  11041. sin_T = theta_per_segment,
  11042. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  11043. // Initialize the linear axis
  11044. arc_target[l_axis] = current_position[l_axis];
  11045. // Initialize the extruder axis
  11046. arc_target[E_AXIS] = current_position[E_AXIS];
  11047. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  11048. millis_t next_idle_ms = millis() + 200UL;
  11049. #if N_ARC_CORRECTION > 1
  11050. int8_t arc_recalc_count = N_ARC_CORRECTION;
  11051. #endif
  11052. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  11053. thermalManager.manage_heater();
  11054. if (ELAPSED(millis(), next_idle_ms)) {
  11055. next_idle_ms = millis() + 200UL;
  11056. idle();
  11057. }
  11058. #if N_ARC_CORRECTION > 1
  11059. if (--arc_recalc_count) {
  11060. // Apply vector rotation matrix to previous r_P / 1
  11061. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  11062. r_P = r_P * cos_T - r_Q * sin_T;
  11063. r_Q = r_new_Y;
  11064. }
  11065. else
  11066. #endif
  11067. {
  11068. #if N_ARC_CORRECTION > 1
  11069. arc_recalc_count = N_ARC_CORRECTION;
  11070. #endif
  11071. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  11072. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  11073. // To reduce stuttering, the sin and cos could be computed at different times.
  11074. // For now, compute both at the same time.
  11075. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  11076. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  11077. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  11078. }
  11079. // Update arc_target location
  11080. arc_target[p_axis] = center_P + r_P;
  11081. arc_target[q_axis] = center_Q + r_Q;
  11082. arc_target[l_axis] += linear_per_segment;
  11083. arc_target[E_AXIS] += extruder_per_segment;
  11084. clamp_to_software_endstops(arc_target);
  11085. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  11086. }
  11087. // Ensure last segment arrives at target location.
  11088. planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
  11089. // As far as the parser is concerned, the position is now == target. In reality the
  11090. // motion control system might still be processing the action and the real tool position
  11091. // in any intermediate location.
  11092. set_current_from_destination();
  11093. } // plan_arc
  11094. #endif // ARC_SUPPORT
  11095. #if ENABLED(BEZIER_CURVE_SUPPORT)
  11096. void plan_cubic_move(const float offset[4]) {
  11097. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  11098. // As far as the parser is concerned, the position is now == destination. In reality the
  11099. // motion control system might still be processing the action and the real tool position
  11100. // in any intermediate location.
  11101. set_current_from_destination();
  11102. }
  11103. #endif // BEZIER_CURVE_SUPPORT
  11104. #if ENABLED(USE_CONTROLLER_FAN)
  11105. void controllerFan() {
  11106. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  11107. nextMotorCheck = 0; // Last time the state was checked
  11108. const millis_t ms = millis();
  11109. if (ELAPSED(ms, nextMotorCheck)) {
  11110. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  11111. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  11112. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  11113. #if E_STEPPERS > 1
  11114. || E1_ENABLE_READ == E_ENABLE_ON
  11115. #if HAS_X2_ENABLE
  11116. || X2_ENABLE_READ == X_ENABLE_ON
  11117. #endif
  11118. #if E_STEPPERS > 2
  11119. || E2_ENABLE_READ == E_ENABLE_ON
  11120. #if E_STEPPERS > 3
  11121. || E3_ENABLE_READ == E_ENABLE_ON
  11122. #if E_STEPPERS > 4
  11123. || E4_ENABLE_READ == E_ENABLE_ON
  11124. #endif // E_STEPPERS > 4
  11125. #endif // E_STEPPERS > 3
  11126. #endif // E_STEPPERS > 2
  11127. #endif // E_STEPPERS > 1
  11128. ) {
  11129. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  11130. }
  11131. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  11132. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  11133. // allows digital or PWM fan output to be used (see M42 handling)
  11134. WRITE(CONTROLLER_FAN_PIN, speed);
  11135. analogWrite(CONTROLLER_FAN_PIN, speed);
  11136. }
  11137. }
  11138. #endif // USE_CONTROLLER_FAN
  11139. #if ENABLED(MORGAN_SCARA)
  11140. /**
  11141. * Morgan SCARA Forward Kinematics. Results in cartes[].
  11142. * Maths and first version by QHARLEY.
  11143. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11144. */
  11145. void forward_kinematics_SCARA(const float &a, const float &b) {
  11146. float a_sin = sin(RADIANS(a)) * L1,
  11147. a_cos = cos(RADIANS(a)) * L1,
  11148. b_sin = sin(RADIANS(b)) * L2,
  11149. b_cos = cos(RADIANS(b)) * L2;
  11150. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  11151. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  11152. /*
  11153. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  11154. SERIAL_ECHOPAIR(" b=", b);
  11155. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  11156. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  11157. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  11158. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  11159. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  11160. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  11161. //*/
  11162. }
  11163. /**
  11164. * Morgan SCARA Inverse Kinematics. Results in delta[].
  11165. *
  11166. * See http://forums.reprap.org/read.php?185,283327
  11167. *
  11168. * Maths and first version by QHARLEY.
  11169. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11170. */
  11171. void inverse_kinematics(const float raw[XYZ]) {
  11172. static float C2, S2, SK1, SK2, THETA, PSI;
  11173. float sx = raw[X_AXIS] - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  11174. sy = raw[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
  11175. if (L1 == L2)
  11176. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  11177. else
  11178. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  11179. S2 = SQRT(1 - sq(C2));
  11180. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  11181. SK1 = L1 + L2 * C2;
  11182. // Rotated Arm2 gives the distance from Arm1 to Arm2
  11183. SK2 = L2 * S2;
  11184. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  11185. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  11186. // Angle of Arm2
  11187. PSI = ATAN2(S2, C2);
  11188. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  11189. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  11190. delta[C_AXIS] = raw[Z_AXIS];
  11191. /*
  11192. DEBUG_POS("SCARA IK", raw);
  11193. DEBUG_POS("SCARA IK", delta);
  11194. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  11195. SERIAL_ECHOPAIR(",", sy);
  11196. SERIAL_ECHOPAIR(" C2=", C2);
  11197. SERIAL_ECHOPAIR(" S2=", S2);
  11198. SERIAL_ECHOPAIR(" Theta=", THETA);
  11199. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  11200. //*/
  11201. }
  11202. #endif // MORGAN_SCARA
  11203. #if ENABLED(TEMP_STAT_LEDS)
  11204. static bool red_led = false;
  11205. static millis_t next_status_led_update_ms = 0;
  11206. void handle_status_leds(void) {
  11207. if (ELAPSED(millis(), next_status_led_update_ms)) {
  11208. next_status_led_update_ms += 500; // Update every 0.5s
  11209. float max_temp = 0.0;
  11210. #if HAS_TEMP_BED
  11211. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  11212. #endif
  11213. HOTEND_LOOP()
  11214. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  11215. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  11216. if (new_led != red_led) {
  11217. red_led = new_led;
  11218. #if PIN_EXISTS(STAT_LED_RED)
  11219. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  11220. #if PIN_EXISTS(STAT_LED_BLUE)
  11221. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  11222. #endif
  11223. #else
  11224. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  11225. #endif
  11226. }
  11227. }
  11228. }
  11229. #endif
  11230. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11231. void handle_filament_runout() {
  11232. if (!filament_ran_out) {
  11233. filament_ran_out = true;
  11234. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  11235. stepper.synchronize();
  11236. }
  11237. }
  11238. #endif // FILAMENT_RUNOUT_SENSOR
  11239. #if ENABLED(FAST_PWM_FAN)
  11240. void setPwmFrequency(uint8_t pin, int val) {
  11241. val &= 0x07;
  11242. switch (digitalPinToTimer(pin)) {
  11243. #ifdef TCCR0A
  11244. #if !AVR_AT90USB1286_FAMILY
  11245. case TIMER0A:
  11246. #endif
  11247. case TIMER0B: //_SET_CS(0, val);
  11248. break;
  11249. #endif
  11250. #ifdef TCCR1A
  11251. case TIMER1A: case TIMER1B: //_SET_CS(1, val);
  11252. break;
  11253. #endif
  11254. #ifdef TCCR2
  11255. case TIMER2: case TIMER2: _SET_CS(2, val); break;
  11256. #endif
  11257. #ifdef TCCR2A
  11258. case TIMER2A: case TIMER2B: _SET_CS(2, val); break;
  11259. #endif
  11260. #ifdef TCCR3A
  11261. case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break;
  11262. #endif
  11263. #ifdef TCCR4A
  11264. case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break;
  11265. #endif
  11266. #ifdef TCCR5A
  11267. case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break;
  11268. #endif
  11269. }
  11270. }
  11271. #endif // FAST_PWM_FAN
  11272. void enable_all_steppers() {
  11273. enable_X();
  11274. enable_Y();
  11275. enable_Z();
  11276. enable_E0();
  11277. enable_E1();
  11278. enable_E2();
  11279. enable_E3();
  11280. enable_E4();
  11281. }
  11282. void disable_e_steppers() {
  11283. disable_E0();
  11284. disable_E1();
  11285. disable_E2();
  11286. disable_E3();
  11287. disable_E4();
  11288. }
  11289. void disable_all_steppers() {
  11290. disable_X();
  11291. disable_Y();
  11292. disable_Z();
  11293. disable_e_steppers();
  11294. }
  11295. #if ENABLED(HAVE_TMC2130)
  11296. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  11297. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  11298. const bool is_otpw = st.checkOT();
  11299. // Report if a warning was triggered
  11300. static bool previous_otpw = false;
  11301. if (is_otpw && !previous_otpw) {
  11302. char timestamp[10];
  11303. duration_t elapsed = print_job_timer.duration();
  11304. const bool has_days = (elapsed.value > 60*60*24L);
  11305. (void)elapsed.toDigital(timestamp, has_days);
  11306. SERIAL_ECHO(timestamp);
  11307. SERIAL_ECHOPGM(": ");
  11308. SERIAL_ECHO(axisID);
  11309. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  11310. }
  11311. previous_otpw = is_otpw;
  11312. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  11313. // Return if user has not enabled current control start with M906 S1.
  11314. if (!auto_current_control) return;
  11315. /**
  11316. * Decrease current if is_otpw is true.
  11317. * Bail out if driver is disabled.
  11318. * Increase current if OTPW has not been triggered yet.
  11319. */
  11320. uint16_t current = st.getCurrent();
  11321. if (is_otpw) {
  11322. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  11323. #if ENABLED(REPORT_CURRENT_CHANGE)
  11324. SERIAL_ECHO(axisID);
  11325. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  11326. #endif
  11327. }
  11328. else if (!st.isEnabled())
  11329. return;
  11330. else if (!is_otpw && !st.getOTPW()) {
  11331. current += CURRENT_STEP;
  11332. if (current <= AUTO_ADJUST_MAX) {
  11333. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  11334. #if ENABLED(REPORT_CURRENT_CHANGE)
  11335. SERIAL_ECHO(axisID);
  11336. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  11337. #endif
  11338. }
  11339. }
  11340. SERIAL_EOL();
  11341. #endif
  11342. }
  11343. void checkOverTemp() {
  11344. static millis_t next_cOT = 0;
  11345. if (ELAPSED(millis(), next_cOT)) {
  11346. next_cOT = millis() + 5000;
  11347. #if ENABLED(X_IS_TMC2130)
  11348. automatic_current_control(stepperX, "X");
  11349. #endif
  11350. #if ENABLED(Y_IS_TMC2130)
  11351. automatic_current_control(stepperY, "Y");
  11352. #endif
  11353. #if ENABLED(Z_IS_TMC2130)
  11354. automatic_current_control(stepperZ, "Z");
  11355. #endif
  11356. #if ENABLED(X2_IS_TMC2130)
  11357. automatic_current_control(stepperX2, "X2");
  11358. #endif
  11359. #if ENABLED(Y2_IS_TMC2130)
  11360. automatic_current_control(stepperY2, "Y2");
  11361. #endif
  11362. #if ENABLED(Z2_IS_TMC2130)
  11363. automatic_current_control(stepperZ2, "Z2");
  11364. #endif
  11365. #if ENABLED(E0_IS_TMC2130)
  11366. automatic_current_control(stepperE0, "E0");
  11367. #endif
  11368. #if ENABLED(E1_IS_TMC2130)
  11369. automatic_current_control(stepperE1, "E1");
  11370. #endif
  11371. #if ENABLED(E2_IS_TMC2130)
  11372. automatic_current_control(stepperE2, "E2");
  11373. #endif
  11374. #if ENABLED(E3_IS_TMC2130)
  11375. automatic_current_control(stepperE3, "E3");
  11376. #endif
  11377. #if ENABLED(E4_IS_TMC2130)
  11378. automatic_current_control(stepperE4, "E4");
  11379. #endif
  11380. }
  11381. }
  11382. #endif // HAVE_TMC2130
  11383. /**
  11384. * Manage several activities:
  11385. * - Check for Filament Runout
  11386. * - Keep the command buffer full
  11387. * - Check for maximum inactive time between commands
  11388. * - Check for maximum inactive time between stepper commands
  11389. * - Check if pin CHDK needs to go LOW
  11390. * - Check for KILL button held down
  11391. * - Check for HOME button held down
  11392. * - Check if cooling fan needs to be switched on
  11393. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11394. */
  11395. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11396. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11397. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11398. handle_filament_runout();
  11399. #endif
  11400. if (commands_in_queue < BUFSIZE) get_available_commands();
  11401. const millis_t ms = millis();
  11402. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11403. SERIAL_ERROR_START();
  11404. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11405. kill(PSTR(MSG_KILLED));
  11406. }
  11407. // Prevent steppers timing-out in the middle of M600
  11408. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11409. #define MOVE_AWAY_TEST !move_away_flag
  11410. #else
  11411. #define MOVE_AWAY_TEST true
  11412. #endif
  11413. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11414. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11415. #if ENABLED(DISABLE_INACTIVE_X)
  11416. disable_X();
  11417. #endif
  11418. #if ENABLED(DISABLE_INACTIVE_Y)
  11419. disable_Y();
  11420. #endif
  11421. #if ENABLED(DISABLE_INACTIVE_Z)
  11422. disable_Z();
  11423. #endif
  11424. #if ENABLED(DISABLE_INACTIVE_E)
  11425. disable_e_steppers();
  11426. #endif
  11427. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11428. ubl.lcd_map_control = defer_return_to_status = false;
  11429. #endif
  11430. }
  11431. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11432. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11433. chdkActive = false;
  11434. WRITE(CHDK, LOW);
  11435. }
  11436. #endif
  11437. #if HAS_KILL
  11438. // Check if the kill button was pressed and wait just in case it was an accidental
  11439. // key kill key press
  11440. // -------------------------------------------------------------------------------
  11441. static int killCount = 0; // make the inactivity button a bit less responsive
  11442. const int KILL_DELAY = 750;
  11443. if (!READ(KILL_PIN))
  11444. killCount++;
  11445. else if (killCount > 0)
  11446. killCount--;
  11447. // Exceeded threshold and we can confirm that it was not accidental
  11448. // KILL the machine
  11449. // ----------------------------------------------------------------
  11450. if (killCount >= KILL_DELAY) {
  11451. SERIAL_ERROR_START();
  11452. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11453. kill(PSTR(MSG_KILLED));
  11454. }
  11455. #endif
  11456. #if HAS_HOME
  11457. // Check to see if we have to home, use poor man's debouncer
  11458. // ---------------------------------------------------------
  11459. static int homeDebounceCount = 0; // poor man's debouncing count
  11460. const int HOME_DEBOUNCE_DELAY = 2500;
  11461. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11462. if (!homeDebounceCount) {
  11463. enqueue_and_echo_commands_P(PSTR("G28"));
  11464. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11465. }
  11466. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11467. homeDebounceCount++;
  11468. else
  11469. homeDebounceCount = 0;
  11470. }
  11471. #endif
  11472. #if ENABLED(USE_CONTROLLER_FAN)
  11473. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11474. #endif
  11475. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11476. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11477. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11478. #if ENABLED(SWITCHING_EXTRUDER)
  11479. const bool oldstatus = E0_ENABLE_READ;
  11480. enable_E0();
  11481. #else // !SWITCHING_EXTRUDER
  11482. bool oldstatus;
  11483. switch (active_extruder) {
  11484. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11485. #if E_STEPPERS > 1
  11486. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11487. #if E_STEPPERS > 2
  11488. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11489. #if E_STEPPERS > 3
  11490. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11491. #if E_STEPPERS > 4
  11492. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11493. #endif // E_STEPPERS > 4
  11494. #endif // E_STEPPERS > 3
  11495. #endif // E_STEPPERS > 2
  11496. #endif // E_STEPPERS > 1
  11497. }
  11498. #endif // !SWITCHING_EXTRUDER
  11499. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11500. const float olde = current_position[E_AXIS];
  11501. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11502. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11503. current_position[E_AXIS] = olde;
  11504. planner.set_e_position_mm(olde);
  11505. stepper.synchronize();
  11506. #if ENABLED(SWITCHING_EXTRUDER)
  11507. E0_ENABLE_WRITE(oldstatus);
  11508. #else
  11509. switch (active_extruder) {
  11510. case 0: E0_ENABLE_WRITE(oldstatus); break;
  11511. #if E_STEPPERS > 1
  11512. case 1: E1_ENABLE_WRITE(oldstatus); break;
  11513. #if E_STEPPERS > 2
  11514. case 2: E2_ENABLE_WRITE(oldstatus); break;
  11515. #if E_STEPPERS > 3
  11516. case 3: E3_ENABLE_WRITE(oldstatus); break;
  11517. #if E_STEPPERS > 4
  11518. case 4: E4_ENABLE_WRITE(oldstatus); break;
  11519. #endif // E_STEPPERS > 4
  11520. #endif // E_STEPPERS > 3
  11521. #endif // E_STEPPERS > 2
  11522. #endif // E_STEPPERS > 1
  11523. }
  11524. #endif // !SWITCHING_EXTRUDER
  11525. }
  11526. #endif // EXTRUDER_RUNOUT_PREVENT
  11527. #if ENABLED(DUAL_X_CARRIAGE)
  11528. // handle delayed move timeout
  11529. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  11530. // travel moves have been received so enact them
  11531. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  11532. set_destination_from_current();
  11533. prepare_move_to_destination();
  11534. }
  11535. #endif
  11536. #if ENABLED(TEMP_STAT_LEDS)
  11537. handle_status_leds();
  11538. #endif
  11539. #if ENABLED(HAVE_TMC2130)
  11540. checkOverTemp();
  11541. #endif
  11542. planner.check_axes_activity();
  11543. }
  11544. /**
  11545. * Standard idle routine keeps the machine alive
  11546. */
  11547. void idle(
  11548. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11549. bool no_stepper_sleep/*=false*/
  11550. #endif
  11551. ) {
  11552. #if ENABLED(MAX7219_DEBUG)
  11553. Max7219_idle_tasks();
  11554. #endif // MAX7219_DEBUG
  11555. lcd_update();
  11556. host_keepalive();
  11557. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  11558. auto_report_temperatures();
  11559. #endif
  11560. manage_inactivity(
  11561. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11562. no_stepper_sleep
  11563. #endif
  11564. );
  11565. thermalManager.manage_heater();
  11566. #if ENABLED(PRINTCOUNTER)
  11567. print_job_timer.tick();
  11568. #endif
  11569. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  11570. buzzer.tick();
  11571. #endif
  11572. #if ENABLED(I2C_POSITION_ENCODERS)
  11573. if (planner.blocks_queued() &&
  11574. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  11575. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  11576. blockBufferIndexRef = planner.block_buffer_head;
  11577. I2CPEM.update();
  11578. lastUpdateMillis = millis();
  11579. }
  11580. #endif
  11581. }
  11582. /**
  11583. * Kill all activity and lock the machine.
  11584. * After this the machine will need to be reset.
  11585. */
  11586. void kill(const char* lcd_msg) {
  11587. SERIAL_ERROR_START();
  11588. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  11589. thermalManager.disable_all_heaters();
  11590. disable_all_steppers();
  11591. #if ENABLED(ULTRA_LCD)
  11592. kill_screen(lcd_msg);
  11593. #else
  11594. UNUSED(lcd_msg);
  11595. #endif
  11596. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11597. cli(); // Stop interrupts
  11598. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11599. thermalManager.disable_all_heaters(); //turn off heaters again
  11600. #ifdef ACTION_ON_KILL
  11601. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11602. #endif
  11603. #if HAS_POWER_SWITCH
  11604. SET_INPUT(PS_ON_PIN);
  11605. #endif
  11606. suicide();
  11607. while (1) {
  11608. #if ENABLED(USE_WATCHDOG)
  11609. watchdog_reset();
  11610. #endif
  11611. } // Wait for reset
  11612. }
  11613. /**
  11614. * Turn off heaters and stop the print in progress
  11615. * After a stop the machine may be resumed with M999
  11616. */
  11617. void stop() {
  11618. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11619. #if ENABLED(PROBING_FANS_OFF)
  11620. if (fans_paused) fans_pause(false); // put things back the way they were
  11621. #endif
  11622. if (IsRunning()) {
  11623. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11624. SERIAL_ERROR_START();
  11625. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11626. LCD_MESSAGEPGM(MSG_STOPPED);
  11627. safe_delay(350); // allow enough time for messages to get out before stopping
  11628. Running = false;
  11629. }
  11630. }
  11631. /**
  11632. * Marlin entry-point: Set up before the program loop
  11633. * - Set up the kill pin, filament runout, power hold
  11634. * - Start the serial port
  11635. * - Print startup messages and diagnostics
  11636. * - Get EEPROM or default settings
  11637. * - Initialize managers for:
  11638. * • temperature
  11639. * • planner
  11640. * • watchdog
  11641. * • stepper
  11642. * • photo pin
  11643. * • servos
  11644. * • LCD controller
  11645. * • Digipot I2C
  11646. * • Z probe sled
  11647. * • status LEDs
  11648. */
  11649. void setup() {
  11650. #if ENABLED(MAX7219_DEBUG)
  11651. Max7219_init();
  11652. #endif
  11653. #if ENABLED(DISABLE_JTAG)
  11654. // Disable JTAG on AT90USB chips to free up pins for IO
  11655. MCUCR = 0x80;
  11656. MCUCR = 0x80;
  11657. #endif
  11658. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11659. setup_filrunoutpin();
  11660. #endif
  11661. setup_killpin();
  11662. setup_powerhold();
  11663. #if HAS_STEPPER_RESET
  11664. disableStepperDrivers();
  11665. #endif
  11666. MYSERIAL.begin(BAUDRATE);
  11667. SERIAL_PROTOCOLLNPGM("start");
  11668. SERIAL_ECHO_START();
  11669. // Check startup - does nothing if bootloader sets MCUSR to 0
  11670. byte mcu = MCUSR;
  11671. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11672. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11673. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11674. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11675. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11676. MCUSR = 0;
  11677. SERIAL_ECHOPGM(MSG_MARLIN);
  11678. SERIAL_CHAR(' ');
  11679. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11680. SERIAL_EOL();
  11681. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11682. SERIAL_ECHO_START();
  11683. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11684. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11685. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11686. SERIAL_ECHO_START();
  11687. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11688. #endif
  11689. SERIAL_ECHO_START();
  11690. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11691. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11692. // Send "ok" after commands by default
  11693. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11694. // Load data from EEPROM if available (or use defaults)
  11695. // This also updates variables in the planner, elsewhere
  11696. (void)settings.load();
  11697. #if HAS_M206_COMMAND
  11698. // Initialize current position based on home_offset
  11699. COPY(current_position, home_offset);
  11700. #else
  11701. ZERO(current_position);
  11702. #endif
  11703. // Vital to init stepper/planner equivalent for current_position
  11704. SYNC_PLAN_POSITION_KINEMATIC();
  11705. thermalManager.init(); // Initialize temperature loop
  11706. #if ENABLED(USE_WATCHDOG)
  11707. watchdog_init();
  11708. #endif
  11709. stepper.init(); // Initialize stepper, this enables interrupts!
  11710. servo_init();
  11711. #if HAS_PHOTOGRAPH
  11712. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11713. #endif
  11714. #if HAS_CASE_LIGHT
  11715. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11716. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11717. update_case_light();
  11718. #endif
  11719. #if ENABLED(SPINDLE_LASER_ENABLE)
  11720. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11721. #if SPINDLE_DIR_CHANGE
  11722. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11723. #endif
  11724. #if ENABLED(SPINDLE_LASER_PWM)
  11725. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11726. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11727. #endif
  11728. #endif
  11729. #if HAS_BED_PROBE
  11730. endstops.enable_z_probe(false);
  11731. #endif
  11732. #if ENABLED(USE_CONTROLLER_FAN)
  11733. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11734. #endif
  11735. #if HAS_STEPPER_RESET
  11736. enableStepperDrivers();
  11737. #endif
  11738. #if ENABLED(DIGIPOT_I2C)
  11739. digipot_i2c_init();
  11740. #endif
  11741. #if ENABLED(DAC_STEPPER_CURRENT)
  11742. dac_init();
  11743. #endif
  11744. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11745. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11746. #endif
  11747. #if HAS_HOME
  11748. SET_INPUT_PULLUP(HOME_PIN);
  11749. #endif
  11750. #if PIN_EXISTS(STAT_LED_RED)
  11751. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11752. #endif
  11753. #if PIN_EXISTS(STAT_LED_BLUE)
  11754. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11755. #endif
  11756. #if ENABLED(NEOPIXEL_LED)
  11757. SET_OUTPUT(NEOPIXEL_PIN);
  11758. setup_neopixel();
  11759. #endif
  11760. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11761. SET_OUTPUT(RGB_LED_R_PIN);
  11762. SET_OUTPUT(RGB_LED_G_PIN);
  11763. SET_OUTPUT(RGB_LED_B_PIN);
  11764. #if ENABLED(RGBW_LED)
  11765. SET_OUTPUT(RGB_LED_W_PIN);
  11766. #endif
  11767. #endif
  11768. #if ENABLED(MK2_MULTIPLEXER)
  11769. SET_OUTPUT(E_MUX0_PIN);
  11770. SET_OUTPUT(E_MUX1_PIN);
  11771. SET_OUTPUT(E_MUX2_PIN);
  11772. #endif
  11773. #if HAS_FANMUX
  11774. fanmux_init();
  11775. #endif
  11776. lcd_init();
  11777. #if ENABLED(SHOW_BOOTSCREEN)
  11778. lcd_bootscreen();
  11779. #endif
  11780. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11781. // Initialize mixing to 100% color 1
  11782. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11783. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  11784. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  11785. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11786. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  11787. #endif
  11788. #if ENABLED(BLTOUCH)
  11789. // Make sure any BLTouch error condition is cleared
  11790. bltouch_command(BLTOUCH_RESET);
  11791. set_bltouch_deployed(true);
  11792. set_bltouch_deployed(false);
  11793. #endif
  11794. #if ENABLED(I2C_POSITION_ENCODERS)
  11795. I2CPEM.init();
  11796. #endif
  11797. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11798. i2c.onReceive(i2c_on_receive);
  11799. i2c.onRequest(i2c_on_request);
  11800. #endif
  11801. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11802. setup_endstop_interrupts();
  11803. #endif
  11804. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  11805. move_extruder_servo(0); // Initialize extruder servo
  11806. #endif
  11807. #if ENABLED(SWITCHING_NOZZLE)
  11808. move_nozzle_servo(0); // Initialize nozzle servo
  11809. #endif
  11810. #if ENABLED(PARKING_EXTRUDER)
  11811. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  11812. pe_activate_magnet(0);
  11813. pe_activate_magnet(1);
  11814. #else
  11815. pe_deactivate_magnet(0);
  11816. pe_deactivate_magnet(1);
  11817. #endif
  11818. #endif
  11819. #if ENABLED(MKS_12864OLED)
  11820. SET_OUTPUT(LCD_PINS_DC);
  11821. OUT_WRITE(LCD_PINS_RS, LOW);
  11822. delay(1000);
  11823. WRITE(LCD_PINS_RS, HIGH);
  11824. #endif
  11825. }
  11826. /**
  11827. * The main Marlin program loop
  11828. *
  11829. * - Save or log commands to SD
  11830. * - Process available commands (if not saving)
  11831. * - Call heater manager
  11832. * - Call inactivity manager
  11833. * - Call endstop manager
  11834. * - Call LCD update
  11835. */
  11836. void loop() {
  11837. if (commands_in_queue < BUFSIZE) get_available_commands();
  11838. #if ENABLED(SDSUPPORT)
  11839. card.checkautostart(false);
  11840. #endif
  11841. if (commands_in_queue) {
  11842. #if ENABLED(SDSUPPORT)
  11843. if (card.saving) {
  11844. char* command = command_queue[cmd_queue_index_r];
  11845. if (strstr_P(command, PSTR("M29"))) {
  11846. // M29 closes the file
  11847. card.closefile();
  11848. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11849. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  11850. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  11851. #endif
  11852. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  11853. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  11854. #endif
  11855. ok_to_send();
  11856. }
  11857. else {
  11858. // Write the string from the read buffer to SD
  11859. card.write_command(command);
  11860. if (card.logging)
  11861. process_next_command(); // The card is saving because it's logging
  11862. else
  11863. ok_to_send();
  11864. }
  11865. }
  11866. else
  11867. process_next_command();
  11868. #else
  11869. process_next_command();
  11870. #endif // SDSUPPORT
  11871. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11872. if (commands_in_queue) {
  11873. --commands_in_queue;
  11874. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11875. }
  11876. }
  11877. endstops.report_state();
  11878. idle();
  11879. }