My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 102KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #if NUM_SERVOS > 0
  38. #include "Servo.h"
  39. #endif
  40. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  41. #include <SPI.h>
  42. #endif
  43. #define VERSION_STRING "1.0.0"
  44. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  45. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  46. //Implemented Codes
  47. //-------------------
  48. // G0 -> G1
  49. // G1 - Coordinated Movement X Y Z E
  50. // G2 - CW ARC
  51. // G3 - CCW ARC
  52. // G4 - Dwell S<seconds> or P<milliseconds>
  53. // G10 - retract filament according to settings of M207
  54. // G11 - retract recover filament according to settings of M208
  55. // G28 - Home all Axis
  56. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  57. // G30 - Single Z Probe, probes bed at current XY location.
  58. // G90 - Use Absolute Coordinates
  59. // G91 - Use Relative Coordinates
  60. // G92 - Set current position to cordinates given
  61. // M Codes
  62. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  63. // M1 - Same as M0
  64. // M17 - Enable/Power all stepper motors
  65. // M18 - Disable all stepper motors; same as M84
  66. // M20 - List SD card
  67. // M21 - Init SD card
  68. // M22 - Release SD card
  69. // M23 - Select SD file (M23 filename.g)
  70. // M24 - Start/resume SD print
  71. // M25 - Pause SD print
  72. // M26 - Set SD position in bytes (M26 S12345)
  73. // M27 - Report SD print status
  74. // M28 - Start SD write (M28 filename.g)
  75. // M29 - Stop SD write
  76. // M30 - Delete file from SD (M30 filename.g)
  77. // M31 - Output time since last M109 or SD card start to serial
  78. // M32 - Select file and start SD print (Can be used when printing from SD card)
  79. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  80. // M80 - Turn on Power Supply
  81. // M81 - Turn off Power Supply
  82. // M82 - Set E codes absolute (default)
  83. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  84. // M84 - Disable steppers until next move,
  85. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  86. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  87. // M92 - Set axis_steps_per_unit - same syntax as G92
  88. // M104 - Set extruder target temp
  89. // M105 - Read current temp
  90. // M106 - Fan on
  91. // M107 - Fan off
  92. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  93. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  94. // M114 - Output current position to serial port
  95. // M115 - Capabilities string
  96. // M117 - display message
  97. // M119 - Output Endstop status to serial port
  98. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  99. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  100. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  101. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  102. // M140 - Set bed target temp
  103. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  105. // M200 - Set filament diameter
  106. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  107. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  108. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  109. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  110. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  111. // M206 - set additional homeing offset
  112. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  113. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  114. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  115. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  116. // M220 S<factor in percent>- set speed factor override percentage
  117. // M221 S<factor in percent>- set extrude factor override percentage
  118. // M240 - Trigger a camera to take a photograph
  119. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  120. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  121. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  122. // M301 - Set PID parameters P I and D
  123. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  124. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  125. // M304 - Set bed PID parameters P I and D
  126. // M400 - Finish all moves
  127. // M401 - Lower z-probe if present
  128. // M402 - Raise z-probe if present
  129. // M500 - stores paramters in EEPROM
  130. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  131. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  132. // M503 - print the current settings (from memory not from eeprom)
  133. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  134. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  135. // M666 - set delta endstop adjustemnt
  136. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  137. // M907 - Set digital trimpot motor current using axis codes.
  138. // M908 - Control digital trimpot directly.
  139. // M350 - Set microstepping mode.
  140. // M351 - Toggle MS1 MS2 pins directly.
  141. // M928 - Start SD logging (M928 filename.g) - ended by M29
  142. // M999 - Restart after being stopped by error
  143. //Stepper Movement Variables
  144. //===========================================================================
  145. //=============================imported variables============================
  146. //===========================================================================
  147. //===========================================================================
  148. //=============================public variables=============================
  149. //===========================================================================
  150. #ifdef SDSUPPORT
  151. CardReader card;
  152. #endif
  153. float homing_feedrate[] = HOMING_FEEDRATE;
  154. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  155. int feedmultiply=100; //100->1 200->2
  156. int saved_feedmultiply;
  157. int extrudemultiply=100; //100->1 200->2
  158. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  159. float add_homeing[3]={0,0,0};
  160. #ifdef DELTA
  161. float endstop_adj[3]={0,0,0};
  162. #endif
  163. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  164. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  165. // Extruder offset
  166. #if EXTRUDERS > 1
  167. #ifndef DUAL_X_CARRIAGE
  168. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  169. #else
  170. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  171. #endif
  172. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  173. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  174. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  175. #endif
  176. };
  177. #endif
  178. uint8_t active_extruder = 0;
  179. int fanSpeed=0;
  180. #ifdef SERVO_ENDSTOPS
  181. int servo_endstops[] = SERVO_ENDSTOPS;
  182. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  183. #endif
  184. #ifdef BARICUDA
  185. int ValvePressure=0;
  186. int EtoPPressure=0;
  187. #endif
  188. #ifdef FWRETRACT
  189. bool autoretract_enabled=true;
  190. bool retracted=false;
  191. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  192. float retract_recover_length=0, retract_recover_feedrate=8*60;
  193. #endif
  194. #ifdef ULTIPANEL
  195. bool powersupply = true;
  196. #endif
  197. #ifdef DELTA
  198. float delta[3] = {0.0, 0.0, 0.0};
  199. #endif
  200. //===========================================================================
  201. //=============================private variables=============================
  202. //===========================================================================
  203. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  204. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  205. static float offset[3] = {0.0, 0.0, 0.0};
  206. static bool home_all_axis = true;
  207. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  208. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  209. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  210. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  211. static bool fromsd[BUFSIZE];
  212. static int bufindr = 0;
  213. static int bufindw = 0;
  214. static int buflen = 0;
  215. //static int i = 0;
  216. static char serial_char;
  217. static int serial_count = 0;
  218. static boolean comment_mode = false;
  219. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  220. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  221. //static float tt = 0;
  222. //static float bt = 0;
  223. //Inactivity shutdown variables
  224. static unsigned long previous_millis_cmd = 0;
  225. static unsigned long max_inactive_time = 0;
  226. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  227. unsigned long starttime=0;
  228. unsigned long stoptime=0;
  229. static uint8_t tmp_extruder;
  230. bool Stopped=false;
  231. #if NUM_SERVOS > 0
  232. Servo servos[NUM_SERVOS];
  233. #endif
  234. bool CooldownNoWait = true;
  235. bool target_direction;
  236. //===========================================================================
  237. //=============================ROUTINES=============================
  238. //===========================================================================
  239. void get_arc_coordinates();
  240. bool setTargetedHotend(int code);
  241. void serial_echopair_P(const char *s_P, float v)
  242. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  243. void serial_echopair_P(const char *s_P, double v)
  244. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  245. void serial_echopair_P(const char *s_P, unsigned long v)
  246. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  247. extern "C"{
  248. extern unsigned int __bss_end;
  249. extern unsigned int __heap_start;
  250. extern void *__brkval;
  251. int freeMemory() {
  252. int free_memory;
  253. if((int)__brkval == 0)
  254. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  255. else
  256. free_memory = ((int)&free_memory) - ((int)__brkval);
  257. return free_memory;
  258. }
  259. }
  260. //adds an command to the main command buffer
  261. //thats really done in a non-safe way.
  262. //needs overworking someday
  263. void enquecommand(const char *cmd)
  264. {
  265. if(buflen < BUFSIZE)
  266. {
  267. //this is dangerous if a mixing of serial and this happsens
  268. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  269. SERIAL_ECHO_START;
  270. SERIAL_ECHOPGM("enqueing \"");
  271. SERIAL_ECHO(cmdbuffer[bufindw]);
  272. SERIAL_ECHOLNPGM("\"");
  273. bufindw= (bufindw + 1)%BUFSIZE;
  274. buflen += 1;
  275. }
  276. }
  277. void enquecommand_P(const char *cmd)
  278. {
  279. if(buflen < BUFSIZE)
  280. {
  281. //this is dangerous if a mixing of serial and this happsens
  282. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  283. SERIAL_ECHO_START;
  284. SERIAL_ECHOPGM("enqueing \"");
  285. SERIAL_ECHO(cmdbuffer[bufindw]);
  286. SERIAL_ECHOLNPGM("\"");
  287. bufindw= (bufindw + 1)%BUFSIZE;
  288. buflen += 1;
  289. }
  290. }
  291. void setup_killpin()
  292. {
  293. #if defined(KILL_PIN) && KILL_PIN > -1
  294. pinMode(KILL_PIN,INPUT);
  295. WRITE(KILL_PIN,HIGH);
  296. #endif
  297. }
  298. void setup_photpin()
  299. {
  300. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  301. SET_OUTPUT(PHOTOGRAPH_PIN);
  302. WRITE(PHOTOGRAPH_PIN, LOW);
  303. #endif
  304. }
  305. void setup_powerhold()
  306. {
  307. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  308. SET_OUTPUT(SUICIDE_PIN);
  309. WRITE(SUICIDE_PIN, HIGH);
  310. #endif
  311. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  312. SET_OUTPUT(PS_ON_PIN);
  313. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  314. #endif
  315. }
  316. void suicide()
  317. {
  318. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  319. SET_OUTPUT(SUICIDE_PIN);
  320. WRITE(SUICIDE_PIN, LOW);
  321. #endif
  322. }
  323. void servo_init()
  324. {
  325. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  326. servos[0].attach(SERVO0_PIN);
  327. #endif
  328. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  329. servos[1].attach(SERVO1_PIN);
  330. #endif
  331. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  332. servos[2].attach(SERVO2_PIN);
  333. #endif
  334. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  335. servos[3].attach(SERVO3_PIN);
  336. #endif
  337. #if (NUM_SERVOS >= 5)
  338. #error "TODO: enter initalisation code for more servos"
  339. #endif
  340. // Set position of Servo Endstops that are defined
  341. #ifdef SERVO_ENDSTOPS
  342. for(int8_t i = 0; i < 3; i++)
  343. {
  344. if(servo_endstops[i] > -1) {
  345. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  346. }
  347. }
  348. #endif
  349. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  350. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  351. servos[servo_endstops[Z_AXIS]].detach();
  352. #endif
  353. }
  354. void setup()
  355. {
  356. setup_killpin();
  357. setup_powerhold();
  358. MYSERIAL.begin(BAUDRATE);
  359. SERIAL_PROTOCOLLNPGM("start");
  360. SERIAL_ECHO_START;
  361. // Check startup - does nothing if bootloader sets MCUSR to 0
  362. byte mcu = MCUSR;
  363. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  364. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  365. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  366. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  367. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  368. MCUSR=0;
  369. SERIAL_ECHOPGM(MSG_MARLIN);
  370. SERIAL_ECHOLNPGM(VERSION_STRING);
  371. #ifdef STRING_VERSION_CONFIG_H
  372. #ifdef STRING_CONFIG_H_AUTHOR
  373. SERIAL_ECHO_START;
  374. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  375. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  376. SERIAL_ECHOPGM(MSG_AUTHOR);
  377. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  378. SERIAL_ECHOPGM("Compiled: ");
  379. SERIAL_ECHOLNPGM(__DATE__);
  380. #endif
  381. #endif
  382. SERIAL_ECHO_START;
  383. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  384. SERIAL_ECHO(freeMemory());
  385. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  386. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  387. for(int8_t i = 0; i < BUFSIZE; i++)
  388. {
  389. fromsd[i] = false;
  390. }
  391. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  392. Config_RetrieveSettings();
  393. tp_init(); // Initialize temperature loop
  394. plan_init(); // Initialize planner;
  395. watchdog_init();
  396. st_init(); // Initialize stepper, this enables interrupts!
  397. setup_photpin();
  398. servo_init();
  399. lcd_init();
  400. _delay_ms(1000); // wait 1sec to display the splash screen
  401. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  402. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  403. #endif
  404. }
  405. void loop()
  406. {
  407. if(buflen < (BUFSIZE-1))
  408. get_command();
  409. #ifdef SDSUPPORT
  410. card.checkautostart(false);
  411. #endif
  412. if(buflen)
  413. {
  414. #ifdef SDSUPPORT
  415. if(card.saving)
  416. {
  417. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  418. {
  419. card.write_command(cmdbuffer[bufindr]);
  420. if(card.logging)
  421. {
  422. process_commands();
  423. }
  424. else
  425. {
  426. SERIAL_PROTOCOLLNPGM(MSG_OK);
  427. }
  428. }
  429. else
  430. {
  431. card.closefile();
  432. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  433. }
  434. }
  435. else
  436. {
  437. process_commands();
  438. }
  439. #else
  440. process_commands();
  441. #endif //SDSUPPORT
  442. buflen = (buflen-1);
  443. bufindr = (bufindr + 1)%BUFSIZE;
  444. }
  445. //check heater every n milliseconds
  446. manage_heater();
  447. manage_inactivity();
  448. checkHitEndstops();
  449. lcd_update();
  450. }
  451. void get_command()
  452. {
  453. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  454. serial_char = MYSERIAL.read();
  455. if(serial_char == '\n' ||
  456. serial_char == '\r' ||
  457. (serial_char == ':' && comment_mode == false) ||
  458. serial_count >= (MAX_CMD_SIZE - 1) )
  459. {
  460. if(!serial_count) { //if empty line
  461. comment_mode = false; //for new command
  462. return;
  463. }
  464. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  465. if(!comment_mode){
  466. comment_mode = false; //for new command
  467. fromsd[bufindw] = false;
  468. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  469. {
  470. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  471. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  472. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  473. SERIAL_ERROR_START;
  474. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  475. SERIAL_ERRORLN(gcode_LastN);
  476. //Serial.println(gcode_N);
  477. FlushSerialRequestResend();
  478. serial_count = 0;
  479. return;
  480. }
  481. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  482. {
  483. byte checksum = 0;
  484. byte count = 0;
  485. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  486. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  487. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  488. SERIAL_ERROR_START;
  489. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  490. SERIAL_ERRORLN(gcode_LastN);
  491. FlushSerialRequestResend();
  492. serial_count = 0;
  493. return;
  494. }
  495. //if no errors, continue parsing
  496. }
  497. else
  498. {
  499. SERIAL_ERROR_START;
  500. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  501. SERIAL_ERRORLN(gcode_LastN);
  502. FlushSerialRequestResend();
  503. serial_count = 0;
  504. return;
  505. }
  506. gcode_LastN = gcode_N;
  507. //if no errors, continue parsing
  508. }
  509. else // if we don't receive 'N' but still see '*'
  510. {
  511. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  512. {
  513. SERIAL_ERROR_START;
  514. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  515. SERIAL_ERRORLN(gcode_LastN);
  516. serial_count = 0;
  517. return;
  518. }
  519. }
  520. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  521. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  522. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  523. case 0:
  524. case 1:
  525. case 2:
  526. case 3:
  527. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  528. #ifdef SDSUPPORT
  529. if(card.saving)
  530. break;
  531. #endif //SDSUPPORT
  532. SERIAL_PROTOCOLLNPGM(MSG_OK);
  533. }
  534. else {
  535. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  536. LCD_MESSAGEPGM(MSG_STOPPED);
  537. }
  538. break;
  539. default:
  540. break;
  541. }
  542. }
  543. bufindw = (bufindw + 1)%BUFSIZE;
  544. buflen += 1;
  545. }
  546. serial_count = 0; //clear buffer
  547. }
  548. else
  549. {
  550. if(serial_char == ';') comment_mode = true;
  551. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  552. }
  553. }
  554. #ifdef SDSUPPORT
  555. if(!card.sdprinting || serial_count!=0){
  556. return;
  557. }
  558. while( !card.eof() && buflen < BUFSIZE) {
  559. int16_t n=card.get();
  560. serial_char = (char)n;
  561. if(serial_char == '\n' ||
  562. serial_char == '\r' ||
  563. (serial_char == ':' && comment_mode == false) ||
  564. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  565. {
  566. if(card.eof()){
  567. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  568. stoptime=millis();
  569. char time[30];
  570. unsigned long t=(stoptime-starttime)/1000;
  571. int hours, minutes;
  572. minutes=(t/60)%60;
  573. hours=t/60/60;
  574. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  575. SERIAL_ECHO_START;
  576. SERIAL_ECHOLN(time);
  577. lcd_setstatus(time);
  578. card.printingHasFinished();
  579. card.checkautostart(true);
  580. }
  581. if(!serial_count)
  582. {
  583. comment_mode = false; //for new command
  584. return; //if empty line
  585. }
  586. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  587. // if(!comment_mode){
  588. fromsd[bufindw] = true;
  589. buflen += 1;
  590. bufindw = (bufindw + 1)%BUFSIZE;
  591. // }
  592. comment_mode = false; //for new command
  593. serial_count = 0; //clear buffer
  594. }
  595. else
  596. {
  597. if(serial_char == ';') comment_mode = true;
  598. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  599. }
  600. }
  601. #endif //SDSUPPORT
  602. }
  603. float code_value()
  604. {
  605. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  606. }
  607. long code_value_long()
  608. {
  609. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  610. }
  611. bool code_seen(char code)
  612. {
  613. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  614. return (strchr_pointer != NULL); //Return True if a character was found
  615. }
  616. #define DEFINE_PGM_READ_ANY(type, reader) \
  617. static inline type pgm_read_any(const type *p) \
  618. { return pgm_read_##reader##_near(p); }
  619. DEFINE_PGM_READ_ANY(float, float);
  620. DEFINE_PGM_READ_ANY(signed char, byte);
  621. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  622. static const PROGMEM type array##_P[3] = \
  623. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  624. static inline type array(int axis) \
  625. { return pgm_read_any(&array##_P[axis]); }
  626. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  627. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  628. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  629. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  630. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  631. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  632. #ifdef DUAL_X_CARRIAGE
  633. #if EXTRUDERS == 1 || defined(COREXY) \
  634. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  635. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  636. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  637. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  638. #endif
  639. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  640. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  641. #endif
  642. #define DXC_FULL_CONTROL_MODE 0
  643. #define DXC_AUTO_PARK_MODE 1
  644. #define DXC_DUPLICATION_MODE 2
  645. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  646. static float x_home_pos(int extruder) {
  647. if (extruder == 0)
  648. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  649. else
  650. // In dual carriage mode the extruder offset provides an override of the
  651. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  652. // This allow soft recalibration of the second extruder offset position without firmware reflash
  653. // (through the M218 command).
  654. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  655. }
  656. static int x_home_dir(int extruder) {
  657. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  658. }
  659. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  660. static bool active_extruder_parked = false; // used in mode 1 & 2
  661. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  662. static unsigned long delayed_move_time = 0; // used in mode 1
  663. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  664. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  665. bool extruder_duplication_enabled = false; // used in mode 2
  666. #endif //DUAL_X_CARRIAGE
  667. static void axis_is_at_home(int axis) {
  668. #ifdef DUAL_X_CARRIAGE
  669. if (axis == X_AXIS) {
  670. if (active_extruder != 0) {
  671. current_position[X_AXIS] = x_home_pos(active_extruder);
  672. min_pos[X_AXIS] = X2_MIN_POS;
  673. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  674. return;
  675. }
  676. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  677. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  678. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  679. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  680. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  681. return;
  682. }
  683. }
  684. #endif
  685. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  686. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  687. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  688. }
  689. #ifdef ENABLE_AUTO_BED_LEVELING
  690. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  691. plan_bed_level_matrix.set_to_identity();
  692. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  693. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  694. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  695. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  696. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  697. vector_3 planeNormal = vector_3::cross(yPositive, xPositive).get_normal();
  698. //planeNormal.debug("planeNormal");
  699. //yPositive.debug("yPositive");
  700. matrix_3x3 bedLevel = matrix_3x3::create_look_at(planeNormal, yPositive);
  701. //bedLevel.debug("bedLevel");
  702. //plan_bed_level_matrix.debug("bed level before");
  703. //vector_3 uncorrected_position = plan_get_position_mm();
  704. //uncorrected_position.debug("position before");
  705. // and set our bed level equation to do the right thing
  706. plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  707. //plan_bed_level_matrix.debug("bed level after");
  708. vector_3 corrected_position = plan_get_position();
  709. //corrected_position.debug("position after");
  710. current_position[X_AXIS] = corrected_position.x;
  711. current_position[Y_AXIS] = corrected_position.y;
  712. current_position[Z_AXIS] = corrected_position.z;
  713. // but the bed at 0 so we don't go below it.
  714. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  715. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  716. }
  717. static void run_z_probe() {
  718. plan_bed_level_matrix.set_to_identity();
  719. feedrate = homing_feedrate[Z_AXIS];
  720. // move down until you find the bed
  721. float zPosition = -10;
  722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  723. st_synchronize();
  724. // we have to let the planner know where we are right now as it is not where we said to go.
  725. zPosition = st_get_position_mm(Z_AXIS);
  726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  727. // move up the retract distance
  728. zPosition += home_retract_mm(Z_AXIS);
  729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  730. st_synchronize();
  731. // move back down slowly to find bed
  732. feedrate = homing_feedrate[Z_AXIS]/4;
  733. zPosition -= home_retract_mm(Z_AXIS) * 2;
  734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  735. st_synchronize();
  736. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  737. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  738. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  739. }
  740. static void do_blocking_move_to(float x, float y, float z) {
  741. float oldFeedRate = feedrate;
  742. feedrate = XY_TRAVEL_SPEED;
  743. current_position[X_AXIS] = x;
  744. current_position[Y_AXIS] = y;
  745. current_position[Z_AXIS] = z;
  746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  747. st_synchronize();
  748. feedrate = oldFeedRate;
  749. }
  750. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  751. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  752. }
  753. static void setup_for_endstop_move() {
  754. saved_feedrate = feedrate;
  755. saved_feedmultiply = feedmultiply;
  756. feedmultiply = 100;
  757. previous_millis_cmd = millis();
  758. enable_endstops(true);
  759. }
  760. static void clean_up_after_endstop_move() {
  761. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  762. enable_endstops(false);
  763. #endif
  764. feedrate = saved_feedrate;
  765. feedmultiply = saved_feedmultiply;
  766. previous_millis_cmd = millis();
  767. }
  768. static void engage_z_probe() {
  769. // Engage Z Servo endstop if enabled
  770. #ifdef SERVO_ENDSTOPS
  771. if (servo_endstops[Z_AXIS] > -1) {
  772. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  773. servos[servo_endstops[Z_AXIS]].attach(0);
  774. #endif
  775. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  776. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  777. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  778. servos[servo_endstops[Z_AXIS]].detach();
  779. #endif
  780. }
  781. #endif
  782. }
  783. static void retract_z_probe() {
  784. // Retract Z Servo endstop if enabled
  785. #ifdef SERVO_ENDSTOPS
  786. if (servo_endstops[Z_AXIS] > -1) {
  787. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  788. servos[servo_endstops[Z_AXIS]].attach(0);
  789. #endif
  790. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  791. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  792. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  793. servos[servo_endstops[Z_AXIS]].detach();
  794. #endif
  795. }
  796. #endif
  797. }
  798. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  799. static void homeaxis(int axis) {
  800. #define HOMEAXIS_DO(LETTER) \
  801. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  802. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  803. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  804. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  805. 0) {
  806. int axis_home_dir = home_dir(axis);
  807. #ifdef DUAL_X_CARRIAGE
  808. if (axis == X_AXIS)
  809. axis_home_dir = x_home_dir(active_extruder);
  810. #endif
  811. // Engage Servo endstop if enabled
  812. #ifdef SERVO_ENDSTOPS
  813. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  814. if (axis==Z_AXIS) engage_z_probe();
  815. else
  816. #endif
  817. if (servo_endstops[axis] > -1) {
  818. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  819. }
  820. #endif
  821. current_position[axis] = 0;
  822. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  823. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  824. feedrate = homing_feedrate[axis];
  825. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  826. st_synchronize();
  827. current_position[axis] = 0;
  828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  829. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  831. st_synchronize();
  832. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  833. #ifdef DELTA
  834. feedrate = homing_feedrate[axis]/10;
  835. #else
  836. feedrate = homing_feedrate[axis]/2 ;
  837. #endif
  838. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  839. st_synchronize();
  840. #ifdef DELTA
  841. // retrace by the amount specified in endstop_adj
  842. if (endstop_adj[axis] * axis_home_dir < 0) {
  843. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  844. destination[axis] = endstop_adj[axis];
  845. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  846. st_synchronize();
  847. }
  848. #endif
  849. axis_is_at_home(axis);
  850. destination[axis] = current_position[axis];
  851. feedrate = 0.0;
  852. endstops_hit_on_purpose();
  853. // Retract Servo endstop if enabled
  854. #ifdef SERVO_ENDSTOPS
  855. if (servo_endstops[axis] > -1) {
  856. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  857. }
  858. #endif
  859. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  860. if (axis==Z_AXIS) retract_z_probe();
  861. #endif
  862. }
  863. }
  864. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  865. void process_commands()
  866. {
  867. unsigned long codenum; //throw away variable
  868. char *starpos = NULL;
  869. #ifdef ENABLE_AUTO_BED_LEVELING
  870. float x_tmp, y_tmp, z_tmp, real_z;
  871. #endif
  872. if(code_seen('G'))
  873. {
  874. switch((int)code_value())
  875. {
  876. case 0: // G0 -> G1
  877. case 1: // G1
  878. if(Stopped == false) {
  879. get_coordinates(); // For X Y Z E F
  880. prepare_move();
  881. //ClearToSend();
  882. return;
  883. }
  884. //break;
  885. case 2: // G2 - CW ARC
  886. if(Stopped == false) {
  887. get_arc_coordinates();
  888. prepare_arc_move(true);
  889. return;
  890. }
  891. case 3: // G3 - CCW ARC
  892. if(Stopped == false) {
  893. get_arc_coordinates();
  894. prepare_arc_move(false);
  895. return;
  896. }
  897. case 4: // G4 dwell
  898. LCD_MESSAGEPGM(MSG_DWELL);
  899. codenum = 0;
  900. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  901. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  902. st_synchronize();
  903. codenum += millis(); // keep track of when we started waiting
  904. previous_millis_cmd = millis();
  905. while(millis() < codenum ){
  906. manage_heater();
  907. manage_inactivity();
  908. lcd_update();
  909. }
  910. break;
  911. #ifdef FWRETRACT
  912. case 10: // G10 retract
  913. if(!retracted)
  914. {
  915. destination[X_AXIS]=current_position[X_AXIS];
  916. destination[Y_AXIS]=current_position[Y_AXIS];
  917. destination[Z_AXIS]=current_position[Z_AXIS];
  918. current_position[Z_AXIS]+=-retract_zlift;
  919. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  920. feedrate=retract_feedrate;
  921. retracted=true;
  922. prepare_move();
  923. }
  924. break;
  925. case 11: // G10 retract_recover
  926. if(!retracted)
  927. {
  928. destination[X_AXIS]=current_position[X_AXIS];
  929. destination[Y_AXIS]=current_position[Y_AXIS];
  930. destination[Z_AXIS]=current_position[Z_AXIS];
  931. current_position[Z_AXIS]+=retract_zlift;
  932. current_position[E_AXIS]+=-retract_recover_length;
  933. feedrate=retract_recover_feedrate;
  934. retracted=false;
  935. prepare_move();
  936. }
  937. break;
  938. #endif //FWRETRACT
  939. case 28: //G28 Home all Axis one at a time
  940. #ifdef ENABLE_AUTO_BED_LEVELING
  941. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  942. #endif //ENABLE_AUTO_BED_LEVELING
  943. saved_feedrate = feedrate;
  944. saved_feedmultiply = feedmultiply;
  945. feedmultiply = 100;
  946. previous_millis_cmd = millis();
  947. enable_endstops(true);
  948. for(int8_t i=0; i < NUM_AXIS; i++) {
  949. destination[i] = current_position[i];
  950. }
  951. feedrate = 0.0;
  952. #ifdef DELTA
  953. // A delta can only safely home all axis at the same time
  954. // all axis have to home at the same time
  955. // Move all carriages up together until the first endstop is hit.
  956. current_position[X_AXIS] = 0;
  957. current_position[Y_AXIS] = 0;
  958. current_position[Z_AXIS] = 0;
  959. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  960. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  961. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  962. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  963. feedrate = 1.732 * homing_feedrate[X_AXIS];
  964. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  965. st_synchronize();
  966. endstops_hit_on_purpose();
  967. current_position[X_AXIS] = destination[X_AXIS];
  968. current_position[Y_AXIS] = destination[Y_AXIS];
  969. current_position[Z_AXIS] = destination[Z_AXIS];
  970. // take care of back off and rehome now we are all at the top
  971. HOMEAXIS(X);
  972. HOMEAXIS(Y);
  973. HOMEAXIS(Z);
  974. calculate_delta(current_position);
  975. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  976. #else // NOT DELTA
  977. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  978. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  979. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  980. HOMEAXIS(Z);
  981. }
  982. #endif
  983. #ifdef QUICK_HOME
  984. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  985. {
  986. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  987. #ifndef DUAL_X_CARRIAGE
  988. int x_axis_home_dir = home_dir(X_AXIS);
  989. #else
  990. int x_axis_home_dir = x_home_dir(active_extruder);
  991. extruder_duplication_enabled = false;
  992. #endif
  993. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  994. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  995. feedrate = homing_feedrate[X_AXIS];
  996. if(homing_feedrate[Y_AXIS]<feedrate)
  997. feedrate =homing_feedrate[Y_AXIS];
  998. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  999. st_synchronize();
  1000. axis_is_at_home(X_AXIS);
  1001. axis_is_at_home(Y_AXIS);
  1002. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1003. destination[X_AXIS] = current_position[X_AXIS];
  1004. destination[Y_AXIS] = current_position[Y_AXIS];
  1005. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1006. feedrate = 0.0;
  1007. st_synchronize();
  1008. endstops_hit_on_purpose();
  1009. current_position[X_AXIS] = destination[X_AXIS];
  1010. current_position[Y_AXIS] = destination[Y_AXIS];
  1011. current_position[Z_AXIS] = destination[Z_AXIS];
  1012. }
  1013. #endif
  1014. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1015. {
  1016. #ifdef DUAL_X_CARRIAGE
  1017. int tmp_extruder = active_extruder;
  1018. extruder_duplication_enabled = false;
  1019. active_extruder = !active_extruder;
  1020. HOMEAXIS(X);
  1021. inactive_extruder_x_pos = current_position[X_AXIS];
  1022. active_extruder = tmp_extruder;
  1023. HOMEAXIS(X);
  1024. // reset state used by the different modes
  1025. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1026. delayed_move_time = 0;
  1027. active_extruder_parked = true;
  1028. #else
  1029. HOMEAXIS(X);
  1030. #endif
  1031. }
  1032. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1033. HOMEAXIS(Y);
  1034. }
  1035. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1036. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1037. HOMEAXIS(Z);
  1038. }
  1039. #endif
  1040. if(code_seen(axis_codes[X_AXIS]))
  1041. {
  1042. if(code_value_long() != 0) {
  1043. current_position[X_AXIS]=code_value()+add_homeing[0];
  1044. }
  1045. }
  1046. if(code_seen(axis_codes[Y_AXIS])) {
  1047. if(code_value_long() != 0) {
  1048. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1049. }
  1050. }
  1051. if(code_seen(axis_codes[Z_AXIS])) {
  1052. if(code_value_long() != 0) {
  1053. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1054. }
  1055. }
  1056. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1057. #endif // else DELTA
  1058. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1059. enable_endstops(false);
  1060. #endif
  1061. feedrate = saved_feedrate;
  1062. feedmultiply = saved_feedmultiply;
  1063. previous_millis_cmd = millis();
  1064. endstops_hit_on_purpose();
  1065. break;
  1066. #ifdef ENABLE_AUTO_BED_LEVELING
  1067. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1068. {
  1069. #if Z_MIN_PIN == -1
  1070. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1071. #endif
  1072. st_synchronize();
  1073. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1074. //vector_3 corrected_position = plan_get_position_mm();
  1075. //corrected_position.debug("position before G29");
  1076. plan_bed_level_matrix.set_to_identity();
  1077. vector_3 uncorrected_position = plan_get_position();
  1078. //uncorrected_position.debug("position durring G29");
  1079. current_position[X_AXIS] = uncorrected_position.x;
  1080. current_position[Y_AXIS] = uncorrected_position.y;
  1081. current_position[Z_AXIS] = uncorrected_position.z;
  1082. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1083. setup_for_endstop_move();
  1084. feedrate = homing_feedrate[Z_AXIS];
  1085. // prob 1
  1086. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1087. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1088. engage_z_probe(); // Engage Z Servo endstop if available
  1089. run_z_probe();
  1090. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1091. SERIAL_PROTOCOLPGM("Bed x: ");
  1092. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1093. SERIAL_PROTOCOLPGM(" y: ");
  1094. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1095. SERIAL_PROTOCOLPGM(" z: ");
  1096. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1097. SERIAL_PROTOCOLPGM("\n");
  1098. // prob 2
  1099. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1100. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1101. run_z_probe();
  1102. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1103. SERIAL_PROTOCOLPGM("Bed x: ");
  1104. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1105. SERIAL_PROTOCOLPGM(" y: ");
  1106. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1107. SERIAL_PROTOCOLPGM(" z: ");
  1108. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1109. SERIAL_PROTOCOLPGM("\n");
  1110. // prob 3
  1111. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1112. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1113. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1114. run_z_probe();
  1115. float z_at_xRight_yFront = current_position[Z_AXIS];
  1116. SERIAL_PROTOCOLPGM("Bed x: ");
  1117. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1118. SERIAL_PROTOCOLPGM(" y: ");
  1119. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1120. SERIAL_PROTOCOLPGM(" z: ");
  1121. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1122. SERIAL_PROTOCOLPGM("\n");
  1123. clean_up_after_endstop_move();
  1124. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1125. retract_z_probe(); // Retract Z Servo endstop if available
  1126. st_synchronize();
  1127. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1128. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1129. // When the bed is uneven, this height must be corrected.
  1130. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1131. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1132. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1133. z_tmp = current_position[Z_AXIS];
  1134. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1135. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1136. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1137. }
  1138. break;
  1139. case 30: // G30 Single Z Probe
  1140. {
  1141. engage_z_probe(); // Engage Z Servo endstop if available
  1142. st_synchronize();
  1143. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1144. setup_for_endstop_move();
  1145. feedrate = homing_feedrate[Z_AXIS];
  1146. run_z_probe();
  1147. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1148. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1149. SERIAL_PROTOCOLPGM(" Y: ");
  1150. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1151. SERIAL_PROTOCOLPGM(" Z: ");
  1152. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1153. SERIAL_PROTOCOLPGM("\n");
  1154. clean_up_after_endstop_move();
  1155. retract_z_probe(); // Retract Z Servo endstop if available
  1156. }
  1157. break;
  1158. #endif // ENABLE_AUTO_BED_LEVELING
  1159. case 90: // G90
  1160. relative_mode = false;
  1161. break;
  1162. case 91: // G91
  1163. relative_mode = true;
  1164. break;
  1165. case 92: // G92
  1166. if(!code_seen(axis_codes[E_AXIS]))
  1167. st_synchronize();
  1168. for(int8_t i=0; i < NUM_AXIS; i++) {
  1169. if(code_seen(axis_codes[i])) {
  1170. if(i == E_AXIS) {
  1171. current_position[i] = code_value();
  1172. plan_set_e_position(current_position[E_AXIS]);
  1173. }
  1174. else {
  1175. current_position[i] = code_value()+add_homeing[i];
  1176. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1177. }
  1178. }
  1179. }
  1180. break;
  1181. }
  1182. }
  1183. else if(code_seen('M'))
  1184. {
  1185. switch( (int)code_value() )
  1186. {
  1187. #ifdef ULTIPANEL
  1188. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1189. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1190. {
  1191. LCD_MESSAGEPGM(MSG_USERWAIT);
  1192. codenum = 0;
  1193. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1194. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1195. st_synchronize();
  1196. previous_millis_cmd = millis();
  1197. if (codenum > 0){
  1198. codenum += millis(); // keep track of when we started waiting
  1199. while(millis() < codenum && !lcd_clicked()){
  1200. manage_heater();
  1201. manage_inactivity();
  1202. lcd_update();
  1203. }
  1204. }else{
  1205. while(!lcd_clicked()){
  1206. manage_heater();
  1207. manage_inactivity();
  1208. lcd_update();
  1209. }
  1210. }
  1211. LCD_MESSAGEPGM(MSG_RESUMING);
  1212. }
  1213. break;
  1214. #endif
  1215. case 17:
  1216. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1217. enable_x();
  1218. enable_y();
  1219. enable_z();
  1220. enable_e0();
  1221. enable_e1();
  1222. enable_e2();
  1223. break;
  1224. #ifdef SDSUPPORT
  1225. case 20: // M20 - list SD card
  1226. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1227. card.ls();
  1228. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1229. break;
  1230. case 21: // M21 - init SD card
  1231. card.initsd();
  1232. break;
  1233. case 22: //M22 - release SD card
  1234. card.release();
  1235. break;
  1236. case 23: //M23 - Select file
  1237. starpos = (strchr(strchr_pointer + 4,'*'));
  1238. if(starpos!=NULL)
  1239. *(starpos-1)='\0';
  1240. card.openFile(strchr_pointer + 4,true);
  1241. break;
  1242. case 24: //M24 - Start SD print
  1243. card.startFileprint();
  1244. starttime=millis();
  1245. break;
  1246. case 25: //M25 - Pause SD print
  1247. card.pauseSDPrint();
  1248. break;
  1249. case 26: //M26 - Set SD index
  1250. if(card.cardOK && code_seen('S')) {
  1251. card.setIndex(code_value_long());
  1252. }
  1253. break;
  1254. case 27: //M27 - Get SD status
  1255. card.getStatus();
  1256. break;
  1257. case 28: //M28 - Start SD write
  1258. starpos = (strchr(strchr_pointer + 4,'*'));
  1259. if(starpos != NULL){
  1260. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1261. strchr_pointer = strchr(npos,' ') + 1;
  1262. *(starpos-1) = '\0';
  1263. }
  1264. card.openFile(strchr_pointer+4,false);
  1265. break;
  1266. case 29: //M29 - Stop SD write
  1267. //processed in write to file routine above
  1268. //card,saving = false;
  1269. break;
  1270. case 30: //M30 <filename> Delete File
  1271. if (card.cardOK){
  1272. card.closefile();
  1273. starpos = (strchr(strchr_pointer + 4,'*'));
  1274. if(starpos != NULL){
  1275. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1276. strchr_pointer = strchr(npos,' ') + 1;
  1277. *(starpos-1) = '\0';
  1278. }
  1279. card.removeFile(strchr_pointer + 4);
  1280. }
  1281. break;
  1282. case 32: //M32 - Select file and start SD print
  1283. if(card.sdprinting) {
  1284. st_synchronize();
  1285. card.closefile();
  1286. card.sdprinting = false;
  1287. }
  1288. starpos = (strchr(strchr_pointer + 4,'*'));
  1289. if(starpos!=NULL)
  1290. *(starpos-1)='\0';
  1291. card.openFile(strchr_pointer + 4,true);
  1292. card.startFileprint();
  1293. starttime=millis();
  1294. break;
  1295. case 928: //M928 - Start SD write
  1296. starpos = (strchr(strchr_pointer + 5,'*'));
  1297. if(starpos != NULL){
  1298. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1299. strchr_pointer = strchr(npos,' ') + 1;
  1300. *(starpos-1) = '\0';
  1301. }
  1302. card.openLogFile(strchr_pointer+5);
  1303. break;
  1304. #endif //SDSUPPORT
  1305. case 31: //M31 take time since the start of the SD print or an M109 command
  1306. {
  1307. stoptime=millis();
  1308. char time[30];
  1309. unsigned long t=(stoptime-starttime)/1000;
  1310. int sec,min;
  1311. min=t/60;
  1312. sec=t%60;
  1313. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1314. SERIAL_ECHO_START;
  1315. SERIAL_ECHOLN(time);
  1316. lcd_setstatus(time);
  1317. autotempShutdown();
  1318. }
  1319. break;
  1320. case 42: //M42 -Change pin status via gcode
  1321. if (code_seen('S'))
  1322. {
  1323. int pin_status = code_value();
  1324. int pin_number = LED_PIN;
  1325. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1326. pin_number = code_value();
  1327. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1328. {
  1329. if (sensitive_pins[i] == pin_number)
  1330. {
  1331. pin_number = -1;
  1332. break;
  1333. }
  1334. }
  1335. #if defined(FAN_PIN) && FAN_PIN > -1
  1336. if (pin_number == FAN_PIN)
  1337. fanSpeed = pin_status;
  1338. #endif
  1339. if (pin_number > -1)
  1340. {
  1341. pinMode(pin_number, OUTPUT);
  1342. digitalWrite(pin_number, pin_status);
  1343. analogWrite(pin_number, pin_status);
  1344. }
  1345. }
  1346. break;
  1347. case 104: // M104
  1348. if(setTargetedHotend(104)){
  1349. break;
  1350. }
  1351. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1352. #ifdef DUAL_X_CARRIAGE
  1353. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1354. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1355. #endif
  1356. setWatch();
  1357. break;
  1358. case 140: // M140 set bed temp
  1359. if (code_seen('S')) setTargetBed(code_value());
  1360. break;
  1361. case 105 : // M105
  1362. if(setTargetedHotend(105)){
  1363. break;
  1364. }
  1365. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1366. SERIAL_PROTOCOLPGM("ok T:");
  1367. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1368. SERIAL_PROTOCOLPGM(" /");
  1369. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1370. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1371. SERIAL_PROTOCOLPGM(" B:");
  1372. SERIAL_PROTOCOL_F(degBed(),1);
  1373. SERIAL_PROTOCOLPGM(" /");
  1374. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1375. #endif //TEMP_BED_PIN
  1376. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1377. SERIAL_PROTOCOLPGM(" T");
  1378. SERIAL_PROTOCOL(cur_extruder);
  1379. SERIAL_PROTOCOLPGM(":");
  1380. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1381. SERIAL_PROTOCOLPGM(" /");
  1382. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1383. }
  1384. #else
  1385. SERIAL_ERROR_START;
  1386. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1387. #endif
  1388. SERIAL_PROTOCOLPGM(" @:");
  1389. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1390. SERIAL_PROTOCOLPGM(" B@:");
  1391. SERIAL_PROTOCOL(getHeaterPower(-1));
  1392. SERIAL_PROTOCOLLN("");
  1393. return;
  1394. break;
  1395. case 109:
  1396. {// M109 - Wait for extruder heater to reach target.
  1397. if(setTargetedHotend(109)){
  1398. break;
  1399. }
  1400. LCD_MESSAGEPGM(MSG_HEATING);
  1401. #ifdef AUTOTEMP
  1402. autotemp_enabled=false;
  1403. #endif
  1404. if (code_seen('S')) {
  1405. setTargetHotend(code_value(), tmp_extruder);
  1406. #ifdef DUAL_X_CARRIAGE
  1407. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1408. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1409. #endif
  1410. CooldownNoWait = true;
  1411. } else if (code_seen('R')) {
  1412. setTargetHotend(code_value(), tmp_extruder);
  1413. #ifdef DUAL_X_CARRIAGE
  1414. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1415. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1416. #endif
  1417. CooldownNoWait = false;
  1418. }
  1419. #ifdef AUTOTEMP
  1420. if (code_seen('S')) autotemp_min=code_value();
  1421. if (code_seen('B')) autotemp_max=code_value();
  1422. if (code_seen('F'))
  1423. {
  1424. autotemp_factor=code_value();
  1425. autotemp_enabled=true;
  1426. }
  1427. #endif
  1428. setWatch();
  1429. codenum = millis();
  1430. /* See if we are heating up or cooling down */
  1431. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1432. #ifdef TEMP_RESIDENCY_TIME
  1433. long residencyStart;
  1434. residencyStart = -1;
  1435. /* continue to loop until we have reached the target temp
  1436. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1437. while((residencyStart == -1) ||
  1438. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1439. #else
  1440. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1441. #endif //TEMP_RESIDENCY_TIME
  1442. if( (millis() - codenum) > 1000UL )
  1443. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1444. SERIAL_PROTOCOLPGM("T:");
  1445. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1446. SERIAL_PROTOCOLPGM(" E:");
  1447. SERIAL_PROTOCOL((int)tmp_extruder);
  1448. #ifdef TEMP_RESIDENCY_TIME
  1449. SERIAL_PROTOCOLPGM(" W:");
  1450. if(residencyStart > -1)
  1451. {
  1452. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1453. SERIAL_PROTOCOLLN( codenum );
  1454. }
  1455. else
  1456. {
  1457. SERIAL_PROTOCOLLN( "?" );
  1458. }
  1459. #else
  1460. SERIAL_PROTOCOLLN("");
  1461. #endif
  1462. codenum = millis();
  1463. }
  1464. manage_heater();
  1465. manage_inactivity();
  1466. lcd_update();
  1467. #ifdef TEMP_RESIDENCY_TIME
  1468. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1469. or when current temp falls outside the hysteresis after target temp was reached */
  1470. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1471. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1472. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1473. {
  1474. residencyStart = millis();
  1475. }
  1476. #endif //TEMP_RESIDENCY_TIME
  1477. }
  1478. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1479. starttime=millis();
  1480. previous_millis_cmd = millis();
  1481. }
  1482. break;
  1483. case 190: // M190 - Wait for bed heater to reach target.
  1484. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1485. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1486. if (code_seen('S')) {
  1487. setTargetBed(code_value());
  1488. CooldownNoWait = true;
  1489. } else if (code_seen('R')) {
  1490. setTargetBed(code_value());
  1491. CooldownNoWait = false;
  1492. }
  1493. codenum = millis();
  1494. target_direction = isHeatingBed(); // true if heating, false if cooling
  1495. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1496. {
  1497. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1498. {
  1499. float tt=degHotend(active_extruder);
  1500. SERIAL_PROTOCOLPGM("T:");
  1501. SERIAL_PROTOCOL(tt);
  1502. SERIAL_PROTOCOLPGM(" E:");
  1503. SERIAL_PROTOCOL((int)active_extruder);
  1504. SERIAL_PROTOCOLPGM(" B:");
  1505. SERIAL_PROTOCOL_F(degBed(),1);
  1506. SERIAL_PROTOCOLLN("");
  1507. codenum = millis();
  1508. }
  1509. manage_heater();
  1510. manage_inactivity();
  1511. lcd_update();
  1512. }
  1513. LCD_MESSAGEPGM(MSG_BED_DONE);
  1514. previous_millis_cmd = millis();
  1515. #endif
  1516. break;
  1517. #if defined(FAN_PIN) && FAN_PIN > -1
  1518. case 106: //M106 Fan On
  1519. if (code_seen('S')){
  1520. fanSpeed=constrain(code_value(),0,255);
  1521. }
  1522. else {
  1523. fanSpeed=255;
  1524. }
  1525. break;
  1526. case 107: //M107 Fan Off
  1527. fanSpeed = 0;
  1528. break;
  1529. #endif //FAN_PIN
  1530. #ifdef BARICUDA
  1531. // PWM for HEATER_1_PIN
  1532. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1533. case 126: //M126 valve open
  1534. if (code_seen('S')){
  1535. ValvePressure=constrain(code_value(),0,255);
  1536. }
  1537. else {
  1538. ValvePressure=255;
  1539. }
  1540. break;
  1541. case 127: //M127 valve closed
  1542. ValvePressure = 0;
  1543. break;
  1544. #endif //HEATER_1_PIN
  1545. // PWM for HEATER_2_PIN
  1546. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1547. case 128: //M128 valve open
  1548. if (code_seen('S')){
  1549. EtoPPressure=constrain(code_value(),0,255);
  1550. }
  1551. else {
  1552. EtoPPressure=255;
  1553. }
  1554. break;
  1555. case 129: //M129 valve closed
  1556. EtoPPressure = 0;
  1557. break;
  1558. #endif //HEATER_2_PIN
  1559. #endif
  1560. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1561. case 80: // M80 - Turn on Power Supply
  1562. SET_OUTPUT(PS_ON_PIN); //GND
  1563. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1564. #ifdef ULTIPANEL
  1565. powersupply = true;
  1566. LCD_MESSAGEPGM(WELCOME_MSG);
  1567. lcd_update();
  1568. #endif
  1569. break;
  1570. #endif
  1571. case 81: // M81 - Turn off Power Supply
  1572. disable_heater();
  1573. st_synchronize();
  1574. disable_e0();
  1575. disable_e1();
  1576. disable_e2();
  1577. finishAndDisableSteppers();
  1578. fanSpeed = 0;
  1579. delay(1000); // Wait a little before to switch off
  1580. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1581. st_synchronize();
  1582. suicide();
  1583. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1584. SET_OUTPUT(PS_ON_PIN);
  1585. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1586. #endif
  1587. #ifdef ULTIPANEL
  1588. powersupply = false;
  1589. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1590. lcd_update();
  1591. #endif
  1592. break;
  1593. case 82:
  1594. axis_relative_modes[3] = false;
  1595. break;
  1596. case 83:
  1597. axis_relative_modes[3] = true;
  1598. break;
  1599. case 18: //compatibility
  1600. case 84: // M84
  1601. if(code_seen('S')){
  1602. stepper_inactive_time = code_value() * 1000;
  1603. }
  1604. else
  1605. {
  1606. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1607. if(all_axis)
  1608. {
  1609. st_synchronize();
  1610. disable_e0();
  1611. disable_e1();
  1612. disable_e2();
  1613. finishAndDisableSteppers();
  1614. }
  1615. else
  1616. {
  1617. st_synchronize();
  1618. if(code_seen('X')) disable_x();
  1619. if(code_seen('Y')) disable_y();
  1620. if(code_seen('Z')) disable_z();
  1621. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1622. if(code_seen('E')) {
  1623. disable_e0();
  1624. disable_e1();
  1625. disable_e2();
  1626. }
  1627. #endif
  1628. }
  1629. }
  1630. break;
  1631. case 85: // M85
  1632. code_seen('S');
  1633. max_inactive_time = code_value() * 1000;
  1634. break;
  1635. case 92: // M92
  1636. for(int8_t i=0; i < NUM_AXIS; i++)
  1637. {
  1638. if(code_seen(axis_codes[i]))
  1639. {
  1640. if(i == 3) { // E
  1641. float value = code_value();
  1642. if(value < 20.0) {
  1643. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1644. max_e_jerk *= factor;
  1645. max_feedrate[i] *= factor;
  1646. axis_steps_per_sqr_second[i] *= factor;
  1647. }
  1648. axis_steps_per_unit[i] = value;
  1649. }
  1650. else {
  1651. axis_steps_per_unit[i] = code_value();
  1652. }
  1653. }
  1654. }
  1655. break;
  1656. case 115: // M115
  1657. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1658. break;
  1659. case 117: // M117 display message
  1660. starpos = (strchr(strchr_pointer + 5,'*'));
  1661. if(starpos!=NULL)
  1662. *(starpos-1)='\0';
  1663. lcd_setstatus(strchr_pointer + 5);
  1664. break;
  1665. case 114: // M114
  1666. SERIAL_PROTOCOLPGM("X:");
  1667. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1668. SERIAL_PROTOCOLPGM("Y:");
  1669. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1670. SERIAL_PROTOCOLPGM("Z:");
  1671. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1672. SERIAL_PROTOCOLPGM("E:");
  1673. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1674. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1675. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1676. SERIAL_PROTOCOLPGM("Y:");
  1677. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1678. SERIAL_PROTOCOLPGM("Z:");
  1679. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1680. SERIAL_PROTOCOLLN("");
  1681. break;
  1682. case 120: // M120
  1683. enable_endstops(false) ;
  1684. break;
  1685. case 121: // M121
  1686. enable_endstops(true) ;
  1687. break;
  1688. case 119: // M119
  1689. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1690. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1691. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1692. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1693. #endif
  1694. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1695. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1696. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1697. #endif
  1698. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1699. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1700. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1701. #endif
  1702. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1703. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1704. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1705. #endif
  1706. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1707. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1708. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1709. #endif
  1710. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1711. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1712. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1713. #endif
  1714. break;
  1715. //TODO: update for all axis, use for loop
  1716. case 201: // M201
  1717. for(int8_t i=0; i < NUM_AXIS; i++)
  1718. {
  1719. if(code_seen(axis_codes[i]))
  1720. {
  1721. max_acceleration_units_per_sq_second[i] = code_value();
  1722. }
  1723. }
  1724. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1725. reset_acceleration_rates();
  1726. break;
  1727. #if 0 // Not used for Sprinter/grbl gen6
  1728. case 202: // M202
  1729. for(int8_t i=0; i < NUM_AXIS; i++) {
  1730. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1731. }
  1732. break;
  1733. #endif
  1734. case 203: // M203 max feedrate mm/sec
  1735. for(int8_t i=0; i < NUM_AXIS; i++) {
  1736. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1737. }
  1738. break;
  1739. case 204: // M204 acclereration S normal moves T filmanent only moves
  1740. {
  1741. if(code_seen('S')) acceleration = code_value() ;
  1742. if(code_seen('T')) retract_acceleration = code_value() ;
  1743. }
  1744. break;
  1745. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1746. {
  1747. if(code_seen('S')) minimumfeedrate = code_value();
  1748. if(code_seen('T')) mintravelfeedrate = code_value();
  1749. if(code_seen('B')) minsegmenttime = code_value() ;
  1750. if(code_seen('X')) max_xy_jerk = code_value() ;
  1751. if(code_seen('Z')) max_z_jerk = code_value() ;
  1752. if(code_seen('E')) max_e_jerk = code_value() ;
  1753. }
  1754. break;
  1755. case 206: // M206 additional homeing offset
  1756. for(int8_t i=0; i < 3; i++)
  1757. {
  1758. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1759. }
  1760. break;
  1761. #ifdef DELTA
  1762. case 666: // M666 set delta endstop adjustemnt
  1763. for(int8_t i=0; i < 3; i++)
  1764. {
  1765. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1766. }
  1767. break;
  1768. #endif
  1769. #ifdef FWRETRACT
  1770. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1771. {
  1772. if(code_seen('S'))
  1773. {
  1774. retract_length = code_value() ;
  1775. }
  1776. if(code_seen('F'))
  1777. {
  1778. retract_feedrate = code_value() ;
  1779. }
  1780. if(code_seen('Z'))
  1781. {
  1782. retract_zlift = code_value() ;
  1783. }
  1784. }break;
  1785. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1786. {
  1787. if(code_seen('S'))
  1788. {
  1789. retract_recover_length = code_value() ;
  1790. }
  1791. if(code_seen('F'))
  1792. {
  1793. retract_recover_feedrate = code_value() ;
  1794. }
  1795. }break;
  1796. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1797. {
  1798. if(code_seen('S'))
  1799. {
  1800. int t= code_value() ;
  1801. switch(t)
  1802. {
  1803. case 0: autoretract_enabled=false;retracted=false;break;
  1804. case 1: autoretract_enabled=true;retracted=false;break;
  1805. default:
  1806. SERIAL_ECHO_START;
  1807. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1808. SERIAL_ECHO(cmdbuffer[bufindr]);
  1809. SERIAL_ECHOLNPGM("\"");
  1810. }
  1811. }
  1812. }break;
  1813. #endif // FWRETRACT
  1814. #if EXTRUDERS > 1
  1815. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1816. {
  1817. if(setTargetedHotend(218)){
  1818. break;
  1819. }
  1820. if(code_seen('X'))
  1821. {
  1822. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1823. }
  1824. if(code_seen('Y'))
  1825. {
  1826. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1827. }
  1828. #ifdef DUAL_X_CARRIAGE
  1829. if(code_seen('Z'))
  1830. {
  1831. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1832. }
  1833. #endif
  1834. SERIAL_ECHO_START;
  1835. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1836. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1837. {
  1838. SERIAL_ECHO(" ");
  1839. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1840. SERIAL_ECHO(",");
  1841. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1842. #ifdef DUAL_X_CARRIAGE
  1843. SERIAL_ECHO(",");
  1844. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1845. #endif
  1846. }
  1847. SERIAL_ECHOLN("");
  1848. }break;
  1849. #endif
  1850. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1851. {
  1852. if(code_seen('S'))
  1853. {
  1854. feedmultiply = code_value() ;
  1855. }
  1856. }
  1857. break;
  1858. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1859. {
  1860. if(code_seen('S'))
  1861. {
  1862. extrudemultiply = code_value() ;
  1863. }
  1864. }
  1865. break;
  1866. #if NUM_SERVOS > 0
  1867. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1868. {
  1869. int servo_index = -1;
  1870. int servo_position = 0;
  1871. if (code_seen('P'))
  1872. servo_index = code_value();
  1873. if (code_seen('S')) {
  1874. servo_position = code_value();
  1875. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1876. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1877. servos[servo_index].attach(0);
  1878. #endif
  1879. servos[servo_index].write(servo_position);
  1880. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1881. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1882. servos[servo_index].detach();
  1883. #endif
  1884. }
  1885. else {
  1886. SERIAL_ECHO_START;
  1887. SERIAL_ECHO("Servo ");
  1888. SERIAL_ECHO(servo_index);
  1889. SERIAL_ECHOLN(" out of range");
  1890. }
  1891. }
  1892. else if (servo_index >= 0) {
  1893. SERIAL_PROTOCOL(MSG_OK);
  1894. SERIAL_PROTOCOL(" Servo ");
  1895. SERIAL_PROTOCOL(servo_index);
  1896. SERIAL_PROTOCOL(": ");
  1897. SERIAL_PROTOCOL(servos[servo_index].read());
  1898. SERIAL_PROTOCOLLN("");
  1899. }
  1900. }
  1901. break;
  1902. #endif // NUM_SERVOS > 0
  1903. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  1904. case 300: // M300
  1905. {
  1906. int beepS = code_seen('S') ? code_value() : 110;
  1907. int beepP = code_seen('P') ? code_value() : 1000;
  1908. if (beepS > 0)
  1909. {
  1910. #if BEEPER > 0
  1911. tone(BEEPER, beepS);
  1912. delay(beepP);
  1913. noTone(BEEPER);
  1914. #elif defined(ULTRALCD)
  1915. lcd_buzz(beepS, beepP);
  1916. #endif
  1917. }
  1918. else
  1919. {
  1920. delay(beepP);
  1921. }
  1922. }
  1923. break;
  1924. #endif // M300
  1925. #ifdef PIDTEMP
  1926. case 301: // M301
  1927. {
  1928. if(code_seen('P')) Kp = code_value();
  1929. if(code_seen('I')) Ki = scalePID_i(code_value());
  1930. if(code_seen('D')) Kd = scalePID_d(code_value());
  1931. #ifdef PID_ADD_EXTRUSION_RATE
  1932. if(code_seen('C')) Kc = code_value();
  1933. #endif
  1934. updatePID();
  1935. SERIAL_PROTOCOL(MSG_OK);
  1936. SERIAL_PROTOCOL(" p:");
  1937. SERIAL_PROTOCOL(Kp);
  1938. SERIAL_PROTOCOL(" i:");
  1939. SERIAL_PROTOCOL(unscalePID_i(Ki));
  1940. SERIAL_PROTOCOL(" d:");
  1941. SERIAL_PROTOCOL(unscalePID_d(Kd));
  1942. #ifdef PID_ADD_EXTRUSION_RATE
  1943. SERIAL_PROTOCOL(" c:");
  1944. //Kc does not have scaling applied above, or in resetting defaults
  1945. SERIAL_PROTOCOL(Kc);
  1946. #endif
  1947. SERIAL_PROTOCOLLN("");
  1948. }
  1949. break;
  1950. #endif //PIDTEMP
  1951. #ifdef PIDTEMPBED
  1952. case 304: // M304
  1953. {
  1954. if(code_seen('P')) bedKp = code_value();
  1955. if(code_seen('I')) bedKi = scalePID_i(code_value());
  1956. if(code_seen('D')) bedKd = scalePID_d(code_value());
  1957. updatePID();
  1958. SERIAL_PROTOCOL(MSG_OK);
  1959. SERIAL_PROTOCOL(" p:");
  1960. SERIAL_PROTOCOL(bedKp);
  1961. SERIAL_PROTOCOL(" i:");
  1962. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  1963. SERIAL_PROTOCOL(" d:");
  1964. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  1965. SERIAL_PROTOCOLLN("");
  1966. }
  1967. break;
  1968. #endif //PIDTEMP
  1969. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1970. {
  1971. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  1972. const uint8_t NUM_PULSES=16;
  1973. const float PULSE_LENGTH=0.01524;
  1974. for(int i=0; i < NUM_PULSES; i++) {
  1975. WRITE(PHOTOGRAPH_PIN, HIGH);
  1976. _delay_ms(PULSE_LENGTH);
  1977. WRITE(PHOTOGRAPH_PIN, LOW);
  1978. _delay_ms(PULSE_LENGTH);
  1979. }
  1980. delay(7.33);
  1981. for(int i=0; i < NUM_PULSES; i++) {
  1982. WRITE(PHOTOGRAPH_PIN, HIGH);
  1983. _delay_ms(PULSE_LENGTH);
  1984. WRITE(PHOTOGRAPH_PIN, LOW);
  1985. _delay_ms(PULSE_LENGTH);
  1986. }
  1987. #endif
  1988. }
  1989. break;
  1990. #ifdef DOGLCD
  1991. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  1992. {
  1993. if (code_seen('C')) {
  1994. lcd_setcontrast( ((int)code_value())&63 );
  1995. }
  1996. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  1997. SERIAL_PROTOCOL(lcd_contrast);
  1998. SERIAL_PROTOCOLLN("");
  1999. }
  2000. break;
  2001. #endif
  2002. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2003. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2004. {
  2005. float temp = .0;
  2006. if (code_seen('S')) temp=code_value();
  2007. set_extrude_min_temp(temp);
  2008. }
  2009. break;
  2010. #endif
  2011. case 303: // M303 PID autotune
  2012. {
  2013. float temp = 150.0;
  2014. int e=0;
  2015. int c=5;
  2016. if (code_seen('E')) e=code_value();
  2017. if (e<0)
  2018. temp=70;
  2019. if (code_seen('S')) temp=code_value();
  2020. if (code_seen('C')) c=code_value();
  2021. PID_autotune(temp, e, c);
  2022. }
  2023. break;
  2024. case 400: // M400 finish all moves
  2025. {
  2026. st_synchronize();
  2027. }
  2028. break;
  2029. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2030. case 401:
  2031. {
  2032. engage_z_probe(); // Engage Z Servo endstop if available
  2033. }
  2034. break;
  2035. case 402:
  2036. {
  2037. retract_z_probe(); // Retract Z Servo endstop if enabled
  2038. }
  2039. break;
  2040. #endif
  2041. case 500: // M500 Store settings in EEPROM
  2042. {
  2043. Config_StoreSettings();
  2044. }
  2045. break;
  2046. case 501: // M501 Read settings from EEPROM
  2047. {
  2048. Config_RetrieveSettings();
  2049. }
  2050. break;
  2051. case 502: // M502 Revert to default settings
  2052. {
  2053. Config_ResetDefault();
  2054. }
  2055. break;
  2056. case 503: // M503 print settings currently in memory
  2057. {
  2058. Config_PrintSettings();
  2059. }
  2060. break;
  2061. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2062. case 540:
  2063. {
  2064. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2065. }
  2066. break;
  2067. #endif
  2068. #ifdef FILAMENTCHANGEENABLE
  2069. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2070. {
  2071. float target[4];
  2072. float lastpos[4];
  2073. target[X_AXIS]=current_position[X_AXIS];
  2074. target[Y_AXIS]=current_position[Y_AXIS];
  2075. target[Z_AXIS]=current_position[Z_AXIS];
  2076. target[E_AXIS]=current_position[E_AXIS];
  2077. lastpos[X_AXIS]=current_position[X_AXIS];
  2078. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2079. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2080. lastpos[E_AXIS]=current_position[E_AXIS];
  2081. //retract by E
  2082. if(code_seen('E'))
  2083. {
  2084. target[E_AXIS]+= code_value();
  2085. }
  2086. else
  2087. {
  2088. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2089. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2090. #endif
  2091. }
  2092. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2093. //lift Z
  2094. if(code_seen('Z'))
  2095. {
  2096. target[Z_AXIS]+= code_value();
  2097. }
  2098. else
  2099. {
  2100. #ifdef FILAMENTCHANGE_ZADD
  2101. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2102. #endif
  2103. }
  2104. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2105. //move xy
  2106. if(code_seen('X'))
  2107. {
  2108. target[X_AXIS]+= code_value();
  2109. }
  2110. else
  2111. {
  2112. #ifdef FILAMENTCHANGE_XPOS
  2113. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2114. #endif
  2115. }
  2116. if(code_seen('Y'))
  2117. {
  2118. target[Y_AXIS]= code_value();
  2119. }
  2120. else
  2121. {
  2122. #ifdef FILAMENTCHANGE_YPOS
  2123. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2124. #endif
  2125. }
  2126. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2127. if(code_seen('L'))
  2128. {
  2129. target[E_AXIS]+= code_value();
  2130. }
  2131. else
  2132. {
  2133. #ifdef FILAMENTCHANGE_FINALRETRACT
  2134. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2135. #endif
  2136. }
  2137. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2138. //finish moves
  2139. st_synchronize();
  2140. //disable extruder steppers so filament can be removed
  2141. disable_e0();
  2142. disable_e1();
  2143. disable_e2();
  2144. delay(100);
  2145. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2146. uint8_t cnt=0;
  2147. while(!lcd_clicked()){
  2148. cnt++;
  2149. manage_heater();
  2150. manage_inactivity();
  2151. lcd_update();
  2152. if(cnt==0)
  2153. {
  2154. #if BEEPER > 0
  2155. SET_OUTPUT(BEEPER);
  2156. WRITE(BEEPER,HIGH);
  2157. delay(3);
  2158. WRITE(BEEPER,LOW);
  2159. delay(3);
  2160. #else
  2161. lcd_buzz(1000/6,100);
  2162. #endif
  2163. }
  2164. }
  2165. //return to normal
  2166. if(code_seen('L'))
  2167. {
  2168. target[E_AXIS]+= -code_value();
  2169. }
  2170. else
  2171. {
  2172. #ifdef FILAMENTCHANGE_FINALRETRACT
  2173. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2174. #endif
  2175. }
  2176. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2177. plan_set_e_position(current_position[E_AXIS]);
  2178. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2179. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2180. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2181. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2182. }
  2183. break;
  2184. #endif //FILAMENTCHANGEENABLE
  2185. #ifdef DUAL_X_CARRIAGE
  2186. case 605: // Set dual x-carriage movement mode:
  2187. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2188. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2189. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2190. // millimeters x-offset and an optional differential hotend temperature of
  2191. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2192. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2193. //
  2194. // Note: the X axis should be homed after changing dual x-carriage mode.
  2195. {
  2196. st_synchronize();
  2197. if (code_seen('S'))
  2198. dual_x_carriage_mode = code_value();
  2199. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2200. {
  2201. if (code_seen('X'))
  2202. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2203. if (code_seen('R'))
  2204. duplicate_extruder_temp_offset = code_value();
  2205. SERIAL_ECHO_START;
  2206. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2207. SERIAL_ECHO(" ");
  2208. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2209. SERIAL_ECHO(",");
  2210. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2211. SERIAL_ECHO(" ");
  2212. SERIAL_ECHO(duplicate_extruder_x_offset);
  2213. SERIAL_ECHO(",");
  2214. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2215. }
  2216. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2217. {
  2218. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2219. }
  2220. active_extruder_parked = false;
  2221. extruder_duplication_enabled = false;
  2222. delayed_move_time = 0;
  2223. }
  2224. break;
  2225. #endif //DUAL_X_CARRIAGE
  2226. case 907: // M907 Set digital trimpot motor current using axis codes.
  2227. {
  2228. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2229. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2230. if(code_seen('B')) digipot_current(4,code_value());
  2231. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2232. #endif
  2233. }
  2234. break;
  2235. case 908: // M908 Control digital trimpot directly.
  2236. {
  2237. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2238. uint8_t channel,current;
  2239. if(code_seen('P')) channel=code_value();
  2240. if(code_seen('S')) current=code_value();
  2241. digitalPotWrite(channel, current);
  2242. #endif
  2243. }
  2244. break;
  2245. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2246. {
  2247. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2248. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2249. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2250. if(code_seen('B')) microstep_mode(4,code_value());
  2251. microstep_readings();
  2252. #endif
  2253. }
  2254. break;
  2255. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2256. {
  2257. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2258. if(code_seen('S')) switch((int)code_value())
  2259. {
  2260. case 1:
  2261. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2262. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2263. break;
  2264. case 2:
  2265. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2266. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2267. break;
  2268. }
  2269. microstep_readings();
  2270. #endif
  2271. }
  2272. break;
  2273. case 999: // M999: Restart after being stopped
  2274. Stopped = false;
  2275. lcd_reset_alert_level();
  2276. gcode_LastN = Stopped_gcode_LastN;
  2277. FlushSerialRequestResend();
  2278. break;
  2279. }
  2280. }
  2281. else if(code_seen('T'))
  2282. {
  2283. tmp_extruder = code_value();
  2284. if(tmp_extruder >= EXTRUDERS) {
  2285. SERIAL_ECHO_START;
  2286. SERIAL_ECHO("T");
  2287. SERIAL_ECHO(tmp_extruder);
  2288. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2289. }
  2290. else {
  2291. boolean make_move = false;
  2292. if(code_seen('F')) {
  2293. make_move = true;
  2294. next_feedrate = code_value();
  2295. if(next_feedrate > 0.0) {
  2296. feedrate = next_feedrate;
  2297. }
  2298. }
  2299. #if EXTRUDERS > 1
  2300. if(tmp_extruder != active_extruder) {
  2301. // Save current position to return to after applying extruder offset
  2302. memcpy(destination, current_position, sizeof(destination));
  2303. #ifdef DUAL_X_CARRIAGE
  2304. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2305. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2306. {
  2307. // Park old head: 1) raise 2) move to park position 3) lower
  2308. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2309. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2310. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2311. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2312. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2313. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2314. st_synchronize();
  2315. }
  2316. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2317. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2318. extruder_offset[Y_AXIS][active_extruder] +
  2319. extruder_offset[Y_AXIS][tmp_extruder];
  2320. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2321. extruder_offset[Z_AXIS][active_extruder] +
  2322. extruder_offset[Z_AXIS][tmp_extruder];
  2323. active_extruder = tmp_extruder;
  2324. // This function resets the max/min values - the current position may be overwritten below.
  2325. axis_is_at_home(X_AXIS);
  2326. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2327. {
  2328. current_position[X_AXIS] = inactive_extruder_x_pos;
  2329. inactive_extruder_x_pos = destination[X_AXIS];
  2330. }
  2331. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2332. {
  2333. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2334. if (active_extruder == 0 || active_extruder_parked)
  2335. current_position[X_AXIS] = inactive_extruder_x_pos;
  2336. else
  2337. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2338. inactive_extruder_x_pos = destination[X_AXIS];
  2339. extruder_duplication_enabled = false;
  2340. }
  2341. else
  2342. {
  2343. // record raised toolhead position for use by unpark
  2344. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2345. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2346. active_extruder_parked = true;
  2347. delayed_move_time = 0;
  2348. }
  2349. #else
  2350. // Offset extruder (only by XY)
  2351. int i;
  2352. for(i = 0; i < 2; i++) {
  2353. current_position[i] = current_position[i] -
  2354. extruder_offset[i][active_extruder] +
  2355. extruder_offset[i][tmp_extruder];
  2356. }
  2357. // Set the new active extruder and position
  2358. active_extruder = tmp_extruder;
  2359. #endif //else DUAL_X_CARRIAGE
  2360. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2361. // Move to the old position if 'F' was in the parameters
  2362. if(make_move && Stopped == false) {
  2363. prepare_move();
  2364. }
  2365. }
  2366. #endif
  2367. SERIAL_ECHO_START;
  2368. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2369. SERIAL_PROTOCOLLN((int)active_extruder);
  2370. }
  2371. }
  2372. else
  2373. {
  2374. SERIAL_ECHO_START;
  2375. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2376. SERIAL_ECHO(cmdbuffer[bufindr]);
  2377. SERIAL_ECHOLNPGM("\"");
  2378. }
  2379. ClearToSend();
  2380. }
  2381. void FlushSerialRequestResend()
  2382. {
  2383. //char cmdbuffer[bufindr][100]="Resend:";
  2384. MYSERIAL.flush();
  2385. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2386. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2387. ClearToSend();
  2388. }
  2389. void ClearToSend()
  2390. {
  2391. previous_millis_cmd = millis();
  2392. #ifdef SDSUPPORT
  2393. if(fromsd[bufindr])
  2394. return;
  2395. #endif //SDSUPPORT
  2396. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2397. }
  2398. void get_coordinates()
  2399. {
  2400. bool seen[4]={false,false,false,false};
  2401. for(int8_t i=0; i < NUM_AXIS; i++) {
  2402. if(code_seen(axis_codes[i]))
  2403. {
  2404. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2405. seen[i]=true;
  2406. }
  2407. else destination[i] = current_position[i]; //Are these else lines really needed?
  2408. }
  2409. if(code_seen('F')) {
  2410. next_feedrate = code_value();
  2411. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2412. }
  2413. #ifdef FWRETRACT
  2414. if(autoretract_enabled)
  2415. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2416. {
  2417. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2418. if(echange<-MIN_RETRACT) //retract
  2419. {
  2420. if(!retracted)
  2421. {
  2422. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2423. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2424. float correctede=-echange-retract_length;
  2425. //to generate the additional steps, not the destination is changed, but inversely the current position
  2426. current_position[E_AXIS]+=-correctede;
  2427. feedrate=retract_feedrate;
  2428. retracted=true;
  2429. }
  2430. }
  2431. else
  2432. if(echange>MIN_RETRACT) //retract_recover
  2433. {
  2434. if(retracted)
  2435. {
  2436. //current_position[Z_AXIS]+=-retract_zlift;
  2437. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2438. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2439. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2440. feedrate=retract_recover_feedrate;
  2441. retracted=false;
  2442. }
  2443. }
  2444. }
  2445. #endif //FWRETRACT
  2446. }
  2447. void get_arc_coordinates()
  2448. {
  2449. #ifdef SF_ARC_FIX
  2450. bool relative_mode_backup = relative_mode;
  2451. relative_mode = true;
  2452. #endif
  2453. get_coordinates();
  2454. #ifdef SF_ARC_FIX
  2455. relative_mode=relative_mode_backup;
  2456. #endif
  2457. if(code_seen('I')) {
  2458. offset[0] = code_value();
  2459. }
  2460. else {
  2461. offset[0] = 0.0;
  2462. }
  2463. if(code_seen('J')) {
  2464. offset[1] = code_value();
  2465. }
  2466. else {
  2467. offset[1] = 0.0;
  2468. }
  2469. }
  2470. void clamp_to_software_endstops(float target[3])
  2471. {
  2472. if (min_software_endstops) {
  2473. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2474. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2475. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2476. }
  2477. if (max_software_endstops) {
  2478. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2479. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2480. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2481. }
  2482. }
  2483. #ifdef DELTA
  2484. void calculate_delta(float cartesian[3])
  2485. {
  2486. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2487. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2488. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2489. ) + cartesian[Z_AXIS];
  2490. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2491. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2492. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2493. ) + cartesian[Z_AXIS];
  2494. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2495. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2496. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2497. ) + cartesian[Z_AXIS];
  2498. /*
  2499. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2500. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2501. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2502. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2503. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2504. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2505. */
  2506. }
  2507. #endif
  2508. void prepare_move()
  2509. {
  2510. clamp_to_software_endstops(destination);
  2511. previous_millis_cmd = millis();
  2512. #ifdef DELTA
  2513. float difference[NUM_AXIS];
  2514. for (int8_t i=0; i < NUM_AXIS; i++) {
  2515. difference[i] = destination[i] - current_position[i];
  2516. }
  2517. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2518. sq(difference[Y_AXIS]) +
  2519. sq(difference[Z_AXIS]));
  2520. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2521. if (cartesian_mm < 0.000001) { return; }
  2522. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2523. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2524. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2525. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2526. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2527. for (int s = 1; s <= steps; s++) {
  2528. float fraction = float(s) / float(steps);
  2529. for(int8_t i=0; i < NUM_AXIS; i++) {
  2530. destination[i] = current_position[i] + difference[i] * fraction;
  2531. }
  2532. calculate_delta(destination);
  2533. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2534. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2535. active_extruder);
  2536. }
  2537. #else
  2538. #ifdef DUAL_X_CARRIAGE
  2539. if (active_extruder_parked)
  2540. {
  2541. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2542. {
  2543. // move duplicate extruder into correct duplication position.
  2544. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2545. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2546. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2547. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2548. st_synchronize();
  2549. extruder_duplication_enabled = true;
  2550. active_extruder_parked = false;
  2551. }
  2552. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2553. {
  2554. if (current_position[E_AXIS] == destination[E_AXIS])
  2555. {
  2556. // this is a travel move - skit it but keep track of current position (so that it can later
  2557. // be used as start of first non-travel move)
  2558. if (delayed_move_time != 0xFFFFFFFFUL)
  2559. {
  2560. memcpy(current_position, destination, sizeof(current_position));
  2561. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2562. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2563. delayed_move_time = millis();
  2564. return;
  2565. }
  2566. }
  2567. delayed_move_time = 0;
  2568. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2569. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2571. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2572. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2573. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2574. active_extruder_parked = false;
  2575. }
  2576. }
  2577. #endif //DUAL_X_CARRIAGE
  2578. // Do not use feedmultiply for E or Z only moves
  2579. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2580. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2581. }
  2582. else {
  2583. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2584. }
  2585. #endif //else DELTA
  2586. for(int8_t i=0; i < NUM_AXIS; i++) {
  2587. current_position[i] = destination[i];
  2588. }
  2589. }
  2590. void prepare_arc_move(char isclockwise) {
  2591. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2592. // Trace the arc
  2593. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2594. // As far as the parser is concerned, the position is now == target. In reality the
  2595. // motion control system might still be processing the action and the real tool position
  2596. // in any intermediate location.
  2597. for(int8_t i=0; i < NUM_AXIS; i++) {
  2598. current_position[i] = destination[i];
  2599. }
  2600. previous_millis_cmd = millis();
  2601. }
  2602. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2603. #if defined(FAN_PIN)
  2604. #if CONTROLLERFAN_PIN == FAN_PIN
  2605. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2606. #endif
  2607. #endif
  2608. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2609. unsigned long lastMotorCheck = 0;
  2610. void controllerFan()
  2611. {
  2612. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2613. {
  2614. lastMotorCheck = millis();
  2615. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  2616. #if EXTRUDERS > 2
  2617. || !READ(E2_ENABLE_PIN)
  2618. #endif
  2619. #if EXTRUDER > 1
  2620. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2621. || !READ(X2_ENABLE_PIN)
  2622. #endif
  2623. || !READ(E1_ENABLE_PIN)
  2624. #endif
  2625. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2626. {
  2627. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2628. }
  2629. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2630. {
  2631. digitalWrite(CONTROLLERFAN_PIN, 0);
  2632. analogWrite(CONTROLLERFAN_PIN, 0);
  2633. }
  2634. else
  2635. {
  2636. // allows digital or PWM fan output to be used (see M42 handling)
  2637. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2638. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2639. }
  2640. }
  2641. }
  2642. #endif
  2643. void manage_inactivity()
  2644. {
  2645. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2646. if(max_inactive_time)
  2647. kill();
  2648. if(stepper_inactive_time) {
  2649. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2650. {
  2651. if(blocks_queued() == false) {
  2652. disable_x();
  2653. disable_y();
  2654. disable_z();
  2655. disable_e0();
  2656. disable_e1();
  2657. disable_e2();
  2658. }
  2659. }
  2660. }
  2661. #if defined(KILL_PIN) && KILL_PIN > -1
  2662. if( 0 == READ(KILL_PIN) )
  2663. kill();
  2664. #endif
  2665. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2666. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2667. #endif
  2668. #ifdef EXTRUDER_RUNOUT_PREVENT
  2669. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2670. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2671. {
  2672. bool oldstatus=READ(E0_ENABLE_PIN);
  2673. enable_e0();
  2674. float oldepos=current_position[E_AXIS];
  2675. float oldedes=destination[E_AXIS];
  2676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2677. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2678. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2679. current_position[E_AXIS]=oldepos;
  2680. destination[E_AXIS]=oldedes;
  2681. plan_set_e_position(oldepos);
  2682. previous_millis_cmd=millis();
  2683. st_synchronize();
  2684. WRITE(E0_ENABLE_PIN,oldstatus);
  2685. }
  2686. #endif
  2687. #if defined(DUAL_X_CARRIAGE)
  2688. // handle delayed move timeout
  2689. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2690. {
  2691. // travel moves have been received so enact them
  2692. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2693. memcpy(destination,current_position,sizeof(destination));
  2694. prepare_move();
  2695. }
  2696. #endif
  2697. check_axes_activity();
  2698. }
  2699. void kill()
  2700. {
  2701. cli(); // Stop interrupts
  2702. disable_heater();
  2703. disable_x();
  2704. disable_y();
  2705. disable_z();
  2706. disable_e0();
  2707. disable_e1();
  2708. disable_e2();
  2709. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2710. pinMode(PS_ON_PIN,INPUT);
  2711. #endif
  2712. SERIAL_ERROR_START;
  2713. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2714. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2715. suicide();
  2716. while(1) { /* Intentionally left empty */ } // Wait for reset
  2717. }
  2718. void Stop()
  2719. {
  2720. disable_heater();
  2721. if(Stopped == false) {
  2722. Stopped = true;
  2723. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2724. SERIAL_ERROR_START;
  2725. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2726. LCD_MESSAGEPGM(MSG_STOPPED);
  2727. }
  2728. }
  2729. bool IsStopped() { return Stopped; };
  2730. #ifdef FAST_PWM_FAN
  2731. void setPwmFrequency(uint8_t pin, int val)
  2732. {
  2733. val &= 0x07;
  2734. switch(digitalPinToTimer(pin))
  2735. {
  2736. #if defined(TCCR0A)
  2737. case TIMER0A:
  2738. case TIMER0B:
  2739. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2740. // TCCR0B |= val;
  2741. break;
  2742. #endif
  2743. #if defined(TCCR1A)
  2744. case TIMER1A:
  2745. case TIMER1B:
  2746. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2747. // TCCR1B |= val;
  2748. break;
  2749. #endif
  2750. #if defined(TCCR2)
  2751. case TIMER2:
  2752. case TIMER2:
  2753. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2754. TCCR2 |= val;
  2755. break;
  2756. #endif
  2757. #if defined(TCCR2A)
  2758. case TIMER2A:
  2759. case TIMER2B:
  2760. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2761. TCCR2B |= val;
  2762. break;
  2763. #endif
  2764. #if defined(TCCR3A)
  2765. case TIMER3A:
  2766. case TIMER3B:
  2767. case TIMER3C:
  2768. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2769. TCCR3B |= val;
  2770. break;
  2771. #endif
  2772. #if defined(TCCR4A)
  2773. case TIMER4A:
  2774. case TIMER4B:
  2775. case TIMER4C:
  2776. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2777. TCCR4B |= val;
  2778. break;
  2779. #endif
  2780. #if defined(TCCR5A)
  2781. case TIMER5A:
  2782. case TIMER5B:
  2783. case TIMER5C:
  2784. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2785. TCCR5B |= val;
  2786. break;
  2787. #endif
  2788. }
  2789. }
  2790. #endif //FAST_PWM_FAN
  2791. bool setTargetedHotend(int code){
  2792. tmp_extruder = active_extruder;
  2793. if(code_seen('T')) {
  2794. tmp_extruder = code_value();
  2795. if(tmp_extruder >= EXTRUDERS) {
  2796. SERIAL_ECHO_START;
  2797. switch(code){
  2798. case 104:
  2799. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2800. break;
  2801. case 105:
  2802. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2803. break;
  2804. case 109:
  2805. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2806. break;
  2807. case 218:
  2808. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2809. break;
  2810. }
  2811. SERIAL_ECHOLN(tmp_extruder);
  2812. return true;
  2813. }
  2814. }
  2815. return false;
  2816. }