My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

planner.cpp 31KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. //#include <inttypes.h>
  37. //#include <math.h>
  38. //#include <stdlib.h>
  39. #include "Marlin.h"
  40. #include "Configuration.h"
  41. #include "pins.h"
  42. #include "fastio.h"
  43. #include "planner.h"
  44. #include "stepper.h"
  45. #include "temperature.h"
  46. #include "ultralcd.h"
  47. //===========================================================================
  48. //=============================public variables ============================
  49. //===========================================================================
  50. unsigned long minsegmenttime;
  51. float max_feedrate[4]; // set the max speeds
  52. float axis_steps_per_unit[4];
  53. unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
  54. float minimumfeedrate;
  55. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  56. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  57. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  58. float max_z_jerk;
  59. float mintravelfeedrate;
  60. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  61. // The current position of the tool in absolute steps
  62. long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  63. static float previous_speed[4]; // Speed of previous path line segment
  64. static float previous_nominal_speed; // Nominal speed of previous path line segment
  65. #ifdef AUTOTEMP
  66. float high_e_speed=0;
  67. #endif
  68. //===========================================================================
  69. //=============================private variables ============================
  70. //===========================================================================
  71. static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  72. static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  73. static volatile unsigned char block_buffer_tail; // Index of the block to process now
  74. // Used for the frequency limit
  75. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  76. static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
  77. static long y_segment_time[3]={0,0,0};
  78. // Returns the index of the next block in the ring buffer
  79. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  80. static int8_t next_block_index(int8_t block_index) {
  81. block_index++;
  82. if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
  83. return(block_index);
  84. }
  85. // Returns the index of the previous block in the ring buffer
  86. static int8_t prev_block_index(int8_t block_index) {
  87. if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
  88. block_index--;
  89. return(block_index);
  90. }
  91. //===========================================================================
  92. //=============================functions ============================
  93. //===========================================================================
  94. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  95. // given acceleration:
  96. inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
  97. if (acceleration!=0) {
  98. return((target_rate*target_rate-initial_rate*initial_rate)/
  99. (2.0*acceleration));
  100. }
  101. else {
  102. return 0.0; // acceleration was 0, set acceleration distance to 0
  103. }
  104. }
  105. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  106. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  107. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  108. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  109. inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
  110. if (acceleration!=0) {
  111. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  112. (4.0*acceleration) );
  113. }
  114. else {
  115. return 0.0; // acceleration was 0, set intersection distance to 0
  116. }
  117. }
  118. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  119. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  120. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  121. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  122. // Limit minimal step rate (Otherwise the timer will overflow.)
  123. if(initial_rate <120) {initial_rate=120; }
  124. if(final_rate < 120) {final_rate=120; }
  125. long acceleration = block->acceleration_st;
  126. int32_t accelerate_steps =
  127. ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
  128. int32_t decelerate_steps =
  129. floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
  130. // Calculate the size of Plateau of Nominal Rate.
  131. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  132. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  133. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  134. // in order to reach the final_rate exactly at the end of this block.
  135. if (plateau_steps < 0) {
  136. accelerate_steps = ceil(
  137. intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
  138. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  139. accelerate_steps = min(accelerate_steps,block->step_event_count);
  140. plateau_steps = 0;
  141. }
  142. #ifdef ADVANCE
  143. long initial_advance = block->advance*entry_factor*entry_factor;
  144. long final_advance = block->advance*exit_factor*exit_factor;
  145. #endif // ADVANCE
  146. // block->accelerate_until = accelerate_steps;
  147. // block->decelerate_after = accelerate_steps+plateau_steps;
  148. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  149. if(block->busy == false) { // Don't update variables if block is busy.
  150. block->accelerate_until = accelerate_steps;
  151. block->decelerate_after = accelerate_steps+plateau_steps;
  152. block->initial_rate = initial_rate;
  153. block->final_rate = final_rate;
  154. #ifdef ADVANCE
  155. block->initial_advance = initial_advance;
  156. block->final_advance = final_advance;
  157. #endif //ADVANCE
  158. }
  159. CRITICAL_SECTION_END;
  160. }
  161. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  162. // acceleration within the allotted distance.
  163. inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  164. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  165. }
  166. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  167. // This method will calculate the junction jerk as the euclidean distance between the nominal
  168. // velocities of the respective blocks.
  169. //inline float junction_jerk(block_t *before, block_t *after) {
  170. // return sqrt(
  171. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  172. //}
  173. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  174. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  175. if(!current) { return; }
  176. if (next) {
  177. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  178. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  179. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  180. if (current->entry_speed != current->max_entry_speed) {
  181. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  182. // for max allowable speed if block is decelerating and nominal length is false.
  183. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  184. current->entry_speed = min( current->max_entry_speed,
  185. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  186. } else {
  187. current->entry_speed = current->max_entry_speed;
  188. }
  189. current->recalculate_flag = true;
  190. }
  191. } // Skip last block. Already initialized and set for recalculation.
  192. }
  193. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  194. // implements the reverse pass.
  195. void planner_reverse_pass() {
  196. char block_index = block_buffer_head;
  197. if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  198. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  199. block_t *block[3] = { NULL, NULL, NULL };
  200. while(block_index != block_buffer_tail) {
  201. block_index = prev_block_index(block_index);
  202. block[2]= block[1];
  203. block[1]= block[0];
  204. block[0] = &block_buffer[block_index];
  205. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  206. }
  207. }
  208. }
  209. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  210. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  211. if(!previous) { return; }
  212. // If the previous block is an acceleration block, but it is not long enough to complete the
  213. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  214. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  215. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  216. if (!previous->nominal_length_flag) {
  217. if (previous->entry_speed < current->entry_speed) {
  218. double entry_speed = min( current->entry_speed,
  219. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  220. // Check for junction speed change
  221. if (current->entry_speed != entry_speed) {
  222. current->entry_speed = entry_speed;
  223. current->recalculate_flag = true;
  224. }
  225. }
  226. }
  227. }
  228. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  229. // implements the forward pass.
  230. void planner_forward_pass() {
  231. char block_index = block_buffer_tail;
  232. block_t *block[3] = { NULL, NULL, NULL };
  233. while(block_index != block_buffer_head) {
  234. block[0] = block[1];
  235. block[1] = block[2];
  236. block[2] = &block_buffer[block_index];
  237. planner_forward_pass_kernel(block[0],block[1],block[2]);
  238. block_index = next_block_index(block_index);
  239. }
  240. planner_forward_pass_kernel(block[1], block[2], NULL);
  241. }
  242. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  243. // entry_factor for each junction. Must be called by planner_recalculate() after
  244. // updating the blocks.
  245. void planner_recalculate_trapezoids() {
  246. int8_t block_index = block_buffer_tail;
  247. block_t *current;
  248. block_t *next = NULL;
  249. while(block_index != block_buffer_head) {
  250. current = next;
  251. next = &block_buffer[block_index];
  252. if (current) {
  253. // Recalculate if current block entry or exit junction speed has changed.
  254. if (current->recalculate_flag || next->recalculate_flag) {
  255. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  256. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  257. next->entry_speed/current->nominal_speed);
  258. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  259. }
  260. }
  261. block_index = next_block_index( block_index );
  262. }
  263. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  264. if(next != NULL) {
  265. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  266. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  267. next->recalculate_flag = false;
  268. }
  269. }
  270. // Recalculates the motion plan according to the following algorithm:
  271. //
  272. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  273. // so that:
  274. // a. The junction jerk is within the set limit
  275. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  276. // acceleration.
  277. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  278. // a. The speed increase within one block would require faster accelleration than the one, true
  279. // constant acceleration.
  280. //
  281. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  282. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  283. // the set limit. Finally it will:
  284. //
  285. // 3. Recalculate trapezoids for all blocks.
  286. void planner_recalculate() {
  287. planner_reverse_pass();
  288. planner_forward_pass();
  289. planner_recalculate_trapezoids();
  290. }
  291. void plan_init() {
  292. block_buffer_head = 0;
  293. block_buffer_tail = 0;
  294. memset(position, 0, sizeof(position)); // clear position
  295. previous_speed[0] = 0.0;
  296. previous_speed[1] = 0.0;
  297. previous_speed[2] = 0.0;
  298. previous_speed[3] = 0.0;
  299. previous_nominal_speed = 0.0;
  300. }
  301. void plan_discard_current_block() {
  302. if (block_buffer_head != block_buffer_tail) {
  303. block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  304. }
  305. }
  306. block_t *plan_get_current_block() {
  307. if (block_buffer_head == block_buffer_tail) {
  308. return(NULL);
  309. }
  310. block_t *block = &block_buffer[block_buffer_tail];
  311. block->busy = true;
  312. return(block);
  313. }
  314. #ifdef AUTOTEMP
  315. void getHighESpeed()
  316. {
  317. if(degTargetHotend0()+2<AUTOTEMP_MIN) //probably temperature set to zero.
  318. return; //do nothing
  319. float high=0;
  320. char block_index = block_buffer_tail;
  321. while(block_index != block_buffer_head) {
  322. float se=block_buffer[block_index].speed_e;
  323. if(se>high)
  324. {
  325. high=se;
  326. }
  327. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  328. }
  329. high_e_speed=high*axis_steps_per_unit[E_AXIS]/(1000000.0); //so it is independent of the esteps/mm. before
  330. float g=AUTOTEMP_MIN+high_e_speed*AUTOTEMP_FACTOR;
  331. float t=constrain(AUTOTEMP_MIN,g,AUTOTEMP_MAX);
  332. setTargetHotend0(t);
  333. SERIAL_ECHO_START;
  334. SERIAL_ECHOPAIR("highe",high_e_speed);
  335. SERIAL_ECHOPAIR(" t",t);
  336. SERIAL_ECHOLN("");
  337. }
  338. #endif
  339. void check_axes_activity() {
  340. unsigned char x_active = 0;
  341. unsigned char y_active = 0;
  342. unsigned char z_active = 0;
  343. unsigned char e_active = 0;
  344. block_t *block;
  345. if(block_buffer_tail != block_buffer_head) {
  346. char block_index = block_buffer_tail;
  347. while(block_index != block_buffer_head) {
  348. block = &block_buffer[block_index];
  349. if(block->steps_x != 0) x_active++;
  350. if(block->steps_y != 0) y_active++;
  351. if(block->steps_z != 0) z_active++;
  352. if(block->steps_e != 0) e_active++;
  353. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  354. }
  355. }
  356. if((DISABLE_X) && (x_active == 0)) disable_x();
  357. if((DISABLE_Y) && (y_active == 0)) disable_y();
  358. if((DISABLE_Z) && (z_active == 0)) disable_z();
  359. if((DISABLE_E) && (e_active == 0)) disable_e();
  360. }
  361. float junction_deviation = 0.1;
  362. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  363. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  364. // calculation the caller must also provide the physical length of the line in millimeters.
  365. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)
  366. {
  367. // Calculate the buffer head after we push this byte
  368. int next_buffer_head = next_block_index(block_buffer_head);
  369. // If the buffer is full: good! That means we are well ahead of the robot.
  370. // Rest here until there is room in the buffer.
  371. while(block_buffer_tail == next_buffer_head) {
  372. manage_heater();
  373. manage_inactivity(1);
  374. LCD_STATUS;
  375. }
  376. // The target position of the tool in absolute steps
  377. // Calculate target position in absolute steps
  378. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  379. long target[4];
  380. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  381. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  382. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  383. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  384. // Prepare to set up new block
  385. block_t *block = &block_buffer[block_buffer_head];
  386. // Mark block as not busy (Not executed by the stepper interrupt)
  387. block->busy = false;
  388. // Number of steps for each axis
  389. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  390. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  391. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  392. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  393. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  394. // Bail if this is a zero-length block
  395. if (block->step_event_count <=dropsegments) { return; };
  396. // Compute direction bits for this block
  397. block->direction_bits = 0;
  398. if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
  399. if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
  400. if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
  401. if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
  402. //enable active axes
  403. if(block->steps_x != 0) enable_x();
  404. if(block->steps_y != 0) enable_y();
  405. if(block->steps_z != 0) enable_z();
  406. if(block->steps_e != 0) enable_e();
  407. float delta_mm[4];
  408. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  409. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  410. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  411. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
  412. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) +
  413. square(delta_mm[Z_AXIS]) + square(delta_mm[E_AXIS]));
  414. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  415. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  416. float inverse_second = feed_rate * inverse_millimeters;
  417. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  418. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  419. // segment time im micro seconds
  420. long segment_time = lround(1000000.0/inverse_second);
  421. if (block->steps_e == 0) {
  422. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  423. }
  424. else {
  425. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  426. }
  427. #ifdef SLOWDOWN
  428. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  429. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  430. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5)) feed_rate = feed_rate / ((BLOCK_BUFFER_SIZE * 0.5)/moves_queued);
  431. #endif
  432. /*
  433. if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
  434. if (segment_time<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  435. segment_time=segment_time+lround(2*(minsegmenttime-segment_time)/blockcount);
  436. }
  437. }
  438. else {
  439. if (segment_time<minsegmenttime) segment_time=minsegmenttime;
  440. }
  441. // END OF SLOW DOWN SECTION
  442. */
  443. // Calculate speed in mm/sec for each axis
  444. float current_speed[4];
  445. for(int i=0; i < 4; i++) {
  446. current_speed[i] = delta_mm[i] * inverse_second;
  447. }
  448. // Limit speed per axis
  449. float speed_factor = 1.0; //factor <=1 do decrease speed
  450. for(int i=0; i < 4; i++) {
  451. if(abs(current_speed[i]) > max_feedrate[i])
  452. speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
  453. }
  454. // Max segement time in us.
  455. #ifdef XY_FREQUENCY_LIMIT
  456. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  457. // Check and limit the xy direction change frequency
  458. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  459. old_direction_bits = block->direction_bits;
  460. if((direction_change & (1<<X_AXIS)) == 0) {
  461. x_segment_time[0] += segment_time;
  462. }
  463. else {
  464. x_segment_time[2] = x_segment_time[1];
  465. x_segment_time[1] = x_segment_time[0];
  466. x_segment_time[0] = segment_time;
  467. }
  468. if((direction_change & (1<<Y_AXIS)) == 0) {
  469. y_segment_time[0] += segment_time;
  470. }
  471. else {
  472. y_segment_time[2] = y_segment_time[1];
  473. y_segment_time[1] = y_segment_time[0];
  474. y_segment_time[0] = segment_time;
  475. }
  476. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  477. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  478. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  479. if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  480. #endif
  481. // Correct the speed
  482. if( speed_factor < 1.0) {
  483. // Serial.print("speed factor : "); Serial.println(speed_factor);
  484. for(int i=0; i < 4; i++) {
  485. if(abs(current_speed[i]) > max_feedrate[i])
  486. speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
  487. /*
  488. if(speed_factor < 0.1) {
  489. Serial.print("speed factor : "); Serial.println(speed_factor);
  490. Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
  491. }
  492. */
  493. }
  494. for(unsigned char i=0; i < 4; i++) {
  495. current_speed[i] *= speed_factor;
  496. }
  497. block->nominal_speed *= speed_factor;
  498. block->nominal_rate *= speed_factor;
  499. }
  500. // Compute and limit the acceleration rate for the trapezoid generator.
  501. float steps_per_mm = block->step_event_count/block->millimeters;
  502. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
  503. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  504. }
  505. else {
  506. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  507. // Limit acceleration per axis
  508. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  509. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  510. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  511. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  512. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  513. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  514. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  515. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  516. }
  517. block->acceleration = block->acceleration_st / steps_per_mm;
  518. block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
  519. #if 0 // Use old jerk for now
  520. // Compute path unit vector
  521. double unit_vec[3];
  522. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  523. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  524. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  525. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  526. // Let a circle be tangent to both previous and current path line segments, where the junction
  527. // deviation is defined as the distance from the junction to the closest edge of the circle,
  528. // colinear with the circle center. The circular segment joining the two paths represents the
  529. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  530. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  531. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  532. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  533. // nonlinearities of both the junction angle and junction velocity.
  534. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  535. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  536. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  537. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  538. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  539. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  540. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  541. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  542. // Skip and use default max junction speed for 0 degree acute junction.
  543. if (cos_theta < 0.95) {
  544. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  545. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  546. if (cos_theta > -0.95) {
  547. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  548. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  549. vmax_junction = min(vmax_junction,
  550. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  551. }
  552. }
  553. }
  554. #endif
  555. // Start with a safe speed
  556. float vmax_junction = max_xy_jerk/2;
  557. if(abs(current_speed[Z_AXIS]) > max_z_jerk/2)
  558. vmax_junction = max_z_jerk/2;
  559. vmax_junction = min(vmax_junction, block->nominal_speed);
  560. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  561. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  562. if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
  563. vmax_junction = block->nominal_speed;
  564. }
  565. if (jerk > max_xy_jerk) {
  566. vmax_junction *= (max_xy_jerk/jerk);
  567. }
  568. if(abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  569. vmax_junction *= (max_z_jerk/abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
  570. }
  571. }
  572. block->max_entry_speed = vmax_junction;
  573. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  574. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  575. block->entry_speed = min(vmax_junction, v_allowable);
  576. // Initialize planner efficiency flags
  577. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  578. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  579. // the current block and next block junction speeds are guaranteed to always be at their maximum
  580. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  581. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  582. // the reverse and forward planners, the corresponding block junction speed will always be at the
  583. // the maximum junction speed and may always be ignored for any speed reduction checks.
  584. if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
  585. else { block->nominal_length_flag = false; }
  586. block->recalculate_flag = true; // Always calculate trapezoid for new block
  587. // Update previous path unit_vector and nominal speed
  588. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  589. previous_nominal_speed = block->nominal_speed;
  590. #ifdef ADVANCE
  591. // Calculate advance rate
  592. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  593. block->advance_rate = 0;
  594. block->advance = 0;
  595. }
  596. else {
  597. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  598. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  599. (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
  600. block->advance = advance;
  601. if(acc_dist == 0) {
  602. block->advance_rate = 0;
  603. }
  604. else {
  605. block->advance_rate = advance / (float)acc_dist;
  606. }
  607. }
  608. #endif // ADVANCE
  609. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  610. MINIMUM_PLANNER_SPEED/block->nominal_speed);
  611. // Move buffer head
  612. block_buffer_head = next_buffer_head;
  613. // Update position
  614. memcpy(position, target, sizeof(target)); // position[] = target[]
  615. planner_recalculate();
  616. #ifdef AUTOTEMP
  617. getHighESpeed();
  618. #endif
  619. st_wake_up();
  620. }
  621. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  622. {
  623. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  624. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  625. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  626. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  627. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  628. previous_speed[0] = 0.0;
  629. previous_speed[1] = 0.0;
  630. previous_speed[2] = 0.0;
  631. previous_speed[3] = 0.0;
  632. }