12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355 |
- /**
- * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
- * Marlin Firmware
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * Grbl is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Grbl is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
- and Philipp Tiefenbacher. */
-
- #include "Marlin.h"
- #include "stepper.h"
- #include "planner.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
- #include "cardreader.h"
- #include "speed_lookuptable.h"
- #if HAS_DIGIPOTSS
- #include <SPI.h>
- #endif
-
- //===========================================================================
- //============================= public variables ============================
- //===========================================================================
- block_t* current_block; // A pointer to the block currently being traced
-
-
- //===========================================================================
- //============================= private variables ===========================
- //===========================================================================
- //static makes it impossible to be called from outside of this file by extern.!
-
- // Variables used by The Stepper Driver Interrupt
- static unsigned char out_bits = 0; // The next stepping-bits to be output
- static unsigned int cleaning_buffer_counter;
-
- #if ENABLED(Z_DUAL_ENDSTOPS)
- static bool performing_homing = false,
- locked_z_motor = false,
- locked_z2_motor = false;
- #endif
-
- // Counter variables for the Bresenham line tracer
- static long counter_x, counter_y, counter_z, counter_e;
- volatile static unsigned long step_events_completed; // The number of step events executed in the current block
-
- #if ENABLED(ADVANCE)
- static long advance_rate, advance, final_advance = 0;
- static long old_advance = 0;
- static long e_steps[4];
- #endif
-
- static long acceleration_time, deceleration_time;
- //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
- static unsigned short acc_step_rate; // needed for deceleration start point
- static uint8_t step_loops;
- static uint8_t step_loops_nominal;
- static unsigned short OCR1A_nominal;
-
- volatile long endstops_trigsteps[3] = { 0 };
- volatile long endstops_stepsTotal, endstops_stepsDone;
- static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
-
- #if DISABLED(Z_DUAL_ENDSTOPS)
- static byte
- #else
- static uint16_t
- #endif
- old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
-
- #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
- bool abort_on_endstop_hit = false;
- #endif
-
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
- #endif
-
- static bool check_endstops = true;
-
- volatile long count_position[NUM_AXIS] = { 0 }; // Positions of stepper motors, in step units
- volatile signed char count_direction[NUM_AXIS] = { 1 };
-
-
- //===========================================================================
- //================================ functions ================================
- //===========================================================================
-
- #if ENABLED(DUAL_X_CARRIAGE)
- #define X_APPLY_DIR(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_DIR_WRITE(v); \
- X2_DIR_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
- }
- #define X_APPLY_STEP(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_STEP_WRITE(v); \
- X2_STEP_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
- }
- #else
- #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
- #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
- #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
- #else
- #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
- #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
- #if ENABLED(Z_DUAL_ENDSTOPS)
- #define Z_APPLY_STEP(v,Q) \
- if (performing_homing) { \
- if (Z_HOME_DIR > 0) {\
- if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
- if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
- } \
- else { \
- if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
- if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
- } \
- } \
- else { \
- Z_STEP_WRITE(v); \
- Z2_STEP_WRITE(v); \
- }
- #else
- #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
- #endif
- #else
- #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
- #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
- #endif
-
- #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
-
- // intRes = intIn1 * intIn2 >> 16
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 24 bit result
- #define MultiU16X8toH16(intRes, charIn1, intIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %A1, %A2 \n\t" \
- "add %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r0 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (charIn1), \
- "d" (intIn2) \
- : \
- "r26" \
- )
-
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // r26 to store 0
- // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
- // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
- // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
- // B0 A0 are bits 24-39 and are the returned value
- // C1 B1 A1 is longIn1
- // D2 C2 B2 A2 is longIn2
- //
- #define MultiU24X32toH16(intRes, longIn1, longIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "mov r27, r1 \n\t" \
- "mul %B1, %C2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %C1, %C2 \n\t" \
- "add %B0, r0 \n\t" \
- "mul %C1, %B2 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %A1, %C2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %B2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %C1, %A2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %A2 \n\t" \
- "add r27, r1 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r27 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %D2, %A1 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %D2, %B1 \n\t" \
- "add %B0, r0 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (longIn1), \
- "d" (longIn2) \
- : \
- "r26" , "r27" \
- )
-
- // Some useful constants
-
- #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
- #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
-
- void endstops_hit_on_purpose() {
- endstop_hit_bits = 0;
- }
-
- void checkHitEndstops() {
- if (endstop_hit_bits) {
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
- if (endstop_hit_bits & BIT(X_MIN)) {
- SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
- LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
- }
- if (endstop_hit_bits & BIT(Y_MIN)) {
- SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
- LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
- }
- if (endstop_hit_bits & BIT(Z_MIN)) {
- SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
- LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
- }
- #if ENABLED(Z_MIN_PROBE_ENDSTOP)
- if (endstop_hit_bits & BIT(Z_MIN_PROBE)) {
- SERIAL_ECHOPAIR(" Z_MIN_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
- LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
- }
- #endif
- SERIAL_EOL;
-
- endstops_hit_on_purpose();
-
- #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
- if (abort_on_endstop_hit) {
- card.sdprinting = false;
- card.closefile();
- quickStop();
- disable_all_heaters(); // switch off all heaters.
- }
- #endif
- }
- }
-
- #if ENABLED(COREXY) || ENABLED(COREXZ)
- #if ENABLED(COREXY)
- #define CORE_AXIS_2 B_AXIS
- #else
- #define CORE_AXIS_2 C_AXIS
- #endif
- #endif
-
- void enable_endstops(bool check) { check_endstops = check; }
-
- // Check endstops - called from ISR!
- inline void update_endstops() {
-
- #if ENABLED(Z_DUAL_ENDSTOPS)
- uint16_t
- #else
- byte
- #endif
- current_endstop_bits = 0;
-
- #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
- #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
- #define _AXIS(AXIS) AXIS ##_AXIS
- #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
- #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
-
- // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
- #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
- // COPY_BIT: copy the value of COPY_BIT to BIT in bits
- #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
- // TEST_ENDSTOP: test the old and the current status of an endstop
- #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
-
- #if ENABLED(COREXY) || ENABLED(COREXZ)
-
- #define _SET_TRIGSTEPS(AXIS) do { \
- float axis_pos = count_position[_AXIS(AXIS)]; \
- if (_AXIS(AXIS) == A_AXIS) \
- axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; \
- else if (_AXIS(AXIS) == CORE_AXIS_2) \
- axis_pos = (count_position[A_AXIS] - axis_pos) / 2; \
- endstops_trigsteps[_AXIS(AXIS)] = axis_pos; \
- } while(0)
-
- #else
-
- #define _SET_TRIGSTEPS(AXIS) endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]
-
- #endif // COREXY || COREXZ
-
- #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
- SET_ENDSTOP_BIT(AXIS, MINMAX); \
- if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && current_block->steps[_AXIS(AXIS)] > 0) { \
- _SET_TRIGSTEPS(AXIS); \
- _ENDSTOP_HIT(AXIS); \
- step_events_completed = current_block->step_event_count; \
- } \
- } while(0)
-
- #if ENABLED(COREXY) || ENABLED(COREXZ)
- // Head direction in -X axis for CoreXY and CoreXZ bots.
- // If Delta1 == -Delta2, the movement is only in Y or Z axis
- if ((current_block->steps[A_AXIS] != current_block->steps[CORE_AXIS_2]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, CORE_AXIS_2))) {
- if (TEST(out_bits, X_HEAD))
- #else
- if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
- #endif
- { // -direction
- #if ENABLED(DUAL_X_CARRIAGE)
- // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
- if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
- #endif
- {
- #if HAS_X_MIN
- UPDATE_ENDSTOP(X, MIN);
- #endif
- }
- }
- else { // +direction
- #if ENABLED(DUAL_X_CARRIAGE)
- // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
- if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
- #endif
- {
- #if HAS_X_MAX
- UPDATE_ENDSTOP(X, MAX);
- #endif
- }
- }
- #if ENABLED(COREXY) || ENABLED(COREXZ)
- }
- #endif
-
- #if ENABLED(COREXY)
- // Head direction in -Y axis for CoreXY bots.
- // If DeltaX == DeltaY, the movement is only in X axis
- if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
- if (TEST(out_bits, Y_HEAD))
- #else
- if (TEST(out_bits, Y_AXIS)) // -direction
- #endif
- { // -direction
- #if HAS_Y_MIN
- UPDATE_ENDSTOP(Y, MIN);
- #endif
- }
- else { // +direction
- #if HAS_Y_MAX
- UPDATE_ENDSTOP(Y, MAX);
- #endif
- }
- #if ENABLED(COREXY)
- }
- #endif
-
- #if ENABLED(COREXZ)
- // Head direction in -Z axis for CoreXZ bots.
- // If DeltaX == DeltaZ, the movement is only in X axis
- if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
- if (TEST(out_bits, Z_HEAD))
- #else
- if (TEST(out_bits, Z_AXIS))
- #endif
- { // z -direction
- #if HAS_Z_MIN
-
- #if ENABLED(Z_DUAL_ENDSTOPS)
- SET_ENDSTOP_BIT(Z, MIN);
- #if HAS_Z2_MIN
- SET_ENDSTOP_BIT(Z2, MIN);
- #else
- COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
- #endif
-
- byte z_test = TEST_ENDSTOP(Z_MIN) | (TEST_ENDSTOP(Z2_MIN) << 1); // bit 0 for Z, bit 1 for Z2
-
- if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_hit_bits |= BIT(Z_MIN);
- if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
- step_events_completed = current_block->step_event_count;
- }
- #else // !Z_DUAL_ENDSTOPS
-
- UPDATE_ENDSTOP(Z, MIN);
-
- #endif // !Z_DUAL_ENDSTOPS
- #endif // Z_MIN_PIN
-
- #if ENABLED(Z_MIN_PROBE_ENDSTOP)
- UPDATE_ENDSTOP(Z, MIN_PROBE);
-
- if (TEST_ENDSTOP(Z_MIN_PROBE)) {
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_hit_bits |= BIT(Z_MIN_PROBE);
- }
- #endif
- }
- else { // z +direction
- #if HAS_Z_MAX
-
- #if ENABLED(Z_DUAL_ENDSTOPS)
-
- SET_ENDSTOP_BIT(Z, MAX);
- #if HAS_Z2_MAX
- SET_ENDSTOP_BIT(Z2, MAX);
- #else
- COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
- #endif
-
- byte z_test = TEST_ENDSTOP(Z_MAX) | (TEST_ENDSTOP(Z2_MAX) << 1); // bit 0 for Z, bit 1 for Z2
-
- if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_hit_bits |= BIT(Z_MIN);
- if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
- step_events_completed = current_block->step_event_count;
- }
-
- #else // !Z_DUAL_ENDSTOPS
-
- UPDATE_ENDSTOP(Z, MAX);
-
- #endif // !Z_DUAL_ENDSTOPS
- #endif // Z_MAX_PIN
- }
- #if ENABLED(COREXZ)
- }
- #endif
- old_endstop_bits = current_endstop_bits;
- }
-
- // __________________________
- // /| |\ _________________ ^
- // / | | \ /| |\ |
- // / | | \ / | | \ s
- // / | | | | | \ p
- // / | | | | | \ e
- // +-----+------------------------+---+--+---------------+----+ e
- // | BLOCK 1 | BLOCK 2 | d
- //
- // time ----->
- //
- // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- // first block->accelerate_until step_events_completed, then keeps going at constant speed until
- // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
-
- void st_wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
- unsigned short timer;
-
- NOMORE(step_rate, MAX_STEP_FREQUENCY);
-
- if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
- step_rate = (step_rate >> 2) & 0x3fff;
- step_loops = 4;
- }
- else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
- step_rate = (step_rate >> 1) & 0x7fff;
- step_loops = 2;
- }
- else {
- step_loops = 1;
- }
-
- NOLESS(step_rate, F_CPU / 500000);
- step_rate -= F_CPU / 500000; // Correct for minimal speed
- if (step_rate >= (8 * 256)) { // higher step rate
- unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate >> 8)][0];
- unsigned char tmp_step_rate = (step_rate & 0x00ff);
- unsigned short gain = (unsigned short)pgm_read_word_near(table_address + 2);
- MultiU16X8toH16(timer, tmp_step_rate, gain);
- timer = (unsigned short)pgm_read_word_near(table_address) - timer;
- }
- else { // lower step rates
- unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
- table_address += ((step_rate) >> 1) & 0xfffc;
- timer = (unsigned short)pgm_read_word_near(table_address);
- timer -= (((unsigned short)pgm_read_word_near(table_address + 2) * (unsigned char)(step_rate & 0x0007)) >> 3);
- }
- if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
- return timer;
- }
-
- /**
- * Set the stepper direction of each axis
- *
- * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
- * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
- */
- void set_stepper_direction() {
-
- if (TEST(out_bits, X_AXIS)) { // A_AXIS
- X_APPLY_DIR(INVERT_X_DIR, 0);
- count_direction[X_AXIS] = -1;
- }
- else {
- X_APPLY_DIR(!INVERT_X_DIR, 0);
- count_direction[X_AXIS] = 1;
- }
-
- if (TEST(out_bits, Y_AXIS)) { // B_AXIS
- Y_APPLY_DIR(INVERT_Y_DIR, 0);
- count_direction[Y_AXIS] = -1;
- }
- else {
- Y_APPLY_DIR(!INVERT_Y_DIR, 0);
- count_direction[Y_AXIS] = 1;
- }
-
- if (TEST(out_bits, Z_AXIS)) { // C_AXIS
- Z_APPLY_DIR(INVERT_Z_DIR, 0);
- count_direction[Z_AXIS] = -1;
- }
- else {
- Z_APPLY_DIR(!INVERT_Z_DIR, 0);
- count_direction[Z_AXIS] = 1;
- }
-
- #if DISABLED(ADVANCE)
- if (TEST(out_bits, E_AXIS)) {
- REV_E_DIR();
- count_direction[E_AXIS] = -1;
- }
- else {
- NORM_E_DIR();
- count_direction[E_AXIS] = 1;
- }
- #endif //!ADVANCE
- }
-
- // Initializes the trapezoid generator from the current block. Called whenever a new
- // block begins.
- FORCE_INLINE void trapezoid_generator_reset() {
-
- if (current_block->direction_bits != out_bits) {
- out_bits = current_block->direction_bits;
- set_stepper_direction();
- }
-
- #if ENABLED(ADVANCE)
- advance = current_block->initial_advance;
- final_advance = current_block->final_advance;
- // Do E steps + advance steps
- e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
- old_advance = advance >>8;
- #endif
- deceleration_time = 0;
- // step_rate to timer interval
- OCR1A_nominal = calc_timer(current_block->nominal_rate);
- // make a note of the number of step loops required at nominal speed
- step_loops_nominal = step_loops;
- acc_step_rate = current_block->initial_rate;
- acceleration_time = calc_timer(acc_step_rate);
- OCR1A = acceleration_time;
-
- // SERIAL_ECHO_START;
- // SERIAL_ECHOPGM("advance :");
- // SERIAL_ECHO(current_block->advance/256.0);
- // SERIAL_ECHOPGM("advance rate :");
- // SERIAL_ECHO(current_block->advance_rate/256.0);
- // SERIAL_ECHOPGM("initial advance :");
- // SERIAL_ECHO(current_block->initial_advance/256.0);
- // SERIAL_ECHOPGM("final advance :");
- // SERIAL_ECHOLN(current_block->final_advance/256.0);
- }
-
- // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
- // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
- ISR(TIMER1_COMPA_vect) {
-
- if (cleaning_buffer_counter) {
- current_block = NULL;
- plan_discard_current_block();
- #ifdef SD_FINISHED_RELEASECOMMAND
- if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
- #endif
- cleaning_buffer_counter--;
- OCR1A = 200;
- return;
- }
-
- // If there is no current block, attempt to pop one from the buffer
- if (!current_block) {
- // Anything in the buffer?
- current_block = plan_get_current_block();
- if (current_block) {
- current_block->busy = true;
- trapezoid_generator_reset();
- counter_x = -(current_block->step_event_count >> 1);
- counter_y = counter_z = counter_e = counter_x;
- step_events_completed = 0;
-
- #if ENABLED(Z_LATE_ENABLE)
- if (current_block->steps[Z_AXIS] > 0) {
- enable_z();
- OCR1A = 2000; //1ms wait
- return;
- }
- #endif
-
- // #if ENABLED(ADVANCE)
- // e_steps[current_block->active_extruder] = 0;
- // #endif
- }
- else {
- OCR1A = 2000; // 1kHz.
- }
- }
-
- if (current_block != NULL) {
-
- // Update endstops state, if enabled
- if (check_endstops) update_endstops();
-
- // Take multiple steps per interrupt (For high speed moves)
- for (int8_t i = 0; i < step_loops; i++) {
- #ifndef USBCON
- customizedSerial.checkRx(); // Check for serial chars.
- #endif
-
- #if ENABLED(ADVANCE)
- counter_e += current_block->steps[E_AXIS];
- if (counter_e > 0) {
- counter_e -= current_block->step_event_count;
- e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
- }
- #endif //ADVANCE
-
- #define _COUNTER(axis) counter_## axis
- #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
- #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
-
- #define STEP_ADD(axis, AXIS) \
- _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
- if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
-
- STEP_ADD(x,X);
- STEP_ADD(y,Y);
- STEP_ADD(z,Z);
- #if DISABLED(ADVANCE)
- STEP_ADD(e,E);
- #endif
-
- #define STEP_IF_COUNTER(axis, AXIS) \
- if (_COUNTER(axis) > 0) { \
- _COUNTER(axis) -= current_block->step_event_count; \
- count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
- }
-
- STEP_IF_COUNTER(x, X);
- STEP_IF_COUNTER(y, Y);
- STEP_IF_COUNTER(z, Z);
- #if DISABLED(ADVANCE)
- STEP_IF_COUNTER(e, E);
- #endif
-
- step_events_completed++;
- if (step_events_completed >= current_block->step_event_count) break;
- }
- // Calculate new timer value
- unsigned short timer;
- unsigned short step_rate;
- if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
-
- MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- acc_step_rate += current_block->initial_rate;
-
- // upper limit
- NOMORE(acc_step_rate, current_block->nominal_rate);
-
- // step_rate to timer interval
- timer = calc_timer(acc_step_rate);
- OCR1A = timer;
- acceleration_time += timer;
-
- #if ENABLED(ADVANCE)
-
- advance += advance_rate * step_loops;
- //NOLESS(advance, current_block->advance);
-
- // Do E steps + advance steps
- e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
- old_advance = advance >> 8;
-
- #endif //ADVANCE
- }
- else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
- MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
-
- if (step_rate <= acc_step_rate) { // Still decelerating?
- step_rate = acc_step_rate - step_rate;
- NOLESS(step_rate, current_block->final_rate);
- }
- else
- step_rate = current_block->final_rate;
-
- // step_rate to timer interval
- timer = calc_timer(step_rate);
- OCR1A = timer;
- deceleration_time += timer;
-
- #if ENABLED(ADVANCE)
- advance -= advance_rate * step_loops;
- NOLESS(advance, final_advance);
-
- // Do E steps + advance steps
- uint32_t advance_whole = advance >> 8;
- e_steps[current_block->active_extruder] += advance_whole - old_advance;
- old_advance = advance_whole;
- #endif //ADVANCE
- }
- else {
- OCR1A = OCR1A_nominal;
- // ensure we're running at the correct step rate, even if we just came off an acceleration
- step_loops = step_loops_nominal;
- }
-
- OCR1A = (OCR1A < (TCNT1 + 16)) ? (TCNT1 + 16) : OCR1A;
-
- // If current block is finished, reset pointer
- if (step_events_completed >= current_block->step_event_count) {
- current_block = NULL;
- plan_discard_current_block();
- }
- }
- }
-
- #if ENABLED(ADVANCE)
- unsigned char old_OCR0A;
- // Timer interrupt for E. e_steps is set in the main routine;
- // Timer 0 is shared with millies
- ISR(TIMER0_COMPA_vect) {
- old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
- OCR0A = old_OCR0A;
- // Set E direction (Depends on E direction + advance)
- for (unsigned char i = 0; i < 4; i++) {
- if (e_steps[0] != 0) {
- E0_STEP_WRITE(INVERT_E_STEP_PIN);
- if (e_steps[0] < 0) {
- E0_DIR_WRITE(INVERT_E0_DIR);
- e_steps[0]++;
- E0_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- else if (e_steps[0] > 0) {
- E0_DIR_WRITE(!INVERT_E0_DIR);
- e_steps[0]--;
- E0_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- }
- #if EXTRUDERS > 1
- if (e_steps[1] != 0) {
- E1_STEP_WRITE(INVERT_E_STEP_PIN);
- if (e_steps[1] < 0) {
- E1_DIR_WRITE(INVERT_E1_DIR);
- e_steps[1]++;
- E1_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- else if (e_steps[1] > 0) {
- E1_DIR_WRITE(!INVERT_E1_DIR);
- e_steps[1]--;
- E1_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- }
- #endif
- #if EXTRUDERS > 2
- if (e_steps[2] != 0) {
- E2_STEP_WRITE(INVERT_E_STEP_PIN);
- if (e_steps[2] < 0) {
- E2_DIR_WRITE(INVERT_E2_DIR);
- e_steps[2]++;
- E2_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- else if (e_steps[2] > 0) {
- E2_DIR_WRITE(!INVERT_E2_DIR);
- e_steps[2]--;
- E2_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- }
- #endif
- #if EXTRUDERS > 3
- if (e_steps[3] != 0) {
- E3_STEP_WRITE(INVERT_E_STEP_PIN);
- if (e_steps[3] < 0) {
- E3_DIR_WRITE(INVERT_E3_DIR);
- e_steps[3]++;
- E3_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- else if (e_steps[3] > 0) {
- E3_DIR_WRITE(!INVERT_E3_DIR);
- e_steps[3]--;
- E3_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- }
- #endif
- }
- }
- #endif // ADVANCE
-
- void st_init() {
- digipot_init(); //Initialize Digipot Motor Current
- microstep_init(); //Initialize Microstepping Pins
-
- // initialise TMC Steppers
- #if ENABLED(HAVE_TMCDRIVER)
- tmc_init();
- #endif
- // initialise L6470 Steppers
- #if ENABLED(HAVE_L6470DRIVER)
- L6470_init();
- #endif
-
- // Initialize Dir Pins
- #if HAS_X_DIR
- X_DIR_INIT;
- #endif
- #if HAS_X2_DIR
- X2_DIR_INIT;
- #endif
- #if HAS_Y_DIR
- Y_DIR_INIT;
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
- Y2_DIR_INIT;
- #endif
- #endif
- #if HAS_Z_DIR
- Z_DIR_INIT;
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
- Z2_DIR_INIT;
- #endif
- #endif
- #if HAS_E0_DIR
- E0_DIR_INIT;
- #endif
- #if HAS_E1_DIR
- E1_DIR_INIT;
- #endif
- #if HAS_E2_DIR
- E2_DIR_INIT;
- #endif
- #if HAS_E3_DIR
- E3_DIR_INIT;
- #endif
-
- //Initialize Enable Pins - steppers default to disabled.
-
- #if HAS_X_ENABLE
- X_ENABLE_INIT;
- if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_X2_ENABLE
- X2_ENABLE_INIT;
- if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_Y_ENABLE
- Y_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
-
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
- Y2_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Z_ENABLE
- Z_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
-
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
- Z2_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_E0_ENABLE
- E0_ENABLE_INIT;
- if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E1_ENABLE
- E1_ENABLE_INIT;
- if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E2_ENABLE
- E2_ENABLE_INIT;
- if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E3_ENABLE
- E3_ENABLE_INIT;
- if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
- #endif
-
- //endstops and pullups
-
- #if HAS_X_MIN
- SET_INPUT(X_MIN_PIN);
- #if ENABLED(ENDSTOPPULLUP_XMIN)
- WRITE(X_MIN_PIN,HIGH);
- #endif
- #endif
-
- #if HAS_Y_MIN
- SET_INPUT(Y_MIN_PIN);
- #if ENABLED(ENDSTOPPULLUP_YMIN)
- WRITE(Y_MIN_PIN,HIGH);
- #endif
- #endif
-
- #if HAS_Z_MIN
- SET_INPUT(Z_MIN_PIN);
- #if ENABLED(ENDSTOPPULLUP_ZMIN)
- WRITE(Z_MIN_PIN,HIGH);
- #endif
- #endif
-
- #if HAS_Z2_MIN
- SET_INPUT(Z2_MIN_PIN);
- #if ENABLED(ENDSTOPPULLUP_ZMIN)
- WRITE(Z2_MIN_PIN,HIGH);
- #endif
- #endif
-
- #if HAS_X_MAX
- SET_INPUT(X_MAX_PIN);
- #if ENABLED(ENDSTOPPULLUP_XMAX)
- WRITE(X_MAX_PIN,HIGH);
- #endif
- #endif
-
- #if HAS_Y_MAX
- SET_INPUT(Y_MAX_PIN);
- #if ENABLED(ENDSTOPPULLUP_YMAX)
- WRITE(Y_MAX_PIN,HIGH);
- #endif
- #endif
-
- #if HAS_Z_MAX
- SET_INPUT(Z_MAX_PIN);
- #if ENABLED(ENDSTOPPULLUP_ZMAX)
- WRITE(Z_MAX_PIN,HIGH);
- #endif
- #endif
-
- #if HAS_Z2_MAX
- SET_INPUT(Z2_MAX_PIN);
- #if ENABLED(ENDSTOPPULLUP_ZMAX)
- WRITE(Z2_MAX_PIN,HIGH);
- #endif
- #endif
-
- #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
- SET_INPUT(Z_MIN_PROBE_PIN);
- #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
- WRITE(Z_MIN_PROBE_PIN,HIGH);
- #endif
- #endif
-
- #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
- #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
- #define _DISABLE(axis) disable_## axis()
-
- #define AXIS_INIT(axis, AXIS, PIN) \
- _STEP_INIT(AXIS); \
- _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
- _DISABLE(axis)
-
- #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
-
- // Initialize Step Pins
- #if HAS_X_STEP
- AXIS_INIT(x, X, X);
- #endif
- #if HAS_X2_STEP
- AXIS_INIT(x, X2, X);
- #endif
- #if HAS_Y_STEP
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
- Y2_STEP_INIT;
- Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
- #endif
- AXIS_INIT(y, Y, Y);
- #endif
- #if HAS_Z_STEP
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
- Z2_STEP_INIT;
- Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
- #endif
- AXIS_INIT(z, Z, Z);
- #endif
- #if HAS_E0_STEP
- E_AXIS_INIT(0);
- #endif
- #if HAS_E1_STEP
- E_AXIS_INIT(1);
- #endif
- #if HAS_E2_STEP
- E_AXIS_INIT(2);
- #endif
- #if HAS_E3_STEP
- E_AXIS_INIT(3);
- #endif
-
- // waveform generation = 0100 = CTC
- TCCR1B &= ~BIT(WGM13);
- TCCR1B |= BIT(WGM12);
- TCCR1A &= ~BIT(WGM11);
- TCCR1A &= ~BIT(WGM10);
-
- // output mode = 00 (disconnected)
- TCCR1A &= ~(3 << COM1A0);
- TCCR1A &= ~(3 << COM1B0);
- // Set the timer pre-scaler
- // Generally we use a divider of 8, resulting in a 2MHz timer
- // frequency on a 16MHz MCU. If you are going to change this, be
- // sure to regenerate speed_lookuptable.h with
- // create_speed_lookuptable.py
- TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
-
- OCR1A = 0x4000;
- TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
-
- #if ENABLED(ADVANCE)
- #if defined(TCCR0A) && defined(WGM01)
- TCCR0A &= ~BIT(WGM01);
- TCCR0A &= ~BIT(WGM00);
- #endif
- e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
- TIMSK0 |= BIT(OCIE0A);
- #endif //ADVANCE
-
- enable_endstops(true); // Start with endstops active. After homing they can be disabled
- sei();
-
- set_stepper_direction(); // Init directions to out_bits = 0
- }
-
-
- /**
- * Block until all buffered steps are executed
- */
- void st_synchronize() { while (blocks_queued()) idle(); }
-
- void st_set_position(const long& x, const long& y, const long& z, const long& e) {
- CRITICAL_SECTION_START;
- count_position[X_AXIS] = x;
- count_position[Y_AXIS] = y;
- count_position[Z_AXIS] = z;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- void st_set_e_position(const long& e) {
- CRITICAL_SECTION_START;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- long st_get_position(uint8_t axis) {
- CRITICAL_SECTION_START;
- long count_pos = count_position[axis];
- CRITICAL_SECTION_END;
- return count_pos;
- }
-
- float st_get_axis_position_mm(AxisEnum axis) {
- float axis_pos;
- #if ENABLED(COREXY) | ENABLED(COREXZ)
- if (axis == X_AXIS || axis == CORE_AXIS_2) {
- CRITICAL_SECTION_START;
- long pos1 = count_position[A_AXIS],
- pos2 = count_position[CORE_AXIS_2];
- CRITICAL_SECTION_END;
- // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
- // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
- axis_pos = (pos1 + ((axis == X_AXIS) ? pos2 : -pos2)) / 2.0f;
- }
- else
- axis_pos = st_get_position(axis);
- #else
- axis_pos = st_get_position(axis);
- #endif
- return axis_pos / axis_steps_per_unit[axis];
- }
-
- void finishAndDisableSteppers() {
- st_synchronize();
- disable_all_steppers();
- }
-
- void quickStop() {
- cleaning_buffer_counter = 5000;
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- while (blocks_queued()) plan_discard_current_block();
- current_block = NULL;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- #if ENABLED(BABYSTEPPING)
-
- // MUST ONLY BE CALLED BY AN ISR,
- // No other ISR should ever interrupt this!
- void babystep(const uint8_t axis, const bool direction) {
-
- #define _ENABLE(axis) enable_## axis()
- #define _READ_DIR(AXIS) AXIS ##_DIR_READ
- #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
- #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
-
- #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
- _ENABLE(axis); \
- uint8_t old_pin = _READ_DIR(AXIS); \
- _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
- _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
- delayMicroseconds(2); \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
- _APPLY_DIR(AXIS, old_pin); \
- }
-
- switch (axis) {
-
- case X_AXIS:
- BABYSTEP_AXIS(x, X, false);
- break;
-
- case Y_AXIS:
- BABYSTEP_AXIS(y, Y, false);
- break;
-
- case Z_AXIS: {
-
- #if DISABLED(DELTA)
-
- BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
-
- #else // DELTA
-
- bool z_direction = direction ^ BABYSTEP_INVERT_Z;
-
- enable_x();
- enable_y();
- enable_z();
- uint8_t old_x_dir_pin = X_DIR_READ,
- old_y_dir_pin = Y_DIR_READ,
- old_z_dir_pin = Z_DIR_READ;
- //setup new step
- X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
- Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
- Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
- //perform step
- X_STEP_WRITE(!INVERT_X_STEP_PIN);
- Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
- delayMicroseconds(2);
- X_STEP_WRITE(INVERT_X_STEP_PIN);
- Y_STEP_WRITE(INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(INVERT_Z_STEP_PIN);
- //get old pin state back.
- X_DIR_WRITE(old_x_dir_pin);
- Y_DIR_WRITE(old_y_dir_pin);
- Z_DIR_WRITE(old_z_dir_pin);
-
- #endif
-
- } break;
-
- default: break;
- }
- }
-
- #endif //BABYSTEPPING
-
- // From Arduino DigitalPotControl example
- void digitalPotWrite(int address, int value) {
- #if HAS_DIGIPOTSS
- digitalWrite(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
- SPI.transfer(address); // send in the address and value via SPI:
- SPI.transfer(value);
- digitalWrite(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
- //delay(10);
- #else
- UNUSED(address);
- UNUSED(value);
- #endif
- }
-
- // Initialize Digipot Motor Current
- void digipot_init() {
- #if HAS_DIGIPOTSS
- const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
-
- SPI.begin();
- pinMode(DIGIPOTSS_PIN, OUTPUT);
- for (int i = 0; i < COUNT(digipot_motor_current); i++) {
- //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
- digipot_current(i, digipot_motor_current[i]);
- }
- #endif
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
- pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
- pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
- pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
- digipot_current(0, motor_current_setting[0]);
- digipot_current(1, motor_current_setting[1]);
- digipot_current(2, motor_current_setting[2]);
- //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
- TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
- #endif
- }
-
- void digipot_current(uint8_t driver, int current) {
- #if HAS_DIGIPOTSS
- const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
- digitalPotWrite(digipot_ch[driver], current);
- #elif defined(MOTOR_CURRENT_PWM_XY_PIN)
- switch (driver) {
- case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
- case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
- case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
- }
- #else
- UNUSED(driver);
- UNUSED(current);
- #endif
- }
-
- void microstep_init() {
- #if HAS_MICROSTEPS_E1
- pinMode(E1_MS1_PIN, OUTPUT);
- pinMode(E1_MS2_PIN, OUTPUT);
- #endif
-
- #if HAS_MICROSTEPS
- pinMode(X_MS1_PIN, OUTPUT);
- pinMode(X_MS2_PIN, OUTPUT);
- pinMode(Y_MS1_PIN, OUTPUT);
- pinMode(Y_MS2_PIN, OUTPUT);
- pinMode(Z_MS1_PIN, OUTPUT);
- pinMode(Z_MS2_PIN, OUTPUT);
- pinMode(E0_MS1_PIN, OUTPUT);
- pinMode(E0_MS2_PIN, OUTPUT);
- const uint8_t microstep_modes[] = MICROSTEP_MODES;
- for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
- microstep_mode(i, microstep_modes[i]);
- #endif
- }
-
- void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
- if (ms1 >= 0) switch (driver) {
- case 0: digitalWrite(X_MS1_PIN, ms1); break;
- case 1: digitalWrite(Y_MS1_PIN, ms1); break;
- case 2: digitalWrite(Z_MS1_PIN, ms1); break;
- case 3: digitalWrite(E0_MS1_PIN, ms1); break;
- #if HAS_MICROSTEPS_E1
- case 4: digitalWrite(E1_MS1_PIN, ms1); break;
- #endif
- }
- if (ms2 >= 0) switch (driver) {
- case 0: digitalWrite(X_MS2_PIN, ms2); break;
- case 1: digitalWrite(Y_MS2_PIN, ms2); break;
- case 2: digitalWrite(Z_MS2_PIN, ms2); break;
- case 3: digitalWrite(E0_MS2_PIN, ms2); break;
- #if PIN_EXISTS(E1_MS2)
- case 4: digitalWrite(E1_MS2_PIN, ms2); break;
- #endif
- }
- }
-
- void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
- switch (stepping_mode) {
- case 1: microstep_ms(driver, MICROSTEP1); break;
- case 2: microstep_ms(driver, MICROSTEP2); break;
- case 4: microstep_ms(driver, MICROSTEP4); break;
- case 8: microstep_ms(driver, MICROSTEP8); break;
- case 16: microstep_ms(driver, MICROSTEP16); break;
- }
- }
-
- void microstep_readings() {
- SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
- SERIAL_PROTOCOLPGM("X: ");
- SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
- SERIAL_PROTOCOLPGM("Y: ");
- SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
- SERIAL_PROTOCOLPGM("Z: ");
- SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
- SERIAL_PROTOCOLPGM("E0: ");
- SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
- #if HAS_MICROSTEPS_E1
- SERIAL_PROTOCOLPGM("E1: ");
- SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
- #endif
- }
-
- #if ENABLED(Z_DUAL_ENDSTOPS)
- void In_Homing_Process(bool state) { performing_homing = state; }
- void Lock_z_motor(bool state) { locked_z_motor = state; }
- void Lock_z2_motor(bool state) { locked_z2_motor = state; }
- #endif
|