My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 118KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 - Set filament diameter
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float volumetric_multiplier[EXTRUDERS] = {1.0
  172. #if EXTRUDERS > 1
  173. , 1.0
  174. #if EXTRUDERS > 2
  175. , 1.0
  176. #endif
  177. #endif
  178. };
  179. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  180. float add_homeing[3]={0,0,0};
  181. #ifdef DELTA
  182. float endstop_adj[3]={0,0,0};
  183. #endif
  184. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  185. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  186. bool axis_known_position[3] = {false, false, false};
  187. float zprobe_zoffset;
  188. // Extruder offset
  189. #if EXTRUDERS > 1
  190. #ifndef DUAL_X_CARRIAGE
  191. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  192. #else
  193. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  194. #endif
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. #ifdef SERVO_ENDSTOPS
  204. int servo_endstops[] = SERVO_ENDSTOPS;
  205. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  206. #endif
  207. #ifdef BARICUDA
  208. int ValvePressure=0;
  209. int EtoPPressure=0;
  210. #endif
  211. #ifdef FWRETRACT
  212. bool autoretract_enabled=true;
  213. bool retracted=false;
  214. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  215. float retract_recover_length=0, retract_recover_feedrate=8*60;
  216. #endif
  217. #ifdef ULTIPANEL
  218. #ifdef PS_DEFAULT_OFF
  219. bool powersupply = false;
  220. #else
  221. bool powersupply = true;
  222. #endif
  223. #endif
  224. #ifdef DELTA
  225. float delta[3] = {0.0, 0.0, 0.0};
  226. #endif
  227. //===========================================================================
  228. //=============================private variables=============================
  229. //===========================================================================
  230. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  231. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  232. static float offset[3] = {0.0, 0.0, 0.0};
  233. static bool home_all_axis = true;
  234. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  235. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  238. static bool fromsd[BUFSIZE];
  239. static int bufindr = 0;
  240. static int bufindw = 0;
  241. static int buflen = 0;
  242. //static int i = 0;
  243. static char serial_char;
  244. static int serial_count = 0;
  245. static boolean comment_mode = false;
  246. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  247. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  248. //static float tt = 0;
  249. //static float bt = 0;
  250. //Inactivity shutdown variables
  251. static unsigned long previous_millis_cmd = 0;
  252. static unsigned long max_inactive_time = 0;
  253. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  254. unsigned long starttime=0;
  255. unsigned long stoptime=0;
  256. static uint8_t tmp_extruder;
  257. bool Stopped=false;
  258. #if NUM_SERVOS > 0
  259. Servo servos[NUM_SERVOS];
  260. #endif
  261. bool CooldownNoWait = true;
  262. bool target_direction;
  263. //===========================================================================
  264. //=============================ROUTINES=============================
  265. //===========================================================================
  266. void get_arc_coordinates();
  267. bool setTargetedHotend(int code);
  268. void serial_echopair_P(const char *s_P, float v)
  269. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  270. void serial_echopair_P(const char *s_P, double v)
  271. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  272. void serial_echopair_P(const char *s_P, unsigned long v)
  273. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  274. extern "C"{
  275. extern unsigned int __bss_end;
  276. extern unsigned int __heap_start;
  277. extern void *__brkval;
  278. int freeMemory() {
  279. int free_memory;
  280. if((int)__brkval == 0)
  281. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  282. else
  283. free_memory = ((int)&free_memory) - ((int)__brkval);
  284. return free_memory;
  285. }
  286. }
  287. //adds an command to the main command buffer
  288. //thats really done in a non-safe way.
  289. //needs overworking someday
  290. void enquecommand(const char *cmd)
  291. {
  292. if(buflen < BUFSIZE)
  293. {
  294. //this is dangerous if a mixing of serial and this happsens
  295. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  296. SERIAL_ECHO_START;
  297. SERIAL_ECHOPGM("enqueing \"");
  298. SERIAL_ECHO(cmdbuffer[bufindw]);
  299. SERIAL_ECHOLNPGM("\"");
  300. bufindw= (bufindw + 1)%BUFSIZE;
  301. buflen += 1;
  302. }
  303. }
  304. void enquecommand_P(const char *cmd)
  305. {
  306. if(buflen < BUFSIZE)
  307. {
  308. //this is dangerous if a mixing of serial and this happsens
  309. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  310. SERIAL_ECHO_START;
  311. SERIAL_ECHOPGM("enqueing \"");
  312. SERIAL_ECHO(cmdbuffer[bufindw]);
  313. SERIAL_ECHOLNPGM("\"");
  314. bufindw= (bufindw + 1)%BUFSIZE;
  315. buflen += 1;
  316. }
  317. }
  318. void setup_killpin()
  319. {
  320. #if defined(KILL_PIN) && KILL_PIN > -1
  321. pinMode(KILL_PIN,INPUT);
  322. WRITE(KILL_PIN,HIGH);
  323. #endif
  324. }
  325. void setup_photpin()
  326. {
  327. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  328. SET_OUTPUT(PHOTOGRAPH_PIN);
  329. WRITE(PHOTOGRAPH_PIN, LOW);
  330. #endif
  331. }
  332. void setup_powerhold()
  333. {
  334. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  335. SET_OUTPUT(SUICIDE_PIN);
  336. WRITE(SUICIDE_PIN, HIGH);
  337. #endif
  338. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  339. SET_OUTPUT(PS_ON_PIN);
  340. #if defined(PS_DEFAULT_OFF)
  341. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  342. #else
  343. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  344. #endif
  345. #endif
  346. }
  347. void suicide()
  348. {
  349. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  350. SET_OUTPUT(SUICIDE_PIN);
  351. WRITE(SUICIDE_PIN, LOW);
  352. #endif
  353. }
  354. void servo_init()
  355. {
  356. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  357. servos[0].attach(SERVO0_PIN);
  358. #endif
  359. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  360. servos[1].attach(SERVO1_PIN);
  361. #endif
  362. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  363. servos[2].attach(SERVO2_PIN);
  364. #endif
  365. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  366. servos[3].attach(SERVO3_PIN);
  367. #endif
  368. #if (NUM_SERVOS >= 5)
  369. #error "TODO: enter initalisation code for more servos"
  370. #endif
  371. // Set position of Servo Endstops that are defined
  372. #ifdef SERVO_ENDSTOPS
  373. for(int8_t i = 0; i < 3; i++)
  374. {
  375. if(servo_endstops[i] > -1) {
  376. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  377. }
  378. }
  379. #endif
  380. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  381. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  382. servos[servo_endstops[Z_AXIS]].detach();
  383. #endif
  384. }
  385. void setup()
  386. {
  387. setup_killpin();
  388. setup_powerhold();
  389. MYSERIAL.begin(BAUDRATE);
  390. SERIAL_PROTOCOLLNPGM("start");
  391. SERIAL_ECHO_START;
  392. // Check startup - does nothing if bootloader sets MCUSR to 0
  393. byte mcu = MCUSR;
  394. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  395. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  396. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  397. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  398. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  399. MCUSR=0;
  400. SERIAL_ECHOPGM(MSG_MARLIN);
  401. SERIAL_ECHOLNPGM(VERSION_STRING);
  402. #ifdef STRING_VERSION_CONFIG_H
  403. #ifdef STRING_CONFIG_H_AUTHOR
  404. SERIAL_ECHO_START;
  405. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  406. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  407. SERIAL_ECHOPGM(MSG_AUTHOR);
  408. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  409. SERIAL_ECHOPGM("Compiled: ");
  410. SERIAL_ECHOLNPGM(__DATE__);
  411. #endif
  412. #endif
  413. SERIAL_ECHO_START;
  414. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  415. SERIAL_ECHO(freeMemory());
  416. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  417. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  418. for(int8_t i = 0; i < BUFSIZE; i++)
  419. {
  420. fromsd[i] = false;
  421. }
  422. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  423. Config_RetrieveSettings();
  424. tp_init(); // Initialize temperature loop
  425. plan_init(); // Initialize planner;
  426. watchdog_init();
  427. st_init(); // Initialize stepper, this enables interrupts!
  428. setup_photpin();
  429. servo_init();
  430. lcd_init();
  431. _delay_ms(1000); // wait 1sec to display the splash screen
  432. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  433. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  434. #endif
  435. }
  436. void loop()
  437. {
  438. if(buflen < (BUFSIZE-1))
  439. get_command();
  440. #ifdef SDSUPPORT
  441. card.checkautostart(false);
  442. #endif
  443. if(buflen)
  444. {
  445. #ifdef SDSUPPORT
  446. if(card.saving)
  447. {
  448. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  449. {
  450. card.write_command(cmdbuffer[bufindr]);
  451. if(card.logging)
  452. {
  453. process_commands();
  454. }
  455. else
  456. {
  457. SERIAL_PROTOCOLLNPGM(MSG_OK);
  458. }
  459. }
  460. else
  461. {
  462. card.closefile();
  463. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  464. }
  465. }
  466. else
  467. {
  468. process_commands();
  469. }
  470. #else
  471. process_commands();
  472. #endif //SDSUPPORT
  473. buflen = (buflen-1);
  474. bufindr = (bufindr + 1)%BUFSIZE;
  475. }
  476. //check heater every n milliseconds
  477. manage_heater();
  478. manage_inactivity();
  479. checkHitEndstops();
  480. lcd_update();
  481. }
  482. void get_command()
  483. {
  484. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  485. serial_char = MYSERIAL.read();
  486. if(serial_char == '\n' ||
  487. serial_char == '\r' ||
  488. (serial_char == ':' && comment_mode == false) ||
  489. serial_count >= (MAX_CMD_SIZE - 1) )
  490. {
  491. if(!serial_count) { //if empty line
  492. comment_mode = false; //for new command
  493. return;
  494. }
  495. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  496. if(!comment_mode){
  497. comment_mode = false; //for new command
  498. fromsd[bufindw] = false;
  499. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  500. {
  501. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  502. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  503. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  504. SERIAL_ERROR_START;
  505. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  506. SERIAL_ERRORLN(gcode_LastN);
  507. //Serial.println(gcode_N);
  508. FlushSerialRequestResend();
  509. serial_count = 0;
  510. return;
  511. }
  512. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  513. {
  514. byte checksum = 0;
  515. byte count = 0;
  516. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  517. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  518. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  519. SERIAL_ERROR_START;
  520. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  521. SERIAL_ERRORLN(gcode_LastN);
  522. FlushSerialRequestResend();
  523. serial_count = 0;
  524. return;
  525. }
  526. //if no errors, continue parsing
  527. }
  528. else
  529. {
  530. SERIAL_ERROR_START;
  531. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  532. SERIAL_ERRORLN(gcode_LastN);
  533. FlushSerialRequestResend();
  534. serial_count = 0;
  535. return;
  536. }
  537. gcode_LastN = gcode_N;
  538. //if no errors, continue parsing
  539. }
  540. else // if we don't receive 'N' but still see '*'
  541. {
  542. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  543. {
  544. SERIAL_ERROR_START;
  545. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  546. SERIAL_ERRORLN(gcode_LastN);
  547. serial_count = 0;
  548. return;
  549. }
  550. }
  551. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  552. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  553. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  554. case 0:
  555. case 1:
  556. case 2:
  557. case 3:
  558. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  559. #ifdef SDSUPPORT
  560. if(card.saving)
  561. break;
  562. #endif //SDSUPPORT
  563. SERIAL_PROTOCOLLNPGM(MSG_OK);
  564. }
  565. else {
  566. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  567. LCD_MESSAGEPGM(MSG_STOPPED);
  568. }
  569. break;
  570. default:
  571. break;
  572. }
  573. }
  574. bufindw = (bufindw + 1)%BUFSIZE;
  575. buflen += 1;
  576. }
  577. serial_count = 0; //clear buffer
  578. }
  579. else
  580. {
  581. if(serial_char == ';') comment_mode = true;
  582. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  583. }
  584. }
  585. #ifdef SDSUPPORT
  586. if(!card.sdprinting || serial_count!=0){
  587. return;
  588. }
  589. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  590. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  591. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  592. static bool stop_buffering=false;
  593. if(buflen==0) stop_buffering=false;
  594. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  595. int16_t n=card.get();
  596. serial_char = (char)n;
  597. if(serial_char == '\n' ||
  598. serial_char == '\r' ||
  599. (serial_char == '#' && comment_mode == false) ||
  600. (serial_char == ':' && comment_mode == false) ||
  601. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  602. {
  603. if(card.eof()){
  604. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  605. stoptime=millis();
  606. char time[30];
  607. unsigned long t=(stoptime-starttime)/1000;
  608. int hours, minutes;
  609. minutes=(t/60)%60;
  610. hours=t/60/60;
  611. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  612. SERIAL_ECHO_START;
  613. SERIAL_ECHOLN(time);
  614. lcd_setstatus(time);
  615. card.printingHasFinished();
  616. card.checkautostart(true);
  617. }
  618. if(serial_char=='#')
  619. stop_buffering=true;
  620. if(!serial_count)
  621. {
  622. comment_mode = false; //for new command
  623. return; //if empty line
  624. }
  625. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  626. // if(!comment_mode){
  627. fromsd[bufindw] = true;
  628. buflen += 1;
  629. bufindw = (bufindw + 1)%BUFSIZE;
  630. // }
  631. comment_mode = false; //for new command
  632. serial_count = 0; //clear buffer
  633. }
  634. else
  635. {
  636. if(serial_char == ';') comment_mode = true;
  637. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  638. }
  639. }
  640. #endif //SDSUPPORT
  641. }
  642. float code_value()
  643. {
  644. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  645. }
  646. long code_value_long()
  647. {
  648. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  649. }
  650. bool code_seen(char code)
  651. {
  652. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  653. return (strchr_pointer != NULL); //Return True if a character was found
  654. }
  655. #define DEFINE_PGM_READ_ANY(type, reader) \
  656. static inline type pgm_read_any(const type *p) \
  657. { return pgm_read_##reader##_near(p); }
  658. DEFINE_PGM_READ_ANY(float, float);
  659. DEFINE_PGM_READ_ANY(signed char, byte);
  660. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  661. static const PROGMEM type array##_P[3] = \
  662. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  663. static inline type array(int axis) \
  664. { return pgm_read_any(&array##_P[axis]); }
  665. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  666. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  667. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  668. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  669. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  670. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  671. #ifdef DUAL_X_CARRIAGE
  672. #if EXTRUDERS == 1 || defined(COREXY) \
  673. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  674. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  675. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  676. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  677. #endif
  678. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  679. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  680. #endif
  681. #define DXC_FULL_CONTROL_MODE 0
  682. #define DXC_AUTO_PARK_MODE 1
  683. #define DXC_DUPLICATION_MODE 2
  684. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  685. static float x_home_pos(int extruder) {
  686. if (extruder == 0)
  687. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  688. else
  689. // In dual carriage mode the extruder offset provides an override of the
  690. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  691. // This allow soft recalibration of the second extruder offset position without firmware reflash
  692. // (through the M218 command).
  693. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  694. }
  695. static int x_home_dir(int extruder) {
  696. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  697. }
  698. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  699. static bool active_extruder_parked = false; // used in mode 1 & 2
  700. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  701. static unsigned long delayed_move_time = 0; // used in mode 1
  702. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  703. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  704. bool extruder_duplication_enabled = false; // used in mode 2
  705. #endif //DUAL_X_CARRIAGE
  706. static void axis_is_at_home(int axis) {
  707. #ifdef DUAL_X_CARRIAGE
  708. if (axis == X_AXIS) {
  709. if (active_extruder != 0) {
  710. current_position[X_AXIS] = x_home_pos(active_extruder);
  711. min_pos[X_AXIS] = X2_MIN_POS;
  712. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  713. return;
  714. }
  715. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  716. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  717. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  718. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  719. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  720. return;
  721. }
  722. }
  723. #endif
  724. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  725. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  726. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  727. }
  728. #ifdef ENABLE_AUTO_BED_LEVELING
  729. #ifdef ACCURATE_BED_LEVELING
  730. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  731. {
  732. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  733. planeNormal.debug("planeNormal");
  734. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  735. //bedLevel.debug("bedLevel");
  736. //plan_bed_level_matrix.debug("bed level before");
  737. //vector_3 uncorrected_position = plan_get_position_mm();
  738. //uncorrected_position.debug("position before");
  739. vector_3 corrected_position = plan_get_position();
  740. // corrected_position.debug("position after");
  741. current_position[X_AXIS] = corrected_position.x;
  742. current_position[Y_AXIS] = corrected_position.y;
  743. current_position[Z_AXIS] = corrected_position.z;
  744. // but the bed at 0 so we don't go below it.
  745. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  746. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  747. }
  748. #else
  749. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  750. plan_bed_level_matrix.set_to_identity();
  751. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  752. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  753. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  754. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  755. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  756. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  757. //planeNormal.debug("planeNormal");
  758. //yPositive.debug("yPositive");
  759. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  760. //bedLevel.debug("bedLevel");
  761. //plan_bed_level_matrix.debug("bed level before");
  762. //vector_3 uncorrected_position = plan_get_position_mm();
  763. //uncorrected_position.debug("position before");
  764. // and set our bed level equation to do the right thing
  765. //plan_bed_level_matrix.debug("bed level after");
  766. vector_3 corrected_position = plan_get_position();
  767. //corrected_position.debug("position after");
  768. current_position[X_AXIS] = corrected_position.x;
  769. current_position[Y_AXIS] = corrected_position.y;
  770. current_position[Z_AXIS] = corrected_position.z;
  771. // but the bed at 0 so we don't go below it.
  772. current_position[Z_AXIS] = zprobe_zoffset;
  773. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  774. }
  775. #endif // ACCURATE_BED_LEVELING
  776. static void run_z_probe() {
  777. plan_bed_level_matrix.set_to_identity();
  778. feedrate = homing_feedrate[Z_AXIS];
  779. // move down until you find the bed
  780. float zPosition = -10;
  781. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  782. st_synchronize();
  783. // we have to let the planner know where we are right now as it is not where we said to go.
  784. zPosition = st_get_position_mm(Z_AXIS);
  785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  786. // move up the retract distance
  787. zPosition += home_retract_mm(Z_AXIS);
  788. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  789. st_synchronize();
  790. // move back down slowly to find bed
  791. feedrate = homing_feedrate[Z_AXIS]/4;
  792. zPosition -= home_retract_mm(Z_AXIS) * 2;
  793. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  794. st_synchronize();
  795. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  796. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  797. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  798. }
  799. static void do_blocking_move_to(float x, float y, float z) {
  800. float oldFeedRate = feedrate;
  801. feedrate = XY_TRAVEL_SPEED;
  802. current_position[X_AXIS] = x;
  803. current_position[Y_AXIS] = y;
  804. current_position[Z_AXIS] = z;
  805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  806. st_synchronize();
  807. feedrate = oldFeedRate;
  808. }
  809. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  810. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  811. }
  812. static void setup_for_endstop_move() {
  813. saved_feedrate = feedrate;
  814. saved_feedmultiply = feedmultiply;
  815. feedmultiply = 100;
  816. previous_millis_cmd = millis();
  817. enable_endstops(true);
  818. }
  819. static void clean_up_after_endstop_move() {
  820. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  821. enable_endstops(false);
  822. #endif
  823. feedrate = saved_feedrate;
  824. feedmultiply = saved_feedmultiply;
  825. previous_millis_cmd = millis();
  826. }
  827. static void engage_z_probe() {
  828. // Engage Z Servo endstop if enabled
  829. #ifdef SERVO_ENDSTOPS
  830. if (servo_endstops[Z_AXIS] > -1) {
  831. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  832. servos[servo_endstops[Z_AXIS]].attach(0);
  833. #endif
  834. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  835. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  836. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  837. servos[servo_endstops[Z_AXIS]].detach();
  838. #endif
  839. }
  840. #endif
  841. }
  842. static void retract_z_probe() {
  843. // Retract Z Servo endstop if enabled
  844. #ifdef SERVO_ENDSTOPS
  845. if (servo_endstops[Z_AXIS] > -1) {
  846. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  847. servos[servo_endstops[Z_AXIS]].attach(0);
  848. #endif
  849. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  850. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  851. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  852. servos[servo_endstops[Z_AXIS]].detach();
  853. #endif
  854. }
  855. #endif
  856. }
  857. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  858. static void homeaxis(int axis) {
  859. #define HOMEAXIS_DO(LETTER) \
  860. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  861. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  862. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  863. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  864. 0) {
  865. int axis_home_dir = home_dir(axis);
  866. #ifdef DUAL_X_CARRIAGE
  867. if (axis == X_AXIS)
  868. axis_home_dir = x_home_dir(active_extruder);
  869. #endif
  870. current_position[axis] = 0;
  871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  872. // Engage Servo endstop if enabled
  873. #ifdef SERVO_ENDSTOPS
  874. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  875. if (axis==Z_AXIS) {
  876. engage_z_probe();
  877. }
  878. else
  879. #endif
  880. if (servo_endstops[axis] > -1) {
  881. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  882. }
  883. #endif
  884. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  885. feedrate = homing_feedrate[axis];
  886. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  887. st_synchronize();
  888. current_position[axis] = 0;
  889. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  890. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  891. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  892. st_synchronize();
  893. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  894. #ifdef DELTA
  895. feedrate = homing_feedrate[axis]/10;
  896. #else
  897. feedrate = homing_feedrate[axis]/2 ;
  898. #endif
  899. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  900. st_synchronize();
  901. #ifdef DELTA
  902. // retrace by the amount specified in endstop_adj
  903. if (endstop_adj[axis] * axis_home_dir < 0) {
  904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  905. destination[axis] = endstop_adj[axis];
  906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  907. st_synchronize();
  908. }
  909. #endif
  910. axis_is_at_home(axis);
  911. destination[axis] = current_position[axis];
  912. feedrate = 0.0;
  913. endstops_hit_on_purpose();
  914. axis_known_position[axis] = true;
  915. // Retract Servo endstop if enabled
  916. #ifdef SERVO_ENDSTOPS
  917. if (servo_endstops[axis] > -1) {
  918. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  919. }
  920. #endif
  921. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  922. if (axis==Z_AXIS) retract_z_probe();
  923. #endif
  924. }
  925. }
  926. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  927. void process_commands()
  928. {
  929. unsigned long codenum; //throw away variable
  930. char *starpos = NULL;
  931. #ifdef ENABLE_AUTO_BED_LEVELING
  932. float x_tmp, y_tmp, z_tmp, real_z;
  933. #endif
  934. if(code_seen('G'))
  935. {
  936. switch((int)code_value())
  937. {
  938. case 0: // G0 -> G1
  939. case 1: // G1
  940. if(Stopped == false) {
  941. get_coordinates(); // For X Y Z E F
  942. prepare_move();
  943. //ClearToSend();
  944. return;
  945. }
  946. //break;
  947. case 2: // G2 - CW ARC
  948. if(Stopped == false) {
  949. get_arc_coordinates();
  950. prepare_arc_move(true);
  951. return;
  952. }
  953. case 3: // G3 - CCW ARC
  954. if(Stopped == false) {
  955. get_arc_coordinates();
  956. prepare_arc_move(false);
  957. return;
  958. }
  959. case 4: // G4 dwell
  960. LCD_MESSAGEPGM(MSG_DWELL);
  961. codenum = 0;
  962. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  963. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  964. st_synchronize();
  965. codenum += millis(); // keep track of when we started waiting
  966. previous_millis_cmd = millis();
  967. while(millis() < codenum ){
  968. manage_heater();
  969. manage_inactivity();
  970. lcd_update();
  971. }
  972. break;
  973. #ifdef FWRETRACT
  974. case 10: // G10 retract
  975. if(!retracted)
  976. {
  977. destination[X_AXIS]=current_position[X_AXIS];
  978. destination[Y_AXIS]=current_position[Y_AXIS];
  979. destination[Z_AXIS]=current_position[Z_AXIS];
  980. current_position[Z_AXIS]+=-retract_zlift;
  981. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  982. feedrate=retract_feedrate;
  983. retracted=true;
  984. prepare_move();
  985. }
  986. break;
  987. case 11: // G11 retract_recover
  988. if(retracted)
  989. {
  990. destination[X_AXIS]=current_position[X_AXIS];
  991. destination[Y_AXIS]=current_position[Y_AXIS];
  992. destination[Z_AXIS]=current_position[Z_AXIS];
  993. current_position[Z_AXIS]+=retract_zlift;
  994. destination[E_AXIS]=current_position[E_AXIS]+retract_length+retract_recover_length;
  995. feedrate=retract_recover_feedrate;
  996. retracted=false;
  997. prepare_move();
  998. }
  999. break;
  1000. #endif //FWRETRACT
  1001. case 28: //G28 Home all Axis one at a time
  1002. #ifdef ENABLE_AUTO_BED_LEVELING
  1003. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1004. #endif //ENABLE_AUTO_BED_LEVELING
  1005. saved_feedrate = feedrate;
  1006. saved_feedmultiply = feedmultiply;
  1007. feedmultiply = 100;
  1008. previous_millis_cmd = millis();
  1009. enable_endstops(true);
  1010. for(int8_t i=0; i < NUM_AXIS; i++) {
  1011. destination[i] = current_position[i];
  1012. }
  1013. feedrate = 0.0;
  1014. #ifdef DELTA
  1015. // A delta can only safely home all axis at the same time
  1016. // all axis have to home at the same time
  1017. // Move all carriages up together until the first endstop is hit.
  1018. current_position[X_AXIS] = 0;
  1019. current_position[Y_AXIS] = 0;
  1020. current_position[Z_AXIS] = 0;
  1021. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1022. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1023. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1024. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1025. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1026. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1027. st_synchronize();
  1028. endstops_hit_on_purpose();
  1029. current_position[X_AXIS] = destination[X_AXIS];
  1030. current_position[Y_AXIS] = destination[Y_AXIS];
  1031. current_position[Z_AXIS] = destination[Z_AXIS];
  1032. // take care of back off and rehome now we are all at the top
  1033. HOMEAXIS(X);
  1034. HOMEAXIS(Y);
  1035. HOMEAXIS(Z);
  1036. calculate_delta(current_position);
  1037. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1038. #else // NOT DELTA
  1039. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1040. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1041. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1042. HOMEAXIS(Z);
  1043. }
  1044. #endif
  1045. #ifdef QUICK_HOME
  1046. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1047. {
  1048. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1049. #ifndef DUAL_X_CARRIAGE
  1050. int x_axis_home_dir = home_dir(X_AXIS);
  1051. #else
  1052. int x_axis_home_dir = x_home_dir(active_extruder);
  1053. extruder_duplication_enabled = false;
  1054. #endif
  1055. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1056. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1057. feedrate = homing_feedrate[X_AXIS];
  1058. if(homing_feedrate[Y_AXIS]<feedrate)
  1059. feedrate =homing_feedrate[Y_AXIS];
  1060. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1061. st_synchronize();
  1062. axis_is_at_home(X_AXIS);
  1063. axis_is_at_home(Y_AXIS);
  1064. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1065. destination[X_AXIS] = current_position[X_AXIS];
  1066. destination[Y_AXIS] = current_position[Y_AXIS];
  1067. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1068. feedrate = 0.0;
  1069. st_synchronize();
  1070. endstops_hit_on_purpose();
  1071. current_position[X_AXIS] = destination[X_AXIS];
  1072. current_position[Y_AXIS] = destination[Y_AXIS];
  1073. current_position[Z_AXIS] = destination[Z_AXIS];
  1074. }
  1075. #endif
  1076. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1077. {
  1078. #ifdef DUAL_X_CARRIAGE
  1079. int tmp_extruder = active_extruder;
  1080. extruder_duplication_enabled = false;
  1081. active_extruder = !active_extruder;
  1082. HOMEAXIS(X);
  1083. inactive_extruder_x_pos = current_position[X_AXIS];
  1084. active_extruder = tmp_extruder;
  1085. HOMEAXIS(X);
  1086. // reset state used by the different modes
  1087. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1088. delayed_move_time = 0;
  1089. active_extruder_parked = true;
  1090. #else
  1091. HOMEAXIS(X);
  1092. #endif
  1093. }
  1094. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1095. HOMEAXIS(Y);
  1096. }
  1097. if(code_seen(axis_codes[X_AXIS]))
  1098. {
  1099. if(code_value_long() != 0) {
  1100. current_position[X_AXIS]=code_value()+add_homeing[0];
  1101. }
  1102. }
  1103. if(code_seen(axis_codes[Y_AXIS])) {
  1104. if(code_value_long() != 0) {
  1105. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1106. }
  1107. }
  1108. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1109. #ifndef Z_SAFE_HOMING
  1110. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1111. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1112. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1113. feedrate = max_feedrate[Z_AXIS];
  1114. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1115. st_synchronize();
  1116. #endif
  1117. HOMEAXIS(Z);
  1118. }
  1119. #else // Z Safe mode activated.
  1120. if(home_all_axis) {
  1121. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1122. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1123. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1124. feedrate = XY_TRAVEL_SPEED;
  1125. current_position[Z_AXIS] = 0;
  1126. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1127. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1128. st_synchronize();
  1129. current_position[X_AXIS] = destination[X_AXIS];
  1130. current_position[Y_AXIS] = destination[Y_AXIS];
  1131. HOMEAXIS(Z);
  1132. }
  1133. // Let's see if X and Y are homed and probe is inside bed area.
  1134. if(code_seen(axis_codes[Z_AXIS])) {
  1135. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1136. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1137. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1138. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1139. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1140. current_position[Z_AXIS] = 0;
  1141. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1142. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1143. feedrate = max_feedrate[Z_AXIS];
  1144. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1145. st_synchronize();
  1146. HOMEAXIS(Z);
  1147. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1148. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1149. SERIAL_ECHO_START;
  1150. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1151. } else {
  1152. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1153. SERIAL_ECHO_START;
  1154. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1155. }
  1156. }
  1157. #endif
  1158. #endif
  1159. if(code_seen(axis_codes[Z_AXIS])) {
  1160. if(code_value_long() != 0) {
  1161. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1162. }
  1163. }
  1164. #ifdef ENABLE_AUTO_BED_LEVELING
  1165. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1166. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1167. }
  1168. #endif
  1169. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1170. #endif // else DELTA
  1171. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1172. enable_endstops(false);
  1173. #endif
  1174. feedrate = saved_feedrate;
  1175. feedmultiply = saved_feedmultiply;
  1176. previous_millis_cmd = millis();
  1177. endstops_hit_on_purpose();
  1178. break;
  1179. #ifdef ENABLE_AUTO_BED_LEVELING
  1180. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1181. {
  1182. #if Z_MIN_PIN == -1
  1183. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1184. #endif
  1185. st_synchronize();
  1186. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1187. //vector_3 corrected_position = plan_get_position_mm();
  1188. //corrected_position.debug("position before G29");
  1189. plan_bed_level_matrix.set_to_identity();
  1190. vector_3 uncorrected_position = plan_get_position();
  1191. //uncorrected_position.debug("position durring G29");
  1192. current_position[X_AXIS] = uncorrected_position.x;
  1193. current_position[Y_AXIS] = uncorrected_position.y;
  1194. current_position[Z_AXIS] = uncorrected_position.z;
  1195. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1196. setup_for_endstop_move();
  1197. feedrate = homing_feedrate[Z_AXIS];
  1198. #ifdef ACCURATE_BED_LEVELING
  1199. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1200. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1201. // solve the plane equation ax + by + d = z
  1202. // A is the matrix with rows [x y 1] for all the probed points
  1203. // B is the vector of the Z positions
  1204. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1205. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1206. // "A" matrix of the linear system of equations
  1207. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1208. // "B" vector of Z points
  1209. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1210. int probePointCounter = 0;
  1211. bool zig = true;
  1212. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1213. {
  1214. int xProbe, xInc;
  1215. if (zig)
  1216. {
  1217. xProbe = LEFT_PROBE_BED_POSITION;
  1218. //xEnd = RIGHT_PROBE_BED_POSITION;
  1219. xInc = xGridSpacing;
  1220. zig = false;
  1221. } else // zag
  1222. {
  1223. xProbe = RIGHT_PROBE_BED_POSITION;
  1224. //xEnd = LEFT_PROBE_BED_POSITION;
  1225. xInc = -xGridSpacing;
  1226. zig = true;
  1227. }
  1228. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1229. {
  1230. if (probePointCounter == 0)
  1231. {
  1232. // raise before probing
  1233. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1234. } else
  1235. {
  1236. // raise extruder
  1237. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1238. }
  1239. do_blocking_move_to(xProbe - X_PROBE_OFFSET_FROM_EXTRUDER, yProbe - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1240. engage_z_probe(); // Engage Z Servo endstop if available
  1241. run_z_probe();
  1242. eqnBVector[probePointCounter] = current_position[Z_AXIS];
  1243. retract_z_probe();
  1244. SERIAL_PROTOCOLPGM("Bed x: ");
  1245. SERIAL_PROTOCOL(xProbe);
  1246. SERIAL_PROTOCOLPGM(" y: ");
  1247. SERIAL_PROTOCOL(yProbe);
  1248. SERIAL_PROTOCOLPGM(" z: ");
  1249. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1250. SERIAL_PROTOCOLPGM("\n");
  1251. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1252. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1253. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1254. probePointCounter++;
  1255. xProbe += xInc;
  1256. }
  1257. }
  1258. clean_up_after_endstop_move();
  1259. // solve lsq problem
  1260. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1261. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1262. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1263. SERIAL_PROTOCOLPGM(" b: ");
  1264. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1265. SERIAL_PROTOCOLPGM(" d: ");
  1266. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1267. set_bed_level_equation_lsq(plane_equation_coefficients);
  1268. free(plane_equation_coefficients);
  1269. #else // ACCURATE_BED_LEVELING not defined
  1270. // prob 1
  1271. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1272. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1273. engage_z_probe(); // Engage Z Servo endstop if available
  1274. run_z_probe();
  1275. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1276. retract_z_probe();
  1277. SERIAL_PROTOCOLPGM("Bed x: ");
  1278. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1279. SERIAL_PROTOCOLPGM(" y: ");
  1280. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1281. SERIAL_PROTOCOLPGM(" z: ");
  1282. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1283. SERIAL_PROTOCOLPGM("\n");
  1284. // prob 2
  1285. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1286. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1287. engage_z_probe(); // Engage Z Servo endstop if available
  1288. run_z_probe();
  1289. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1290. retract_z_probe();
  1291. SERIAL_PROTOCOLPGM("Bed x: ");
  1292. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1293. SERIAL_PROTOCOLPGM(" y: ");
  1294. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1295. SERIAL_PROTOCOLPGM(" z: ");
  1296. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1297. SERIAL_PROTOCOLPGM("\n");
  1298. // prob 3
  1299. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1300. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1301. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1302. engage_z_probe(); // Engage Z Servo endstop if available
  1303. run_z_probe();
  1304. float z_at_xRight_yFront = current_position[Z_AXIS];
  1305. retract_z_probe(); // Retract Z Servo endstop if available
  1306. SERIAL_PROTOCOLPGM("Bed x: ");
  1307. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1308. SERIAL_PROTOCOLPGM(" y: ");
  1309. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1310. SERIAL_PROTOCOLPGM(" z: ");
  1311. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1312. SERIAL_PROTOCOLPGM("\n");
  1313. clean_up_after_endstop_move();
  1314. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1315. #endif // ACCURATE_BED_LEVELING
  1316. st_synchronize();
  1317. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1318. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1319. // When the bed is uneven, this height must be corrected.
  1320. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1321. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1322. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1323. z_tmp = current_position[Z_AXIS];
  1324. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1325. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1326. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1327. }
  1328. break;
  1329. case 30: // G30 Single Z Probe
  1330. {
  1331. engage_z_probe(); // Engage Z Servo endstop if available
  1332. st_synchronize();
  1333. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1334. setup_for_endstop_move();
  1335. feedrate = homing_feedrate[Z_AXIS];
  1336. run_z_probe();
  1337. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1338. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1339. SERIAL_PROTOCOLPGM(" Y: ");
  1340. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1341. SERIAL_PROTOCOLPGM(" Z: ");
  1342. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1343. SERIAL_PROTOCOLPGM("\n");
  1344. clean_up_after_endstop_move();
  1345. retract_z_probe(); // Retract Z Servo endstop if available
  1346. }
  1347. break;
  1348. #endif // ENABLE_AUTO_BED_LEVELING
  1349. case 90: // G90
  1350. relative_mode = false;
  1351. break;
  1352. case 91: // G91
  1353. relative_mode = true;
  1354. break;
  1355. case 92: // G92
  1356. if(!code_seen(axis_codes[E_AXIS]))
  1357. st_synchronize();
  1358. for(int8_t i=0; i < NUM_AXIS; i++) {
  1359. if(code_seen(axis_codes[i])) {
  1360. if(i == E_AXIS) {
  1361. current_position[i] = code_value();
  1362. plan_set_e_position(current_position[E_AXIS]);
  1363. }
  1364. else {
  1365. current_position[i] = code_value()+add_homeing[i];
  1366. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1367. }
  1368. }
  1369. }
  1370. break;
  1371. }
  1372. }
  1373. else if(code_seen('M'))
  1374. {
  1375. switch( (int)code_value() )
  1376. {
  1377. #ifdef ULTIPANEL
  1378. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1379. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1380. {
  1381. LCD_MESSAGEPGM(MSG_USERWAIT);
  1382. codenum = 0;
  1383. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1384. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1385. st_synchronize();
  1386. previous_millis_cmd = millis();
  1387. if (codenum > 0){
  1388. codenum += millis(); // keep track of when we started waiting
  1389. while(millis() < codenum && !lcd_clicked()){
  1390. manage_heater();
  1391. manage_inactivity();
  1392. lcd_update();
  1393. }
  1394. }else{
  1395. while(!lcd_clicked()){
  1396. manage_heater();
  1397. manage_inactivity();
  1398. lcd_update();
  1399. }
  1400. }
  1401. LCD_MESSAGEPGM(MSG_RESUMING);
  1402. }
  1403. break;
  1404. #endif
  1405. case 17:
  1406. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1407. enable_x();
  1408. enable_y();
  1409. enable_z();
  1410. enable_e0();
  1411. enable_e1();
  1412. enable_e2();
  1413. break;
  1414. #ifdef SDSUPPORT
  1415. case 20: // M20 - list SD card
  1416. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1417. card.ls();
  1418. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1419. break;
  1420. case 21: // M21 - init SD card
  1421. card.initsd();
  1422. break;
  1423. case 22: //M22 - release SD card
  1424. card.release();
  1425. break;
  1426. case 23: //M23 - Select file
  1427. starpos = (strchr(strchr_pointer + 4,'*'));
  1428. if(starpos!=NULL)
  1429. *(starpos-1)='\0';
  1430. card.openFile(strchr_pointer + 4,true);
  1431. break;
  1432. case 24: //M24 - Start SD print
  1433. card.startFileprint();
  1434. starttime=millis();
  1435. break;
  1436. case 25: //M25 - Pause SD print
  1437. card.pauseSDPrint();
  1438. break;
  1439. case 26: //M26 - Set SD index
  1440. if(card.cardOK && code_seen('S')) {
  1441. card.setIndex(code_value_long());
  1442. }
  1443. break;
  1444. case 27: //M27 - Get SD status
  1445. card.getStatus();
  1446. break;
  1447. case 28: //M28 - Start SD write
  1448. starpos = (strchr(strchr_pointer + 4,'*'));
  1449. if(starpos != NULL){
  1450. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1451. strchr_pointer = strchr(npos,' ') + 1;
  1452. *(starpos-1) = '\0';
  1453. }
  1454. card.openFile(strchr_pointer+4,false);
  1455. break;
  1456. case 29: //M29 - Stop SD write
  1457. //processed in write to file routine above
  1458. //card,saving = false;
  1459. break;
  1460. case 30: //M30 <filename> Delete File
  1461. if (card.cardOK){
  1462. card.closefile();
  1463. starpos = (strchr(strchr_pointer + 4,'*'));
  1464. if(starpos != NULL){
  1465. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1466. strchr_pointer = strchr(npos,' ') + 1;
  1467. *(starpos-1) = '\0';
  1468. }
  1469. card.removeFile(strchr_pointer + 4);
  1470. }
  1471. break;
  1472. case 32: //M32 - Select file and start SD print
  1473. {
  1474. if(card.sdprinting) {
  1475. st_synchronize();
  1476. }
  1477. starpos = (strchr(strchr_pointer + 4,'*'));
  1478. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1479. if(namestartpos==NULL)
  1480. {
  1481. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1482. }
  1483. else
  1484. namestartpos++; //to skip the '!'
  1485. if(starpos!=NULL)
  1486. *(starpos-1)='\0';
  1487. bool call_procedure=(code_seen('P'));
  1488. if(strchr_pointer>namestartpos)
  1489. call_procedure=false; //false alert, 'P' found within filename
  1490. if( card.cardOK )
  1491. {
  1492. card.openFile(namestartpos,true,!call_procedure);
  1493. if(code_seen('S'))
  1494. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1495. card.setIndex(code_value_long());
  1496. card.startFileprint();
  1497. if(!call_procedure)
  1498. starttime=millis(); //procedure calls count as normal print time.
  1499. }
  1500. } break;
  1501. case 928: //M928 - Start SD write
  1502. starpos = (strchr(strchr_pointer + 5,'*'));
  1503. if(starpos != NULL){
  1504. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1505. strchr_pointer = strchr(npos,' ') + 1;
  1506. *(starpos-1) = '\0';
  1507. }
  1508. card.openLogFile(strchr_pointer+5);
  1509. break;
  1510. #endif //SDSUPPORT
  1511. case 31: //M31 take time since the start of the SD print or an M109 command
  1512. {
  1513. stoptime=millis();
  1514. char time[30];
  1515. unsigned long t=(stoptime-starttime)/1000;
  1516. int sec,min;
  1517. min=t/60;
  1518. sec=t%60;
  1519. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1520. SERIAL_ECHO_START;
  1521. SERIAL_ECHOLN(time);
  1522. lcd_setstatus(time);
  1523. autotempShutdown();
  1524. }
  1525. break;
  1526. case 42: //M42 -Change pin status via gcode
  1527. if (code_seen('S'))
  1528. {
  1529. int pin_status = code_value();
  1530. int pin_number = LED_PIN;
  1531. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1532. pin_number = code_value();
  1533. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1534. {
  1535. if (sensitive_pins[i] == pin_number)
  1536. {
  1537. pin_number = -1;
  1538. break;
  1539. }
  1540. }
  1541. #if defined(FAN_PIN) && FAN_PIN > -1
  1542. if (pin_number == FAN_PIN)
  1543. fanSpeed = pin_status;
  1544. #endif
  1545. if (pin_number > -1)
  1546. {
  1547. pinMode(pin_number, OUTPUT);
  1548. digitalWrite(pin_number, pin_status);
  1549. analogWrite(pin_number, pin_status);
  1550. }
  1551. }
  1552. break;
  1553. case 104: // M104
  1554. if(setTargetedHotend(104)){
  1555. break;
  1556. }
  1557. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1558. #ifdef DUAL_X_CARRIAGE
  1559. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1560. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1561. #endif
  1562. setWatch();
  1563. break;
  1564. case 140: // M140 set bed temp
  1565. if (code_seen('S')) setTargetBed(code_value());
  1566. break;
  1567. case 105 : // M105
  1568. if(setTargetedHotend(105)){
  1569. break;
  1570. }
  1571. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1572. SERIAL_PROTOCOLPGM("ok T:");
  1573. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1574. SERIAL_PROTOCOLPGM(" /");
  1575. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1576. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1577. SERIAL_PROTOCOLPGM(" B:");
  1578. SERIAL_PROTOCOL_F(degBed(),1);
  1579. SERIAL_PROTOCOLPGM(" /");
  1580. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1581. #endif //TEMP_BED_PIN
  1582. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1583. SERIAL_PROTOCOLPGM(" T");
  1584. SERIAL_PROTOCOL(cur_extruder);
  1585. SERIAL_PROTOCOLPGM(":");
  1586. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1587. SERIAL_PROTOCOLPGM(" /");
  1588. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1589. }
  1590. #else
  1591. SERIAL_ERROR_START;
  1592. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1593. #endif
  1594. SERIAL_PROTOCOLPGM(" @:");
  1595. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1596. SERIAL_PROTOCOLPGM(" B@:");
  1597. SERIAL_PROTOCOL(getHeaterPower(-1));
  1598. #ifdef SHOW_TEMP_ADC_VALUES
  1599. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1600. SERIAL_PROTOCOLPGM(" ADC B:");
  1601. SERIAL_PROTOCOL_F(degBed(),1);
  1602. SERIAL_PROTOCOLPGM("C->");
  1603. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1604. #endif
  1605. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1606. SERIAL_PROTOCOLPGM(" T");
  1607. SERIAL_PROTOCOL(cur_extruder);
  1608. SERIAL_PROTOCOLPGM(":");
  1609. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1610. SERIAL_PROTOCOLPGM("C->");
  1611. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1612. }
  1613. #endif
  1614. SERIAL_PROTOCOLLN("");
  1615. return;
  1616. break;
  1617. case 109:
  1618. {// M109 - Wait for extruder heater to reach target.
  1619. if(setTargetedHotend(109)){
  1620. break;
  1621. }
  1622. LCD_MESSAGEPGM(MSG_HEATING);
  1623. #ifdef AUTOTEMP
  1624. autotemp_enabled=false;
  1625. #endif
  1626. if (code_seen('S')) {
  1627. setTargetHotend(code_value(), tmp_extruder);
  1628. #ifdef DUAL_X_CARRIAGE
  1629. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1630. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1631. #endif
  1632. CooldownNoWait = true;
  1633. } else if (code_seen('R')) {
  1634. setTargetHotend(code_value(), tmp_extruder);
  1635. #ifdef DUAL_X_CARRIAGE
  1636. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1637. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1638. #endif
  1639. CooldownNoWait = false;
  1640. }
  1641. #ifdef AUTOTEMP
  1642. if (code_seen('S')) autotemp_min=code_value();
  1643. if (code_seen('B')) autotemp_max=code_value();
  1644. if (code_seen('F'))
  1645. {
  1646. autotemp_factor=code_value();
  1647. autotemp_enabled=true;
  1648. }
  1649. #endif
  1650. setWatch();
  1651. codenum = millis();
  1652. /* See if we are heating up or cooling down */
  1653. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1654. #ifdef TEMP_RESIDENCY_TIME
  1655. long residencyStart;
  1656. residencyStart = -1;
  1657. /* continue to loop until we have reached the target temp
  1658. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1659. while((residencyStart == -1) ||
  1660. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1661. #else
  1662. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1663. #endif //TEMP_RESIDENCY_TIME
  1664. if( (millis() - codenum) > 1000UL )
  1665. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1666. SERIAL_PROTOCOLPGM("T:");
  1667. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1668. SERIAL_PROTOCOLPGM(" E:");
  1669. SERIAL_PROTOCOL((int)tmp_extruder);
  1670. #ifdef TEMP_RESIDENCY_TIME
  1671. SERIAL_PROTOCOLPGM(" W:");
  1672. if(residencyStart > -1)
  1673. {
  1674. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1675. SERIAL_PROTOCOLLN( codenum );
  1676. }
  1677. else
  1678. {
  1679. SERIAL_PROTOCOLLN( "?" );
  1680. }
  1681. #else
  1682. SERIAL_PROTOCOLLN("");
  1683. #endif
  1684. codenum = millis();
  1685. }
  1686. manage_heater();
  1687. manage_inactivity();
  1688. lcd_update();
  1689. #ifdef TEMP_RESIDENCY_TIME
  1690. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1691. or when current temp falls outside the hysteresis after target temp was reached */
  1692. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1693. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1694. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1695. {
  1696. residencyStart = millis();
  1697. }
  1698. #endif //TEMP_RESIDENCY_TIME
  1699. }
  1700. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1701. starttime=millis();
  1702. previous_millis_cmd = millis();
  1703. }
  1704. break;
  1705. case 190: // M190 - Wait for bed heater to reach target.
  1706. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1707. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1708. if (code_seen('S')) {
  1709. setTargetBed(code_value());
  1710. CooldownNoWait = true;
  1711. } else if (code_seen('R')) {
  1712. setTargetBed(code_value());
  1713. CooldownNoWait = false;
  1714. }
  1715. codenum = millis();
  1716. target_direction = isHeatingBed(); // true if heating, false if cooling
  1717. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1718. {
  1719. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1720. {
  1721. float tt=degHotend(active_extruder);
  1722. SERIAL_PROTOCOLPGM("T:");
  1723. SERIAL_PROTOCOL(tt);
  1724. SERIAL_PROTOCOLPGM(" E:");
  1725. SERIAL_PROTOCOL((int)active_extruder);
  1726. SERIAL_PROTOCOLPGM(" B:");
  1727. SERIAL_PROTOCOL_F(degBed(),1);
  1728. SERIAL_PROTOCOLLN("");
  1729. codenum = millis();
  1730. }
  1731. manage_heater();
  1732. manage_inactivity();
  1733. lcd_update();
  1734. }
  1735. LCD_MESSAGEPGM(MSG_BED_DONE);
  1736. previous_millis_cmd = millis();
  1737. #endif
  1738. break;
  1739. #if defined(FAN_PIN) && FAN_PIN > -1
  1740. case 106: //M106 Fan On
  1741. if (code_seen('S')){
  1742. fanSpeed=constrain(code_value(),0,255);
  1743. }
  1744. else {
  1745. fanSpeed=255;
  1746. }
  1747. break;
  1748. case 107: //M107 Fan Off
  1749. fanSpeed = 0;
  1750. break;
  1751. #endif //FAN_PIN
  1752. #ifdef BARICUDA
  1753. // PWM for HEATER_1_PIN
  1754. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1755. case 126: //M126 valve open
  1756. if (code_seen('S')){
  1757. ValvePressure=constrain(code_value(),0,255);
  1758. }
  1759. else {
  1760. ValvePressure=255;
  1761. }
  1762. break;
  1763. case 127: //M127 valve closed
  1764. ValvePressure = 0;
  1765. break;
  1766. #endif //HEATER_1_PIN
  1767. // PWM for HEATER_2_PIN
  1768. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1769. case 128: //M128 valve open
  1770. if (code_seen('S')){
  1771. EtoPPressure=constrain(code_value(),0,255);
  1772. }
  1773. else {
  1774. EtoPPressure=255;
  1775. }
  1776. break;
  1777. case 129: //M129 valve closed
  1778. EtoPPressure = 0;
  1779. break;
  1780. #endif //HEATER_2_PIN
  1781. #endif
  1782. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1783. case 80: // M80 - Turn on Power Supply
  1784. SET_OUTPUT(PS_ON_PIN); //GND
  1785. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1786. // If you have a switch on suicide pin, this is useful
  1787. // if you want to start another print with suicide feature after
  1788. // a print without suicide...
  1789. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1790. SET_OUTPUT(SUICIDE_PIN);
  1791. WRITE(SUICIDE_PIN, HIGH);
  1792. #endif
  1793. #ifdef ULTIPANEL
  1794. powersupply = true;
  1795. LCD_MESSAGEPGM(WELCOME_MSG);
  1796. lcd_update();
  1797. #endif
  1798. break;
  1799. #endif
  1800. case 81: // M81 - Turn off Power Supply
  1801. disable_heater();
  1802. st_synchronize();
  1803. disable_e0();
  1804. disable_e1();
  1805. disable_e2();
  1806. finishAndDisableSteppers();
  1807. fanSpeed = 0;
  1808. delay(1000); // Wait a little before to switch off
  1809. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1810. st_synchronize();
  1811. suicide();
  1812. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1813. SET_OUTPUT(PS_ON_PIN);
  1814. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1815. #endif
  1816. #ifdef ULTIPANEL
  1817. powersupply = false;
  1818. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1819. lcd_update();
  1820. #endif
  1821. break;
  1822. case 82:
  1823. axis_relative_modes[3] = false;
  1824. break;
  1825. case 83:
  1826. axis_relative_modes[3] = true;
  1827. break;
  1828. case 18: //compatibility
  1829. case 84: // M84
  1830. if(code_seen('S')){
  1831. stepper_inactive_time = code_value() * 1000;
  1832. }
  1833. else
  1834. {
  1835. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1836. if(all_axis)
  1837. {
  1838. st_synchronize();
  1839. disable_e0();
  1840. disable_e1();
  1841. disable_e2();
  1842. finishAndDisableSteppers();
  1843. }
  1844. else
  1845. {
  1846. st_synchronize();
  1847. if(code_seen('X')) disable_x();
  1848. if(code_seen('Y')) disable_y();
  1849. if(code_seen('Z')) disable_z();
  1850. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1851. if(code_seen('E')) {
  1852. disable_e0();
  1853. disable_e1();
  1854. disable_e2();
  1855. }
  1856. #endif
  1857. }
  1858. }
  1859. break;
  1860. case 85: // M85
  1861. code_seen('S');
  1862. max_inactive_time = code_value() * 1000;
  1863. break;
  1864. case 92: // M92
  1865. for(int8_t i=0; i < NUM_AXIS; i++)
  1866. {
  1867. if(code_seen(axis_codes[i]))
  1868. {
  1869. if(i == 3) { // E
  1870. float value = code_value();
  1871. if(value < 20.0) {
  1872. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1873. max_e_jerk *= factor;
  1874. max_feedrate[i] *= factor;
  1875. axis_steps_per_sqr_second[i] *= factor;
  1876. }
  1877. axis_steps_per_unit[i] = value;
  1878. }
  1879. else {
  1880. axis_steps_per_unit[i] = code_value();
  1881. }
  1882. }
  1883. }
  1884. break;
  1885. case 115: // M115
  1886. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1887. break;
  1888. case 117: // M117 display message
  1889. starpos = (strchr(strchr_pointer + 5,'*'));
  1890. if(starpos!=NULL)
  1891. *(starpos-1)='\0';
  1892. lcd_setstatus(strchr_pointer + 5);
  1893. break;
  1894. case 114: // M114
  1895. SERIAL_PROTOCOLPGM("X:");
  1896. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1897. SERIAL_PROTOCOLPGM("Y:");
  1898. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1899. SERIAL_PROTOCOLPGM("Z:");
  1900. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1901. SERIAL_PROTOCOLPGM("E:");
  1902. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1903. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1904. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1905. SERIAL_PROTOCOLPGM("Y:");
  1906. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1907. SERIAL_PROTOCOLPGM("Z:");
  1908. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1909. SERIAL_PROTOCOLLN("");
  1910. break;
  1911. case 120: // M120
  1912. enable_endstops(false) ;
  1913. break;
  1914. case 121: // M121
  1915. enable_endstops(true) ;
  1916. break;
  1917. case 119: // M119
  1918. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1919. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1920. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1921. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1922. #endif
  1923. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1924. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1925. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1926. #endif
  1927. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1928. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1929. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1930. #endif
  1931. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1932. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1933. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1934. #endif
  1935. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1936. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1937. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1938. #endif
  1939. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1940. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1941. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1942. #endif
  1943. break;
  1944. //TODO: update for all axis, use for loop
  1945. #ifdef BLINKM
  1946. case 150: // M150
  1947. {
  1948. byte red;
  1949. byte grn;
  1950. byte blu;
  1951. if(code_seen('R')) red = code_value();
  1952. if(code_seen('U')) grn = code_value();
  1953. if(code_seen('B')) blu = code_value();
  1954. SendColors(red,grn,blu);
  1955. }
  1956. break;
  1957. #endif //BLINKM
  1958. case 200: // M200 S<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  1959. {
  1960. float area;
  1961. if(code_seen('S')) {
  1962. float radius = code_value() / 2;
  1963. if(radius == 0) {
  1964. area = 1;
  1965. } else {
  1966. area = M_PI * pow(radius, 2);
  1967. }
  1968. } else {
  1969. //reserved for setting filament diameter via UFID or filament measuring device
  1970. break;
  1971. }
  1972. tmp_extruder = active_extruder;
  1973. if(code_seen('T')) {
  1974. tmp_extruder = code_value();
  1975. if(tmp_extruder >= EXTRUDERS) {
  1976. SERIAL_ECHO_START;
  1977. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  1978. }
  1979. SERIAL_ECHOLN(tmp_extruder);
  1980. break;
  1981. }
  1982. volumetric_multiplier[tmp_extruder] = 1 / area;
  1983. }
  1984. break;
  1985. case 201: // M201
  1986. for(int8_t i=0; i < NUM_AXIS; i++)
  1987. {
  1988. if(code_seen(axis_codes[i]))
  1989. {
  1990. max_acceleration_units_per_sq_second[i] = code_value();
  1991. }
  1992. }
  1993. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1994. reset_acceleration_rates();
  1995. break;
  1996. #if 0 // Not used for Sprinter/grbl gen6
  1997. case 202: // M202
  1998. for(int8_t i=0; i < NUM_AXIS; i++) {
  1999. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2000. }
  2001. break;
  2002. #endif
  2003. case 203: // M203 max feedrate mm/sec
  2004. for(int8_t i=0; i < NUM_AXIS; i++) {
  2005. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2006. }
  2007. break;
  2008. case 204: // M204 acclereration S normal moves T filmanent only moves
  2009. {
  2010. if(code_seen('S')) acceleration = code_value() ;
  2011. if(code_seen('T')) retract_acceleration = code_value() ;
  2012. }
  2013. break;
  2014. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2015. {
  2016. if(code_seen('S')) minimumfeedrate = code_value();
  2017. if(code_seen('T')) mintravelfeedrate = code_value();
  2018. if(code_seen('B')) minsegmenttime = code_value() ;
  2019. if(code_seen('X')) max_xy_jerk = code_value() ;
  2020. if(code_seen('Z')) max_z_jerk = code_value() ;
  2021. if(code_seen('E')) max_e_jerk = code_value() ;
  2022. }
  2023. break;
  2024. case 206: // M206 additional homeing offset
  2025. for(int8_t i=0; i < 3; i++)
  2026. {
  2027. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2028. }
  2029. break;
  2030. #ifdef DELTA
  2031. case 666: // M666 set delta endstop adjustemnt
  2032. for(int8_t i=0; i < 3; i++)
  2033. {
  2034. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2035. }
  2036. break;
  2037. #endif
  2038. #ifdef FWRETRACT
  2039. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2040. {
  2041. if(code_seen('S'))
  2042. {
  2043. retract_length = code_value() ;
  2044. }
  2045. if(code_seen('F'))
  2046. {
  2047. retract_feedrate = code_value() ;
  2048. }
  2049. if(code_seen('Z'))
  2050. {
  2051. retract_zlift = code_value() ;
  2052. }
  2053. }break;
  2054. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2055. {
  2056. if(code_seen('S'))
  2057. {
  2058. retract_recover_length = code_value() ;
  2059. }
  2060. if(code_seen('F'))
  2061. {
  2062. retract_recover_feedrate = code_value() ;
  2063. }
  2064. }break;
  2065. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2066. {
  2067. if(code_seen('S'))
  2068. {
  2069. int t= code_value() ;
  2070. switch(t)
  2071. {
  2072. case 0: autoretract_enabled=false;retracted=false;break;
  2073. case 1: autoretract_enabled=true;retracted=false;break;
  2074. default:
  2075. SERIAL_ECHO_START;
  2076. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2077. SERIAL_ECHO(cmdbuffer[bufindr]);
  2078. SERIAL_ECHOLNPGM("\"");
  2079. }
  2080. }
  2081. }break;
  2082. #endif // FWRETRACT
  2083. #if EXTRUDERS > 1
  2084. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2085. {
  2086. if(setTargetedHotend(218)){
  2087. break;
  2088. }
  2089. if(code_seen('X'))
  2090. {
  2091. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2092. }
  2093. if(code_seen('Y'))
  2094. {
  2095. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2096. }
  2097. #ifdef DUAL_X_CARRIAGE
  2098. if(code_seen('Z'))
  2099. {
  2100. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2101. }
  2102. #endif
  2103. SERIAL_ECHO_START;
  2104. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2105. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2106. {
  2107. SERIAL_ECHO(" ");
  2108. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2109. SERIAL_ECHO(",");
  2110. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2111. #ifdef DUAL_X_CARRIAGE
  2112. SERIAL_ECHO(",");
  2113. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2114. #endif
  2115. }
  2116. SERIAL_ECHOLN("");
  2117. }break;
  2118. #endif
  2119. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2120. {
  2121. if(code_seen('S'))
  2122. {
  2123. feedmultiply = code_value() ;
  2124. }
  2125. }
  2126. break;
  2127. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2128. {
  2129. if(code_seen('S'))
  2130. {
  2131. extrudemultiply = code_value() ;
  2132. }
  2133. }
  2134. break;
  2135. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2136. {
  2137. if(code_seen('P')){
  2138. int pin_number = code_value(); // pin number
  2139. int pin_state = -1; // required pin state - default is inverted
  2140. if(code_seen('S')) pin_state = code_value(); // required pin state
  2141. if(pin_state >= -1 && pin_state <= 1){
  2142. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2143. {
  2144. if (sensitive_pins[i] == pin_number)
  2145. {
  2146. pin_number = -1;
  2147. break;
  2148. }
  2149. }
  2150. if (pin_number > -1)
  2151. {
  2152. st_synchronize();
  2153. pinMode(pin_number, INPUT);
  2154. int target;
  2155. switch(pin_state){
  2156. case 1:
  2157. target = HIGH;
  2158. break;
  2159. case 0:
  2160. target = LOW;
  2161. break;
  2162. case -1:
  2163. target = !digitalRead(pin_number);
  2164. break;
  2165. }
  2166. while(digitalRead(pin_number) != target){
  2167. manage_heater();
  2168. manage_inactivity();
  2169. lcd_update();
  2170. }
  2171. }
  2172. }
  2173. }
  2174. }
  2175. break;
  2176. #if NUM_SERVOS > 0
  2177. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2178. {
  2179. int servo_index = -1;
  2180. int servo_position = 0;
  2181. if (code_seen('P'))
  2182. servo_index = code_value();
  2183. if (code_seen('S')) {
  2184. servo_position = code_value();
  2185. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2186. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2187. servos[servo_index].attach(0);
  2188. #endif
  2189. servos[servo_index].write(servo_position);
  2190. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2191. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2192. servos[servo_index].detach();
  2193. #endif
  2194. }
  2195. else {
  2196. SERIAL_ECHO_START;
  2197. SERIAL_ECHO("Servo ");
  2198. SERIAL_ECHO(servo_index);
  2199. SERIAL_ECHOLN(" out of range");
  2200. }
  2201. }
  2202. else if (servo_index >= 0) {
  2203. SERIAL_PROTOCOL(MSG_OK);
  2204. SERIAL_PROTOCOL(" Servo ");
  2205. SERIAL_PROTOCOL(servo_index);
  2206. SERIAL_PROTOCOL(": ");
  2207. SERIAL_PROTOCOL(servos[servo_index].read());
  2208. SERIAL_PROTOCOLLN("");
  2209. }
  2210. }
  2211. break;
  2212. #endif // NUM_SERVOS > 0
  2213. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  2214. case 300: // M300
  2215. {
  2216. int beepS = code_seen('S') ? code_value() : 110;
  2217. int beepP = code_seen('P') ? code_value() : 1000;
  2218. if (beepS > 0)
  2219. {
  2220. #if BEEPER > 0
  2221. tone(BEEPER, beepS);
  2222. delay(beepP);
  2223. noTone(BEEPER);
  2224. #elif defined(ULTRALCD)
  2225. lcd_buzz(beepS, beepP);
  2226. #endif
  2227. }
  2228. else
  2229. {
  2230. delay(beepP);
  2231. }
  2232. }
  2233. break;
  2234. #endif // M300
  2235. #ifdef PIDTEMP
  2236. case 301: // M301
  2237. {
  2238. if(code_seen('P')) Kp = code_value();
  2239. if(code_seen('I')) Ki = scalePID_i(code_value());
  2240. if(code_seen('D')) Kd = scalePID_d(code_value());
  2241. #ifdef PID_ADD_EXTRUSION_RATE
  2242. if(code_seen('C')) Kc = code_value();
  2243. #endif
  2244. updatePID();
  2245. SERIAL_PROTOCOL(MSG_OK);
  2246. SERIAL_PROTOCOL(" p:");
  2247. SERIAL_PROTOCOL(Kp);
  2248. SERIAL_PROTOCOL(" i:");
  2249. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2250. SERIAL_PROTOCOL(" d:");
  2251. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2252. #ifdef PID_ADD_EXTRUSION_RATE
  2253. SERIAL_PROTOCOL(" c:");
  2254. //Kc does not have scaling applied above, or in resetting defaults
  2255. SERIAL_PROTOCOL(Kc);
  2256. #endif
  2257. SERIAL_PROTOCOLLN("");
  2258. }
  2259. break;
  2260. #endif //PIDTEMP
  2261. #ifdef PIDTEMPBED
  2262. case 304: // M304
  2263. {
  2264. if(code_seen('P')) bedKp = code_value();
  2265. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2266. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2267. updatePID();
  2268. SERIAL_PROTOCOL(MSG_OK);
  2269. SERIAL_PROTOCOL(" p:");
  2270. SERIAL_PROTOCOL(bedKp);
  2271. SERIAL_PROTOCOL(" i:");
  2272. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2273. SERIAL_PROTOCOL(" d:");
  2274. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2275. SERIAL_PROTOCOLLN("");
  2276. }
  2277. break;
  2278. #endif //PIDTEMP
  2279. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2280. {
  2281. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2282. const uint8_t NUM_PULSES=16;
  2283. const float PULSE_LENGTH=0.01524;
  2284. for(int i=0; i < NUM_PULSES; i++) {
  2285. WRITE(PHOTOGRAPH_PIN, HIGH);
  2286. _delay_ms(PULSE_LENGTH);
  2287. WRITE(PHOTOGRAPH_PIN, LOW);
  2288. _delay_ms(PULSE_LENGTH);
  2289. }
  2290. delay(7.33);
  2291. for(int i=0; i < NUM_PULSES; i++) {
  2292. WRITE(PHOTOGRAPH_PIN, HIGH);
  2293. _delay_ms(PULSE_LENGTH);
  2294. WRITE(PHOTOGRAPH_PIN, LOW);
  2295. _delay_ms(PULSE_LENGTH);
  2296. }
  2297. #endif
  2298. }
  2299. break;
  2300. #ifdef DOGLCD
  2301. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2302. {
  2303. if (code_seen('C')) {
  2304. lcd_setcontrast( ((int)code_value())&63 );
  2305. }
  2306. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2307. SERIAL_PROTOCOL(lcd_contrast);
  2308. SERIAL_PROTOCOLLN("");
  2309. }
  2310. break;
  2311. #endif
  2312. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2313. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2314. {
  2315. float temp = .0;
  2316. if (code_seen('S')) temp=code_value();
  2317. set_extrude_min_temp(temp);
  2318. }
  2319. break;
  2320. #endif
  2321. case 303: // M303 PID autotune
  2322. {
  2323. float temp = 150.0;
  2324. int e=0;
  2325. int c=5;
  2326. if (code_seen('E')) e=code_value();
  2327. if (e<0)
  2328. temp=70;
  2329. if (code_seen('S')) temp=code_value();
  2330. if (code_seen('C')) c=code_value();
  2331. PID_autotune(temp, e, c);
  2332. }
  2333. break;
  2334. case 400: // M400 finish all moves
  2335. {
  2336. st_synchronize();
  2337. }
  2338. break;
  2339. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2340. case 401:
  2341. {
  2342. engage_z_probe(); // Engage Z Servo endstop if available
  2343. }
  2344. break;
  2345. case 402:
  2346. {
  2347. retract_z_probe(); // Retract Z Servo endstop if enabled
  2348. }
  2349. break;
  2350. #endif
  2351. case 500: // M500 Store settings in EEPROM
  2352. {
  2353. Config_StoreSettings();
  2354. }
  2355. break;
  2356. case 501: // M501 Read settings from EEPROM
  2357. {
  2358. Config_RetrieveSettings();
  2359. }
  2360. break;
  2361. case 502: // M502 Revert to default settings
  2362. {
  2363. Config_ResetDefault();
  2364. }
  2365. break;
  2366. case 503: // M503 print settings currently in memory
  2367. {
  2368. Config_PrintSettings();
  2369. }
  2370. break;
  2371. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2372. case 540:
  2373. {
  2374. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2375. }
  2376. break;
  2377. #endif
  2378. #ifdef FILAMENTCHANGEENABLE
  2379. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2380. {
  2381. float target[4];
  2382. float lastpos[4];
  2383. target[X_AXIS]=current_position[X_AXIS];
  2384. target[Y_AXIS]=current_position[Y_AXIS];
  2385. target[Z_AXIS]=current_position[Z_AXIS];
  2386. target[E_AXIS]=current_position[E_AXIS];
  2387. lastpos[X_AXIS]=current_position[X_AXIS];
  2388. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2389. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2390. lastpos[E_AXIS]=current_position[E_AXIS];
  2391. //retract by E
  2392. if(code_seen('E'))
  2393. {
  2394. target[E_AXIS]+= code_value();
  2395. }
  2396. else
  2397. {
  2398. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2399. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2400. #endif
  2401. }
  2402. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2403. //lift Z
  2404. if(code_seen('Z'))
  2405. {
  2406. target[Z_AXIS]+= code_value();
  2407. }
  2408. else
  2409. {
  2410. #ifdef FILAMENTCHANGE_ZADD
  2411. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2412. #endif
  2413. }
  2414. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2415. //move xy
  2416. if(code_seen('X'))
  2417. {
  2418. target[X_AXIS]+= code_value();
  2419. }
  2420. else
  2421. {
  2422. #ifdef FILAMENTCHANGE_XPOS
  2423. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2424. #endif
  2425. }
  2426. if(code_seen('Y'))
  2427. {
  2428. target[Y_AXIS]= code_value();
  2429. }
  2430. else
  2431. {
  2432. #ifdef FILAMENTCHANGE_YPOS
  2433. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2434. #endif
  2435. }
  2436. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2437. if(code_seen('L'))
  2438. {
  2439. target[E_AXIS]+= code_value();
  2440. }
  2441. else
  2442. {
  2443. #ifdef FILAMENTCHANGE_FINALRETRACT
  2444. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2445. #endif
  2446. }
  2447. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2448. //finish moves
  2449. st_synchronize();
  2450. //disable extruder steppers so filament can be removed
  2451. disable_e0();
  2452. disable_e1();
  2453. disable_e2();
  2454. delay(100);
  2455. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2456. uint8_t cnt=0;
  2457. while(!lcd_clicked()){
  2458. cnt++;
  2459. manage_heater();
  2460. manage_inactivity();
  2461. lcd_update();
  2462. if(cnt==0)
  2463. {
  2464. #if BEEPER > 0
  2465. SET_OUTPUT(BEEPER);
  2466. WRITE(BEEPER,HIGH);
  2467. delay(3);
  2468. WRITE(BEEPER,LOW);
  2469. delay(3);
  2470. #else
  2471. lcd_buzz(1000/6,100);
  2472. #endif
  2473. }
  2474. }
  2475. //return to normal
  2476. if(code_seen('L'))
  2477. {
  2478. target[E_AXIS]+= -code_value();
  2479. }
  2480. else
  2481. {
  2482. #ifdef FILAMENTCHANGE_FINALRETRACT
  2483. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2484. #endif
  2485. }
  2486. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2487. plan_set_e_position(current_position[E_AXIS]);
  2488. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2489. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2490. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2491. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2492. }
  2493. break;
  2494. #endif //FILAMENTCHANGEENABLE
  2495. #ifdef DUAL_X_CARRIAGE
  2496. case 605: // Set dual x-carriage movement mode:
  2497. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2498. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2499. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2500. // millimeters x-offset and an optional differential hotend temperature of
  2501. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2502. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2503. //
  2504. // Note: the X axis should be homed after changing dual x-carriage mode.
  2505. {
  2506. st_synchronize();
  2507. if (code_seen('S'))
  2508. dual_x_carriage_mode = code_value();
  2509. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2510. {
  2511. if (code_seen('X'))
  2512. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2513. if (code_seen('R'))
  2514. duplicate_extruder_temp_offset = code_value();
  2515. SERIAL_ECHO_START;
  2516. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2517. SERIAL_ECHO(" ");
  2518. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2519. SERIAL_ECHO(",");
  2520. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2521. SERIAL_ECHO(" ");
  2522. SERIAL_ECHO(duplicate_extruder_x_offset);
  2523. SERIAL_ECHO(",");
  2524. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2525. }
  2526. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2527. {
  2528. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2529. }
  2530. active_extruder_parked = false;
  2531. extruder_duplication_enabled = false;
  2532. delayed_move_time = 0;
  2533. }
  2534. break;
  2535. #endif //DUAL_X_CARRIAGE
  2536. case 907: // M907 Set digital trimpot motor current using axis codes.
  2537. {
  2538. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2539. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2540. if(code_seen('B')) digipot_current(4,code_value());
  2541. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2542. #endif
  2543. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2544. if(code_seen('X')) digipot_current(0, code_value());
  2545. #endif
  2546. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2547. if(code_seen('Z')) digipot_current(1, code_value());
  2548. #endif
  2549. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2550. if(code_seen('E')) digipot_current(2, code_value());
  2551. #endif
  2552. }
  2553. break;
  2554. case 908: // M908 Control digital trimpot directly.
  2555. {
  2556. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2557. uint8_t channel,current;
  2558. if(code_seen('P')) channel=code_value();
  2559. if(code_seen('S')) current=code_value();
  2560. digitalPotWrite(channel, current);
  2561. #endif
  2562. }
  2563. break;
  2564. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2565. {
  2566. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2567. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2568. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2569. if(code_seen('B')) microstep_mode(4,code_value());
  2570. microstep_readings();
  2571. #endif
  2572. }
  2573. break;
  2574. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2575. {
  2576. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2577. if(code_seen('S')) switch((int)code_value())
  2578. {
  2579. case 1:
  2580. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2581. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2582. break;
  2583. case 2:
  2584. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2585. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2586. break;
  2587. }
  2588. microstep_readings();
  2589. #endif
  2590. }
  2591. break;
  2592. case 999: // M999: Restart after being stopped
  2593. Stopped = false;
  2594. lcd_reset_alert_level();
  2595. gcode_LastN = Stopped_gcode_LastN;
  2596. FlushSerialRequestResend();
  2597. break;
  2598. }
  2599. }
  2600. else if(code_seen('T'))
  2601. {
  2602. tmp_extruder = code_value();
  2603. if(tmp_extruder >= EXTRUDERS) {
  2604. SERIAL_ECHO_START;
  2605. SERIAL_ECHO("T");
  2606. SERIAL_ECHO(tmp_extruder);
  2607. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2608. }
  2609. else {
  2610. boolean make_move = false;
  2611. if(code_seen('F')) {
  2612. make_move = true;
  2613. next_feedrate = code_value();
  2614. if(next_feedrate > 0.0) {
  2615. feedrate = next_feedrate;
  2616. }
  2617. }
  2618. #if EXTRUDERS > 1
  2619. if(tmp_extruder != active_extruder) {
  2620. // Save current position to return to after applying extruder offset
  2621. memcpy(destination, current_position, sizeof(destination));
  2622. #ifdef DUAL_X_CARRIAGE
  2623. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2624. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2625. {
  2626. // Park old head: 1) raise 2) move to park position 3) lower
  2627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2628. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2629. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2630. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2631. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2632. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2633. st_synchronize();
  2634. }
  2635. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2636. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2637. extruder_offset[Y_AXIS][active_extruder] +
  2638. extruder_offset[Y_AXIS][tmp_extruder];
  2639. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2640. extruder_offset[Z_AXIS][active_extruder] +
  2641. extruder_offset[Z_AXIS][tmp_extruder];
  2642. active_extruder = tmp_extruder;
  2643. // This function resets the max/min values - the current position may be overwritten below.
  2644. axis_is_at_home(X_AXIS);
  2645. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2646. {
  2647. current_position[X_AXIS] = inactive_extruder_x_pos;
  2648. inactive_extruder_x_pos = destination[X_AXIS];
  2649. }
  2650. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2651. {
  2652. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2653. if (active_extruder == 0 || active_extruder_parked)
  2654. current_position[X_AXIS] = inactive_extruder_x_pos;
  2655. else
  2656. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2657. inactive_extruder_x_pos = destination[X_AXIS];
  2658. extruder_duplication_enabled = false;
  2659. }
  2660. else
  2661. {
  2662. // record raised toolhead position for use by unpark
  2663. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2664. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2665. active_extruder_parked = true;
  2666. delayed_move_time = 0;
  2667. }
  2668. #else
  2669. // Offset extruder (only by XY)
  2670. int i;
  2671. for(i = 0; i < 2; i++) {
  2672. current_position[i] = current_position[i] -
  2673. extruder_offset[i][active_extruder] +
  2674. extruder_offset[i][tmp_extruder];
  2675. }
  2676. // Set the new active extruder and position
  2677. active_extruder = tmp_extruder;
  2678. #endif //else DUAL_X_CARRIAGE
  2679. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2680. // Move to the old position if 'F' was in the parameters
  2681. if(make_move && Stopped == false) {
  2682. prepare_move();
  2683. }
  2684. }
  2685. #endif
  2686. SERIAL_ECHO_START;
  2687. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2688. SERIAL_PROTOCOLLN((int)active_extruder);
  2689. }
  2690. }
  2691. else
  2692. {
  2693. SERIAL_ECHO_START;
  2694. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2695. SERIAL_ECHO(cmdbuffer[bufindr]);
  2696. SERIAL_ECHOLNPGM("\"");
  2697. }
  2698. ClearToSend();
  2699. }
  2700. void FlushSerialRequestResend()
  2701. {
  2702. //char cmdbuffer[bufindr][100]="Resend:";
  2703. MYSERIAL.flush();
  2704. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2705. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2706. ClearToSend();
  2707. }
  2708. void ClearToSend()
  2709. {
  2710. previous_millis_cmd = millis();
  2711. #ifdef SDSUPPORT
  2712. if(fromsd[bufindr])
  2713. return;
  2714. #endif //SDSUPPORT
  2715. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2716. }
  2717. void get_coordinates()
  2718. {
  2719. bool seen[4]={false,false,false,false};
  2720. for(int8_t i=0; i < NUM_AXIS; i++) {
  2721. if(code_seen(axis_codes[i]))
  2722. {
  2723. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2724. seen[i]=true;
  2725. }
  2726. else destination[i] = current_position[i]; //Are these else lines really needed?
  2727. }
  2728. if(code_seen('F')) {
  2729. next_feedrate = code_value();
  2730. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2731. }
  2732. #ifdef FWRETRACT
  2733. if(autoretract_enabled)
  2734. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2735. {
  2736. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2737. if(echange<-MIN_RETRACT) //retract
  2738. {
  2739. if(!retracted)
  2740. {
  2741. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2742. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2743. float correctede=-echange-retract_length;
  2744. //to generate the additional steps, not the destination is changed, but inversely the current position
  2745. current_position[E_AXIS]+=-correctede;
  2746. feedrate=retract_feedrate;
  2747. retracted=true;
  2748. }
  2749. }
  2750. else
  2751. if(echange>MIN_RETRACT) //retract_recover
  2752. {
  2753. if(retracted)
  2754. {
  2755. //current_position[Z_AXIS]+=-retract_zlift;
  2756. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2757. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2758. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2759. feedrate=retract_recover_feedrate;
  2760. retracted=false;
  2761. }
  2762. }
  2763. }
  2764. #endif //FWRETRACT
  2765. }
  2766. void get_arc_coordinates()
  2767. {
  2768. #ifdef SF_ARC_FIX
  2769. bool relative_mode_backup = relative_mode;
  2770. relative_mode = true;
  2771. #endif
  2772. get_coordinates();
  2773. #ifdef SF_ARC_FIX
  2774. relative_mode=relative_mode_backup;
  2775. #endif
  2776. if(code_seen('I')) {
  2777. offset[0] = code_value();
  2778. }
  2779. else {
  2780. offset[0] = 0.0;
  2781. }
  2782. if(code_seen('J')) {
  2783. offset[1] = code_value();
  2784. }
  2785. else {
  2786. offset[1] = 0.0;
  2787. }
  2788. }
  2789. void clamp_to_software_endstops(float target[3])
  2790. {
  2791. if (min_software_endstops) {
  2792. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2793. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2794. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2795. }
  2796. if (max_software_endstops) {
  2797. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2798. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2799. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2800. }
  2801. }
  2802. #ifdef DELTA
  2803. void calculate_delta(float cartesian[3])
  2804. {
  2805. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2806. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2807. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2808. ) + cartesian[Z_AXIS];
  2809. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2810. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2811. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2812. ) + cartesian[Z_AXIS];
  2813. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2814. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2815. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2816. ) + cartesian[Z_AXIS];
  2817. /*
  2818. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2819. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2820. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2821. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2822. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2823. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2824. */
  2825. }
  2826. #endif
  2827. void prepare_move()
  2828. {
  2829. clamp_to_software_endstops(destination);
  2830. previous_millis_cmd = millis();
  2831. #ifdef DELTA
  2832. float difference[NUM_AXIS];
  2833. for (int8_t i=0; i < NUM_AXIS; i++) {
  2834. difference[i] = destination[i] - current_position[i];
  2835. }
  2836. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2837. sq(difference[Y_AXIS]) +
  2838. sq(difference[Z_AXIS]));
  2839. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2840. if (cartesian_mm < 0.000001) { return; }
  2841. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2842. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2843. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2844. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2845. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2846. for (int s = 1; s <= steps; s++) {
  2847. float fraction = float(s) / float(steps);
  2848. for(int8_t i=0; i < NUM_AXIS; i++) {
  2849. destination[i] = current_position[i] + difference[i] * fraction;
  2850. }
  2851. calculate_delta(destination);
  2852. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2853. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2854. active_extruder);
  2855. }
  2856. #else
  2857. #ifdef DUAL_X_CARRIAGE
  2858. if (active_extruder_parked)
  2859. {
  2860. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2861. {
  2862. // move duplicate extruder into correct duplication position.
  2863. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2864. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2865. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2866. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2867. st_synchronize();
  2868. extruder_duplication_enabled = true;
  2869. active_extruder_parked = false;
  2870. }
  2871. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2872. {
  2873. if (current_position[E_AXIS] == destination[E_AXIS])
  2874. {
  2875. // this is a travel move - skit it but keep track of current position (so that it can later
  2876. // be used as start of first non-travel move)
  2877. if (delayed_move_time != 0xFFFFFFFFUL)
  2878. {
  2879. memcpy(current_position, destination, sizeof(current_position));
  2880. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2881. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2882. delayed_move_time = millis();
  2883. return;
  2884. }
  2885. }
  2886. delayed_move_time = 0;
  2887. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2888. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2890. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2892. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2893. active_extruder_parked = false;
  2894. }
  2895. }
  2896. #endif //DUAL_X_CARRIAGE
  2897. // Do not use feedmultiply for E or Z only moves
  2898. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2899. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2900. }
  2901. else {
  2902. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2903. }
  2904. #endif //else DELTA
  2905. for(int8_t i=0; i < NUM_AXIS; i++) {
  2906. current_position[i] = destination[i];
  2907. }
  2908. }
  2909. void prepare_arc_move(char isclockwise) {
  2910. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2911. // Trace the arc
  2912. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2913. // As far as the parser is concerned, the position is now == target. In reality the
  2914. // motion control system might still be processing the action and the real tool position
  2915. // in any intermediate location.
  2916. for(int8_t i=0; i < NUM_AXIS; i++) {
  2917. current_position[i] = destination[i];
  2918. }
  2919. previous_millis_cmd = millis();
  2920. }
  2921. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2922. #if defined(FAN_PIN)
  2923. #if CONTROLLERFAN_PIN == FAN_PIN
  2924. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2925. #endif
  2926. #endif
  2927. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2928. unsigned long lastMotorCheck = 0;
  2929. void controllerFan()
  2930. {
  2931. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2932. {
  2933. lastMotorCheck = millis();
  2934. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2935. #if EXTRUDERS > 2
  2936. || !READ(E2_ENABLE_PIN)
  2937. #endif
  2938. #if EXTRUDER > 1
  2939. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2940. || !READ(X2_ENABLE_PIN)
  2941. #endif
  2942. || !READ(E1_ENABLE_PIN)
  2943. #endif
  2944. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2945. {
  2946. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2947. }
  2948. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2949. {
  2950. digitalWrite(CONTROLLERFAN_PIN, 0);
  2951. analogWrite(CONTROLLERFAN_PIN, 0);
  2952. }
  2953. else
  2954. {
  2955. // allows digital or PWM fan output to be used (see M42 handling)
  2956. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2957. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2958. }
  2959. }
  2960. }
  2961. #endif
  2962. #ifdef TEMP_STAT_LEDS
  2963. static bool blue_led = false;
  2964. static bool red_led = false;
  2965. static uint32_t stat_update = 0;
  2966. void handle_status_leds(void) {
  2967. float max_temp = 0.0;
  2968. if(millis() > stat_update) {
  2969. stat_update += 500; // Update every 0.5s
  2970. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2971. max_temp = max(max_temp, degHotend(cur_extruder));
  2972. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2973. }
  2974. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2975. max_temp = max(max_temp, degTargetBed());
  2976. max_temp = max(max_temp, degBed());
  2977. #endif
  2978. if((max_temp > 55.0) && (red_led == false)) {
  2979. digitalWrite(STAT_LED_RED, 1);
  2980. digitalWrite(STAT_LED_BLUE, 0);
  2981. red_led = true;
  2982. blue_led = false;
  2983. }
  2984. if((max_temp < 54.0) && (blue_led == false)) {
  2985. digitalWrite(STAT_LED_RED, 0);
  2986. digitalWrite(STAT_LED_BLUE, 1);
  2987. red_led = false;
  2988. blue_led = true;
  2989. }
  2990. }
  2991. }
  2992. #endif
  2993. void manage_inactivity()
  2994. {
  2995. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2996. if(max_inactive_time)
  2997. kill();
  2998. if(stepper_inactive_time) {
  2999. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3000. {
  3001. if(blocks_queued() == false) {
  3002. disable_x();
  3003. disable_y();
  3004. disable_z();
  3005. disable_e0();
  3006. disable_e1();
  3007. disable_e2();
  3008. }
  3009. }
  3010. }
  3011. #if defined(KILL_PIN) && KILL_PIN > -1
  3012. if( 0 == READ(KILL_PIN) )
  3013. kill();
  3014. #endif
  3015. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3016. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3017. #endif
  3018. #ifdef EXTRUDER_RUNOUT_PREVENT
  3019. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3020. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3021. {
  3022. bool oldstatus=READ(E0_ENABLE_PIN);
  3023. enable_e0();
  3024. float oldepos=current_position[E_AXIS];
  3025. float oldedes=destination[E_AXIS];
  3026. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3027. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3028. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3029. current_position[E_AXIS]=oldepos;
  3030. destination[E_AXIS]=oldedes;
  3031. plan_set_e_position(oldepos);
  3032. previous_millis_cmd=millis();
  3033. st_synchronize();
  3034. WRITE(E0_ENABLE_PIN,oldstatus);
  3035. }
  3036. #endif
  3037. #if defined(DUAL_X_CARRIAGE)
  3038. // handle delayed move timeout
  3039. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3040. {
  3041. // travel moves have been received so enact them
  3042. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3043. memcpy(destination,current_position,sizeof(destination));
  3044. prepare_move();
  3045. }
  3046. #endif
  3047. #ifdef TEMP_STAT_LEDS
  3048. handle_status_leds();
  3049. #endif
  3050. check_axes_activity();
  3051. }
  3052. void kill()
  3053. {
  3054. cli(); // Stop interrupts
  3055. disable_heater();
  3056. disable_x();
  3057. disable_y();
  3058. disable_z();
  3059. disable_e0();
  3060. disable_e1();
  3061. disable_e2();
  3062. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3063. pinMode(PS_ON_PIN,INPUT);
  3064. #endif
  3065. SERIAL_ERROR_START;
  3066. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3067. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3068. suicide();
  3069. while(1) { /* Intentionally left empty */ } // Wait for reset
  3070. }
  3071. void Stop()
  3072. {
  3073. disable_heater();
  3074. if(Stopped == false) {
  3075. Stopped = true;
  3076. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3077. SERIAL_ERROR_START;
  3078. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3079. LCD_MESSAGEPGM(MSG_STOPPED);
  3080. }
  3081. }
  3082. bool IsStopped() { return Stopped; };
  3083. #ifdef FAST_PWM_FAN
  3084. void setPwmFrequency(uint8_t pin, int val)
  3085. {
  3086. val &= 0x07;
  3087. switch(digitalPinToTimer(pin))
  3088. {
  3089. #if defined(TCCR0A)
  3090. case TIMER0A:
  3091. case TIMER0B:
  3092. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3093. // TCCR0B |= val;
  3094. break;
  3095. #endif
  3096. #if defined(TCCR1A)
  3097. case TIMER1A:
  3098. case TIMER1B:
  3099. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3100. // TCCR1B |= val;
  3101. break;
  3102. #endif
  3103. #if defined(TCCR2)
  3104. case TIMER2:
  3105. case TIMER2:
  3106. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3107. TCCR2 |= val;
  3108. break;
  3109. #endif
  3110. #if defined(TCCR2A)
  3111. case TIMER2A:
  3112. case TIMER2B:
  3113. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3114. TCCR2B |= val;
  3115. break;
  3116. #endif
  3117. #if defined(TCCR3A)
  3118. case TIMER3A:
  3119. case TIMER3B:
  3120. case TIMER3C:
  3121. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3122. TCCR3B |= val;
  3123. break;
  3124. #endif
  3125. #if defined(TCCR4A)
  3126. case TIMER4A:
  3127. case TIMER4B:
  3128. case TIMER4C:
  3129. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3130. TCCR4B |= val;
  3131. break;
  3132. #endif
  3133. #if defined(TCCR5A)
  3134. case TIMER5A:
  3135. case TIMER5B:
  3136. case TIMER5C:
  3137. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3138. TCCR5B |= val;
  3139. break;
  3140. #endif
  3141. }
  3142. }
  3143. #endif //FAST_PWM_FAN
  3144. bool setTargetedHotend(int code){
  3145. tmp_extruder = active_extruder;
  3146. if(code_seen('T')) {
  3147. tmp_extruder = code_value();
  3148. if(tmp_extruder >= EXTRUDERS) {
  3149. SERIAL_ECHO_START;
  3150. switch(code){
  3151. case 104:
  3152. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3153. break;
  3154. case 105:
  3155. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3156. break;
  3157. case 109:
  3158. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3159. break;
  3160. case 218:
  3161. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3162. break;
  3163. }
  3164. SERIAL_ECHOLN(tmp_extruder);
  3165. return true;
  3166. }
  3167. }
  3168. return false;
  3169. }