123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585 |
- /*
- planner.c - buffers movement commands and manages the acceleration profile plan
- Part of Grbl
-
- Copyright (c) 2009-2011 Simen Svale Skogsrud
-
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
-
- /*
- Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
-
- s == speed, a == acceleration, t == time, d == distance
-
- Basic definitions:
-
- Speed[s_, a_, t_] := s + (a*t)
- Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
-
- Distance to reach a specific speed with a constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
-
- Speed after a given distance of travel with constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- m -> Sqrt[2 a d + s^2]
-
- DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
-
- When to start braking (di) to reach a specified destionation speed (s2) after accelerating
- from initial speed s1 without ever stopping at a plateau:
-
- Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
-
- IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- */
-
-
- //#include <inttypes.h>
- //#include <math.h>
- //#include <stdlib.h>
-
- #include "Marlin.h"
- #include "Configuration.h"
- #include "pins.h"
- #include "fastio.h"
- #include "planner.h"
- #include "stepper.h"
- #include "temperature.h"
- #include "ultralcd.h"
-
- //public variables
- unsigned long minsegmenttime;
- float max_feedrate[4]; // set the max speeds
- float axis_steps_per_unit[4];
- long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
- float minimumfeedrate;
- float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
- float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
- float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
- float max_z_jerk;
- float mintravelfeedrate;
- unsigned long axis_steps_per_sqr_second[NUM_AXIS];
- long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
-
-
- //private variables
- static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
- static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
- static volatile unsigned char block_buffer_tail; // Index of the block to process now
-
- // The current position of the tool in absolute steps
-
-
- #define ONE_MINUTE_OF_MICROSECONDS 60000000.0
-
- // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
- // given acceleration:
- inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
- if (acceleration!=0) {
- return((target_rate*target_rate-initial_rate*initial_rate)/
- (2.0*acceleration));
- }
- else {
- return 0.0; // acceleration was 0, set acceleration distance to 0
- }
- }
-
- // This function gives you the point at which you must start braking (at the rate of -acceleration) if
- // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
- // a total travel of distance. This can be used to compute the intersection point between acceleration and
- // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
-
- inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
- if (acceleration!=0) {
- return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
- (4.0*acceleration) );
- }
- else {
- return 0.0; // acceleration was 0, set intersection distance to 0
- }
- }
-
- // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
-
- void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
- if(block->busy == true) return; // If block is busy then bail out.
- float entry_factor = entry_speed / block->nominal_speed;
- float exit_factor = exit_speed / block->nominal_speed;
- long initial_rate = ceil(block->nominal_rate*entry_factor);
- long final_rate = ceil(block->nominal_rate*exit_factor);
-
- #ifdef ADVANCE
- long initial_advance = block->advance*entry_factor*entry_factor;
- long final_advance = block->advance*exit_factor*exit_factor;
- #endif // ADVANCE
-
- // Limit minimal step rate (Otherwise the timer will overflow.)
- if(initial_rate <120) initial_rate=120;
- if(final_rate < 120) final_rate=120;
-
- // Calculate the acceleration steps
- long acceleration = block->acceleration_st;
- long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
- long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
- // Calculate the size of Plateau of Nominal Rate.
- long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
-
- // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
- // have to use intersection_distance() to calculate when to abort acceleration and start braking
- // in order to reach the final_rate exactly at the end of this block.
- if (plateau_steps < 0) {
- accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
- plateau_steps = 0;
- }
-
- long decelerate_after = accelerate_steps+plateau_steps;
-
- CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
- if(block->busy == false) { // Don't update variables if block is busy.
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = decelerate_after;
- block->initial_rate = initial_rate;
- block->final_rate = final_rate;
- #ifdef ADVANCE
- block->initial_advance = initial_advance;
- block->final_advance = final_advance;
- #endif //ADVANCE
- }
- CRITICAL_SECTION_END;
- }
-
- // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
- // acceleration within the allotted distance.
- inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
- return sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance);
- }
-
- // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
- // This method will calculate the junction jerk as the euclidean distance between the nominal
- // velocities of the respective blocks.
- inline float junction_jerk(block_t *before, block_t *after) {
- return sqrt(
- pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
- }
-
- // Return the safe speed which is max_jerk/2, e.g. the
- // speed under which you cannot exceed max_jerk no matter what you do.
- float safe_speed(block_t *block) {
- float safe_speed;
- safe_speed = max_xy_jerk/2;
- if(abs(block->speed_z) > max_z_jerk/2)
- safe_speed = max_z_jerk/2;
- if (safe_speed > block->nominal_speed)
- safe_speed = block->nominal_speed;
- return safe_speed;
- }
-
- // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
- void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!current) {
- return;
- }
-
- float entry_speed = current->nominal_speed;
- float exit_factor;
- float exit_speed;
- if (next) {
- exit_speed = next->entry_speed;
- }
- else {
- exit_speed = safe_speed(current);
- }
-
- // Calculate the entry_factor for the current block.
- if (previous) {
- // Reduce speed so that junction_jerk is within the maximum allowed
- float jerk = junction_jerk(previous, current);
- if((previous->steps_x == 0) && (previous->steps_y == 0)) {
- entry_speed = safe_speed(current);
- }
- else if (jerk > max_xy_jerk) {
- entry_speed = (max_xy_jerk/jerk) * entry_speed;
- }
- if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
- entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
- }
- // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
- if (entry_speed > exit_speed) {
- float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
- if (max_entry_speed < entry_speed) {
- entry_speed = max_entry_speed;
- }
- }
- }
- else {
- entry_speed = safe_speed(current);
- }
- // Store result
- current->entry_speed = entry_speed;
- }
-
- // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
- // implements the reverse pass.
- void planner_reverse_pass() {
- char block_index = block_buffer_head;
- if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
- block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
- block_t *block[5] = {
- NULL, NULL, NULL, NULL, NULL };
- while(block_index != block_buffer_tail) {
- block_index = (block_index-1) & (BLOCK_BUFFER_SIZE -1);
- block[2]= block[1];
- block[1]= block[0];
- block[0] = &block_buffer[block_index];
- planner_reverse_pass_kernel(block[0], block[1], block[2]);
- }
- planner_reverse_pass_kernel(NULL, block[0], block[1]);
- }
- }
-
- // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
- void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!current) {
- return;
- }
- if(previous) {
- // If the previous block is an acceleration block, but it is not long enough to
- // complete the full speed change within the block, we need to adjust out entry
- // speed accordingly. Remember current->entry_factor equals the exit factor of
- // the previous block.
- if(previous->entry_speed < current->entry_speed) {
- float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
- if (max_entry_speed < current->entry_speed) {
- current->entry_speed = max_entry_speed;
- }
- }
- }
- }
-
- // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
- // implements the forward pass.
- void planner_forward_pass() {
- char block_index = block_buffer_tail;
- block_t *block[3] = {
- NULL, NULL, NULL };
-
- while(block_index != block_buffer_head) {
- block[0] = block[1];
- block[1] = block[2];
- block[2] = &block_buffer[block_index];
- planner_forward_pass_kernel(block[0],block[1],block[2]);
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
- }
- planner_forward_pass_kernel(block[1], block[2], NULL);
- }
-
- // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
- // entry_factor for each junction. Must be called by planner_recalculate() after
- // updating the blocks.
- void planner_recalculate_trapezoids() {
- char block_index = block_buffer_tail;
- block_t *current;
- block_t *next = NULL;
- while(block_index != block_buffer_head) {
- current = next;
- next = &block_buffer[block_index];
- if (current) {
- calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
- }
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
- }
- calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
- }
-
- // Recalculates the motion plan according to the following algorithm:
- //
- // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
- // so that:
- // a. The junction jerk is within the set limit
- // b. No speed reduction within one block requires faster deceleration than the one, true constant
- // acceleration.
- // 2. Go over every block in chronological order and dial down junction speed reduction values if
- // a. The speed increase within one block would require faster accelleration than the one, true
- // constant acceleration.
- //
- // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
- // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
- // the set limit. Finally it will:
- //
- // 3. Recalculate trapezoids for all blocks.
-
- void planner_recalculate() {
- planner_reverse_pass();
- planner_forward_pass();
- planner_recalculate_trapezoids();
- }
-
- void plan_init() {
- block_buffer_head = 0;
- block_buffer_tail = 0;
- memset(position, 0, sizeof(position)); // clear position
- }
-
-
- void plan_discard_current_block() {
- if (block_buffer_head != block_buffer_tail) {
- block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
- }
- }
-
- block_t *plan_get_current_block() {
- if (block_buffer_head == block_buffer_tail) {
- return(NULL);
- }
- block_t *block = &block_buffer[block_buffer_tail];
- block->busy = true;
- return(block);
- }
-
- void check_axes_activity() {
- unsigned char x_active = 0;
- unsigned char y_active = 0;
- unsigned char z_active = 0;
- unsigned char e_active = 0;
- block_t *block;
-
- if(block_buffer_tail != block_buffer_head) {
- char block_index = block_buffer_tail;
- while(block_index != block_buffer_head) {
- block = &block_buffer[block_index];
- if(block->steps_x != 0) x_active++;
- if(block->steps_y != 0) y_active++;
- if(block->steps_z != 0) z_active++;
- if(block->steps_e != 0) e_active++;
- block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
- }
- }
- if((DISABLE_X) && (x_active == 0)) disable_x();
- if((DISABLE_Y) && (y_active == 0)) disable_y();
- if((DISABLE_Z) && (z_active == 0)) disable_z();
- if((DISABLE_E) && (e_active == 0)) disable_e();
- }
-
- // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
- // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
- // calculation the caller must also provide the physical length of the line in millimeters.
- void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)
- {
- // Calculate the buffer head after we push this byte
- int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1);
-
- // If the buffer is full: good! That means we are well ahead of the robot.
- // Rest here until there is room in the buffer.
- while(block_buffer_tail == next_buffer_head) {
- manage_heater();
- manage_inactivity(1);
- LCD_STATUS;
- }
-
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
- long target[4];
- target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
-
- // Prepare to set up new block
- block_t *block = &block_buffer[block_buffer_head];
-
- // Mark block as not busy (Not executed by the stepper interrupt)
- block->busy = false;
-
- // Number of steps for each axis
- block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
- block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
- block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
- block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
- block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
-
- // Bail if this is a zero-length block
- if (block->step_event_count <=dropsegments) {
- return;
- };
-
- //enable active axes
- if(block->steps_x != 0) enable_x();
- if(block->steps_y != 0) enable_y();
- if(block->steps_z != 0) enable_z();
- if(block->steps_e != 0) enable_e();
-
- float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
- float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
- float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
- float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
- block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
-
- unsigned long microseconds;
-
- if (block->steps_e == 0) {
- if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
- }
- else {
- if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
- }
-
- microseconds = lround((block->millimeters/feed_rate)*1000000);
-
- // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
- // reduces/removes corner blobs as the machine won't come to a full stop.
- int blockcount=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
-
- if ((blockcount>0) && (blockcount < (BLOCK_BUFFER_SIZE - 4))) {
- if (microseconds<minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
- microseconds=microseconds+lround(2*(minsegmenttime-microseconds)/blockcount);
- }
- }
- else {
- if (microseconds<minsegmenttime) microseconds=minsegmenttime;
- }
- // END OF SLOW DOWN SECTION
-
-
- // Calculate speed in mm/minute for each axis
- float multiplier = 60.0*1000000.0/microseconds;
- block->speed_z = delta_z_mm * multiplier;
- block->speed_x = delta_x_mm * multiplier;
- block->speed_y = delta_y_mm * multiplier;
- block->speed_e = delta_e_mm * multiplier;
-
-
- // Limit speed per axis
- float speed_factor = 1; //factor <=1 do decrease speed
- if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
- speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
- //if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; /is not need here because auf the init above
- }
- if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
- float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
- }
- if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
- float tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
- }
- if(abs(block->speed_e) > max_feedrate[E_AXIS]){
- float tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
- }
- multiplier = multiplier * speed_factor;
- block->speed_z = delta_z_mm * multiplier;
- block->speed_x = delta_x_mm * multiplier;
- block->speed_y = delta_y_mm * multiplier;
- block->speed_e = delta_e_mm * multiplier;
- block->nominal_speed = block->millimeters * multiplier;
- block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
-
- if(block->nominal_rate < 120)
- block->nominal_rate = 120;
- block->entry_speed = safe_speed(block);
-
- // Compute the acceleration rate for the trapezoid generator.
- float travel_per_step = block->millimeters/block->step_event_count;
- if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
- block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
- }
- else {
- block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
- float tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
- // Limit acceleration per axis
- if((tmp_acceleration * block->steps_x) > axis_steps_per_sqr_second[X_AXIS]) {
- block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
- tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
- }
- if((tmp_acceleration * block->steps_y) > axis_steps_per_sqr_second[Y_AXIS]) {
- block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
- tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
- }
- if((tmp_acceleration * block->steps_e) > axis_steps_per_sqr_second[E_AXIS]) {
- block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
- tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
- }
- if((tmp_acceleration * block->steps_z) > axis_steps_per_sqr_second[Z_AXIS]) {
- block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
- tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
- }
- }
- block->acceleration = block->acceleration_st * travel_per_step;
- block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
-
- #ifdef ADVANCE
- // Calculate advance rate
- if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
- block->advance_rate = 0;
- block->advance = 0;
- }
- else {
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
- float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
- (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
- block->advance = advance;
- if(acc_dist == 0) {
- block->advance_rate = 0;
- }
- else {
- block->advance_rate = advance / (float)acc_dist;
- }
- }
- #endif // ADVANCE
-
- // compute a preliminary conservative acceleration trapezoid
- float safespeed = safe_speed(block);
- calculate_trapezoid_for_block(block, safespeed, safespeed);
-
- // Compute direction bits for this block
- block->direction_bits = 0;
- if (target[X_AXIS] < position[X_AXIS]) {
- block->direction_bits |= (1<<X_AXIS);
- }
- if (target[Y_AXIS] < position[Y_AXIS]) {
- block->direction_bits |= (1<<Y_AXIS);
- }
- if (target[Z_AXIS] < position[Z_AXIS]) {
- block->direction_bits |= (1<<Z_AXIS);
- }
- if (target[E_AXIS] < position[E_AXIS]) {
- block->direction_bits |= (1<<E_AXIS);
- }
-
- // Move buffer head
- block_buffer_head = next_buffer_head;
-
- // Update position
- memcpy(position, target, sizeof(target)); // position[] = target[]
-
- planner_recalculate();
- st_wake_up();
- }
-
- void plan_set_position(const float &x, const float &y, const float &z, const float &e)
- {
- position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
- }
-
|