My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 301KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #if HAS_ABL
  34. #include "vector_3.h"
  35. #endif
  36. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  37. #include "qr_solve.h"
  38. #elif ENABLED(MESH_BED_LEVELING)
  39. #include "mesh_bed_leveling.h"
  40. #endif
  41. #if ENABLED(BEZIER_CURVE_SUPPORT)
  42. #include "planner_bezier.h"
  43. #endif
  44. #include "ultralcd.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "endstops.h"
  48. #include "temperature.h"
  49. #include "cardreader.h"
  50. #include "configuration_store.h"
  51. #include "language.h"
  52. #include "pins_arduino.h"
  53. #include "math.h"
  54. #include "nozzle.h"
  55. #include "duration_t.h"
  56. #include "types.h"
  57. #if ENABLED(USE_WATCHDOG)
  58. #include "watchdog.h"
  59. #endif
  60. #if ENABLED(BLINKM)
  61. #include "blinkm.h"
  62. #include "Wire.h"
  63. #endif
  64. #if HAS_SERVOS
  65. #include "servo.h"
  66. #endif
  67. #if HAS_DIGIPOTSS
  68. #include <SPI.h>
  69. #endif
  70. #if ENABLED(DAC_STEPPER_CURRENT)
  71. #include "stepper_dac.h"
  72. #endif
  73. #if ENABLED(EXPERIMENTAL_I2CBUS)
  74. #include "twibus.h"
  75. #endif
  76. /**
  77. * Look here for descriptions of G-codes:
  78. * - http://linuxcnc.org/handbook/gcode/g-code.html
  79. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  80. *
  81. * Help us document these G-codes online:
  82. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  83. * - http://reprap.org/wiki/G-code
  84. *
  85. * -----------------
  86. * Implemented Codes
  87. * -----------------
  88. *
  89. * "G" Codes
  90. *
  91. * G0 -> G1
  92. * G1 - Coordinated Movement X Y Z E
  93. * G2 - CW ARC
  94. * G3 - CCW ARC
  95. * G4 - Dwell S<seconds> or P<milliseconds>
  96. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  97. * G10 - Retract filament according to settings of M207
  98. * G11 - Retract recover filament according to settings of M208
  99. * G12 - Clean tool
  100. * G20 - Set input units to inches
  101. * G21 - Set input units to millimeters
  102. * G28 - Home one or more axes
  103. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  104. * G30 - Single Z probe, probes bed at current XY location.
  105. * G31 - Dock sled (Z_PROBE_SLED only)
  106. * G32 - Undock sled (Z_PROBE_SLED only)
  107. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card. (Requires SDSUPPORT)
  119. * M21 - Init SD card. (Requires SDSUPPORT)
  120. * M22 - Release SD card. (Requires SDSUPPORT)
  121. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  122. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  123. * M25 - Pause SD print. (Requires SDSUPPORT)
  124. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  125. * M27 - Report SD print status. (Requires SDSUPPORT)
  126. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  127. * M29 - Stop SD write. (Requires SDSUPPORT)
  128. * M30 - Delete file from SD: "M30 /path/file.gco"
  129. * M31 - Report time since last M109 or SD card start to serial.
  130. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  131. * Use P to run other files as sub-programs: "M32 P !filename#"
  132. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  133. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  134. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  135. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  136. * M75 - Start the print job timer.
  137. * M76 - Pause the print job timer.
  138. * M77 - Stop the print job timer.
  139. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  140. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  141. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  142. * M82 - Set E codes absolute (default).
  143. * M83 - Set E codes relative while in Absolute (G90) mode.
  144. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  145. * duration after which steppers should turn off. S0 disables the timeout.
  146. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  147. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  148. * M104 - Set extruder target temp.
  149. * M105 - Report current temperatures.
  150. * M106 - Fan on.
  151. * M107 - Fan off.
  152. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  153. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  154. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  155. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  156. * M110 - Set the current line number. (Used by host printing)
  157. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  158. * M112 - Emergency stop.
  159. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  160. * M114 - Report current position.
  161. * M115 - Report capabilities.
  162. * M117 - Display a message on the controller screen. (Requires an LCD)
  163. * M119 - Report endstops status.
  164. * M120 - Enable endstops detection.
  165. * M121 - Disable endstops detection.
  166. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  167. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  168. * M128 - EtoP Open. (Requires BARICUDA)
  169. * M129 - EtoP Closed. (Requires BARICUDA)
  170. * M140 - Set bed target temp. S<temp>
  171. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  172. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  173. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  174. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  175. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  176. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  177. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  178. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  179. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  180. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  181. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  182. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  183. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  184. * M205 - Set advanced settings. Current units apply:
  185. S<print> T<travel> minimum speeds
  186. B<minimum segment time>
  187. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  188. * M206 - Set additional homing offset.
  189. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  190. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  191. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  192. Every normal extrude-only move will be classified as retract depending on the direction.
  193. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  194. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  195. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  196. * M221 - Set Flow Percentage: "M221 S<percent>"
  197. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  198. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  199. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  200. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  201. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  202. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  203. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  204. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  205. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  206. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  207. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  208. * M400 - Finish all moves.
  209. * M401 - Lower Z probe. (Requires a probe)
  210. * M402 - Raise Z probe. (Requires a probe)
  211. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  212. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  213. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  214. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  215. * M410 - Quickstop. Abort all planned moves.
  216. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  217. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  218. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  219. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  220. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  221. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  222. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  223. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  224. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  225. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  226. * M666 - Set delta endstop adjustment. (Requires DELTA)
  227. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  228. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  229. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  230. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  231. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  232. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  233. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  234. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  235. *
  236. * ************ SCARA Specific - This can change to suit future G-code regulations
  237. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  238. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  239. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  240. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  241. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  242. * ************* SCARA End ***************
  243. *
  244. * ************ Custom codes - This can change to suit future G-code regulations
  245. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  246. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  247. * M999 - Restart after being stopped by error
  248. *
  249. * "T" Codes
  250. *
  251. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  252. *
  253. */
  254. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  255. void gcode_M100();
  256. #endif
  257. #if ENABLED(SDSUPPORT)
  258. CardReader card;
  259. #endif
  260. #if ENABLED(EXPERIMENTAL_I2CBUS)
  261. TWIBus i2c;
  262. #endif
  263. #if ENABLED(G38_PROBE_TARGET)
  264. bool G38_move = false,
  265. G38_endstop_hit = false;
  266. #endif
  267. bool Running = true;
  268. uint8_t marlin_debug_flags = DEBUG_NONE;
  269. float current_position[NUM_AXIS] = { 0.0 };
  270. static float destination[NUM_AXIS] = { 0.0 };
  271. bool axis_known_position[XYZ] = { false };
  272. bool axis_homed[XYZ] = { false };
  273. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  274. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  275. static char* current_command, *current_command_args;
  276. static uint8_t cmd_queue_index_r = 0,
  277. cmd_queue_index_w = 0,
  278. commands_in_queue = 0;
  279. #if ENABLED(INCH_MODE_SUPPORT)
  280. float linear_unit_factor = 1.0;
  281. float volumetric_unit_factor = 1.0;
  282. #endif
  283. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  284. TempUnit input_temp_units = TEMPUNIT_C;
  285. #endif
  286. /**
  287. * Feed rates are often configured with mm/m
  288. * but the planner and stepper like mm/s units.
  289. */
  290. float constexpr homing_feedrate_mm_s[] = {
  291. #if ENABLED(DELTA)
  292. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  293. #else
  294. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  295. #endif
  296. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  297. };
  298. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  299. int feedrate_percentage = 100, saved_feedrate_percentage;
  300. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  301. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  302. bool volumetric_enabled = false;
  303. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  304. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  305. // The distance that XYZ has been offset by G92. Reset by G28.
  306. float position_shift[XYZ] = { 0 };
  307. // This offset is added to the configured home position.
  308. // Set by M206, M428, or menu item. Saved to EEPROM.
  309. float home_offset[XYZ] = { 0 };
  310. // Software Endstops are based on the configured limits.
  311. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  312. bool soft_endstops_enabled = true;
  313. #endif
  314. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  315. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  316. #if FAN_COUNT > 0
  317. int fanSpeeds[FAN_COUNT] = { 0 };
  318. #endif
  319. // The active extruder (tool). Set with T<extruder> command.
  320. uint8_t active_extruder = 0;
  321. // Relative Mode. Enable with G91, disable with G90.
  322. static bool relative_mode = false;
  323. volatile bool wait_for_heatup = true;
  324. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  325. volatile bool wait_for_user = false;
  326. #endif
  327. const char errormagic[] PROGMEM = "Error:";
  328. const char echomagic[] PROGMEM = "echo:";
  329. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  330. static int serial_count = 0;
  331. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  332. static char* seen_pointer;
  333. // Next Immediate GCode Command pointer. NULL if none.
  334. const char* queued_commands_P = NULL;
  335. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  336. // Inactivity shutdown
  337. millis_t previous_cmd_ms = 0;
  338. static millis_t max_inactive_time = 0;
  339. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  340. // Print Job Timer
  341. #if ENABLED(PRINTCOUNTER)
  342. PrintCounter print_job_timer = PrintCounter();
  343. #else
  344. Stopwatch print_job_timer = Stopwatch();
  345. #endif
  346. // Buzzer - I2C on the LCD or a BEEPER_PIN
  347. #if ENABLED(LCD_USE_I2C_BUZZER)
  348. #define BUZZ(d,f) lcd_buzz(d, f)
  349. #elif PIN_EXISTS(BEEPER)
  350. Buzzer buzzer;
  351. #define BUZZ(d,f) buzzer.tone(d, f)
  352. #else
  353. #define BUZZ(d,f) NOOP
  354. #endif
  355. static uint8_t target_extruder;
  356. #if HAS_BED_PROBE
  357. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  358. #endif
  359. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  360. #if HAS_ABL
  361. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  362. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  363. #elif defined(XY_PROBE_SPEED)
  364. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  365. #else
  366. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  367. #endif
  368. #if ENABLED(Z_DUAL_ENDSTOPS)
  369. float z_endstop_adj = 0;
  370. #endif
  371. // Extruder offsets
  372. #if HOTENDS > 1
  373. float hotend_offset[][HOTENDS] = {
  374. HOTEND_OFFSET_X,
  375. HOTEND_OFFSET_Y
  376. #ifdef HOTEND_OFFSET_Z
  377. , HOTEND_OFFSET_Z
  378. #endif
  379. };
  380. #endif
  381. #if HAS_Z_SERVO_ENDSTOP
  382. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  383. #endif
  384. #if ENABLED(BARICUDA)
  385. int baricuda_valve_pressure = 0;
  386. int baricuda_e_to_p_pressure = 0;
  387. #endif
  388. #if ENABLED(FWRETRACT)
  389. bool autoretract_enabled = false;
  390. bool retracted[EXTRUDERS] = { false };
  391. bool retracted_swap[EXTRUDERS] = { false };
  392. float retract_length = RETRACT_LENGTH;
  393. float retract_length_swap = RETRACT_LENGTH_SWAP;
  394. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  395. float retract_zlift = RETRACT_ZLIFT;
  396. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  397. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  398. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  399. #endif // FWRETRACT
  400. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  401. bool powersupply =
  402. #if ENABLED(PS_DEFAULT_OFF)
  403. false
  404. #else
  405. true
  406. #endif
  407. ;
  408. #endif
  409. #if ENABLED(DELTA)
  410. #define SIN_60 0.8660254037844386
  411. #define COS_60 0.5
  412. float delta[ABC],
  413. endstop_adj[ABC] = { 0 };
  414. // these are the default values, can be overriden with M665
  415. float delta_radius = DELTA_RADIUS,
  416. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  417. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  418. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  419. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  420. delta_tower3_x = 0, // back middle tower
  421. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  422. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  423. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  424. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  425. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  426. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  427. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  428. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  429. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  430. delta_clip_start_height = Z_MAX_POS;
  431. float delta_safe_distance_from_top();
  432. #else
  433. static bool home_all_axis = true;
  434. #endif
  435. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  436. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  437. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  438. #endif
  439. #if IS_SCARA
  440. // Float constants for SCARA calculations
  441. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  442. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  443. L2_2 = sq(float(L2));
  444. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  445. delta[ABC];
  446. #endif
  447. float cartes[XYZ] = { 0 };
  448. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  449. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  450. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  451. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  452. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  453. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  454. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  455. #endif
  456. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  457. static bool filament_ran_out = false;
  458. #endif
  459. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  460. FilamentChangeMenuResponse filament_change_menu_response;
  461. #endif
  462. #if ENABLED(MIXING_EXTRUDER)
  463. float mixing_factor[MIXING_STEPPERS];
  464. #if MIXING_VIRTUAL_TOOLS > 1
  465. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  466. #endif
  467. #endif
  468. static bool send_ok[BUFSIZE];
  469. #if HAS_SERVOS
  470. Servo servo[NUM_SERVOS];
  471. #define MOVE_SERVO(I, P) servo[I].move(P)
  472. #if HAS_Z_SERVO_ENDSTOP
  473. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  474. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  475. #endif
  476. #endif
  477. #ifdef CHDK
  478. millis_t chdkHigh = 0;
  479. boolean chdkActive = false;
  480. #endif
  481. #if ENABLED(PID_EXTRUSION_SCALING)
  482. int lpq_len = 20;
  483. #endif
  484. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  485. static MarlinBusyState busy_state = NOT_BUSY;
  486. static millis_t next_busy_signal_ms = 0;
  487. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  488. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  489. #else
  490. #define host_keepalive() ;
  491. #define KEEPALIVE_STATE(n) ;
  492. #endif // HOST_KEEPALIVE_FEATURE
  493. #define DEFINE_PGM_READ_ANY(type, reader) \
  494. static inline type pgm_read_any(const type *p) \
  495. { return pgm_read_##reader##_near(p); }
  496. DEFINE_PGM_READ_ANY(float, float);
  497. DEFINE_PGM_READ_ANY(signed char, byte);
  498. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  499. static const PROGMEM type array##_P[XYZ] = \
  500. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  501. static inline type array(int axis) \
  502. { return pgm_read_any(&array##_P[axis]); }
  503. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  504. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  505. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  506. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  507. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  508. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  509. /**
  510. * ***************************************************************************
  511. * ******************************** FUNCTIONS ********************************
  512. * ***************************************************************************
  513. */
  514. void stop();
  515. void get_available_commands();
  516. void process_next_command();
  517. void prepare_move_to_destination();
  518. void get_cartesian_from_steppers();
  519. void set_current_from_steppers_for_axis(const AxisEnum axis);
  520. #if ENABLED(ARC_SUPPORT)
  521. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  522. #endif
  523. #if ENABLED(BEZIER_CURVE_SUPPORT)
  524. void plan_cubic_move(const float offset[4]);
  525. #endif
  526. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  527. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  528. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  530. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  531. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  532. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  533. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  534. static void report_current_position();
  535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  536. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  537. serialprintPGM(prefix);
  538. SERIAL_ECHOPAIR("(", x);
  539. SERIAL_ECHOPAIR(", ", y);
  540. SERIAL_ECHOPAIR(", ", z);
  541. SERIAL_ECHOPGM(")");
  542. if (suffix) serialprintPGM(suffix);
  543. else SERIAL_EOL;
  544. }
  545. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  546. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  547. }
  548. #if HAS_ABL
  549. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  550. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  551. }
  552. #endif
  553. #define DEBUG_POS(SUFFIX,VAR) do { \
  554. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  555. #endif
  556. /**
  557. * sync_plan_position
  558. *
  559. * Set the planner/stepper positions directly from current_position with
  560. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  561. */
  562. inline void sync_plan_position() {
  563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  564. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  565. #endif
  566. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  567. }
  568. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  569. #if IS_KINEMATIC
  570. inline void sync_plan_position_kinematic() {
  571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  572. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  573. #endif
  574. inverse_kinematics(current_position);
  575. planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
  576. }
  577. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  578. #else
  579. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  580. #endif
  581. #if ENABLED(SDSUPPORT)
  582. #include "SdFatUtil.h"
  583. int freeMemory() { return SdFatUtil::FreeRam(); }
  584. #else
  585. extern "C" {
  586. extern unsigned int __bss_end;
  587. extern unsigned int __heap_start;
  588. extern void* __brkval;
  589. int freeMemory() {
  590. int free_memory;
  591. if ((int)__brkval == 0)
  592. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  593. else
  594. free_memory = ((int)&free_memory) - ((int)__brkval);
  595. return free_memory;
  596. }
  597. }
  598. #endif //!SDSUPPORT
  599. #if ENABLED(DIGIPOT_I2C)
  600. extern void digipot_i2c_set_current(int channel, float current);
  601. extern void digipot_i2c_init();
  602. #endif
  603. /**
  604. * Inject the next "immediate" command, when possible.
  605. * Return true if any immediate commands remain to inject.
  606. */
  607. static bool drain_queued_commands_P() {
  608. if (queued_commands_P != NULL) {
  609. size_t i = 0;
  610. char c, cmd[30];
  611. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  612. cmd[sizeof(cmd) - 1] = '\0';
  613. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  614. cmd[i] = '\0';
  615. if (enqueue_and_echo_command(cmd)) { // success?
  616. if (c) // newline char?
  617. queued_commands_P += i + 1; // advance to the next command
  618. else
  619. queued_commands_P = NULL; // nul char? no more commands
  620. }
  621. }
  622. return (queued_commands_P != NULL); // return whether any more remain
  623. }
  624. /**
  625. * Record one or many commands to run from program memory.
  626. * Aborts the current queue, if any.
  627. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  628. */
  629. void enqueue_and_echo_commands_P(const char* pgcode) {
  630. queued_commands_P = pgcode;
  631. drain_queued_commands_P(); // first command executed asap (when possible)
  632. }
  633. void clear_command_queue() {
  634. cmd_queue_index_r = cmd_queue_index_w;
  635. commands_in_queue = 0;
  636. }
  637. /**
  638. * Once a new command is in the ring buffer, call this to commit it
  639. */
  640. inline void _commit_command(bool say_ok) {
  641. send_ok[cmd_queue_index_w] = say_ok;
  642. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  643. commands_in_queue++;
  644. }
  645. /**
  646. * Copy a command directly into the main command buffer, from RAM.
  647. * Returns true if successfully adds the command
  648. */
  649. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  650. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  651. strcpy(command_queue[cmd_queue_index_w], cmd);
  652. _commit_command(say_ok);
  653. return true;
  654. }
  655. void enqueue_and_echo_command_now(const char* cmd) {
  656. while (!enqueue_and_echo_command(cmd)) idle();
  657. }
  658. /**
  659. * Enqueue with Serial Echo
  660. */
  661. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  662. if (_enqueuecommand(cmd, say_ok)) {
  663. SERIAL_ECHO_START;
  664. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  665. SERIAL_CHAR('"');
  666. SERIAL_EOL;
  667. return true;
  668. }
  669. return false;
  670. }
  671. void setup_killpin() {
  672. #if HAS_KILL
  673. SET_INPUT(KILL_PIN);
  674. WRITE(KILL_PIN, HIGH);
  675. #endif
  676. }
  677. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  678. void setup_filrunoutpin() {
  679. SET_INPUT(FIL_RUNOUT_PIN);
  680. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  681. WRITE(FIL_RUNOUT_PIN, HIGH);
  682. #endif
  683. }
  684. #endif
  685. // Set home pin
  686. void setup_homepin(void) {
  687. #if HAS_HOME
  688. SET_INPUT(HOME_PIN);
  689. WRITE(HOME_PIN, HIGH);
  690. #endif
  691. }
  692. void setup_photpin() {
  693. #if HAS_PHOTOGRAPH
  694. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  695. #endif
  696. }
  697. void setup_powerhold() {
  698. #if HAS_SUICIDE
  699. OUT_WRITE(SUICIDE_PIN, HIGH);
  700. #endif
  701. #if HAS_POWER_SWITCH
  702. #if ENABLED(PS_DEFAULT_OFF)
  703. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  704. #else
  705. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  706. #endif
  707. #endif
  708. }
  709. void suicide() {
  710. #if HAS_SUICIDE
  711. OUT_WRITE(SUICIDE_PIN, LOW);
  712. #endif
  713. }
  714. void servo_init() {
  715. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  716. servo[0].attach(SERVO0_PIN);
  717. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  718. #endif
  719. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  720. servo[1].attach(SERVO1_PIN);
  721. servo[1].detach();
  722. #endif
  723. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  724. servo[2].attach(SERVO2_PIN);
  725. servo[2].detach();
  726. #endif
  727. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  728. servo[3].attach(SERVO3_PIN);
  729. servo[3].detach();
  730. #endif
  731. #if HAS_Z_SERVO_ENDSTOP
  732. /**
  733. * Set position of Z Servo Endstop
  734. *
  735. * The servo might be deployed and positioned too low to stow
  736. * when starting up the machine or rebooting the board.
  737. * There's no way to know where the nozzle is positioned until
  738. * homing has been done - no homing with z-probe without init!
  739. *
  740. */
  741. STOW_Z_SERVO();
  742. #endif
  743. }
  744. /**
  745. * Stepper Reset (RigidBoard, et.al.)
  746. */
  747. #if HAS_STEPPER_RESET
  748. void disableStepperDrivers() {
  749. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  750. }
  751. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  752. #endif
  753. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  754. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  755. i2c.receive(bytes);
  756. }
  757. void i2c_on_request() { // just send dummy data for now
  758. i2c.reply("Hello World!\n");
  759. }
  760. #endif
  761. void gcode_line_error(const char* err, bool doFlush = true) {
  762. SERIAL_ERROR_START;
  763. serialprintPGM(err);
  764. SERIAL_ERRORLN(gcode_LastN);
  765. //Serial.println(gcode_N);
  766. if (doFlush) FlushSerialRequestResend();
  767. serial_count = 0;
  768. }
  769. inline void get_serial_commands() {
  770. static char serial_line_buffer[MAX_CMD_SIZE];
  771. static boolean serial_comment_mode = false;
  772. // If the command buffer is empty for too long,
  773. // send "wait" to indicate Marlin is still waiting.
  774. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  775. static millis_t last_command_time = 0;
  776. millis_t ms = millis();
  777. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  778. SERIAL_ECHOLNPGM(MSG_WAIT);
  779. last_command_time = ms;
  780. }
  781. #endif
  782. /**
  783. * Loop while serial characters are incoming and the queue is not full
  784. */
  785. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  786. char serial_char = MYSERIAL.read();
  787. /**
  788. * If the character ends the line
  789. */
  790. if (serial_char == '\n' || serial_char == '\r') {
  791. serial_comment_mode = false; // end of line == end of comment
  792. if (!serial_count) continue; // skip empty lines
  793. serial_line_buffer[serial_count] = 0; // terminate string
  794. serial_count = 0; //reset buffer
  795. char* command = serial_line_buffer;
  796. while (*command == ' ') command++; // skip any leading spaces
  797. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  798. char* apos = strchr(command, '*');
  799. if (npos) {
  800. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  801. if (M110) {
  802. char* n2pos = strchr(command + 4, 'N');
  803. if (n2pos) npos = n2pos;
  804. }
  805. gcode_N = strtol(npos + 1, NULL, 10);
  806. if (gcode_N != gcode_LastN + 1 && !M110) {
  807. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  808. return;
  809. }
  810. if (apos) {
  811. byte checksum = 0, count = 0;
  812. while (command[count] != '*') checksum ^= command[count++];
  813. if (strtol(apos + 1, NULL, 10) != checksum) {
  814. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  815. return;
  816. }
  817. // if no errors, continue parsing
  818. }
  819. else {
  820. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  821. return;
  822. }
  823. gcode_LastN = gcode_N;
  824. // if no errors, continue parsing
  825. }
  826. else if (apos) { // No '*' without 'N'
  827. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  828. return;
  829. }
  830. // Movement commands alert when stopped
  831. if (IsStopped()) {
  832. char* gpos = strchr(command, 'G');
  833. if (gpos) {
  834. int codenum = strtol(gpos + 1, NULL, 10);
  835. switch (codenum) {
  836. case 0:
  837. case 1:
  838. case 2:
  839. case 3:
  840. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  841. LCD_MESSAGEPGM(MSG_STOPPED);
  842. break;
  843. }
  844. }
  845. }
  846. #if DISABLED(EMERGENCY_PARSER)
  847. // If command was e-stop process now
  848. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  849. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  850. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  851. #endif
  852. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  853. last_command_time = ms;
  854. #endif
  855. // Add the command to the queue
  856. _enqueuecommand(serial_line_buffer, true);
  857. }
  858. else if (serial_count >= MAX_CMD_SIZE - 1) {
  859. // Keep fetching, but ignore normal characters beyond the max length
  860. // The command will be injected when EOL is reached
  861. }
  862. else if (serial_char == '\\') { // Handle escapes
  863. if (MYSERIAL.available() > 0) {
  864. // if we have one more character, copy it over
  865. serial_char = MYSERIAL.read();
  866. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  867. }
  868. // otherwise do nothing
  869. }
  870. else { // it's not a newline, carriage return or escape char
  871. if (serial_char == ';') serial_comment_mode = true;
  872. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  873. }
  874. } // queue has space, serial has data
  875. }
  876. #if ENABLED(SDSUPPORT)
  877. inline void get_sdcard_commands() {
  878. static bool stop_buffering = false,
  879. sd_comment_mode = false;
  880. if (!card.sdprinting) return;
  881. /**
  882. * '#' stops reading from SD to the buffer prematurely, so procedural
  883. * macro calls are possible. If it occurs, stop_buffering is triggered
  884. * and the buffer is run dry; this character _can_ occur in serial com
  885. * due to checksums, however, no checksums are used in SD printing.
  886. */
  887. if (commands_in_queue == 0) stop_buffering = false;
  888. uint16_t sd_count = 0;
  889. bool card_eof = card.eof();
  890. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  891. int16_t n = card.get();
  892. char sd_char = (char)n;
  893. card_eof = card.eof();
  894. if (card_eof || n == -1
  895. || sd_char == '\n' || sd_char == '\r'
  896. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  897. ) {
  898. if (card_eof) {
  899. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  900. card.printingHasFinished();
  901. card.checkautostart(true);
  902. }
  903. else if (n == -1) {
  904. SERIAL_ERROR_START;
  905. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  906. }
  907. if (sd_char == '#') stop_buffering = true;
  908. sd_comment_mode = false; //for new command
  909. if (!sd_count) continue; //skip empty lines
  910. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  911. sd_count = 0; //clear buffer
  912. _commit_command(false);
  913. }
  914. else if (sd_count >= MAX_CMD_SIZE - 1) {
  915. /**
  916. * Keep fetching, but ignore normal characters beyond the max length
  917. * The command will be injected when EOL is reached
  918. */
  919. }
  920. else {
  921. if (sd_char == ';') sd_comment_mode = true;
  922. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  923. }
  924. }
  925. }
  926. #endif // SDSUPPORT
  927. /**
  928. * Add to the circular command queue the next command from:
  929. * - The command-injection queue (queued_commands_P)
  930. * - The active serial input (usually USB)
  931. * - The SD card file being actively printed
  932. */
  933. void get_available_commands() {
  934. // if any immediate commands remain, don't get other commands yet
  935. if (drain_queued_commands_P()) return;
  936. get_serial_commands();
  937. #if ENABLED(SDSUPPORT)
  938. get_sdcard_commands();
  939. #endif
  940. }
  941. inline bool code_has_value() {
  942. int i = 1;
  943. char c = seen_pointer[i];
  944. while (c == ' ') c = seen_pointer[++i];
  945. if (c == '-' || c == '+') c = seen_pointer[++i];
  946. if (c == '.') c = seen_pointer[++i];
  947. return NUMERIC(c);
  948. }
  949. inline float code_value_float() {
  950. float ret;
  951. char* e = strchr(seen_pointer, 'E');
  952. if (e) {
  953. *e = 0;
  954. ret = strtod(seen_pointer + 1, NULL);
  955. *e = 'E';
  956. }
  957. else
  958. ret = strtod(seen_pointer + 1, NULL);
  959. return ret;
  960. }
  961. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  962. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  963. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  964. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  965. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  966. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  967. #if ENABLED(INCH_MODE_SUPPORT)
  968. inline void set_input_linear_units(LinearUnit units) {
  969. switch (units) {
  970. case LINEARUNIT_INCH:
  971. linear_unit_factor = 25.4;
  972. break;
  973. case LINEARUNIT_MM:
  974. default:
  975. linear_unit_factor = 1.0;
  976. break;
  977. }
  978. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  979. }
  980. inline float axis_unit_factor(int axis) {
  981. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  982. }
  983. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  984. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  985. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  986. #else
  987. inline float code_value_linear_units() { return code_value_float(); }
  988. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  989. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  990. #endif
  991. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  992. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  993. float code_value_temp_abs() {
  994. switch (input_temp_units) {
  995. case TEMPUNIT_C:
  996. return code_value_float();
  997. case TEMPUNIT_F:
  998. return (code_value_float() - 32) * 0.5555555556;
  999. case TEMPUNIT_K:
  1000. return code_value_float() - 272.15;
  1001. default:
  1002. return code_value_float();
  1003. }
  1004. }
  1005. float code_value_temp_diff() {
  1006. switch (input_temp_units) {
  1007. case TEMPUNIT_C:
  1008. case TEMPUNIT_K:
  1009. return code_value_float();
  1010. case TEMPUNIT_F:
  1011. return code_value_float() * 0.5555555556;
  1012. default:
  1013. return code_value_float();
  1014. }
  1015. }
  1016. #else
  1017. float code_value_temp_abs() { return code_value_float(); }
  1018. float code_value_temp_diff() { return code_value_float(); }
  1019. #endif
  1020. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1021. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1022. bool code_seen(char code) {
  1023. seen_pointer = strchr(current_command_args, code);
  1024. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1025. }
  1026. /**
  1027. * Set target_extruder from the T parameter or the active_extruder
  1028. *
  1029. * Returns TRUE if the target is invalid
  1030. */
  1031. bool get_target_extruder_from_command(int code) {
  1032. if (code_seen('T')) {
  1033. if (code_value_byte() >= EXTRUDERS) {
  1034. SERIAL_ECHO_START;
  1035. SERIAL_CHAR('M');
  1036. SERIAL_ECHO(code);
  1037. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1038. return true;
  1039. }
  1040. target_extruder = code_value_byte();
  1041. }
  1042. else
  1043. target_extruder = active_extruder;
  1044. return false;
  1045. }
  1046. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1047. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1048. #endif
  1049. #if ENABLED(DUAL_X_CARRIAGE)
  1050. #define DXC_FULL_CONTROL_MODE 0
  1051. #define DXC_AUTO_PARK_MODE 1
  1052. #define DXC_DUPLICATION_MODE 2
  1053. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1054. static float x_home_pos(int extruder) {
  1055. if (extruder == 0)
  1056. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1057. else
  1058. /**
  1059. * In dual carriage mode the extruder offset provides an override of the
  1060. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1061. * This allow soft recalibration of the second extruder offset position
  1062. * without firmware reflash (through the M218 command).
  1063. */
  1064. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1065. }
  1066. static int x_home_dir(int extruder) {
  1067. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1068. }
  1069. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1070. static bool active_extruder_parked = false; // used in mode 1 & 2
  1071. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1072. static millis_t delayed_move_time = 0; // used in mode 1
  1073. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1074. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1075. #endif //DUAL_X_CARRIAGE
  1076. /**
  1077. * Software endstops can be used to monitor the open end of
  1078. * an axis that has a hardware endstop on the other end. Or
  1079. * they can prevent axes from moving past endstops and grinding.
  1080. *
  1081. * To keep doing their job as the coordinate system changes,
  1082. * the software endstop positions must be refreshed to remain
  1083. * at the same positions relative to the machine.
  1084. */
  1085. void update_software_endstops(AxisEnum axis) {
  1086. float offs = LOGICAL_POSITION(0, axis);
  1087. #if ENABLED(DUAL_X_CARRIAGE)
  1088. if (axis == X_AXIS) {
  1089. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1090. if (active_extruder != 0) {
  1091. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1092. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1093. return;
  1094. }
  1095. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1096. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1097. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1098. return;
  1099. }
  1100. }
  1101. else
  1102. #endif
  1103. {
  1104. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1105. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1106. }
  1107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1108. if (DEBUGGING(LEVELING)) {
  1109. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1110. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1111. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1112. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1113. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1114. }
  1115. #endif
  1116. #if ENABLED(DELTA)
  1117. if (axis == Z_AXIS)
  1118. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1119. #endif
  1120. }
  1121. /**
  1122. * Change the home offset for an axis, update the current
  1123. * position and the software endstops to retain the same
  1124. * relative distance to the new home.
  1125. *
  1126. * Since this changes the current_position, code should
  1127. * call sync_plan_position soon after this.
  1128. */
  1129. static void set_home_offset(AxisEnum axis, float v) {
  1130. current_position[axis] += v - home_offset[axis];
  1131. home_offset[axis] = v;
  1132. update_software_endstops(axis);
  1133. }
  1134. /**
  1135. * Set an axis' current position to its home position (after homing).
  1136. *
  1137. * For Core and Cartesian robots this applies one-to-one when an
  1138. * individual axis has been homed.
  1139. *
  1140. * DELTA should wait until all homing is done before setting the XYZ
  1141. * current_position to home, because homing is a single operation.
  1142. * In the case where the axis positions are already known and previously
  1143. * homed, DELTA could home to X or Y individually by moving either one
  1144. * to the center. However, homing Z always homes XY and Z.
  1145. *
  1146. * SCARA should wait until all XY homing is done before setting the XY
  1147. * current_position to home, because neither X nor Y is at home until
  1148. * both are at home. Z can however be homed individually.
  1149. *
  1150. */
  1151. static void set_axis_is_at_home(AxisEnum axis) {
  1152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1153. if (DEBUGGING(LEVELING)) {
  1154. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1155. SERIAL_CHAR(')');
  1156. SERIAL_EOL;
  1157. }
  1158. #endif
  1159. axis_known_position[axis] = axis_homed[axis] = true;
  1160. position_shift[axis] = 0;
  1161. update_software_endstops(axis);
  1162. #if ENABLED(DUAL_X_CARRIAGE)
  1163. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1164. if (active_extruder != 0)
  1165. current_position[X_AXIS] = x_home_pos(active_extruder);
  1166. else
  1167. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1168. update_software_endstops(X_AXIS);
  1169. return;
  1170. }
  1171. #endif
  1172. #if ENABLED(MORGAN_SCARA)
  1173. /**
  1174. * Morgan SCARA homes XY at the same time
  1175. */
  1176. if (axis == X_AXIS || axis == Y_AXIS) {
  1177. float homeposition[XYZ];
  1178. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1179. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1180. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1181. /**
  1182. * Get Home position SCARA arm angles using inverse kinematics,
  1183. * and calculate homing offset using forward kinematics
  1184. */
  1185. inverse_kinematics(homeposition);
  1186. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1187. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1188. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1189. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1190. /**
  1191. * SCARA home positions are based on configuration since the actual
  1192. * limits are determined by the inverse kinematic transform.
  1193. */
  1194. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1195. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1196. }
  1197. else
  1198. #endif
  1199. {
  1200. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1201. }
  1202. /**
  1203. * Z Probe Z Homing? Account for the probe's Z offset.
  1204. */
  1205. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1206. if (axis == Z_AXIS) {
  1207. #if HOMING_Z_WITH_PROBE
  1208. current_position[Z_AXIS] -= zprobe_zoffset;
  1209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1210. if (DEBUGGING(LEVELING)) {
  1211. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1212. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1213. }
  1214. #endif
  1215. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1216. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1217. #endif
  1218. }
  1219. #endif
  1220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1221. if (DEBUGGING(LEVELING)) {
  1222. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1223. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1224. DEBUG_POS("", current_position);
  1225. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1226. SERIAL_CHAR(')');
  1227. SERIAL_EOL;
  1228. }
  1229. #endif
  1230. }
  1231. /**
  1232. * Some planner shorthand inline functions
  1233. */
  1234. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1235. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1236. int hbd = homing_bump_divisor[axis];
  1237. if (hbd < 1) {
  1238. hbd = 10;
  1239. SERIAL_ECHO_START;
  1240. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1241. }
  1242. return homing_feedrate_mm_s[axis] / hbd;
  1243. }
  1244. //
  1245. // line_to_current_position
  1246. // Move the planner to the current position from wherever it last moved
  1247. // (or from wherever it has been told it is located).
  1248. //
  1249. inline void line_to_current_position() {
  1250. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1251. }
  1252. //
  1253. // line_to_destination
  1254. // Move the planner, not necessarily synced with current_position
  1255. //
  1256. inline void line_to_destination(float fr_mm_s) {
  1257. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1258. }
  1259. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1260. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1261. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1262. #if IS_KINEMATIC
  1263. /**
  1264. * Calculate delta, start a line, and set current_position to destination
  1265. */
  1266. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1267. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1268. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1269. #endif
  1270. if ( current_position[X_AXIS] == destination[X_AXIS]
  1271. && current_position[Y_AXIS] == destination[Y_AXIS]
  1272. && current_position[Z_AXIS] == destination[Z_AXIS]
  1273. && current_position[E_AXIS] == destination[E_AXIS]
  1274. ) return;
  1275. refresh_cmd_timeout();
  1276. inverse_kinematics(destination);
  1277. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1278. set_current_to_destination();
  1279. }
  1280. #endif // IS_KINEMATIC
  1281. /**
  1282. * Plan a move to (X, Y, Z) and set the current_position
  1283. * The final current_position may not be the one that was requested
  1284. */
  1285. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1286. float old_feedrate_mm_s = feedrate_mm_s;
  1287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1288. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1289. #endif
  1290. #if ENABLED(DELTA)
  1291. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1292. set_destination_to_current(); // sync destination at the start
  1293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1294. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1295. #endif
  1296. // when in the danger zone
  1297. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1298. if (z > delta_clip_start_height) { // staying in the danger zone
  1299. destination[X_AXIS] = x; // move directly (uninterpolated)
  1300. destination[Y_AXIS] = y;
  1301. destination[Z_AXIS] = z;
  1302. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1304. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1305. #endif
  1306. return;
  1307. }
  1308. else {
  1309. destination[Z_AXIS] = delta_clip_start_height;
  1310. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1311. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1312. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1313. #endif
  1314. }
  1315. }
  1316. if (z > current_position[Z_AXIS]) { // raising?
  1317. destination[Z_AXIS] = z;
  1318. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1320. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1321. #endif
  1322. }
  1323. destination[X_AXIS] = x;
  1324. destination[Y_AXIS] = y;
  1325. prepare_move_to_destination(); // set_current_to_destination
  1326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1327. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1328. #endif
  1329. if (z < current_position[Z_AXIS]) { // lowering?
  1330. destination[Z_AXIS] = z;
  1331. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1332. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1333. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1334. #endif
  1335. }
  1336. #elif IS_SCARA
  1337. set_destination_to_current();
  1338. // If Z needs to raise, do it before moving XY
  1339. if (destination[Z_AXIS] < z) {
  1340. destination[Z_AXIS] = z;
  1341. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1342. }
  1343. destination[X_AXIS] = x;
  1344. destination[Y_AXIS] = y;
  1345. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1346. // If Z needs to lower, do it after moving XY
  1347. if (destination[Z_AXIS] > z) {
  1348. destination[Z_AXIS] = z;
  1349. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1350. }
  1351. #else
  1352. // If Z needs to raise, do it before moving XY
  1353. if (current_position[Z_AXIS] < z) {
  1354. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1355. current_position[Z_AXIS] = z;
  1356. line_to_current_position();
  1357. }
  1358. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1359. current_position[X_AXIS] = x;
  1360. current_position[Y_AXIS] = y;
  1361. line_to_current_position();
  1362. // If Z needs to lower, do it after moving XY
  1363. if (current_position[Z_AXIS] > z) {
  1364. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1365. current_position[Z_AXIS] = z;
  1366. line_to_current_position();
  1367. }
  1368. #endif
  1369. stepper.synchronize();
  1370. feedrate_mm_s = old_feedrate_mm_s;
  1371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1372. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1373. #endif
  1374. }
  1375. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1376. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1377. }
  1378. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1379. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1380. }
  1381. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1382. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1383. }
  1384. //
  1385. // Prepare to do endstop or probe moves
  1386. // with custom feedrates.
  1387. //
  1388. // - Save current feedrates
  1389. // - Reset the rate multiplier
  1390. // - Reset the command timeout
  1391. // - Enable the endstops (for endstop moves)
  1392. //
  1393. static void setup_for_endstop_or_probe_move() {
  1394. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1395. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1396. #endif
  1397. saved_feedrate_mm_s = feedrate_mm_s;
  1398. saved_feedrate_percentage = feedrate_percentage;
  1399. feedrate_percentage = 100;
  1400. refresh_cmd_timeout();
  1401. }
  1402. static void clean_up_after_endstop_or_probe_move() {
  1403. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1404. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1405. #endif
  1406. feedrate_mm_s = saved_feedrate_mm_s;
  1407. feedrate_percentage = saved_feedrate_percentage;
  1408. refresh_cmd_timeout();
  1409. }
  1410. #if HAS_BED_PROBE
  1411. /**
  1412. * Raise Z to a minimum height to make room for a probe to move
  1413. */
  1414. inline void do_probe_raise(float z_raise) {
  1415. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1416. if (DEBUGGING(LEVELING)) {
  1417. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1418. SERIAL_CHAR(')');
  1419. SERIAL_EOL;
  1420. }
  1421. #endif
  1422. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1423. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1424. if (z_dest > current_position[Z_AXIS])
  1425. do_blocking_move_to_z(z_dest);
  1426. }
  1427. #endif //HAS_BED_PROBE
  1428. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1429. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1430. const bool xx = x && !axis_homed[X_AXIS],
  1431. yy = y && !axis_homed[Y_AXIS],
  1432. zz = z && !axis_homed[Z_AXIS];
  1433. if (xx || yy || zz) {
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOPGM(MSG_HOME " ");
  1436. if (xx) SERIAL_ECHOPGM(MSG_X);
  1437. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1438. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1439. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1440. #if ENABLED(ULTRA_LCD)
  1441. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1442. strcat_P(message, PSTR(MSG_HOME " "));
  1443. if (xx) strcat_P(message, PSTR(MSG_X));
  1444. if (yy) strcat_P(message, PSTR(MSG_Y));
  1445. if (zz) strcat_P(message, PSTR(MSG_Z));
  1446. strcat_P(message, PSTR(" " MSG_FIRST));
  1447. lcd_setstatus(message);
  1448. #endif
  1449. return true;
  1450. }
  1451. return false;
  1452. }
  1453. #endif
  1454. #if ENABLED(Z_PROBE_SLED)
  1455. #ifndef SLED_DOCKING_OFFSET
  1456. #define SLED_DOCKING_OFFSET 0
  1457. #endif
  1458. /**
  1459. * Method to dock/undock a sled designed by Charles Bell.
  1460. *
  1461. * stow[in] If false, move to MAX_X and engage the solenoid
  1462. * If true, move to MAX_X and release the solenoid
  1463. */
  1464. static void dock_sled(bool stow) {
  1465. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1466. if (DEBUGGING(LEVELING)) {
  1467. SERIAL_ECHOPAIR("dock_sled(", stow);
  1468. SERIAL_CHAR(')');
  1469. SERIAL_EOL;
  1470. }
  1471. #endif
  1472. // Dock sled a bit closer to ensure proper capturing
  1473. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1474. #if PIN_EXISTS(SLED)
  1475. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1476. #endif
  1477. }
  1478. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1479. void run_deploy_moves_script() {
  1480. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1483. #endif
  1484. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1485. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1486. #endif
  1487. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1488. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1489. #endif
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1492. #endif
  1493. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1494. #endif
  1495. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1498. #endif
  1499. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1500. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1501. #endif
  1502. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1503. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1504. #endif
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1507. #endif
  1508. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1509. #endif
  1510. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1513. #endif
  1514. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1515. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1516. #endif
  1517. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1518. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1519. #endif
  1520. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1521. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1522. #endif
  1523. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1524. #endif
  1525. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1526. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1527. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1528. #endif
  1529. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1530. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1531. #endif
  1532. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1533. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1534. #endif
  1535. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1536. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1537. #endif
  1538. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1539. #endif
  1540. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1541. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1542. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1543. #endif
  1544. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1545. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1546. #endif
  1547. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1548. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1549. #endif
  1550. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1551. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1552. #endif
  1553. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1554. #endif
  1555. }
  1556. void run_stow_moves_script() {
  1557. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1559. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1560. #endif
  1561. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1562. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1563. #endif
  1564. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1565. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1566. #endif
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1568. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1569. #endif
  1570. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1571. #endif
  1572. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1574. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1575. #endif
  1576. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1577. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1578. #endif
  1579. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1580. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1581. #endif
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1583. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1584. #endif
  1585. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1586. #endif
  1587. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1589. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1590. #endif
  1591. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1592. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1593. #endif
  1594. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1595. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1596. #endif
  1597. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1598. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1599. #endif
  1600. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1601. #endif
  1602. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1603. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1604. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1605. #endif
  1606. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1607. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1608. #endif
  1609. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1610. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1611. #endif
  1612. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1613. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1614. #endif
  1615. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1616. #endif
  1617. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1618. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1619. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1620. #endif
  1621. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1622. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1623. #endif
  1624. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1625. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1626. #endif
  1627. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1628. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1629. #endif
  1630. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1631. #endif
  1632. }
  1633. #endif
  1634. #if HAS_BED_PROBE
  1635. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1636. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1637. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1638. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1639. #else
  1640. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1641. #endif
  1642. #endif
  1643. #define DEPLOY_PROBE() set_probe_deployed(true)
  1644. #define STOW_PROBE() set_probe_deployed(false)
  1645. #if ENABLED(BLTOUCH)
  1646. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1647. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1648. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1649. if (DEBUGGING(LEVELING)) {
  1650. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1651. SERIAL_CHAR(')');
  1652. SERIAL_EOL;
  1653. }
  1654. #endif
  1655. }
  1656. #endif
  1657. // returns false for ok and true for failure
  1658. static bool set_probe_deployed(bool deploy) {
  1659. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1660. if (DEBUGGING(LEVELING)) {
  1661. DEBUG_POS("set_probe_deployed", current_position);
  1662. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1663. }
  1664. #endif
  1665. if (endstops.z_probe_enabled == deploy) return false;
  1666. // Make room for probe
  1667. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1668. // When deploying make sure BLTOUCH is not already triggered
  1669. #if ENABLED(BLTOUCH)
  1670. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1671. #endif
  1672. #if ENABLED(Z_PROBE_SLED)
  1673. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1674. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1675. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1676. #endif
  1677. float oldXpos = current_position[X_AXIS],
  1678. oldYpos = current_position[Y_AXIS];
  1679. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1680. // If endstop is already false, the Z probe is deployed
  1681. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1682. // Would a goto be less ugly?
  1683. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1684. // for a triggered when stowed manual probe.
  1685. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1686. // otherwise an Allen-Key probe can't be stowed.
  1687. #endif
  1688. #if ENABLED(Z_PROBE_SLED)
  1689. dock_sled(!deploy);
  1690. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1691. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1692. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1693. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1694. #endif
  1695. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1696. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1697. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1698. if (IsRunning()) {
  1699. SERIAL_ERROR_START;
  1700. SERIAL_ERRORLNPGM("Z-Probe failed");
  1701. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1702. }
  1703. stop();
  1704. return true;
  1705. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1706. #endif
  1707. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1708. endstops.enable_z_probe(deploy);
  1709. return false;
  1710. }
  1711. static void do_probe_move(float z, float fr_mm_m) {
  1712. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1713. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1714. #endif
  1715. // Deploy BLTouch at the start of any probe
  1716. #if ENABLED(BLTOUCH)
  1717. set_bltouch_deployed(true);
  1718. #endif
  1719. // Move down until probe triggered
  1720. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1721. // Retract BLTouch immediately after a probe
  1722. #if ENABLED(BLTOUCH)
  1723. set_bltouch_deployed(false);
  1724. #endif
  1725. // Clear endstop flags
  1726. endstops.hit_on_purpose();
  1727. // Tell the planner where we actually are
  1728. planner.sync_from_steppers();
  1729. // Get Z where the steppers were interrupted
  1730. set_current_from_steppers_for_axis(Z_AXIS);
  1731. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1732. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1733. #endif
  1734. }
  1735. // Do a single Z probe and return with current_position[Z_AXIS]
  1736. // at the height where the probe triggered.
  1737. static float run_z_probe() {
  1738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1739. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1740. #endif
  1741. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1742. refresh_cmd_timeout();
  1743. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1744. // Do a first probe at the fast speed
  1745. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1746. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1747. float first_probe_z = current_position[Z_AXIS];
  1748. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1749. #endif
  1750. // move up by the bump distance
  1751. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1752. #else
  1753. // If the nozzle is above the travel height then
  1754. // move down quickly before doing the slow probe
  1755. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1756. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1757. if (z < current_position[Z_AXIS])
  1758. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1759. #endif
  1760. // move down slowly to find bed
  1761. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1762. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1763. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1764. #endif
  1765. // Debug: compare probe heights
  1766. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1767. if (DEBUGGING(LEVELING)) {
  1768. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1769. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1770. }
  1771. #endif
  1772. return current_position[Z_AXIS];
  1773. }
  1774. //
  1775. // - Move to the given XY
  1776. // - Deploy the probe, if not already deployed
  1777. // - Probe the bed, get the Z position
  1778. // - Depending on the 'stow' flag
  1779. // - Stow the probe, or
  1780. // - Raise to the BETWEEN height
  1781. // - Return the probed Z position
  1782. //
  1783. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1784. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1785. if (DEBUGGING(LEVELING)) {
  1786. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1787. SERIAL_ECHOPAIR(", ", y);
  1788. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1789. SERIAL_ECHOLNPGM("stow)");
  1790. DEBUG_POS("", current_position);
  1791. }
  1792. #endif
  1793. float old_feedrate_mm_s = feedrate_mm_s;
  1794. // Ensure a minimum height before moving the probe
  1795. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1796. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1797. // Move the probe to the given XY
  1798. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1799. if (DEPLOY_PROBE()) return NAN;
  1800. float measured_z = run_z_probe();
  1801. if (!stow)
  1802. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1803. else
  1804. if (STOW_PROBE()) return NAN;
  1805. if (verbose_level > 2) {
  1806. SERIAL_PROTOCOLPGM("Bed X: ");
  1807. SERIAL_PROTOCOL_F(x, 3);
  1808. SERIAL_PROTOCOLPGM(" Y: ");
  1809. SERIAL_PROTOCOL_F(y, 3);
  1810. SERIAL_PROTOCOLPGM(" Z: ");
  1811. SERIAL_PROTOCOL_F(measured_z, 3);
  1812. SERIAL_EOL;
  1813. }
  1814. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1815. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1816. #endif
  1817. feedrate_mm_s = old_feedrate_mm_s;
  1818. return measured_z;
  1819. }
  1820. #endif // HAS_BED_PROBE
  1821. #if PLANNER_LEVELING
  1822. /**
  1823. * Turn bed leveling on or off, fixing the current
  1824. * position as-needed.
  1825. *
  1826. * Disable: Current position = physical position
  1827. * Enable: Current position = "unleveled" physical position
  1828. */
  1829. void set_bed_leveling_enabled(bool enable=true) {
  1830. #if ENABLED(MESH_BED_LEVELING)
  1831. if (!enable && mbl.active())
  1832. current_position[Z_AXIS] +=
  1833. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - (MESH_HOME_SEARCH_Z);
  1834. mbl.set_active(enable && mbl.has_mesh()); // was set_has_mesh(). Is this not correct?
  1835. #elif HAS_ABL
  1836. if (enable != planner.abl_enabled) {
  1837. planner.abl_enabled = !planner.abl_enabled;
  1838. if (!planner.abl_enabled)
  1839. set_current_from_steppers_for_axis(
  1840. #if ABL_PLANAR
  1841. ALL_AXES
  1842. #else
  1843. Z_AXIS
  1844. #endif
  1845. );
  1846. else
  1847. planner.unapply_leveling(current_position);
  1848. }
  1849. #endif
  1850. }
  1851. /**
  1852. * Reset calibration results to zero.
  1853. */
  1854. void reset_bed_level() {
  1855. #if ENABLED(MESH_BED_LEVELING)
  1856. if (mbl.has_mesh()) {
  1857. set_bed_leveling_enabled(false);
  1858. mbl.reset();
  1859. mbl.set_has_mesh(false);
  1860. }
  1861. #else
  1862. planner.abl_enabled = false;
  1863. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1864. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1865. #endif
  1866. #if ABL_PLANAR
  1867. planner.bed_level_matrix.set_to_identity();
  1868. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1869. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1870. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1871. bed_level_grid[x][y] = 1000.0;
  1872. #endif
  1873. #endif
  1874. }
  1875. #endif // PLANNER_LEVELING
  1876. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1877. /**
  1878. * Extrapolate a single point from its neighbors
  1879. */
  1880. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1881. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1882. if (DEBUGGING(LEVELING)) {
  1883. SERIAL_ECHOPGM("Extrapolate [");
  1884. if (x < 10) SERIAL_CHAR(' ');
  1885. SERIAL_ECHO((int)x);
  1886. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1887. SERIAL_CHAR(' ');
  1888. if (y < 10) SERIAL_CHAR(' ');
  1889. SERIAL_ECHO((int)y);
  1890. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1891. SERIAL_ECHOLN(']');
  1892. }
  1893. #endif
  1894. if (bed_level_grid[x][y] < 999.0) {
  1895. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1896. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1897. #endif
  1898. return; // Don't overwrite good values.
  1899. }
  1900. // Get X neighbors, Y neighbors, and XY neighbors
  1901. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1902. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1903. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1904. // Treat far unprobed points as zero, near as equal to far
  1905. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1906. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1907. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1908. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1909. // Take the average intstead of the median
  1910. bed_level_grid[x][y] = (a + b + c) / 3.0;
  1911. // Median is robust (ignores outliers).
  1912. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1913. // : ((c < b) ? b : (a < c) ? a : c);
  1914. }
  1915. #define EXTRAPOLATE_FROM_EDGE
  1916. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  1917. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  1918. #define HALF_IN_X
  1919. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  1920. #define HALF_IN_Y
  1921. #endif
  1922. #endif
  1923. /**
  1924. * Fill in the unprobed points (corners of circular print surface)
  1925. * using linear extrapolation, away from the center.
  1926. */
  1927. static void extrapolate_unprobed_bed_level() {
  1928. #ifdef HALF_IN_X
  1929. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  1930. #else
  1931. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  1932. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  1933. xlen = ctrx1;
  1934. #endif
  1935. #ifdef HALF_IN_Y
  1936. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  1937. #else
  1938. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  1939. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  1940. ylen = ctry1;
  1941. #endif
  1942. for (uint8_t xo = 0; xo <= xlen; xo++)
  1943. for (uint8_t yo = 0; yo <= ylen; yo++) {
  1944. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  1945. #ifndef HALF_IN_X
  1946. uint8_t x1 = ctrx1 - xo;
  1947. #endif
  1948. #ifndef HALF_IN_Y
  1949. uint8_t y1 = ctry1 - yo;
  1950. #ifndef HALF_IN_X
  1951. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  1952. #endif
  1953. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  1954. #endif
  1955. #ifndef HALF_IN_X
  1956. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  1957. #endif
  1958. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  1959. }
  1960. }
  1961. /**
  1962. * Print calibration results for plotting or manual frame adjustment.
  1963. */
  1964. static void print_bed_level() {
  1965. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  1966. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1967. SERIAL_PROTOCOLPGM(" ");
  1968. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  1969. SERIAL_PROTOCOL((int)x);
  1970. }
  1971. SERIAL_EOL;
  1972. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  1973. if (y < 9) SERIAL_PROTOCOLCHAR(' ');
  1974. SERIAL_PROTOCOL(y);
  1975. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  1976. SERIAL_PROTOCOLCHAR(' ');
  1977. float offset = bed_level_grid[x][y];
  1978. if (offset < 999.0) {
  1979. if (offset > 0) SERIAL_CHAR('+');
  1980. SERIAL_PROTOCOL_F(offset, 2);
  1981. }
  1982. else
  1983. SERIAL_PROTOCOLPGM(" ====");
  1984. }
  1985. SERIAL_EOL;
  1986. }
  1987. SERIAL_EOL;
  1988. }
  1989. #endif // AUTO_BED_LEVELING_BILINEAR
  1990. /**
  1991. * Home an individual linear axis
  1992. */
  1993. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  1994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1995. if (DEBUGGING(LEVELING)) {
  1996. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  1997. SERIAL_ECHOPAIR(", ", distance);
  1998. SERIAL_ECHOPAIR(", ", fr_mm_s);
  1999. SERIAL_CHAR(')');
  2000. SERIAL_EOL;
  2001. }
  2002. #endif
  2003. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2004. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2005. if (deploy_bltouch) set_bltouch_deployed(true);
  2006. #endif
  2007. // Tell the planner we're at Z=0
  2008. current_position[axis] = 0;
  2009. #if IS_SCARA
  2010. SYNC_PLAN_POSITION_KINEMATIC();
  2011. current_position[axis] = distance;
  2012. inverse_kinematics(current_position);
  2013. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2014. #else
  2015. sync_plan_position();
  2016. current_position[axis] = distance;
  2017. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2018. #endif
  2019. stepper.synchronize();
  2020. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2021. if (deploy_bltouch) set_bltouch_deployed(false);
  2022. #endif
  2023. endstops.hit_on_purpose();
  2024. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2025. if (DEBUGGING(LEVELING)) {
  2026. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2027. SERIAL_CHAR(')');
  2028. SERIAL_EOL;
  2029. }
  2030. #endif
  2031. }
  2032. /**
  2033. * Home an individual "raw axis" to its endstop.
  2034. * This applies to XYZ on Cartesian and Core robots, and
  2035. * to the individual ABC steppers on DELTA and SCARA.
  2036. *
  2037. * At the end of the procedure the axis is marked as
  2038. * homed and the current position of that axis is updated.
  2039. * Kinematic robots should wait till all axes are homed
  2040. * before updating the current position.
  2041. */
  2042. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2043. static void homeaxis(AxisEnum axis) {
  2044. #if IS_SCARA
  2045. // Only Z homing (with probe) is permitted
  2046. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2047. #else
  2048. #define CAN_HOME(A) \
  2049. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2050. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2051. #endif
  2052. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2053. if (DEBUGGING(LEVELING)) {
  2054. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2055. SERIAL_CHAR(')');
  2056. SERIAL_EOL;
  2057. }
  2058. #endif
  2059. int axis_home_dir =
  2060. #if ENABLED(DUAL_X_CARRIAGE)
  2061. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2062. #endif
  2063. home_dir(axis);
  2064. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2065. #if HOMING_Z_WITH_PROBE
  2066. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2067. #endif
  2068. // Set a flag for Z motor locking
  2069. #if ENABLED(Z_DUAL_ENDSTOPS)
  2070. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2071. #endif
  2072. // Fast move towards endstop until triggered
  2073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2074. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2075. #endif
  2076. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2077. // When homing Z with probe respect probe clearance
  2078. const float bump = axis_home_dir * (
  2079. #if HOMING_Z_WITH_PROBE
  2080. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2081. #endif
  2082. home_bump_mm(axis)
  2083. );
  2084. // If a second homing move is configured...
  2085. if (bump) {
  2086. // Move away from the endstop by the axis HOME_BUMP_MM
  2087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2088. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2089. #endif
  2090. do_homing_move(axis, -bump);
  2091. // Slow move towards endstop until triggered
  2092. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2093. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2094. #endif
  2095. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2096. }
  2097. #if ENABLED(Z_DUAL_ENDSTOPS)
  2098. if (axis == Z_AXIS) {
  2099. float adj = fabs(z_endstop_adj);
  2100. bool lockZ1;
  2101. if (axis_home_dir > 0) {
  2102. adj = -adj;
  2103. lockZ1 = (z_endstop_adj > 0);
  2104. }
  2105. else
  2106. lockZ1 = (z_endstop_adj < 0);
  2107. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2108. // Move to the adjusted endstop height
  2109. do_homing_move(axis, adj);
  2110. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2111. stepper.set_homing_flag(false);
  2112. } // Z_AXIS
  2113. #endif
  2114. #if IS_SCARA
  2115. set_axis_is_at_home(axis);
  2116. SYNC_PLAN_POSITION_KINEMATIC();
  2117. #elif ENABLED(DELTA)
  2118. // Delta has already moved all three towers up in G28
  2119. // so here it re-homes each tower in turn.
  2120. // Delta homing treats the axes as normal linear axes.
  2121. // retrace by the amount specified in endstop_adj
  2122. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2123. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2124. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2125. #endif
  2126. do_homing_move(axis, endstop_adj[axis]);
  2127. }
  2128. #else
  2129. // For cartesian/core machines,
  2130. // set the axis to its home position
  2131. set_axis_is_at_home(axis);
  2132. sync_plan_position();
  2133. destination[axis] = current_position[axis];
  2134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2135. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2136. #endif
  2137. #endif
  2138. // Put away the Z probe
  2139. #if HOMING_Z_WITH_PROBE
  2140. if (axis == Z_AXIS && STOW_PROBE()) return;
  2141. #endif
  2142. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2143. if (DEBUGGING(LEVELING)) {
  2144. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2145. SERIAL_CHAR(')');
  2146. SERIAL_EOL;
  2147. }
  2148. #endif
  2149. } // homeaxis()
  2150. #if ENABLED(FWRETRACT)
  2151. void retract(bool retracting, bool swapping = false) {
  2152. if (retracting == retracted[active_extruder]) return;
  2153. float old_feedrate_mm_s = feedrate_mm_s;
  2154. set_destination_to_current();
  2155. if (retracting) {
  2156. feedrate_mm_s = retract_feedrate_mm_s;
  2157. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2158. sync_plan_position_e();
  2159. prepare_move_to_destination();
  2160. if (retract_zlift > 0.01) {
  2161. current_position[Z_AXIS] -= retract_zlift;
  2162. SYNC_PLAN_POSITION_KINEMATIC();
  2163. prepare_move_to_destination();
  2164. }
  2165. }
  2166. else {
  2167. if (retract_zlift > 0.01) {
  2168. current_position[Z_AXIS] += retract_zlift;
  2169. SYNC_PLAN_POSITION_KINEMATIC();
  2170. }
  2171. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2172. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2173. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2174. sync_plan_position_e();
  2175. prepare_move_to_destination();
  2176. }
  2177. feedrate_mm_s = old_feedrate_mm_s;
  2178. retracted[active_extruder] = retracting;
  2179. } // retract()
  2180. #endif // FWRETRACT
  2181. #if ENABLED(MIXING_EXTRUDER)
  2182. void normalize_mix() {
  2183. float mix_total = 0.0;
  2184. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2185. float v = mixing_factor[i];
  2186. if (v < 0) v = mixing_factor[i] = 0;
  2187. mix_total += v;
  2188. }
  2189. // Scale all values if they don't add up to ~1.0
  2190. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2191. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2192. float mix_scale = 1.0 / mix_total;
  2193. for (int i = 0; i < MIXING_STEPPERS; i++)
  2194. mixing_factor[i] *= mix_scale;
  2195. }
  2196. }
  2197. #if ENABLED(DIRECT_MIXING_IN_G1)
  2198. // Get mixing parameters from the GCode
  2199. // Factors that are left out are set to 0
  2200. // The total "must" be 1.0 (but it will be normalized)
  2201. void gcode_get_mix() {
  2202. const char* mixing_codes = "ABCDHI";
  2203. for (int i = 0; i < MIXING_STEPPERS; i++)
  2204. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2205. normalize_mix();
  2206. }
  2207. #endif
  2208. #endif
  2209. /**
  2210. * ***************************************************************************
  2211. * ***************************** G-CODE HANDLING *****************************
  2212. * ***************************************************************************
  2213. */
  2214. /**
  2215. * Set XYZE destination and feedrate from the current GCode command
  2216. *
  2217. * - Set destination from included axis codes
  2218. * - Set to current for missing axis codes
  2219. * - Set the feedrate, if included
  2220. */
  2221. void gcode_get_destination() {
  2222. LOOP_XYZE(i) {
  2223. if (code_seen(axis_codes[i]))
  2224. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2225. else
  2226. destination[i] = current_position[i];
  2227. }
  2228. if (code_seen('F') && code_value_linear_units() > 0.0)
  2229. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2230. #if ENABLED(PRINTCOUNTER)
  2231. if (!DEBUGGING(DRYRUN))
  2232. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2233. #endif
  2234. // Get ABCDHI mixing factors
  2235. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2236. gcode_get_mix();
  2237. #endif
  2238. }
  2239. void unknown_command_error() {
  2240. SERIAL_ECHO_START;
  2241. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2242. SERIAL_CHAR('"');
  2243. SERIAL_EOL;
  2244. }
  2245. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2246. /**
  2247. * Output a "busy" message at regular intervals
  2248. * while the machine is not accepting commands.
  2249. */
  2250. void host_keepalive() {
  2251. millis_t ms = millis();
  2252. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2253. if (PENDING(ms, next_busy_signal_ms)) return;
  2254. switch (busy_state) {
  2255. case IN_HANDLER:
  2256. case IN_PROCESS:
  2257. SERIAL_ECHO_START;
  2258. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2259. break;
  2260. case PAUSED_FOR_USER:
  2261. SERIAL_ECHO_START;
  2262. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2263. break;
  2264. case PAUSED_FOR_INPUT:
  2265. SERIAL_ECHO_START;
  2266. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2267. break;
  2268. default:
  2269. break;
  2270. }
  2271. }
  2272. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2273. }
  2274. #endif //HOST_KEEPALIVE_FEATURE
  2275. bool position_is_reachable(float target[XYZ]
  2276. #if HAS_BED_PROBE
  2277. , bool by_probe=false
  2278. #endif
  2279. ) {
  2280. float dx = RAW_X_POSITION(target[X_AXIS]),
  2281. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2282. #if HAS_BED_PROBE
  2283. if (by_probe) {
  2284. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2285. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2286. }
  2287. #endif
  2288. #if IS_SCARA
  2289. #if MIDDLE_DEAD_ZONE_R > 0
  2290. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2291. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2292. #else
  2293. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2294. #endif
  2295. #elif ENABLED(DELTA)
  2296. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2297. #else
  2298. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2299. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2300. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2301. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2302. #endif
  2303. }
  2304. /**************************************************
  2305. ***************** GCode Handlers *****************
  2306. **************************************************/
  2307. /**
  2308. * G0, G1: Coordinated movement of X Y Z E axes
  2309. */
  2310. inline void gcode_G0_G1(
  2311. #if IS_SCARA
  2312. bool fast_move=false
  2313. #endif
  2314. ) {
  2315. if (IsRunning()) {
  2316. gcode_get_destination(); // For X Y Z E F
  2317. #if ENABLED(FWRETRACT)
  2318. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2319. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2320. // Is this move an attempt to retract or recover?
  2321. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2322. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2323. sync_plan_position_e(); // AND from the planner
  2324. retract(!retracted[active_extruder]);
  2325. return;
  2326. }
  2327. }
  2328. #endif //FWRETRACT
  2329. #if IS_SCARA
  2330. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2331. #else
  2332. prepare_move_to_destination();
  2333. #endif
  2334. }
  2335. }
  2336. /**
  2337. * G2: Clockwise Arc
  2338. * G3: Counterclockwise Arc
  2339. *
  2340. * This command has two forms: IJ-form and R-form.
  2341. *
  2342. * - I specifies an X offset. J specifies a Y offset.
  2343. * At least one of the IJ parameters is required.
  2344. * X and Y can be omitted to do a complete circle.
  2345. * The given XY is not error-checked. The arc ends
  2346. * based on the angle of the destination.
  2347. * Mixing I or J with R will throw an error.
  2348. *
  2349. * - R specifies the radius. X or Y is required.
  2350. * Omitting both X and Y will throw an error.
  2351. * X or Y must differ from the current XY.
  2352. * Mixing R with I or J will throw an error.
  2353. *
  2354. * Examples:
  2355. *
  2356. * G2 I10 ; CW circle centered at X+10
  2357. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2358. */
  2359. #if ENABLED(ARC_SUPPORT)
  2360. inline void gcode_G2_G3(bool clockwise) {
  2361. if (IsRunning()) {
  2362. #if ENABLED(SF_ARC_FIX)
  2363. bool relative_mode_backup = relative_mode;
  2364. relative_mode = true;
  2365. #endif
  2366. gcode_get_destination();
  2367. #if ENABLED(SF_ARC_FIX)
  2368. relative_mode = relative_mode_backup;
  2369. #endif
  2370. float arc_offset[2] = { 0.0, 0.0 };
  2371. if (code_seen('R')) {
  2372. const float r = code_value_axis_units(X_AXIS),
  2373. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2374. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2375. if (r && (x2 != x1 || y2 != y1)) {
  2376. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2377. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2378. d = HYPOT(dx, dy), // Linear distance between the points
  2379. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2380. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2381. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2382. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2383. arc_offset[X_AXIS] = cx - x1;
  2384. arc_offset[Y_AXIS] = cy - y1;
  2385. }
  2386. }
  2387. else {
  2388. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2389. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2390. }
  2391. if (arc_offset[0] || arc_offset[1]) {
  2392. // Send an arc to the planner
  2393. plan_arc(destination, arc_offset, clockwise);
  2394. refresh_cmd_timeout();
  2395. }
  2396. else {
  2397. // Bad arguments
  2398. SERIAL_ERROR_START;
  2399. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2400. }
  2401. }
  2402. }
  2403. #endif
  2404. /**
  2405. * G4: Dwell S<seconds> or P<milliseconds>
  2406. */
  2407. inline void gcode_G4() {
  2408. millis_t dwell_ms = 0;
  2409. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2410. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2411. stepper.synchronize();
  2412. refresh_cmd_timeout();
  2413. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2414. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2415. while (PENDING(millis(), dwell_ms)) idle();
  2416. }
  2417. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2418. /**
  2419. * Parameters interpreted according to:
  2420. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2421. * However I, J omission is not supported at this point; all
  2422. * parameters can be omitted and default to zero.
  2423. */
  2424. /**
  2425. * G5: Cubic B-spline
  2426. */
  2427. inline void gcode_G5() {
  2428. if (IsRunning()) {
  2429. gcode_get_destination();
  2430. float offset[] = {
  2431. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2432. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2433. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2434. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2435. };
  2436. plan_cubic_move(offset);
  2437. }
  2438. }
  2439. #endif // BEZIER_CURVE_SUPPORT
  2440. #if ENABLED(FWRETRACT)
  2441. /**
  2442. * G10 - Retract filament according to settings of M207
  2443. * G11 - Recover filament according to settings of M208
  2444. */
  2445. inline void gcode_G10_G11(bool doRetract=false) {
  2446. #if EXTRUDERS > 1
  2447. if (doRetract) {
  2448. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2449. }
  2450. #endif
  2451. retract(doRetract
  2452. #if EXTRUDERS > 1
  2453. , retracted_swap[active_extruder]
  2454. #endif
  2455. );
  2456. }
  2457. #endif //FWRETRACT
  2458. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2459. /**
  2460. * G12: Clean the nozzle
  2461. */
  2462. inline void gcode_G12() {
  2463. // Don't allow nozzle cleaning without homing first
  2464. if (axis_unhomed_error(true, true, true)) { return; }
  2465. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2466. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2467. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2468. Nozzle::clean(pattern, strokes, objects);
  2469. }
  2470. #endif
  2471. #if ENABLED(INCH_MODE_SUPPORT)
  2472. /**
  2473. * G20: Set input mode to inches
  2474. */
  2475. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2476. /**
  2477. * G21: Set input mode to millimeters
  2478. */
  2479. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2480. #endif
  2481. #if ENABLED(NOZZLE_PARK_FEATURE)
  2482. /**
  2483. * G27: Park the nozzle
  2484. */
  2485. inline void gcode_G27() {
  2486. // Don't allow nozzle parking without homing first
  2487. if (axis_unhomed_error(true, true, true)) { return; }
  2488. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2489. Nozzle::park(z_action);
  2490. }
  2491. #endif // NOZZLE_PARK_FEATURE
  2492. #if ENABLED(QUICK_HOME)
  2493. static void quick_home_xy() {
  2494. // Pretend the current position is 0,0
  2495. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2496. sync_plan_position();
  2497. int x_axis_home_dir =
  2498. #if ENABLED(DUAL_X_CARRIAGE)
  2499. x_home_dir(active_extruder)
  2500. #else
  2501. home_dir(X_AXIS)
  2502. #endif
  2503. ;
  2504. float mlx = max_length(X_AXIS),
  2505. mly = max_length(Y_AXIS),
  2506. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2507. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2508. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2509. endstops.hit_on_purpose(); // clear endstop hit flags
  2510. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2511. }
  2512. #endif // QUICK_HOME
  2513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2514. void log_machine_info() {
  2515. SERIAL_ECHOPGM("Machine Type: ");
  2516. #if ENABLED(DELTA)
  2517. SERIAL_ECHOLNPGM("Delta");
  2518. #elif IS_SCARA
  2519. SERIAL_ECHOLNPGM("SCARA");
  2520. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2521. SERIAL_ECHOLNPGM("Core");
  2522. #else
  2523. SERIAL_ECHOLNPGM("Cartesian");
  2524. #endif
  2525. SERIAL_ECHOPGM("Probe: ");
  2526. #if ENABLED(FIX_MOUNTED_PROBE)
  2527. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2528. #elif ENABLED(BLTOUCH)
  2529. SERIAL_ECHOLNPGM("BLTOUCH");
  2530. #elif HAS_Z_SERVO_ENDSTOP
  2531. SERIAL_ECHOLNPGM("SERVO PROBE");
  2532. #elif ENABLED(Z_PROBE_SLED)
  2533. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2534. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2535. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2536. #else
  2537. SERIAL_ECHOLNPGM("NONE");
  2538. #endif
  2539. #if HAS_BED_PROBE
  2540. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2541. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2542. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2543. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2544. SERIAL_ECHOPGM(" (Right");
  2545. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2546. SERIAL_ECHOPGM(" (Left");
  2547. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2548. SERIAL_ECHOPGM(" (Middle");
  2549. #else
  2550. SERIAL_ECHOPGM(" (Aligned With");
  2551. #endif
  2552. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2553. SERIAL_ECHOPGM("-Back");
  2554. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2555. SERIAL_ECHOPGM("-Front");
  2556. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2557. SERIAL_ECHOPGM("-Center");
  2558. #endif
  2559. if (zprobe_zoffset < 0)
  2560. SERIAL_ECHOPGM(" & Below");
  2561. else if (zprobe_zoffset > 0)
  2562. SERIAL_ECHOPGM(" & Above");
  2563. else
  2564. SERIAL_ECHOPGM(" & Same Z as");
  2565. SERIAL_ECHOLNPGM(" Nozzle)");
  2566. #endif
  2567. #if HAS_ABL
  2568. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2569. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2570. SERIAL_ECHOPGM("LINEAR");
  2571. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2572. SERIAL_ECHOPGM("BILINEAR");
  2573. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2574. SERIAL_ECHOPGM("3POINT");
  2575. #endif
  2576. if (planner.abl_enabled) {
  2577. SERIAL_ECHOLNPGM(" (enabled)");
  2578. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2579. float diff[XYZ] = {
  2580. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2581. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2582. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2583. };
  2584. SERIAL_ECHOPGM("ABL Adjustment X");
  2585. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2586. SERIAL_ECHO(diff[X_AXIS]);
  2587. SERIAL_ECHOPGM(" Y");
  2588. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2589. SERIAL_ECHO(diff[Y_AXIS]);
  2590. SERIAL_ECHOPGM(" Z");
  2591. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2592. SERIAL_ECHO(diff[Z_AXIS]);
  2593. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2594. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2595. #endif
  2596. }
  2597. SERIAL_EOL;
  2598. #elif ENABLED(MESH_BED_LEVELING)
  2599. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2600. if (mbl.active()) {
  2601. SERIAL_ECHOLNPGM(" (enabled)");
  2602. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2603. }
  2604. SERIAL_EOL;
  2605. #endif
  2606. }
  2607. #endif // DEBUG_LEVELING_FEATURE
  2608. #if ENABLED(DELTA)
  2609. /**
  2610. * A delta can only safely home all axes at the same time
  2611. * This is like quick_home_xy() but for 3 towers.
  2612. */
  2613. inline void home_delta() {
  2614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2615. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2616. #endif
  2617. // Init the current position of all carriages to 0,0,0
  2618. memset(current_position, 0, sizeof(current_position));
  2619. sync_plan_position();
  2620. // Move all carriages together linearly until an endstop is hit.
  2621. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2622. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2623. line_to_current_position();
  2624. stepper.synchronize();
  2625. endstops.hit_on_purpose(); // clear endstop hit flags
  2626. // At least one carriage has reached the top.
  2627. // Now re-home each carriage separately.
  2628. HOMEAXIS(A);
  2629. HOMEAXIS(B);
  2630. HOMEAXIS(C);
  2631. // Set all carriages to their home positions
  2632. // Do this here all at once for Delta, because
  2633. // XYZ isn't ABC. Applying this per-tower would
  2634. // give the impression that they are the same.
  2635. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2636. SYNC_PLAN_POSITION_KINEMATIC();
  2637. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2638. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2639. #endif
  2640. }
  2641. #endif // DELTA
  2642. #if ENABLED(Z_SAFE_HOMING)
  2643. inline void home_z_safely() {
  2644. // Disallow Z homing if X or Y are unknown
  2645. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2646. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2647. SERIAL_ECHO_START;
  2648. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2649. return;
  2650. }
  2651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2652. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2653. #endif
  2654. SYNC_PLAN_POSITION_KINEMATIC();
  2655. /**
  2656. * Move the Z probe (or just the nozzle) to the safe homing point
  2657. */
  2658. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2659. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2660. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2661. if (position_is_reachable(
  2662. destination
  2663. #if HOMING_Z_WITH_PROBE
  2664. , true
  2665. #endif
  2666. )
  2667. ) {
  2668. #if HOMING_Z_WITH_PROBE
  2669. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2670. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2671. #endif
  2672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2673. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2674. #endif
  2675. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2676. HOMEAXIS(Z);
  2677. }
  2678. else {
  2679. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2680. SERIAL_ECHO_START;
  2681. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2682. }
  2683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2684. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2685. #endif
  2686. }
  2687. #endif // Z_SAFE_HOMING
  2688. /**
  2689. * G28: Home all axes according to settings
  2690. *
  2691. * Parameters
  2692. *
  2693. * None Home to all axes with no parameters.
  2694. * With QUICK_HOME enabled XY will home together, then Z.
  2695. *
  2696. * Cartesian parameters
  2697. *
  2698. * X Home to the X endstop
  2699. * Y Home to the Y endstop
  2700. * Z Home to the Z endstop
  2701. *
  2702. */
  2703. inline void gcode_G28() {
  2704. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2705. if (DEBUGGING(LEVELING)) {
  2706. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2707. log_machine_info();
  2708. }
  2709. #endif
  2710. // Wait for planner moves to finish!
  2711. stepper.synchronize();
  2712. // For auto bed leveling, clear the level matrix
  2713. #if HAS_ABL
  2714. reset_bed_level();
  2715. #endif
  2716. // Always home with tool 0 active
  2717. #if HOTENDS > 1
  2718. uint8_t old_tool_index = active_extruder;
  2719. tool_change(0, 0, true);
  2720. #endif
  2721. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2722. extruder_duplication_enabled = false;
  2723. #endif
  2724. /**
  2725. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2726. * on again when homing all axis
  2727. */
  2728. #if ENABLED(MESH_BED_LEVELING)
  2729. float pre_home_z = MESH_HOME_SEARCH_Z;
  2730. if (mbl.active()) {
  2731. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2732. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2733. #endif
  2734. // Save known Z position if already homed
  2735. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2736. pre_home_z = current_position[Z_AXIS];
  2737. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2738. }
  2739. mbl.set_active(false);
  2740. current_position[Z_AXIS] = pre_home_z;
  2741. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2742. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2743. #endif
  2744. }
  2745. #endif
  2746. setup_for_endstop_or_probe_move();
  2747. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2748. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2749. #endif
  2750. endstops.enable(true); // Enable endstops for next homing move
  2751. #if ENABLED(DELTA)
  2752. home_delta();
  2753. #else // NOT DELTA
  2754. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2755. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2756. set_destination_to_current();
  2757. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2758. if (home_all_axis || homeZ) {
  2759. HOMEAXIS(Z);
  2760. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2761. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2762. #endif
  2763. }
  2764. #else
  2765. if (home_all_axis || homeX || homeY) {
  2766. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2767. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2768. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2769. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2770. if (DEBUGGING(LEVELING))
  2771. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2772. #endif
  2773. do_blocking_move_to_z(destination[Z_AXIS]);
  2774. }
  2775. }
  2776. #endif
  2777. #if ENABLED(QUICK_HOME)
  2778. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2779. #endif
  2780. #if ENABLED(HOME_Y_BEFORE_X)
  2781. // Home Y
  2782. if (home_all_axis || homeY) {
  2783. HOMEAXIS(Y);
  2784. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2785. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2786. #endif
  2787. }
  2788. #endif
  2789. // Home X
  2790. if (home_all_axis || homeX) {
  2791. #if ENABLED(DUAL_X_CARRIAGE)
  2792. int tmp_extruder = active_extruder;
  2793. active_extruder = !active_extruder;
  2794. HOMEAXIS(X);
  2795. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2796. active_extruder = tmp_extruder;
  2797. HOMEAXIS(X);
  2798. // reset state used by the different modes
  2799. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2800. delayed_move_time = 0;
  2801. active_extruder_parked = true;
  2802. #else
  2803. HOMEAXIS(X);
  2804. #endif
  2805. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2806. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2807. #endif
  2808. }
  2809. #if DISABLED(HOME_Y_BEFORE_X)
  2810. // Home Y
  2811. if (home_all_axis || homeY) {
  2812. HOMEAXIS(Y);
  2813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2814. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2815. #endif
  2816. }
  2817. #endif
  2818. // Home Z last if homing towards the bed
  2819. #if Z_HOME_DIR < 0
  2820. if (home_all_axis || homeZ) {
  2821. #if ENABLED(Z_SAFE_HOMING)
  2822. home_z_safely();
  2823. #else
  2824. HOMEAXIS(Z);
  2825. #endif
  2826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2827. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2828. #endif
  2829. } // home_all_axis || homeZ
  2830. #endif // Z_HOME_DIR < 0
  2831. SYNC_PLAN_POSITION_KINEMATIC();
  2832. #endif // !DELTA (gcode_G28)
  2833. endstops.not_homing();
  2834. #if ENABLED(DELTA)
  2835. // move to a height where we can use the full xy-area
  2836. do_blocking_move_to_z(delta_clip_start_height);
  2837. #endif
  2838. // Enable mesh leveling again
  2839. #if ENABLED(MESH_BED_LEVELING)
  2840. if (mbl.has_mesh()) {
  2841. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2842. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2843. #endif
  2844. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2846. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2847. #endif
  2848. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2849. #if Z_HOME_DIR > 0
  2850. + Z_MAX_POS
  2851. #endif
  2852. ;
  2853. SYNC_PLAN_POSITION_KINEMATIC();
  2854. mbl.set_active(true);
  2855. #if ENABLED(MESH_G28_REST_ORIGIN)
  2856. current_position[Z_AXIS] = 0.0;
  2857. set_destination_to_current();
  2858. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2859. stepper.synchronize();
  2860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2861. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2862. #endif
  2863. #else
  2864. planner.unapply_leveling(current_position);
  2865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2866. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2867. #endif
  2868. #endif
  2869. }
  2870. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2871. current_position[Z_AXIS] = pre_home_z;
  2872. SYNC_PLAN_POSITION_KINEMATIC();
  2873. mbl.set_active(true);
  2874. planner.unapply_leveling(current_position);
  2875. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2876. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2877. #endif
  2878. }
  2879. }
  2880. #endif
  2881. clean_up_after_endstop_or_probe_move();
  2882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2883. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2884. #endif
  2885. // Restore the active tool after homing
  2886. #if HOTENDS > 1
  2887. tool_change(old_tool_index, 0, true);
  2888. #endif
  2889. report_current_position();
  2890. }
  2891. #if HAS_PROBING_PROCEDURE
  2892. void out_of_range_error(const char* p_edge) {
  2893. SERIAL_PROTOCOLPGM("?Probe ");
  2894. serialprintPGM(p_edge);
  2895. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2896. }
  2897. #endif
  2898. #if ENABLED(MESH_BED_LEVELING)
  2899. inline void _mbl_goto_xy(float x, float y) {
  2900. float old_feedrate_mm_s = feedrate_mm_s;
  2901. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2902. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2903. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2904. + Z_CLEARANCE_BETWEEN_PROBES
  2905. #elif Z_HOMING_HEIGHT > 0
  2906. + Z_HOMING_HEIGHT
  2907. #endif
  2908. ;
  2909. line_to_current_position();
  2910. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2911. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2912. line_to_current_position();
  2913. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2914. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2915. line_to_current_position();
  2916. #endif
  2917. feedrate_mm_s = old_feedrate_mm_s;
  2918. stepper.synchronize();
  2919. }
  2920. /**
  2921. * G29: Mesh-based Z probe, probes a grid and produces a
  2922. * mesh to compensate for variable bed height
  2923. *
  2924. * Parameters With MESH_BED_LEVELING:
  2925. *
  2926. * S0 Produce a mesh report
  2927. * S1 Start probing mesh points
  2928. * S2 Probe the next mesh point
  2929. * S3 Xn Yn Zn.nn Manually modify a single point
  2930. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2931. * S5 Reset and disable mesh
  2932. *
  2933. * The S0 report the points as below
  2934. *
  2935. * +----> X-axis 1-n
  2936. * |
  2937. * |
  2938. * v Y-axis 1-n
  2939. *
  2940. */
  2941. inline void gcode_G29() {
  2942. static int probe_point = -1;
  2943. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2944. if (state < 0 || state > 5) {
  2945. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2946. return;
  2947. }
  2948. int8_t px, py;
  2949. switch (state) {
  2950. case MeshReport:
  2951. if (mbl.has_mesh()) {
  2952. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2953. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2954. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2955. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2956. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2957. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2958. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2959. SERIAL_PROTOCOLPGM(" ");
  2960. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2961. }
  2962. SERIAL_EOL;
  2963. }
  2964. }
  2965. else
  2966. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2967. break;
  2968. case MeshStart:
  2969. mbl.reset();
  2970. probe_point = 0;
  2971. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2972. break;
  2973. case MeshNext:
  2974. if (probe_point < 0) {
  2975. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2976. return;
  2977. }
  2978. // For each G29 S2...
  2979. if (probe_point == 0) {
  2980. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2981. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2982. #if Z_HOME_DIR > 0
  2983. + Z_MAX_POS
  2984. #endif
  2985. ;
  2986. SYNC_PLAN_POSITION_KINEMATIC();
  2987. }
  2988. else {
  2989. // For G29 S2 after adjusting Z.
  2990. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2991. }
  2992. // If there's another point to sample, move there with optional lift.
  2993. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2994. mbl.zigzag(probe_point, px, py);
  2995. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2996. probe_point++;
  2997. }
  2998. else {
  2999. // One last "return to the bed" (as originally coded) at completion
  3000. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3001. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3002. + Z_CLEARANCE_BETWEEN_PROBES
  3003. #elif Z_HOMING_HEIGHT > 0
  3004. + Z_HOMING_HEIGHT
  3005. #endif
  3006. ;
  3007. line_to_current_position();
  3008. stepper.synchronize();
  3009. // After recording the last point, activate the mbl and home
  3010. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3011. probe_point = -1;
  3012. mbl.set_has_mesh(true);
  3013. enqueue_and_echo_commands_P(PSTR("G28"));
  3014. }
  3015. break;
  3016. case MeshSet:
  3017. if (code_seen('X')) {
  3018. px = code_value_int() - 1;
  3019. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3020. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3021. return;
  3022. }
  3023. }
  3024. else {
  3025. SERIAL_PROTOCOLLNPGM("X not entered.");
  3026. return;
  3027. }
  3028. if (code_seen('Y')) {
  3029. py = code_value_int() - 1;
  3030. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3031. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3032. return;
  3033. }
  3034. }
  3035. else {
  3036. SERIAL_PROTOCOLLNPGM("Y not entered.");
  3037. return;
  3038. }
  3039. if (code_seen('Z')) {
  3040. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3041. }
  3042. else {
  3043. SERIAL_PROTOCOLLNPGM("Z not entered.");
  3044. return;
  3045. }
  3046. break;
  3047. case MeshSetZOffset:
  3048. if (code_seen('Z')) {
  3049. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3050. }
  3051. else {
  3052. SERIAL_PROTOCOLLNPGM("Z not entered.");
  3053. return;
  3054. }
  3055. break;
  3056. case MeshReset:
  3057. if (mbl.active()) {
  3058. current_position[Z_AXIS] +=
  3059. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  3060. mbl.reset();
  3061. SYNC_PLAN_POSITION_KINEMATIC();
  3062. }
  3063. else
  3064. mbl.reset();
  3065. } // switch(state)
  3066. report_current_position();
  3067. }
  3068. #elif HAS_ABL
  3069. /**
  3070. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3071. * Will fail if the printer has not been homed with G28.
  3072. *
  3073. * Enhanced G29 Auto Bed Leveling Probe Routine
  3074. *
  3075. * Parameters With ABL_GRID:
  3076. *
  3077. * P Set the size of the grid that will be probed (P x P points).
  3078. * Not supported by non-linear delta printer bed leveling.
  3079. * Example: "G29 P4"
  3080. *
  3081. * S Set the XY travel speed between probe points (in units/min)
  3082. *
  3083. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3084. * or clean the rotation Matrix. Useful to check the topology
  3085. * after a first run of G29.
  3086. *
  3087. * V Set the verbose level (0-4). Example: "G29 V3"
  3088. *
  3089. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3090. * This is useful for manual bed leveling and finding flaws in the bed (to
  3091. * assist with part placement).
  3092. * Not supported by non-linear delta printer bed leveling.
  3093. *
  3094. * F Set the Front limit of the probing grid
  3095. * B Set the Back limit of the probing grid
  3096. * L Set the Left limit of the probing grid
  3097. * R Set the Right limit of the probing grid
  3098. *
  3099. * Global Parameters:
  3100. *
  3101. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3102. * Include "E" to engage/disengage the Z probe for each sample.
  3103. * There's no extra effect if you have a fixed Z probe.
  3104. * Usage: "G29 E" or "G29 e"
  3105. *
  3106. */
  3107. inline void gcode_G29() {
  3108. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3109. bool query = code_seen('Q');
  3110. uint8_t old_debug_flags = marlin_debug_flags;
  3111. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3112. if (DEBUGGING(LEVELING)) {
  3113. DEBUG_POS(">>> gcode_G29", current_position);
  3114. log_machine_info();
  3115. }
  3116. marlin_debug_flags = old_debug_flags;
  3117. if (query) return;
  3118. #endif
  3119. // Don't allow auto-leveling without homing first
  3120. if (axis_unhomed_error(true, true, true)) return;
  3121. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3122. if (verbose_level < 0 || verbose_level > 4) {
  3123. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3124. return;
  3125. }
  3126. bool dryrun = code_seen('D'),
  3127. stow_probe_after_each = code_seen('E');
  3128. #if ABL_GRID
  3129. if (verbose_level > 0) {
  3130. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3131. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3132. }
  3133. #if ABL_PLANAR
  3134. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3135. // X and Y specify points in each direction, overriding the default
  3136. // These values may be saved with the completed mesh
  3137. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X,
  3138. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y;
  3139. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3140. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3141. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3142. return;
  3143. }
  3144. #else
  3145. const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y;
  3146. #endif
  3147. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3148. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3149. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3150. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3151. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3152. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3153. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3154. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3155. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3156. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3157. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3158. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3159. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3160. if (left_out || right_out || front_out || back_out) {
  3161. if (left_out) {
  3162. out_of_range_error(PSTR("(L)eft"));
  3163. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3164. }
  3165. if (right_out) {
  3166. out_of_range_error(PSTR("(R)ight"));
  3167. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3168. }
  3169. if (front_out) {
  3170. out_of_range_error(PSTR("(F)ront"));
  3171. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3172. }
  3173. if (back_out) {
  3174. out_of_range_error(PSTR("(B)ack"));
  3175. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3176. }
  3177. return;
  3178. }
  3179. #endif // ABL_GRID
  3180. stepper.synchronize();
  3181. // Disable auto bed leveling during G29
  3182. bool abl_should_enable = planner.abl_enabled;
  3183. planner.abl_enabled = false;
  3184. if (!dryrun) {
  3185. // Re-orient the current position without leveling
  3186. // based on where the steppers are positioned.
  3187. set_current_from_steppers_for_axis(ALL_AXES);
  3188. // Sync the planner to where the steppers stopped
  3189. planner.sync_from_steppers();
  3190. }
  3191. setup_for_endstop_or_probe_move();
  3192. // Deploy the probe. Probe will raise if needed.
  3193. if (DEPLOY_PROBE()) {
  3194. planner.abl_enabled = abl_should_enable;
  3195. return;
  3196. }
  3197. float xProbe = 0, yProbe = 0, measured_z = 0;
  3198. #if ABL_GRID
  3199. // probe at the points of a lattice grid
  3200. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3201. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3202. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3203. float zoffset = zprobe_zoffset;
  3204. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3205. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3206. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3207. || left_probe_bed_position != bilinear_start[X_AXIS]
  3208. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3209. ) {
  3210. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3211. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3212. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3213. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3214. // Can't re-enable (on error) until the new grid is written
  3215. abl_should_enable = false;
  3216. }
  3217. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3218. /**
  3219. * solve the plane equation ax + by + d = z
  3220. * A is the matrix with rows [x y 1] for all the probed points
  3221. * B is the vector of the Z positions
  3222. * the normal vector to the plane is formed by the coefficients of the
  3223. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3224. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3225. */
  3226. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3227. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3228. probePointCounter = -1;
  3229. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3230. eqnBVector[abl2], // "B" vector of Z points
  3231. mean = 0.0;
  3232. #endif // AUTO_BED_LEVELING_LINEAR
  3233. #if ENABLED(PROBE_Y_FIRST)
  3234. #define PR_OUTER_VAR xCount
  3235. #define PR_OUTER_END abl_grid_points_x
  3236. #define PR_INNER_VAR yCount
  3237. #define PR_INNER_END abl_grid_points_y
  3238. #else
  3239. #define PR_OUTER_VAR yCount
  3240. #define PR_OUTER_END abl_grid_points_y
  3241. #define PR_INNER_VAR xCount
  3242. #define PR_INNER_END abl_grid_points_x
  3243. #endif
  3244. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3245. // Outer loop is Y with PROBE_Y_FIRST disabled
  3246. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3247. int8_t inStart, inStop, inInc;
  3248. if (zig) { // away from origin
  3249. inStart = 0;
  3250. inStop = PR_INNER_END;
  3251. inInc = 1;
  3252. }
  3253. else { // towards origin
  3254. inStart = PR_INNER_END - 1;
  3255. inStop = -1;
  3256. inInc = -1;
  3257. }
  3258. zig = !zig; // zag
  3259. // Inner loop is Y with PROBE_Y_FIRST enabled
  3260. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3261. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3262. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3263. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3264. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3265. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3266. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3267. #endif
  3268. #if IS_KINEMATIC
  3269. // Avoid probing outside the round or hexagonal area
  3270. float pos[XYZ] = { xProbe, yProbe, 0 };
  3271. if (!position_is_reachable(pos, true)) continue;
  3272. #endif
  3273. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3274. if (measured_z == NAN) {
  3275. planner.abl_enabled = abl_should_enable;
  3276. return;
  3277. }
  3278. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3279. mean += measured_z;
  3280. eqnBVector[probePointCounter] = measured_z;
  3281. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3282. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3283. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3284. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3285. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3286. #endif
  3287. idle();
  3288. } //xProbe
  3289. } //yProbe
  3290. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3292. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3293. #endif
  3294. // Probe at 3 arbitrary points
  3295. vector_3 points[3] = {
  3296. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3297. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3298. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3299. };
  3300. for (uint8_t i = 0; i < 3; ++i) {
  3301. // Retain the last probe position
  3302. xProbe = LOGICAL_X_POSITION(points[i].x);
  3303. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3304. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3305. }
  3306. if (measured_z == NAN) {
  3307. planner.abl_enabled = abl_should_enable;
  3308. return;
  3309. }
  3310. if (!dryrun) {
  3311. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3312. if (planeNormal.z < 0) {
  3313. planeNormal.x *= -1;
  3314. planeNormal.y *= -1;
  3315. planeNormal.z *= -1;
  3316. }
  3317. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3318. // Can't re-enable (on error) until the new grid is written
  3319. abl_should_enable = false;
  3320. }
  3321. #endif // AUTO_BED_LEVELING_3POINT
  3322. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3323. if (STOW_PROBE()) {
  3324. planner.abl_enabled = abl_should_enable;
  3325. return;
  3326. }
  3327. //
  3328. // Unless this is a dry run, auto bed leveling will
  3329. // definitely be enabled after this point
  3330. //
  3331. // Restore state after probing
  3332. clean_up_after_endstop_or_probe_move();
  3333. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3334. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3335. #endif
  3336. // Calculate leveling, print reports, correct the position
  3337. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3338. if (!dryrun) extrapolate_unprobed_bed_level();
  3339. print_bed_level();
  3340. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3341. // For LINEAR leveling calculate matrix, print reports, correct the position
  3342. // solve lsq problem
  3343. float plane_equation_coefficients[3];
  3344. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3345. mean /= abl2;
  3346. if (verbose_level) {
  3347. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3348. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3349. SERIAL_PROTOCOLPGM(" b: ");
  3350. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3351. SERIAL_PROTOCOLPGM(" d: ");
  3352. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3353. SERIAL_EOL;
  3354. if (verbose_level > 2) {
  3355. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3356. SERIAL_PROTOCOL_F(mean, 8);
  3357. SERIAL_EOL;
  3358. }
  3359. }
  3360. // Create the matrix but don't correct the position yet
  3361. if (!dryrun) {
  3362. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3363. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3364. );
  3365. }
  3366. // Show the Topography map if enabled
  3367. if (do_topography_map) {
  3368. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3369. " +--- BACK --+\n"
  3370. " | |\n"
  3371. " L | (+) | R\n"
  3372. " E | | I\n"
  3373. " F | (-) N (+) | G\n"
  3374. " T | | H\n"
  3375. " | (-) | T\n"
  3376. " | |\n"
  3377. " O-- FRONT --+\n"
  3378. " (0,0)");
  3379. float min_diff = 999;
  3380. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3381. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3382. int ind = indexIntoAB[xx][yy];
  3383. float diff = eqnBVector[ind] - mean,
  3384. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3385. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3386. z_tmp = 0;
  3387. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3388. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3389. if (diff >= 0.0)
  3390. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3391. else
  3392. SERIAL_PROTOCOLCHAR(' ');
  3393. SERIAL_PROTOCOL_F(diff, 5);
  3394. } // xx
  3395. SERIAL_EOL;
  3396. } // yy
  3397. SERIAL_EOL;
  3398. if (verbose_level > 3) {
  3399. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3400. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3401. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3402. int ind = indexIntoAB[xx][yy];
  3403. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3404. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3405. z_tmp = 0;
  3406. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3407. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3408. if (diff >= 0.0)
  3409. SERIAL_PROTOCOLPGM(" +");
  3410. // Include + for column alignment
  3411. else
  3412. SERIAL_PROTOCOLCHAR(' ');
  3413. SERIAL_PROTOCOL_F(diff, 5);
  3414. } // xx
  3415. SERIAL_EOL;
  3416. } // yy
  3417. SERIAL_EOL;
  3418. }
  3419. } //do_topography_map
  3420. #endif // AUTO_BED_LEVELING_LINEAR
  3421. #if ABL_PLANAR
  3422. // For LINEAR and 3POINT leveling correct the current position
  3423. if (verbose_level > 0)
  3424. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3425. if (!dryrun) {
  3426. //
  3427. // Correct the current XYZ position based on the tilted plane.
  3428. //
  3429. // 1. Get the distance from the current position to the reference point.
  3430. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3431. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3432. z_real = current_position[Z_AXIS],
  3433. z_zero = 0;
  3434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3435. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3436. #endif
  3437. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3438. // 2. Apply the inverse matrix to the distance
  3439. // from the reference point to X, Y, and zero.
  3440. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3441. // 3. Get the matrix-based corrected Z.
  3442. // (Even if not used, get it for comparison.)
  3443. float new_z = z_real + z_zero;
  3444. // 4. Use the last measured distance to the bed, if possible
  3445. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3446. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3447. ) {
  3448. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3450. if (DEBUGGING(LEVELING)) {
  3451. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3452. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3453. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3454. }
  3455. #endif
  3456. new_z = simple_z;
  3457. }
  3458. // 5. The rotated XY and corrected Z are now current_position
  3459. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3460. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3461. current_position[Z_AXIS] = new_z;
  3462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3463. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3464. #endif
  3465. }
  3466. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3467. if (!dryrun) {
  3468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3469. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3470. #endif
  3471. // Unapply the offset because it is going to be immediately applied
  3472. // and cause compensation movement in Z
  3473. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3475. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3476. #endif
  3477. }
  3478. #endif // ABL_PLANAR
  3479. #ifdef Z_PROBE_END_SCRIPT
  3480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3481. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3482. #endif
  3483. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3484. stepper.synchronize();
  3485. #endif
  3486. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3487. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3488. #endif
  3489. report_current_position();
  3490. KEEPALIVE_STATE(IN_HANDLER);
  3491. // Auto Bed Leveling is complete! Enable if possible.
  3492. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3493. if (planner.abl_enabled)
  3494. SYNC_PLAN_POSITION_KINEMATIC();
  3495. }
  3496. #endif // HAS_ABL
  3497. #if HAS_BED_PROBE
  3498. /**
  3499. * G30: Do a single Z probe at the current XY
  3500. */
  3501. inline void gcode_G30() {
  3502. // Disable leveling so the planner won't mess with us
  3503. #if PLANNER_LEVELING
  3504. set_bed_leveling_enabled(false);
  3505. #endif
  3506. setup_for_endstop_or_probe_move();
  3507. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3508. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3509. true, 1);
  3510. SERIAL_PROTOCOLPGM("Bed X: ");
  3511. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3512. SERIAL_PROTOCOLPGM(" Y: ");
  3513. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3514. SERIAL_PROTOCOLPGM(" Z: ");
  3515. SERIAL_PROTOCOL(measured_z + 0.0001);
  3516. SERIAL_EOL;
  3517. clean_up_after_endstop_or_probe_move();
  3518. report_current_position();
  3519. }
  3520. #if ENABLED(Z_PROBE_SLED)
  3521. /**
  3522. * G31: Deploy the Z probe
  3523. */
  3524. inline void gcode_G31() { DEPLOY_PROBE(); }
  3525. /**
  3526. * G32: Stow the Z probe
  3527. */
  3528. inline void gcode_G32() { STOW_PROBE(); }
  3529. #endif // Z_PROBE_SLED
  3530. #endif // HAS_BED_PROBE
  3531. #if ENABLED(G38_PROBE_TARGET)
  3532. static bool G38_run_probe() {
  3533. bool G38_pass_fail = false;
  3534. // Get direction of move and retract
  3535. float retract_mm[XYZ];
  3536. LOOP_XYZ(i) {
  3537. float dist = destination[i] - current_position[i];
  3538. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm(i) * (dist > 0 ? -1 : 1);
  3539. }
  3540. stepper.synchronize(); // wait until the machine is idle
  3541. // Move until destination reached or target hit
  3542. endstops.enable(true);
  3543. G38_move = true;
  3544. G38_endstop_hit = false;
  3545. prepare_move_to_destination();
  3546. stepper.synchronize();
  3547. G38_move = false;
  3548. endstops.hit_on_purpose();
  3549. set_current_from_steppers_for_axis(ALL_AXES);
  3550. SYNC_PLAN_POSITION_KINEMATIC();
  3551. // Only do remaining moves if target was hit
  3552. if (G38_endstop_hit) {
  3553. G38_pass_fail = true;
  3554. // Move away by the retract distance
  3555. set_destination_to_current();
  3556. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3557. endstops.enable(false);
  3558. prepare_move_to_destination();
  3559. stepper.synchronize();
  3560. feedrate_mm_s /= 4;
  3561. // Bump the target more slowly
  3562. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3563. endstops.enable(true);
  3564. G38_move = true;
  3565. prepare_move_to_destination();
  3566. stepper.synchronize();
  3567. G38_move = false;
  3568. set_current_from_steppers_for_axis(ALL_AXES);
  3569. SYNC_PLAN_POSITION_KINEMATIC();
  3570. }
  3571. endstops.hit_on_purpose();
  3572. endstops.not_homing();
  3573. return G38_pass_fail;
  3574. }
  3575. /**
  3576. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3577. * G38.3 - probe toward workpiece, stop on contact
  3578. *
  3579. * Like G28 except uses Z min endstop for all axes
  3580. */
  3581. inline void gcode_G38(bool is_38_2) {
  3582. // Get X Y Z E F
  3583. gcode_get_destination();
  3584. setup_for_endstop_or_probe_move();
  3585. // If any axis has enough movement, do the move
  3586. LOOP_XYZ(i)
  3587. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3588. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3589. // If G38.2 fails throw an error
  3590. if (!G38_run_probe() && is_38_2) {
  3591. SERIAL_ERROR_START;
  3592. SERIAL_ERRORLNPGM("Failed to reach target");
  3593. }
  3594. break;
  3595. }
  3596. clean_up_after_endstop_or_probe_move();
  3597. }
  3598. #endif // G38_PROBE_TARGET
  3599. /**
  3600. * G92: Set current position to given X Y Z E
  3601. */
  3602. inline void gcode_G92() {
  3603. bool didXYZ = false,
  3604. didE = code_seen('E');
  3605. if (!didE) stepper.synchronize();
  3606. LOOP_XYZE(i) {
  3607. if (code_seen(axis_codes[i])) {
  3608. #if IS_SCARA
  3609. current_position[i] = code_value_axis_units(i);
  3610. if (i != E_AXIS) didXYZ = true;
  3611. #else
  3612. float p = current_position[i],
  3613. v = code_value_axis_units(i);
  3614. current_position[i] = v;
  3615. if (i != E_AXIS) {
  3616. didXYZ = true;
  3617. position_shift[i] += v - p; // Offset the coordinate space
  3618. update_software_endstops((AxisEnum)i);
  3619. }
  3620. #endif
  3621. }
  3622. }
  3623. if (didXYZ)
  3624. SYNC_PLAN_POSITION_KINEMATIC();
  3625. else if (didE)
  3626. sync_plan_position_e();
  3627. report_current_position();
  3628. }
  3629. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3630. /**
  3631. * M0: Unconditional stop - Wait for user button press on LCD
  3632. * M1: Conditional stop - Wait for user button press on LCD
  3633. */
  3634. inline void gcode_M0_M1() {
  3635. char* args = current_command_args;
  3636. millis_t codenum = 0;
  3637. bool hasP = false, hasS = false;
  3638. if (code_seen('P')) {
  3639. codenum = code_value_millis(); // milliseconds to wait
  3640. hasP = codenum > 0;
  3641. }
  3642. if (code_seen('S')) {
  3643. codenum = code_value_millis_from_seconds(); // seconds to wait
  3644. hasS = codenum > 0;
  3645. }
  3646. #if ENABLED(ULTIPANEL)
  3647. if (!hasP && !hasS && *args != '\0')
  3648. lcd_setstatus(args, true);
  3649. else {
  3650. LCD_MESSAGEPGM(MSG_USERWAIT);
  3651. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3652. dontExpireStatus();
  3653. #endif
  3654. }
  3655. lcd_ignore_click();
  3656. #else
  3657. if (!hasP && !hasS && *args != '\0') {
  3658. SERIAL_ECHO_START;
  3659. SERIAL_ECHOLN(args);
  3660. }
  3661. #endif
  3662. stepper.synchronize();
  3663. refresh_cmd_timeout();
  3664. #if ENABLED(ULTIPANEL)
  3665. if (codenum > 0) {
  3666. codenum += previous_cmd_ms; // wait until this time for a click
  3667. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3668. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3669. lcd_ignore_click(false);
  3670. }
  3671. else if (lcd_detected()) {
  3672. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3673. while (!lcd_clicked()) idle();
  3674. }
  3675. else return;
  3676. if (IS_SD_PRINTING)
  3677. LCD_MESSAGEPGM(MSG_RESUMING);
  3678. else
  3679. LCD_MESSAGEPGM(WELCOME_MSG);
  3680. #else
  3681. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3682. wait_for_user = true;
  3683. if (codenum > 0) {
  3684. codenum += previous_cmd_ms; // wait until this time for an M108
  3685. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3686. }
  3687. else while (wait_for_user) idle();
  3688. wait_for_user = false;
  3689. #endif
  3690. KEEPALIVE_STATE(IN_HANDLER);
  3691. }
  3692. #endif // ULTIPANEL || EMERGENCY_PARSER
  3693. /**
  3694. * M17: Enable power on all stepper motors
  3695. */
  3696. inline void gcode_M17() {
  3697. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3698. enable_all_steppers();
  3699. }
  3700. #if ENABLED(SDSUPPORT)
  3701. /**
  3702. * M20: List SD card to serial output
  3703. */
  3704. inline void gcode_M20() {
  3705. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3706. card.ls();
  3707. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3708. }
  3709. /**
  3710. * M21: Init SD Card
  3711. */
  3712. inline void gcode_M21() { card.initsd(); }
  3713. /**
  3714. * M22: Release SD Card
  3715. */
  3716. inline void gcode_M22() { card.release(); }
  3717. /**
  3718. * M23: Open a file
  3719. */
  3720. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3721. /**
  3722. * M24: Start SD Print
  3723. */
  3724. inline void gcode_M24() {
  3725. card.startFileprint();
  3726. print_job_timer.start();
  3727. }
  3728. /**
  3729. * M25: Pause SD Print
  3730. */
  3731. inline void gcode_M25() { card.pauseSDPrint(); }
  3732. /**
  3733. * M26: Set SD Card file index
  3734. */
  3735. inline void gcode_M26() {
  3736. if (card.cardOK && code_seen('S'))
  3737. card.setIndex(code_value_long());
  3738. }
  3739. /**
  3740. * M27: Get SD Card status
  3741. */
  3742. inline void gcode_M27() { card.getStatus(); }
  3743. /**
  3744. * M28: Start SD Write
  3745. */
  3746. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3747. /**
  3748. * M29: Stop SD Write
  3749. * Processed in write to file routine above
  3750. */
  3751. inline void gcode_M29() {
  3752. // card.saving = false;
  3753. }
  3754. /**
  3755. * M30 <filename>: Delete SD Card file
  3756. */
  3757. inline void gcode_M30() {
  3758. if (card.cardOK) {
  3759. card.closefile();
  3760. card.removeFile(current_command_args);
  3761. }
  3762. }
  3763. #endif // SDSUPPORT
  3764. /**
  3765. * M31: Get the time since the start of SD Print (or last M109)
  3766. */
  3767. inline void gcode_M31() {
  3768. char buffer[21];
  3769. duration_t elapsed = print_job_timer.duration();
  3770. elapsed.toString(buffer);
  3771. lcd_setstatus(buffer);
  3772. SERIAL_ECHO_START;
  3773. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3774. thermalManager.autotempShutdown();
  3775. }
  3776. #if ENABLED(SDSUPPORT)
  3777. /**
  3778. * M32: Select file and start SD Print
  3779. */
  3780. inline void gcode_M32() {
  3781. if (card.sdprinting)
  3782. stepper.synchronize();
  3783. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3784. if (!namestartpos)
  3785. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3786. else
  3787. namestartpos++; //to skip the '!'
  3788. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3789. if (card.cardOK) {
  3790. card.openFile(namestartpos, true, call_procedure);
  3791. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3792. card.setIndex(code_value_long());
  3793. card.startFileprint();
  3794. // Procedure calls count as normal print time.
  3795. if (!call_procedure) print_job_timer.start();
  3796. }
  3797. }
  3798. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3799. /**
  3800. * M33: Get the long full path of a file or folder
  3801. *
  3802. * Parameters:
  3803. * <dospath> Case-insensitive DOS-style path to a file or folder
  3804. *
  3805. * Example:
  3806. * M33 miscel~1/armchair/armcha~1.gco
  3807. *
  3808. * Output:
  3809. * /Miscellaneous/Armchair/Armchair.gcode
  3810. */
  3811. inline void gcode_M33() {
  3812. card.printLongPath(current_command_args);
  3813. }
  3814. #endif
  3815. /**
  3816. * M928: Start SD Write
  3817. */
  3818. inline void gcode_M928() {
  3819. card.openLogFile(current_command_args);
  3820. }
  3821. #endif // SDSUPPORT
  3822. /**
  3823. * M42: Change pin status via GCode
  3824. *
  3825. * P<pin> Pin number (LED if omitted)
  3826. * S<byte> Pin status from 0 - 255
  3827. */
  3828. inline void gcode_M42() {
  3829. if (!code_seen('S')) return;
  3830. int pin_status = code_value_int();
  3831. if (pin_status < 0 || pin_status > 255) return;
  3832. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3833. if (pin_number < 0) return;
  3834. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3835. if (pin_number == sensitive_pins[i]) {
  3836. SERIAL_ERROR_START;
  3837. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3838. return;
  3839. }
  3840. pinMode(pin_number, OUTPUT);
  3841. digitalWrite(pin_number, pin_status);
  3842. analogWrite(pin_number, pin_status);
  3843. #if FAN_COUNT > 0
  3844. switch (pin_number) {
  3845. #if HAS_FAN0
  3846. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3847. #endif
  3848. #if HAS_FAN1
  3849. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3850. #endif
  3851. #if HAS_FAN2
  3852. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3853. #endif
  3854. }
  3855. #endif
  3856. }
  3857. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3858. /**
  3859. * M48: Z probe repeatability measurement function.
  3860. *
  3861. * Usage:
  3862. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3863. * P = Number of sampled points (4-50, default 10)
  3864. * X = Sample X position
  3865. * Y = Sample Y position
  3866. * V = Verbose level (0-4, default=1)
  3867. * E = Engage Z probe for each reading
  3868. * L = Number of legs of movement before probe
  3869. * S = Schizoid (Or Star if you prefer)
  3870. *
  3871. * This function assumes the bed has been homed. Specifically, that a G28 command
  3872. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3873. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3874. * regenerated.
  3875. */
  3876. inline void gcode_M48() {
  3877. if (axis_unhomed_error(true, true, true)) return;
  3878. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3879. if (verbose_level < 0 || verbose_level > 4) {
  3880. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3881. return;
  3882. }
  3883. if (verbose_level > 0)
  3884. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3885. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3886. if (n_samples < 4 || n_samples > 50) {
  3887. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3888. return;
  3889. }
  3890. float X_current = current_position[X_AXIS],
  3891. Y_current = current_position[Y_AXIS];
  3892. bool stow_probe_after_each = code_seen('E');
  3893. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3894. #if DISABLED(DELTA)
  3895. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3896. out_of_range_error(PSTR("X"));
  3897. return;
  3898. }
  3899. #endif
  3900. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3901. #if DISABLED(DELTA)
  3902. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3903. out_of_range_error(PSTR("Y"));
  3904. return;
  3905. }
  3906. #else
  3907. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  3908. if (!position_is_reachable(pos, true)) {
  3909. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3910. return;
  3911. }
  3912. #endif
  3913. bool seen_L = code_seen('L');
  3914. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3915. if (n_legs > 15) {
  3916. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3917. return;
  3918. }
  3919. if (n_legs == 1) n_legs = 2;
  3920. bool schizoid_flag = code_seen('S');
  3921. if (schizoid_flag && !seen_L) n_legs = 7;
  3922. /**
  3923. * Now get everything to the specified probe point So we can safely do a
  3924. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3925. * we don't want to use that as a starting point for each probe.
  3926. */
  3927. if (verbose_level > 2)
  3928. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3929. // Disable bed level correction in M48 because we want the raw data when we probe
  3930. #if HAS_ABL
  3931. reset_bed_level();
  3932. #endif
  3933. setup_for_endstop_or_probe_move();
  3934. // Move to the first point, deploy, and probe
  3935. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3936. randomSeed(millis());
  3937. double mean = 0, sigma = 0, sample_set[n_samples];
  3938. for (uint8_t n = 0; n < n_samples; n++) {
  3939. if (n_legs) {
  3940. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3941. float angle = random(0.0, 360.0),
  3942. radius = random(
  3943. #if ENABLED(DELTA)
  3944. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3945. #else
  3946. 5, X_MAX_LENGTH / 8
  3947. #endif
  3948. );
  3949. if (verbose_level > 3) {
  3950. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3951. SERIAL_ECHOPAIR(" angle: ", angle);
  3952. SERIAL_ECHOPGM(" Direction: ");
  3953. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3954. SERIAL_ECHOLNPGM("Clockwise");
  3955. }
  3956. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3957. double delta_angle;
  3958. if (schizoid_flag)
  3959. // The points of a 5 point star are 72 degrees apart. We need to
  3960. // skip a point and go to the next one on the star.
  3961. delta_angle = dir * 2.0 * 72.0;
  3962. else
  3963. // If we do this line, we are just trying to move further
  3964. // around the circle.
  3965. delta_angle = dir * (float) random(25, 45);
  3966. angle += delta_angle;
  3967. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3968. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3969. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3970. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3971. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3972. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3973. #if DISABLED(DELTA)
  3974. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3975. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3976. #else
  3977. // If we have gone out too far, we can do a simple fix and scale the numbers
  3978. // back in closer to the origin.
  3979. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3980. X_current /= 1.25;
  3981. Y_current /= 1.25;
  3982. if (verbose_level > 3) {
  3983. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3984. SERIAL_ECHOLNPAIR(", ", Y_current);
  3985. }
  3986. }
  3987. #endif
  3988. if (verbose_level > 3) {
  3989. SERIAL_PROTOCOLPGM("Going to:");
  3990. SERIAL_ECHOPAIR(" X", X_current);
  3991. SERIAL_ECHOPAIR(" Y", Y_current);
  3992. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3993. }
  3994. do_blocking_move_to_xy(X_current, Y_current);
  3995. } // n_legs loop
  3996. } // n_legs
  3997. // Probe a single point
  3998. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3999. /**
  4000. * Get the current mean for the data points we have so far
  4001. */
  4002. double sum = 0.0;
  4003. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4004. mean = sum / (n + 1);
  4005. /**
  4006. * Now, use that mean to calculate the standard deviation for the
  4007. * data points we have so far
  4008. */
  4009. sum = 0.0;
  4010. for (uint8_t j = 0; j <= n; j++)
  4011. sum += sq(sample_set[j] - mean);
  4012. sigma = sqrt(sum / (n + 1));
  4013. if (verbose_level > 0) {
  4014. if (verbose_level > 1) {
  4015. SERIAL_PROTOCOL(n + 1);
  4016. SERIAL_PROTOCOLPGM(" of ");
  4017. SERIAL_PROTOCOL((int)n_samples);
  4018. SERIAL_PROTOCOLPGM(" z: ");
  4019. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4020. if (verbose_level > 2) {
  4021. SERIAL_PROTOCOLPGM(" mean: ");
  4022. SERIAL_PROTOCOL_F(mean, 6);
  4023. SERIAL_PROTOCOLPGM(" sigma: ");
  4024. SERIAL_PROTOCOL_F(sigma, 6);
  4025. }
  4026. }
  4027. SERIAL_EOL;
  4028. }
  4029. } // End of probe loop
  4030. if (STOW_PROBE()) return;
  4031. if (verbose_level > 0) {
  4032. SERIAL_PROTOCOLPGM("Mean: ");
  4033. SERIAL_PROTOCOL_F(mean, 6);
  4034. SERIAL_EOL;
  4035. }
  4036. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4037. SERIAL_PROTOCOL_F(sigma, 6);
  4038. SERIAL_EOL; SERIAL_EOL;
  4039. clean_up_after_endstop_or_probe_move();
  4040. report_current_position();
  4041. }
  4042. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4043. /**
  4044. * M75: Start print timer
  4045. */
  4046. inline void gcode_M75() { print_job_timer.start(); }
  4047. /**
  4048. * M76: Pause print timer
  4049. */
  4050. inline void gcode_M76() { print_job_timer.pause(); }
  4051. /**
  4052. * M77: Stop print timer
  4053. */
  4054. inline void gcode_M77() { print_job_timer.stop(); }
  4055. #if ENABLED(PRINTCOUNTER)
  4056. /**
  4057. * M78: Show print statistics
  4058. */
  4059. inline void gcode_M78() {
  4060. // "M78 S78" will reset the statistics
  4061. if (code_seen('S') && code_value_int() == 78)
  4062. print_job_timer.initStats();
  4063. else
  4064. print_job_timer.showStats();
  4065. }
  4066. #endif
  4067. /**
  4068. * M104: Set hot end temperature
  4069. */
  4070. inline void gcode_M104() {
  4071. if (get_target_extruder_from_command(104)) return;
  4072. if (DEBUGGING(DRYRUN)) return;
  4073. #if ENABLED(SINGLENOZZLE)
  4074. if (target_extruder != active_extruder) return;
  4075. #endif
  4076. if (code_seen('S')) {
  4077. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4078. #if ENABLED(DUAL_X_CARRIAGE)
  4079. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4080. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4081. #endif
  4082. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4083. /**
  4084. * Stop the timer at the end of print, starting is managed by
  4085. * 'heat and wait' M109.
  4086. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4087. * stand by mode, for instance in a dual extruder setup, without affecting
  4088. * the running print timer.
  4089. */
  4090. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4091. print_job_timer.stop();
  4092. LCD_MESSAGEPGM(WELCOME_MSG);
  4093. }
  4094. #endif
  4095. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4096. }
  4097. }
  4098. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4099. void print_heaterstates() {
  4100. #if HAS_TEMP_HOTEND
  4101. SERIAL_PROTOCOLPGM(" T:");
  4102. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4103. SERIAL_PROTOCOLPGM(" /");
  4104. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4105. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4106. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4107. SERIAL_CHAR(')');
  4108. #endif
  4109. #endif
  4110. #if HAS_TEMP_BED
  4111. SERIAL_PROTOCOLPGM(" B:");
  4112. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4113. SERIAL_PROTOCOLPGM(" /");
  4114. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4115. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4116. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4117. SERIAL_CHAR(')');
  4118. #endif
  4119. #endif
  4120. #if HOTENDS > 1
  4121. HOTEND_LOOP() {
  4122. SERIAL_PROTOCOLPAIR(" T", e);
  4123. SERIAL_PROTOCOLCHAR(':');
  4124. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4125. SERIAL_PROTOCOLPGM(" /");
  4126. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4127. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4128. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4129. SERIAL_CHAR(')');
  4130. #endif
  4131. }
  4132. #endif
  4133. SERIAL_PROTOCOLPGM(" @:");
  4134. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4135. #if HAS_TEMP_BED
  4136. SERIAL_PROTOCOLPGM(" B@:");
  4137. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4138. #endif
  4139. #if HOTENDS > 1
  4140. HOTEND_LOOP() {
  4141. SERIAL_PROTOCOLPAIR(" @", e);
  4142. SERIAL_PROTOCOLCHAR(':');
  4143. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4144. }
  4145. #endif
  4146. }
  4147. #endif
  4148. /**
  4149. * M105: Read hot end and bed temperature
  4150. */
  4151. inline void gcode_M105() {
  4152. if (get_target_extruder_from_command(105)) return;
  4153. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4154. SERIAL_PROTOCOLPGM(MSG_OK);
  4155. print_heaterstates();
  4156. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4157. SERIAL_ERROR_START;
  4158. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4159. #endif
  4160. SERIAL_EOL;
  4161. }
  4162. #if FAN_COUNT > 0
  4163. /**
  4164. * M106: Set Fan Speed
  4165. *
  4166. * S<int> Speed between 0-255
  4167. * P<index> Fan index, if more than one fan
  4168. */
  4169. inline void gcode_M106() {
  4170. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4171. p = code_seen('P') ? code_value_ushort() : 0;
  4172. NOMORE(s, 255);
  4173. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4174. }
  4175. /**
  4176. * M107: Fan Off
  4177. */
  4178. inline void gcode_M107() {
  4179. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4180. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4181. }
  4182. #endif // FAN_COUNT > 0
  4183. #if DISABLED(EMERGENCY_PARSER)
  4184. /**
  4185. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4186. */
  4187. inline void gcode_M108() { wait_for_heatup = false; }
  4188. /**
  4189. * M112: Emergency Stop
  4190. */
  4191. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4192. /**
  4193. * M410: Quickstop - Abort all planned moves
  4194. *
  4195. * This will stop the carriages mid-move, so most likely they
  4196. * will be out of sync with the stepper position after this.
  4197. */
  4198. inline void gcode_M410() { quickstop_stepper(); }
  4199. #endif
  4200. #ifndef MIN_COOLING_SLOPE_DEG
  4201. #define MIN_COOLING_SLOPE_DEG 1.50
  4202. #endif
  4203. #ifndef MIN_COOLING_SLOPE_TIME
  4204. #define MIN_COOLING_SLOPE_TIME 60
  4205. #endif
  4206. /**
  4207. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4208. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4209. */
  4210. inline void gcode_M109() {
  4211. if (get_target_extruder_from_command(109)) return;
  4212. if (DEBUGGING(DRYRUN)) return;
  4213. #if ENABLED(SINGLENOZZLE)
  4214. if (target_extruder != active_extruder) return;
  4215. #endif
  4216. bool no_wait_for_cooling = code_seen('S');
  4217. if (no_wait_for_cooling || code_seen('R')) {
  4218. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4219. #if ENABLED(DUAL_X_CARRIAGE)
  4220. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4221. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4222. #endif
  4223. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4224. /**
  4225. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4226. * stand by mode, for instance in a dual extruder setup, without affecting
  4227. * the running print timer.
  4228. */
  4229. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4230. print_job_timer.stop();
  4231. LCD_MESSAGEPGM(WELCOME_MSG);
  4232. }
  4233. /**
  4234. * We do not check if the timer is already running because this check will
  4235. * be done for us inside the Stopwatch::start() method thus a running timer
  4236. * will not restart.
  4237. */
  4238. else print_job_timer.start();
  4239. #endif
  4240. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4241. }
  4242. #if ENABLED(AUTOTEMP)
  4243. planner.autotemp_M109();
  4244. #endif
  4245. #if TEMP_RESIDENCY_TIME > 0
  4246. millis_t residency_start_ms = 0;
  4247. // Loop until the temperature has stabilized
  4248. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4249. #else
  4250. // Loop until the temperature is very close target
  4251. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4252. #endif //TEMP_RESIDENCY_TIME > 0
  4253. float theTarget = -1.0, old_temp = 9999.0;
  4254. bool wants_to_cool = false;
  4255. wait_for_heatup = true;
  4256. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4257. KEEPALIVE_STATE(NOT_BUSY);
  4258. do {
  4259. // Target temperature might be changed during the loop
  4260. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4261. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4262. theTarget = thermalManager.degTargetHotend(target_extruder);
  4263. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4264. if (no_wait_for_cooling && wants_to_cool) break;
  4265. }
  4266. now = millis();
  4267. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4268. next_temp_ms = now + 1000UL;
  4269. print_heaterstates();
  4270. #if TEMP_RESIDENCY_TIME > 0
  4271. SERIAL_PROTOCOLPGM(" W:");
  4272. if (residency_start_ms) {
  4273. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4274. SERIAL_PROTOCOLLN(rem);
  4275. }
  4276. else {
  4277. SERIAL_PROTOCOLLNPGM("?");
  4278. }
  4279. #else
  4280. SERIAL_EOL;
  4281. #endif
  4282. }
  4283. idle();
  4284. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4285. float temp = thermalManager.degHotend(target_extruder);
  4286. #if TEMP_RESIDENCY_TIME > 0
  4287. float temp_diff = fabs(theTarget - temp);
  4288. if (!residency_start_ms) {
  4289. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4290. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4291. }
  4292. else if (temp_diff > TEMP_HYSTERESIS) {
  4293. // Restart the timer whenever the temperature falls outside the hysteresis.
  4294. residency_start_ms = now;
  4295. }
  4296. #endif //TEMP_RESIDENCY_TIME > 0
  4297. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4298. if (wants_to_cool) {
  4299. // break after MIN_COOLING_SLOPE_TIME seconds
  4300. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4301. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4302. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4303. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4304. old_temp = temp;
  4305. }
  4306. }
  4307. } while (wait_for_heatup && TEMP_CONDITIONS);
  4308. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4309. KEEPALIVE_STATE(IN_HANDLER);
  4310. }
  4311. #if HAS_TEMP_BED
  4312. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4313. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4314. #endif
  4315. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4316. #define MIN_COOLING_SLOPE_TIME_BED 60
  4317. #endif
  4318. /**
  4319. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4320. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4321. */
  4322. inline void gcode_M190() {
  4323. if (DEBUGGING(DRYRUN)) return;
  4324. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4325. bool no_wait_for_cooling = code_seen('S');
  4326. if (no_wait_for_cooling || code_seen('R')) {
  4327. thermalManager.setTargetBed(code_value_temp_abs());
  4328. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4329. if (code_value_temp_abs() > BED_MINTEMP) {
  4330. /**
  4331. * We start the timer when 'heating and waiting' command arrives, LCD
  4332. * functions never wait. Cooling down managed by extruders.
  4333. *
  4334. * We do not check if the timer is already running because this check will
  4335. * be done for us inside the Stopwatch::start() method thus a running timer
  4336. * will not restart.
  4337. */
  4338. print_job_timer.start();
  4339. }
  4340. #endif
  4341. }
  4342. #if TEMP_BED_RESIDENCY_TIME > 0
  4343. millis_t residency_start_ms = 0;
  4344. // Loop until the temperature has stabilized
  4345. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4346. #else
  4347. // Loop until the temperature is very close target
  4348. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4349. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4350. float theTarget = -1.0, old_temp = 9999.0;
  4351. bool wants_to_cool = false;
  4352. wait_for_heatup = true;
  4353. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4354. KEEPALIVE_STATE(NOT_BUSY);
  4355. target_extruder = active_extruder; // for print_heaterstates
  4356. do {
  4357. // Target temperature might be changed during the loop
  4358. if (theTarget != thermalManager.degTargetBed()) {
  4359. wants_to_cool = thermalManager.isCoolingBed();
  4360. theTarget = thermalManager.degTargetBed();
  4361. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4362. if (no_wait_for_cooling && wants_to_cool) break;
  4363. }
  4364. now = millis();
  4365. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4366. next_temp_ms = now + 1000UL;
  4367. print_heaterstates();
  4368. #if TEMP_BED_RESIDENCY_TIME > 0
  4369. SERIAL_PROTOCOLPGM(" W:");
  4370. if (residency_start_ms) {
  4371. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4372. SERIAL_PROTOCOLLN(rem);
  4373. }
  4374. else {
  4375. SERIAL_PROTOCOLLNPGM("?");
  4376. }
  4377. #else
  4378. SERIAL_EOL;
  4379. #endif
  4380. }
  4381. idle();
  4382. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4383. float temp = thermalManager.degBed();
  4384. #if TEMP_BED_RESIDENCY_TIME > 0
  4385. float temp_diff = fabs(theTarget - temp);
  4386. if (!residency_start_ms) {
  4387. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4388. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4389. }
  4390. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4391. // Restart the timer whenever the temperature falls outside the hysteresis.
  4392. residency_start_ms = now;
  4393. }
  4394. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4395. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4396. if (wants_to_cool) {
  4397. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4398. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4399. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4400. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4401. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4402. old_temp = temp;
  4403. }
  4404. }
  4405. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4406. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4407. KEEPALIVE_STATE(IN_HANDLER);
  4408. }
  4409. #endif // HAS_TEMP_BED
  4410. /**
  4411. * M110: Set Current Line Number
  4412. */
  4413. inline void gcode_M110() {
  4414. if (code_seen('N')) gcode_N = code_value_long();
  4415. }
  4416. /**
  4417. * M111: Set the debug level
  4418. */
  4419. inline void gcode_M111() {
  4420. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4421. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4422. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4423. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4424. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4425. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4427. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4428. #endif
  4429. const static char* const debug_strings[] PROGMEM = {
  4430. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4432. str_debug_32
  4433. #endif
  4434. };
  4435. SERIAL_ECHO_START;
  4436. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4437. if (marlin_debug_flags) {
  4438. uint8_t comma = 0;
  4439. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4440. if (TEST(marlin_debug_flags, i)) {
  4441. if (comma++) SERIAL_CHAR(',');
  4442. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4443. }
  4444. }
  4445. }
  4446. else {
  4447. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4448. }
  4449. SERIAL_EOL;
  4450. }
  4451. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4452. /**
  4453. * M113: Get or set Host Keepalive interval (0 to disable)
  4454. *
  4455. * S<seconds> Optional. Set the keepalive interval.
  4456. */
  4457. inline void gcode_M113() {
  4458. if (code_seen('S')) {
  4459. host_keepalive_interval = code_value_byte();
  4460. NOMORE(host_keepalive_interval, 60);
  4461. }
  4462. else {
  4463. SERIAL_ECHO_START;
  4464. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4465. }
  4466. }
  4467. #endif
  4468. #if ENABLED(BARICUDA)
  4469. #if HAS_HEATER_1
  4470. /**
  4471. * M126: Heater 1 valve open
  4472. */
  4473. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4474. /**
  4475. * M127: Heater 1 valve close
  4476. */
  4477. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4478. #endif
  4479. #if HAS_HEATER_2
  4480. /**
  4481. * M128: Heater 2 valve open
  4482. */
  4483. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4484. /**
  4485. * M129: Heater 2 valve close
  4486. */
  4487. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4488. #endif
  4489. #endif //BARICUDA
  4490. /**
  4491. * M140: Set bed temperature
  4492. */
  4493. inline void gcode_M140() {
  4494. if (DEBUGGING(DRYRUN)) return;
  4495. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4496. }
  4497. #if ENABLED(ULTIPANEL)
  4498. /**
  4499. * M145: Set the heatup state for a material in the LCD menu
  4500. * S<material> (0=PLA, 1=ABS)
  4501. * H<hotend temp>
  4502. * B<bed temp>
  4503. * F<fan speed>
  4504. */
  4505. inline void gcode_M145() {
  4506. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4507. if (material < 0 || material > 1) {
  4508. SERIAL_ERROR_START;
  4509. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4510. }
  4511. else {
  4512. int v;
  4513. switch (material) {
  4514. case 0:
  4515. if (code_seen('H')) {
  4516. v = code_value_int();
  4517. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4518. }
  4519. if (code_seen('F')) {
  4520. v = code_value_int();
  4521. preheatFanSpeed1 = constrain(v, 0, 255);
  4522. }
  4523. #if TEMP_SENSOR_BED != 0
  4524. if (code_seen('B')) {
  4525. v = code_value_int();
  4526. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4527. }
  4528. #endif
  4529. break;
  4530. case 1:
  4531. if (code_seen('H')) {
  4532. v = code_value_int();
  4533. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4534. }
  4535. if (code_seen('F')) {
  4536. v = code_value_int();
  4537. preheatFanSpeed2 = constrain(v, 0, 255);
  4538. }
  4539. #if TEMP_SENSOR_BED != 0
  4540. if (code_seen('B')) {
  4541. v = code_value_int();
  4542. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4543. }
  4544. #endif
  4545. break;
  4546. }
  4547. }
  4548. }
  4549. #endif // ULTIPANEL
  4550. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4551. /**
  4552. * M149: Set temperature units
  4553. */
  4554. inline void gcode_M149() {
  4555. if (code_seen('C')) {
  4556. set_input_temp_units(TEMPUNIT_C);
  4557. } else if (code_seen('K')) {
  4558. set_input_temp_units(TEMPUNIT_K);
  4559. } else if (code_seen('F')) {
  4560. set_input_temp_units(TEMPUNIT_F);
  4561. }
  4562. }
  4563. #endif
  4564. #if HAS_POWER_SWITCH
  4565. /**
  4566. * M80: Turn on Power Supply
  4567. */
  4568. inline void gcode_M80() {
  4569. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4570. /**
  4571. * If you have a switch on suicide pin, this is useful
  4572. * if you want to start another print with suicide feature after
  4573. * a print without suicide...
  4574. */
  4575. #if HAS_SUICIDE
  4576. OUT_WRITE(SUICIDE_PIN, HIGH);
  4577. #endif
  4578. #if ENABLED(ULTIPANEL)
  4579. powersupply = true;
  4580. LCD_MESSAGEPGM(WELCOME_MSG);
  4581. lcd_update();
  4582. #endif
  4583. }
  4584. #endif // HAS_POWER_SWITCH
  4585. /**
  4586. * M81: Turn off Power, including Power Supply, if there is one.
  4587. *
  4588. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4589. */
  4590. inline void gcode_M81() {
  4591. thermalManager.disable_all_heaters();
  4592. stepper.finish_and_disable();
  4593. #if FAN_COUNT > 0
  4594. #if FAN_COUNT > 1
  4595. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4596. #else
  4597. fanSpeeds[0] = 0;
  4598. #endif
  4599. #endif
  4600. delay(1000); // Wait 1 second before switching off
  4601. #if HAS_SUICIDE
  4602. stepper.synchronize();
  4603. suicide();
  4604. #elif HAS_POWER_SWITCH
  4605. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4606. #endif
  4607. #if ENABLED(ULTIPANEL)
  4608. #if HAS_POWER_SWITCH
  4609. powersupply = false;
  4610. #endif
  4611. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4612. lcd_update();
  4613. #endif
  4614. }
  4615. /**
  4616. * M82: Set E codes absolute (default)
  4617. */
  4618. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4619. /**
  4620. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4621. */
  4622. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4623. /**
  4624. * M18, M84: Disable all stepper motors
  4625. */
  4626. inline void gcode_M18_M84() {
  4627. if (code_seen('S')) {
  4628. stepper_inactive_time = code_value_millis_from_seconds();
  4629. }
  4630. else {
  4631. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4632. if (all_axis) {
  4633. stepper.finish_and_disable();
  4634. }
  4635. else {
  4636. stepper.synchronize();
  4637. if (code_seen('X')) disable_x();
  4638. if (code_seen('Y')) disable_y();
  4639. if (code_seen('Z')) disable_z();
  4640. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4641. if (code_seen('E')) {
  4642. disable_e0();
  4643. disable_e1();
  4644. disable_e2();
  4645. disable_e3();
  4646. }
  4647. #endif
  4648. }
  4649. }
  4650. }
  4651. /**
  4652. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4653. */
  4654. inline void gcode_M85() {
  4655. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4656. }
  4657. /**
  4658. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4659. * (Follows the same syntax as G92)
  4660. */
  4661. inline void gcode_M92() {
  4662. LOOP_XYZE(i) {
  4663. if (code_seen(axis_codes[i])) {
  4664. if (i == E_AXIS) {
  4665. float value = code_value_per_axis_unit(i);
  4666. if (value < 20.0) {
  4667. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4668. planner.max_jerk[E_AXIS] *= factor;
  4669. planner.max_feedrate_mm_s[E_AXIS] *= factor;
  4670. planner.max_acceleration_steps_per_s2[E_AXIS] *= factor;
  4671. }
  4672. planner.axis_steps_per_mm[E_AXIS] = value;
  4673. }
  4674. else {
  4675. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4676. }
  4677. }
  4678. }
  4679. planner.refresh_positioning();
  4680. }
  4681. /**
  4682. * Output the current position to serial
  4683. */
  4684. static void report_current_position() {
  4685. SERIAL_PROTOCOLPGM("X:");
  4686. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4687. SERIAL_PROTOCOLPGM(" Y:");
  4688. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4689. SERIAL_PROTOCOLPGM(" Z:");
  4690. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4691. SERIAL_PROTOCOLPGM(" E:");
  4692. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4693. stepper.report_positions();
  4694. #if IS_SCARA
  4695. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  4696. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  4697. SERIAL_EOL;
  4698. #endif
  4699. }
  4700. /**
  4701. * M114: Output current position to serial port
  4702. */
  4703. inline void gcode_M114() { report_current_position(); }
  4704. /**
  4705. * M115: Capabilities string
  4706. */
  4707. inline void gcode_M115() {
  4708. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4709. }
  4710. /**
  4711. * M117: Set LCD Status Message
  4712. */
  4713. inline void gcode_M117() {
  4714. lcd_setstatus(current_command_args);
  4715. }
  4716. /**
  4717. * M119: Output endstop states to serial output
  4718. */
  4719. inline void gcode_M119() { endstops.M119(); }
  4720. /**
  4721. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4722. */
  4723. inline void gcode_M120() { endstops.enable_globally(true); }
  4724. /**
  4725. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4726. */
  4727. inline void gcode_M121() { endstops.enable_globally(false); }
  4728. #if ENABLED(BLINKM)
  4729. /**
  4730. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4731. */
  4732. inline void gcode_M150() {
  4733. SendColors(
  4734. code_seen('R') ? code_value_byte() : 0,
  4735. code_seen('U') ? code_value_byte() : 0,
  4736. code_seen('B') ? code_value_byte() : 0
  4737. );
  4738. }
  4739. #endif // BLINKM
  4740. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4741. /**
  4742. * M155: Send data to a I2C slave device
  4743. *
  4744. * This is a PoC, the formating and arguments for the GCODE will
  4745. * change to be more compatible, the current proposal is:
  4746. *
  4747. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4748. *
  4749. * M155 B<byte-1 value in base 10>
  4750. * M155 B<byte-2 value in base 10>
  4751. * M155 B<byte-3 value in base 10>
  4752. *
  4753. * M155 S1 ; Send the buffered data and reset the buffer
  4754. * M155 R1 ; Reset the buffer without sending data
  4755. *
  4756. */
  4757. inline void gcode_M155() {
  4758. // Set the target address
  4759. if (code_seen('A')) i2c.address(code_value_byte());
  4760. // Add a new byte to the buffer
  4761. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4762. // Flush the buffer to the bus
  4763. if (code_seen('S')) i2c.send();
  4764. // Reset and rewind the buffer
  4765. else if (code_seen('R')) i2c.reset();
  4766. }
  4767. /**
  4768. * M156: Request X bytes from I2C slave device
  4769. *
  4770. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4771. */
  4772. inline void gcode_M156() {
  4773. if (code_seen('A')) i2c.address(code_value_byte());
  4774. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4775. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4776. i2c.relay(bytes);
  4777. }
  4778. else {
  4779. SERIAL_ERROR_START;
  4780. SERIAL_ERRORLN("Bad i2c request");
  4781. }
  4782. }
  4783. #endif // EXPERIMENTAL_I2CBUS
  4784. /**
  4785. * M200: Set filament diameter and set E axis units to cubic units
  4786. *
  4787. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4788. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4789. */
  4790. inline void gcode_M200() {
  4791. if (get_target_extruder_from_command(200)) return;
  4792. if (code_seen('D')) {
  4793. // setting any extruder filament size disables volumetric on the assumption that
  4794. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4795. // for all extruders
  4796. volumetric_enabled = (code_value_linear_units() != 0.0);
  4797. if (volumetric_enabled) {
  4798. filament_size[target_extruder] = code_value_linear_units();
  4799. // make sure all extruders have some sane value for the filament size
  4800. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4801. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4802. }
  4803. }
  4804. else {
  4805. //reserved for setting filament diameter via UFID or filament measuring device
  4806. return;
  4807. }
  4808. calculate_volumetric_multipliers();
  4809. }
  4810. /**
  4811. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4812. */
  4813. inline void gcode_M201() {
  4814. LOOP_XYZE(i) {
  4815. if (code_seen(axis_codes[i])) {
  4816. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4817. }
  4818. }
  4819. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4820. planner.reset_acceleration_rates();
  4821. }
  4822. #if 0 // Not used for Sprinter/grbl gen6
  4823. inline void gcode_M202() {
  4824. LOOP_XYZE(i) {
  4825. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4826. }
  4827. }
  4828. #endif
  4829. /**
  4830. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4831. */
  4832. inline void gcode_M203() {
  4833. LOOP_XYZE(i)
  4834. if (code_seen(axis_codes[i]))
  4835. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4836. }
  4837. /**
  4838. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4839. *
  4840. * P = Printing moves
  4841. * R = Retract only (no X, Y, Z) moves
  4842. * T = Travel (non printing) moves
  4843. *
  4844. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4845. */
  4846. inline void gcode_M204() {
  4847. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4848. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4849. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4850. }
  4851. if (code_seen('P')) {
  4852. planner.acceleration = code_value_linear_units();
  4853. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4854. }
  4855. if (code_seen('R')) {
  4856. planner.retract_acceleration = code_value_linear_units();
  4857. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4858. }
  4859. if (code_seen('T')) {
  4860. planner.travel_acceleration = code_value_linear_units();
  4861. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4862. }
  4863. }
  4864. /**
  4865. * M205: Set Advanced Settings
  4866. *
  4867. * S = Min Feed Rate (units/s)
  4868. * T = Min Travel Feed Rate (units/s)
  4869. * B = Min Segment Time (µs)
  4870. * X = Max X Jerk (units/sec^2)
  4871. * Y = Max Y Jerk (units/sec^2)
  4872. * Z = Max Z Jerk (units/sec^2)
  4873. * E = Max E Jerk (units/sec^2)
  4874. */
  4875. inline void gcode_M205() {
  4876. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4877. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4878. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4879. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  4880. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  4881. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  4882. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  4883. }
  4884. /**
  4885. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4886. */
  4887. inline void gcode_M206() {
  4888. LOOP_XYZ(i)
  4889. if (code_seen(axis_codes[i]))
  4890. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4891. #if ENABLED(MORGAN_SCARA)
  4892. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  4893. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  4894. #endif
  4895. SYNC_PLAN_POSITION_KINEMATIC();
  4896. report_current_position();
  4897. }
  4898. #if ENABLED(DELTA)
  4899. /**
  4900. * M665: Set delta configurations
  4901. *
  4902. * L = diagonal rod
  4903. * R = delta radius
  4904. * S = segments per second
  4905. * A = Alpha (Tower 1) diagonal rod trim
  4906. * B = Beta (Tower 2) diagonal rod trim
  4907. * C = Gamma (Tower 3) diagonal rod trim
  4908. */
  4909. inline void gcode_M665() {
  4910. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4911. if (code_seen('R')) delta_radius = code_value_linear_units();
  4912. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4913. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4914. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4915. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4916. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4917. }
  4918. /**
  4919. * M666: Set delta endstop adjustment
  4920. */
  4921. inline void gcode_M666() {
  4922. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4923. if (DEBUGGING(LEVELING)) {
  4924. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4925. }
  4926. #endif
  4927. LOOP_XYZ(i) {
  4928. if (code_seen(axis_codes[i])) {
  4929. endstop_adj[i] = code_value_axis_units(i);
  4930. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4931. if (DEBUGGING(LEVELING)) {
  4932. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  4933. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4934. }
  4935. #endif
  4936. }
  4937. }
  4938. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4939. if (DEBUGGING(LEVELING)) {
  4940. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4941. }
  4942. #endif
  4943. }
  4944. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4945. /**
  4946. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4947. */
  4948. inline void gcode_M666() {
  4949. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4950. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4951. }
  4952. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4953. #if ENABLED(FWRETRACT)
  4954. /**
  4955. * M207: Set firmware retraction values
  4956. *
  4957. * S[+units] retract_length
  4958. * W[+units] retract_length_swap (multi-extruder)
  4959. * F[units/min] retract_feedrate_mm_s
  4960. * Z[units] retract_zlift
  4961. */
  4962. inline void gcode_M207() {
  4963. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4964. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4965. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4966. #if EXTRUDERS > 1
  4967. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4968. #endif
  4969. }
  4970. /**
  4971. * M208: Set firmware un-retraction values
  4972. *
  4973. * S[+units] retract_recover_length (in addition to M207 S*)
  4974. * W[+units] retract_recover_length_swap (multi-extruder)
  4975. * F[units/min] retract_recover_feedrate_mm_s
  4976. */
  4977. inline void gcode_M208() {
  4978. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4979. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4980. #if EXTRUDERS > 1
  4981. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4982. #endif
  4983. }
  4984. /**
  4985. * M209: Enable automatic retract (M209 S1)
  4986. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4987. */
  4988. inline void gcode_M209() {
  4989. if (code_seen('S')) {
  4990. autoretract_enabled = code_value_bool();
  4991. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4992. }
  4993. }
  4994. #endif // FWRETRACT
  4995. /**
  4996. * M211: Enable, Disable, and/or Report software endstops
  4997. *
  4998. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4999. */
  5000. inline void gcode_M211() {
  5001. SERIAL_ECHO_START;
  5002. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5003. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5004. #endif
  5005. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5006. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5007. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5008. #else
  5009. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5010. SERIAL_ECHOPGM(MSG_OFF);
  5011. #endif
  5012. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5013. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5014. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5015. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5016. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5017. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5018. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5019. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5020. }
  5021. #if HOTENDS > 1
  5022. /**
  5023. * M218 - set hotend offset (in linear units)
  5024. *
  5025. * T<tool>
  5026. * X<xoffset>
  5027. * Y<yoffset>
  5028. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5029. */
  5030. inline void gcode_M218() {
  5031. if (get_target_extruder_from_command(218)) return;
  5032. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5033. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5034. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5035. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5036. #endif
  5037. SERIAL_ECHO_START;
  5038. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5039. HOTEND_LOOP() {
  5040. SERIAL_CHAR(' ');
  5041. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5042. SERIAL_CHAR(',');
  5043. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5044. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5045. SERIAL_CHAR(',');
  5046. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5047. #endif
  5048. }
  5049. SERIAL_EOL;
  5050. }
  5051. #endif // HOTENDS > 1
  5052. /**
  5053. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5054. */
  5055. inline void gcode_M220() {
  5056. if (code_seen('S')) feedrate_percentage = code_value_int();
  5057. }
  5058. /**
  5059. * M221: Set extrusion percentage (M221 T0 S95)
  5060. */
  5061. inline void gcode_M221() {
  5062. if (get_target_extruder_from_command(221)) return;
  5063. if (code_seen('S'))
  5064. flow_percentage[target_extruder] = code_value_int();
  5065. }
  5066. /**
  5067. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5068. */
  5069. inline void gcode_M226() {
  5070. if (code_seen('P')) {
  5071. int pin_number = code_value_int();
  5072. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5073. if (pin_state >= -1 && pin_state <= 1) {
  5074. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  5075. if (sensitive_pins[i] == pin_number) {
  5076. pin_number = -1;
  5077. break;
  5078. }
  5079. }
  5080. if (pin_number > -1) {
  5081. int target = LOW;
  5082. stepper.synchronize();
  5083. pinMode(pin_number, INPUT);
  5084. switch (pin_state) {
  5085. case 1:
  5086. target = HIGH;
  5087. break;
  5088. case 0:
  5089. target = LOW;
  5090. break;
  5091. case -1:
  5092. target = !digitalRead(pin_number);
  5093. break;
  5094. }
  5095. while (digitalRead(pin_number) != target) idle();
  5096. } // pin_number > -1
  5097. } // pin_state -1 0 1
  5098. } // code_seen('P')
  5099. }
  5100. #if HAS_SERVOS
  5101. /**
  5102. * M280: Get or set servo position. P<index> [S<angle>]
  5103. */
  5104. inline void gcode_M280() {
  5105. if (!code_seen('P')) return;
  5106. int servo_index = code_value_int();
  5107. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5108. if (code_seen('S'))
  5109. MOVE_SERVO(servo_index, code_value_int());
  5110. else {
  5111. SERIAL_ECHO_START;
  5112. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5113. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5114. }
  5115. }
  5116. else {
  5117. SERIAL_ERROR_START;
  5118. SERIAL_ECHOPAIR("Servo ", servo_index);
  5119. SERIAL_ECHOLNPGM(" out of range");
  5120. }
  5121. }
  5122. #endif // HAS_SERVOS
  5123. #if HAS_BUZZER
  5124. /**
  5125. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5126. */
  5127. inline void gcode_M300() {
  5128. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5129. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5130. // Limits the tone duration to 0-5 seconds.
  5131. NOMORE(duration, 5000);
  5132. BUZZ(duration, frequency);
  5133. }
  5134. #endif // HAS_BUZZER
  5135. #if ENABLED(PIDTEMP)
  5136. /**
  5137. * M301: Set PID parameters P I D (and optionally C, L)
  5138. *
  5139. * P[float] Kp term
  5140. * I[float] Ki term (unscaled)
  5141. * D[float] Kd term (unscaled)
  5142. *
  5143. * With PID_EXTRUSION_SCALING:
  5144. *
  5145. * C[float] Kc term
  5146. * L[float] LPQ length
  5147. */
  5148. inline void gcode_M301() {
  5149. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5150. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5151. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5152. if (e < HOTENDS) { // catch bad input value
  5153. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5154. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5155. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5156. #if ENABLED(PID_EXTRUSION_SCALING)
  5157. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5158. if (code_seen('L')) lpq_len = code_value_float();
  5159. NOMORE(lpq_len, LPQ_MAX_LEN);
  5160. #endif
  5161. thermalManager.updatePID();
  5162. SERIAL_ECHO_START;
  5163. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5164. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5165. #endif // PID_PARAMS_PER_HOTEND
  5166. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5167. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5168. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5169. #if ENABLED(PID_EXTRUSION_SCALING)
  5170. //Kc does not have scaling applied above, or in resetting defaults
  5171. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5172. #endif
  5173. SERIAL_EOL;
  5174. }
  5175. else {
  5176. SERIAL_ERROR_START;
  5177. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5178. }
  5179. }
  5180. #endif // PIDTEMP
  5181. #if ENABLED(PIDTEMPBED)
  5182. inline void gcode_M304() {
  5183. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5184. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5185. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5186. thermalManager.updatePID();
  5187. SERIAL_ECHO_START;
  5188. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5189. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5190. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5191. }
  5192. #endif // PIDTEMPBED
  5193. #if defined(CHDK) || HAS_PHOTOGRAPH
  5194. /**
  5195. * M240: Trigger a camera by emulating a Canon RC-1
  5196. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5197. */
  5198. inline void gcode_M240() {
  5199. #ifdef CHDK
  5200. OUT_WRITE(CHDK, HIGH);
  5201. chdkHigh = millis();
  5202. chdkActive = true;
  5203. #elif HAS_PHOTOGRAPH
  5204. const uint8_t NUM_PULSES = 16;
  5205. const float PULSE_LENGTH = 0.01524;
  5206. for (int i = 0; i < NUM_PULSES; i++) {
  5207. WRITE(PHOTOGRAPH_PIN, HIGH);
  5208. _delay_ms(PULSE_LENGTH);
  5209. WRITE(PHOTOGRAPH_PIN, LOW);
  5210. _delay_ms(PULSE_LENGTH);
  5211. }
  5212. delay(7.33);
  5213. for (int i = 0; i < NUM_PULSES; i++) {
  5214. WRITE(PHOTOGRAPH_PIN, HIGH);
  5215. _delay_ms(PULSE_LENGTH);
  5216. WRITE(PHOTOGRAPH_PIN, LOW);
  5217. _delay_ms(PULSE_LENGTH);
  5218. }
  5219. #endif // !CHDK && HAS_PHOTOGRAPH
  5220. }
  5221. #endif // CHDK || PHOTOGRAPH_PIN
  5222. #if HAS_LCD_CONTRAST
  5223. /**
  5224. * M250: Read and optionally set the LCD contrast
  5225. */
  5226. inline void gcode_M250() {
  5227. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5228. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5229. SERIAL_PROTOCOL(lcd_contrast);
  5230. SERIAL_EOL;
  5231. }
  5232. #endif // HAS_LCD_CONTRAST
  5233. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5234. /**
  5235. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5236. *
  5237. * S<temperature> sets the minimum extrude temperature
  5238. * P<bool> enables (1) or disables (0) cold extrusion
  5239. *
  5240. * Examples:
  5241. *
  5242. * M302 ; report current cold extrusion state
  5243. * M302 P0 ; enable cold extrusion checking
  5244. * M302 P1 ; disables cold extrusion checking
  5245. * M302 S0 ; always allow extrusion (disables checking)
  5246. * M302 S170 ; only allow extrusion above 170
  5247. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5248. */
  5249. inline void gcode_M302() {
  5250. bool seen_S = code_seen('S');
  5251. if (seen_S) {
  5252. thermalManager.extrude_min_temp = code_value_temp_abs();
  5253. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5254. }
  5255. if (code_seen('P'))
  5256. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5257. else if (!seen_S) {
  5258. // Report current state
  5259. SERIAL_ECHO_START;
  5260. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5261. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5262. SERIAL_ECHOLNPGM("C)");
  5263. }
  5264. }
  5265. #endif // PREVENT_COLD_EXTRUSION
  5266. /**
  5267. * M303: PID relay autotune
  5268. *
  5269. * S<temperature> sets the target temperature. (default 150C)
  5270. * E<extruder> (-1 for the bed) (default 0)
  5271. * C<cycles>
  5272. * U<bool> with a non-zero value will apply the result to current settings
  5273. */
  5274. inline void gcode_M303() {
  5275. #if HAS_PID_HEATING
  5276. int e = code_seen('E') ? code_value_int() : 0;
  5277. int c = code_seen('C') ? code_value_int() : 5;
  5278. bool u = code_seen('U') && code_value_bool();
  5279. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5280. if (e >= 0 && e < HOTENDS)
  5281. target_extruder = e;
  5282. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5283. thermalManager.PID_autotune(temp, e, c, u);
  5284. KEEPALIVE_STATE(IN_HANDLER);
  5285. #else
  5286. SERIAL_ERROR_START;
  5287. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5288. #endif
  5289. }
  5290. #if ENABLED(MORGAN_SCARA)
  5291. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5292. if (IsRunning()) {
  5293. forward_kinematics_SCARA(delta_a, delta_b);
  5294. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5295. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5296. destination[Z_AXIS] = current_position[Z_AXIS];
  5297. prepare_move_to_destination();
  5298. return true;
  5299. }
  5300. return false;
  5301. }
  5302. /**
  5303. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5304. */
  5305. inline bool gcode_M360() {
  5306. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5307. return SCARA_move_to_cal(0, 120);
  5308. }
  5309. /**
  5310. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5311. */
  5312. inline bool gcode_M361() {
  5313. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5314. return SCARA_move_to_cal(90, 130);
  5315. }
  5316. /**
  5317. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5318. */
  5319. inline bool gcode_M362() {
  5320. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5321. return SCARA_move_to_cal(60, 180);
  5322. }
  5323. /**
  5324. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5325. */
  5326. inline bool gcode_M363() {
  5327. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5328. return SCARA_move_to_cal(50, 90);
  5329. }
  5330. /**
  5331. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5332. */
  5333. inline bool gcode_M364() {
  5334. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5335. return SCARA_move_to_cal(45, 135);
  5336. }
  5337. #endif // SCARA
  5338. #if ENABLED(EXT_SOLENOID)
  5339. void enable_solenoid(uint8_t num) {
  5340. switch (num) {
  5341. case 0:
  5342. OUT_WRITE(SOL0_PIN, HIGH);
  5343. break;
  5344. #if HAS_SOLENOID_1
  5345. case 1:
  5346. OUT_WRITE(SOL1_PIN, HIGH);
  5347. break;
  5348. #endif
  5349. #if HAS_SOLENOID_2
  5350. case 2:
  5351. OUT_WRITE(SOL2_PIN, HIGH);
  5352. break;
  5353. #endif
  5354. #if HAS_SOLENOID_3
  5355. case 3:
  5356. OUT_WRITE(SOL3_PIN, HIGH);
  5357. break;
  5358. #endif
  5359. default:
  5360. SERIAL_ECHO_START;
  5361. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5362. break;
  5363. }
  5364. }
  5365. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5366. void disable_all_solenoids() {
  5367. OUT_WRITE(SOL0_PIN, LOW);
  5368. OUT_WRITE(SOL1_PIN, LOW);
  5369. OUT_WRITE(SOL2_PIN, LOW);
  5370. OUT_WRITE(SOL3_PIN, LOW);
  5371. }
  5372. /**
  5373. * M380: Enable solenoid on the active extruder
  5374. */
  5375. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5376. /**
  5377. * M381: Disable all solenoids
  5378. */
  5379. inline void gcode_M381() { disable_all_solenoids(); }
  5380. #endif // EXT_SOLENOID
  5381. /**
  5382. * M400: Finish all moves
  5383. */
  5384. inline void gcode_M400() { stepper.synchronize(); }
  5385. #if HAS_BED_PROBE
  5386. /**
  5387. * M401: Engage Z Servo endstop if available
  5388. */
  5389. inline void gcode_M401() { DEPLOY_PROBE(); }
  5390. /**
  5391. * M402: Retract Z Servo endstop if enabled
  5392. */
  5393. inline void gcode_M402() { STOW_PROBE(); }
  5394. #endif // HAS_BED_PROBE
  5395. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5396. /**
  5397. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5398. */
  5399. inline void gcode_M404() {
  5400. if (code_seen('W')) {
  5401. filament_width_nominal = code_value_linear_units();
  5402. }
  5403. else {
  5404. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5405. SERIAL_PROTOCOLLN(filament_width_nominal);
  5406. }
  5407. }
  5408. /**
  5409. * M405: Turn on filament sensor for control
  5410. */
  5411. inline void gcode_M405() {
  5412. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5413. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5414. if (code_seen('D')) meas_delay_cm = code_value_int();
  5415. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5416. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5417. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5418. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5419. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5420. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5421. }
  5422. filament_sensor = true;
  5423. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5424. //SERIAL_PROTOCOL(filament_width_meas);
  5425. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5426. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5427. }
  5428. /**
  5429. * M406: Turn off filament sensor for control
  5430. */
  5431. inline void gcode_M406() { filament_sensor = false; }
  5432. /**
  5433. * M407: Get measured filament diameter on serial output
  5434. */
  5435. inline void gcode_M407() {
  5436. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5437. SERIAL_PROTOCOLLN(filament_width_meas);
  5438. }
  5439. #endif // FILAMENT_WIDTH_SENSOR
  5440. void quickstop_stepper() {
  5441. stepper.quick_stop();
  5442. stepper.synchronize();
  5443. set_current_from_steppers_for_axis(ALL_AXES);
  5444. SYNC_PLAN_POSITION_KINEMATIC();
  5445. }
  5446. #if PLANNER_LEVELING
  5447. /**
  5448. * M420: Enable/Disable Bed Leveling
  5449. */
  5450. inline void gcode_M420() { if (code_seen('S')) set_bed_leveling_enabled(code_value_bool()); }
  5451. #endif
  5452. #if ENABLED(MESH_BED_LEVELING)
  5453. /**
  5454. * M421: Set a single Mesh Bed Leveling Z coordinate
  5455. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5456. */
  5457. inline void gcode_M421() {
  5458. int8_t px = 0, py = 0;
  5459. float z = 0;
  5460. bool hasX, hasY, hasZ, hasI, hasJ;
  5461. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5462. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5463. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5464. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5465. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5466. if (hasX && hasY && hasZ) {
  5467. if (px >= 0 && py >= 0)
  5468. mbl.set_z(px, py, z);
  5469. else {
  5470. SERIAL_ERROR_START;
  5471. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5472. }
  5473. }
  5474. else if (hasI && hasJ && hasZ) {
  5475. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5476. mbl.set_z(px, py, z);
  5477. else {
  5478. SERIAL_ERROR_START;
  5479. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5480. }
  5481. }
  5482. else {
  5483. SERIAL_ERROR_START;
  5484. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5485. }
  5486. }
  5487. #endif
  5488. /**
  5489. * M428: Set home_offset based on the distance between the
  5490. * current_position and the nearest "reference point."
  5491. * If an axis is past center its endstop position
  5492. * is the reference-point. Otherwise it uses 0. This allows
  5493. * the Z offset to be set near the bed when using a max endstop.
  5494. *
  5495. * M428 can't be used more than 2cm away from 0 or an endstop.
  5496. *
  5497. * Use M206 to set these values directly.
  5498. */
  5499. inline void gcode_M428() {
  5500. bool err = false;
  5501. LOOP_XYZ(i) {
  5502. if (axis_homed[i]) {
  5503. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5504. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5505. if (diff > -20 && diff < 20) {
  5506. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5507. }
  5508. else {
  5509. SERIAL_ERROR_START;
  5510. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5511. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5512. BUZZ(200, 40);
  5513. err = true;
  5514. break;
  5515. }
  5516. }
  5517. }
  5518. if (!err) {
  5519. SYNC_PLAN_POSITION_KINEMATIC();
  5520. report_current_position();
  5521. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5522. BUZZ(200, 659);
  5523. BUZZ(200, 698);
  5524. }
  5525. }
  5526. /**
  5527. * M500: Store settings in EEPROM
  5528. */
  5529. inline void gcode_M500() {
  5530. Config_StoreSettings();
  5531. }
  5532. /**
  5533. * M501: Read settings from EEPROM
  5534. */
  5535. inline void gcode_M501() {
  5536. Config_RetrieveSettings();
  5537. }
  5538. /**
  5539. * M502: Revert to default settings
  5540. */
  5541. inline void gcode_M502() {
  5542. Config_ResetDefault();
  5543. }
  5544. /**
  5545. * M503: print settings currently in memory
  5546. */
  5547. inline void gcode_M503() {
  5548. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5549. }
  5550. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5551. /**
  5552. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5553. */
  5554. inline void gcode_M540() {
  5555. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5556. }
  5557. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5558. #if HAS_BED_PROBE
  5559. inline void gcode_M851() {
  5560. SERIAL_ECHO_START;
  5561. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5562. SERIAL_CHAR(' ');
  5563. if (code_seen('Z')) {
  5564. float value = code_value_axis_units(Z_AXIS);
  5565. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5566. zprobe_zoffset = value;
  5567. SERIAL_ECHO(zprobe_zoffset);
  5568. }
  5569. else {
  5570. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5571. SERIAL_CHAR(' ');
  5572. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5573. }
  5574. }
  5575. else {
  5576. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5577. }
  5578. SERIAL_EOL;
  5579. }
  5580. #endif // HAS_BED_PROBE
  5581. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5582. /**
  5583. * M600: Pause for filament change
  5584. *
  5585. * E[distance] - Retract the filament this far (negative value)
  5586. * Z[distance] - Move the Z axis by this distance
  5587. * X[position] - Move to this X position, with Y
  5588. * Y[position] - Move to this Y position, with X
  5589. * L[distance] - Retract distance for removal (manual reload)
  5590. *
  5591. * Default values are used for omitted arguments.
  5592. *
  5593. */
  5594. inline void gcode_M600() {
  5595. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5596. SERIAL_ERROR_START;
  5597. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5598. return;
  5599. }
  5600. // Show initial message and wait for synchronize steppers
  5601. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5602. stepper.synchronize();
  5603. float lastpos[NUM_AXIS];
  5604. // Save current position of all axes
  5605. LOOP_XYZE(i)
  5606. lastpos[i] = destination[i] = current_position[i];
  5607. // Define runplan for move axes
  5608. #if IS_KINEMATIC
  5609. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5610. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5611. #else
  5612. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5613. #endif
  5614. KEEPALIVE_STATE(IN_HANDLER);
  5615. // Initial retract before move to filament change position
  5616. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5617. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5618. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5619. #endif
  5620. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5621. // Lift Z axis
  5622. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5623. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5624. FILAMENT_CHANGE_Z_ADD
  5625. #else
  5626. 0
  5627. #endif
  5628. ;
  5629. if (z_lift > 0) {
  5630. destination[Z_AXIS] += z_lift;
  5631. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5632. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5633. }
  5634. // Move XY axes to filament exchange position
  5635. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5636. #ifdef FILAMENT_CHANGE_X_POS
  5637. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5638. #endif
  5639. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5640. #ifdef FILAMENT_CHANGE_Y_POS
  5641. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5642. #endif
  5643. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5644. stepper.synchronize();
  5645. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5646. // Unload filament
  5647. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5648. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5649. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5650. #endif
  5651. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5652. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5653. stepper.synchronize();
  5654. disable_e0();
  5655. disable_e1();
  5656. disable_e2();
  5657. disable_e3();
  5658. delay(100);
  5659. #if HAS_BUZZER
  5660. millis_t next_buzz = 0;
  5661. #endif
  5662. // Wait for filament insert by user and press button
  5663. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5664. while (!lcd_clicked()) {
  5665. #if HAS_BUZZER
  5666. millis_t ms = millis();
  5667. if (ms >= next_buzz) {
  5668. BUZZ(300, 2000);
  5669. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  5670. }
  5671. #endif
  5672. idle(true);
  5673. }
  5674. delay(100);
  5675. while (lcd_clicked()) idle(true);
  5676. delay(100);
  5677. // Show load message
  5678. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5679. // Load filament
  5680. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5681. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5682. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5683. #endif
  5684. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5685. stepper.synchronize();
  5686. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5687. do {
  5688. // Extrude filament to get into hotend
  5689. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5690. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5691. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5692. stepper.synchronize();
  5693. // Ask user if more filament should be extruded
  5694. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5695. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5696. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5697. KEEPALIVE_STATE(IN_HANDLER);
  5698. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5699. #endif
  5700. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5701. KEEPALIVE_STATE(IN_HANDLER);
  5702. // Set extruder to saved position
  5703. current_position[E_AXIS] = lastpos[E_AXIS];
  5704. destination[E_AXIS] = lastpos[E_AXIS];
  5705. planner.set_e_position_mm(current_position[E_AXIS]);
  5706. #if IS_KINEMATIC
  5707. // Move XYZ to starting position, then E
  5708. inverse_kinematics(lastpos);
  5709. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5710. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5711. #else
  5712. // Move XY to starting position, then Z, then E
  5713. destination[X_AXIS] = lastpos[X_AXIS];
  5714. destination[Y_AXIS] = lastpos[Y_AXIS];
  5715. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5716. destination[Z_AXIS] = lastpos[Z_AXIS];
  5717. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5718. #endif
  5719. stepper.synchronize();
  5720. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5721. filament_ran_out = false;
  5722. #endif
  5723. // Show status screen
  5724. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5725. }
  5726. #endif // FILAMENT_CHANGE_FEATURE
  5727. #if ENABLED(DUAL_X_CARRIAGE)
  5728. /**
  5729. * M605: Set dual x-carriage movement mode
  5730. *
  5731. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5732. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5733. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5734. * units x-offset and an optional differential hotend temperature of
  5735. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5736. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5737. *
  5738. * Note: the X axis should be homed after changing dual x-carriage mode.
  5739. */
  5740. inline void gcode_M605() {
  5741. stepper.synchronize();
  5742. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5743. switch (dual_x_carriage_mode) {
  5744. case DXC_DUPLICATION_MODE:
  5745. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5746. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5747. SERIAL_ECHO_START;
  5748. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5749. SERIAL_CHAR(' ');
  5750. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5751. SERIAL_CHAR(',');
  5752. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5753. SERIAL_CHAR(' ');
  5754. SERIAL_ECHO(duplicate_extruder_x_offset);
  5755. SERIAL_CHAR(',');
  5756. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5757. break;
  5758. case DXC_FULL_CONTROL_MODE:
  5759. case DXC_AUTO_PARK_MODE:
  5760. break;
  5761. default:
  5762. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5763. break;
  5764. }
  5765. active_extruder_parked = false;
  5766. extruder_duplication_enabled = false;
  5767. delayed_move_time = 0;
  5768. }
  5769. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5770. inline void gcode_M605() {
  5771. stepper.synchronize();
  5772. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5773. SERIAL_ECHO_START;
  5774. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5775. }
  5776. #endif // M605
  5777. #if ENABLED(LIN_ADVANCE)
  5778. /**
  5779. * M905: Set advance factor
  5780. */
  5781. inline void gcode_M905() {
  5782. stepper.synchronize();
  5783. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5784. }
  5785. #endif
  5786. /**
  5787. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5788. */
  5789. inline void gcode_M907() {
  5790. #if HAS_DIGIPOTSS
  5791. LOOP_XYZE(i)
  5792. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5793. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5794. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5795. #elif HAS_MOTOR_CURRENT_PWM
  5796. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5797. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5798. #endif
  5799. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5800. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5801. #endif
  5802. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5803. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5804. #endif
  5805. #endif
  5806. #if ENABLED(DIGIPOT_I2C)
  5807. // this one uses actual amps in floating point
  5808. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5809. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5810. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5811. #endif
  5812. #if ENABLED(DAC_STEPPER_CURRENT)
  5813. if (code_seen('S')) {
  5814. float dac_percent = code_value_float();
  5815. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5816. }
  5817. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5818. #endif
  5819. }
  5820. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5821. /**
  5822. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5823. */
  5824. inline void gcode_M908() {
  5825. #if HAS_DIGIPOTSS
  5826. stepper.digitalPotWrite(
  5827. code_seen('P') ? code_value_int() : 0,
  5828. code_seen('S') ? code_value_int() : 0
  5829. );
  5830. #endif
  5831. #ifdef DAC_STEPPER_CURRENT
  5832. dac_current_raw(
  5833. code_seen('P') ? code_value_byte() : -1,
  5834. code_seen('S') ? code_value_ushort() : 0
  5835. );
  5836. #endif
  5837. }
  5838. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5839. inline void gcode_M909() { dac_print_values(); }
  5840. inline void gcode_M910() { dac_commit_eeprom(); }
  5841. #endif
  5842. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5843. #if HAS_MICROSTEPS
  5844. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5845. inline void gcode_M350() {
  5846. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5847. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5848. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5849. stepper.microstep_readings();
  5850. }
  5851. /**
  5852. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5853. * S# determines MS1 or MS2, X# sets the pin high/low.
  5854. */
  5855. inline void gcode_M351() {
  5856. if (code_seen('S')) switch (code_value_byte()) {
  5857. case 1:
  5858. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5859. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5860. break;
  5861. case 2:
  5862. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5863. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5864. break;
  5865. }
  5866. stepper.microstep_readings();
  5867. }
  5868. #endif // HAS_MICROSTEPS
  5869. #if ENABLED(MIXING_EXTRUDER)
  5870. /**
  5871. * M163: Set a single mix factor for a mixing extruder
  5872. * This is called "weight" by some systems.
  5873. *
  5874. * S[index] The channel index to set
  5875. * P[float] The mix value
  5876. *
  5877. */
  5878. inline void gcode_M163() {
  5879. int mix_index = code_seen('S') ? code_value_int() : 0;
  5880. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5881. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5882. }
  5883. #if MIXING_VIRTUAL_TOOLS > 1
  5884. /**
  5885. * M164: Store the current mix factors as a virtual tool.
  5886. *
  5887. * S[index] The virtual tool to store
  5888. *
  5889. */
  5890. inline void gcode_M164() {
  5891. int tool_index = code_seen('S') ? code_value_int() : 0;
  5892. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5893. normalize_mix();
  5894. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5895. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5896. }
  5897. }
  5898. #endif
  5899. #if ENABLED(DIRECT_MIXING_IN_G1)
  5900. /**
  5901. * M165: Set multiple mix factors for a mixing extruder.
  5902. * Factors that are left out will be set to 0.
  5903. * All factors together must add up to 1.0.
  5904. *
  5905. * A[factor] Mix factor for extruder stepper 1
  5906. * B[factor] Mix factor for extruder stepper 2
  5907. * C[factor] Mix factor for extruder stepper 3
  5908. * D[factor] Mix factor for extruder stepper 4
  5909. * H[factor] Mix factor for extruder stepper 5
  5910. * I[factor] Mix factor for extruder stepper 6
  5911. *
  5912. */
  5913. inline void gcode_M165() { gcode_get_mix(); }
  5914. #endif
  5915. #endif // MIXING_EXTRUDER
  5916. /**
  5917. * M999: Restart after being stopped
  5918. *
  5919. * Default behaviour is to flush the serial buffer and request
  5920. * a resend to the host starting on the last N line received.
  5921. *
  5922. * Sending "M999 S1" will resume printing without flushing the
  5923. * existing command buffer.
  5924. *
  5925. */
  5926. inline void gcode_M999() {
  5927. Running = true;
  5928. lcd_reset_alert_level();
  5929. if (code_seen('S') && code_value_bool()) return;
  5930. // gcode_LastN = Stopped_gcode_LastN;
  5931. FlushSerialRequestResend();
  5932. }
  5933. #if ENABLED(SWITCHING_EXTRUDER)
  5934. inline void move_extruder_servo(uint8_t e) {
  5935. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5936. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5937. }
  5938. #endif
  5939. inline void invalid_extruder_error(const uint8_t &e) {
  5940. SERIAL_ECHO_START;
  5941. SERIAL_CHAR('T');
  5942. SERIAL_PROTOCOL_F(e, DEC);
  5943. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5944. }
  5945. /**
  5946. * Perform a tool-change, which may result in moving the
  5947. * previous tool out of the way and the new tool into place.
  5948. */
  5949. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5950. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5951. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5952. invalid_extruder_error(tmp_extruder);
  5953. return;
  5954. }
  5955. // T0-Tnnn: Switch virtual tool by changing the mix
  5956. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5957. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5958. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5959. #if HOTENDS > 1
  5960. if (tmp_extruder >= EXTRUDERS) {
  5961. invalid_extruder_error(tmp_extruder);
  5962. return;
  5963. }
  5964. float old_feedrate_mm_s = feedrate_mm_s;
  5965. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5966. if (tmp_extruder != active_extruder) {
  5967. if (!no_move && axis_unhomed_error(true, true, true)) {
  5968. SERIAL_ECHOLNPGM("No move on toolchange");
  5969. no_move = true;
  5970. }
  5971. // Save current position to destination, for use later
  5972. set_destination_to_current();
  5973. #if ENABLED(DUAL_X_CARRIAGE)
  5974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5975. if (DEBUGGING(LEVELING)) {
  5976. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5977. switch (dual_x_carriage_mode) {
  5978. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5979. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5980. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5981. }
  5982. }
  5983. #endif
  5984. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5985. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5986. ) {
  5987. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5988. if (DEBUGGING(LEVELING)) {
  5989. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5990. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5991. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5992. }
  5993. #endif
  5994. // Park old head: 1) raise 2) move to park position 3) lower
  5995. for (uint8_t i = 0; i < 3; i++)
  5996. planner.buffer_line(
  5997. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5998. current_position[Y_AXIS],
  5999. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  6000. current_position[E_AXIS],
  6001. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6002. active_extruder
  6003. );
  6004. stepper.synchronize();
  6005. }
  6006. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  6007. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6008. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6009. active_extruder = tmp_extruder;
  6010. // This function resets the max/min values - the current position may be overwritten below.
  6011. set_axis_is_at_home(X_AXIS);
  6012. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6013. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6014. #endif
  6015. switch (dual_x_carriage_mode) {
  6016. case DXC_FULL_CONTROL_MODE:
  6017. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6018. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6019. break;
  6020. case DXC_DUPLICATION_MODE:
  6021. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  6022. if (active_extruder_parked)
  6023. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6024. else
  6025. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6026. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6027. extruder_duplication_enabled = false;
  6028. break;
  6029. default:
  6030. // record raised toolhead position for use by unpark
  6031. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6032. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6033. active_extruder_parked = true;
  6034. delayed_move_time = 0;
  6035. break;
  6036. }
  6037. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6038. if (DEBUGGING(LEVELING)) {
  6039. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6040. DEBUG_POS("New extruder (parked)", current_position);
  6041. }
  6042. #endif
  6043. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6044. #else // !DUAL_X_CARRIAGE
  6045. #if ENABLED(SWITCHING_EXTRUDER)
  6046. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6047. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6048. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6049. // Always raise by some amount
  6050. planner.buffer_line(
  6051. current_position[X_AXIS],
  6052. current_position[Y_AXIS],
  6053. current_position[Z_AXIS] + z_raise,
  6054. current_position[E_AXIS],
  6055. planner.max_feedrate_mm_s[Z_AXIS],
  6056. active_extruder
  6057. );
  6058. stepper.synchronize();
  6059. move_extruder_servo(active_extruder);
  6060. delay(500);
  6061. // Move back down, if needed
  6062. if (z_raise != z_diff) {
  6063. planner.buffer_line(
  6064. current_position[X_AXIS],
  6065. current_position[Y_AXIS],
  6066. current_position[Z_AXIS] + z_diff,
  6067. current_position[E_AXIS],
  6068. planner.max_feedrate_mm_s[Z_AXIS],
  6069. active_extruder
  6070. );
  6071. stepper.synchronize();
  6072. }
  6073. #endif
  6074. /**
  6075. * Set current_position to the position of the new nozzle.
  6076. * Offsets are based on linear distance, so we need to get
  6077. * the resulting position in coordinate space.
  6078. *
  6079. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6080. * - With mesh leveling, update Z for the new position
  6081. * - Otherwise, just use the raw linear distance
  6082. *
  6083. * Software endstops are altered here too. Consider a case where:
  6084. * E0 at X=0 ... E1 at X=10
  6085. * When we switch to E1 now X=10, but E1 can't move left.
  6086. * To express this we apply the change in XY to the software endstops.
  6087. * E1 can move farther right than E0, so the right limit is extended.
  6088. *
  6089. * Note that we don't adjust the Z software endstops. Why not?
  6090. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6091. * because the bed is 1mm lower at the new position. As long as
  6092. * the first nozzle is out of the way, the carriage should be
  6093. * allowed to move 1mm lower. This technically "breaks" the
  6094. * Z software endstop. But this is technically correct (and
  6095. * there is no viable alternative).
  6096. */
  6097. #if ABL_PLANAR
  6098. // Offset extruder, make sure to apply the bed level rotation matrix
  6099. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6100. hotend_offset[Y_AXIS][tmp_extruder],
  6101. 0),
  6102. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6103. hotend_offset[Y_AXIS][active_extruder],
  6104. 0),
  6105. offset_vec = tmp_offset_vec - act_offset_vec;
  6106. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6107. if (DEBUGGING(LEVELING)) {
  6108. tmp_offset_vec.debug("tmp_offset_vec");
  6109. act_offset_vec.debug("act_offset_vec");
  6110. offset_vec.debug("offset_vec (BEFORE)");
  6111. }
  6112. #endif
  6113. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6115. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6116. #endif
  6117. // Adjustments to the current position
  6118. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6119. current_position[Z_AXIS] += offset_vec.z;
  6120. #else // !ABL_PLANAR
  6121. float xydiff[2] = {
  6122. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6123. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6124. };
  6125. #if ENABLED(MESH_BED_LEVELING)
  6126. if (mbl.active()) {
  6127. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6128. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6129. #endif
  6130. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  6131. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  6132. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  6133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6134. if (DEBUGGING(LEVELING))
  6135. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6136. #endif
  6137. }
  6138. #endif // MESH_BED_LEVELING
  6139. #endif // !HAS_ABL
  6140. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6141. if (DEBUGGING(LEVELING)) {
  6142. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6143. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6144. SERIAL_ECHOLNPGM(" }");
  6145. }
  6146. #endif
  6147. // The newly-selected extruder XY is actually at...
  6148. current_position[X_AXIS] += xydiff[X_AXIS];
  6149. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6150. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6151. position_shift[i] += xydiff[i];
  6152. update_software_endstops((AxisEnum)i);
  6153. }
  6154. // Set the new active extruder
  6155. active_extruder = tmp_extruder;
  6156. #endif // !DUAL_X_CARRIAGE
  6157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6158. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6159. #endif
  6160. // Tell the planner the new "current position"
  6161. SYNC_PLAN_POSITION_KINEMATIC();
  6162. // Move to the "old position" (move the extruder into place)
  6163. if (!no_move && IsRunning()) {
  6164. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6165. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6166. #endif
  6167. prepare_move_to_destination();
  6168. }
  6169. } // (tmp_extruder != active_extruder)
  6170. stepper.synchronize();
  6171. #if ENABLED(EXT_SOLENOID)
  6172. disable_all_solenoids();
  6173. enable_solenoid_on_active_extruder();
  6174. #endif // EXT_SOLENOID
  6175. feedrate_mm_s = old_feedrate_mm_s;
  6176. #else // HOTENDS <= 1
  6177. // Set the new active extruder
  6178. active_extruder = tmp_extruder;
  6179. UNUSED(fr_mm_s);
  6180. UNUSED(no_move);
  6181. #endif // HOTENDS <= 1
  6182. SERIAL_ECHO_START;
  6183. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6184. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6185. }
  6186. /**
  6187. * T0-T3: Switch tool, usually switching extruders
  6188. *
  6189. * F[units/min] Set the movement feedrate
  6190. * S1 Don't move the tool in XY after change
  6191. */
  6192. inline void gcode_T(uint8_t tmp_extruder) {
  6193. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6194. if (DEBUGGING(LEVELING)) {
  6195. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6196. SERIAL_CHAR(')');
  6197. SERIAL_EOL;
  6198. DEBUG_POS("BEFORE", current_position);
  6199. }
  6200. #endif
  6201. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6202. tool_change(tmp_extruder);
  6203. #elif HOTENDS > 1
  6204. tool_change(
  6205. tmp_extruder,
  6206. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6207. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6208. );
  6209. #endif
  6210. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6211. if (DEBUGGING(LEVELING)) {
  6212. DEBUG_POS("AFTER", current_position);
  6213. SERIAL_ECHOLNPGM("<<< gcode_T");
  6214. }
  6215. #endif
  6216. }
  6217. /**
  6218. * Process a single command and dispatch it to its handler
  6219. * This is called from the main loop()
  6220. */
  6221. void process_next_command() {
  6222. current_command = command_queue[cmd_queue_index_r];
  6223. if (DEBUGGING(ECHO)) {
  6224. SERIAL_ECHO_START;
  6225. SERIAL_ECHOLN(current_command);
  6226. }
  6227. // Sanitize the current command:
  6228. // - Skip leading spaces
  6229. // - Bypass N[-0-9][0-9]*[ ]*
  6230. // - Overwrite * with nul to mark the end
  6231. while (*current_command == ' ') ++current_command;
  6232. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6233. current_command += 2; // skip N[-0-9]
  6234. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6235. while (*current_command == ' ') ++current_command; // skip [ ]*
  6236. }
  6237. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6238. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6239. char *cmd_ptr = current_command;
  6240. // Get the command code, which must be G, M, or T
  6241. char command_code = *cmd_ptr++;
  6242. // Skip spaces to get the numeric part
  6243. while (*cmd_ptr == ' ') cmd_ptr++;
  6244. // Allow for decimal point in command
  6245. #if ENABLED(G38_PROBE_TARGET)
  6246. uint8_t subcode = 0;
  6247. #endif
  6248. uint16_t codenum = 0; // define ahead of goto
  6249. // Bail early if there's no code
  6250. bool code_is_good = NUMERIC(*cmd_ptr);
  6251. if (!code_is_good) goto ExitUnknownCommand;
  6252. // Get and skip the code number
  6253. do {
  6254. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6255. cmd_ptr++;
  6256. } while (NUMERIC(*cmd_ptr));
  6257. // Allow for decimal point in command
  6258. #if ENABLED(G38_PROBE_TARGET)
  6259. if (*cmd_ptr == '.') {
  6260. cmd_ptr++;
  6261. while (NUMERIC(*cmd_ptr))
  6262. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6263. }
  6264. #endif
  6265. // Skip all spaces to get to the first argument, or nul
  6266. while (*cmd_ptr == ' ') cmd_ptr++;
  6267. // The command's arguments (if any) start here, for sure!
  6268. current_command_args = cmd_ptr;
  6269. KEEPALIVE_STATE(IN_HANDLER);
  6270. // Handle a known G, M, or T
  6271. switch (command_code) {
  6272. case 'G': switch (codenum) {
  6273. // G0, G1
  6274. case 0:
  6275. case 1:
  6276. #if IS_SCARA
  6277. gcode_G0_G1(codenum == 0);
  6278. #else
  6279. gcode_G0_G1();
  6280. #endif
  6281. break;
  6282. // G2, G3
  6283. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6284. case 2: // G2 - CW ARC
  6285. case 3: // G3 - CCW ARC
  6286. gcode_G2_G3(codenum == 2);
  6287. break;
  6288. #endif
  6289. // G4 Dwell
  6290. case 4:
  6291. gcode_G4();
  6292. break;
  6293. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6294. // G5
  6295. case 5: // G5 - Cubic B_spline
  6296. gcode_G5();
  6297. break;
  6298. #endif // BEZIER_CURVE_SUPPORT
  6299. #if ENABLED(FWRETRACT)
  6300. case 10: // G10: retract
  6301. case 11: // G11: retract_recover
  6302. gcode_G10_G11(codenum == 10);
  6303. break;
  6304. #endif // FWRETRACT
  6305. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6306. case 12:
  6307. gcode_G12(); // G12: Nozzle Clean
  6308. break;
  6309. #endif // NOZZLE_CLEAN_FEATURE
  6310. #if ENABLED(INCH_MODE_SUPPORT)
  6311. case 20: //G20: Inch Mode
  6312. gcode_G20();
  6313. break;
  6314. case 21: //G21: MM Mode
  6315. gcode_G21();
  6316. break;
  6317. #endif // INCH_MODE_SUPPORT
  6318. #if ENABLED(NOZZLE_PARK_FEATURE)
  6319. case 27: // G27: Nozzle Park
  6320. gcode_G27();
  6321. break;
  6322. #endif // NOZZLE_PARK_FEATURE
  6323. case 28: // G28: Home all axes, one at a time
  6324. gcode_G28();
  6325. break;
  6326. #if PLANNER_LEVELING
  6327. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6328. gcode_G29();
  6329. break;
  6330. #endif // PLANNER_LEVELING
  6331. #if HAS_BED_PROBE
  6332. case 30: // G30 Single Z probe
  6333. gcode_G30();
  6334. break;
  6335. #if ENABLED(Z_PROBE_SLED)
  6336. case 31: // G31: dock the sled
  6337. gcode_G31();
  6338. break;
  6339. case 32: // G32: undock the sled
  6340. gcode_G32();
  6341. break;
  6342. #endif // Z_PROBE_SLED
  6343. #endif // HAS_BED_PROBE
  6344. #if ENABLED(G38_PROBE_TARGET)
  6345. case 38: // G38.2 & G38.3
  6346. if (subcode == 2 || subcode == 3)
  6347. gcode_G38(subcode == 2);
  6348. break;
  6349. #endif
  6350. case 90: // G90
  6351. relative_mode = false;
  6352. break;
  6353. case 91: // G91
  6354. relative_mode = true;
  6355. break;
  6356. case 92: // G92
  6357. gcode_G92();
  6358. break;
  6359. }
  6360. break;
  6361. case 'M': switch (codenum) {
  6362. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6363. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6364. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6365. gcode_M0_M1();
  6366. break;
  6367. #endif // ULTIPANEL
  6368. case 17:
  6369. gcode_M17();
  6370. break;
  6371. #if ENABLED(SDSUPPORT)
  6372. case 20: // M20 - list SD card
  6373. gcode_M20(); break;
  6374. case 21: // M21 - init SD card
  6375. gcode_M21(); break;
  6376. case 22: //M22 - release SD card
  6377. gcode_M22(); break;
  6378. case 23: //M23 - Select file
  6379. gcode_M23(); break;
  6380. case 24: //M24 - Start SD print
  6381. gcode_M24(); break;
  6382. case 25: //M25 - Pause SD print
  6383. gcode_M25(); break;
  6384. case 26: //M26 - Set SD index
  6385. gcode_M26(); break;
  6386. case 27: //M27 - Get SD status
  6387. gcode_M27(); break;
  6388. case 28: //M28 - Start SD write
  6389. gcode_M28(); break;
  6390. case 29: //M29 - Stop SD write
  6391. gcode_M29(); break;
  6392. case 30: //M30 <filename> Delete File
  6393. gcode_M30(); break;
  6394. case 32: //M32 - Select file and start SD print
  6395. gcode_M32(); break;
  6396. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6397. case 33: //M33 - Get the long full path to a file or folder
  6398. gcode_M33(); break;
  6399. #endif // LONG_FILENAME_HOST_SUPPORT
  6400. case 928: //M928 - Start SD write
  6401. gcode_M928(); break;
  6402. #endif //SDSUPPORT
  6403. case 31: //M31 take time since the start of the SD print or an M109 command
  6404. gcode_M31();
  6405. break;
  6406. case 42: //M42 -Change pin status via gcode
  6407. gcode_M42();
  6408. break;
  6409. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6410. case 48: // M48 Z probe repeatability
  6411. gcode_M48();
  6412. break;
  6413. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6414. case 75: // Start print timer
  6415. gcode_M75();
  6416. break;
  6417. case 76: // Pause print timer
  6418. gcode_M76();
  6419. break;
  6420. case 77: // Stop print timer
  6421. gcode_M77();
  6422. break;
  6423. #if ENABLED(PRINTCOUNTER)
  6424. case 78: // Show print statistics
  6425. gcode_M78();
  6426. break;
  6427. #endif
  6428. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6429. case 100:
  6430. gcode_M100();
  6431. break;
  6432. #endif
  6433. case 104: // M104
  6434. gcode_M104();
  6435. break;
  6436. case 110: // M110: Set Current Line Number
  6437. gcode_M110();
  6438. break;
  6439. case 111: // M111: Set debug level
  6440. gcode_M111();
  6441. break;
  6442. #if DISABLED(EMERGENCY_PARSER)
  6443. case 108: // M108: Cancel Waiting
  6444. gcode_M108();
  6445. break;
  6446. case 112: // M112: Emergency Stop
  6447. gcode_M112();
  6448. break;
  6449. case 410: // M410 quickstop - Abort all the planned moves.
  6450. gcode_M410();
  6451. break;
  6452. #endif
  6453. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6454. case 113: // M113: Set Host Keepalive interval
  6455. gcode_M113();
  6456. break;
  6457. #endif
  6458. case 140: // M140: Set bed temp
  6459. gcode_M140();
  6460. break;
  6461. case 105: // M105: Read current temperature
  6462. gcode_M105();
  6463. KEEPALIVE_STATE(NOT_BUSY);
  6464. return; // "ok" already printed
  6465. case 109: // M109: Wait for temperature
  6466. gcode_M109();
  6467. break;
  6468. #if HAS_TEMP_BED
  6469. case 190: // M190: Wait for bed heater to reach target
  6470. gcode_M190();
  6471. break;
  6472. #endif // HAS_TEMP_BED
  6473. #if FAN_COUNT > 0
  6474. case 106: // M106: Fan On
  6475. gcode_M106();
  6476. break;
  6477. case 107: // M107: Fan Off
  6478. gcode_M107();
  6479. break;
  6480. #endif // FAN_COUNT > 0
  6481. #if ENABLED(BARICUDA)
  6482. // PWM for HEATER_1_PIN
  6483. #if HAS_HEATER_1
  6484. case 126: // M126: valve open
  6485. gcode_M126();
  6486. break;
  6487. case 127: // M127: valve closed
  6488. gcode_M127();
  6489. break;
  6490. #endif // HAS_HEATER_1
  6491. // PWM for HEATER_2_PIN
  6492. #if HAS_HEATER_2
  6493. case 128: // M128: valve open
  6494. gcode_M128();
  6495. break;
  6496. case 129: // M129: valve closed
  6497. gcode_M129();
  6498. break;
  6499. #endif // HAS_HEATER_2
  6500. #endif // BARICUDA
  6501. #if HAS_POWER_SWITCH
  6502. case 80: // M80: Turn on Power Supply
  6503. gcode_M80();
  6504. break;
  6505. #endif // HAS_POWER_SWITCH
  6506. case 81: // M81: Turn off Power, including Power Supply, if possible
  6507. gcode_M81();
  6508. break;
  6509. case 82:
  6510. gcode_M82();
  6511. break;
  6512. case 83:
  6513. gcode_M83();
  6514. break;
  6515. case 18: // (for compatibility)
  6516. case 84: // M84
  6517. gcode_M18_M84();
  6518. break;
  6519. case 85: // M85
  6520. gcode_M85();
  6521. break;
  6522. case 92: // M92: Set the steps-per-unit for one or more axes
  6523. gcode_M92();
  6524. break;
  6525. case 115: // M115: Report capabilities
  6526. gcode_M115();
  6527. break;
  6528. case 117: // M117: Set LCD message text, if possible
  6529. gcode_M117();
  6530. break;
  6531. case 114: // M114: Report current position
  6532. gcode_M114();
  6533. break;
  6534. case 120: // M120: Enable endstops
  6535. gcode_M120();
  6536. break;
  6537. case 121: // M121: Disable endstops
  6538. gcode_M121();
  6539. break;
  6540. case 119: // M119: Report endstop states
  6541. gcode_M119();
  6542. break;
  6543. #if ENABLED(ULTIPANEL)
  6544. case 145: // M145: Set material heatup parameters
  6545. gcode_M145();
  6546. break;
  6547. #endif
  6548. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6549. case 149:
  6550. gcode_M149();
  6551. break;
  6552. #endif
  6553. #if ENABLED(BLINKM)
  6554. case 150: // M150
  6555. gcode_M150();
  6556. break;
  6557. #endif //BLINKM
  6558. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6559. case 155:
  6560. gcode_M155();
  6561. break;
  6562. case 156:
  6563. gcode_M156();
  6564. break;
  6565. #endif //EXPERIMENTAL_I2CBUS
  6566. #if ENABLED(MIXING_EXTRUDER)
  6567. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6568. gcode_M163();
  6569. break;
  6570. #if MIXING_VIRTUAL_TOOLS > 1
  6571. case 164: // M164 S<int> save current mix as a virtual extruder
  6572. gcode_M164();
  6573. break;
  6574. #endif
  6575. #if ENABLED(DIRECT_MIXING_IN_G1)
  6576. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6577. gcode_M165();
  6578. break;
  6579. #endif
  6580. #endif
  6581. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6582. gcode_M200();
  6583. break;
  6584. case 201: // M201
  6585. gcode_M201();
  6586. break;
  6587. #if 0 // Not used for Sprinter/grbl gen6
  6588. case 202: // M202
  6589. gcode_M202();
  6590. break;
  6591. #endif
  6592. case 203: // M203 max feedrate units/sec
  6593. gcode_M203();
  6594. break;
  6595. case 204: // M204 acclereration S normal moves T filmanent only moves
  6596. gcode_M204();
  6597. break;
  6598. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6599. gcode_M205();
  6600. break;
  6601. case 206: // M206 additional homing offset
  6602. gcode_M206();
  6603. break;
  6604. #if ENABLED(DELTA)
  6605. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6606. gcode_M665();
  6607. break;
  6608. #endif
  6609. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6610. case 666: // M666 set delta / dual endstop adjustment
  6611. gcode_M666();
  6612. break;
  6613. #endif
  6614. #if ENABLED(FWRETRACT)
  6615. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6616. gcode_M207();
  6617. break;
  6618. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6619. gcode_M208();
  6620. break;
  6621. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6622. gcode_M209();
  6623. break;
  6624. #endif // FWRETRACT
  6625. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6626. gcode_M211();
  6627. break;
  6628. #if HOTENDS > 1
  6629. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6630. gcode_M218();
  6631. break;
  6632. #endif
  6633. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6634. gcode_M220();
  6635. break;
  6636. case 221: // M221 - Set Flow Percentage: S<percent>
  6637. gcode_M221();
  6638. break;
  6639. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6640. gcode_M226();
  6641. break;
  6642. #if HAS_SERVOS
  6643. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6644. gcode_M280();
  6645. break;
  6646. #endif // HAS_SERVOS
  6647. #if HAS_BUZZER
  6648. case 300: // M300 - Play beep tone
  6649. gcode_M300();
  6650. break;
  6651. #endif // HAS_BUZZER
  6652. #if ENABLED(PIDTEMP)
  6653. case 301: // M301
  6654. gcode_M301();
  6655. break;
  6656. #endif // PIDTEMP
  6657. #if ENABLED(PIDTEMPBED)
  6658. case 304: // M304
  6659. gcode_M304();
  6660. break;
  6661. #endif // PIDTEMPBED
  6662. #if defined(CHDK) || HAS_PHOTOGRAPH
  6663. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6664. gcode_M240();
  6665. break;
  6666. #endif // CHDK || PHOTOGRAPH_PIN
  6667. #if HAS_LCD_CONTRAST
  6668. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6669. gcode_M250();
  6670. break;
  6671. #endif // HAS_LCD_CONTRAST
  6672. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6673. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6674. gcode_M302();
  6675. break;
  6676. #endif // PREVENT_COLD_EXTRUSION
  6677. case 303: // M303 PID autotune
  6678. gcode_M303();
  6679. break;
  6680. #if ENABLED(MORGAN_SCARA)
  6681. case 360: // M360 SCARA Theta pos1
  6682. if (gcode_M360()) return;
  6683. break;
  6684. case 361: // M361 SCARA Theta pos2
  6685. if (gcode_M361()) return;
  6686. break;
  6687. case 362: // M362 SCARA Psi pos1
  6688. if (gcode_M362()) return;
  6689. break;
  6690. case 363: // M363 SCARA Psi pos2
  6691. if (gcode_M363()) return;
  6692. break;
  6693. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6694. if (gcode_M364()) return;
  6695. break;
  6696. #endif // SCARA
  6697. case 400: // M400 finish all moves
  6698. gcode_M400();
  6699. break;
  6700. #if HAS_BED_PROBE
  6701. case 401:
  6702. gcode_M401();
  6703. break;
  6704. case 402:
  6705. gcode_M402();
  6706. break;
  6707. #endif // HAS_BED_PROBE
  6708. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6709. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6710. gcode_M404();
  6711. break;
  6712. case 405: //M405 Turn on filament sensor for control
  6713. gcode_M405();
  6714. break;
  6715. case 406: //M406 Turn off filament sensor for control
  6716. gcode_M406();
  6717. break;
  6718. case 407: //M407 Display measured filament diameter
  6719. gcode_M407();
  6720. break;
  6721. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6722. #if ENABLED(MESH_BED_LEVELING)
  6723. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6724. gcode_M420();
  6725. break;
  6726. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6727. gcode_M421();
  6728. break;
  6729. #endif
  6730. case 428: // M428 Apply current_position to home_offset
  6731. gcode_M428();
  6732. break;
  6733. case 500: // M500 Store settings in EEPROM
  6734. gcode_M500();
  6735. break;
  6736. case 501: // M501 Read settings from EEPROM
  6737. gcode_M501();
  6738. break;
  6739. case 502: // M502 Revert to default settings
  6740. gcode_M502();
  6741. break;
  6742. case 503: // M503 print settings currently in memory
  6743. gcode_M503();
  6744. break;
  6745. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6746. case 540:
  6747. gcode_M540();
  6748. break;
  6749. #endif
  6750. #if HAS_BED_PROBE
  6751. case 851: // Set Z Probe Z Offset
  6752. gcode_M851();
  6753. break;
  6754. #endif // HAS_BED_PROBE
  6755. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6756. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6757. gcode_M600();
  6758. break;
  6759. #endif // FILAMENT_CHANGE_FEATURE
  6760. #if ENABLED(DUAL_X_CARRIAGE)
  6761. case 605:
  6762. gcode_M605();
  6763. break;
  6764. #endif // DUAL_X_CARRIAGE
  6765. #if ENABLED(LIN_ADVANCE)
  6766. case 905: // M905 Set advance factor.
  6767. gcode_M905();
  6768. break;
  6769. #endif
  6770. case 907: // M907 Set digital trimpot motor current using axis codes.
  6771. gcode_M907();
  6772. break;
  6773. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6774. case 908: // M908 Control digital trimpot directly.
  6775. gcode_M908();
  6776. break;
  6777. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6778. case 909: // M909 Print digipot/DAC current value
  6779. gcode_M909();
  6780. break;
  6781. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6782. gcode_M910();
  6783. break;
  6784. #endif
  6785. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6786. #if HAS_MICROSTEPS
  6787. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6788. gcode_M350();
  6789. break;
  6790. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6791. gcode_M351();
  6792. break;
  6793. #endif // HAS_MICROSTEPS
  6794. case 999: // M999: Restart after being Stopped
  6795. gcode_M999();
  6796. break;
  6797. }
  6798. break;
  6799. case 'T':
  6800. gcode_T(codenum);
  6801. break;
  6802. default: code_is_good = false;
  6803. }
  6804. KEEPALIVE_STATE(NOT_BUSY);
  6805. ExitUnknownCommand:
  6806. // Still unknown command? Throw an error
  6807. if (!code_is_good) unknown_command_error();
  6808. ok_to_send();
  6809. }
  6810. /**
  6811. * Send a "Resend: nnn" message to the host to
  6812. * indicate that a command needs to be re-sent.
  6813. */
  6814. void FlushSerialRequestResend() {
  6815. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6816. MYSERIAL.flush();
  6817. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6818. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6819. ok_to_send();
  6820. }
  6821. /**
  6822. * Send an "ok" message to the host, indicating
  6823. * that a command was successfully processed.
  6824. *
  6825. * If ADVANCED_OK is enabled also include:
  6826. * N<int> Line number of the command, if any
  6827. * P<int> Planner space remaining
  6828. * B<int> Block queue space remaining
  6829. */
  6830. void ok_to_send() {
  6831. refresh_cmd_timeout();
  6832. if (!send_ok[cmd_queue_index_r]) return;
  6833. SERIAL_PROTOCOLPGM(MSG_OK);
  6834. #if ENABLED(ADVANCED_OK)
  6835. char* p = command_queue[cmd_queue_index_r];
  6836. if (*p == 'N') {
  6837. SERIAL_PROTOCOL(' ');
  6838. SERIAL_ECHO(*p++);
  6839. while (NUMERIC_SIGNED(*p))
  6840. SERIAL_ECHO(*p++);
  6841. }
  6842. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6843. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6844. #endif
  6845. SERIAL_EOL;
  6846. }
  6847. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6848. /**
  6849. * Constrain the given coordinates to the software endstops.
  6850. */
  6851. void clamp_to_software_endstops(float target[XYZ]) {
  6852. #if ENABLED(min_software_endstops)
  6853. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6854. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6855. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6856. #endif
  6857. #if ENABLED(max_software_endstops)
  6858. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6859. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6860. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6861. #endif
  6862. }
  6863. #endif
  6864. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6865. // Get the Z adjustment for non-linear bed leveling
  6866. float bilinear_z_offset(float cartesian[XYZ]) {
  6867. // XY relative to the probed area
  6868. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  6869. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  6870. // Convert to grid box units
  6871. float ratio_x = x / bilinear_grid_spacing[X_AXIS],
  6872. ratio_y = y / bilinear_grid_spacing[Y_AXIS];
  6873. // Whole unit is the grid box index
  6874. const int gridx = constrain(floor(ratio_x), 0, ABL_GRID_POINTS_X - 2),
  6875. gridy = constrain(floor(ratio_y), 0, ABL_GRID_POINTS_Y - 2),
  6876. nextx = gridx + (x < PROBE_BED_WIDTH ? 1 : 0),
  6877. nexty = gridy + (y < PROBE_BED_HEIGHT ? 1 : 0);
  6878. // Subtract whole to get the ratio within the grid box
  6879. ratio_x = constrain(ratio_x - gridx, 0.0, 1.0);
  6880. ratio_y = constrain(ratio_y - gridy, 0.0, 1.0);
  6881. // Z at the box corners
  6882. const float z1 = bed_level_grid[gridx][gridy], // left-front
  6883. z2 = bed_level_grid[gridx][nexty], // left-back
  6884. z3 = bed_level_grid[nextx][gridy], // right-front
  6885. z4 = bed_level_grid[nextx][nexty], // right-back
  6886. // Bilinear interpolate
  6887. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  6888. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  6889. offset = L + ratio_x * (R - L);
  6890. /*
  6891. static float last_offset = 0;
  6892. if (fabs(last_offset - offset) > 0.2) {
  6893. SERIAL_ECHOPGM("Sudden Shift at ");
  6894. SERIAL_ECHOPAIR("x=", x);
  6895. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  6896. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  6897. SERIAL_ECHOPAIR(" y=", y);
  6898. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  6899. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  6900. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  6901. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  6902. SERIAL_ECHOPAIR(" z1=", z1);
  6903. SERIAL_ECHOPAIR(" z2=", z2);
  6904. SERIAL_ECHOPAIR(" z3=", z3);
  6905. SERIAL_ECHOLNPAIR(" z4=", z4);
  6906. SERIAL_ECHOPAIR(" L=", L);
  6907. SERIAL_ECHOPAIR(" R=", R);
  6908. SERIAL_ECHOLNPAIR(" offset=", offset);
  6909. }
  6910. last_offset = offset;
  6911. //*/
  6912. return offset;
  6913. }
  6914. #endif // AUTO_BED_LEVELING_BILINEAR
  6915. #if ENABLED(DELTA)
  6916. /**
  6917. * Recalculate factors used for delta kinematics whenever
  6918. * settings have been changed (e.g., by M665).
  6919. */
  6920. void recalc_delta_settings(float radius, float diagonal_rod) {
  6921. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6922. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6923. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6924. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6925. delta_tower3_x = 0.0; // back middle tower
  6926. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6927. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6928. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6929. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6930. }
  6931. #if ENABLED(DELTA_FAST_SQRT)
  6932. /**
  6933. * Fast inverse sqrt from Quake III Arena
  6934. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  6935. */
  6936. float Q_rsqrt(float number) {
  6937. long i;
  6938. float x2, y;
  6939. const float threehalfs = 1.5f;
  6940. x2 = number * 0.5f;
  6941. y = number;
  6942. i = * ( long * ) &y; // evil floating point bit level hacking
  6943. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  6944. y = * ( float * ) &i;
  6945. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  6946. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  6947. return y;
  6948. }
  6949. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  6950. #else
  6951. #define _SQRT(n) sqrt(n)
  6952. #endif
  6953. /**
  6954. * Delta Inverse Kinematics
  6955. *
  6956. * Calculate the tower positions for a given logical
  6957. * position, storing the result in the delta[] array.
  6958. *
  6959. * This is an expensive calculation, requiring 3 square
  6960. * roots per segmented linear move, and strains the limits
  6961. * of a Mega2560 with a Graphical Display.
  6962. *
  6963. * Suggested optimizations include:
  6964. *
  6965. * - Disable the home_offset (M206) and/or position_shift (G92)
  6966. * features to remove up to 12 float additions.
  6967. *
  6968. * - Use a fast-inverse-sqrt function and add the reciprocal.
  6969. * (see above)
  6970. */
  6971. // Macro to obtain the Z position of an individual tower
  6972. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  6973. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  6974. delta_tower##T##_x - raw[X_AXIS], \
  6975. delta_tower##T##_y - raw[Y_AXIS] \
  6976. ) \
  6977. )
  6978. #define DELTA_RAW_IK() do { \
  6979. delta[A_AXIS] = DELTA_Z(1); \
  6980. delta[B_AXIS] = DELTA_Z(2); \
  6981. delta[C_AXIS] = DELTA_Z(3); \
  6982. } while(0)
  6983. #define DELTA_LOGICAL_IK() do { \
  6984. const float raw[XYZ] = { \
  6985. RAW_X_POSITION(logical[X_AXIS]), \
  6986. RAW_Y_POSITION(logical[Y_AXIS]), \
  6987. RAW_Z_POSITION(logical[Z_AXIS]) \
  6988. }; \
  6989. DELTA_RAW_IK(); \
  6990. } while(0)
  6991. #define DELTA_DEBUG() do { \
  6992. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  6993. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  6994. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  6995. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  6996. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  6997. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  6998. } while(0)
  6999. void inverse_kinematics(const float logical[XYZ]) {
  7000. DELTA_LOGICAL_IK();
  7001. // DELTA_DEBUG();
  7002. }
  7003. /**
  7004. * Calculate the highest Z position where the
  7005. * effector has the full range of XY motion.
  7006. */
  7007. float delta_safe_distance_from_top() {
  7008. float cartesian[XYZ] = {
  7009. LOGICAL_X_POSITION(0),
  7010. LOGICAL_Y_POSITION(0),
  7011. LOGICAL_Z_POSITION(0)
  7012. };
  7013. inverse_kinematics(cartesian);
  7014. float distance = delta[A_AXIS];
  7015. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7016. inverse_kinematics(cartesian);
  7017. return abs(distance - delta[A_AXIS]);
  7018. }
  7019. /**
  7020. * Delta Forward Kinematics
  7021. *
  7022. * See the Wikipedia article "Trilateration"
  7023. * https://en.wikipedia.org/wiki/Trilateration
  7024. *
  7025. * Establish a new coordinate system in the plane of the
  7026. * three carriage points. This system has its origin at
  7027. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7028. * plane with a Z component of zero.
  7029. * We will define unit vectors in this coordinate system
  7030. * in our original coordinate system. Then when we calculate
  7031. * the Xnew, Ynew and Znew values, we can translate back into
  7032. * the original system by moving along those unit vectors
  7033. * by the corresponding values.
  7034. *
  7035. * Variable names matched to Marlin, c-version, and avoid the
  7036. * use of any vector library.
  7037. *
  7038. * by Andreas Hardtung 2016-06-07
  7039. * based on a Java function from "Delta Robot Kinematics V3"
  7040. * by Steve Graves
  7041. *
  7042. * The result is stored in the cartes[] array.
  7043. */
  7044. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7045. // Create a vector in old coordinates along x axis of new coordinate
  7046. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7047. // Get the Magnitude of vector.
  7048. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7049. // Create unit vector by dividing by magnitude.
  7050. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7051. // Get the vector from the origin of the new system to the third point.
  7052. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7053. // Use the dot product to find the component of this vector on the X axis.
  7054. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7055. // Create a vector along the x axis that represents the x component of p13.
  7056. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7057. // Subtract the X component from the original vector leaving only Y. We use the
  7058. // variable that will be the unit vector after we scale it.
  7059. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7060. // The magnitude of Y component
  7061. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7062. // Convert to a unit vector
  7063. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7064. // The cross product of the unit x and y is the unit z
  7065. // float[] ez = vectorCrossProd(ex, ey);
  7066. float ez[3] = {
  7067. ex[1] * ey[2] - ex[2] * ey[1],
  7068. ex[2] * ey[0] - ex[0] * ey[2],
  7069. ex[0] * ey[1] - ex[1] * ey[0]
  7070. };
  7071. // We now have the d, i and j values defined in Wikipedia.
  7072. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7073. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7074. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7075. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7076. // Start from the origin of the old coordinates and add vectors in the
  7077. // old coords that represent the Xnew, Ynew and Znew to find the point
  7078. // in the old system.
  7079. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7080. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7081. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7082. };
  7083. void forward_kinematics_DELTA(float point[ABC]) {
  7084. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7085. }
  7086. #endif // DELTA
  7087. /**
  7088. * Get the stepper positions in the cartes[] array.
  7089. * Forward kinematics are applied for DELTA and SCARA.
  7090. *
  7091. * The result is in the current coordinate space with
  7092. * leveling applied. The coordinates need to be run through
  7093. * unapply_leveling to obtain the "ideal" coordinates
  7094. * suitable for current_position, etc.
  7095. */
  7096. void get_cartesian_from_steppers() {
  7097. #if ENABLED(DELTA)
  7098. forward_kinematics_DELTA(
  7099. stepper.get_axis_position_mm(A_AXIS),
  7100. stepper.get_axis_position_mm(B_AXIS),
  7101. stepper.get_axis_position_mm(C_AXIS)
  7102. );
  7103. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7104. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7105. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7106. #elif IS_SCARA
  7107. forward_kinematics_SCARA(
  7108. stepper.get_axis_position_degrees(A_AXIS),
  7109. stepper.get_axis_position_degrees(B_AXIS)
  7110. );
  7111. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7112. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7113. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7114. #else
  7115. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7116. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7117. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7118. #endif
  7119. }
  7120. /**
  7121. * Set the current_position for an axis based on
  7122. * the stepper positions, removing any leveling that
  7123. * may have been applied.
  7124. */
  7125. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7126. get_cartesian_from_steppers();
  7127. #if PLANNER_LEVELING
  7128. planner.unapply_leveling(cartes);
  7129. #endif
  7130. if (axis == ALL_AXES)
  7131. memcpy(current_position, cartes, sizeof(cartes));
  7132. else
  7133. current_position[axis] = cartes[axis];
  7134. }
  7135. #if ENABLED(MESH_BED_LEVELING)
  7136. /**
  7137. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7138. * splitting the move where it crosses mesh borders.
  7139. */
  7140. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7141. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7142. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7143. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7144. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7145. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7146. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7147. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7148. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7149. if (cx1 == cx2 && cy1 == cy2) {
  7150. // Start and end on same mesh square
  7151. line_to_destination(fr_mm_s);
  7152. set_current_to_destination();
  7153. return;
  7154. }
  7155. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7156. float normalized_dist, end[NUM_AXIS];
  7157. // Split at the left/front border of the right/top square
  7158. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7159. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7160. memcpy(end, destination, sizeof(end));
  7161. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7162. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7163. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7164. CBI(x_splits, gcx);
  7165. }
  7166. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7167. memcpy(end, destination, sizeof(end));
  7168. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7169. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7170. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7171. CBI(y_splits, gcy);
  7172. }
  7173. else {
  7174. // Already split on a border
  7175. line_to_destination(fr_mm_s);
  7176. set_current_to_destination();
  7177. return;
  7178. }
  7179. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7180. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7181. // Do the split and look for more borders
  7182. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7183. // Restore destination from stack
  7184. memcpy(destination, end, sizeof(end));
  7185. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7186. }
  7187. #endif // MESH_BED_LEVELING
  7188. #if IS_KINEMATIC
  7189. /**
  7190. * Prepare a linear move in a DELTA or SCARA setup.
  7191. *
  7192. * This calls planner.buffer_line several times, adding
  7193. * small incremental moves for DELTA or SCARA.
  7194. */
  7195. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7196. // Get the top feedrate of the move in the XY plane
  7197. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7198. // If the move is only in Z/E don't split up the move
  7199. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7200. inverse_kinematics(ltarget);
  7201. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7202. return true;
  7203. }
  7204. // Get the cartesian distances moved in XYZE
  7205. float difference[NUM_AXIS];
  7206. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7207. // Get the linear distance in XYZ
  7208. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7209. // If the move is very short, check the E move distance
  7210. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7211. // No E move either? Game over.
  7212. if (UNEAR_ZERO(cartesian_mm)) return false;
  7213. // Minimum number of seconds to move the given distance
  7214. float seconds = cartesian_mm / _feedrate_mm_s;
  7215. // The number of segments-per-second times the duration
  7216. // gives the number of segments
  7217. uint16_t segments = delta_segments_per_second * seconds;
  7218. // For SCARA minimum segment size is 0.5mm
  7219. #if IS_SCARA
  7220. NOMORE(segments, cartesian_mm * 2);
  7221. #endif
  7222. // At least one segment is required
  7223. NOLESS(segments, 1);
  7224. // The approximate length of each segment
  7225. float segment_distance[XYZE] = {
  7226. difference[X_AXIS] / segments,
  7227. difference[Y_AXIS] / segments,
  7228. difference[Z_AXIS] / segments,
  7229. difference[E_AXIS] / segments
  7230. };
  7231. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7232. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7233. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7234. // Drop one segment so the last move is to the exact target.
  7235. // If there's only 1 segment, loops will be skipped entirely.
  7236. --segments;
  7237. // Using "raw" coordinates saves 6 float subtractions
  7238. // per segment, saving valuable CPU cycles
  7239. #if ENABLED(USE_RAW_KINEMATICS)
  7240. // Get the raw current position as starting point
  7241. float raw[XYZE] = {
  7242. RAW_CURRENT_POSITION(X_AXIS),
  7243. RAW_CURRENT_POSITION(Y_AXIS),
  7244. RAW_CURRENT_POSITION(Z_AXIS),
  7245. current_position[E_AXIS]
  7246. };
  7247. #define DELTA_VAR raw
  7248. // Delta can inline its kinematics
  7249. #if ENABLED(DELTA)
  7250. #define DELTA_IK() DELTA_RAW_IK()
  7251. #else
  7252. #define DELTA_IK() inverse_kinematics(raw)
  7253. #endif
  7254. #else
  7255. // Get the logical current position as starting point
  7256. float logical[XYZE];
  7257. memcpy(logical, current_position, sizeof(logical));
  7258. #define DELTA_VAR logical
  7259. // Delta can inline its kinematics
  7260. #if ENABLED(DELTA)
  7261. #define DELTA_IK() DELTA_LOGICAL_IK()
  7262. #else
  7263. #define DELTA_IK() inverse_kinematics(logical)
  7264. #endif
  7265. #endif
  7266. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7267. // Only interpolate XYZ. Advance E normally.
  7268. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7269. // Get the starting delta if interpolation is possible
  7270. if (segments >= 2) DELTA_IK();
  7271. // Loop using decrement
  7272. for (uint16_t s = segments + 1; --s;) {
  7273. // Are there at least 2 moves left?
  7274. if (s >= 2) {
  7275. // Save the previous delta for interpolation
  7276. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7277. // Get the delta 2 segments ahead (rather than the next)
  7278. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7279. // Advance E normally
  7280. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7281. // Get the exact delta for the move after this
  7282. DELTA_IK();
  7283. // Move to the interpolated delta position first
  7284. planner.buffer_line(
  7285. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7286. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7287. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7288. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7289. );
  7290. // Advance E once more for the next move
  7291. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7292. // Do an extra decrement of the loop
  7293. --s;
  7294. }
  7295. else {
  7296. // Get the last segment delta. (Used when segments is odd)
  7297. DELTA_NEXT(segment_distance[i]);
  7298. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7299. DELTA_IK();
  7300. }
  7301. // Move to the non-interpolated position
  7302. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7303. }
  7304. #else
  7305. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7306. // For non-interpolated delta calculate every segment
  7307. for (uint16_t s = segments + 1; --s;) {
  7308. DELTA_NEXT(segment_distance[i]);
  7309. DELTA_IK();
  7310. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7311. }
  7312. #endif
  7313. // Since segment_distance is only approximate,
  7314. // the final move must be to the exact destination.
  7315. inverse_kinematics(ltarget);
  7316. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
  7317. return true;
  7318. }
  7319. #else
  7320. /**
  7321. * Prepare a linear move in a Cartesian setup.
  7322. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7323. */
  7324. inline bool prepare_move_to_destination_cartesian() {
  7325. // Do not use feedrate_percentage for E or Z only moves
  7326. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7327. line_to_destination();
  7328. }
  7329. else {
  7330. #if ENABLED(MESH_BED_LEVELING)
  7331. if (mbl.active()) {
  7332. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7333. return false;
  7334. }
  7335. else
  7336. #endif
  7337. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7338. }
  7339. return true;
  7340. }
  7341. #endif // !IS_KINEMATIC
  7342. #if ENABLED(DUAL_X_CARRIAGE)
  7343. /**
  7344. * Prepare a linear move in a dual X axis setup
  7345. */
  7346. inline bool prepare_move_to_destination_dualx() {
  7347. if (active_extruder_parked) {
  7348. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  7349. // move duplicate extruder into correct duplication position.
  7350. planner.set_position_mm(
  7351. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7352. current_position[Y_AXIS],
  7353. current_position[Z_AXIS],
  7354. current_position[E_AXIS]
  7355. );
  7356. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7357. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7358. SYNC_PLAN_POSITION_KINEMATIC();
  7359. stepper.synchronize();
  7360. extruder_duplication_enabled = true;
  7361. active_extruder_parked = false;
  7362. }
  7363. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  7364. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7365. // This is a travel move (with no extrusion)
  7366. // Skip it, but keep track of the current position
  7367. // (so it can be used as the start of the next non-travel move)
  7368. if (delayed_move_time != 0xFFFFFFFFUL) {
  7369. set_current_to_destination();
  7370. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7371. delayed_move_time = millis();
  7372. return false;
  7373. }
  7374. }
  7375. delayed_move_time = 0;
  7376. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7377. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7378. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7379. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7380. active_extruder_parked = false;
  7381. }
  7382. }
  7383. return true;
  7384. }
  7385. #endif // DUAL_X_CARRIAGE
  7386. /**
  7387. * Prepare a single move and get ready for the next one
  7388. *
  7389. * This may result in several calls to planner.buffer_line to
  7390. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7391. */
  7392. void prepare_move_to_destination() {
  7393. clamp_to_software_endstops(destination);
  7394. refresh_cmd_timeout();
  7395. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7396. if (!DEBUGGING(DRYRUN)) {
  7397. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7398. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7399. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7400. SERIAL_ECHO_START;
  7401. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7402. }
  7403. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7404. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7405. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7406. SERIAL_ECHO_START;
  7407. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7408. }
  7409. #endif
  7410. }
  7411. }
  7412. #endif
  7413. #if IS_KINEMATIC
  7414. if (!prepare_kinematic_move_to(destination)) return;
  7415. #else
  7416. #if ENABLED(DUAL_X_CARRIAGE)
  7417. if (!prepare_move_to_destination_dualx()) return;
  7418. #endif
  7419. if (!prepare_move_to_destination_cartesian()) return;
  7420. #endif
  7421. set_current_to_destination();
  7422. }
  7423. #if ENABLED(ARC_SUPPORT)
  7424. /**
  7425. * Plan an arc in 2 dimensions
  7426. *
  7427. * The arc is approximated by generating many small linear segments.
  7428. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7429. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7430. * larger segments will tend to be more efficient. Your slicer should have
  7431. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7432. */
  7433. void plan_arc(
  7434. float logical[NUM_AXIS], // Destination position
  7435. float* offset, // Center of rotation relative to current_position
  7436. uint8_t clockwise // Clockwise?
  7437. ) {
  7438. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7439. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7440. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7441. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7442. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7443. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7444. r_Y = -offset[Y_AXIS],
  7445. rt_X = logical[X_AXIS] - center_X,
  7446. rt_Y = logical[Y_AXIS] - center_Y;
  7447. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7448. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7449. if (angular_travel < 0) angular_travel += RADIANS(360);
  7450. if (clockwise) angular_travel -= RADIANS(360);
  7451. // Make a circle if the angular rotation is 0
  7452. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7453. angular_travel += RADIANS(360);
  7454. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7455. if (mm_of_travel < 0.001) return;
  7456. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7457. if (segments == 0) segments = 1;
  7458. float theta_per_segment = angular_travel / segments;
  7459. float linear_per_segment = linear_travel / segments;
  7460. float extruder_per_segment = extruder_travel / segments;
  7461. /**
  7462. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7463. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7464. * r_T = [cos(phi) -sin(phi);
  7465. * sin(phi) cos(phi] * r ;
  7466. *
  7467. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7468. * defined from the circle center to the initial position. Each line segment is formed by successive
  7469. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7470. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7471. * all double numbers are single precision on the Arduino. (True double precision will not have
  7472. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7473. * tool precision in some cases. Therefore, arc path correction is implemented.
  7474. *
  7475. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7476. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7477. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7478. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7479. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7480. * issue for CNC machines with the single precision Arduino calculations.
  7481. *
  7482. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7483. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7484. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7485. * This is important when there are successive arc motions.
  7486. */
  7487. // Vector rotation matrix values
  7488. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7489. float sin_T = theta_per_segment;
  7490. float arc_target[NUM_AXIS];
  7491. float sin_Ti, cos_Ti, r_new_Y;
  7492. uint16_t i;
  7493. int8_t count = 0;
  7494. // Initialize the linear axis
  7495. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7496. // Initialize the extruder axis
  7497. arc_target[E_AXIS] = current_position[E_AXIS];
  7498. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7499. millis_t next_idle_ms = millis() + 200UL;
  7500. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  7501. thermalManager.manage_heater();
  7502. millis_t now = millis();
  7503. if (ELAPSED(now, next_idle_ms)) {
  7504. next_idle_ms = now + 200UL;
  7505. idle();
  7506. }
  7507. if (++count < N_ARC_CORRECTION) {
  7508. // Apply vector rotation matrix to previous r_X / 1
  7509. r_new_Y = r_X * sin_T + r_Y * cos_T;
  7510. r_X = r_X * cos_T - r_Y * sin_T;
  7511. r_Y = r_new_Y;
  7512. }
  7513. else {
  7514. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7515. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7516. // To reduce stuttering, the sin and cos could be computed at different times.
  7517. // For now, compute both at the same time.
  7518. cos_Ti = cos(i * theta_per_segment);
  7519. sin_Ti = sin(i * theta_per_segment);
  7520. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7521. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7522. count = 0;
  7523. }
  7524. // Update arc_target location
  7525. arc_target[X_AXIS] = center_X + r_X;
  7526. arc_target[Y_AXIS] = center_Y + r_Y;
  7527. arc_target[Z_AXIS] += linear_per_segment;
  7528. arc_target[E_AXIS] += extruder_per_segment;
  7529. clamp_to_software_endstops(arc_target);
  7530. #if IS_KINEMATIC
  7531. inverse_kinematics(arc_target);
  7532. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7533. #else
  7534. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7535. #endif
  7536. }
  7537. // Ensure last segment arrives at target location.
  7538. #if IS_KINEMATIC
  7539. inverse_kinematics(logical);
  7540. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7541. #else
  7542. planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
  7543. #endif
  7544. // As far as the parser is concerned, the position is now == target. In reality the
  7545. // motion control system might still be processing the action and the real tool position
  7546. // in any intermediate location.
  7547. set_current_to_destination();
  7548. }
  7549. #endif
  7550. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7551. void plan_cubic_move(const float offset[4]) {
  7552. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7553. // As far as the parser is concerned, the position is now == destination. In reality the
  7554. // motion control system might still be processing the action and the real tool position
  7555. // in any intermediate location.
  7556. set_current_to_destination();
  7557. }
  7558. #endif // BEZIER_CURVE_SUPPORT
  7559. #if HAS_CONTROLLERFAN
  7560. void controllerFan() {
  7561. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7562. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7563. millis_t ms = millis();
  7564. if (ELAPSED(ms, nextMotorCheck)) {
  7565. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7566. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7567. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7568. #if E_STEPPERS > 1
  7569. || E1_ENABLE_READ == E_ENABLE_ON
  7570. #if HAS_X2_ENABLE
  7571. || X2_ENABLE_READ == X_ENABLE_ON
  7572. #endif
  7573. #if E_STEPPERS > 2
  7574. || E2_ENABLE_READ == E_ENABLE_ON
  7575. #if E_STEPPERS > 3
  7576. || E3_ENABLE_READ == E_ENABLE_ON
  7577. #endif
  7578. #endif
  7579. #endif
  7580. ) {
  7581. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7582. }
  7583. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7584. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7585. // allows digital or PWM fan output to be used (see M42 handling)
  7586. digitalWrite(CONTROLLERFAN_PIN, speed);
  7587. analogWrite(CONTROLLERFAN_PIN, speed);
  7588. }
  7589. }
  7590. #endif // HAS_CONTROLLERFAN
  7591. #if ENABLED(MORGAN_SCARA)
  7592. /**
  7593. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7594. * Maths and first version by QHARLEY.
  7595. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7596. */
  7597. void forward_kinematics_SCARA(const float &a, const float &b) {
  7598. float a_sin = sin(RADIANS(a)) * L1,
  7599. a_cos = cos(RADIANS(a)) * L1,
  7600. b_sin = sin(RADIANS(b)) * L2,
  7601. b_cos = cos(RADIANS(b)) * L2;
  7602. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7603. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7604. /*
  7605. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7606. SERIAL_ECHOPAIR(" b=", b);
  7607. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7608. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7609. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7610. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7611. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7612. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7613. //*/
  7614. }
  7615. /**
  7616. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7617. *
  7618. * See http://forums.reprap.org/read.php?185,283327
  7619. *
  7620. * Maths and first version by QHARLEY.
  7621. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7622. */
  7623. void inverse_kinematics(const float logical[XYZ]) {
  7624. static float C2, S2, SK1, SK2, THETA, PSI;
  7625. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7626. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7627. if (L1 == L2)
  7628. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7629. else
  7630. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7631. S2 = sqrt(sq(C2) - 1);
  7632. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7633. SK1 = L1 + L2 * C2;
  7634. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7635. SK2 = L2 * S2;
  7636. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7637. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7638. // Angle of Arm2
  7639. PSI = atan2(S2, C2);
  7640. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7641. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7642. delta[C_AXIS] = logical[Z_AXIS];
  7643. /*
  7644. DEBUG_POS("SCARA IK", logical);
  7645. DEBUG_POS("SCARA IK", delta);
  7646. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7647. SERIAL_ECHOPAIR(",", sy);
  7648. SERIAL_ECHOPAIR(" C2=", C2);
  7649. SERIAL_ECHOPAIR(" S2=", S2);
  7650. SERIAL_ECHOPAIR(" Theta=", THETA);
  7651. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7652. //*/
  7653. }
  7654. #endif // MORGAN_SCARA
  7655. #if ENABLED(TEMP_STAT_LEDS)
  7656. static bool red_led = false;
  7657. static millis_t next_status_led_update_ms = 0;
  7658. void handle_status_leds(void) {
  7659. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7660. next_status_led_update_ms += 500; // Update every 0.5s
  7661. float max_temp = 0.0;
  7662. #if HAS_TEMP_BED
  7663. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7664. #endif
  7665. HOTEND_LOOP() {
  7666. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7667. }
  7668. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7669. if (new_led != red_led) {
  7670. red_led = new_led;
  7671. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7672. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7673. }
  7674. }
  7675. }
  7676. #endif
  7677. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7678. void handle_filament_runout() {
  7679. if (!filament_ran_out) {
  7680. filament_ran_out = true;
  7681. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7682. stepper.synchronize();
  7683. }
  7684. }
  7685. #endif // FILAMENT_RUNOUT_SENSOR
  7686. #if ENABLED(FAST_PWM_FAN)
  7687. void setPwmFrequency(uint8_t pin, int val) {
  7688. val &= 0x07;
  7689. switch (digitalPinToTimer(pin)) {
  7690. #if defined(TCCR0A)
  7691. case TIMER0A:
  7692. case TIMER0B:
  7693. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7694. // TCCR0B |= val;
  7695. break;
  7696. #endif
  7697. #if defined(TCCR1A)
  7698. case TIMER1A:
  7699. case TIMER1B:
  7700. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7701. // TCCR1B |= val;
  7702. break;
  7703. #endif
  7704. #if defined(TCCR2)
  7705. case TIMER2:
  7706. case TIMER2:
  7707. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7708. TCCR2 |= val;
  7709. break;
  7710. #endif
  7711. #if defined(TCCR2A)
  7712. case TIMER2A:
  7713. case TIMER2B:
  7714. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7715. TCCR2B |= val;
  7716. break;
  7717. #endif
  7718. #if defined(TCCR3A)
  7719. case TIMER3A:
  7720. case TIMER3B:
  7721. case TIMER3C:
  7722. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7723. TCCR3B |= val;
  7724. break;
  7725. #endif
  7726. #if defined(TCCR4A)
  7727. case TIMER4A:
  7728. case TIMER4B:
  7729. case TIMER4C:
  7730. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7731. TCCR4B |= val;
  7732. break;
  7733. #endif
  7734. #if defined(TCCR5A)
  7735. case TIMER5A:
  7736. case TIMER5B:
  7737. case TIMER5C:
  7738. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7739. TCCR5B |= val;
  7740. break;
  7741. #endif
  7742. }
  7743. }
  7744. #endif // FAST_PWM_FAN
  7745. float calculate_volumetric_multiplier(float diameter) {
  7746. if (!volumetric_enabled || diameter == 0) return 1.0;
  7747. float d2 = diameter * 0.5;
  7748. return 1.0 / (M_PI * d2 * d2);
  7749. }
  7750. void calculate_volumetric_multipliers() {
  7751. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7752. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7753. }
  7754. void enable_all_steppers() {
  7755. enable_x();
  7756. enable_y();
  7757. enable_z();
  7758. enable_e0();
  7759. enable_e1();
  7760. enable_e2();
  7761. enable_e3();
  7762. }
  7763. void disable_all_steppers() {
  7764. disable_x();
  7765. disable_y();
  7766. disable_z();
  7767. disable_e0();
  7768. disable_e1();
  7769. disable_e2();
  7770. disable_e3();
  7771. }
  7772. /**
  7773. * Manage several activities:
  7774. * - Check for Filament Runout
  7775. * - Keep the command buffer full
  7776. * - Check for maximum inactive time between commands
  7777. * - Check for maximum inactive time between stepper commands
  7778. * - Check if pin CHDK needs to go LOW
  7779. * - Check for KILL button held down
  7780. * - Check for HOME button held down
  7781. * - Check if cooling fan needs to be switched on
  7782. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7783. */
  7784. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7785. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7786. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7787. handle_filament_runout();
  7788. #endif
  7789. if (commands_in_queue < BUFSIZE) get_available_commands();
  7790. millis_t ms = millis();
  7791. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7792. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7793. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7794. #if ENABLED(DISABLE_INACTIVE_X)
  7795. disable_x();
  7796. #endif
  7797. #if ENABLED(DISABLE_INACTIVE_Y)
  7798. disable_y();
  7799. #endif
  7800. #if ENABLED(DISABLE_INACTIVE_Z)
  7801. disable_z();
  7802. #endif
  7803. #if ENABLED(DISABLE_INACTIVE_E)
  7804. disable_e0();
  7805. disable_e1();
  7806. disable_e2();
  7807. disable_e3();
  7808. #endif
  7809. }
  7810. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7811. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7812. chdkActive = false;
  7813. WRITE(CHDK, LOW);
  7814. }
  7815. #endif
  7816. #if HAS_KILL
  7817. // Check if the kill button was pressed and wait just in case it was an accidental
  7818. // key kill key press
  7819. // -------------------------------------------------------------------------------
  7820. static int killCount = 0; // make the inactivity button a bit less responsive
  7821. const int KILL_DELAY = 750;
  7822. if (!READ(KILL_PIN))
  7823. killCount++;
  7824. else if (killCount > 0)
  7825. killCount--;
  7826. // Exceeded threshold and we can confirm that it was not accidental
  7827. // KILL the machine
  7828. // ----------------------------------------------------------------
  7829. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7830. #endif
  7831. #if HAS_HOME
  7832. // Check to see if we have to home, use poor man's debouncer
  7833. // ---------------------------------------------------------
  7834. static int homeDebounceCount = 0; // poor man's debouncing count
  7835. const int HOME_DEBOUNCE_DELAY = 2500;
  7836. if (!READ(HOME_PIN)) {
  7837. if (!homeDebounceCount) {
  7838. enqueue_and_echo_commands_P(PSTR("G28"));
  7839. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7840. }
  7841. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7842. homeDebounceCount++;
  7843. else
  7844. homeDebounceCount = 0;
  7845. }
  7846. #endif
  7847. #if HAS_CONTROLLERFAN
  7848. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7849. #endif
  7850. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7851. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7852. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7853. bool oldstatus;
  7854. #if ENABLED(SWITCHING_EXTRUDER)
  7855. oldstatus = E0_ENABLE_READ;
  7856. enable_e0();
  7857. #else // !SWITCHING_EXTRUDER
  7858. switch (active_extruder) {
  7859. case 0:
  7860. oldstatus = E0_ENABLE_READ;
  7861. enable_e0();
  7862. break;
  7863. #if E_STEPPERS > 1
  7864. case 1:
  7865. oldstatus = E1_ENABLE_READ;
  7866. enable_e1();
  7867. break;
  7868. #if E_STEPPERS > 2
  7869. case 2:
  7870. oldstatus = E2_ENABLE_READ;
  7871. enable_e2();
  7872. break;
  7873. #if E_STEPPERS > 3
  7874. case 3:
  7875. oldstatus = E3_ENABLE_READ;
  7876. enable_e3();
  7877. break;
  7878. #endif
  7879. #endif
  7880. #endif
  7881. }
  7882. #endif // !SWITCHING_EXTRUDER
  7883. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7884. planner.buffer_line(
  7885. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  7886. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  7887. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  7888. );
  7889. stepper.synchronize();
  7890. planner.set_e_position_mm(current_position[E_AXIS]);
  7891. #if ENABLED(SWITCHING_EXTRUDER)
  7892. E0_ENABLE_WRITE(oldstatus);
  7893. #else
  7894. switch (active_extruder) {
  7895. case 0:
  7896. E0_ENABLE_WRITE(oldstatus);
  7897. break;
  7898. #if E_STEPPERS > 1
  7899. case 1:
  7900. E1_ENABLE_WRITE(oldstatus);
  7901. break;
  7902. #if E_STEPPERS > 2
  7903. case 2:
  7904. E2_ENABLE_WRITE(oldstatus);
  7905. break;
  7906. #if E_STEPPERS > 3
  7907. case 3:
  7908. E3_ENABLE_WRITE(oldstatus);
  7909. break;
  7910. #endif
  7911. #endif
  7912. #endif
  7913. }
  7914. #endif // !SWITCHING_EXTRUDER
  7915. }
  7916. #endif // EXTRUDER_RUNOUT_PREVENT
  7917. #if ENABLED(DUAL_X_CARRIAGE)
  7918. // handle delayed move timeout
  7919. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7920. // travel moves have been received so enact them
  7921. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7922. set_destination_to_current();
  7923. prepare_move_to_destination();
  7924. }
  7925. #endif
  7926. #if ENABLED(TEMP_STAT_LEDS)
  7927. handle_status_leds();
  7928. #endif
  7929. planner.check_axes_activity();
  7930. }
  7931. /**
  7932. * Standard idle routine keeps the machine alive
  7933. */
  7934. void idle(
  7935. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7936. bool no_stepper_sleep/*=false*/
  7937. #endif
  7938. ) {
  7939. lcd_update();
  7940. host_keepalive();
  7941. manage_inactivity(
  7942. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7943. no_stepper_sleep
  7944. #endif
  7945. );
  7946. thermalManager.manage_heater();
  7947. #if ENABLED(PRINTCOUNTER)
  7948. print_job_timer.tick();
  7949. #endif
  7950. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  7951. buzzer.tick();
  7952. #endif
  7953. }
  7954. /**
  7955. * Kill all activity and lock the machine.
  7956. * After this the machine will need to be reset.
  7957. */
  7958. void kill(const char* lcd_msg) {
  7959. SERIAL_ERROR_START;
  7960. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7961. #if ENABLED(ULTRA_LCD)
  7962. kill_screen(lcd_msg);
  7963. #else
  7964. UNUSED(lcd_msg);
  7965. #endif
  7966. delay(500); // Wait a short time
  7967. cli(); // Stop interrupts
  7968. thermalManager.disable_all_heaters();
  7969. disable_all_steppers();
  7970. #if HAS_POWER_SWITCH
  7971. pinMode(PS_ON_PIN, INPUT);
  7972. #endif
  7973. suicide();
  7974. while (1) {
  7975. #if ENABLED(USE_WATCHDOG)
  7976. watchdog_reset();
  7977. #endif
  7978. } // Wait for reset
  7979. }
  7980. /**
  7981. * Turn off heaters and stop the print in progress
  7982. * After a stop the machine may be resumed with M999
  7983. */
  7984. void stop() {
  7985. thermalManager.disable_all_heaters();
  7986. if (IsRunning()) {
  7987. Running = false;
  7988. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7989. SERIAL_ERROR_START;
  7990. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7991. LCD_MESSAGEPGM(MSG_STOPPED);
  7992. }
  7993. }
  7994. /**
  7995. * Marlin entry-point: Set up before the program loop
  7996. * - Set up the kill pin, filament runout, power hold
  7997. * - Start the serial port
  7998. * - Print startup messages and diagnostics
  7999. * - Get EEPROM or default settings
  8000. * - Initialize managers for:
  8001. * • temperature
  8002. * • planner
  8003. * • watchdog
  8004. * • stepper
  8005. * • photo pin
  8006. * • servos
  8007. * • LCD controller
  8008. * • Digipot I2C
  8009. * • Z probe sled
  8010. * • status LEDs
  8011. */
  8012. void setup() {
  8013. #ifdef DISABLE_JTAG
  8014. // Disable JTAG on AT90USB chips to free up pins for IO
  8015. MCUCR = 0x80;
  8016. MCUCR = 0x80;
  8017. #endif
  8018. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8019. setup_filrunoutpin();
  8020. #endif
  8021. setup_killpin();
  8022. setup_powerhold();
  8023. #if HAS_STEPPER_RESET
  8024. disableStepperDrivers();
  8025. #endif
  8026. MYSERIAL.begin(BAUDRATE);
  8027. SERIAL_PROTOCOLLNPGM("start");
  8028. SERIAL_ECHO_START;
  8029. // Check startup - does nothing if bootloader sets MCUSR to 0
  8030. byte mcu = MCUSR;
  8031. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8032. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8033. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8034. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8035. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8036. MCUSR = 0;
  8037. SERIAL_ECHOPGM(MSG_MARLIN);
  8038. SERIAL_CHAR(' ');
  8039. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8040. SERIAL_EOL;
  8041. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8042. SERIAL_ECHO_START;
  8043. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8044. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8045. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8046. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8047. #endif
  8048. SERIAL_ECHO_START;
  8049. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8050. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8051. // Send "ok" after commands by default
  8052. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8053. // Load data from EEPROM if available (or use defaults)
  8054. // This also updates variables in the planner, elsewhere
  8055. Config_RetrieveSettings();
  8056. // Initialize current position based on home_offset
  8057. memcpy(current_position, home_offset, sizeof(home_offset));
  8058. // Vital to init stepper/planner equivalent for current_position
  8059. SYNC_PLAN_POSITION_KINEMATIC();
  8060. thermalManager.init(); // Initialize temperature loop
  8061. #if ENABLED(USE_WATCHDOG)
  8062. watchdog_init();
  8063. #endif
  8064. stepper.init(); // Initialize stepper, this enables interrupts!
  8065. setup_photpin();
  8066. servo_init();
  8067. #if HAS_BED_PROBE
  8068. endstops.enable_z_probe(false);
  8069. #endif
  8070. #if HAS_CONTROLLERFAN
  8071. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8072. #endif
  8073. #if HAS_STEPPER_RESET
  8074. enableStepperDrivers();
  8075. #endif
  8076. #if ENABLED(DIGIPOT_I2C)
  8077. digipot_i2c_init();
  8078. #endif
  8079. #if ENABLED(DAC_STEPPER_CURRENT)
  8080. dac_init();
  8081. #endif
  8082. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8083. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8084. #endif // Z_PROBE_SLED
  8085. setup_homepin();
  8086. #if PIN_EXISTS(STAT_LED_RED)
  8087. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8088. #endif
  8089. #if PIN_EXISTS(STAT_LED_BLUE)
  8090. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8091. #endif
  8092. lcd_init();
  8093. #if ENABLED(SHOW_BOOTSCREEN)
  8094. #if ENABLED(DOGLCD)
  8095. safe_delay(BOOTSCREEN_TIMEOUT);
  8096. #elif ENABLED(ULTRA_LCD)
  8097. bootscreen();
  8098. lcd_init();
  8099. #endif
  8100. #endif
  8101. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8102. // Initialize mixing to 100% color 1
  8103. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8104. mixing_factor[i] = (i == 0) ? 1 : 0;
  8105. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8106. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8107. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8108. #endif
  8109. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8110. i2c.onReceive(i2c_on_receive);
  8111. i2c.onRequest(i2c_on_request);
  8112. #endif
  8113. }
  8114. /**
  8115. * The main Marlin program loop
  8116. *
  8117. * - Save or log commands to SD
  8118. * - Process available commands (if not saving)
  8119. * - Call heater manager
  8120. * - Call inactivity manager
  8121. * - Call endstop manager
  8122. * - Call LCD update
  8123. */
  8124. void loop() {
  8125. if (commands_in_queue < BUFSIZE) get_available_commands();
  8126. #if ENABLED(SDSUPPORT)
  8127. card.checkautostart(false);
  8128. #endif
  8129. if (commands_in_queue) {
  8130. #if ENABLED(SDSUPPORT)
  8131. if (card.saving) {
  8132. char* command = command_queue[cmd_queue_index_r];
  8133. if (strstr_P(command, PSTR("M29"))) {
  8134. // M29 closes the file
  8135. card.closefile();
  8136. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8137. ok_to_send();
  8138. }
  8139. else {
  8140. // Write the string from the read buffer to SD
  8141. card.write_command(command);
  8142. if (card.logging)
  8143. process_next_command(); // The card is saving because it's logging
  8144. else
  8145. ok_to_send();
  8146. }
  8147. }
  8148. else
  8149. process_next_command();
  8150. #else
  8151. process_next_command();
  8152. #endif // SDSUPPORT
  8153. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8154. if (commands_in_queue) {
  8155. --commands_in_queue;
  8156. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8157. }
  8158. }
  8159. endstops.report_state();
  8160. idle();
  8161. }