My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.h 25KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * temperature.h - temperature controller
  25. */
  26. #include "thermistor/thermistors.h"
  27. #include "../inc/MarlinConfig.h"
  28. #if ENABLED(AUTO_POWER_CONTROL)
  29. #include "../feature/power.h"
  30. #endif
  31. #ifndef SOFT_PWM_SCALE
  32. #define SOFT_PWM_SCALE 0
  33. #endif
  34. #if HOTENDS <= 1
  35. #define HOTEND_INDEX 0
  36. #define E_NAME
  37. #else
  38. #define HOTEND_INDEX e
  39. #define E_NAME e
  40. #endif
  41. // Identifiers for other heaters
  42. typedef enum : int8_t {
  43. INDEX_NONE = -5,
  44. H_PROBE, H_REDUNDANT, H_CHAMBER, H_BED,
  45. H_E0, H_E1, H_E2, H_E3, H_E4, H_E5, H_E6, H_E7
  46. } heater_ind_t;
  47. // PID storage
  48. typedef struct { float Kp, Ki, Kd; } PID_t;
  49. typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t;
  50. typedef struct { float Kp, Ki, Kd, Kf; } PIDF_t;
  51. typedef struct { float Kp, Ki, Kd, Kc, Kf; } PIDCF_t;
  52. typedef
  53. #if BOTH(PID_EXTRUSION_SCALING, PID_FAN_SCALING)
  54. PIDCF_t
  55. #elif ENABLED(PID_EXTRUSION_SCALING)
  56. PIDC_t
  57. #elif ENABLED(PID_FAN_SCALING)
  58. PIDF_t
  59. #else
  60. PID_t
  61. #endif
  62. hotend_pid_t;
  63. #if ENABLED(PID_EXTRUSION_SCALING)
  64. typedef IF<(LPQ_MAX_LEN > 255), uint16_t, uint8_t>::type lpq_ptr_t;
  65. #endif
  66. #if ENABLED(PIDTEMP)
  67. #define _PID_Kp(H) Temperature::temp_hotend[H].pid.Kp
  68. #define _PID_Ki(H) Temperature::temp_hotend[H].pid.Ki
  69. #define _PID_Kd(H) Temperature::temp_hotend[H].pid.Kd
  70. #if ENABLED(PID_EXTRUSION_SCALING)
  71. #define _PID_Kc(H) Temperature::temp_hotend[H].pid.Kc
  72. #else
  73. #define _PID_Kc(H) 1
  74. #endif
  75. #if ENABLED(PID_FAN_SCALING)
  76. #define _PID_Kf(H) Temperature::temp_hotend[H].pid.Kf
  77. #else
  78. #define _PID_Kf(H) 0
  79. #endif
  80. #else
  81. #define _PID_Kp(H) NAN
  82. #define _PID_Ki(H) NAN
  83. #define _PID_Kd(H) NAN
  84. #define _PID_Kc(H) 1
  85. #endif
  86. #define PID_PARAM(F,H) _PID_##F(H)
  87. /**
  88. * States for ADC reading in the ISR
  89. */
  90. enum ADCSensorState : char {
  91. StartSampling,
  92. #if HAS_TEMP_ADC_0
  93. PrepareTemp_0, MeasureTemp_0,
  94. #endif
  95. #if HAS_HEATED_BED
  96. PrepareTemp_BED, MeasureTemp_BED,
  97. #endif
  98. #if HAS_TEMP_CHAMBER
  99. PrepareTemp_CHAMBER, MeasureTemp_CHAMBER,
  100. #endif
  101. #if HAS_TEMP_PROBE
  102. PrepareTemp_PROBE, MeasureTemp_PROBE,
  103. #endif
  104. #if HAS_TEMP_ADC_1
  105. PrepareTemp_1, MeasureTemp_1,
  106. #endif
  107. #if HAS_TEMP_ADC_2
  108. PrepareTemp_2, MeasureTemp_2,
  109. #endif
  110. #if HAS_TEMP_ADC_3
  111. PrepareTemp_3, MeasureTemp_3,
  112. #endif
  113. #if HAS_TEMP_ADC_4
  114. PrepareTemp_4, MeasureTemp_4,
  115. #endif
  116. #if HAS_TEMP_ADC_5
  117. PrepareTemp_5, MeasureTemp_5,
  118. #endif
  119. #if HAS_TEMP_ADC_6
  120. PrepareTemp_6, MeasureTemp_6,
  121. #endif
  122. #if HAS_TEMP_ADC_7
  123. PrepareTemp_7, MeasureTemp_7,
  124. #endif
  125. #if HAS_JOY_ADC_X
  126. PrepareJoy_X, MeasureJoy_X,
  127. #endif
  128. #if HAS_JOY_ADC_Y
  129. PrepareJoy_Y, MeasureJoy_Y,
  130. #endif
  131. #if HAS_JOY_ADC_Z
  132. PrepareJoy_Z, MeasureJoy_Z,
  133. #endif
  134. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  135. Prepare_FILWIDTH, Measure_FILWIDTH,
  136. #endif
  137. #if HAS_ADC_BUTTONS
  138. Prepare_ADC_KEY, Measure_ADC_KEY,
  139. #endif
  140. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  141. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  142. };
  143. // Minimum number of Temperature::ISR loops between sensor readings.
  144. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  145. // get all oversampled sensor readings
  146. #define MIN_ADC_ISR_LOOPS 10
  147. #define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  148. #if HAS_PID_HEATING
  149. #define PID_K2 (1-float(PID_K1))
  150. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
  151. // Apply the scale factors to the PID values
  152. #define scalePID_i(i) ( float(i) * PID_dT )
  153. #define unscalePID_i(i) ( float(i) / PID_dT )
  154. #define scalePID_d(d) ( float(d) / PID_dT )
  155. #define unscalePID_d(d) ( float(d) * PID_dT )
  156. #endif
  157. #if BOTH(HAS_LCD_MENU, G26_MESH_VALIDATION)
  158. #define G26_CLICK_CAN_CANCEL 1
  159. #endif
  160. // A temperature sensor
  161. typedef struct TempInfo {
  162. uint16_t acc;
  163. int16_t raw;
  164. float celsius;
  165. inline void reset() { acc = 0; }
  166. inline void sample(const uint16_t s) { acc += s; }
  167. inline void update() { raw = acc; }
  168. } temp_info_t;
  169. // A PWM heater with temperature sensor
  170. typedef struct HeaterInfo : public TempInfo {
  171. int16_t target;
  172. uint8_t soft_pwm_amount;
  173. } heater_info_t;
  174. // A heater with PID stabilization
  175. template<typename T>
  176. struct PIDHeaterInfo : public HeaterInfo {
  177. T pid; // Initialized by settings.load()
  178. };
  179. #if ENABLED(PIDTEMP)
  180. typedef struct PIDHeaterInfo<hotend_pid_t> hotend_info_t;
  181. #else
  182. typedef heater_info_t hotend_info_t;
  183. #endif
  184. #if HAS_HEATED_BED
  185. #if ENABLED(PIDTEMPBED)
  186. typedef struct PIDHeaterInfo<PID_t> bed_info_t;
  187. #else
  188. typedef heater_info_t bed_info_t;
  189. #endif
  190. #endif
  191. #if HAS_TEMP_PROBE
  192. typedef temp_info_t probe_info_t;
  193. #endif
  194. #if HAS_HEATED_CHAMBER
  195. typedef heater_info_t chamber_info_t;
  196. #elif HAS_TEMP_CHAMBER
  197. typedef temp_info_t chamber_info_t;
  198. #endif
  199. // Heater idle handling
  200. typedef struct {
  201. millis_t timeout_ms;
  202. bool timed_out;
  203. inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; }
  204. inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; }
  205. inline void reset() { timeout_ms = 0; timed_out = false; }
  206. inline void expire() { start(0); }
  207. } hotend_idle_t;
  208. // Heater watch handling
  209. template <int INCREASE, int HYSTERESIS, millis_t PERIOD>
  210. struct HeaterWatch {
  211. uint16_t target;
  212. millis_t next_ms;
  213. inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); }
  214. inline bool elapsed() { return elapsed(millis()); }
  215. inline void restart(const int16_t curr, const int16_t tgt) {
  216. if (tgt) {
  217. const int16_t newtarget = curr + INCREASE;
  218. if (newtarget < tgt - HYSTERESIS - 1) {
  219. target = newtarget;
  220. next_ms = millis() + SEC_TO_MS(PERIOD);
  221. return;
  222. }
  223. }
  224. next_ms = 0;
  225. }
  226. };
  227. #if WATCH_HOTENDS
  228. typedef struct HeaterWatch<WATCH_TEMP_INCREASE, TEMP_HYSTERESIS, WATCH_TEMP_PERIOD> hotend_watch_t;
  229. #endif
  230. #if WATCH_BED
  231. typedef struct HeaterWatch<WATCH_BED_TEMP_INCREASE, TEMP_BED_HYSTERESIS, WATCH_BED_TEMP_PERIOD> bed_watch_t;
  232. #endif
  233. #if WATCH_CHAMBER
  234. typedef struct HeaterWatch<WATCH_CHAMBER_TEMP_INCREASE, TEMP_CHAMBER_HYSTERESIS, WATCH_CHAMBER_TEMP_PERIOD> chamber_watch_t;
  235. #endif
  236. // Temperature sensor read value ranges
  237. typedef struct { int16_t raw_min, raw_max; } raw_range_t;
  238. typedef struct { int16_t mintemp, maxtemp; } celsius_range_t;
  239. typedef struct { int16_t raw_min, raw_max, mintemp, maxtemp; } temp_range_t;
  240. #define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold !
  241. #define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable
  242. #if HAS_USER_THERMISTORS
  243. enum CustomThermistorIndex : uint8_t {
  244. #if ENABLED(HEATER_0_USER_THERMISTOR)
  245. CTI_HOTEND_0,
  246. #endif
  247. #if ENABLED(HEATER_1_USER_THERMISTOR)
  248. CTI_HOTEND_1,
  249. #endif
  250. #if ENABLED(HEATER_2_USER_THERMISTOR)
  251. CTI_HOTEND_2,
  252. #endif
  253. #if ENABLED(HEATER_3_USER_THERMISTOR)
  254. CTI_HOTEND_3,
  255. #endif
  256. #if ENABLED(HEATER_4_USER_THERMISTOR)
  257. CTI_HOTEND_4,
  258. #endif
  259. #if ENABLED(HEATER_5_USER_THERMISTOR)
  260. CTI_HOTEND_5,
  261. #endif
  262. #if ENABLED(HEATER_BED_USER_THERMISTOR)
  263. CTI_BED,
  264. #endif
  265. #if ENABLED(HEATER_PROBE_USER_THERMISTOR)
  266. CTI_PROBE,
  267. #endif
  268. #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
  269. CTI_CHAMBER,
  270. #endif
  271. USER_THERMISTORS
  272. };
  273. // User-defined thermistor
  274. typedef struct {
  275. bool pre_calc; // true if pre-calculations update needed
  276. float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0'
  277. sh_alpha,
  278. series_res,
  279. res_25, res_25_recip,
  280. res_25_log,
  281. beta, beta_recip;
  282. } user_thermistor_t;
  283. #endif
  284. class Temperature {
  285. public:
  286. #if HAS_HOTEND
  287. #define HOTEND_TEMPS (HOTENDS + ENABLED(TEMP_SENSOR_1_AS_REDUNDANT))
  288. static hotend_info_t temp_hotend[HOTEND_TEMPS];
  289. static constexpr int16_t heater_maxtemp[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_MAXTEMP, HEATER_1_MAXTEMP, HEATER_2_MAXTEMP, HEATER_3_MAXTEMP, HEATER_4_MAXTEMP, HEATER_5_MAXTEMP, HEATER_6_MAXTEMP, HEATER_7_MAXTEMP);
  290. #endif
  291. TERN_(HAS_HEATED_BED, static bed_info_t temp_bed);
  292. TERN_(HAS_TEMP_PROBE, static probe_info_t temp_probe);
  293. TERN_(HAS_TEMP_CHAMBER, static chamber_info_t temp_chamber);
  294. TERN_(AUTO_POWER_E_FANS, static uint8_t autofan_speed[HOTENDS]);
  295. TERN_(AUTO_POWER_CHAMBER_FAN, static uint8_t chamberfan_speed);
  296. #if ENABLED(FAN_SOFT_PWM)
  297. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  298. soft_pwm_count_fan[FAN_COUNT];
  299. #endif
  300. #if ENABLED(PREVENT_COLD_EXTRUSION)
  301. static bool allow_cold_extrude;
  302. static int16_t extrude_min_temp;
  303. FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
  304. FORCE_INLINE static bool tooColdToExtrude(const uint8_t E_NAME) {
  305. return tooCold(degHotend(HOTEND_INDEX));
  306. }
  307. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t E_NAME) {
  308. return tooCold(degTargetHotend(HOTEND_INDEX));
  309. }
  310. #else
  311. FORCE_INLINE static bool tooColdToExtrude(const uint8_t) { return false; }
  312. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t) { return false; }
  313. #endif
  314. FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
  315. FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
  316. #if HEATER_IDLE_HANDLER
  317. static hotend_idle_t hotend_idle[HOTENDS];
  318. TERN_(HAS_HEATED_BED, static hotend_idle_t bed_idle);
  319. TERN_(HAS_HEATED_CHAMBER, static hotend_idle_t chamber_idle);
  320. #endif
  321. private:
  322. TERN_(EARLY_WATCHDOG, static bool inited); // If temperature controller is running
  323. static volatile bool raw_temps_ready;
  324. TERN_(WATCH_HOTENDS, static hotend_watch_t watch_hotend[HOTENDS]);
  325. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  326. static uint16_t redundant_temperature_raw;
  327. static float redundant_temperature;
  328. #endif
  329. #if ENABLED(PID_EXTRUSION_SCALING)
  330. static int32_t last_e_position, lpq[LPQ_MAX_LEN];
  331. static lpq_ptr_t lpq_ptr;
  332. #endif
  333. TERN_(HAS_HOTEND, static temp_range_t temp_range[HOTENDS]);
  334. #if HAS_HEATED_BED
  335. TERN_(WATCH_BED, static bed_watch_t watch_bed);
  336. TERN(PIDTEMPBED,,static millis_t next_bed_check_ms);
  337. #ifdef BED_MINTEMP
  338. static int16_t mintemp_raw_BED;
  339. #endif
  340. #ifdef BED_MAXTEMP
  341. static int16_t maxtemp_raw_BED;
  342. #endif
  343. #endif
  344. #if HAS_HEATED_CHAMBER
  345. TERN_(WATCH_CHAMBER, static chamber_watch_t watch_chamber);
  346. static millis_t next_chamber_check_ms;
  347. #ifdef CHAMBER_MINTEMP
  348. static int16_t mintemp_raw_CHAMBER;
  349. #endif
  350. #ifdef CHAMBER_MAXTEMP
  351. static int16_t maxtemp_raw_CHAMBER;
  352. #endif
  353. #endif
  354. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  355. static uint8_t consecutive_low_temperature_error[HOTENDS];
  356. #endif
  357. #ifdef MILLISECONDS_PREHEAT_TIME
  358. static millis_t preheat_end_time[HOTENDS];
  359. #endif
  360. TERN_(HAS_AUTO_FAN, static millis_t next_auto_fan_check_ms);
  361. TERN_(PROBING_HEATERS_OFF, static bool paused);
  362. public:
  363. #if HAS_ADC_BUTTONS
  364. static uint32_t current_ADCKey_raw;
  365. static uint8_t ADCKey_count;
  366. #endif
  367. TERN_(PID_EXTRUSION_SCALING, static int16_t lpq_len);
  368. /**
  369. * Instance Methods
  370. */
  371. void init();
  372. /**
  373. * Static (class) methods
  374. */
  375. #if HAS_USER_THERMISTORS
  376. static user_thermistor_t user_thermistor[USER_THERMISTORS];
  377. static void log_user_thermistor(const uint8_t t_index, const bool eprom=false);
  378. static void reset_user_thermistors();
  379. static float user_thermistor_to_deg_c(const uint8_t t_index, const int raw);
  380. static bool set_pull_up_res(int8_t t_index, float value) {
  381. //if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false;
  382. if (!WITHIN(value, 1, 1000000)) return false;
  383. user_thermistor[t_index].series_res = value;
  384. return true;
  385. }
  386. static bool set_res25(int8_t t_index, float value) {
  387. if (!WITHIN(value, 1, 10000000)) return false;
  388. user_thermistor[t_index].res_25 = value;
  389. user_thermistor[t_index].pre_calc = true;
  390. return true;
  391. }
  392. static bool set_beta(int8_t t_index, float value) {
  393. if (!WITHIN(value, 1, 1000000)) return false;
  394. user_thermistor[t_index].beta = value;
  395. user_thermistor[t_index].pre_calc = true;
  396. return true;
  397. }
  398. static bool set_sh_coeff(int8_t t_index, float value) {
  399. if (!WITHIN(value, -0.01f, 0.01f)) return false;
  400. user_thermistor[t_index].sh_c_coeff = value;
  401. user_thermistor[t_index].pre_calc = true;
  402. return true;
  403. }
  404. #endif
  405. #if HAS_HOTEND
  406. static float analog_to_celsius_hotend(const int raw, const uint8_t e);
  407. #endif
  408. #if HAS_HEATED_BED
  409. static float analog_to_celsius_bed(const int raw);
  410. #endif
  411. #if HAS_TEMP_PROBE
  412. static float analog_to_celsius_probe(const int raw);
  413. #endif
  414. #if HAS_TEMP_CHAMBER
  415. static float analog_to_celsius_chamber(const int raw);
  416. #endif
  417. #if HAS_FAN
  418. static uint8_t fan_speed[FAN_COUNT];
  419. #define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT)
  420. static void set_fan_speed(const uint8_t target, const uint16_t speed);
  421. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  422. static bool fans_paused;
  423. static uint8_t saved_fan_speed[FAN_COUNT];
  424. #endif
  425. static constexpr inline uint8_t fanPercent(const uint8_t speed) { return ui8_to_percent(speed); }
  426. TERN_(ADAPTIVE_FAN_SLOWING, static uint8_t fan_speed_scaler[FAN_COUNT]);
  427. static inline uint8_t scaledFanSpeed(const uint8_t target, const uint8_t fs) {
  428. UNUSED(target); // Potentially unused!
  429. return (fs * uint16_t(
  430. #if ENABLED(ADAPTIVE_FAN_SLOWING)
  431. fan_speed_scaler[target]
  432. #else
  433. 128
  434. #endif
  435. )) >> 7;
  436. }
  437. static inline uint8_t scaledFanSpeed(const uint8_t target) {
  438. return scaledFanSpeed(target, fan_speed[target]);
  439. }
  440. #if ENABLED(EXTRA_FAN_SPEED)
  441. static uint8_t old_fan_speed[FAN_COUNT], new_fan_speed[FAN_COUNT];
  442. static void set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp);
  443. #endif
  444. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  445. void set_fans_paused(const bool p);
  446. #endif
  447. #endif // HAS_FAN
  448. static inline void zero_fan_speeds() {
  449. #if HAS_FAN
  450. FANS_LOOP(i) set_fan_speed(i, 0);
  451. #endif
  452. }
  453. /**
  454. * Called from the Temperature ISR
  455. */
  456. static void readings_ready();
  457. static void tick();
  458. /**
  459. * Call periodically to manage heaters
  460. */
  461. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  462. /**
  463. * Preheating hotends
  464. */
  465. #ifdef MILLISECONDS_PREHEAT_TIME
  466. static bool is_preheating(const uint8_t E_NAME) {
  467. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  468. }
  469. static void start_preheat_time(const uint8_t E_NAME) {
  470. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  471. }
  472. static void reset_preheat_time(const uint8_t E_NAME) {
  473. preheat_end_time[HOTEND_INDEX] = 0;
  474. }
  475. #else
  476. #define is_preheating(n) (false)
  477. #endif
  478. //high level conversion routines, for use outside of temperature.cpp
  479. //inline so that there is no performance decrease.
  480. //deg=degreeCelsius
  481. FORCE_INLINE static float degHotend(const uint8_t E_NAME) {
  482. return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].celsius);
  483. }
  484. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  485. FORCE_INLINE static int16_t rawHotendTemp(const uint8_t E_NAME) {
  486. return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].raw);
  487. }
  488. #endif
  489. FORCE_INLINE static int16_t degTargetHotend(const uint8_t E_NAME) {
  490. return TERN0(HAS_HOTEND, temp_hotend[HOTEND_INDEX].target);
  491. }
  492. #if WATCH_HOTENDS
  493. static void start_watching_hotend(const uint8_t e=0);
  494. #else
  495. static inline void start_watching_hotend(const uint8_t=0) {}
  496. #endif
  497. #if HAS_HOTEND
  498. static void setTargetHotend(const int16_t celsius, const uint8_t E_NAME) {
  499. const uint8_t ee = HOTEND_INDEX;
  500. #ifdef MILLISECONDS_PREHEAT_TIME
  501. if (celsius == 0)
  502. reset_preheat_time(ee);
  503. else if (temp_hotend[ee].target == 0)
  504. start_preheat_time(ee);
  505. #endif
  506. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  507. temp_hotend[ee].target = _MIN(celsius, temp_range[ee].maxtemp - 15);
  508. start_watching_hotend(ee);
  509. }
  510. FORCE_INLINE static bool isHeatingHotend(const uint8_t E_NAME) {
  511. return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius;
  512. }
  513. FORCE_INLINE static bool isCoolingHotend(const uint8_t E_NAME) {
  514. return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius;
  515. }
  516. #if HAS_TEMP_HOTEND
  517. static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true
  518. #if G26_CLICK_CAN_CANCEL
  519. , const bool click_to_cancel=false
  520. #endif
  521. );
  522. #endif
  523. FORCE_INLINE static bool still_heating(const uint8_t e) {
  524. return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
  525. }
  526. #endif // HOTENDS
  527. #if HAS_HEATED_BED
  528. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  529. FORCE_INLINE static int16_t rawBedTemp() { return temp_bed.raw; }
  530. #endif
  531. FORCE_INLINE static float degBed() { return temp_bed.celsius; }
  532. FORCE_INLINE static int16_t degTargetBed() { return temp_bed.target; }
  533. FORCE_INLINE static bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; }
  534. FORCE_INLINE static bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; }
  535. #if WATCH_BED
  536. static void start_watching_bed();
  537. #else
  538. static inline void start_watching_bed() {}
  539. #endif
  540. static void setTargetBed(const int16_t celsius) {
  541. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  542. temp_bed.target =
  543. #ifdef BED_MAXTEMP
  544. _MIN(celsius, BED_MAX_TARGET)
  545. #else
  546. celsius
  547. #endif
  548. ;
  549. start_watching_bed();
  550. }
  551. static bool wait_for_bed(const bool no_wait_for_cooling=true
  552. #if G26_CLICK_CAN_CANCEL
  553. , const bool click_to_cancel=false
  554. #endif
  555. );
  556. static void wait_for_bed_heating();
  557. #endif // HAS_HEATED_BED
  558. #if HAS_TEMP_PROBE
  559. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  560. FORCE_INLINE static int16_t rawProbeTemp() { return temp_probe.raw; }
  561. #endif
  562. FORCE_INLINE static float degProbe() { return temp_probe.celsius; }
  563. #endif
  564. #if WATCH_PROBE
  565. static void start_watching_probe();
  566. #else
  567. static inline void start_watching_probe() {}
  568. #endif
  569. #if HAS_TEMP_CHAMBER
  570. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  571. FORCE_INLINE static int16_t rawChamberTemp() { return temp_chamber.raw; }
  572. #endif
  573. FORCE_INLINE static float degChamber() { return temp_chamber.celsius; }
  574. #if HAS_HEATED_CHAMBER
  575. FORCE_INLINE static int16_t degTargetChamber() { return temp_chamber.target; }
  576. FORCE_INLINE static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; }
  577. FORCE_INLINE static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; }
  578. static bool wait_for_chamber(const bool no_wait_for_cooling=true);
  579. #endif
  580. #endif // HAS_TEMP_CHAMBER
  581. #if WATCH_CHAMBER
  582. static void start_watching_chamber();
  583. #else
  584. static inline void start_watching_chamber() {}
  585. #endif
  586. #if HAS_HEATED_CHAMBER
  587. static void setTargetChamber(const int16_t celsius) {
  588. temp_chamber.target =
  589. #ifdef CHAMBER_MAXTEMP
  590. _MIN(celsius, CHAMBER_MAXTEMP - 10)
  591. #else
  592. celsius
  593. #endif
  594. ;
  595. start_watching_chamber();
  596. }
  597. #endif // HAS_HEATED_CHAMBER
  598. /**
  599. * The software PWM power for a heater
  600. */
  601. static int16_t getHeaterPower(const heater_ind_t heater);
  602. /**
  603. * Switch off all heaters, set all target temperatures to 0
  604. */
  605. static void disable_all_heaters();
  606. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  607. /**
  608. * Methods to check if heaters are enabled, indicating an active job
  609. */
  610. static bool over_autostart_threshold();
  611. static void check_timer_autostart(const bool can_start, const bool can_stop);
  612. #endif
  613. /**
  614. * Perform auto-tuning for hotend or bed in response to M303
  615. */
  616. #if HAS_PID_HEATING
  617. static void PID_autotune(const float &target, const heater_ind_t hotend, const int8_t ncycles, const bool set_result=false);
  618. #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
  619. static bool adaptive_fan_slowing;
  620. #elif ENABLED(ADAPTIVE_FAN_SLOWING)
  621. static constexpr bool adaptive_fan_slowing = true;
  622. #endif
  623. /**
  624. * Update the temp manager when PID values change
  625. */
  626. #if ENABLED(PIDTEMP)
  627. FORCE_INLINE static void updatePID() {
  628. TERN_(PID_EXTRUSION_SCALING, last_e_position = 0);
  629. }
  630. #endif
  631. #endif
  632. #if ENABLED(PROBING_HEATERS_OFF)
  633. static void pause(const bool p);
  634. FORCE_INLINE static bool is_paused() { return paused; }
  635. #endif
  636. #if HEATER_IDLE_HANDLER
  637. static void reset_hotend_idle_timer(const uint8_t E_NAME) {
  638. hotend_idle[HOTEND_INDEX].reset();
  639. start_watching_hotend(HOTEND_INDEX);
  640. }
  641. #if HAS_HEATED_BED
  642. static void reset_bed_idle_timer() {
  643. bed_idle.reset();
  644. start_watching_bed();
  645. }
  646. #endif
  647. #endif // HEATER_IDLE_HANDLER
  648. #if HAS_TEMP_SENSOR
  649. static void print_heater_states(const uint8_t target_extruder
  650. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  651. , const bool include_r=false
  652. #endif
  653. );
  654. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  655. static uint8_t auto_report_temp_interval;
  656. static millis_t next_temp_report_ms;
  657. static void auto_report_temperatures();
  658. static inline void set_auto_report_interval(uint8_t v) {
  659. NOMORE(v, 60);
  660. auto_report_temp_interval = v;
  661. next_temp_report_ms = millis() + 1000UL * v;
  662. }
  663. #endif
  664. #endif
  665. TERN_(HAS_DISPLAY, static void set_heating_message(const uint8_t e));
  666. #if HAS_LCD_MENU
  667. static void lcd_preheat(const int16_t e, const int8_t indh, const int8_t indb);
  668. #endif
  669. private:
  670. static void update_raw_temperatures();
  671. static void updateTemperaturesFromRawValues();
  672. #define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
  673. #if HAS_MAX6675
  674. #if BOTH(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
  675. #define COUNT_6675 2
  676. #else
  677. #define COUNT_6675 1
  678. #endif
  679. #if COUNT_6675 > 1
  680. #define READ_MAX6675(N) read_max6675(N)
  681. #else
  682. #define READ_MAX6675(N) read_max6675()
  683. #endif
  684. static int read_max6675(
  685. #if COUNT_6675 > 1
  686. const uint8_t hindex=0
  687. #endif
  688. );
  689. #endif
  690. static void checkExtruderAutoFans();
  691. static float get_pid_output_hotend(const uint8_t e);
  692. TERN_(PIDTEMPBED, static float get_pid_output_bed());
  693. TERN_(HAS_HEATED_CHAMBER, static float get_pid_output_chamber());
  694. static void _temp_error(const heater_ind_t e, PGM_P const serial_msg, PGM_P const lcd_msg);
  695. static void min_temp_error(const heater_ind_t e);
  696. static void max_temp_error(const heater_ind_t e);
  697. #define HAS_THERMAL_PROTECTION (EITHER(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER) || HAS_THERMALLY_PROTECTED_BED)
  698. #if HAS_THERMAL_PROTECTION
  699. enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
  700. typedef struct {
  701. millis_t timer = 0;
  702. TRState state = TRInactive;
  703. } tr_state_machine_t;
  704. TERN_(THERMAL_PROTECTION_HOTENDS, static tr_state_machine_t tr_state_machine[HOTENDS]);
  705. TERN_(HAS_THERMALLY_PROTECTED_BED, static tr_state_machine_t tr_state_machine_bed);
  706. TERN_(THERMAL_PROTECTION_CHAMBER, static tr_state_machine_t tr_state_machine_chamber);
  707. static void thermal_runaway_protection(tr_state_machine_t &state, const float &current, const float &target, const heater_ind_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
  708. #endif // HAS_THERMAL_PROTECTION
  709. };
  710. extern Temperature thermalManager;