My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin.pde 35KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include <EEPROM.h>
  23. #include "EEPROMwrite.h"
  24. #include "fastio.h"
  25. #include "Configuration.h"
  26. #include "pins.h"
  27. #include "Marlin.h"
  28. #include "ultralcd.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "motion_control.h"
  33. #include "cardreader.h"
  34. #include "watchdog.h"
  35. #define VERSION_STRING "1.0.0 Beta 1"
  36. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  37. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  38. //Implemented Codes
  39. //-------------------
  40. // G0 -> G1
  41. // G1 - Coordinated Movement X Y Z E
  42. // G2 - CW ARC
  43. // G3 - CCW ARC
  44. // G4 - Dwell S<seconds> or P<milliseconds>
  45. // G28 - Home all Axis
  46. // G90 - Use Absolute Coordinates
  47. // G91 - Use Relative Coordinates
  48. // G92 - Set current position to cordinates given
  49. //RepRap M Codes
  50. // M104 - Set extruder target temp
  51. // M105 - Read current temp
  52. // M106 - Fan on
  53. // M107 - Fan off
  54. // M109 - Wait for extruder current temp to reach target temp.
  55. // M114 - Display current position
  56. //Custom M Codes
  57. // M17 - Enable/Power all stepper motors
  58. // M18 - Disable all stepper motors; same as M84
  59. // M20 - List SD card
  60. // M21 - Init SD card
  61. // M22 - Release SD card
  62. // M23 - Select SD file (M23 filename.g)
  63. // M24 - Start/resume SD print
  64. // M25 - Pause SD print
  65. // M26 - Set SD position in bytes (M26 S12345)
  66. // M27 - Report SD print status
  67. // M28 - Start SD write (M28 filename.g)
  68. // M29 - Stop SD write
  69. // M30 - Output time since last M109 or SD card start to serial
  70. // M42 - Change pin status via gcode
  71. // M80 - Turn on Power Supply
  72. // M81 - Turn off Power Supply
  73. // M82 - Set E codes absolute (default)
  74. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  75. // M84 - Disable steppers until next move,
  76. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  77. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  78. // M92 - Set axis_steps_per_unit - same syntax as G92
  79. // M114 - Output current position to serial port
  80. // M115 - Capabilities string
  81. // M117 - display message
  82. // M119 - Output Endstop status to serial port
  83. // M140 - Set bed target temp
  84. // M190 - Wait for bed current temp to reach target temp.
  85. // M200 - Set filament diameter
  86. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  87. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  88. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  89. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  90. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  91. // M206 - set additional homeing offset
  92. // M220 - set speed factor override percentage S:factor in percent
  93. // M301 - Set PID parameters P I and D
  94. // M400 - Finish all moves
  95. // M500 - stores paramters in EEPROM
  96. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  97. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  98. //Stepper Movement Variables
  99. //===========================================================================
  100. //=============================imported variables============================
  101. //===========================================================================
  102. extern float HeaterPower;
  103. //===========================================================================
  104. //=============================public variables=============================
  105. //===========================================================================
  106. #ifdef SDSUPPORT
  107. CardReader card;
  108. #endif
  109. float homing_feedrate[] = HOMING_FEEDRATE;
  110. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  111. volatile int feedmultiply=100; //100->1 200->2
  112. int saved_feedmultiply;
  113. volatile bool feedmultiplychanged=false;
  114. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  115. float add_homeing[3]={0,0,0};
  116. //===========================================================================
  117. //=============================private variables=============================
  118. //===========================================================================
  119. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  120. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  121. static float offset[3] = {0.0, 0.0, 0.0};
  122. static bool home_all_axis = true;
  123. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  124. static long gcode_N, gcode_LastN;
  125. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  126. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  127. static uint8_t fanpwm=0;
  128. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  129. static bool fromsd[BUFSIZE];
  130. static int bufindr = 0;
  131. static int bufindw = 0;
  132. static int buflen = 0;
  133. static int i = 0;
  134. static char serial_char;
  135. static int serial_count = 0;
  136. static boolean comment_mode = false;
  137. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  138. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  139. static float tt = 0, bt = 0;
  140. //Inactivity shutdown variables
  141. static unsigned long previous_millis_cmd = 0;
  142. static unsigned long max_inactive_time = 0;
  143. static unsigned long stepper_inactive_time = 0;
  144. static unsigned long starttime=0;
  145. static unsigned long stoptime=0;
  146. static uint8_t tmp_extruder;
  147. //===========================================================================
  148. //=============================ROUTINES=============================
  149. //===========================================================================
  150. void get_arc_coordinates();
  151. extern "C"{
  152. extern unsigned int __bss_end;
  153. extern unsigned int __heap_start;
  154. extern void *__brkval;
  155. int freeMemory() {
  156. int free_memory;
  157. if((int)__brkval == 0)
  158. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  159. else
  160. free_memory = ((int)&free_memory) - ((int)__brkval);
  161. return free_memory;
  162. }
  163. }
  164. //adds an command to the main command buffer
  165. //thats really done in a non-safe way.
  166. //needs overworking someday
  167. void enquecommand(const char *cmd)
  168. {
  169. if(buflen < BUFSIZE)
  170. {
  171. //this is dangerous if a mixing of serial and this happsens
  172. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  173. SERIAL_ECHO_START;
  174. SERIAL_ECHOPGM("enqueing \"");
  175. SERIAL_ECHO(cmdbuffer[bufindw]);
  176. SERIAL_ECHOLNPGM("\"");
  177. bufindw= (bufindw + 1)%BUFSIZE;
  178. buflen += 1;
  179. }
  180. }
  181. void setup()
  182. {
  183. MSerial.begin(BAUDRATE);
  184. SERIAL_ECHO_START;
  185. SERIAL_ECHOLNPGM(VERSION_STRING);
  186. SERIAL_PROTOCOLLNPGM("start");
  187. SERIAL_ECHO_START;
  188. SERIAL_ECHOPGM("Free Memory:");
  189. SERIAL_ECHOLN(freeMemory());
  190. for(int8_t i = 0; i < BUFSIZE; i++)
  191. {
  192. fromsd[i] = false;
  193. }
  194. RetrieveSettings(); // loads data from EEPROM if available
  195. for(int8_t i=0; i < NUM_AXIS; i++)
  196. {
  197. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  198. }
  199. tp_init(); // Initialize temperature loop
  200. plan_init(); // Initialize planner;
  201. st_init(); // Initialize stepper;
  202. wd_init();
  203. }
  204. void loop()
  205. {
  206. if(buflen<3)
  207. get_command();
  208. #ifdef SDSUPPORT
  209. card.checkautostart(false);
  210. #endif
  211. if(buflen)
  212. {
  213. #ifdef SDSUPPORT
  214. if(card.saving)
  215. {
  216. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  217. {
  218. card.write_command(cmdbuffer[bufindr]);
  219. SERIAL_PROTOCOLLNPGM("ok");
  220. }
  221. else
  222. {
  223. card.closefile();
  224. SERIAL_PROTOCOLLNPGM("Done saving file.");
  225. }
  226. }
  227. else
  228. {
  229. process_commands();
  230. }
  231. #else
  232. process_commands();
  233. #endif //SDSUPPORT
  234. buflen = (buflen-1);
  235. bufindr = (bufindr + 1)%BUFSIZE;
  236. }
  237. //check heater every n milliseconds
  238. manage_heater();
  239. manage_inactivity(1);
  240. checkHitEndstops();
  241. LCD_STATUS;
  242. }
  243. inline void get_command()
  244. {
  245. while( MSerial.available() > 0 && buflen < BUFSIZE) {
  246. serial_char = MSerial.read();
  247. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  248. {
  249. if(!serial_count) return; //if empty line
  250. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  251. if(!comment_mode){
  252. fromsd[bufindw] = false;
  253. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  254. {
  255. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  256. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  257. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  258. SERIAL_ERROR_START;
  259. SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
  260. SERIAL_ERRORLN(gcode_LastN);
  261. //Serial.println(gcode_N);
  262. FlushSerialRequestResend();
  263. serial_count = 0;
  264. return;
  265. }
  266. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  267. {
  268. byte checksum = 0;
  269. byte count = 0;
  270. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  271. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  272. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  273. SERIAL_ERROR_START;
  274. SERIAL_ERRORPGM("checksum mismatch, Last Line:");
  275. SERIAL_ERRORLN(gcode_LastN);
  276. FlushSerialRequestResend();
  277. serial_count = 0;
  278. return;
  279. }
  280. //if no errors, continue parsing
  281. }
  282. else
  283. {
  284. SERIAL_ERROR_START;
  285. SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
  286. SERIAL_ERRORLN(gcode_LastN);
  287. FlushSerialRequestResend();
  288. serial_count = 0;
  289. return;
  290. }
  291. gcode_LastN = gcode_N;
  292. //if no errors, continue parsing
  293. }
  294. else // if we don't receive 'N' but still see '*'
  295. {
  296. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  297. {
  298. SERIAL_ERROR_START;
  299. SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
  300. SERIAL_ERRORLN(gcode_LastN);
  301. serial_count = 0;
  302. return;
  303. }
  304. }
  305. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  306. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  307. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  308. case 0:
  309. case 1:
  310. case 2:
  311. case 3:
  312. #ifdef SDSUPPORT
  313. if(card.saving)
  314. break;
  315. #endif //SDSUPPORT
  316. SERIAL_PROTOCOLLNPGM("ok");
  317. break;
  318. default:
  319. break;
  320. }
  321. }
  322. bufindw = (bufindw + 1)%BUFSIZE;
  323. buflen += 1;
  324. }
  325. comment_mode = false; //for new command
  326. serial_count = 0; //clear buffer
  327. }
  328. else
  329. {
  330. if(serial_char == ';') comment_mode = true;
  331. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  332. }
  333. }
  334. #ifdef SDSUPPORT
  335. if(!card.sdprinting || serial_count!=0){
  336. return;
  337. }
  338. while( !card.eof() && buflen < BUFSIZE) {
  339. int16_t n=card.get();
  340. serial_char = (char)n;
  341. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  342. {
  343. if(card.eof()){
  344. SERIAL_PROTOCOLLNPGM("Done printing file");
  345. stoptime=millis();
  346. char time[30];
  347. unsigned long t=(stoptime-starttime)/1000;
  348. int sec,min;
  349. min=t/60;
  350. sec=t%60;
  351. sprintf(time,"%i min, %i sec",min,sec);
  352. SERIAL_ECHO_START;
  353. SERIAL_ECHOLN(time);
  354. LCD_MESSAGE(time);
  355. card.printingHasFinished();
  356. card.checkautostart(true);
  357. }
  358. if(serial_char=='\n')
  359. comment_mode = false; //for new command
  360. if(!serial_count)
  361. {
  362. return; //if empty line
  363. }
  364. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  365. if(!comment_mode){
  366. fromsd[bufindw] = true;
  367. buflen += 1;
  368. bufindw = (bufindw + 1)%BUFSIZE;
  369. }
  370. serial_count = 0; //clear buffer
  371. }
  372. else
  373. {
  374. if(serial_char == ';') comment_mode = true;
  375. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  376. }
  377. }
  378. #endif //SDSUPPORT
  379. }
  380. inline float code_value()
  381. {
  382. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  383. }
  384. inline long code_value_long()
  385. {
  386. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  387. }
  388. inline bool code_seen(char code_string[]) //Return True if the string was found
  389. {
  390. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  391. }
  392. inline bool code_seen(char code)
  393. {
  394. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  395. return (strchr_pointer != NULL); //Return True if a character was found
  396. }
  397. #define HOMEAXIS(LETTER) \
  398. if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
  399. { \
  400. current_position[LETTER##_AXIS] = 0; \
  401. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
  402. destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
  403. feedrate = homing_feedrate[LETTER##_AXIS]; \
  404. prepare_move(); \
  405. \
  406. current_position[LETTER##_AXIS] = 0;\
  407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  408. destination[LETTER##_AXIS] = -LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  409. prepare_move(); \
  410. \
  411. destination[LETTER##_AXIS] = 2*LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  412. feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
  413. prepare_move(); \
  414. \
  415. current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
  416. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  417. destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
  418. feedrate = 0.0;\
  419. st_synchronize();\
  420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  421. endstops_hit_on_purpose();\
  422. }
  423. inline void process_commands()
  424. {
  425. unsigned long codenum; //throw away variable
  426. char *starpos = NULL;
  427. if(code_seen('G'))
  428. {
  429. switch((int)code_value())
  430. {
  431. case 0: // G0 -> G1
  432. case 1: // G1
  433. get_coordinates(); // For X Y Z E F
  434. prepare_move();
  435. previous_millis_cmd = millis();
  436. //ClearToSend();
  437. return;
  438. //break;
  439. case 2: // G2 - CW ARC
  440. get_arc_coordinates();
  441. prepare_arc_move(true);
  442. previous_millis_cmd = millis();
  443. return;
  444. case 3: // G3 - CCW ARC
  445. get_arc_coordinates();
  446. prepare_arc_move(false);
  447. previous_millis_cmd = millis();
  448. return;
  449. case 4: // G4 dwell
  450. LCD_MESSAGEPGM("DWELL...");
  451. codenum = 0;
  452. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  453. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  454. st_synchronize();
  455. codenum += millis(); // keep track of when we started waiting
  456. while(millis() < codenum ){
  457. manage_heater();
  458. }
  459. break;
  460. case 28: //G28 Home all Axis one at a time
  461. saved_feedrate = feedrate;
  462. saved_feedmultiply = feedmultiply;
  463. feedmultiply = 100;
  464. for(int8_t i=0; i < NUM_AXIS; i++) {
  465. destination[i] = current_position[i];
  466. }
  467. feedrate = 0.0;
  468. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  469. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  470. {
  471. HOMEAXIS(X);
  472. current_position[0]=code_value()+add_homeing[0];
  473. }
  474. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  475. HOMEAXIS(Y);
  476. current_position[1]=code_value()+add_homeing[1];
  477. }
  478. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  479. HOMEAXIS(Z);
  480. current_position[2]=code_value()+add_homeing[2];
  481. }
  482. feedrate = saved_feedrate;
  483. feedmultiply = saved_feedmultiply;
  484. previous_millis_cmd = millis();
  485. endstops_hit_on_purpose();
  486. break;
  487. case 90: // G90
  488. relative_mode = false;
  489. break;
  490. case 91: // G91
  491. relative_mode = true;
  492. break;
  493. case 92: // G92
  494. if(!code_seen(axis_codes[E_AXIS]))
  495. st_synchronize();
  496. for(int8_t i=0; i < NUM_AXIS; i++) {
  497. if(code_seen(axis_codes[i])) {
  498. current_position[i] = code_value()+add_homeing[i];
  499. if(i == E_AXIS) {
  500. plan_set_e_position(current_position[E_AXIS]);
  501. }
  502. else {
  503. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  504. }
  505. }
  506. }
  507. break;
  508. }
  509. }
  510. else if(code_seen('M'))
  511. {
  512. switch( (int)code_value() )
  513. {
  514. case 17:
  515. LCD_MESSAGEPGM("No move.");
  516. enable_x();
  517. enable_y();
  518. enable_z();
  519. enable_e();
  520. break;
  521. #ifdef SDSUPPORT
  522. case 20: // M20 - list SD card
  523. SERIAL_PROTOCOLLNPGM("Begin file list");
  524. card.ls();
  525. SERIAL_PROTOCOLLNPGM("End file list");
  526. break;
  527. case 21: // M21 - init SD card
  528. card.initsd();
  529. break;
  530. case 22: //M22 - release SD card
  531. card.release();
  532. break;
  533. case 23: //M23 - Select file
  534. starpos = (strchr(strchr_pointer + 4,'*'));
  535. if(starpos!=NULL)
  536. *(starpos-1)='\0';
  537. card.openFile(strchr_pointer + 4,true);
  538. break;
  539. case 24: //M24 - Start SD print
  540. card.startFileprint();
  541. starttime=millis();
  542. break;
  543. case 25: //M25 - Pause SD print
  544. card.pauseSDPrint();
  545. break;
  546. case 26: //M26 - Set SD index
  547. if(card.cardOK && code_seen('S')){
  548. card.setIndex(code_value_long());
  549. }
  550. break;
  551. case 27: //M27 - Get SD status
  552. card.getStatus();
  553. break;
  554. case 28: //M28 - Start SD write
  555. starpos = (strchr(strchr_pointer + 4,'*'));
  556. if(starpos != NULL){
  557. char* npos = strchr(cmdbuffer[bufindr], 'N');
  558. strchr_pointer = strchr(npos,' ') + 1;
  559. *(starpos-1) = '\0';
  560. }
  561. card.openFile(strchr_pointer+4,false);
  562. break;
  563. case 29: //M29 - Stop SD write
  564. //processed in write to file routine above
  565. //card,saving = false;
  566. break;
  567. #endif //SDSUPPORT
  568. case 30: //M30 take time since the start of the SD print or an M109 command
  569. {
  570. stoptime=millis();
  571. char time[30];
  572. unsigned long t=(stoptime-starttime)/1000;
  573. int sec,min;
  574. min=t/60;
  575. sec=t%60;
  576. sprintf(time,"%i min, %i sec",min,sec);
  577. SERIAL_ECHO_START;
  578. SERIAL_ECHOLN(time);
  579. LCD_MESSAGE(time);
  580. }
  581. break;
  582. case 42: //M42 -Change pin status via gcode
  583. if (code_seen('S'))
  584. {
  585. int pin_status = code_value();
  586. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  587. {
  588. int pin_number = code_value();
  589. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  590. {
  591. if (sensitive_pins[i] == pin_number)
  592. {
  593. pin_number = -1;
  594. break;
  595. }
  596. }
  597. if (pin_number > -1)
  598. {
  599. pinMode(pin_number, OUTPUT);
  600. digitalWrite(pin_number, pin_status);
  601. analogWrite(pin_number, pin_status);
  602. }
  603. }
  604. }
  605. break;
  606. case 104: // M104
  607. tmp_extruder = active_extruder;
  608. if(code_seen('T')) {
  609. tmp_extruder = code_value();
  610. if(tmp_extruder >= EXTRUDERS) {
  611. SERIAL_ECHO_START;
  612. SERIAL_ECHO("M104 Invalid extruder ");
  613. SERIAL_ECHOLN(tmp_extruder);
  614. break;
  615. }
  616. }
  617. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  618. setWatch();
  619. break;
  620. case 140: // M140 set bed temp
  621. if (code_seen('S')) setTargetBed(code_value());
  622. break;
  623. case 105 : // M105
  624. tmp_extruder = active_extruder;
  625. if(code_seen('T')) {
  626. tmp_extruder = code_value();
  627. if(tmp_extruder >= EXTRUDERS) {
  628. SERIAL_ECHO_START;
  629. SERIAL_ECHO("M105 Invalid extruder ");
  630. SERIAL_ECHOLN(tmp_extruder);
  631. break;
  632. }
  633. }
  634. #if (TEMP_0_PIN > -1) || (TEMP_2_PIN > -1)
  635. SERIAL_PROTOCOLPGM("ok T:");
  636. SERIAL_PROTOCOL( degHotend(tmp_extruder));
  637. #if TEMP_1_PIN > -1
  638. SERIAL_PROTOCOLPGM(" B:");
  639. SERIAL_PROTOCOL(degBed());
  640. #endif //TEMP_1_PIN
  641. #else
  642. SERIAL_ERROR_START;
  643. SERIAL_ERRORLNPGM("No thermistors - no temp");
  644. #endif
  645. #ifdef PIDTEMP
  646. SERIAL_PROTOCOLPGM(" @:");
  647. SERIAL_PROTOCOL( HeaterPower);
  648. #endif
  649. SERIAL_PROTOCOLLN("");
  650. return;
  651. break;
  652. case 109:
  653. {// M109 - Wait for extruder heater to reach target.
  654. tmp_extruder = active_extruder;
  655. if(code_seen('T')) {
  656. tmp_extruder = code_value();
  657. if(tmp_extruder >= EXTRUDERS) {
  658. SERIAL_ECHO_START;
  659. SERIAL_ECHO("M109 Invalid extruder ");
  660. SERIAL_ECHOLN(tmp_extruder);
  661. break;
  662. }
  663. }
  664. LCD_MESSAGEPGM("Heating...");
  665. #ifdef AUTOTEMP
  666. autotemp_enabled=false;
  667. #endif
  668. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  669. #ifdef AUTOTEMP
  670. if (code_seen('S')) autotemp_min=code_value();
  671. if (code_seen('G')) autotemp_max=code_value();
  672. if (code_seen('F'))
  673. {
  674. autotemp_factor=code_value();
  675. autotemp_enabled=true;
  676. }
  677. #endif
  678. setWatch();
  679. codenum = millis();
  680. /* See if we are heating up or cooling down */
  681. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  682. #ifdef TEMP_RESIDENCY_TIME
  683. long residencyStart;
  684. residencyStart = -1;
  685. /* continue to loop until we have reached the target temp
  686. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  687. while((target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder))) ||
  688. (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
  689. #else
  690. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  691. #endif //TEMP_RESIDENCY_TIME
  692. if( (millis() - codenum) > 1000 )
  693. { //Print Temp Reading every 1 second while heating up/cooling down
  694. SERIAL_PROTOCOLPGM("T:");
  695. SERIAL_PROTOCOLLN( degHotend(tmp_extruder) );
  696. codenum = millis();
  697. }
  698. manage_heater();
  699. LCD_STATUS;
  700. #ifdef TEMP_RESIDENCY_TIME
  701. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  702. or when current temp falls outside the hysteresis after target temp was reached */
  703. if ((residencyStart == -1 && target_direction && !isHeatingHotend(tmp_extruder)) ||
  704. (residencyStart == -1 && !target_direction && !isCoolingHotend(tmp_extruder)) ||
  705. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  706. {
  707. residencyStart = millis();
  708. }
  709. #endif //TEMP_RESIDENCY_TIME
  710. }
  711. LCD_MESSAGEPGM("Heating done.");
  712. starttime=millis();
  713. }
  714. break;
  715. case 190: // M190 - Wait bed for heater to reach target.
  716. #if TEMP_1_PIN > -1
  717. LCD_MESSAGEPGM("Bed Heating.");
  718. if (code_seen('S')) setTargetBed(code_value());
  719. codenum = millis();
  720. while(isHeatingBed())
  721. {
  722. if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  723. {
  724. float tt=degHotend0();
  725. SERIAL_PROTOCOLPGM("T:");
  726. SERIAL_PROTOCOLLN(tt );
  727. SERIAL_PROTOCOLPGM("ok T:");
  728. SERIAL_PROTOCOL(tt );
  729. SERIAL_PROTOCOLPGM(" B:");
  730. SERIAL_PROTOCOLLN(degBed() );
  731. codenum = millis();
  732. }
  733. manage_heater();
  734. }
  735. LCD_MESSAGEPGM("Bed done.");
  736. #endif
  737. break;
  738. #if FAN_PIN > -1
  739. case 106: //M106 Fan On
  740. if (code_seen('S')){
  741. WRITE(FAN_PIN,HIGH);
  742. fanpwm=constrain(code_value(),0,255);
  743. analogWrite(FAN_PIN, fanpwm);
  744. }
  745. else {
  746. WRITE(FAN_PIN,HIGH);
  747. fanpwm=255;
  748. analogWrite(FAN_PIN, fanpwm);
  749. }
  750. break;
  751. case 107: //M107 Fan Off
  752. WRITE(FAN_PIN,LOW);
  753. analogWrite(FAN_PIN, 0);
  754. break;
  755. #endif //FAN_PIN
  756. #if (PS_ON_PIN > -1)
  757. case 80: // M80 - ATX Power On
  758. SET_OUTPUT(PS_ON_PIN); //GND
  759. break;
  760. case 81: // M81 - ATX Power Off
  761. SET_INPUT(PS_ON_PIN); //Floating
  762. break;
  763. #endif
  764. case 82:
  765. axis_relative_modes[3] = false;
  766. break;
  767. case 83:
  768. axis_relative_modes[3] = true;
  769. break;
  770. case 18: //compatibility
  771. case 84: // M84
  772. if(code_seen('S')){
  773. stepper_inactive_time = code_value() * 1000;
  774. }
  775. else
  776. {
  777. #if ((E_ENABLE_PIN != X_ENABLE_PIN) && (E_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  778. if(code_seen('E')) {
  779. st_synchronize();
  780. LCD_MESSAGEPGM("Free Move");
  781. disable_e();
  782. }
  783. else {
  784. finishAndDisableSteppers();
  785. }
  786. #else
  787. finishAndDisableSteppers();
  788. #endif
  789. }
  790. break;
  791. case 85: // M85
  792. code_seen('S');
  793. max_inactive_time = code_value() * 1000;
  794. break;
  795. case 92: // M92
  796. for(int8_t i=0; i < NUM_AXIS; i++)
  797. {
  798. if(code_seen(axis_codes[i]))
  799. axis_steps_per_unit[i] = code_value();
  800. }
  801. break;
  802. case 115: // M115
  803. SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
  804. break;
  805. case 117: // M117 display message
  806. LCD_MESSAGE(cmdbuffer[bufindr]+5);
  807. break;
  808. case 114: // M114
  809. SERIAL_PROTOCOLPGM("X:");
  810. SERIAL_PROTOCOL(current_position[X_AXIS]);
  811. SERIAL_PROTOCOLPGM("Y:");
  812. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  813. SERIAL_PROTOCOLPGM("Z:");
  814. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  815. SERIAL_PROTOCOLPGM("E:");
  816. SERIAL_PROTOCOL(current_position[E_AXIS]);
  817. SERIAL_PROTOCOLPGM(" Count X:");
  818. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  819. SERIAL_PROTOCOLPGM("Y:");
  820. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  821. SERIAL_PROTOCOLPGM("Z:");
  822. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  823. SERIAL_PROTOCOLLN("");
  824. break;
  825. case 119: // M119
  826. #if (X_MIN_PIN > -1)
  827. SERIAL_PROTOCOLPGM("x_min:");
  828. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  829. #endif
  830. #if (X_MAX_PIN > -1)
  831. SERIAL_PROTOCOLPGM("x_max:");
  832. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  833. #endif
  834. #if (Y_MIN_PIN > -1)
  835. SERIAL_PROTOCOLPGM("y_min:");
  836. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  837. #endif
  838. #if (Y_MAX_PIN > -1)
  839. SERIAL_PROTOCOLPGM("y_max:");
  840. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  841. #endif
  842. #if (Z_MIN_PIN > -1)
  843. SERIAL_PROTOCOLPGM("z_min:");
  844. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  845. #endif
  846. #if (Z_MAX_PIN > -1)
  847. SERIAL_PROTOCOLPGM("z_max:");
  848. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  849. #endif
  850. SERIAL_PROTOCOLLN("");
  851. break;
  852. //TODO: update for all axis, use for loop
  853. case 201: // M201
  854. for(int8_t i=0; i < NUM_AXIS; i++)
  855. {
  856. if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  857. }
  858. break;
  859. #if 0 // Not used for Sprinter/grbl gen6
  860. case 202: // M202
  861. for(int8_t i=0; i < NUM_AXIS; i++) {
  862. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  863. }
  864. break;
  865. #endif
  866. case 203: // M203 max feedrate mm/sec
  867. for(int8_t i=0; i < NUM_AXIS; i++) {
  868. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  869. }
  870. break;
  871. case 204: // M204 acclereration S normal moves T filmanent only moves
  872. {
  873. if(code_seen('S')) acceleration = code_value() ;
  874. if(code_seen('T')) retract_acceleration = code_value() ;
  875. }
  876. break;
  877. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  878. {
  879. if(code_seen('S')) minimumfeedrate = code_value();
  880. if(code_seen('T')) mintravelfeedrate = code_value();
  881. if(code_seen('B')) minsegmenttime = code_value() ;
  882. if(code_seen('X')) max_xy_jerk = code_value() ;
  883. if(code_seen('Z')) max_z_jerk = code_value() ;
  884. }
  885. break;
  886. case 206: // M206 additional homeing offset
  887. for(int8_t i=0; i < 3; i++)
  888. {
  889. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  890. }
  891. break;
  892. case 220: // M220 S<factor in percent>- set speed factor override percentage
  893. {
  894. if(code_seen('S'))
  895. {
  896. feedmultiply = code_value() ;
  897. feedmultiplychanged=true;
  898. }
  899. }
  900. break;
  901. #ifdef PIDTEMP
  902. case 301: // M301
  903. {
  904. if(code_seen('P')) Kp = code_value();
  905. if(code_seen('I')) Ki = code_value()*PID_dT;
  906. if(code_seen('D')) Kd = code_value()/PID_dT;
  907. #ifdef PID_ADD_EXTRUSION_RATE
  908. if(code_seen('C')) Kc = code_value();
  909. #endif
  910. updatePID();
  911. SERIAL_PROTOCOL("ok p:");
  912. SERIAL_PROTOCOL(Kp);
  913. SERIAL_PROTOCOL(" i:");
  914. SERIAL_PROTOCOL(Ki/PID_dT);
  915. SERIAL_PROTOCOL(" d:");
  916. SERIAL_PROTOCOL(Kd*PID_dT);
  917. #ifdef PID_ADD_EXTRUSION_RATE
  918. SERIAL_PROTOCOL(" c:");
  919. SERIAL_PROTOCOL(Kc*PID_dT);
  920. #endif
  921. SERIAL_PROTOCOLLN("");
  922. }
  923. break;
  924. #endif //PIDTEMP
  925. case 400: // finish all moves
  926. {
  927. st_synchronize();
  928. }
  929. break;
  930. case 500: // Store settings in EEPROM
  931. {
  932. StoreSettings();
  933. }
  934. break;
  935. case 501: // Read settings from EEPROM
  936. {
  937. RetrieveSettings();
  938. }
  939. break;
  940. case 502: // Revert to default settings
  941. {
  942. RetrieveSettings(true);
  943. }
  944. break;
  945. }
  946. }
  947. else if(code_seen('T')) {
  948. tmp_extruder = code_value();
  949. if(tmp_extruder >= EXTRUDERS) {
  950. SERIAL_ECHO_START;
  951. SERIAL_ECHO("T");
  952. SERIAL_ECHO(tmp_extruder);
  953. SERIAL_ECHOLN("Invalid extruder");
  954. }
  955. else {
  956. active_extruder = tmp_extruder;
  957. }
  958. }
  959. else
  960. {
  961. SERIAL_ECHO_START;
  962. SERIAL_ECHOPGM("Unknown command:\"");
  963. SERIAL_ECHO(cmdbuffer[bufindr]);
  964. SERIAL_ECHOLNPGM("\"");
  965. }
  966. ClearToSend();
  967. }
  968. void FlushSerialRequestResend()
  969. {
  970. //char cmdbuffer[bufindr][100]="Resend:";
  971. MSerial.flush();
  972. SERIAL_PROTOCOLPGM("Resend:");
  973. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  974. ClearToSend();
  975. }
  976. void ClearToSend()
  977. {
  978. previous_millis_cmd = millis();
  979. #ifdef SDSUPPORT
  980. if(fromsd[bufindr])
  981. return;
  982. #endif //SDSUPPORT
  983. SERIAL_PROTOCOLLNPGM("ok");
  984. }
  985. inline void get_coordinates()
  986. {
  987. for(int8_t i=0; i < NUM_AXIS; i++) {
  988. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  989. else destination[i] = current_position[i]; //Are these else lines really needed?
  990. }
  991. if(code_seen('F')) {
  992. next_feedrate = code_value();
  993. if(next_feedrate > 0.0) feedrate = next_feedrate;
  994. }
  995. }
  996. inline void get_arc_coordinates()
  997. {
  998. get_coordinates();
  999. if(code_seen('I')) offset[0] = code_value();
  1000. if(code_seen('J')) offset[1] = code_value();
  1001. }
  1002. void prepare_move()
  1003. {
  1004. if (min_software_endstops) {
  1005. if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
  1006. if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
  1007. if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
  1008. }
  1009. if (max_software_endstops) {
  1010. if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
  1011. if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
  1012. if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
  1013. }
  1014. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1015. for(int8_t i=0; i < NUM_AXIS; i++) {
  1016. current_position[i] = destination[i];
  1017. }
  1018. }
  1019. void prepare_arc_move(char isclockwise) {
  1020. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1021. // Trace the arc
  1022. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1023. // As far as the parser is concerned, the position is now == target. In reality the
  1024. // motion control system might still be processing the action and the real tool position
  1025. // in any intermediate location.
  1026. for(int8_t i=0; i < NUM_AXIS; i++) {
  1027. current_position[i] = destination[i];
  1028. }
  1029. }
  1030. void manage_inactivity(byte debug)
  1031. {
  1032. if( (millis()-previous_millis_cmd) > max_inactive_time )
  1033. if(max_inactive_time)
  1034. kill();
  1035. if( (millis()-previous_millis_cmd) > stepper_inactive_time )
  1036. if(stepper_inactive_time)
  1037. {
  1038. disable_x();
  1039. disable_y();
  1040. disable_z();
  1041. disable_e();
  1042. }
  1043. check_axes_activity();
  1044. }
  1045. void kill()
  1046. {
  1047. disable_heater();
  1048. disable_x();
  1049. disable_y();
  1050. disable_z();
  1051. disable_e();
  1052. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1053. SERIAL_ERROR_START;
  1054. SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
  1055. LCD_MESSAGEPGM("KILLED. ");
  1056. while(1); // Wait for reset
  1057. }