My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 384KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta '4-point' auto calibration iteration
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. #endif
  273. #if ENABLED(SDSUPPORT)
  274. CardReader card;
  275. #endif
  276. #if ENABLED(EXPERIMENTAL_I2CBUS)
  277. TWIBus i2c;
  278. #endif
  279. #if ENABLED(G38_PROBE_TARGET)
  280. bool G38_move = false,
  281. G38_endstop_hit = false;
  282. #endif
  283. #if ENABLED(AUTO_BED_LEVELING_UBL)
  284. #include "ubl.h"
  285. unified_bed_leveling ubl;
  286. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  287. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  288. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  289. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  290. || isnan(ubl.z_values[0][0]))
  291. #endif
  292. bool Running = true;
  293. uint8_t marlin_debug_flags = DEBUG_NONE;
  294. /**
  295. * Cartesian Current Position
  296. * Used to track the logical position as moves are queued.
  297. * Used by 'line_to_current_position' to do a move after changing it.
  298. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  299. */
  300. float current_position[XYZE] = { 0.0 };
  301. /**
  302. * Cartesian Destination
  303. * A temporary position, usually applied to 'current_position'.
  304. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  305. * 'line_to_destination' sets 'current_position' to 'destination'.
  306. */
  307. float destination[XYZE] = { 0.0 };
  308. /**
  309. * axis_homed
  310. * Flags that each linear axis was homed.
  311. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  312. *
  313. * axis_known_position
  314. * Flags that the position is known in each linear axis. Set when homed.
  315. * Cleared whenever a stepper powers off, potentially losing its position.
  316. */
  317. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  318. /**
  319. * GCode line number handling. Hosts may opt to include line numbers when
  320. * sending commands to Marlin, and lines will be checked for sequentiality.
  321. * M110 N<int> sets the current line number.
  322. */
  323. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  324. /**
  325. * GCode Command Queue
  326. * A simple ring buffer of BUFSIZE command strings.
  327. *
  328. * Commands are copied into this buffer by the command injectors
  329. * (immediate, serial, sd card) and they are processed sequentially by
  330. * the main loop. The process_next_command function parses the next
  331. * command and hands off execution to individual handler functions.
  332. */
  333. uint8_t commands_in_queue = 0; // Count of commands in the queue
  334. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  335. cmd_queue_index_w = 0; // Ring buffer write position
  336. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  337. /**
  338. * Current GCode Command
  339. * When a GCode handler is running, these will be set
  340. */
  341. static char *current_command, // The command currently being executed
  342. *current_command_args, // The address where arguments begin
  343. *seen_pointer; // Set by code_seen(), used by the code_value functions
  344. /**
  345. * Next Injected Command pointer. NULL if no commands are being injected.
  346. * Used by Marlin internally to ensure that commands initiated from within
  347. * are enqueued ahead of any pending serial or sd card commands.
  348. */
  349. static const char *injected_commands_P = NULL;
  350. #if ENABLED(INCH_MODE_SUPPORT)
  351. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  352. #endif
  353. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  354. TempUnit input_temp_units = TEMPUNIT_C;
  355. #endif
  356. /**
  357. * Feed rates are often configured with mm/m
  358. * but the planner and stepper like mm/s units.
  359. */
  360. float constexpr homing_feedrate_mm_s[] = {
  361. #if ENABLED(DELTA)
  362. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  363. #else
  364. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  365. #endif
  366. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  367. };
  368. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  369. int feedrate_percentage = 100, saved_feedrate_percentage,
  370. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  371. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  372. volumetric_enabled =
  373. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  374. true
  375. #else
  376. false
  377. #endif
  378. ;
  379. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  380. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  381. #if HAS_WORKSPACE_OFFSET
  382. #if HAS_POSITION_SHIFT
  383. // The distance that XYZ has been offset by G92. Reset by G28.
  384. float position_shift[XYZ] = { 0 };
  385. #endif
  386. #if HAS_HOME_OFFSET
  387. // This offset is added to the configured home position.
  388. // Set by M206, M428, or menu item. Saved to EEPROM.
  389. float home_offset[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  392. // The above two are combined to save on computes
  393. float workspace_offset[XYZ] = { 0 };
  394. #endif
  395. #endif
  396. // Software Endstops are based on the configured limits.
  397. #if HAS_SOFTWARE_ENDSTOPS
  398. bool soft_endstops_enabled = true;
  399. #endif
  400. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  401. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  402. #if FAN_COUNT > 0
  403. int fanSpeeds[FAN_COUNT] = { 0 };
  404. #endif
  405. // The active extruder (tool). Set with T<extruder> command.
  406. uint8_t active_extruder = 0;
  407. // Relative Mode. Enable with G91, disable with G90.
  408. static bool relative_mode = false;
  409. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  410. volatile bool wait_for_heatup = true;
  411. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  412. #if HAS_RESUME_CONTINUE
  413. volatile bool wait_for_user = false;
  414. #endif
  415. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  416. // Number of characters read in the current line of serial input
  417. static int serial_count = 0;
  418. // Inactivity shutdown
  419. millis_t previous_cmd_ms = 0;
  420. static millis_t max_inactive_time = 0;
  421. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  422. // Print Job Timer
  423. #if ENABLED(PRINTCOUNTER)
  424. PrintCounter print_job_timer = PrintCounter();
  425. #else
  426. Stopwatch print_job_timer = Stopwatch();
  427. #endif
  428. // Buzzer - I2C on the LCD or a BEEPER_PIN
  429. #if ENABLED(LCD_USE_I2C_BUZZER)
  430. #define BUZZ(d,f) lcd_buzz(d, f)
  431. #elif PIN_EXISTS(BEEPER)
  432. Buzzer buzzer;
  433. #define BUZZ(d,f) buzzer.tone(d, f)
  434. #else
  435. #define BUZZ(d,f) NOOP
  436. #endif
  437. static uint8_t target_extruder;
  438. #if HAS_BED_PROBE
  439. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  440. #endif
  441. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  442. #if HAS_ABL
  443. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  444. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  445. #elif defined(XY_PROBE_SPEED)
  446. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  447. #else
  448. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  449. #endif
  450. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  451. #if ENABLED(DELTA)
  452. #define ADJUST_DELTA(V) \
  453. if (planner.abl_enabled) { \
  454. const float zadj = bilinear_z_offset(V); \
  455. delta[A_AXIS] += zadj; \
  456. delta[B_AXIS] += zadj; \
  457. delta[C_AXIS] += zadj; \
  458. }
  459. #else
  460. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  461. #endif
  462. #elif IS_KINEMATIC
  463. #define ADJUST_DELTA(V) NOOP
  464. #endif
  465. #if ENABLED(Z_DUAL_ENDSTOPS)
  466. float z_endstop_adj =
  467. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  468. Z_DUAL_ENDSTOPS_ADJUSTMENT
  469. #else
  470. 0
  471. #endif
  472. ;
  473. #endif
  474. // Extruder offsets
  475. #if HOTENDS > 1
  476. float hotend_offset[XYZ][HOTENDS];
  477. #endif
  478. #if HAS_Z_SERVO_ENDSTOP
  479. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  480. #endif
  481. #if ENABLED(BARICUDA)
  482. int baricuda_valve_pressure = 0;
  483. int baricuda_e_to_p_pressure = 0;
  484. #endif
  485. #if ENABLED(FWRETRACT)
  486. bool autoretract_enabled = false;
  487. bool retracted[EXTRUDERS] = { false };
  488. bool retracted_swap[EXTRUDERS] = { false };
  489. float retract_length = RETRACT_LENGTH;
  490. float retract_length_swap = RETRACT_LENGTH_SWAP;
  491. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  492. float retract_zlift = RETRACT_ZLIFT;
  493. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  494. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  495. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  496. #endif // FWRETRACT
  497. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  498. bool powersupply =
  499. #if ENABLED(PS_DEFAULT_OFF)
  500. false
  501. #else
  502. true
  503. #endif
  504. ;
  505. #endif
  506. #if HAS_CASE_LIGHT
  507. bool case_light_on =
  508. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  509. true
  510. #else
  511. false
  512. #endif
  513. ;
  514. #endif
  515. #if ENABLED(DELTA)
  516. float delta[ABC],
  517. endstop_adj[ABC] = { 0 };
  518. // These values are loaded or reset at boot time when setup() calls
  519. // settings.load(), which calls recalc_delta_settings().
  520. float delta_radius,
  521. delta_tower_angle_trim[ABC],
  522. delta_tower[ABC][2],
  523. delta_diagonal_rod,
  524. delta_diagonal_rod_trim[ABC],
  525. delta_diagonal_rod_2_tower[ABC],
  526. delta_segments_per_second,
  527. delta_clip_start_height = Z_MAX_POS;
  528. float delta_safe_distance_from_top();
  529. #endif
  530. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  531. int bilinear_grid_spacing[2], bilinear_start[2];
  532. float bed_level_grid[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  533. #endif
  534. #if IS_SCARA
  535. // Float constants for SCARA calculations
  536. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  537. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  538. L2_2 = sq(float(L2));
  539. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  540. delta[ABC];
  541. #endif
  542. float cartes[XYZ] = { 0 };
  543. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  544. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  545. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  546. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  547. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  548. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  549. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  550. #endif
  551. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  552. static bool filament_ran_out = false;
  553. #endif
  554. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  555. FilamentChangeMenuResponse filament_change_menu_response;
  556. #endif
  557. #if ENABLED(MIXING_EXTRUDER)
  558. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  559. #if MIXING_VIRTUAL_TOOLS > 1
  560. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  561. #endif
  562. #endif
  563. static bool send_ok[BUFSIZE];
  564. #if HAS_SERVOS
  565. Servo servo[NUM_SERVOS];
  566. #define MOVE_SERVO(I, P) servo[I].move(P)
  567. #if HAS_Z_SERVO_ENDSTOP
  568. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  569. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  570. #endif
  571. #endif
  572. #ifdef CHDK
  573. millis_t chdkHigh = 0;
  574. bool chdkActive = false;
  575. #endif
  576. #ifdef AUTOMATIC_CURRENT_CONTROL
  577. bool auto_current_control = 0;
  578. #endif
  579. #if ENABLED(PID_EXTRUSION_SCALING)
  580. int lpq_len = 20;
  581. #endif
  582. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  583. MarlinBusyState busy_state = NOT_BUSY;
  584. static millis_t next_busy_signal_ms = 0;
  585. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  586. #else
  587. #define host_keepalive() NOOP
  588. #endif
  589. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  590. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  591. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  592. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  593. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); }
  594. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  595. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  596. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  597. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  598. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  599. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  600. /**
  601. * ***************************************************************************
  602. * ******************************** FUNCTIONS ********************************
  603. * ***************************************************************************
  604. */
  605. void stop();
  606. void get_available_commands();
  607. void process_next_command();
  608. void prepare_move_to_destination();
  609. void get_cartesian_from_steppers();
  610. void set_current_from_steppers_for_axis(const AxisEnum axis);
  611. #if ENABLED(ARC_SUPPORT)
  612. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  613. #endif
  614. #if ENABLED(BEZIER_CURVE_SUPPORT)
  615. void plan_cubic_move(const float offset[4]);
  616. #endif
  617. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  618. static void report_current_position();
  619. #if ENABLED(DEBUG_LEVELING_FEATURE)
  620. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  621. serialprintPGM(prefix);
  622. SERIAL_ECHOPAIR("(", x);
  623. SERIAL_ECHOPAIR(", ", y);
  624. SERIAL_ECHOPAIR(", ", z);
  625. SERIAL_CHAR(')');
  626. if (suffix) serialprintPGM(suffix);
  627. else SERIAL_EOL;
  628. }
  629. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  630. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  631. }
  632. #if HAS_ABL
  633. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  634. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  635. }
  636. #endif
  637. #define DEBUG_POS(SUFFIX,VAR) do { \
  638. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  639. #endif
  640. /**
  641. * sync_plan_position
  642. *
  643. * Set the planner/stepper positions directly from current_position with
  644. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  645. */
  646. inline void sync_plan_position() {
  647. #if ENABLED(DEBUG_LEVELING_FEATURE)
  648. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  649. #endif
  650. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  651. }
  652. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  653. #if IS_KINEMATIC
  654. inline void sync_plan_position_kinematic() {
  655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  656. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  657. #endif
  658. planner.set_position_mm_kinematic(current_position);
  659. }
  660. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  661. #else
  662. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  663. #endif
  664. #if ENABLED(SDSUPPORT)
  665. #include "SdFatUtil.h"
  666. int freeMemory() { return SdFatUtil::FreeRam(); }
  667. #else
  668. extern "C" {
  669. extern char __bss_end;
  670. extern char __heap_start;
  671. extern void* __brkval;
  672. int freeMemory() {
  673. int free_memory;
  674. if ((int)__brkval == 0)
  675. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  676. else
  677. free_memory = ((int)&free_memory) - ((int)__brkval);
  678. return free_memory;
  679. }
  680. }
  681. #endif //!SDSUPPORT
  682. #if ENABLED(DIGIPOT_I2C)
  683. extern void digipot_i2c_set_current(int channel, float current);
  684. extern void digipot_i2c_init();
  685. #endif
  686. /**
  687. * Inject the next "immediate" command, when possible, onto the front of the queue.
  688. * Return true if any immediate commands remain to inject.
  689. */
  690. static bool drain_injected_commands_P() {
  691. if (injected_commands_P != NULL) {
  692. size_t i = 0;
  693. char c, cmd[30];
  694. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  695. cmd[sizeof(cmd) - 1] = '\0';
  696. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  697. cmd[i] = '\0';
  698. if (enqueue_and_echo_command(cmd)) // success?
  699. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  700. }
  701. return (injected_commands_P != NULL); // return whether any more remain
  702. }
  703. /**
  704. * Record one or many commands to run from program memory.
  705. * Aborts the current queue, if any.
  706. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  707. */
  708. void enqueue_and_echo_commands_P(const char* pgcode) {
  709. injected_commands_P = pgcode;
  710. drain_injected_commands_P(); // first command executed asap (when possible)
  711. }
  712. /**
  713. * Clear the Marlin command queue
  714. */
  715. void clear_command_queue() {
  716. cmd_queue_index_r = cmd_queue_index_w;
  717. commands_in_queue = 0;
  718. }
  719. /**
  720. * Once a new command is in the ring buffer, call this to commit it
  721. */
  722. inline void _commit_command(bool say_ok) {
  723. send_ok[cmd_queue_index_w] = say_ok;
  724. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  725. commands_in_queue++;
  726. }
  727. /**
  728. * Copy a command from RAM into the main command buffer.
  729. * Return true if the command was successfully added.
  730. * Return false for a full buffer, or if the 'command' is a comment.
  731. */
  732. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  733. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  734. strcpy(command_queue[cmd_queue_index_w], cmd);
  735. _commit_command(say_ok);
  736. return true;
  737. }
  738. /**
  739. * Enqueue with Serial Echo
  740. */
  741. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  742. if (_enqueuecommand(cmd, say_ok)) {
  743. SERIAL_ECHO_START;
  744. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  745. SERIAL_CHAR('"');
  746. SERIAL_EOL;
  747. return true;
  748. }
  749. return false;
  750. }
  751. void setup_killpin() {
  752. #if HAS_KILL
  753. SET_INPUT_PULLUP(KILL_PIN);
  754. #endif
  755. }
  756. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  757. void setup_filrunoutpin() {
  758. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  759. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  760. #else
  761. SET_INPUT(FIL_RUNOUT_PIN);
  762. #endif
  763. }
  764. #endif
  765. void setup_homepin(void) {
  766. #if HAS_HOME
  767. SET_INPUT_PULLUP(HOME_PIN);
  768. #endif
  769. }
  770. void setup_powerhold() {
  771. #if HAS_SUICIDE
  772. OUT_WRITE(SUICIDE_PIN, HIGH);
  773. #endif
  774. #if HAS_POWER_SWITCH
  775. #if ENABLED(PS_DEFAULT_OFF)
  776. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  777. #else
  778. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  779. #endif
  780. #endif
  781. }
  782. void suicide() {
  783. #if HAS_SUICIDE
  784. OUT_WRITE(SUICIDE_PIN, LOW);
  785. #endif
  786. }
  787. void servo_init() {
  788. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  789. servo[0].attach(SERVO0_PIN);
  790. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  791. #endif
  792. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  793. servo[1].attach(SERVO1_PIN);
  794. servo[1].detach();
  795. #endif
  796. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  797. servo[2].attach(SERVO2_PIN);
  798. servo[2].detach();
  799. #endif
  800. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  801. servo[3].attach(SERVO3_PIN);
  802. servo[3].detach();
  803. #endif
  804. #if HAS_Z_SERVO_ENDSTOP
  805. /**
  806. * Set position of Z Servo Endstop
  807. *
  808. * The servo might be deployed and positioned too low to stow
  809. * when starting up the machine or rebooting the board.
  810. * There's no way to know where the nozzle is positioned until
  811. * homing has been done - no homing with z-probe without init!
  812. *
  813. */
  814. STOW_Z_SERVO();
  815. #endif
  816. }
  817. /**
  818. * Stepper Reset (RigidBoard, et.al.)
  819. */
  820. #if HAS_STEPPER_RESET
  821. void disableStepperDrivers() {
  822. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  823. }
  824. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  825. #endif
  826. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  827. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  828. i2c.receive(bytes);
  829. }
  830. void i2c_on_request() { // just send dummy data for now
  831. i2c.reply("Hello World!\n");
  832. }
  833. #endif
  834. #if HAS_COLOR_LEDS
  835. void set_led_color(
  836. const uint8_t r, const uint8_t g, const uint8_t b
  837. #if ENABLED(RGBW_LED)
  838. , const uint8_t w=0
  839. #endif
  840. ) {
  841. #if ENABLED(BLINKM)
  842. // This variant uses i2c to send the RGB components to the device.
  843. SendColors(r, g, b);
  844. #else
  845. // This variant uses 3 separate pins for the RGB components.
  846. // If the pins can do PWM then their intensity will be set.
  847. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  848. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  849. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  850. analogWrite(RGB_LED_R_PIN, r);
  851. analogWrite(RGB_LED_G_PIN, g);
  852. analogWrite(RGB_LED_B_PIN, b);
  853. #if ENABLED(RGBW_LED)
  854. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  855. analogWrite(RGB_LED_W_PIN, w);
  856. #endif
  857. #endif
  858. }
  859. #endif // HAS_COLOR_LEDS
  860. void gcode_line_error(const char* err, bool doFlush = true) {
  861. SERIAL_ERROR_START;
  862. serialprintPGM(err);
  863. SERIAL_ERRORLN(gcode_LastN);
  864. //Serial.println(gcode_N);
  865. if (doFlush) FlushSerialRequestResend();
  866. serial_count = 0;
  867. }
  868. /**
  869. * Get all commands waiting on the serial port and queue them.
  870. * Exit when the buffer is full or when no more characters are
  871. * left on the serial port.
  872. */
  873. inline void get_serial_commands() {
  874. static char serial_line_buffer[MAX_CMD_SIZE];
  875. static bool serial_comment_mode = false;
  876. // If the command buffer is empty for too long,
  877. // send "wait" to indicate Marlin is still waiting.
  878. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  879. static millis_t last_command_time = 0;
  880. const millis_t ms = millis();
  881. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  882. SERIAL_ECHOLNPGM(MSG_WAIT);
  883. last_command_time = ms;
  884. }
  885. #endif
  886. /**
  887. * Loop while serial characters are incoming and the queue is not full
  888. */
  889. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  890. char serial_char = MYSERIAL.read();
  891. /**
  892. * If the character ends the line
  893. */
  894. if (serial_char == '\n' || serial_char == '\r') {
  895. serial_comment_mode = false; // end of line == end of comment
  896. if (!serial_count) continue; // skip empty lines
  897. serial_line_buffer[serial_count] = 0; // terminate string
  898. serial_count = 0; //reset buffer
  899. char* command = serial_line_buffer;
  900. while (*command == ' ') command++; // skip any leading spaces
  901. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  902. char* apos = strchr(command, '*');
  903. if (npos) {
  904. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  905. if (M110) {
  906. char* n2pos = strchr(command + 4, 'N');
  907. if (n2pos) npos = n2pos;
  908. }
  909. gcode_N = strtol(npos + 1, NULL, 10);
  910. if (gcode_N != gcode_LastN + 1 && !M110) {
  911. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  912. return;
  913. }
  914. if (apos) {
  915. byte checksum = 0, count = 0;
  916. while (command[count] != '*') checksum ^= command[count++];
  917. if (strtol(apos + 1, NULL, 10) != checksum) {
  918. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  919. return;
  920. }
  921. // if no errors, continue parsing
  922. }
  923. else {
  924. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  925. return;
  926. }
  927. gcode_LastN = gcode_N;
  928. // if no errors, continue parsing
  929. }
  930. else if (apos) { // No '*' without 'N'
  931. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  932. return;
  933. }
  934. // Movement commands alert when stopped
  935. if (IsStopped()) {
  936. char* gpos = strchr(command, 'G');
  937. if (gpos) {
  938. int codenum = strtol(gpos + 1, NULL, 10);
  939. switch (codenum) {
  940. case 0:
  941. case 1:
  942. case 2:
  943. case 3:
  944. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  945. LCD_MESSAGEPGM(MSG_STOPPED);
  946. break;
  947. }
  948. }
  949. }
  950. #if DISABLED(EMERGENCY_PARSER)
  951. // If command was e-stop process now
  952. if (strcmp(command, "M108") == 0) {
  953. wait_for_heatup = false;
  954. #if ENABLED(ULTIPANEL)
  955. wait_for_user = false;
  956. #endif
  957. }
  958. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  959. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  960. #endif
  961. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  962. last_command_time = ms;
  963. #endif
  964. // Add the command to the queue
  965. _enqueuecommand(serial_line_buffer, true);
  966. }
  967. else if (serial_count >= MAX_CMD_SIZE - 1) {
  968. // Keep fetching, but ignore normal characters beyond the max length
  969. // The command will be injected when EOL is reached
  970. }
  971. else if (serial_char == '\\') { // Handle escapes
  972. if (MYSERIAL.available() > 0) {
  973. // if we have one more character, copy it over
  974. serial_char = MYSERIAL.read();
  975. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  976. }
  977. // otherwise do nothing
  978. }
  979. else { // it's not a newline, carriage return or escape char
  980. if (serial_char == ';') serial_comment_mode = true;
  981. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  982. }
  983. } // queue has space, serial has data
  984. }
  985. #if ENABLED(SDSUPPORT)
  986. /**
  987. * Get commands from the SD Card until the command buffer is full
  988. * or until the end of the file is reached. The special character '#'
  989. * can also interrupt buffering.
  990. */
  991. inline void get_sdcard_commands() {
  992. static bool stop_buffering = false,
  993. sd_comment_mode = false;
  994. if (!card.sdprinting) return;
  995. /**
  996. * '#' stops reading from SD to the buffer prematurely, so procedural
  997. * macro calls are possible. If it occurs, stop_buffering is triggered
  998. * and the buffer is run dry; this character _can_ occur in serial com
  999. * due to checksums, however, no checksums are used in SD printing.
  1000. */
  1001. if (commands_in_queue == 0) stop_buffering = false;
  1002. uint16_t sd_count = 0;
  1003. bool card_eof = card.eof();
  1004. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1005. const int16_t n = card.get();
  1006. char sd_char = (char)n;
  1007. card_eof = card.eof();
  1008. if (card_eof || n == -1
  1009. || sd_char == '\n' || sd_char == '\r'
  1010. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1011. ) {
  1012. if (card_eof) {
  1013. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1014. card.printingHasFinished();
  1015. #if ENABLED(PRINTER_EVENT_LEDS)
  1016. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1017. set_led_color(0, 255, 0); // Green
  1018. #if HAS_RESUME_CONTINUE
  1019. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1020. wait_for_user = true;
  1021. while (wait_for_user) idle();
  1022. KEEPALIVE_STATE(IN_HANDLER);
  1023. #else
  1024. safe_delay(1000);
  1025. #endif
  1026. set_led_color(0, 0, 0); // OFF
  1027. #endif
  1028. card.checkautostart(true);
  1029. }
  1030. else if (n == -1) {
  1031. SERIAL_ERROR_START;
  1032. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1033. }
  1034. if (sd_char == '#') stop_buffering = true;
  1035. sd_comment_mode = false; // for new command
  1036. if (!sd_count) continue; // skip empty lines (and comment lines)
  1037. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1038. sd_count = 0; // clear sd line buffer
  1039. _commit_command(false);
  1040. }
  1041. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1042. /**
  1043. * Keep fetching, but ignore normal characters beyond the max length
  1044. * The command will be injected when EOL is reached
  1045. */
  1046. }
  1047. else {
  1048. if (sd_char == ';') sd_comment_mode = true;
  1049. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1050. }
  1051. }
  1052. }
  1053. #endif // SDSUPPORT
  1054. /**
  1055. * Add to the circular command queue the next command from:
  1056. * - The command-injection queue (injected_commands_P)
  1057. * - The active serial input (usually USB)
  1058. * - The SD card file being actively printed
  1059. */
  1060. void get_available_commands() {
  1061. // if any immediate commands remain, don't get other commands yet
  1062. if (drain_injected_commands_P()) return;
  1063. get_serial_commands();
  1064. #if ENABLED(SDSUPPORT)
  1065. get_sdcard_commands();
  1066. #endif
  1067. }
  1068. inline bool code_has_value() {
  1069. int i = 1;
  1070. char c = seen_pointer[i];
  1071. while (c == ' ') c = seen_pointer[++i];
  1072. if (c == '-' || c == '+') c = seen_pointer[++i];
  1073. if (c == '.') c = seen_pointer[++i];
  1074. return NUMERIC(c);
  1075. }
  1076. inline float code_value_float() {
  1077. char* e = strchr(seen_pointer, 'E');
  1078. if (!e) return strtod(seen_pointer + 1, NULL);
  1079. *e = 0;
  1080. float ret = strtod(seen_pointer + 1, NULL);
  1081. *e = 'E';
  1082. return ret;
  1083. }
  1084. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1085. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1086. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1087. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1088. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1089. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1090. #if ENABLED(INCH_MODE_SUPPORT)
  1091. inline void set_input_linear_units(LinearUnit units) {
  1092. switch (units) {
  1093. case LINEARUNIT_INCH:
  1094. linear_unit_factor = 25.4;
  1095. break;
  1096. case LINEARUNIT_MM:
  1097. default:
  1098. linear_unit_factor = 1.0;
  1099. break;
  1100. }
  1101. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1102. }
  1103. inline float axis_unit_factor(int axis) {
  1104. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1105. }
  1106. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1107. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1108. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1109. #else
  1110. inline float code_value_linear_units() { return code_value_float(); }
  1111. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1112. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1113. #endif
  1114. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1115. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1116. float code_value_temp_abs() {
  1117. switch (input_temp_units) {
  1118. case TEMPUNIT_C:
  1119. return code_value_float();
  1120. case TEMPUNIT_F:
  1121. return (code_value_float() - 32) * 0.5555555556;
  1122. case TEMPUNIT_K:
  1123. return code_value_float() - 273.15;
  1124. default:
  1125. return code_value_float();
  1126. }
  1127. }
  1128. float code_value_temp_diff() {
  1129. switch (input_temp_units) {
  1130. case TEMPUNIT_C:
  1131. case TEMPUNIT_K:
  1132. return code_value_float();
  1133. case TEMPUNIT_F:
  1134. return code_value_float() * 0.5555555556;
  1135. default:
  1136. return code_value_float();
  1137. }
  1138. }
  1139. #else
  1140. float code_value_temp_abs() { return code_value_float(); }
  1141. float code_value_temp_diff() { return code_value_float(); }
  1142. #endif
  1143. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1144. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1145. bool code_seen(char code) {
  1146. seen_pointer = strchr(current_command_args, code);
  1147. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1148. }
  1149. /**
  1150. * Set target_extruder from the T parameter or the active_extruder
  1151. *
  1152. * Returns TRUE if the target is invalid
  1153. */
  1154. bool get_target_extruder_from_command(int code) {
  1155. if (code_seen('T')) {
  1156. if (code_value_byte() >= EXTRUDERS) {
  1157. SERIAL_ECHO_START;
  1158. SERIAL_CHAR('M');
  1159. SERIAL_ECHO(code);
  1160. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1161. return true;
  1162. }
  1163. target_extruder = code_value_byte();
  1164. }
  1165. else
  1166. target_extruder = active_extruder;
  1167. return false;
  1168. }
  1169. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1170. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1171. #endif
  1172. #if ENABLED(DUAL_X_CARRIAGE)
  1173. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1174. static float x_home_pos(const int extruder) {
  1175. if (extruder == 0)
  1176. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1177. else
  1178. /**
  1179. * In dual carriage mode the extruder offset provides an override of the
  1180. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1181. * This allows soft recalibration of the second extruder home position
  1182. * without firmware reflash (through the M218 command).
  1183. */
  1184. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1185. }
  1186. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1187. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1188. static bool active_extruder_parked = false; // used in mode 1 & 2
  1189. static float raised_parked_position[XYZE]; // used in mode 1
  1190. static millis_t delayed_move_time = 0; // used in mode 1
  1191. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1192. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1193. #endif // DUAL_X_CARRIAGE
  1194. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1195. /**
  1196. * Software endstops can be used to monitor the open end of
  1197. * an axis that has a hardware endstop on the other end. Or
  1198. * they can prevent axes from moving past endstops and grinding.
  1199. *
  1200. * To keep doing their job as the coordinate system changes,
  1201. * the software endstop positions must be refreshed to remain
  1202. * at the same positions relative to the machine.
  1203. */
  1204. void update_software_endstops(const AxisEnum axis) {
  1205. const float offs = 0.0
  1206. #if HAS_HOME_OFFSET
  1207. + home_offset[axis]
  1208. #endif
  1209. #if HAS_POSITION_SHIFT
  1210. + position_shift[axis]
  1211. #endif
  1212. ;
  1213. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1214. workspace_offset[axis] = offs;
  1215. #endif
  1216. #if ENABLED(DUAL_X_CARRIAGE)
  1217. if (axis == X_AXIS) {
  1218. // In Dual X mode hotend_offset[X] is T1's home position
  1219. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1220. if (active_extruder != 0) {
  1221. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1222. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1223. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1224. }
  1225. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1226. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1227. // but not so far to the right that T1 would move past the end
  1228. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1229. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1230. }
  1231. else {
  1232. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1233. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1234. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1235. }
  1236. }
  1237. #else
  1238. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1239. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1240. #endif
  1241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1242. if (DEBUGGING(LEVELING)) {
  1243. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1244. #if HAS_HOME_OFFSET
  1245. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1246. #endif
  1247. #if HAS_POSITION_SHIFT
  1248. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1249. #endif
  1250. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1251. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1252. }
  1253. #endif
  1254. #if ENABLED(DELTA)
  1255. if (axis == Z_AXIS)
  1256. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1257. #endif
  1258. }
  1259. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1260. #if HAS_M206_COMMAND
  1261. /**
  1262. * Change the home offset for an axis, update the current
  1263. * position and the software endstops to retain the same
  1264. * relative distance to the new home.
  1265. *
  1266. * Since this changes the current_position, code should
  1267. * call sync_plan_position soon after this.
  1268. */
  1269. static void set_home_offset(const AxisEnum axis, const float v) {
  1270. current_position[axis] += v - home_offset[axis];
  1271. home_offset[axis] = v;
  1272. update_software_endstops(axis);
  1273. }
  1274. #endif // HAS_M206_COMMAND
  1275. /**
  1276. * Set an axis' current position to its home position (after homing).
  1277. *
  1278. * For Core and Cartesian robots this applies one-to-one when an
  1279. * individual axis has been homed.
  1280. *
  1281. * DELTA should wait until all homing is done before setting the XYZ
  1282. * current_position to home, because homing is a single operation.
  1283. * In the case where the axis positions are already known and previously
  1284. * homed, DELTA could home to X or Y individually by moving either one
  1285. * to the center. However, homing Z always homes XY and Z.
  1286. *
  1287. * SCARA should wait until all XY homing is done before setting the XY
  1288. * current_position to home, because neither X nor Y is at home until
  1289. * both are at home. Z can however be homed individually.
  1290. *
  1291. * Callers must sync the planner position after calling this!
  1292. */
  1293. static void set_axis_is_at_home(AxisEnum axis) {
  1294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1295. if (DEBUGGING(LEVELING)) {
  1296. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1297. SERIAL_CHAR(')');
  1298. SERIAL_EOL;
  1299. }
  1300. #endif
  1301. axis_known_position[axis] = axis_homed[axis] = true;
  1302. #if HAS_POSITION_SHIFT
  1303. position_shift[axis] = 0;
  1304. update_software_endstops(axis);
  1305. #endif
  1306. #if ENABLED(DUAL_X_CARRIAGE)
  1307. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1308. current_position[X_AXIS] = x_home_pos(active_extruder);
  1309. return;
  1310. }
  1311. #endif
  1312. #if ENABLED(MORGAN_SCARA)
  1313. /**
  1314. * Morgan SCARA homes XY at the same time
  1315. */
  1316. if (axis == X_AXIS || axis == Y_AXIS) {
  1317. float homeposition[XYZ];
  1318. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1319. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1320. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1321. /**
  1322. * Get Home position SCARA arm angles using inverse kinematics,
  1323. * and calculate homing offset using forward kinematics
  1324. */
  1325. inverse_kinematics(homeposition);
  1326. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1327. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1328. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1329. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1330. /**
  1331. * SCARA home positions are based on configuration since the actual
  1332. * limits are determined by the inverse kinematic transform.
  1333. */
  1334. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1335. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1336. }
  1337. else
  1338. #endif
  1339. {
  1340. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1341. }
  1342. /**
  1343. * Z Probe Z Homing? Account for the probe's Z offset.
  1344. */
  1345. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1346. if (axis == Z_AXIS) {
  1347. #if HOMING_Z_WITH_PROBE
  1348. current_position[Z_AXIS] -= zprobe_zoffset;
  1349. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1350. if (DEBUGGING(LEVELING)) {
  1351. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1352. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1353. }
  1354. #endif
  1355. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1356. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1357. #endif
  1358. }
  1359. #endif
  1360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1361. if (DEBUGGING(LEVELING)) {
  1362. #if HAS_HOME_OFFSET
  1363. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1364. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1365. #endif
  1366. DEBUG_POS("", current_position);
  1367. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1368. SERIAL_CHAR(')');
  1369. SERIAL_EOL;
  1370. }
  1371. #endif
  1372. }
  1373. /**
  1374. * Some planner shorthand inline functions
  1375. */
  1376. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1377. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1378. int hbd = homing_bump_divisor[axis];
  1379. if (hbd < 1) {
  1380. hbd = 10;
  1381. SERIAL_ECHO_START;
  1382. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1383. }
  1384. return homing_feedrate_mm_s[axis] / hbd;
  1385. }
  1386. //
  1387. // line_to_current_position
  1388. // Move the planner to the current position from wherever it last moved
  1389. // (or from wherever it has been told it is located).
  1390. //
  1391. inline void line_to_current_position() {
  1392. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1393. }
  1394. //
  1395. // line_to_destination
  1396. // Move the planner, not necessarily synced with current_position
  1397. //
  1398. inline void line_to_destination(float fr_mm_s) {
  1399. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1400. }
  1401. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1402. inline void set_current_to_destination() { COPY(current_position, destination); }
  1403. inline void set_destination_to_current() { COPY(destination, current_position); }
  1404. #if IS_KINEMATIC
  1405. /**
  1406. * Calculate delta, start a line, and set current_position to destination
  1407. */
  1408. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1409. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1410. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1411. #endif
  1412. if ( current_position[X_AXIS] == destination[X_AXIS]
  1413. && current_position[Y_AXIS] == destination[Y_AXIS]
  1414. && current_position[Z_AXIS] == destination[Z_AXIS]
  1415. && current_position[E_AXIS] == destination[E_AXIS]
  1416. ) return;
  1417. refresh_cmd_timeout();
  1418. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1419. set_current_to_destination();
  1420. }
  1421. #endif // IS_KINEMATIC
  1422. /**
  1423. * Plan a move to (X, Y, Z) and set the current_position
  1424. * The final current_position may not be the one that was requested
  1425. */
  1426. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1427. const float old_feedrate_mm_s = feedrate_mm_s;
  1428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1429. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1430. #endif
  1431. #if ENABLED(DELTA)
  1432. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1433. set_destination_to_current(); // sync destination at the start
  1434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1435. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1436. #endif
  1437. // when in the danger zone
  1438. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1439. if (z > delta_clip_start_height) { // staying in the danger zone
  1440. destination[X_AXIS] = x; // move directly (uninterpolated)
  1441. destination[Y_AXIS] = y;
  1442. destination[Z_AXIS] = z;
  1443. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1445. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1446. #endif
  1447. return;
  1448. }
  1449. else {
  1450. destination[Z_AXIS] = delta_clip_start_height;
  1451. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1453. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1454. #endif
  1455. }
  1456. }
  1457. if (z > current_position[Z_AXIS]) { // raising?
  1458. destination[Z_AXIS] = z;
  1459. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1461. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1462. #endif
  1463. }
  1464. destination[X_AXIS] = x;
  1465. destination[Y_AXIS] = y;
  1466. prepare_move_to_destination(); // set_current_to_destination
  1467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1468. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1469. #endif
  1470. if (z < current_position[Z_AXIS]) { // lowering?
  1471. destination[Z_AXIS] = z;
  1472. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1474. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1475. #endif
  1476. }
  1477. #elif IS_SCARA
  1478. set_destination_to_current();
  1479. // If Z needs to raise, do it before moving XY
  1480. if (destination[Z_AXIS] < z) {
  1481. destination[Z_AXIS] = z;
  1482. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1483. }
  1484. destination[X_AXIS] = x;
  1485. destination[Y_AXIS] = y;
  1486. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1487. // If Z needs to lower, do it after moving XY
  1488. if (destination[Z_AXIS] > z) {
  1489. destination[Z_AXIS] = z;
  1490. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1491. }
  1492. #else
  1493. // If Z needs to raise, do it before moving XY
  1494. if (current_position[Z_AXIS] < z) {
  1495. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1496. current_position[Z_AXIS] = z;
  1497. line_to_current_position();
  1498. }
  1499. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1500. current_position[X_AXIS] = x;
  1501. current_position[Y_AXIS] = y;
  1502. line_to_current_position();
  1503. // If Z needs to lower, do it after moving XY
  1504. if (current_position[Z_AXIS] > z) {
  1505. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1506. current_position[Z_AXIS] = z;
  1507. line_to_current_position();
  1508. }
  1509. #endif
  1510. stepper.synchronize();
  1511. feedrate_mm_s = old_feedrate_mm_s;
  1512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1513. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1514. #endif
  1515. }
  1516. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1517. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1518. }
  1519. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1520. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1521. }
  1522. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1523. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1524. }
  1525. //
  1526. // Prepare to do endstop or probe moves
  1527. // with custom feedrates.
  1528. //
  1529. // - Save current feedrates
  1530. // - Reset the rate multiplier
  1531. // - Reset the command timeout
  1532. // - Enable the endstops (for endstop moves)
  1533. //
  1534. static void setup_for_endstop_or_probe_move() {
  1535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1536. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1537. #endif
  1538. saved_feedrate_mm_s = feedrate_mm_s;
  1539. saved_feedrate_percentage = feedrate_percentage;
  1540. feedrate_percentage = 100;
  1541. refresh_cmd_timeout();
  1542. }
  1543. static void clean_up_after_endstop_or_probe_move() {
  1544. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1545. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1546. #endif
  1547. feedrate_mm_s = saved_feedrate_mm_s;
  1548. feedrate_percentage = saved_feedrate_percentage;
  1549. refresh_cmd_timeout();
  1550. }
  1551. #if HAS_BED_PROBE
  1552. /**
  1553. * Raise Z to a minimum height to make room for a probe to move
  1554. */
  1555. inline void do_probe_raise(float z_raise) {
  1556. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1557. if (DEBUGGING(LEVELING)) {
  1558. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1559. SERIAL_CHAR(')');
  1560. SERIAL_EOL;
  1561. }
  1562. #endif
  1563. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1564. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1565. if (z_dest > current_position[Z_AXIS])
  1566. do_blocking_move_to_z(z_dest);
  1567. }
  1568. #endif //HAS_BED_PROBE
  1569. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1570. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1571. const bool xx = x && !axis_homed[X_AXIS],
  1572. yy = y && !axis_homed[Y_AXIS],
  1573. zz = z && !axis_homed[Z_AXIS];
  1574. if (xx || yy || zz) {
  1575. SERIAL_ECHO_START;
  1576. SERIAL_ECHOPGM(MSG_HOME " ");
  1577. if (xx) SERIAL_ECHOPGM(MSG_X);
  1578. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1579. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1580. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1581. #if ENABLED(ULTRA_LCD)
  1582. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1583. #endif
  1584. return true;
  1585. }
  1586. return false;
  1587. }
  1588. #endif
  1589. #if ENABLED(Z_PROBE_SLED)
  1590. #ifndef SLED_DOCKING_OFFSET
  1591. #define SLED_DOCKING_OFFSET 0
  1592. #endif
  1593. /**
  1594. * Method to dock/undock a sled designed by Charles Bell.
  1595. *
  1596. * stow[in] If false, move to MAX_X and engage the solenoid
  1597. * If true, move to MAX_X and release the solenoid
  1598. */
  1599. static void dock_sled(bool stow) {
  1600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1601. if (DEBUGGING(LEVELING)) {
  1602. SERIAL_ECHOPAIR("dock_sled(", stow);
  1603. SERIAL_CHAR(')');
  1604. SERIAL_EOL;
  1605. }
  1606. #endif
  1607. // Dock sled a bit closer to ensure proper capturing
  1608. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1609. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1610. WRITE(SOL1_PIN, !stow); // switch solenoid
  1611. #endif
  1612. }
  1613. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1614. void run_deploy_moves_script() {
  1615. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1616. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1617. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1620. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1623. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1627. #endif
  1628. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1629. #endif
  1630. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1638. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1642. #endif
  1643. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1644. #endif
  1645. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1646. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1647. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1650. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1653. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1656. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1657. #endif
  1658. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1659. #endif
  1660. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1662. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1665. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1668. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1672. #endif
  1673. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1674. #endif
  1675. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1676. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1677. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1680. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1683. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1686. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1687. #endif
  1688. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1689. #endif
  1690. }
  1691. void run_stow_moves_script() {
  1692. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1693. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1694. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1695. #endif
  1696. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1697. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1698. #endif
  1699. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1700. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1701. #endif
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1703. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1704. #endif
  1705. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1706. #endif
  1707. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1709. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1710. #endif
  1711. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1712. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1713. #endif
  1714. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1715. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1716. #endif
  1717. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1718. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1719. #endif
  1720. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1721. #endif
  1722. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1723. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1724. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1725. #endif
  1726. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1727. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1728. #endif
  1729. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1730. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1731. #endif
  1732. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1733. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1734. #endif
  1735. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1736. #endif
  1737. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1739. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1740. #endif
  1741. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1742. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1743. #endif
  1744. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1745. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1746. #endif
  1747. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1748. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1749. #endif
  1750. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1751. #endif
  1752. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1753. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1754. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1755. #endif
  1756. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1757. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1758. #endif
  1759. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1760. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1761. #endif
  1762. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1763. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1764. #endif
  1765. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1766. #endif
  1767. }
  1768. #endif
  1769. #if HAS_BED_PROBE
  1770. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1771. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1772. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1773. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1774. #else
  1775. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1776. #endif
  1777. #endif
  1778. #if ENABLED(BLTOUCH)
  1779. void bltouch_command(int angle) {
  1780. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1781. safe_delay(BLTOUCH_DELAY);
  1782. }
  1783. void set_bltouch_deployed(const bool deploy) {
  1784. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1785. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1786. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1787. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1788. safe_delay(1500); // wait for internal self test to complete
  1789. // measured completion time was 0.65 seconds
  1790. // after reset, deploy & stow sequence
  1791. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1792. SERIAL_ERROR_START;
  1793. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1794. stop(); // punt!
  1795. }
  1796. }
  1797. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1798. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1799. if (DEBUGGING(LEVELING)) {
  1800. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1801. SERIAL_CHAR(')');
  1802. SERIAL_EOL;
  1803. }
  1804. #endif
  1805. }
  1806. #endif
  1807. // returns false for ok and true for failure
  1808. bool set_probe_deployed(bool deploy) {
  1809. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1810. if (DEBUGGING(LEVELING)) {
  1811. DEBUG_POS("set_probe_deployed", current_position);
  1812. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1813. }
  1814. #endif
  1815. if (endstops.z_probe_enabled == deploy) return false;
  1816. // Make room for probe
  1817. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1818. // When deploying make sure BLTOUCH is not already triggered
  1819. #if ENABLED(BLTOUCH)
  1820. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1821. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1822. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1823. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1824. safe_delay(1500); // wait for internal self test to complete
  1825. // measured completion time was 0.65 seconds
  1826. // after reset, deploy & stow sequence
  1827. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1828. SERIAL_ERROR_START;
  1829. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1830. stop(); // punt!
  1831. return true;
  1832. }
  1833. }
  1834. #elif ENABLED(Z_PROBE_SLED)
  1835. if (axis_unhomed_error(true, false, false)) {
  1836. SERIAL_ERROR_START;
  1837. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1838. stop();
  1839. return true;
  1840. }
  1841. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1842. if (axis_unhomed_error(true, true, true )) {
  1843. SERIAL_ERROR_START;
  1844. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1845. stop();
  1846. return true;
  1847. }
  1848. #endif
  1849. const float oldXpos = current_position[X_AXIS],
  1850. oldYpos = current_position[Y_AXIS];
  1851. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1852. // If endstop is already false, the Z probe is deployed
  1853. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1854. // Would a goto be less ugly?
  1855. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1856. // for a triggered when stowed manual probe.
  1857. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1858. // otherwise an Allen-Key probe can't be stowed.
  1859. #endif
  1860. #if ENABLED(SOLENOID_PROBE)
  1861. #if HAS_SOLENOID_1
  1862. WRITE(SOL1_PIN, deploy);
  1863. #endif
  1864. #elif ENABLED(Z_PROBE_SLED)
  1865. dock_sled(!deploy);
  1866. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1867. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1868. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1869. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1870. #endif
  1871. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1872. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1873. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1874. if (IsRunning()) {
  1875. SERIAL_ERROR_START;
  1876. SERIAL_ERRORLNPGM("Z-Probe failed");
  1877. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1878. }
  1879. stop();
  1880. return true;
  1881. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1882. #endif
  1883. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1884. endstops.enable_z_probe(deploy);
  1885. return false;
  1886. }
  1887. static void do_probe_move(float z, float fr_mm_m) {
  1888. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1889. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1890. #endif
  1891. // Deploy BLTouch at the start of any probe
  1892. #if ENABLED(BLTOUCH)
  1893. set_bltouch_deployed(true);
  1894. #endif
  1895. // Move down until probe triggered
  1896. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1897. // Retract BLTouch immediately after a probe
  1898. #if ENABLED(BLTOUCH)
  1899. set_bltouch_deployed(false);
  1900. #endif
  1901. // Clear endstop flags
  1902. endstops.hit_on_purpose();
  1903. // Get Z where the steppers were interrupted
  1904. set_current_from_steppers_for_axis(Z_AXIS);
  1905. // Tell the planner where we actually are
  1906. SYNC_PLAN_POSITION_KINEMATIC();
  1907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1908. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1909. #endif
  1910. }
  1911. // Do a single Z probe and return with current_position[Z_AXIS]
  1912. // at the height where the probe triggered.
  1913. static float run_z_probe() {
  1914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1915. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1916. #endif
  1917. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1918. refresh_cmd_timeout();
  1919. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1920. // Do a first probe at the fast speed
  1921. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1922. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1923. float first_probe_z = current_position[Z_AXIS];
  1924. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1925. #endif
  1926. // move up by the bump distance
  1927. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1928. #else
  1929. // If the nozzle is above the travel height then
  1930. // move down quickly before doing the slow probe
  1931. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1932. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1933. if (z < current_position[Z_AXIS])
  1934. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1935. #endif
  1936. // move down slowly to find bed
  1937. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1938. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1939. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1940. #endif
  1941. // Debug: compare probe heights
  1942. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1943. if (DEBUGGING(LEVELING)) {
  1944. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1945. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1946. }
  1947. #endif
  1948. return current_position[Z_AXIS] + zprobe_zoffset;
  1949. }
  1950. //
  1951. // - Move to the given XY
  1952. // - Deploy the probe, if not already deployed
  1953. // - Probe the bed, get the Z position
  1954. // - Depending on the 'stow' flag
  1955. // - Stow the probe, or
  1956. // - Raise to the BETWEEN height
  1957. // - Return the probed Z position
  1958. //
  1959. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  1960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1961. if (DEBUGGING(LEVELING)) {
  1962. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1963. SERIAL_ECHOPAIR(", ", y);
  1964. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1965. SERIAL_ECHOLNPGM("stow)");
  1966. DEBUG_POS("", current_position);
  1967. }
  1968. #endif
  1969. const float old_feedrate_mm_s = feedrate_mm_s;
  1970. #if ENABLED(DELTA)
  1971. if (current_position[Z_AXIS] > delta_clip_start_height)
  1972. do_blocking_move_to_z(delta_clip_start_height);
  1973. #endif
  1974. // Ensure a minimum height before moving the probe
  1975. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1976. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1977. // Move the probe to the given XY
  1978. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1979. if (DEPLOY_PROBE()) return NAN;
  1980. const float measured_z = run_z_probe();
  1981. if (!stow)
  1982. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1983. else
  1984. if (STOW_PROBE()) return NAN;
  1985. if (verbose_level > 2) {
  1986. SERIAL_PROTOCOLPGM("Bed X: ");
  1987. SERIAL_PROTOCOL_F(x, 3);
  1988. SERIAL_PROTOCOLPGM(" Y: ");
  1989. SERIAL_PROTOCOL_F(y, 3);
  1990. SERIAL_PROTOCOLPGM(" Z: ");
  1991. SERIAL_PROTOCOL_F(measured_z, 3);
  1992. SERIAL_EOL;
  1993. }
  1994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1995. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1996. #endif
  1997. feedrate_mm_s = old_feedrate_mm_s;
  1998. return measured_z;
  1999. }
  2000. #endif // HAS_BED_PROBE
  2001. #if PLANNER_LEVELING
  2002. /**
  2003. * Turn bed leveling on or off, fixing the current
  2004. * position as-needed.
  2005. *
  2006. * Disable: Current position = physical position
  2007. * Enable: Current position = "unleveled" physical position
  2008. */
  2009. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2010. #if ENABLED(MESH_BED_LEVELING)
  2011. if (enable != mbl.active()) {
  2012. if (!enable)
  2013. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2014. mbl.set_active(enable && mbl.has_mesh());
  2015. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2016. }
  2017. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  2018. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2019. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2020. #else
  2021. constexpr bool can_change = true;
  2022. #endif
  2023. if (can_change && enable != planner.abl_enabled) {
  2024. planner.abl_enabled = enable;
  2025. if (!enable)
  2026. set_current_from_steppers_for_axis(
  2027. #if ABL_PLANAR
  2028. ALL_AXES
  2029. #else
  2030. Z_AXIS
  2031. #endif
  2032. );
  2033. else
  2034. planner.unapply_leveling(current_position);
  2035. }
  2036. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2037. ubl.state.active = enable;
  2038. //set_current_from_steppers_for_axis(Z_AXIS);
  2039. #endif
  2040. }
  2041. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2042. void set_z_fade_height(const float zfh) {
  2043. planner.z_fade_height = zfh;
  2044. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2045. if (
  2046. #if ENABLED(MESH_BED_LEVELING)
  2047. mbl.active()
  2048. #else
  2049. planner.abl_enabled
  2050. #endif
  2051. ) {
  2052. set_current_from_steppers_for_axis(
  2053. #if ABL_PLANAR
  2054. ALL_AXES
  2055. #else
  2056. Z_AXIS
  2057. #endif
  2058. );
  2059. }
  2060. }
  2061. #endif // LEVELING_FADE_HEIGHT
  2062. /**
  2063. * Reset calibration results to zero.
  2064. */
  2065. void reset_bed_level() {
  2066. set_bed_leveling_enabled(false);
  2067. #if ENABLED(MESH_BED_LEVELING)
  2068. if (mbl.has_mesh()) {
  2069. mbl.reset();
  2070. mbl.set_has_mesh(false);
  2071. }
  2072. #else
  2073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2074. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2075. #endif
  2076. #if ABL_PLANAR
  2077. planner.bed_level_matrix.set_to_identity();
  2078. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2079. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2080. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2081. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2082. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2083. bed_level_grid[x][y] = NAN;
  2084. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2085. ubl.reset();
  2086. #endif
  2087. #endif
  2088. }
  2089. #endif // PLANNER_LEVELING
  2090. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2091. //
  2092. // Enable if you prefer your output in JSON format
  2093. // suitable for SCAD or JavaScript mesh visualizers.
  2094. //
  2095. // Visualize meshes in OpenSCAD using the included script.
  2096. //
  2097. // buildroot/shared/scripts/MarlinMesh.scad
  2098. //
  2099. //#define SCAD_MESH_OUTPUT
  2100. /**
  2101. * Print calibration results for plotting or manual frame adjustment.
  2102. */
  2103. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2104. #ifndef SCAD_MESH_OUTPUT
  2105. for (uint8_t x = 0; x < sx; x++) {
  2106. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2107. SERIAL_PROTOCOLCHAR(' ');
  2108. SERIAL_PROTOCOL((int)x);
  2109. }
  2110. SERIAL_EOL;
  2111. #endif
  2112. #ifdef SCAD_MESH_OUTPUT
  2113. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2114. #endif
  2115. for (uint8_t y = 0; y < sy; y++) {
  2116. #ifdef SCAD_MESH_OUTPUT
  2117. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2118. #else
  2119. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2120. SERIAL_PROTOCOL((int)y);
  2121. #endif
  2122. for (uint8_t x = 0; x < sx; x++) {
  2123. SERIAL_PROTOCOLCHAR(' ');
  2124. const float offset = fn(x, y);
  2125. if (!isnan(offset)) {
  2126. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2127. SERIAL_PROTOCOL_F(offset, precision);
  2128. }
  2129. else {
  2130. #ifdef SCAD_MESH_OUTPUT
  2131. for (uint8_t i = 3; i < precision + 3; i++)
  2132. SERIAL_PROTOCOLCHAR(' ');
  2133. SERIAL_PROTOCOLPGM("NAN");
  2134. #else
  2135. for (uint8_t i = 0; i < precision + 3; i++)
  2136. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2137. #endif
  2138. }
  2139. #ifdef SCAD_MESH_OUTPUT
  2140. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2141. #endif
  2142. }
  2143. #ifdef SCAD_MESH_OUTPUT
  2144. SERIAL_PROTOCOLCHAR(' ');
  2145. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2146. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2147. #endif
  2148. SERIAL_EOL;
  2149. }
  2150. #ifdef SCAD_MESH_OUTPUT
  2151. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2152. #endif
  2153. SERIAL_EOL;
  2154. }
  2155. #endif
  2156. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2157. /**
  2158. * Extrapolate a single point from its neighbors
  2159. */
  2160. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2162. if (DEBUGGING(LEVELING)) {
  2163. SERIAL_ECHOPGM("Extrapolate [");
  2164. if (x < 10) SERIAL_CHAR(' ');
  2165. SERIAL_ECHO((int)x);
  2166. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2167. SERIAL_CHAR(' ');
  2168. if (y < 10) SERIAL_CHAR(' ');
  2169. SERIAL_ECHO((int)y);
  2170. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2171. SERIAL_CHAR(']');
  2172. }
  2173. #endif
  2174. if (!isnan(bed_level_grid[x][y])) {
  2175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2176. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2177. #endif
  2178. return; // Don't overwrite good values.
  2179. }
  2180. SERIAL_EOL;
  2181. // Get X neighbors, Y neighbors, and XY neighbors
  2182. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  2183. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  2184. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  2185. // Treat far unprobed points as zero, near as equal to far
  2186. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2187. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2188. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2189. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2190. // Take the average instead of the median
  2191. bed_level_grid[x][y] = (a + b + c) / 3.0;
  2192. // Median is robust (ignores outliers).
  2193. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2194. // : ((c < b) ? b : (a < c) ? a : c);
  2195. }
  2196. //Enable this if your SCARA uses 180° of total area
  2197. //#define EXTRAPOLATE_FROM_EDGE
  2198. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2199. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2200. #define HALF_IN_X
  2201. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2202. #define HALF_IN_Y
  2203. #endif
  2204. #endif
  2205. /**
  2206. * Fill in the unprobed points (corners of circular print surface)
  2207. * using linear extrapolation, away from the center.
  2208. */
  2209. static void extrapolate_unprobed_bed_level() {
  2210. #ifdef HALF_IN_X
  2211. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2212. #else
  2213. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2214. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2215. xlen = ctrx1;
  2216. #endif
  2217. #ifdef HALF_IN_Y
  2218. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2219. #else
  2220. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2221. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2222. ylen = ctry1;
  2223. #endif
  2224. for (uint8_t xo = 0; xo <= xlen; xo++)
  2225. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2226. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2227. #ifndef HALF_IN_X
  2228. const uint8_t x1 = ctrx1 - xo;
  2229. #endif
  2230. #ifndef HALF_IN_Y
  2231. const uint8_t y1 = ctry1 - yo;
  2232. #ifndef HALF_IN_X
  2233. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2234. #endif
  2235. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2236. #endif
  2237. #ifndef HALF_IN_X
  2238. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2239. #endif
  2240. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2241. }
  2242. }
  2243. static void print_bilinear_leveling_grid() {
  2244. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2245. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2246. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid[ix][iy]; }
  2247. );
  2248. }
  2249. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2250. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2251. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2252. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2253. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2254. float bed_level_grid_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2255. int bilinear_grid_spacing_virt[2] = { 0 };
  2256. static void bed_level_virt_print() {
  2257. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2258. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2259. [](const uint8_t ix, const uint8_t iy) { return bed_level_grid_virt[ix][iy]; }
  2260. );
  2261. }
  2262. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2263. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2264. uint8_t ep = 0, ip = 1;
  2265. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2266. if (x) {
  2267. ep = GRID_MAX_POINTS_X - 1;
  2268. ip = GRID_MAX_POINTS_X - 2;
  2269. }
  2270. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2271. return LINEAR_EXTRAPOLATION(
  2272. bed_level_grid[ep][y - 1],
  2273. bed_level_grid[ip][y - 1]
  2274. );
  2275. else
  2276. return LINEAR_EXTRAPOLATION(
  2277. bed_level_virt_coord(ep + 1, y),
  2278. bed_level_virt_coord(ip + 1, y)
  2279. );
  2280. }
  2281. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2282. if (y) {
  2283. ep = GRID_MAX_POINTS_Y - 1;
  2284. ip = GRID_MAX_POINTS_Y - 2;
  2285. }
  2286. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2287. return LINEAR_EXTRAPOLATION(
  2288. bed_level_grid[x - 1][ep],
  2289. bed_level_grid[x - 1][ip]
  2290. );
  2291. else
  2292. return LINEAR_EXTRAPOLATION(
  2293. bed_level_virt_coord(x, ep + 1),
  2294. bed_level_virt_coord(x, ip + 1)
  2295. );
  2296. }
  2297. return bed_level_grid[x - 1][y - 1];
  2298. }
  2299. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2300. return (
  2301. p[i-1] * -t * sq(1 - t)
  2302. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2303. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2304. - p[i+2] * sq(t) * (1 - t)
  2305. ) * 0.5;
  2306. }
  2307. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2308. float row[4], column[4];
  2309. for (uint8_t i = 0; i < 4; i++) {
  2310. for (uint8_t j = 0; j < 4; j++) {
  2311. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2312. }
  2313. row[i] = bed_level_virt_cmr(column, 1, ty);
  2314. }
  2315. return bed_level_virt_cmr(row, 1, tx);
  2316. }
  2317. void bed_level_virt_interpolate() {
  2318. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2319. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2320. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2321. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2322. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2323. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2324. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2325. continue;
  2326. bed_level_grid_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2327. bed_level_virt_2cmr(
  2328. x + 1,
  2329. y + 1,
  2330. (float)tx / (BILINEAR_SUBDIVISIONS),
  2331. (float)ty / (BILINEAR_SUBDIVISIONS)
  2332. );
  2333. }
  2334. }
  2335. #endif // ABL_BILINEAR_SUBDIVISION
  2336. #endif // AUTO_BED_LEVELING_BILINEAR
  2337. /**
  2338. * Home an individual linear axis
  2339. */
  2340. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2342. if (DEBUGGING(LEVELING)) {
  2343. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2344. SERIAL_ECHOPAIR(", ", distance);
  2345. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2346. SERIAL_CHAR(')');
  2347. SERIAL_EOL;
  2348. }
  2349. #endif
  2350. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2351. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2352. if (deploy_bltouch) set_bltouch_deployed(true);
  2353. #endif
  2354. // Tell the planner we're at Z=0
  2355. current_position[axis] = 0;
  2356. #if IS_SCARA
  2357. SYNC_PLAN_POSITION_KINEMATIC();
  2358. current_position[axis] = distance;
  2359. inverse_kinematics(current_position);
  2360. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2361. #else
  2362. sync_plan_position();
  2363. current_position[axis] = distance;
  2364. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2365. #endif
  2366. stepper.synchronize();
  2367. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2368. if (deploy_bltouch) set_bltouch_deployed(false);
  2369. #endif
  2370. endstops.hit_on_purpose();
  2371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2372. if (DEBUGGING(LEVELING)) {
  2373. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2374. SERIAL_CHAR(')');
  2375. SERIAL_EOL;
  2376. }
  2377. #endif
  2378. }
  2379. /**
  2380. * TMC2130 specific sensorless homing using stallGuard2.
  2381. * stallGuard2 only works when in spreadCycle mode.
  2382. * spreadCycle and stealthChop are mutually exclusive.
  2383. */
  2384. #if ENABLED(SENSORLESS_HOMING)
  2385. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2386. #if ENABLED(STEALTHCHOP)
  2387. if (enable) {
  2388. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2389. st.stealthChop(0);
  2390. }
  2391. else {
  2392. st.coolstep_min_speed(0);
  2393. st.stealthChop(1);
  2394. }
  2395. #endif
  2396. st.diag1_stall(enable ? 1 : 0);
  2397. }
  2398. #endif
  2399. /**
  2400. * Home an individual "raw axis" to its endstop.
  2401. * This applies to XYZ on Cartesian and Core robots, and
  2402. * to the individual ABC steppers on DELTA and SCARA.
  2403. *
  2404. * At the end of the procedure the axis is marked as
  2405. * homed and the current position of that axis is updated.
  2406. * Kinematic robots should wait till all axes are homed
  2407. * before updating the current position.
  2408. */
  2409. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2410. static void homeaxis(const AxisEnum axis) {
  2411. #if IS_SCARA
  2412. // Only Z homing (with probe) is permitted
  2413. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2414. #else
  2415. #define CAN_HOME(A) \
  2416. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2417. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2418. #endif
  2419. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2420. if (DEBUGGING(LEVELING)) {
  2421. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2422. SERIAL_CHAR(')');
  2423. SERIAL_EOL;
  2424. }
  2425. #endif
  2426. const int axis_home_dir =
  2427. #if ENABLED(DUAL_X_CARRIAGE)
  2428. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2429. #endif
  2430. home_dir(axis);
  2431. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2432. #if HOMING_Z_WITH_PROBE
  2433. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2434. #endif
  2435. // Set a flag for Z motor locking
  2436. #if ENABLED(Z_DUAL_ENDSTOPS)
  2437. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2438. #endif
  2439. // Disable stealthChop if used. Enable diag1 pin on driver.
  2440. #if ENABLED(SENSORLESS_HOMING)
  2441. #if ENABLED(X_IS_TMC2130)
  2442. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2443. #endif
  2444. #if ENABLED(Y_IS_TMC2130)
  2445. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2446. #endif
  2447. #endif
  2448. // Fast move towards endstop until triggered
  2449. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2450. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2451. #endif
  2452. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2453. // When homing Z with probe respect probe clearance
  2454. const float bump = axis_home_dir * (
  2455. #if HOMING_Z_WITH_PROBE
  2456. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2457. #endif
  2458. home_bump_mm(axis)
  2459. );
  2460. // If a second homing move is configured...
  2461. if (bump) {
  2462. // Move away from the endstop by the axis HOME_BUMP_MM
  2463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2464. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2465. #endif
  2466. do_homing_move(axis, -bump);
  2467. // Slow move towards endstop until triggered
  2468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2469. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2470. #endif
  2471. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2472. }
  2473. #if ENABLED(Z_DUAL_ENDSTOPS)
  2474. if (axis == Z_AXIS) {
  2475. float adj = fabs(z_endstop_adj);
  2476. bool lockZ1;
  2477. if (axis_home_dir > 0) {
  2478. adj = -adj;
  2479. lockZ1 = (z_endstop_adj > 0);
  2480. }
  2481. else
  2482. lockZ1 = (z_endstop_adj < 0);
  2483. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2484. // Move to the adjusted endstop height
  2485. do_homing_move(axis, adj);
  2486. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2487. stepper.set_homing_flag(false);
  2488. } // Z_AXIS
  2489. #endif
  2490. #if IS_SCARA
  2491. set_axis_is_at_home(axis);
  2492. SYNC_PLAN_POSITION_KINEMATIC();
  2493. #elif ENABLED(DELTA)
  2494. // Delta has already moved all three towers up in G28
  2495. // so here it re-homes each tower in turn.
  2496. // Delta homing treats the axes as normal linear axes.
  2497. // retrace by the amount specified in endstop_adj
  2498. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2500. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2501. #endif
  2502. do_homing_move(axis, endstop_adj[axis]);
  2503. }
  2504. #else
  2505. // For cartesian/core machines,
  2506. // set the axis to its home position
  2507. set_axis_is_at_home(axis);
  2508. sync_plan_position();
  2509. destination[axis] = current_position[axis];
  2510. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2511. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2512. #endif
  2513. #endif
  2514. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2515. #if ENABLED(SENSORLESS_HOMING)
  2516. #if ENABLED(X_IS_TMC2130)
  2517. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2518. #endif
  2519. #if ENABLED(Y_IS_TMC2130)
  2520. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2521. #endif
  2522. #endif
  2523. // Put away the Z probe
  2524. #if HOMING_Z_WITH_PROBE
  2525. if (axis == Z_AXIS && STOW_PROBE()) return;
  2526. #endif
  2527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2528. if (DEBUGGING(LEVELING)) {
  2529. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2530. SERIAL_CHAR(')');
  2531. SERIAL_EOL;
  2532. }
  2533. #endif
  2534. } // homeaxis()
  2535. #if ENABLED(FWRETRACT)
  2536. void retract(const bool retracting, const bool swapping = false) {
  2537. static float hop_height;
  2538. if (retracting == retracted[active_extruder]) return;
  2539. const float old_feedrate_mm_s = feedrate_mm_s;
  2540. set_destination_to_current();
  2541. if (retracting) {
  2542. feedrate_mm_s = retract_feedrate_mm_s;
  2543. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2544. sync_plan_position_e();
  2545. prepare_move_to_destination();
  2546. if (retract_zlift > 0.01) {
  2547. hop_height = current_position[Z_AXIS];
  2548. // Pretend current position is lower
  2549. current_position[Z_AXIS] -= retract_zlift;
  2550. SYNC_PLAN_POSITION_KINEMATIC();
  2551. // Raise up to the old current_position
  2552. prepare_move_to_destination();
  2553. }
  2554. }
  2555. else {
  2556. // If the height hasn't been altered, undo the Z hop
  2557. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2558. // Pretend current position is higher. Z will lower on the next move
  2559. current_position[Z_AXIS] += retract_zlift;
  2560. SYNC_PLAN_POSITION_KINEMATIC();
  2561. }
  2562. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2563. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2564. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2565. sync_plan_position_e();
  2566. // Lower Z and recover E
  2567. prepare_move_to_destination();
  2568. }
  2569. feedrate_mm_s = old_feedrate_mm_s;
  2570. retracted[active_extruder] = retracting;
  2571. } // retract()
  2572. #endif // FWRETRACT
  2573. #if ENABLED(MIXING_EXTRUDER)
  2574. void normalize_mix() {
  2575. float mix_total = 0.0;
  2576. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2577. // Scale all values if they don't add up to ~1.0
  2578. if (!NEAR(mix_total, 1.0)) {
  2579. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2580. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2581. }
  2582. }
  2583. #if ENABLED(DIRECT_MIXING_IN_G1)
  2584. // Get mixing parameters from the GCode
  2585. // The total "must" be 1.0 (but it will be normalized)
  2586. // If no mix factors are given, the old mix is preserved
  2587. void gcode_get_mix() {
  2588. const char* mixing_codes = "ABCDHI";
  2589. byte mix_bits = 0;
  2590. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2591. if (code_seen(mixing_codes[i])) {
  2592. SBI(mix_bits, i);
  2593. float v = code_value_float();
  2594. NOLESS(v, 0.0);
  2595. mixing_factor[i] = RECIPROCAL(v);
  2596. }
  2597. }
  2598. // If any mixing factors were included, clear the rest
  2599. // If none were included, preserve the last mix
  2600. if (mix_bits) {
  2601. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2602. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2603. normalize_mix();
  2604. }
  2605. }
  2606. #endif
  2607. #endif
  2608. /**
  2609. * ***************************************************************************
  2610. * ***************************** G-CODE HANDLING *****************************
  2611. * ***************************************************************************
  2612. */
  2613. /**
  2614. * Set XYZE destination and feedrate from the current GCode command
  2615. *
  2616. * - Set destination from included axis codes
  2617. * - Set to current for missing axis codes
  2618. * - Set the feedrate, if included
  2619. */
  2620. void gcode_get_destination() {
  2621. LOOP_XYZE(i) {
  2622. if (code_seen(axis_codes[i]))
  2623. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2624. else
  2625. destination[i] = current_position[i];
  2626. }
  2627. if (code_seen('F') && code_value_linear_units() > 0.0)
  2628. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2629. #if ENABLED(PRINTCOUNTER)
  2630. if (!DEBUGGING(DRYRUN))
  2631. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2632. #endif
  2633. // Get ABCDHI mixing factors
  2634. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2635. gcode_get_mix();
  2636. #endif
  2637. }
  2638. void unknown_command_error() {
  2639. SERIAL_ECHO_START;
  2640. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2641. SERIAL_CHAR('"');
  2642. SERIAL_EOL;
  2643. }
  2644. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2645. /**
  2646. * Output a "busy" message at regular intervals
  2647. * while the machine is not accepting commands.
  2648. */
  2649. void host_keepalive() {
  2650. const millis_t ms = millis();
  2651. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2652. if (PENDING(ms, next_busy_signal_ms)) return;
  2653. switch (busy_state) {
  2654. case IN_HANDLER:
  2655. case IN_PROCESS:
  2656. SERIAL_ECHO_START;
  2657. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2658. break;
  2659. case PAUSED_FOR_USER:
  2660. SERIAL_ECHO_START;
  2661. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2662. break;
  2663. case PAUSED_FOR_INPUT:
  2664. SERIAL_ECHO_START;
  2665. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2666. break;
  2667. default:
  2668. break;
  2669. }
  2670. }
  2671. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2672. }
  2673. #endif //HOST_KEEPALIVE_FEATURE
  2674. bool position_is_reachable(float target[XYZ]
  2675. #if HAS_BED_PROBE
  2676. , bool by_probe=false
  2677. #endif
  2678. ) {
  2679. float dx = RAW_X_POSITION(target[X_AXIS]),
  2680. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2681. #if HAS_BED_PROBE
  2682. if (by_probe) {
  2683. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2684. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2685. }
  2686. #endif
  2687. #if IS_SCARA
  2688. #if MIDDLE_DEAD_ZONE_R > 0
  2689. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2690. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2691. #else
  2692. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2693. #endif
  2694. #elif ENABLED(DELTA)
  2695. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2696. #else
  2697. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2698. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2699. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2700. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2701. #endif
  2702. }
  2703. /**************************************************
  2704. ***************** GCode Handlers *****************
  2705. **************************************************/
  2706. /**
  2707. * G0, G1: Coordinated movement of X Y Z E axes
  2708. */
  2709. inline void gcode_G0_G1(
  2710. #if IS_SCARA
  2711. bool fast_move=false
  2712. #endif
  2713. ) {
  2714. if (IsRunning()) {
  2715. gcode_get_destination(); // For X Y Z E F
  2716. #if ENABLED(FWRETRACT)
  2717. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2718. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2719. // Is this move an attempt to retract or recover?
  2720. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2721. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2722. sync_plan_position_e(); // AND from the planner
  2723. retract(!retracted[active_extruder]);
  2724. return;
  2725. }
  2726. }
  2727. #endif //FWRETRACT
  2728. #if IS_SCARA
  2729. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2730. #else
  2731. prepare_move_to_destination();
  2732. #endif
  2733. }
  2734. }
  2735. /**
  2736. * G2: Clockwise Arc
  2737. * G3: Counterclockwise Arc
  2738. *
  2739. * This command has two forms: IJ-form and R-form.
  2740. *
  2741. * - I specifies an X offset. J specifies a Y offset.
  2742. * At least one of the IJ parameters is required.
  2743. * X and Y can be omitted to do a complete circle.
  2744. * The given XY is not error-checked. The arc ends
  2745. * based on the angle of the destination.
  2746. * Mixing I or J with R will throw an error.
  2747. *
  2748. * - R specifies the radius. X or Y is required.
  2749. * Omitting both X and Y will throw an error.
  2750. * X or Y must differ from the current XY.
  2751. * Mixing R with I or J will throw an error.
  2752. *
  2753. * Examples:
  2754. *
  2755. * G2 I10 ; CW circle centered at X+10
  2756. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2757. */
  2758. #if ENABLED(ARC_SUPPORT)
  2759. inline void gcode_G2_G3(bool clockwise) {
  2760. if (IsRunning()) {
  2761. #if ENABLED(SF_ARC_FIX)
  2762. const bool relative_mode_backup = relative_mode;
  2763. relative_mode = true;
  2764. #endif
  2765. gcode_get_destination();
  2766. #if ENABLED(SF_ARC_FIX)
  2767. relative_mode = relative_mode_backup;
  2768. #endif
  2769. float arc_offset[2] = { 0.0, 0.0 };
  2770. if (code_seen('R')) {
  2771. const float r = code_value_axis_units(X_AXIS),
  2772. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2773. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2774. if (r && (x2 != x1 || y2 != y1)) {
  2775. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2776. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2777. d = HYPOT(dx, dy), // Linear distance between the points
  2778. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2779. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2780. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2781. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2782. arc_offset[X_AXIS] = cx - x1;
  2783. arc_offset[Y_AXIS] = cy - y1;
  2784. }
  2785. }
  2786. else {
  2787. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2788. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2789. }
  2790. if (arc_offset[0] || arc_offset[1]) {
  2791. // Send an arc to the planner
  2792. plan_arc(destination, arc_offset, clockwise);
  2793. refresh_cmd_timeout();
  2794. }
  2795. else {
  2796. // Bad arguments
  2797. SERIAL_ERROR_START;
  2798. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2799. }
  2800. }
  2801. }
  2802. #endif
  2803. /**
  2804. * G4: Dwell S<seconds> or P<milliseconds>
  2805. */
  2806. inline void gcode_G4() {
  2807. millis_t dwell_ms = 0;
  2808. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2809. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2810. stepper.synchronize();
  2811. refresh_cmd_timeout();
  2812. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2813. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2814. while (PENDING(millis(), dwell_ms)) idle();
  2815. }
  2816. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2817. /**
  2818. * Parameters interpreted according to:
  2819. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2820. * However I, J omission is not supported at this point; all
  2821. * parameters can be omitted and default to zero.
  2822. */
  2823. /**
  2824. * G5: Cubic B-spline
  2825. */
  2826. inline void gcode_G5() {
  2827. if (IsRunning()) {
  2828. gcode_get_destination();
  2829. const float offset[] = {
  2830. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2831. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2832. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2833. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2834. };
  2835. plan_cubic_move(offset);
  2836. }
  2837. }
  2838. #endif // BEZIER_CURVE_SUPPORT
  2839. #if ENABLED(FWRETRACT)
  2840. /**
  2841. * G10 - Retract filament according to settings of M207
  2842. * G11 - Recover filament according to settings of M208
  2843. */
  2844. inline void gcode_G10_G11(bool doRetract=false) {
  2845. #if EXTRUDERS > 1
  2846. if (doRetract) {
  2847. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2848. }
  2849. #endif
  2850. retract(doRetract
  2851. #if EXTRUDERS > 1
  2852. , retracted_swap[active_extruder]
  2853. #endif
  2854. );
  2855. }
  2856. #endif //FWRETRACT
  2857. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2858. /**
  2859. * G12: Clean the nozzle
  2860. */
  2861. inline void gcode_G12() {
  2862. // Don't allow nozzle cleaning without homing first
  2863. if (axis_unhomed_error(true, true, true)) return;
  2864. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2865. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2866. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2867. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2868. Nozzle::clean(pattern, strokes, radius, objects);
  2869. }
  2870. #endif
  2871. #if ENABLED(INCH_MODE_SUPPORT)
  2872. /**
  2873. * G20: Set input mode to inches
  2874. */
  2875. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2876. /**
  2877. * G21: Set input mode to millimeters
  2878. */
  2879. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2880. #endif
  2881. #if ENABLED(NOZZLE_PARK_FEATURE)
  2882. /**
  2883. * G27: Park the nozzle
  2884. */
  2885. inline void gcode_G27() {
  2886. // Don't allow nozzle parking without homing first
  2887. if (axis_unhomed_error(true, true, true)) return;
  2888. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2889. }
  2890. #endif // NOZZLE_PARK_FEATURE
  2891. #if ENABLED(QUICK_HOME)
  2892. static void quick_home_xy() {
  2893. // Pretend the current position is 0,0
  2894. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2895. sync_plan_position();
  2896. const int x_axis_home_dir =
  2897. #if ENABLED(DUAL_X_CARRIAGE)
  2898. x_home_dir(active_extruder)
  2899. #else
  2900. home_dir(X_AXIS)
  2901. #endif
  2902. ;
  2903. const float mlx = max_length(X_AXIS),
  2904. mly = max_length(Y_AXIS),
  2905. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2906. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2907. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2908. endstops.hit_on_purpose(); // clear endstop hit flags
  2909. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2910. }
  2911. #endif // QUICK_HOME
  2912. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2913. void log_machine_info() {
  2914. SERIAL_ECHOPGM("Machine Type: ");
  2915. #if ENABLED(DELTA)
  2916. SERIAL_ECHOLNPGM("Delta");
  2917. #elif IS_SCARA
  2918. SERIAL_ECHOLNPGM("SCARA");
  2919. #elif IS_CORE
  2920. SERIAL_ECHOLNPGM("Core");
  2921. #else
  2922. SERIAL_ECHOLNPGM("Cartesian");
  2923. #endif
  2924. SERIAL_ECHOPGM("Probe: ");
  2925. #if ENABLED(PROBE_MANUALLY)
  2926. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2927. #elif ENABLED(FIX_MOUNTED_PROBE)
  2928. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2929. #elif ENABLED(BLTOUCH)
  2930. SERIAL_ECHOLNPGM("BLTOUCH");
  2931. #elif HAS_Z_SERVO_ENDSTOP
  2932. SERIAL_ECHOLNPGM("SERVO PROBE");
  2933. #elif ENABLED(Z_PROBE_SLED)
  2934. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2935. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2936. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2937. #else
  2938. SERIAL_ECHOLNPGM("NONE");
  2939. #endif
  2940. #if HAS_BED_PROBE
  2941. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2942. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2943. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2944. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2945. SERIAL_ECHOPGM(" (Right");
  2946. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2947. SERIAL_ECHOPGM(" (Left");
  2948. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2949. SERIAL_ECHOPGM(" (Middle");
  2950. #else
  2951. SERIAL_ECHOPGM(" (Aligned With");
  2952. #endif
  2953. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2954. SERIAL_ECHOPGM("-Back");
  2955. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2956. SERIAL_ECHOPGM("-Front");
  2957. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2958. SERIAL_ECHOPGM("-Center");
  2959. #endif
  2960. if (zprobe_zoffset < 0)
  2961. SERIAL_ECHOPGM(" & Below");
  2962. else if (zprobe_zoffset > 0)
  2963. SERIAL_ECHOPGM(" & Above");
  2964. else
  2965. SERIAL_ECHOPGM(" & Same Z as");
  2966. SERIAL_ECHOLNPGM(" Nozzle)");
  2967. #endif
  2968. #if HAS_ABL
  2969. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2970. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2971. SERIAL_ECHOPGM("LINEAR");
  2972. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2973. SERIAL_ECHOPGM("BILINEAR");
  2974. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2975. SERIAL_ECHOPGM("3POINT");
  2976. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2977. SERIAL_ECHOPGM("UBL");
  2978. #endif
  2979. if (planner.abl_enabled) {
  2980. SERIAL_ECHOLNPGM(" (enabled)");
  2981. #if ABL_PLANAR
  2982. float diff[XYZ] = {
  2983. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2984. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2985. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2986. };
  2987. SERIAL_ECHOPGM("ABL Adjustment X");
  2988. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2989. SERIAL_ECHO(diff[X_AXIS]);
  2990. SERIAL_ECHOPGM(" Y");
  2991. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2992. SERIAL_ECHO(diff[Y_AXIS]);
  2993. SERIAL_ECHOPGM(" Z");
  2994. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2995. SERIAL_ECHO(diff[Z_AXIS]);
  2996. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2997. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  2998. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2999. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3000. #endif
  3001. }
  3002. else
  3003. SERIAL_ECHOLNPGM(" (disabled)");
  3004. SERIAL_EOL;
  3005. #elif ENABLED(MESH_BED_LEVELING)
  3006. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3007. if (mbl.active()) {
  3008. float lz = current_position[Z_AXIS];
  3009. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3010. SERIAL_ECHOLNPGM(" (enabled)");
  3011. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3012. }
  3013. else
  3014. SERIAL_ECHOPGM(" (disabled)");
  3015. SERIAL_EOL;
  3016. #endif // MESH_BED_LEVELING
  3017. }
  3018. #endif // DEBUG_LEVELING_FEATURE
  3019. #if ENABLED(DELTA)
  3020. /**
  3021. * A delta can only safely home all axes at the same time
  3022. * This is like quick_home_xy() but for 3 towers.
  3023. */
  3024. inline void home_delta() {
  3025. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3026. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3027. #endif
  3028. // Init the current position of all carriages to 0,0,0
  3029. ZERO(current_position);
  3030. sync_plan_position();
  3031. // Move all carriages together linearly until an endstop is hit.
  3032. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3033. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3034. line_to_current_position();
  3035. stepper.synchronize();
  3036. endstops.hit_on_purpose(); // clear endstop hit flags
  3037. // At least one carriage has reached the top.
  3038. // Now re-home each carriage separately.
  3039. HOMEAXIS(A);
  3040. HOMEAXIS(B);
  3041. HOMEAXIS(C);
  3042. // Set all carriages to their home positions
  3043. // Do this here all at once for Delta, because
  3044. // XYZ isn't ABC. Applying this per-tower would
  3045. // give the impression that they are the same.
  3046. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3047. SYNC_PLAN_POSITION_KINEMATIC();
  3048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3049. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3050. #endif
  3051. }
  3052. #endif // DELTA
  3053. #if ENABLED(Z_SAFE_HOMING)
  3054. inline void home_z_safely() {
  3055. // Disallow Z homing if X or Y are unknown
  3056. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3057. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3058. SERIAL_ECHO_START;
  3059. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3060. return;
  3061. }
  3062. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3063. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3064. #endif
  3065. SYNC_PLAN_POSITION_KINEMATIC();
  3066. /**
  3067. * Move the Z probe (or just the nozzle) to the safe homing point
  3068. */
  3069. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3070. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3071. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3072. if (position_is_reachable(
  3073. destination
  3074. #if HOMING_Z_WITH_PROBE
  3075. , true
  3076. #endif
  3077. )
  3078. ) {
  3079. #if HOMING_Z_WITH_PROBE
  3080. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3081. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3082. #endif
  3083. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3084. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3085. #endif
  3086. // This causes the carriage on Dual X to unpark
  3087. #if ENABLED(DUAL_X_CARRIAGE)
  3088. active_extruder_parked = false;
  3089. #endif
  3090. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3091. HOMEAXIS(Z);
  3092. }
  3093. else {
  3094. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3095. SERIAL_ECHO_START;
  3096. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3097. }
  3098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3099. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3100. #endif
  3101. }
  3102. #endif // Z_SAFE_HOMING
  3103. #if ENABLED(PROBE_MANUALLY)
  3104. bool g29_in_progress = false;
  3105. #else
  3106. constexpr bool g29_in_progress = false;
  3107. #endif
  3108. /**
  3109. * G28: Home all axes according to settings
  3110. *
  3111. * Parameters
  3112. *
  3113. * None Home to all axes with no parameters.
  3114. * With QUICK_HOME enabled XY will home together, then Z.
  3115. *
  3116. * Cartesian parameters
  3117. *
  3118. * X Home to the X endstop
  3119. * Y Home to the Y endstop
  3120. * Z Home to the Z endstop
  3121. *
  3122. */
  3123. inline void gcode_G28() {
  3124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3125. if (DEBUGGING(LEVELING)) {
  3126. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3127. log_machine_info();
  3128. }
  3129. #endif
  3130. // Wait for planner moves to finish!
  3131. stepper.synchronize();
  3132. // Cancel the active G29 session
  3133. #if ENABLED(PROBE_MANUALLY)
  3134. g29_in_progress = false;
  3135. #endif
  3136. // Disable the leveling matrix before homing
  3137. #if PLANNER_LEVELING
  3138. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3139. const bool bed_leveling_state_at_entry = ubl.state.active;
  3140. #endif
  3141. set_bed_leveling_enabled(false);
  3142. #endif
  3143. // Always home with tool 0 active
  3144. #if HOTENDS > 1
  3145. const uint8_t old_tool_index = active_extruder;
  3146. tool_change(0, 0, true);
  3147. #endif
  3148. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3149. extruder_duplication_enabled = false;
  3150. #endif
  3151. setup_for_endstop_or_probe_move();
  3152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3153. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3154. #endif
  3155. endstops.enable(true); // Enable endstops for next homing move
  3156. #if ENABLED(DELTA)
  3157. home_delta();
  3158. #else // NOT DELTA
  3159. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3160. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3161. set_destination_to_current();
  3162. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3163. if (home_all_axis || homeZ) {
  3164. HOMEAXIS(Z);
  3165. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3166. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3167. #endif
  3168. }
  3169. #else
  3170. if (home_all_axis || homeX || homeY) {
  3171. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3172. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3173. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3174. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3175. if (DEBUGGING(LEVELING))
  3176. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3177. #endif
  3178. do_blocking_move_to_z(destination[Z_AXIS]);
  3179. }
  3180. }
  3181. #endif
  3182. #if ENABLED(QUICK_HOME)
  3183. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3184. #endif
  3185. #if ENABLED(HOME_Y_BEFORE_X)
  3186. // Home Y
  3187. if (home_all_axis || homeY) {
  3188. HOMEAXIS(Y);
  3189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3190. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3191. #endif
  3192. }
  3193. #endif
  3194. // Home X
  3195. if (home_all_axis || homeX) {
  3196. #if ENABLED(DUAL_X_CARRIAGE)
  3197. // Always home the 2nd (right) extruder first
  3198. active_extruder = 1;
  3199. HOMEAXIS(X);
  3200. // Remember this extruder's position for later tool change
  3201. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3202. // Home the 1st (left) extruder
  3203. active_extruder = 0;
  3204. HOMEAXIS(X);
  3205. // Consider the active extruder to be parked
  3206. COPY(raised_parked_position, current_position);
  3207. delayed_move_time = 0;
  3208. active_extruder_parked = true;
  3209. #else
  3210. HOMEAXIS(X);
  3211. #endif
  3212. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3213. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3214. #endif
  3215. }
  3216. #if DISABLED(HOME_Y_BEFORE_X)
  3217. // Home Y
  3218. if (home_all_axis || homeY) {
  3219. HOMEAXIS(Y);
  3220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3221. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3222. #endif
  3223. }
  3224. #endif
  3225. // Home Z last if homing towards the bed
  3226. #if Z_HOME_DIR < 0
  3227. if (home_all_axis || homeZ) {
  3228. #if ENABLED(Z_SAFE_HOMING)
  3229. home_z_safely();
  3230. #else
  3231. HOMEAXIS(Z);
  3232. #endif
  3233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3234. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3235. #endif
  3236. } // home_all_axis || homeZ
  3237. #endif // Z_HOME_DIR < 0
  3238. SYNC_PLAN_POSITION_KINEMATIC();
  3239. #endif // !DELTA (gcode_G28)
  3240. endstops.not_homing();
  3241. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3242. // move to a height where we can use the full xy-area
  3243. do_blocking_move_to_z(delta_clip_start_height);
  3244. #endif
  3245. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3246. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3247. #endif
  3248. // Enable mesh leveling again
  3249. #if ENABLED(MESH_BED_LEVELING)
  3250. if (mbl.reactivate()) {
  3251. set_bed_leveling_enabled(true);
  3252. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3253. #if ENABLED(MESH_G28_REST_ORIGIN)
  3254. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3255. set_destination_to_current();
  3256. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3257. stepper.synchronize();
  3258. #endif
  3259. }
  3260. }
  3261. #endif
  3262. clean_up_after_endstop_or_probe_move();
  3263. // Restore the active tool after homing
  3264. #if HOTENDS > 1
  3265. tool_change(old_tool_index, 0, true);
  3266. #endif
  3267. report_current_position();
  3268. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3269. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3270. #endif
  3271. }
  3272. #if HAS_PROBING_PROCEDURE
  3273. void out_of_range_error(const char* p_edge) {
  3274. SERIAL_PROTOCOLPGM("?Probe ");
  3275. serialprintPGM(p_edge);
  3276. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3277. }
  3278. #endif
  3279. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3280. inline void _manual_goto_xy(const float &x, const float &y) {
  3281. const float old_feedrate_mm_s = feedrate_mm_s;
  3282. #if MANUAL_PROBE_HEIGHT > 0
  3283. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3284. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3285. line_to_current_position();
  3286. #endif
  3287. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3288. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3289. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3290. line_to_current_position();
  3291. #if MANUAL_PROBE_HEIGHT > 0
  3292. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3293. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3294. line_to_current_position();
  3295. #endif
  3296. feedrate_mm_s = old_feedrate_mm_s;
  3297. stepper.synchronize();
  3298. }
  3299. #endif
  3300. #if ENABLED(MESH_BED_LEVELING)
  3301. // Save 130 bytes with non-duplication of PSTR
  3302. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3303. void mbl_mesh_report() {
  3304. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3305. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3306. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3307. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3308. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3309. );
  3310. }
  3311. /**
  3312. * G29: Mesh-based Z probe, probes a grid and produces a
  3313. * mesh to compensate for variable bed height
  3314. *
  3315. * Parameters With MESH_BED_LEVELING:
  3316. *
  3317. * S0 Produce a mesh report
  3318. * S1 Start probing mesh points
  3319. * S2 Probe the next mesh point
  3320. * S3 Xn Yn Zn.nn Manually modify a single point
  3321. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3322. * S5 Reset and disable mesh
  3323. *
  3324. * The S0 report the points as below
  3325. *
  3326. * +----> X-axis 1-n
  3327. * |
  3328. * |
  3329. * v Y-axis 1-n
  3330. *
  3331. */
  3332. inline void gcode_G29() {
  3333. static int mbl_probe_index = -1;
  3334. #if HAS_SOFTWARE_ENDSTOPS
  3335. static bool enable_soft_endstops;
  3336. #endif
  3337. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3338. if (!WITHIN(state, 0, 5)) {
  3339. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3340. return;
  3341. }
  3342. int8_t px, py;
  3343. switch (state) {
  3344. case MeshReport:
  3345. if (mbl.has_mesh()) {
  3346. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3347. mbl_mesh_report();
  3348. }
  3349. else
  3350. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3351. break;
  3352. case MeshStart:
  3353. mbl.reset();
  3354. mbl_probe_index = 0;
  3355. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3356. break;
  3357. case MeshNext:
  3358. if (mbl_probe_index < 0) {
  3359. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3360. return;
  3361. }
  3362. // For each G29 S2...
  3363. if (mbl_probe_index == 0) {
  3364. #if HAS_SOFTWARE_ENDSTOPS
  3365. // For the initial G29 S2 save software endstop state
  3366. enable_soft_endstops = soft_endstops_enabled;
  3367. #endif
  3368. }
  3369. else {
  3370. // For G29 S2 after adjusting Z.
  3371. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3372. #if HAS_SOFTWARE_ENDSTOPS
  3373. soft_endstops_enabled = enable_soft_endstops;
  3374. #endif
  3375. }
  3376. // If there's another point to sample, move there with optional lift.
  3377. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3378. mbl.zigzag(mbl_probe_index, px, py);
  3379. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3380. #if HAS_SOFTWARE_ENDSTOPS
  3381. // Disable software endstops to allow manual adjustment
  3382. // If G29 is not completed, they will not be re-enabled
  3383. soft_endstops_enabled = false;
  3384. #endif
  3385. mbl_probe_index++;
  3386. }
  3387. else {
  3388. // One last "return to the bed" (as originally coded) at completion
  3389. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3390. line_to_current_position();
  3391. stepper.synchronize();
  3392. // After recording the last point, activate the mbl and home
  3393. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3394. mbl_probe_index = -1;
  3395. mbl.set_has_mesh(true);
  3396. mbl.set_reactivate(true);
  3397. enqueue_and_echo_commands_P(PSTR("G28"));
  3398. BUZZ(100, 659);
  3399. BUZZ(100, 698);
  3400. }
  3401. break;
  3402. case MeshSet:
  3403. if (code_seen('X')) {
  3404. px = code_value_int() - 1;
  3405. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3406. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3407. return;
  3408. }
  3409. }
  3410. else {
  3411. SERIAL_CHAR('X'); say_not_entered();
  3412. return;
  3413. }
  3414. if (code_seen('Y')) {
  3415. py = code_value_int() - 1;
  3416. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3417. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3418. return;
  3419. }
  3420. }
  3421. else {
  3422. SERIAL_CHAR('Y'); say_not_entered();
  3423. return;
  3424. }
  3425. if (code_seen('Z')) {
  3426. mbl.z_values[px][py] = code_value_axis_units(Z_AXIS);
  3427. }
  3428. else {
  3429. SERIAL_CHAR('Z'); say_not_entered();
  3430. return;
  3431. }
  3432. break;
  3433. case MeshSetZOffset:
  3434. if (code_seen('Z')) {
  3435. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3436. }
  3437. else {
  3438. SERIAL_CHAR('Z'); say_not_entered();
  3439. return;
  3440. }
  3441. break;
  3442. case MeshReset:
  3443. reset_bed_level();
  3444. break;
  3445. } // switch(state)
  3446. report_current_position();
  3447. }
  3448. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3449. #if ABL_GRID
  3450. #if ENABLED(PROBE_Y_FIRST)
  3451. #define PR_OUTER_VAR xCount
  3452. #define PR_OUTER_END abl_grid_points_x
  3453. #define PR_INNER_VAR yCount
  3454. #define PR_INNER_END abl_grid_points_y
  3455. #else
  3456. #define PR_OUTER_VAR yCount
  3457. #define PR_OUTER_END abl_grid_points_y
  3458. #define PR_INNER_VAR xCount
  3459. #define PR_INNER_END abl_grid_points_x
  3460. #endif
  3461. #endif
  3462. /**
  3463. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3464. * Will fail if the printer has not been homed with G28.
  3465. *
  3466. * Enhanced G29 Auto Bed Leveling Probe Routine
  3467. *
  3468. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3469. * or alter the bed level data. Useful to check the topology
  3470. * after a first run of G29.
  3471. *
  3472. * J Jettison current bed leveling data
  3473. *
  3474. * V Set the verbose level (0-4). Example: "G29 V3"
  3475. *
  3476. * Parameters With LINEAR leveling only:
  3477. *
  3478. * P Set the size of the grid that will be probed (P x P points).
  3479. * Example: "G29 P4"
  3480. *
  3481. * X Set the X size of the grid that will be probed (X x Y points).
  3482. * Example: "G29 X7 Y5"
  3483. *
  3484. * Y Set the Y size of the grid that will be probed (X x Y points).
  3485. *
  3486. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3487. * This is useful for manual bed leveling and finding flaws in the bed (to
  3488. * assist with part placement).
  3489. * Not supported by non-linear delta printer bed leveling.
  3490. *
  3491. * Parameters With LINEAR and BILINEAR leveling only:
  3492. *
  3493. * S Set the XY travel speed between probe points (in units/min)
  3494. *
  3495. * F Set the Front limit of the probing grid
  3496. * B Set the Back limit of the probing grid
  3497. * L Set the Left limit of the probing grid
  3498. * R Set the Right limit of the probing grid
  3499. *
  3500. * Parameters with DEBUG_LEVELING_FEATURE only:
  3501. *
  3502. * C Make a totally fake grid with no actual probing.
  3503. * For use in testing when no probing is possible.
  3504. *
  3505. * Parameters with BILINEAR leveling only:
  3506. *
  3507. * Z Supply an additional Z probe offset
  3508. *
  3509. * Extra parameters with PROBE_MANUALLY:
  3510. *
  3511. * To do manual probing simply repeat G29 until the procedure is complete.
  3512. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3513. *
  3514. * Q Query leveling and G29 state
  3515. *
  3516. * A Abort current leveling procedure
  3517. *
  3518. * W Write a mesh point. (Ignored during leveling.)
  3519. * X Required X for mesh point
  3520. * Y Required Y for mesh point
  3521. * Z Required Z for mesh point
  3522. *
  3523. * Without PROBE_MANUALLY:
  3524. *
  3525. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3526. * Include "E" to engage/disengage the Z probe for each sample.
  3527. * There's no extra effect if you have a fixed Z probe.
  3528. *
  3529. */
  3530. inline void gcode_G29() {
  3531. // G29 Q is also available if debugging
  3532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3533. const bool query = code_seen('Q');
  3534. const uint8_t old_debug_flags = marlin_debug_flags;
  3535. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3536. if (DEBUGGING(LEVELING)) {
  3537. DEBUG_POS(">>> gcode_G29", current_position);
  3538. log_machine_info();
  3539. }
  3540. marlin_debug_flags = old_debug_flags;
  3541. #if DISABLED(PROBE_MANUALLY)
  3542. if (query) return;
  3543. #endif
  3544. #endif
  3545. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3546. const bool faux = code_seen('C') && code_value_bool();
  3547. #else
  3548. bool constexpr faux = false;
  3549. #endif
  3550. // Don't allow auto-leveling without homing first
  3551. if (axis_unhomed_error(true, true, true)) return;
  3552. // Define local vars 'static' for manual probing, 'auto' otherwise
  3553. #if ENABLED(PROBE_MANUALLY)
  3554. #define ABL_VAR static
  3555. #else
  3556. #define ABL_VAR
  3557. #endif
  3558. ABL_VAR int verbose_level, abl_probe_index;
  3559. ABL_VAR float xProbe, yProbe, measured_z;
  3560. ABL_VAR bool dryrun, abl_should_enable;
  3561. #if HAS_SOFTWARE_ENDSTOPS
  3562. ABL_VAR bool enable_soft_endstops = true;
  3563. #endif
  3564. #if ABL_GRID
  3565. ABL_VAR uint8_t PR_OUTER_VAR;
  3566. ABL_VAR int8_t PR_INNER_VAR;
  3567. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3568. ABL_VAR float xGridSpacing, yGridSpacing;
  3569. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3570. #if ABL_PLANAR
  3571. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3572. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3573. ABL_VAR int abl2;
  3574. ABL_VAR bool do_topography_map;
  3575. #else // 3-point
  3576. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3577. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3578. int constexpr abl2 = ABL_GRID_MAX;
  3579. #endif
  3580. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3581. ABL_VAR float zoffset;
  3582. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3583. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3584. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3585. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3586. mean;
  3587. #endif
  3588. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3589. // Probe at 3 arbitrary points
  3590. ABL_VAR vector_3 points[3] = {
  3591. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3592. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3593. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3594. };
  3595. #endif // AUTO_BED_LEVELING_3POINT
  3596. /**
  3597. * On the initial G29 fetch command parameters.
  3598. */
  3599. if (!g29_in_progress) {
  3600. abl_probe_index = 0;
  3601. abl_should_enable = planner.abl_enabled;
  3602. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3603. if (code_seen('W')) {
  3604. if (!bilinear_grid_spacing[X_AXIS]) {
  3605. SERIAL_ERROR_START;
  3606. SERIAL_ERRORLNPGM("No bilinear grid");
  3607. return;
  3608. }
  3609. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3610. if (!WITHIN(z, -10, 10)) {
  3611. SERIAL_ERROR_START;
  3612. SERIAL_ERRORLNPGM("Bad Z value");
  3613. return;
  3614. }
  3615. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3616. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3617. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3618. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3619. if (x < 99998 && y < 99998) {
  3620. // Get nearest i / j from x / y
  3621. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3622. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3623. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3624. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3625. }
  3626. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3627. set_bed_leveling_enabled(false);
  3628. bed_level_grid[i][j] = z;
  3629. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3630. bed_level_virt_interpolate();
  3631. #endif
  3632. set_bed_leveling_enabled(abl_should_enable);
  3633. }
  3634. return;
  3635. } // code_seen('W')
  3636. #endif
  3637. #if PLANNER_LEVELING
  3638. // Jettison bed leveling data
  3639. if (code_seen('J')) {
  3640. reset_bed_level();
  3641. return;
  3642. }
  3643. #endif
  3644. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3645. if (!WITHIN(verbose_level, 0, 4)) {
  3646. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3647. return;
  3648. }
  3649. dryrun = code_seen('D') ? code_value_bool() : false;
  3650. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3651. do_topography_map = verbose_level > 2 || code_seen('T');
  3652. // X and Y specify points in each direction, overriding the default
  3653. // These values may be saved with the completed mesh
  3654. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3655. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3656. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3657. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3658. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3659. return;
  3660. }
  3661. abl2 = abl_grid_points_x * abl_grid_points_y;
  3662. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3663. zoffset = code_seen('Z') ? code_value_axis_units(Z_AXIS) : 0;
  3664. #endif
  3665. #if ABL_GRID
  3666. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3667. left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3668. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3669. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3670. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3671. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3672. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3673. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3674. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3675. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3676. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3677. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3678. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3679. if (left_out || right_out || front_out || back_out) {
  3680. if (left_out) {
  3681. out_of_range_error(PSTR("(L)eft"));
  3682. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3683. }
  3684. if (right_out) {
  3685. out_of_range_error(PSTR("(R)ight"));
  3686. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3687. }
  3688. if (front_out) {
  3689. out_of_range_error(PSTR("(F)ront"));
  3690. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3691. }
  3692. if (back_out) {
  3693. out_of_range_error(PSTR("(B)ack"));
  3694. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3695. }
  3696. return;
  3697. }
  3698. // probe at the points of a lattice grid
  3699. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3700. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3701. #endif // ABL_GRID
  3702. if (verbose_level > 0) {
  3703. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3704. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3705. }
  3706. stepper.synchronize();
  3707. // Disable auto bed leveling during G29
  3708. planner.abl_enabled = false;
  3709. if (!dryrun) {
  3710. // Re-orient the current position without leveling
  3711. // based on where the steppers are positioned.
  3712. set_current_from_steppers_for_axis(ALL_AXES);
  3713. // Sync the planner to where the steppers stopped
  3714. SYNC_PLAN_POSITION_KINEMATIC();
  3715. }
  3716. if (!faux) setup_for_endstop_or_probe_move();
  3717. //xProbe = yProbe = measured_z = 0;
  3718. #if HAS_BED_PROBE
  3719. // Deploy the probe. Probe will raise if needed.
  3720. if (DEPLOY_PROBE()) {
  3721. planner.abl_enabled = abl_should_enable;
  3722. return;
  3723. }
  3724. #endif
  3725. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3726. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3727. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3728. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3729. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3730. ) {
  3731. if (dryrun) {
  3732. // Before reset bed level, re-enable to correct the position
  3733. planner.abl_enabled = abl_should_enable;
  3734. }
  3735. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3736. reset_bed_level();
  3737. // Initialize a grid with the given dimensions
  3738. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3739. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3740. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3741. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3742. // Can't re-enable (on error) until the new grid is written
  3743. abl_should_enable = false;
  3744. }
  3745. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3746. mean = 0.0;
  3747. #endif // AUTO_BED_LEVELING_LINEAR
  3748. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3750. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3751. #endif
  3752. // Probe at 3 arbitrary points
  3753. points[0].z = points[1].z = points[2].z = 0;
  3754. #endif // AUTO_BED_LEVELING_3POINT
  3755. } // !g29_in_progress
  3756. #if ENABLED(PROBE_MANUALLY)
  3757. // Abort current G29 procedure, go back to ABLStart
  3758. if (code_seen('A') && g29_in_progress) {
  3759. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3760. #if HAS_SOFTWARE_ENDSTOPS
  3761. soft_endstops_enabled = enable_soft_endstops;
  3762. #endif
  3763. planner.abl_enabled = abl_should_enable;
  3764. g29_in_progress = false;
  3765. }
  3766. // Query G29 status
  3767. if (code_seen('Q')) {
  3768. if (!g29_in_progress)
  3769. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3770. else {
  3771. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3772. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3773. }
  3774. }
  3775. if (code_seen('A') || code_seen('Q')) return;
  3776. // Fall through to probe the first point
  3777. g29_in_progress = true;
  3778. if (abl_probe_index == 0) {
  3779. // For the initial G29 S2 save software endstop state
  3780. #if HAS_SOFTWARE_ENDSTOPS
  3781. enable_soft_endstops = soft_endstops_enabled;
  3782. #endif
  3783. }
  3784. else {
  3785. // For G29 after adjusting Z.
  3786. // Save the previous Z before going to the next point
  3787. measured_z = current_position[Z_AXIS];
  3788. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3789. mean += measured_z;
  3790. eqnBVector[abl_probe_index] = measured_z;
  3791. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3792. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3793. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3794. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3795. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3796. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3797. points[i].z = measured_z;
  3798. #endif
  3799. }
  3800. //
  3801. // If there's another point to sample, move there with optional lift.
  3802. //
  3803. #if ABL_GRID
  3804. // Find a next point to probe
  3805. // On the first G29 this will be the first probe point
  3806. while (abl_probe_index < abl2) {
  3807. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3808. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3809. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3810. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3811. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3812. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3813. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3814. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3815. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3816. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3817. indexIntoAB[xCount][yCount] = abl_probe_index;
  3818. #endif
  3819. float pos[XYZ] = { xProbe, yProbe, 0 };
  3820. if (position_is_reachable(pos)) break;
  3821. ++abl_probe_index;
  3822. }
  3823. // Is there a next point to move to?
  3824. if (abl_probe_index < abl2) {
  3825. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3826. ++abl_probe_index;
  3827. #if HAS_SOFTWARE_ENDSTOPS
  3828. // Disable software endstops to allow manual adjustment
  3829. // If G29 is not completed, they will not be re-enabled
  3830. soft_endstops_enabled = false;
  3831. #endif
  3832. return;
  3833. }
  3834. else {
  3835. // Then leveling is done!
  3836. // G29 finishing code goes here
  3837. // After recording the last point, activate abl
  3838. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3839. g29_in_progress = false;
  3840. // Re-enable software endstops, if needed
  3841. #if HAS_SOFTWARE_ENDSTOPS
  3842. soft_endstops_enabled = enable_soft_endstops;
  3843. #endif
  3844. }
  3845. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3846. // Probe at 3 arbitrary points
  3847. if (abl_probe_index < 3) {
  3848. xProbe = LOGICAL_X_POSITION(points[i].x);
  3849. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3850. ++abl_probe_index;
  3851. #if HAS_SOFTWARE_ENDSTOPS
  3852. // Disable software endstops to allow manual adjustment
  3853. // If G29 is not completed, they will not be re-enabled
  3854. soft_endstops_enabled = false;
  3855. #endif
  3856. return;
  3857. }
  3858. else {
  3859. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3860. g29_in_progress = false;
  3861. // Re-enable software endstops, if needed
  3862. #if HAS_SOFTWARE_ENDSTOPS
  3863. soft_endstops_enabled = enable_soft_endstops;
  3864. #endif
  3865. if (!dryrun) {
  3866. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3867. if (planeNormal.z < 0) {
  3868. planeNormal.x *= -1;
  3869. planeNormal.y *= -1;
  3870. planeNormal.z *= -1;
  3871. }
  3872. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3873. // Can't re-enable (on error) until the new grid is written
  3874. abl_should_enable = false;
  3875. }
  3876. }
  3877. #endif // AUTO_BED_LEVELING_3POINT
  3878. #else // !PROBE_MANUALLY
  3879. bool stow_probe_after_each = code_seen('E');
  3880. #if ABL_GRID
  3881. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3882. // Outer loop is Y with PROBE_Y_FIRST disabled
  3883. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3884. int8_t inStart, inStop, inInc;
  3885. if (zig) { // away from origin
  3886. inStart = 0;
  3887. inStop = PR_INNER_END;
  3888. inInc = 1;
  3889. }
  3890. else { // towards origin
  3891. inStart = PR_INNER_END - 1;
  3892. inStop = -1;
  3893. inInc = -1;
  3894. }
  3895. zig ^= true; // zag
  3896. // Inner loop is Y with PROBE_Y_FIRST enabled
  3897. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3898. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3899. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3900. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3901. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3902. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3903. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3904. #endif
  3905. #if IS_KINEMATIC
  3906. // Avoid probing outside the round or hexagonal area
  3907. float pos[XYZ] = { xProbe, yProbe, 0 };
  3908. if (!position_is_reachable(pos, true)) continue;
  3909. #endif
  3910. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3911. if (isnan(measured_z)) {
  3912. planner.abl_enabled = abl_should_enable;
  3913. return;
  3914. }
  3915. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3916. mean += measured_z;
  3917. eqnBVector[abl_probe_index] = measured_z;
  3918. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3919. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3920. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3921. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3922. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3923. #endif
  3924. abl_should_enable = false;
  3925. idle();
  3926. } // inner
  3927. } // outer
  3928. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3929. // Probe at 3 arbitrary points
  3930. for (uint8_t i = 0; i < 3; ++i) {
  3931. // Retain the last probe position
  3932. xProbe = LOGICAL_X_POSITION(points[i].x);
  3933. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3934. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3935. }
  3936. if (isnan(measured_z)) {
  3937. planner.abl_enabled = abl_should_enable;
  3938. return;
  3939. }
  3940. if (!dryrun) {
  3941. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3942. if (planeNormal.z < 0) {
  3943. planeNormal.x *= -1;
  3944. planeNormal.y *= -1;
  3945. planeNormal.z *= -1;
  3946. }
  3947. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3948. // Can't re-enable (on error) until the new grid is written
  3949. abl_should_enable = false;
  3950. }
  3951. #endif // AUTO_BED_LEVELING_3POINT
  3952. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3953. if (STOW_PROBE()) {
  3954. planner.abl_enabled = abl_should_enable;
  3955. return;
  3956. }
  3957. #endif // !PROBE_MANUALLY
  3958. //
  3959. // G29 Finishing Code
  3960. //
  3961. // Unless this is a dry run, auto bed leveling will
  3962. // definitely be enabled after this point
  3963. //
  3964. // Restore state after probing
  3965. if (!faux) clean_up_after_endstop_or_probe_move();
  3966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3967. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3968. #endif
  3969. // Calculate leveling, print reports, correct the position
  3970. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3971. if (!dryrun) extrapolate_unprobed_bed_level();
  3972. print_bilinear_leveling_grid();
  3973. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3974. bed_level_virt_interpolate();
  3975. bed_level_virt_print();
  3976. #endif
  3977. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3978. // For LINEAR leveling calculate matrix, print reports, correct the position
  3979. /**
  3980. * solve the plane equation ax + by + d = z
  3981. * A is the matrix with rows [x y 1] for all the probed points
  3982. * B is the vector of the Z positions
  3983. * the normal vector to the plane is formed by the coefficients of the
  3984. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3985. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3986. */
  3987. float plane_equation_coefficients[3];
  3988. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3989. mean /= abl2;
  3990. if (verbose_level) {
  3991. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3992. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3993. SERIAL_PROTOCOLPGM(" b: ");
  3994. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3995. SERIAL_PROTOCOLPGM(" d: ");
  3996. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3997. SERIAL_EOL;
  3998. if (verbose_level > 2) {
  3999. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4000. SERIAL_PROTOCOL_F(mean, 8);
  4001. SERIAL_EOL;
  4002. }
  4003. }
  4004. // Create the matrix but don't correct the position yet
  4005. if (!dryrun) {
  4006. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4007. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4008. );
  4009. }
  4010. // Show the Topography map if enabled
  4011. if (do_topography_map) {
  4012. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4013. " +--- BACK --+\n"
  4014. " | |\n"
  4015. " L | (+) | R\n"
  4016. " E | | I\n"
  4017. " F | (-) N (+) | G\n"
  4018. " T | | H\n"
  4019. " | (-) | T\n"
  4020. " | |\n"
  4021. " O-- FRONT --+\n"
  4022. " (0,0)");
  4023. float min_diff = 999;
  4024. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4025. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4026. int ind = indexIntoAB[xx][yy];
  4027. float diff = eqnBVector[ind] - mean,
  4028. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4029. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4030. z_tmp = 0;
  4031. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4032. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4033. if (diff >= 0.0)
  4034. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4035. else
  4036. SERIAL_PROTOCOLCHAR(' ');
  4037. SERIAL_PROTOCOL_F(diff, 5);
  4038. } // xx
  4039. SERIAL_EOL;
  4040. } // yy
  4041. SERIAL_EOL;
  4042. if (verbose_level > 3) {
  4043. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4044. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4045. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4046. int ind = indexIntoAB[xx][yy];
  4047. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4048. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4049. z_tmp = 0;
  4050. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4051. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4052. if (diff >= 0.0)
  4053. SERIAL_PROTOCOLPGM(" +");
  4054. // Include + for column alignment
  4055. else
  4056. SERIAL_PROTOCOLCHAR(' ');
  4057. SERIAL_PROTOCOL_F(diff, 5);
  4058. } // xx
  4059. SERIAL_EOL;
  4060. } // yy
  4061. SERIAL_EOL;
  4062. }
  4063. } //do_topography_map
  4064. #endif // AUTO_BED_LEVELING_LINEAR
  4065. #if ABL_PLANAR
  4066. // For LINEAR and 3POINT leveling correct the current position
  4067. if (verbose_level > 0)
  4068. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4069. if (!dryrun) {
  4070. //
  4071. // Correct the current XYZ position based on the tilted plane.
  4072. //
  4073. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4074. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4075. #endif
  4076. float converted[XYZ];
  4077. COPY(converted, current_position);
  4078. planner.abl_enabled = true;
  4079. planner.unapply_leveling(converted); // use conversion machinery
  4080. planner.abl_enabled = false;
  4081. // Use the last measured distance to the bed, if possible
  4082. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4083. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4084. ) {
  4085. float simple_z = current_position[Z_AXIS] - measured_z;
  4086. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4087. if (DEBUGGING(LEVELING)) {
  4088. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4089. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4090. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4091. }
  4092. #endif
  4093. converted[Z_AXIS] = simple_z;
  4094. }
  4095. // The rotated XY and corrected Z are now current_position
  4096. COPY(current_position, converted);
  4097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4098. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4099. #endif
  4100. }
  4101. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4102. if (!dryrun) {
  4103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4104. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4105. #endif
  4106. // Unapply the offset because it is going to be immediately applied
  4107. // and cause compensation movement in Z
  4108. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4110. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4111. #endif
  4112. }
  4113. #endif // ABL_PLANAR
  4114. #ifdef Z_PROBE_END_SCRIPT
  4115. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4116. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4117. #endif
  4118. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4119. stepper.synchronize();
  4120. #endif
  4121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4122. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4123. #endif
  4124. report_current_position();
  4125. KEEPALIVE_STATE(IN_HANDLER);
  4126. // Auto Bed Leveling is complete! Enable if possible.
  4127. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4128. if (planner.abl_enabled)
  4129. SYNC_PLAN_POSITION_KINEMATIC();
  4130. }
  4131. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4132. #if HAS_BED_PROBE
  4133. /**
  4134. * G30: Do a single Z probe at the current XY
  4135. * Usage:
  4136. * G30 <X#> <Y#> <S#>
  4137. * X = Probe X position (default=current probe position)
  4138. * Y = Probe Y position (default=current probe position)
  4139. * S = Stows the probe if 1 (default=1)
  4140. */
  4141. inline void gcode_G30() {
  4142. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4143. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4144. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  4145. if (!position_is_reachable(pos, true)) return;
  4146. bool stow = code_seen('S') ? code_value_bool() : true;
  4147. // Disable leveling so the planner won't mess with us
  4148. #if PLANNER_LEVELING
  4149. set_bed_leveling_enabled(false);
  4150. #endif
  4151. setup_for_endstop_or_probe_move();
  4152. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  4153. SERIAL_PROTOCOLPGM("Bed X: ");
  4154. SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
  4155. SERIAL_PROTOCOLPGM(" Y: ");
  4156. SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
  4157. SERIAL_PROTOCOLPGM(" Z: ");
  4158. SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
  4159. clean_up_after_endstop_or_probe_move();
  4160. report_current_position();
  4161. }
  4162. #if ENABLED(Z_PROBE_SLED)
  4163. /**
  4164. * G31: Deploy the Z probe
  4165. */
  4166. inline void gcode_G31() { DEPLOY_PROBE(); }
  4167. /**
  4168. * G32: Stow the Z probe
  4169. */
  4170. inline void gcode_G32() { STOW_PROBE(); }
  4171. #endif // Z_PROBE_SLED
  4172. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4173. /**
  4174. * G33: Delta '4-point' auto calibration iteration
  4175. *
  4176. * Usage: G33 <Cn> <Vn>
  4177. *
  4178. * C (default) = Calibrate endstops, height and delta radius
  4179. *
  4180. * -2, 1-4: n x n probe points, default 3 x 3
  4181. *
  4182. * 1: probe center
  4183. * set height only - useful when z_offset is changed
  4184. * 2: probe center and towers
  4185. * solve one '4 point' calibration
  4186. * -2: probe center and opposite the towers
  4187. * solve one '4 point' calibration
  4188. * 3: probe 3 center points, towers and opposite-towers
  4189. * averages between 2 '4 point' calibrations
  4190. * 4: probe 4 center points, towers, opposite-towers and itermediate points
  4191. * averages between 4 '4 point' calibrations
  4192. *
  4193. * V Verbose level (0-3, default 1)
  4194. *
  4195. * 0: Dry-run mode: no calibration
  4196. * 1: Settings
  4197. * 2: Setting + probe results
  4198. * 3: Expert mode: setting + iteration factors (see Configuration_adv.h)
  4199. * This prematurely stops the iteration process when factors are found
  4200. */
  4201. inline void gcode_G33() {
  4202. stepper.synchronize();
  4203. #if PLANNER_LEVELING
  4204. set_bed_leveling_enabled(false);
  4205. #endif
  4206. const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS,
  4207. probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS;
  4208. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4209. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4210. #define _MAX_M33_V 3
  4211. if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points
  4212. #else
  4213. #define _MAX_M33_V 2
  4214. if (verbose_level > 2)
  4215. SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h");
  4216. #endif
  4217. if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1;
  4218. float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end
  4219. gcode_G28();
  4220. float e_old[XYZ],
  4221. dr_old = delta_radius,
  4222. zh_old = home_offset[Z_AXIS];
  4223. COPY(e_old,endstop_adj);
  4224. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4225. // expert variables
  4226. float h_f_old = 1.00, r_f_old = 0.00,
  4227. h_diff_min = 1.00, r_diff_max = 0.10;
  4228. #endif
  4229. // print settings
  4230. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4231. SERIAL_PROTOCOLPGM("Checking... AC");
  4232. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4233. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4234. if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)");
  4235. #endif
  4236. SERIAL_EOL;
  4237. LCD_MESSAGEPGM("Checking... AC");
  4238. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4239. if (abs(probe_points) > 1) {
  4240. SERIAL_PROTOCOLPGM(" Ex:");
  4241. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4242. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4243. SERIAL_PROTOCOLPGM(" Ey:");
  4244. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4245. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4246. SERIAL_PROTOCOLPGM(" Ez:");
  4247. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4248. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4249. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4250. }
  4251. SERIAL_EOL;
  4252. #if ENABLED(Z_PROBE_SLED)
  4253. DEPLOY_PROBE();
  4254. #endif
  4255. float test_precision;
  4256. int8_t iterations = 0;
  4257. do { // start iterations
  4258. setup_for_endstop_or_probe_move();
  4259. test_precision =
  4260. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4261. // Expert mode : forced end at std_dev < 0.1
  4262. (verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 :
  4263. #endif
  4264. zero_std_dev
  4265. ;
  4266. float z_at_pt[13] = { 0 };
  4267. iterations++;
  4268. // probe the points
  4269. int16_t center_points = 0;
  4270. if (probe_points != 3) {
  4271. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4272. center_points = 1;
  4273. }
  4274. int16_t step_axis = 4;
  4275. if (probe_points >= 3) {
  4276. for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
  4277. z_at_pt[0] += probe_pt(
  4278. 0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4279. 0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1);
  4280. }
  4281. center_points += 3;
  4282. z_at_pt[0] /= center_points;
  4283. }
  4284. float S1 = z_at_pt[0], S2 = sq(S1);
  4285. int16_t N = 1, start = (probe_points == -2) ? 3 : 1;
  4286. step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1;
  4287. if (probe_points != 1) {
  4288. for (uint8_t axis = start; axis < 13; axis += step_axis)
  4289. z_at_pt[axis] += probe_pt(
  4290. cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
  4291. sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1
  4292. );
  4293. if (probe_points == 4) step_axis = 2;
  4294. }
  4295. for (uint8_t axis = start; axis < 13; axis += step_axis) {
  4296. if (probe_points == 4)
  4297. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4298. S1 += z_at_pt[axis];
  4299. S2 += sq(z_at_pt[axis]);
  4300. N++;
  4301. }
  4302. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
  4303. // Solve matrices
  4304. if (zero_std_dev < test_precision) {
  4305. COPY(e_old, endstop_adj);
  4306. dr_old = delta_radius;
  4307. zh_old = home_offset[Z_AXIS];
  4308. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0;
  4309. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4310. float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0,
  4311. h_diff = 0.00, r_diff = 0.00;
  4312. #endif
  4313. #define ZP(N,I) ((N) * z_at_pt[I])
  4314. #define Z1000(I) ZP(1.00, I)
  4315. #define Z1050(I) ZP(H_FACTOR, I)
  4316. #define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I)
  4317. #define Z0350(I) ZP((H_FACTOR) / 3.00, I)
  4318. #define Z0175(I) ZP((H_FACTOR) / 6.00, I)
  4319. #define Z2250(I) ZP(R_FACTOR, I)
  4320. #define Z0750(I) ZP((R_FACTOR) / 3.00, I)
  4321. #define Z0375(I) ZP((R_FACTOR) / 6.00, I)
  4322. switch (probe_points) {
  4323. case 1:
  4324. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4325. r_delta = 0.00;
  4326. break;
  4327. case 2:
  4328. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4329. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4330. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4331. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4332. break;
  4333. case -2:
  4334. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4335. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4336. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4337. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4338. break;
  4339. default:
  4340. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4341. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4342. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4343. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4344. break;
  4345. }
  4346. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4347. // Calculate h & r factors
  4348. if (verbose_level == 3) {
  4349. LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3;
  4350. r_f_new = r_delta;
  4351. h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old;
  4352. if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff;
  4353. if (r_f_old != 0)
  4354. r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR
  4355. + 0.311 * sq(R_FACTOR)
  4356. + 1.1493 * R_FACTOR
  4357. + 1.7952
  4358. ) * (r_f_old - r_f_new) / r_f_old;
  4359. if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff;
  4360. SERIAL_EOL;
  4361. h_f_old = h_f_new;
  4362. r_f_old = r_f_new;
  4363. }
  4364. #endif // DELTA_CALIBRATE_EXPERT_MODE
  4365. // Adjust delta_height and endstops by the max amount
  4366. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4367. delta_radius += r_delta;
  4368. const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]);
  4369. home_offset[Z_AXIS] -= z_temp;
  4370. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4371. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4372. }
  4373. else { // !iterate
  4374. // step one back
  4375. COPY(endstop_adj, e_old);
  4376. delta_radius = dr_old;
  4377. home_offset[Z_AXIS] = zh_old;
  4378. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4379. }
  4380. // print report
  4381. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4382. if (verbose_level == 3) {
  4383. const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max
  4384. - 44.988 * sq(r_diff_max)
  4385. + 31.697 * r_diff_max
  4386. - 9.4439;
  4387. SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min);
  4388. SERIAL_PROTOCOLPAIR(" r_factor:", r_factor);
  4389. SERIAL_EOL;
  4390. }
  4391. #endif
  4392. if (verbose_level == 2) {
  4393. SERIAL_PROTOCOLPGM(". c:");
  4394. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4395. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4396. if (probe_points > 1) {
  4397. SERIAL_PROTOCOLPGM(" x:");
  4398. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4399. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4400. SERIAL_PROTOCOLPGM(" y:");
  4401. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4402. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4403. SERIAL_PROTOCOLPGM(" z:");
  4404. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4405. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4406. }
  4407. if (probe_points > 0) SERIAL_EOL;
  4408. if (probe_points > 2 || probe_points == -2) {
  4409. if (probe_points > 2) SERIAL_PROTOCOLPGM(". ");
  4410. SERIAL_PROTOCOLPGM(" yz:");
  4411. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4412. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4413. SERIAL_PROTOCOLPGM(" zx:");
  4414. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4415. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4416. SERIAL_PROTOCOLPGM(" xy:");
  4417. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4418. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4419. SERIAL_EOL;
  4420. }
  4421. }
  4422. if (test_precision != 0.0) { // !forced end
  4423. if (zero_std_dev >= test_precision) {
  4424. SERIAL_PROTOCOLPGM("Calibration OK");
  4425. SERIAL_PROTOCOLLNPGM(" rolling back 1");
  4426. LCD_MESSAGEPGM("Calibration OK");
  4427. SERIAL_EOL;
  4428. }
  4429. else { // !end iterations
  4430. char mess[15] = "No convergence";
  4431. if (iterations < 31)
  4432. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4433. SERIAL_PROTOCOL(mess);
  4434. SERIAL_PROTOCOLPGM(" std dev:");
  4435. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4436. SERIAL_EOL;
  4437. lcd_setstatus(mess);
  4438. }
  4439. SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4440. if (abs(probe_points) > 1) {
  4441. SERIAL_PROTOCOLPGM(" Ex:");
  4442. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4443. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4444. SERIAL_PROTOCOLPGM(" Ey:");
  4445. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4446. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4447. SERIAL_PROTOCOLPGM(" Ez:");
  4448. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4449. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4450. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4451. }
  4452. SERIAL_EOL;
  4453. if (zero_std_dev >= test_precision)
  4454. SERIAL_PROTOCOLLNPGM("Save with M500");
  4455. }
  4456. else { // forced end
  4457. #if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
  4458. if (verbose_level == 3)
  4459. SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h");
  4460. else
  4461. #endif
  4462. {
  4463. SERIAL_PROTOCOLPGM("End DRY-RUN std dev:");
  4464. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4465. SERIAL_EOL;
  4466. }
  4467. }
  4468. clean_up_after_endstop_or_probe_move();
  4469. stepper.synchronize();
  4470. gcode_G28();
  4471. } while (zero_std_dev < test_precision && iterations < 31);
  4472. #if ENABLED(Z_PROBE_SLED)
  4473. RETRACT_PROBE();
  4474. #endif
  4475. }
  4476. #endif // DELTA_AUTO_CALIBRATION
  4477. #endif // HAS_BED_PROBE
  4478. #if ENABLED(G38_PROBE_TARGET)
  4479. static bool G38_run_probe() {
  4480. bool G38_pass_fail = false;
  4481. // Get direction of move and retract
  4482. float retract_mm[XYZ];
  4483. LOOP_XYZ(i) {
  4484. float dist = destination[i] - current_position[i];
  4485. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4486. }
  4487. stepper.synchronize(); // wait until the machine is idle
  4488. // Move until destination reached or target hit
  4489. endstops.enable(true);
  4490. G38_move = true;
  4491. G38_endstop_hit = false;
  4492. prepare_move_to_destination();
  4493. stepper.synchronize();
  4494. G38_move = false;
  4495. endstops.hit_on_purpose();
  4496. set_current_from_steppers_for_axis(ALL_AXES);
  4497. SYNC_PLAN_POSITION_KINEMATIC();
  4498. if (G38_endstop_hit) {
  4499. G38_pass_fail = true;
  4500. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4501. // Move away by the retract distance
  4502. set_destination_to_current();
  4503. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4504. endstops.enable(false);
  4505. prepare_move_to_destination();
  4506. stepper.synchronize();
  4507. feedrate_mm_s /= 4;
  4508. // Bump the target more slowly
  4509. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4510. endstops.enable(true);
  4511. G38_move = true;
  4512. prepare_move_to_destination();
  4513. stepper.synchronize();
  4514. G38_move = false;
  4515. set_current_from_steppers_for_axis(ALL_AXES);
  4516. SYNC_PLAN_POSITION_KINEMATIC();
  4517. #endif
  4518. }
  4519. endstops.hit_on_purpose();
  4520. endstops.not_homing();
  4521. return G38_pass_fail;
  4522. }
  4523. /**
  4524. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4525. * G38.3 - probe toward workpiece, stop on contact
  4526. *
  4527. * Like G28 except uses Z min probe for all axes
  4528. */
  4529. inline void gcode_G38(bool is_38_2) {
  4530. // Get X Y Z E F
  4531. gcode_get_destination();
  4532. setup_for_endstop_or_probe_move();
  4533. // If any axis has enough movement, do the move
  4534. LOOP_XYZ(i)
  4535. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4536. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4537. // If G38.2 fails throw an error
  4538. if (!G38_run_probe() && is_38_2) {
  4539. SERIAL_ERROR_START;
  4540. SERIAL_ERRORLNPGM("Failed to reach target");
  4541. }
  4542. break;
  4543. }
  4544. clean_up_after_endstop_or_probe_move();
  4545. }
  4546. #endif // G38_PROBE_TARGET
  4547. /**
  4548. * G92: Set current position to given X Y Z E
  4549. */
  4550. inline void gcode_G92() {
  4551. bool didXYZ = false,
  4552. didE = code_seen('E');
  4553. if (!didE) stepper.synchronize();
  4554. LOOP_XYZE(i) {
  4555. if (code_seen(axis_codes[i])) {
  4556. #if IS_SCARA
  4557. current_position[i] = code_value_axis_units(i);
  4558. if (i != E_AXIS) didXYZ = true;
  4559. #else
  4560. #if HAS_POSITION_SHIFT
  4561. float p = current_position[i];
  4562. #endif
  4563. float v = code_value_axis_units(i);
  4564. current_position[i] = v;
  4565. if (i != E_AXIS) {
  4566. didXYZ = true;
  4567. #if HAS_POSITION_SHIFT
  4568. position_shift[i] += v - p; // Offset the coordinate space
  4569. update_software_endstops((AxisEnum)i);
  4570. #endif
  4571. }
  4572. #endif
  4573. }
  4574. }
  4575. if (didXYZ)
  4576. SYNC_PLAN_POSITION_KINEMATIC();
  4577. else if (didE)
  4578. sync_plan_position_e();
  4579. report_current_position();
  4580. }
  4581. #if HAS_RESUME_CONTINUE
  4582. /**
  4583. * M0: Unconditional stop - Wait for user button press on LCD
  4584. * M1: Conditional stop - Wait for user button press on LCD
  4585. */
  4586. inline void gcode_M0_M1() {
  4587. char* args = current_command_args;
  4588. millis_t codenum = 0;
  4589. bool hasP = false, hasS = false;
  4590. if (code_seen('P')) {
  4591. codenum = code_value_millis(); // milliseconds to wait
  4592. hasP = codenum > 0;
  4593. }
  4594. if (code_seen('S')) {
  4595. codenum = code_value_millis_from_seconds(); // seconds to wait
  4596. hasS = codenum > 0;
  4597. }
  4598. #if ENABLED(ULTIPANEL)
  4599. if (!hasP && !hasS && *args != '\0')
  4600. lcd_setstatus(args, true);
  4601. else {
  4602. LCD_MESSAGEPGM(MSG_USERWAIT);
  4603. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4604. dontExpireStatus();
  4605. #endif
  4606. }
  4607. #else
  4608. if (!hasP && !hasS && *args != '\0') {
  4609. SERIAL_ECHO_START;
  4610. SERIAL_ECHOLN(args);
  4611. }
  4612. #endif
  4613. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4614. wait_for_user = true;
  4615. stepper.synchronize();
  4616. refresh_cmd_timeout();
  4617. if (codenum > 0) {
  4618. codenum += previous_cmd_ms; // wait until this time for a click
  4619. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4620. }
  4621. else {
  4622. #if ENABLED(ULTIPANEL)
  4623. if (lcd_detected()) {
  4624. while (wait_for_user) idle();
  4625. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4626. }
  4627. #else
  4628. while (wait_for_user) idle();
  4629. #endif
  4630. }
  4631. wait_for_user = false;
  4632. KEEPALIVE_STATE(IN_HANDLER);
  4633. }
  4634. #endif // EMERGENCY_PARSER || ULTIPANEL
  4635. /**
  4636. * M17: Enable power on all stepper motors
  4637. */
  4638. inline void gcode_M17() {
  4639. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4640. enable_all_steppers();
  4641. }
  4642. #if IS_KINEMATIC
  4643. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4644. #else
  4645. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4646. #endif
  4647. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4648. float resume_position[XYZE];
  4649. bool move_away_flag = false;
  4650. inline void move_back_on_resume() {
  4651. if (!move_away_flag) return;
  4652. move_away_flag = false;
  4653. // Set extruder to saved position
  4654. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4655. planner.set_e_position_mm(current_position[E_AXIS]);
  4656. #if IS_KINEMATIC
  4657. // Move XYZ to starting position
  4658. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4659. #else
  4660. // Move XY to starting position, then Z
  4661. destination[X_AXIS] = resume_position[X_AXIS];
  4662. destination[Y_AXIS] = resume_position[Y_AXIS];
  4663. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4664. destination[Z_AXIS] = resume_position[Z_AXIS];
  4665. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4666. #endif
  4667. stepper.synchronize();
  4668. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4669. filament_ran_out = false;
  4670. #endif
  4671. set_current_to_destination();
  4672. }
  4673. #endif // PARK_HEAD_ON_PAUSE
  4674. #if ENABLED(SDSUPPORT)
  4675. /**
  4676. * M20: List SD card to serial output
  4677. */
  4678. inline void gcode_M20() {
  4679. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4680. card.ls();
  4681. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4682. }
  4683. /**
  4684. * M21: Init SD Card
  4685. */
  4686. inline void gcode_M21() { card.initsd(); }
  4687. /**
  4688. * M22: Release SD Card
  4689. */
  4690. inline void gcode_M22() { card.release(); }
  4691. /**
  4692. * M23: Open a file
  4693. */
  4694. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4695. /**
  4696. * M24: Start or Resume SD Print
  4697. */
  4698. inline void gcode_M24() {
  4699. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4700. move_back_on_resume();
  4701. #endif
  4702. card.startFileprint();
  4703. print_job_timer.start();
  4704. }
  4705. /**
  4706. * M25: Pause SD Print
  4707. */
  4708. inline void gcode_M25() {
  4709. card.pauseSDPrint();
  4710. print_job_timer.pause();
  4711. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4712. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4713. #endif
  4714. }
  4715. /**
  4716. * M26: Set SD Card file index
  4717. */
  4718. inline void gcode_M26() {
  4719. if (card.cardOK && code_seen('S'))
  4720. card.setIndex(code_value_long());
  4721. }
  4722. /**
  4723. * M27: Get SD Card status
  4724. */
  4725. inline void gcode_M27() { card.getStatus(); }
  4726. /**
  4727. * M28: Start SD Write
  4728. */
  4729. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4730. /**
  4731. * M29: Stop SD Write
  4732. * Processed in write to file routine above
  4733. */
  4734. inline void gcode_M29() {
  4735. // card.saving = false;
  4736. }
  4737. /**
  4738. * M30 <filename>: Delete SD Card file
  4739. */
  4740. inline void gcode_M30() {
  4741. if (card.cardOK) {
  4742. card.closefile();
  4743. card.removeFile(current_command_args);
  4744. }
  4745. }
  4746. #endif // SDSUPPORT
  4747. /**
  4748. * M31: Get the time since the start of SD Print (or last M109)
  4749. */
  4750. inline void gcode_M31() {
  4751. char buffer[21];
  4752. duration_t elapsed = print_job_timer.duration();
  4753. elapsed.toString(buffer);
  4754. lcd_setstatus(buffer);
  4755. SERIAL_ECHO_START;
  4756. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4757. #if ENABLED(AUTOTEMP)
  4758. thermalManager.autotempShutdown();
  4759. #endif
  4760. }
  4761. #if ENABLED(SDSUPPORT)
  4762. /**
  4763. * M32: Select file and start SD Print
  4764. */
  4765. inline void gcode_M32() {
  4766. if (card.sdprinting)
  4767. stepper.synchronize();
  4768. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4769. if (!namestartpos)
  4770. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4771. else
  4772. namestartpos++; //to skip the '!'
  4773. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4774. if (card.cardOK) {
  4775. card.openFile(namestartpos, true, call_procedure);
  4776. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4777. card.setIndex(code_value_long());
  4778. card.startFileprint();
  4779. // Procedure calls count as normal print time.
  4780. if (!call_procedure) print_job_timer.start();
  4781. }
  4782. }
  4783. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4784. /**
  4785. * M33: Get the long full path of a file or folder
  4786. *
  4787. * Parameters:
  4788. * <dospath> Case-insensitive DOS-style path to a file or folder
  4789. *
  4790. * Example:
  4791. * M33 miscel~1/armchair/armcha~1.gco
  4792. *
  4793. * Output:
  4794. * /Miscellaneous/Armchair/Armchair.gcode
  4795. */
  4796. inline void gcode_M33() {
  4797. card.printLongPath(current_command_args);
  4798. }
  4799. #endif
  4800. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4801. /**
  4802. * M34: Set SD Card Sorting Options
  4803. */
  4804. inline void gcode_M34() {
  4805. if (code_seen('S')) card.setSortOn(code_value_bool());
  4806. if (code_seen('F')) {
  4807. int v = code_value_long();
  4808. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4809. }
  4810. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4811. }
  4812. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4813. /**
  4814. * M928: Start SD Write
  4815. */
  4816. inline void gcode_M928() {
  4817. card.openLogFile(current_command_args);
  4818. }
  4819. #endif // SDSUPPORT
  4820. /**
  4821. * Sensitive pin test for M42, M226
  4822. */
  4823. static bool pin_is_protected(uint8_t pin) {
  4824. static const int sensitive_pins[] = SENSITIVE_PINS;
  4825. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4826. if (sensitive_pins[i] == pin) return true;
  4827. return false;
  4828. }
  4829. /**
  4830. * M42: Change pin status via GCode
  4831. *
  4832. * P<pin> Pin number (LED if omitted)
  4833. * S<byte> Pin status from 0 - 255
  4834. */
  4835. inline void gcode_M42() {
  4836. if (!code_seen('S')) return;
  4837. int pin_status = code_value_int();
  4838. if (!WITHIN(pin_status, 0, 255)) return;
  4839. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4840. if (pin_number < 0) return;
  4841. if (pin_is_protected(pin_number)) {
  4842. SERIAL_ERROR_START;
  4843. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4844. return;
  4845. }
  4846. pinMode(pin_number, OUTPUT);
  4847. digitalWrite(pin_number, pin_status);
  4848. analogWrite(pin_number, pin_status);
  4849. #if FAN_COUNT > 0
  4850. switch (pin_number) {
  4851. #if HAS_FAN0
  4852. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4853. #endif
  4854. #if HAS_FAN1
  4855. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4856. #endif
  4857. #if HAS_FAN2
  4858. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4859. #endif
  4860. }
  4861. #endif
  4862. }
  4863. #if ENABLED(PINS_DEBUGGING)
  4864. #include "pinsDebug.h"
  4865. inline void toggle_pins() {
  4866. int pin, j;
  4867. bool I_flag = code_seen('I') ? code_value_bool() : false;
  4868. int repeat = code_seen('R') ? code_value_int() : 1,
  4869. start = code_seen('S') ? code_value_int() : 0,
  4870. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4871. wait = code_seen('W') ? code_value_int() : 500;
  4872. for (pin = start; pin <= end; pin++) {
  4873. if (!I_flag && pin_is_protected(pin)) {
  4874. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4875. SERIAL_ECHOPGM(" untouched.\n");
  4876. }
  4877. else {
  4878. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4879. pinMode(pin, OUTPUT);
  4880. for(j = 0; j < repeat; j++) {
  4881. digitalWrite(pin, 0);
  4882. safe_delay(wait);
  4883. digitalWrite(pin, 1);
  4884. safe_delay(wait);
  4885. digitalWrite(pin, 0);
  4886. safe_delay(wait);
  4887. }
  4888. }
  4889. SERIAL_ECHOPGM("\n");
  4890. }
  4891. SERIAL_ECHOPGM("Done\n");
  4892. } // toggle_pins
  4893. inline void servo_probe_test(){
  4894. #if !(NUM_SERVOS >= 1 && HAS_SERVO_0)
  4895. SERIAL_ERROR_START;
  4896. SERIAL_ERRORLNPGM("SERVO not setup");
  4897. #else
  4898. #if !defined(z_servo_angle)
  4899. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  4900. #endif
  4901. uint8_t probe_index = code_seen('P') ? code_value_byte() : 0;
  4902. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4903. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4904. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4905. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  4906. bool probe_inverting;
  4907. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  4908. #define PROBE_TEST_PIN Z_MIN_PIN
  4909. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  4910. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  4911. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  4912. if (Z_MIN_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4913. else SERIAL_PROTOCOLLNPGM("false");
  4914. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  4915. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  4916. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  4917. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  4918. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  4919. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  4920. if (Z_MIN_PROBE_ENDSTOP_INVERTING) SERIAL_PROTOCOLLNPGM("true");
  4921. else SERIAL_PROTOCOLLNPGM("false");
  4922. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  4923. #else
  4924. #error "ERROR - probe pin not defined - strange, SANITY_CHECK should have caught this"
  4925. #endif
  4926. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  4927. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  4928. bool deploy_state;
  4929. bool stow_state;
  4930. for (uint8_t i = 0; i < 4; i++) {
  4931. servo[probe_index].move(z_servo_angle[0]); //deploy
  4932. safe_delay(500);
  4933. deploy_state = digitalRead(PROBE_TEST_PIN);
  4934. servo[probe_index].move(z_servo_angle[1]); //stow
  4935. safe_delay(500);
  4936. stow_state = digitalRead(PROBE_TEST_PIN);
  4937. }
  4938. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  4939. refresh_cmd_timeout();
  4940. if (deploy_state != stow_state) {
  4941. SERIAL_PROTOCOLLNPGM("TLTouch detected"); // BLTouch clone?
  4942. if (deploy_state) {
  4943. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  4944. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  4945. }
  4946. else {
  4947. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  4948. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  4949. }
  4950. }
  4951. else { // measure active signal length
  4952. servo[probe_index].move(z_servo_angle[0]); //deploy
  4953. safe_delay(500);
  4954. SERIAL_PROTOCOLLNPGM("please trigger probe");
  4955. uint16_t probe_counter = 0;
  4956. for (uint16_t j = 0; j < 500*30 && probe_counter == 0 ; j++) { // allow 30 seconds max for operator to trigger probe
  4957. safe_delay(2);
  4958. if ( 0 == j%(500*1)) {refresh_cmd_timeout(); watchdog_reset();} // beat the dog every 45 seconds
  4959. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  4960. for (probe_counter = 1; probe_counter < 50 && (deploy_state != digitalRead(PROBE_TEST_PIN)); probe_counter ++) {
  4961. safe_delay(2);
  4962. }
  4963. if (probe_counter == 50) {
  4964. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  4965. }
  4966. else if (probe_counter >= 2 ) {
  4967. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2 ); // allow 4 - 100mS pulse
  4968. }
  4969. else {
  4970. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  4971. }
  4972. servo[probe_index].move(z_servo_angle[1]); //stow
  4973. } // pulse detected
  4974. } // for loop waiting for trigger
  4975. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  4976. } // measure active signal length
  4977. #endif
  4978. } // servo_probe_test
  4979. /**
  4980. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  4981. *
  4982. * M43 - report name and state of pin(s)
  4983. * P<pin> Pin to read or watch. If omitted, reads all pins.
  4984. * I Flag to ignore Marlin's pin protection.
  4985. *
  4986. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  4987. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  4988. * I Flag to ignore Marlin's pin protection.
  4989. *
  4990. * M43 E<bool> - Enable / disable background endstop monitoring
  4991. * - Machine continues to operate
  4992. * - Reports changes to endstops
  4993. * - Toggles LED when an endstop changes
  4994. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  4995. *
  4996. * M43 T - Toggle pin(s) and report which pin is being toggled
  4997. * S<pin> - Start Pin number. If not given, will default to 0
  4998. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  4999. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5000. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5001. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5002. *
  5003. * M43 S - Servo probe test
  5004. * P<index> - Probe index (optional - defaults to 0
  5005. */
  5006. inline void gcode_M43() {
  5007. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5008. toggle_pins();
  5009. return;
  5010. }
  5011. // Enable or disable endstop monitoring
  5012. if (code_seen('E')) {
  5013. endstop_monitor_flag = code_value_bool();
  5014. SERIAL_PROTOCOLPGM("endstop monitor ");
  5015. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5016. SERIAL_PROTOCOLLNPGM("abled");
  5017. return;
  5018. }
  5019. if (code_seen('S')) {
  5020. servo_probe_test();
  5021. return;
  5022. }
  5023. // Get the range of pins to test or watch
  5024. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  5025. if (code_seen('P')) {
  5026. first_pin = last_pin = code_value_byte();
  5027. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  5028. }
  5029. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  5030. // Watch until click, M108, or reset
  5031. if (code_seen('W') && code_value_bool()) { // watch digital pins
  5032. SERIAL_PROTOCOLLNPGM("Watching pins");
  5033. byte pin_state[last_pin - first_pin + 1];
  5034. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5035. if (pin_is_protected(pin) && !ignore_protection) continue;
  5036. pinMode(pin, INPUT_PULLUP);
  5037. // if (IS_ANALOG(pin))
  5038. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5039. // else
  5040. pin_state[pin - first_pin] = digitalRead(pin);
  5041. }
  5042. #if HAS_RESUME_CONTINUE
  5043. wait_for_user = true;
  5044. #endif
  5045. for(;;) {
  5046. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5047. if (pin_is_protected(pin)) continue;
  5048. byte val;
  5049. // if (IS_ANALOG(pin))
  5050. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  5051. // else
  5052. val = digitalRead(pin);
  5053. if (val != pin_state[pin - first_pin]) {
  5054. report_pin_state(pin);
  5055. pin_state[pin - first_pin] = val;
  5056. }
  5057. }
  5058. #if HAS_RESUME_CONTINUE
  5059. if (!wait_for_user) break;
  5060. #endif
  5061. safe_delay(500);
  5062. }
  5063. return;
  5064. }
  5065. // Report current state of selected pin(s)
  5066. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5067. report_pin_state_extended(pin, ignore_protection);
  5068. }
  5069. #endif // PINS_DEBUGGING
  5070. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5071. /**
  5072. * M48: Z probe repeatability measurement function.
  5073. *
  5074. * Usage:
  5075. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5076. * P = Number of sampled points (4-50, default 10)
  5077. * X = Sample X position
  5078. * Y = Sample Y position
  5079. * V = Verbose level (0-4, default=1)
  5080. * E = Engage Z probe for each reading
  5081. * L = Number of legs of movement before probe
  5082. * S = Schizoid (Or Star if you prefer)
  5083. *
  5084. * This function assumes the bed has been homed. Specifically, that a G28 command
  5085. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5086. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5087. * regenerated.
  5088. */
  5089. inline void gcode_M48() {
  5090. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5091. bool bed_leveling_state_at_entry=0;
  5092. bed_leveling_state_at_entry = ubl.state.active;
  5093. #endif
  5094. if (axis_unhomed_error(true, true, true)) return;
  5095. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5096. if (!WITHIN(verbose_level, 0, 4)) {
  5097. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5098. return;
  5099. }
  5100. if (verbose_level > 0)
  5101. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5102. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5103. if (!WITHIN(n_samples, 4, 50)) {
  5104. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5105. return;
  5106. }
  5107. float X_current = current_position[X_AXIS],
  5108. Y_current = current_position[Y_AXIS];
  5109. bool stow_probe_after_each = code_seen('E');
  5110. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5111. #if DISABLED(DELTA)
  5112. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5113. out_of_range_error(PSTR("X"));
  5114. return;
  5115. }
  5116. #endif
  5117. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5118. #if DISABLED(DELTA)
  5119. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5120. out_of_range_error(PSTR("Y"));
  5121. return;
  5122. }
  5123. #else
  5124. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5125. if (!position_is_reachable(pos, true)) {
  5126. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5127. return;
  5128. }
  5129. #endif
  5130. bool seen_L = code_seen('L');
  5131. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5132. if (n_legs > 15) {
  5133. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5134. return;
  5135. }
  5136. if (n_legs == 1) n_legs = 2;
  5137. bool schizoid_flag = code_seen('S');
  5138. if (schizoid_flag && !seen_L) n_legs = 7;
  5139. /**
  5140. * Now get everything to the specified probe point So we can safely do a
  5141. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5142. * we don't want to use that as a starting point for each probe.
  5143. */
  5144. if (verbose_level > 2)
  5145. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5146. // Disable bed level correction in M48 because we want the raw data when we probe
  5147. #if HAS_ABL
  5148. const bool abl_was_enabled = planner.abl_enabled;
  5149. set_bed_leveling_enabled(false);
  5150. #endif
  5151. setup_for_endstop_or_probe_move();
  5152. // Move to the first point, deploy, and probe
  5153. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5154. randomSeed(millis());
  5155. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5156. for (uint8_t n = 0; n < n_samples; n++) {
  5157. if (n_legs) {
  5158. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5159. float angle = random(0.0, 360.0),
  5160. radius = random(
  5161. #if ENABLED(DELTA)
  5162. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5163. #else
  5164. 5, X_MAX_LENGTH / 8
  5165. #endif
  5166. );
  5167. if (verbose_level > 3) {
  5168. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5169. SERIAL_ECHOPAIR(" angle: ", angle);
  5170. SERIAL_ECHOPGM(" Direction: ");
  5171. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5172. SERIAL_ECHOLNPGM("Clockwise");
  5173. }
  5174. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5175. double delta_angle;
  5176. if (schizoid_flag)
  5177. // The points of a 5 point star are 72 degrees apart. We need to
  5178. // skip a point and go to the next one on the star.
  5179. delta_angle = dir * 2.0 * 72.0;
  5180. else
  5181. // If we do this line, we are just trying to move further
  5182. // around the circle.
  5183. delta_angle = dir * (float) random(25, 45);
  5184. angle += delta_angle;
  5185. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5186. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5187. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5188. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5189. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5190. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5191. #if DISABLED(DELTA)
  5192. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5193. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5194. #else
  5195. // If we have gone out too far, we can do a simple fix and scale the numbers
  5196. // back in closer to the origin.
  5197. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5198. X_current *= 0.8;
  5199. Y_current *= 0.8;
  5200. if (verbose_level > 3) {
  5201. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5202. SERIAL_ECHOLNPAIR(", ", Y_current);
  5203. }
  5204. }
  5205. #endif
  5206. if (verbose_level > 3) {
  5207. SERIAL_PROTOCOLPGM("Going to:");
  5208. SERIAL_ECHOPAIR(" X", X_current);
  5209. SERIAL_ECHOPAIR(" Y", Y_current);
  5210. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5211. }
  5212. do_blocking_move_to_xy(X_current, Y_current);
  5213. } // n_legs loop
  5214. } // n_legs
  5215. // Probe a single point
  5216. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5217. /**
  5218. * Get the current mean for the data points we have so far
  5219. */
  5220. double sum = 0.0;
  5221. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5222. mean = sum / (n + 1);
  5223. NOMORE(min, sample_set[n]);
  5224. NOLESS(max, sample_set[n]);
  5225. /**
  5226. * Now, use that mean to calculate the standard deviation for the
  5227. * data points we have so far
  5228. */
  5229. sum = 0.0;
  5230. for (uint8_t j = 0; j <= n; j++)
  5231. sum += sq(sample_set[j] - mean);
  5232. sigma = sqrt(sum / (n + 1));
  5233. if (verbose_level > 0) {
  5234. if (verbose_level > 1) {
  5235. SERIAL_PROTOCOL(n + 1);
  5236. SERIAL_PROTOCOLPGM(" of ");
  5237. SERIAL_PROTOCOL((int)n_samples);
  5238. SERIAL_PROTOCOLPGM(": z: ");
  5239. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5240. if (verbose_level > 2) {
  5241. SERIAL_PROTOCOLPGM(" mean: ");
  5242. SERIAL_PROTOCOL_F(mean, 4);
  5243. SERIAL_PROTOCOLPGM(" sigma: ");
  5244. SERIAL_PROTOCOL_F(sigma, 6);
  5245. SERIAL_PROTOCOLPGM(" min: ");
  5246. SERIAL_PROTOCOL_F(min, 3);
  5247. SERIAL_PROTOCOLPGM(" max: ");
  5248. SERIAL_PROTOCOL_F(max, 3);
  5249. SERIAL_PROTOCOLPGM(" range: ");
  5250. SERIAL_PROTOCOL_F(max-min, 3);
  5251. }
  5252. SERIAL_EOL;
  5253. }
  5254. }
  5255. } // End of probe loop
  5256. if (STOW_PROBE()) return;
  5257. SERIAL_PROTOCOLPGM("Finished!");
  5258. SERIAL_EOL;
  5259. if (verbose_level > 0) {
  5260. SERIAL_PROTOCOLPGM("Mean: ");
  5261. SERIAL_PROTOCOL_F(mean, 6);
  5262. SERIAL_PROTOCOLPGM(" Min: ");
  5263. SERIAL_PROTOCOL_F(min, 3);
  5264. SERIAL_PROTOCOLPGM(" Max: ");
  5265. SERIAL_PROTOCOL_F(max, 3);
  5266. SERIAL_PROTOCOLPGM(" Range: ");
  5267. SERIAL_PROTOCOL_F(max-min, 3);
  5268. SERIAL_EOL;
  5269. }
  5270. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5271. SERIAL_PROTOCOL_F(sigma, 6);
  5272. SERIAL_EOL;
  5273. SERIAL_EOL;
  5274. clean_up_after_endstop_or_probe_move();
  5275. // Re-enable bed level correction if it has been on
  5276. #if HAS_ABL
  5277. set_bed_leveling_enabled(abl_was_enabled);
  5278. #endif
  5279. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5280. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  5281. ubl.state.active = bed_leveling_state_at_entry;
  5282. #endif
  5283. report_current_position();
  5284. }
  5285. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5286. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5287. inline void gcode_M49() {
  5288. ubl.g26_debug_flag ^= true;
  5289. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5290. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5291. }
  5292. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5293. /**
  5294. * M75: Start print timer
  5295. */
  5296. inline void gcode_M75() { print_job_timer.start(); }
  5297. /**
  5298. * M76: Pause print timer
  5299. */
  5300. inline void gcode_M76() { print_job_timer.pause(); }
  5301. /**
  5302. * M77: Stop print timer
  5303. */
  5304. inline void gcode_M77() { print_job_timer.stop(); }
  5305. #if ENABLED(PRINTCOUNTER)
  5306. /**
  5307. * M78: Show print statistics
  5308. */
  5309. inline void gcode_M78() {
  5310. // "M78 S78" will reset the statistics
  5311. if (code_seen('S') && code_value_int() == 78)
  5312. print_job_timer.initStats();
  5313. else
  5314. print_job_timer.showStats();
  5315. }
  5316. #endif
  5317. /**
  5318. * M104: Set hot end temperature
  5319. */
  5320. inline void gcode_M104() {
  5321. if (get_target_extruder_from_command(104)) return;
  5322. if (DEBUGGING(DRYRUN)) return;
  5323. #if ENABLED(SINGLENOZZLE)
  5324. if (target_extruder != active_extruder) return;
  5325. #endif
  5326. if (code_seen('S')) {
  5327. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5328. #if ENABLED(DUAL_X_CARRIAGE)
  5329. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5330. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5331. #endif
  5332. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5333. /**
  5334. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5335. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5336. * standby mode, for instance in a dual extruder setup, without affecting
  5337. * the running print timer.
  5338. */
  5339. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5340. print_job_timer.stop();
  5341. LCD_MESSAGEPGM(WELCOME_MSG);
  5342. }
  5343. #endif
  5344. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5345. }
  5346. #if ENABLED(AUTOTEMP)
  5347. planner.autotemp_M104_M109();
  5348. #endif
  5349. }
  5350. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5351. void print_heaterstates() {
  5352. #if HAS_TEMP_HOTEND
  5353. SERIAL_PROTOCOLPGM(" T:");
  5354. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  5355. SERIAL_PROTOCOLPGM(" /");
  5356. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  5357. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5358. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  5359. SERIAL_PROTOCOLCHAR(')');
  5360. #endif
  5361. #endif
  5362. #if HAS_TEMP_BED
  5363. SERIAL_PROTOCOLPGM(" B:");
  5364. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  5365. SERIAL_PROTOCOLPGM(" /");
  5366. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5367. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5368. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5369. SERIAL_PROTOCOLCHAR(')');
  5370. #endif
  5371. #endif
  5372. #if HOTENDS > 1
  5373. HOTEND_LOOP() {
  5374. SERIAL_PROTOCOLPAIR(" T", e);
  5375. SERIAL_PROTOCOLCHAR(':');
  5376. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5377. SERIAL_PROTOCOLPGM(" /");
  5378. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5379. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5380. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5381. SERIAL_PROTOCOLCHAR(')');
  5382. #endif
  5383. }
  5384. #endif
  5385. SERIAL_PROTOCOLPGM(" @:");
  5386. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5387. #if HAS_TEMP_BED
  5388. SERIAL_PROTOCOLPGM(" B@:");
  5389. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5390. #endif
  5391. #if HOTENDS > 1
  5392. HOTEND_LOOP() {
  5393. SERIAL_PROTOCOLPAIR(" @", e);
  5394. SERIAL_PROTOCOLCHAR(':');
  5395. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5396. }
  5397. #endif
  5398. }
  5399. #endif
  5400. /**
  5401. * M105: Read hot end and bed temperature
  5402. */
  5403. inline void gcode_M105() {
  5404. if (get_target_extruder_from_command(105)) return;
  5405. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5406. SERIAL_PROTOCOLPGM(MSG_OK);
  5407. print_heaterstates();
  5408. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5409. SERIAL_ERROR_START;
  5410. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5411. #endif
  5412. SERIAL_EOL;
  5413. }
  5414. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5415. static uint8_t auto_report_temp_interval;
  5416. static millis_t next_temp_report_ms;
  5417. /**
  5418. * M155: Set temperature auto-report interval. M155 S<seconds>
  5419. */
  5420. inline void gcode_M155() {
  5421. if (code_seen('S')) {
  5422. auto_report_temp_interval = code_value_byte();
  5423. NOMORE(auto_report_temp_interval, 60);
  5424. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5425. }
  5426. }
  5427. inline void auto_report_temperatures() {
  5428. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5429. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5430. print_heaterstates();
  5431. SERIAL_EOL;
  5432. }
  5433. }
  5434. #endif // AUTO_REPORT_TEMPERATURES
  5435. #if FAN_COUNT > 0
  5436. /**
  5437. * M106: Set Fan Speed
  5438. *
  5439. * S<int> Speed between 0-255
  5440. * P<index> Fan index, if more than one fan
  5441. */
  5442. inline void gcode_M106() {
  5443. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5444. p = code_seen('P') ? code_value_ushort() : 0;
  5445. NOMORE(s, 255);
  5446. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5447. }
  5448. /**
  5449. * M107: Fan Off
  5450. */
  5451. inline void gcode_M107() {
  5452. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5453. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5454. }
  5455. #endif // FAN_COUNT > 0
  5456. #if DISABLED(EMERGENCY_PARSER)
  5457. /**
  5458. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5459. */
  5460. inline void gcode_M108() { wait_for_heatup = false; }
  5461. /**
  5462. * M112: Emergency Stop
  5463. */
  5464. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5465. /**
  5466. * M410: Quickstop - Abort all planned moves
  5467. *
  5468. * This will stop the carriages mid-move, so most likely they
  5469. * will be out of sync with the stepper position after this.
  5470. */
  5471. inline void gcode_M410() { quickstop_stepper(); }
  5472. #endif
  5473. /**
  5474. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5475. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5476. */
  5477. #ifndef MIN_COOLING_SLOPE_DEG
  5478. #define MIN_COOLING_SLOPE_DEG 1.50
  5479. #endif
  5480. #ifndef MIN_COOLING_SLOPE_TIME
  5481. #define MIN_COOLING_SLOPE_TIME 60
  5482. #endif
  5483. inline void gcode_M109() {
  5484. if (get_target_extruder_from_command(109)) return;
  5485. if (DEBUGGING(DRYRUN)) return;
  5486. #if ENABLED(SINGLENOZZLE)
  5487. if (target_extruder != active_extruder) return;
  5488. #endif
  5489. const bool no_wait_for_cooling = code_seen('S');
  5490. if (no_wait_for_cooling || code_seen('R')) {
  5491. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5492. #if ENABLED(DUAL_X_CARRIAGE)
  5493. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5494. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5495. #endif
  5496. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5497. /**
  5498. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5499. * standby mode, (e.g., in a dual extruder setup) without affecting
  5500. * the running print timer.
  5501. */
  5502. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5503. print_job_timer.stop();
  5504. LCD_MESSAGEPGM(WELCOME_MSG);
  5505. }
  5506. else
  5507. print_job_timer.start();
  5508. #endif
  5509. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5510. }
  5511. else return;
  5512. #if ENABLED(AUTOTEMP)
  5513. planner.autotemp_M104_M109();
  5514. #endif
  5515. #if TEMP_RESIDENCY_TIME > 0
  5516. millis_t residency_start_ms = 0;
  5517. // Loop until the temperature has stabilized
  5518. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5519. #else
  5520. // Loop until the temperature is very close target
  5521. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5522. #endif
  5523. float target_temp = -1.0, old_temp = 9999.0;
  5524. bool wants_to_cool = false;
  5525. wait_for_heatup = true;
  5526. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5527. KEEPALIVE_STATE(NOT_BUSY);
  5528. #if ENABLED(PRINTER_EVENT_LEDS)
  5529. const float start_temp = thermalManager.degHotend(target_extruder);
  5530. uint8_t old_blue = 0;
  5531. #endif
  5532. do {
  5533. // Target temperature might be changed during the loop
  5534. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5535. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5536. target_temp = thermalManager.degTargetHotend(target_extruder);
  5537. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5538. if (no_wait_for_cooling && wants_to_cool) break;
  5539. }
  5540. now = millis();
  5541. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5542. next_temp_ms = now + 1000UL;
  5543. print_heaterstates();
  5544. #if TEMP_RESIDENCY_TIME > 0
  5545. SERIAL_PROTOCOLPGM(" W:");
  5546. if (residency_start_ms) {
  5547. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5548. SERIAL_PROTOCOLLN(rem);
  5549. }
  5550. else {
  5551. SERIAL_PROTOCOLLNPGM("?");
  5552. }
  5553. #else
  5554. SERIAL_EOL;
  5555. #endif
  5556. }
  5557. idle();
  5558. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5559. const float temp = thermalManager.degHotend(target_extruder);
  5560. #if ENABLED(PRINTER_EVENT_LEDS)
  5561. // Gradually change LED strip from violet to red as nozzle heats up
  5562. if (!wants_to_cool) {
  5563. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5564. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5565. }
  5566. #endif
  5567. #if TEMP_RESIDENCY_TIME > 0
  5568. const float temp_diff = fabs(target_temp - temp);
  5569. if (!residency_start_ms) {
  5570. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5571. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5572. }
  5573. else if (temp_diff > TEMP_HYSTERESIS) {
  5574. // Restart the timer whenever the temperature falls outside the hysteresis.
  5575. residency_start_ms = now;
  5576. }
  5577. #endif
  5578. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5579. if (wants_to_cool) {
  5580. // break after MIN_COOLING_SLOPE_TIME seconds
  5581. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5582. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5583. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5584. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5585. old_temp = temp;
  5586. }
  5587. }
  5588. } while (wait_for_heatup && TEMP_CONDITIONS);
  5589. if (wait_for_heatup) {
  5590. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5591. #if ENABLED(PRINTER_EVENT_LEDS)
  5592. #if ENABLED(RGBW_LED)
  5593. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5594. #else
  5595. set_led_color(255, 255, 255); // Set LEDs All On
  5596. #endif
  5597. #endif
  5598. }
  5599. KEEPALIVE_STATE(IN_HANDLER);
  5600. }
  5601. #if HAS_TEMP_BED
  5602. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5603. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5604. #endif
  5605. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5606. #define MIN_COOLING_SLOPE_TIME_BED 60
  5607. #endif
  5608. /**
  5609. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5610. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5611. */
  5612. inline void gcode_M190() {
  5613. if (DEBUGGING(DRYRUN)) return;
  5614. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5615. const bool no_wait_for_cooling = code_seen('S');
  5616. if (no_wait_for_cooling || code_seen('R')) {
  5617. thermalManager.setTargetBed(code_value_temp_abs());
  5618. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5619. if (code_value_temp_abs() > BED_MINTEMP)
  5620. print_job_timer.start();
  5621. #endif
  5622. }
  5623. else return;
  5624. #if TEMP_BED_RESIDENCY_TIME > 0
  5625. millis_t residency_start_ms = 0;
  5626. // Loop until the temperature has stabilized
  5627. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5628. #else
  5629. // Loop until the temperature is very close target
  5630. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5631. #endif
  5632. float target_temp = -1.0, old_temp = 9999.0;
  5633. bool wants_to_cool = false;
  5634. wait_for_heatup = true;
  5635. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5636. KEEPALIVE_STATE(NOT_BUSY);
  5637. target_extruder = active_extruder; // for print_heaterstates
  5638. #if ENABLED(PRINTER_EVENT_LEDS)
  5639. const float start_temp = thermalManager.degBed();
  5640. uint8_t old_red = 255;
  5641. #endif
  5642. do {
  5643. // Target temperature might be changed during the loop
  5644. if (target_temp != thermalManager.degTargetBed()) {
  5645. wants_to_cool = thermalManager.isCoolingBed();
  5646. target_temp = thermalManager.degTargetBed();
  5647. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5648. if (no_wait_for_cooling && wants_to_cool) break;
  5649. }
  5650. now = millis();
  5651. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5652. next_temp_ms = now + 1000UL;
  5653. print_heaterstates();
  5654. #if TEMP_BED_RESIDENCY_TIME > 0
  5655. SERIAL_PROTOCOLPGM(" W:");
  5656. if (residency_start_ms) {
  5657. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5658. SERIAL_PROTOCOLLN(rem);
  5659. }
  5660. else {
  5661. SERIAL_PROTOCOLLNPGM("?");
  5662. }
  5663. #else
  5664. SERIAL_EOL;
  5665. #endif
  5666. }
  5667. idle();
  5668. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5669. const float temp = thermalManager.degBed();
  5670. #if ENABLED(PRINTER_EVENT_LEDS)
  5671. // Gradually change LED strip from blue to violet as bed heats up
  5672. if (!wants_to_cool) {
  5673. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5674. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5675. }
  5676. }
  5677. #endif
  5678. #if TEMP_BED_RESIDENCY_TIME > 0
  5679. const float temp_diff = fabs(target_temp - temp);
  5680. if (!residency_start_ms) {
  5681. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5682. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5683. }
  5684. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5685. // Restart the timer whenever the temperature falls outside the hysteresis.
  5686. residency_start_ms = now;
  5687. }
  5688. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5689. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5690. if (wants_to_cool) {
  5691. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5692. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5693. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5694. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5695. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5696. old_temp = temp;
  5697. }
  5698. }
  5699. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5700. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5701. KEEPALIVE_STATE(IN_HANDLER);
  5702. }
  5703. #endif // HAS_TEMP_BED
  5704. /**
  5705. * M110: Set Current Line Number
  5706. */
  5707. inline void gcode_M110() {
  5708. if (code_seen('N')) gcode_LastN = code_value_long();
  5709. }
  5710. /**
  5711. * M111: Set the debug level
  5712. */
  5713. inline void gcode_M111() {
  5714. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5715. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5716. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5717. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5718. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5719. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5720. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5721. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5722. #endif
  5723. const static char* const debug_strings[] PROGMEM = {
  5724. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5726. str_debug_32
  5727. #endif
  5728. };
  5729. SERIAL_ECHO_START;
  5730. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5731. if (marlin_debug_flags) {
  5732. uint8_t comma = 0;
  5733. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5734. if (TEST(marlin_debug_flags, i)) {
  5735. if (comma++) SERIAL_CHAR(',');
  5736. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5737. }
  5738. }
  5739. }
  5740. else {
  5741. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5742. }
  5743. SERIAL_EOL;
  5744. }
  5745. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5746. /**
  5747. * M113: Get or set Host Keepalive interval (0 to disable)
  5748. *
  5749. * S<seconds> Optional. Set the keepalive interval.
  5750. */
  5751. inline void gcode_M113() {
  5752. if (code_seen('S')) {
  5753. host_keepalive_interval = code_value_byte();
  5754. NOMORE(host_keepalive_interval, 60);
  5755. }
  5756. else {
  5757. SERIAL_ECHO_START;
  5758. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5759. }
  5760. }
  5761. #endif
  5762. #if ENABLED(BARICUDA)
  5763. #if HAS_HEATER_1
  5764. /**
  5765. * M126: Heater 1 valve open
  5766. */
  5767. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5768. /**
  5769. * M127: Heater 1 valve close
  5770. */
  5771. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5772. #endif
  5773. #if HAS_HEATER_2
  5774. /**
  5775. * M128: Heater 2 valve open
  5776. */
  5777. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5778. /**
  5779. * M129: Heater 2 valve close
  5780. */
  5781. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5782. #endif
  5783. #endif //BARICUDA
  5784. /**
  5785. * M140: Set bed temperature
  5786. */
  5787. inline void gcode_M140() {
  5788. if (DEBUGGING(DRYRUN)) return;
  5789. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5790. }
  5791. #if ENABLED(ULTIPANEL)
  5792. /**
  5793. * M145: Set the heatup state for a material in the LCD menu
  5794. *
  5795. * S<material> (0=PLA, 1=ABS)
  5796. * H<hotend temp>
  5797. * B<bed temp>
  5798. * F<fan speed>
  5799. */
  5800. inline void gcode_M145() {
  5801. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5802. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5803. SERIAL_ERROR_START;
  5804. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5805. }
  5806. else {
  5807. int v;
  5808. if (code_seen('H')) {
  5809. v = code_value_int();
  5810. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5811. }
  5812. if (code_seen('F')) {
  5813. v = code_value_int();
  5814. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5815. }
  5816. #if TEMP_SENSOR_BED != 0
  5817. if (code_seen('B')) {
  5818. v = code_value_int();
  5819. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5820. }
  5821. #endif
  5822. }
  5823. }
  5824. #endif // ULTIPANEL
  5825. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5826. /**
  5827. * M149: Set temperature units
  5828. */
  5829. inline void gcode_M149() {
  5830. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5831. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5832. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5833. }
  5834. #endif
  5835. #if HAS_POWER_SWITCH
  5836. /**
  5837. * M80: Turn on Power Supply
  5838. */
  5839. inline void gcode_M80() {
  5840. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5841. /**
  5842. * If you have a switch on suicide pin, this is useful
  5843. * if you want to start another print with suicide feature after
  5844. * a print without suicide...
  5845. */
  5846. #if HAS_SUICIDE
  5847. OUT_WRITE(SUICIDE_PIN, HIGH);
  5848. #endif
  5849. #if ENABLED(HAVE_TMC2130)
  5850. delay(100);
  5851. tmc2130_init(); // Settings only stick when the driver has power
  5852. #endif
  5853. #if ENABLED(ULTIPANEL)
  5854. powersupply = true;
  5855. LCD_MESSAGEPGM(WELCOME_MSG);
  5856. #endif
  5857. }
  5858. #endif // HAS_POWER_SWITCH
  5859. /**
  5860. * M81: Turn off Power, including Power Supply, if there is one.
  5861. *
  5862. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5863. */
  5864. inline void gcode_M81() {
  5865. thermalManager.disable_all_heaters();
  5866. stepper.finish_and_disable();
  5867. #if FAN_COUNT > 0
  5868. #if FAN_COUNT > 1
  5869. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5870. #else
  5871. fanSpeeds[0] = 0;
  5872. #endif
  5873. #endif
  5874. safe_delay(1000); // Wait 1 second before switching off
  5875. #if HAS_SUICIDE
  5876. stepper.synchronize();
  5877. suicide();
  5878. #elif HAS_POWER_SWITCH
  5879. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5880. #endif
  5881. #if ENABLED(ULTIPANEL)
  5882. #if HAS_POWER_SWITCH
  5883. powersupply = false;
  5884. #endif
  5885. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5886. #endif
  5887. }
  5888. /**
  5889. * M82: Set E codes absolute (default)
  5890. */
  5891. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5892. /**
  5893. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5894. */
  5895. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  5896. /**
  5897. * M18, M84: Disable all stepper motors
  5898. */
  5899. inline void gcode_M18_M84() {
  5900. if (code_seen('S')) {
  5901. stepper_inactive_time = code_value_millis_from_seconds();
  5902. }
  5903. else {
  5904. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  5905. if (all_axis) {
  5906. stepper.finish_and_disable();
  5907. }
  5908. else {
  5909. stepper.synchronize();
  5910. if (code_seen('X')) disable_X();
  5911. if (code_seen('Y')) disable_Y();
  5912. if (code_seen('Z')) disable_Z();
  5913. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5914. if (code_seen('E')) disable_e_steppers();
  5915. #endif
  5916. }
  5917. }
  5918. }
  5919. /**
  5920. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  5921. */
  5922. inline void gcode_M85() {
  5923. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  5924. }
  5925. /**
  5926. * Multi-stepper support for M92, M201, M203
  5927. */
  5928. #if ENABLED(DISTINCT_E_FACTORS)
  5929. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  5930. #define TARGET_EXTRUDER target_extruder
  5931. #else
  5932. #define GET_TARGET_EXTRUDER(CMD) NOOP
  5933. #define TARGET_EXTRUDER 0
  5934. #endif
  5935. /**
  5936. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  5937. * (Follows the same syntax as G92)
  5938. *
  5939. * With multiple extruders use T to specify which one.
  5940. */
  5941. inline void gcode_M92() {
  5942. GET_TARGET_EXTRUDER(92);
  5943. LOOP_XYZE(i) {
  5944. if (code_seen(axis_codes[i])) {
  5945. if (i == E_AXIS) {
  5946. float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  5947. if (value < 20.0) {
  5948. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  5949. planner.max_jerk[E_AXIS] *= factor;
  5950. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  5951. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  5952. }
  5953. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  5954. }
  5955. else {
  5956. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  5957. }
  5958. }
  5959. }
  5960. planner.refresh_positioning();
  5961. }
  5962. /**
  5963. * Output the current position to serial
  5964. */
  5965. static void report_current_position() {
  5966. SERIAL_PROTOCOLPGM("X:");
  5967. SERIAL_PROTOCOL(current_position[X_AXIS]);
  5968. SERIAL_PROTOCOLPGM(" Y:");
  5969. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  5970. SERIAL_PROTOCOLPGM(" Z:");
  5971. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  5972. SERIAL_PROTOCOLPGM(" E:");
  5973. SERIAL_PROTOCOL(current_position[E_AXIS]);
  5974. stepper.report_positions();
  5975. #if IS_SCARA
  5976. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  5977. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  5978. SERIAL_EOL;
  5979. #endif
  5980. }
  5981. /**
  5982. * M114: Output current position to serial port
  5983. */
  5984. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  5985. /**
  5986. * M115: Capabilities string
  5987. */
  5988. inline void gcode_M115() {
  5989. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  5990. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  5991. // EEPROM (M500, M501)
  5992. #if ENABLED(EEPROM_SETTINGS)
  5993. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  5994. #else
  5995. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  5996. #endif
  5997. // AUTOREPORT_TEMP (M155)
  5998. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  5999. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6000. #else
  6001. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6002. #endif
  6003. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6004. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6005. // AUTOLEVEL (G29)
  6006. #if HAS_ABL
  6007. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6008. #else
  6009. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6010. #endif
  6011. // Z_PROBE (G30)
  6012. #if HAS_BED_PROBE
  6013. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6014. #else
  6015. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6016. #endif
  6017. // MESH_REPORT (M420 V)
  6018. #if PLANNER_LEVELING
  6019. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6020. #else
  6021. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6022. #endif
  6023. // SOFTWARE_POWER (G30)
  6024. #if HAS_POWER_SWITCH
  6025. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6026. #else
  6027. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6028. #endif
  6029. // TOGGLE_LIGHTS (M355)
  6030. #if HAS_CASE_LIGHT
  6031. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6032. #else
  6033. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6034. #endif
  6035. // EMERGENCY_PARSER (M108, M112, M410)
  6036. #if ENABLED(EMERGENCY_PARSER)
  6037. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6038. #else
  6039. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6040. #endif
  6041. #endif // EXTENDED_CAPABILITIES_REPORT
  6042. }
  6043. /**
  6044. * M117: Set LCD Status Message
  6045. */
  6046. inline void gcode_M117() {
  6047. lcd_setstatus(current_command_args);
  6048. }
  6049. /**
  6050. * M119: Output endstop states to serial output
  6051. */
  6052. inline void gcode_M119() { endstops.M119(); }
  6053. /**
  6054. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6055. */
  6056. inline void gcode_M120() { endstops.enable_globally(true); }
  6057. /**
  6058. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6059. */
  6060. inline void gcode_M121() { endstops.enable_globally(false); }
  6061. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6062. /**
  6063. * M125: Store current position and move to filament change position.
  6064. * Called on pause (by M25) to prevent material leaking onto the
  6065. * object. On resume (M24) the head will be moved back and the
  6066. * print will resume.
  6067. *
  6068. * If Marlin is compiled without SD Card support, M125 can be
  6069. * used directly to pause the print and move to park position,
  6070. * resuming with a button click or M108.
  6071. *
  6072. * L = override retract length
  6073. * X = override X
  6074. * Y = override Y
  6075. * Z = override Z raise
  6076. */
  6077. inline void gcode_M125() {
  6078. if (move_away_flag) return; // already paused
  6079. const bool job_running = print_job_timer.isRunning();
  6080. // there are blocks after this one, or sd printing
  6081. move_away_flag = job_running || planner.blocks_queued()
  6082. #if ENABLED(SDSUPPORT)
  6083. || card.sdprinting
  6084. #endif
  6085. ;
  6086. if (!move_away_flag) return; // nothing to pause
  6087. // M125 can be used to pause a print too
  6088. #if ENABLED(SDSUPPORT)
  6089. card.pauseSDPrint();
  6090. #endif
  6091. print_job_timer.pause();
  6092. // Save current position
  6093. COPY(resume_position, current_position);
  6094. set_destination_to_current();
  6095. // Initial retract before move to filament change position
  6096. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6097. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6098. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6099. #endif
  6100. ;
  6101. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6102. // Lift Z axis
  6103. const float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  6104. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6105. FILAMENT_CHANGE_Z_ADD
  6106. #else
  6107. 0
  6108. #endif
  6109. ;
  6110. if (z_lift > 0) {
  6111. destination[Z_AXIS] += z_lift;
  6112. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6113. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6114. }
  6115. // Move XY axes to filament change position or given position
  6116. destination[X_AXIS] = code_seen('X') ? code_value_axis_units(X_AXIS) : 0
  6117. #ifdef FILAMENT_CHANGE_X_POS
  6118. + FILAMENT_CHANGE_X_POS
  6119. #endif
  6120. ;
  6121. destination[Y_AXIS] = code_seen('Y') ? code_value_axis_units(Y_AXIS) : 0
  6122. #ifdef FILAMENT_CHANGE_Y_POS
  6123. + FILAMENT_CHANGE_Y_POS
  6124. #endif
  6125. ;
  6126. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6127. if (active_extruder > 0) {
  6128. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6129. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6130. }
  6131. #endif
  6132. clamp_to_software_endstops(destination);
  6133. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6134. set_current_to_destination();
  6135. stepper.synchronize();
  6136. disable_e_steppers();
  6137. #if DISABLED(SDSUPPORT)
  6138. // Wait for lcd click or M108
  6139. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6140. wait_for_user = true;
  6141. while (wait_for_user) idle();
  6142. KEEPALIVE_STATE(IN_HANDLER);
  6143. // Return to print position and continue
  6144. move_back_on_resume();
  6145. if (job_running) print_job_timer.start();
  6146. move_away_flag = false;
  6147. #endif
  6148. }
  6149. #endif // PARK_HEAD_ON_PAUSE
  6150. #if HAS_COLOR_LEDS
  6151. /**
  6152. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6153. *
  6154. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6155. *
  6156. * Examples:
  6157. *
  6158. * M150 R255 ; Turn LED red
  6159. * M150 R255 U127 ; Turn LED orange (PWM only)
  6160. * M150 ; Turn LED off
  6161. * M150 R U B ; Turn LED white
  6162. * M150 W ; Turn LED white using a white LED
  6163. *
  6164. */
  6165. inline void gcode_M150() {
  6166. set_led_color(
  6167. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6168. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6169. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6170. #if ENABLED(RGBW_LED)
  6171. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6172. #endif
  6173. );
  6174. }
  6175. #endif // BLINKM || RGB_LED
  6176. /**
  6177. * M200: Set filament diameter and set E axis units to cubic units
  6178. *
  6179. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6180. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6181. */
  6182. inline void gcode_M200() {
  6183. if (get_target_extruder_from_command(200)) return;
  6184. if (code_seen('D')) {
  6185. // setting any extruder filament size disables volumetric on the assumption that
  6186. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6187. // for all extruders
  6188. volumetric_enabled = (code_value_linear_units() != 0.0);
  6189. if (volumetric_enabled) {
  6190. filament_size[target_extruder] = code_value_linear_units();
  6191. // make sure all extruders have some sane value for the filament size
  6192. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6193. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6194. }
  6195. }
  6196. else {
  6197. //reserved for setting filament diameter via UFID or filament measuring device
  6198. return;
  6199. }
  6200. calculate_volumetric_multipliers();
  6201. }
  6202. /**
  6203. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6204. *
  6205. * With multiple extruders use T to specify which one.
  6206. */
  6207. inline void gcode_M201() {
  6208. GET_TARGET_EXTRUDER(201);
  6209. LOOP_XYZE(i) {
  6210. if (code_seen(axis_codes[i])) {
  6211. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6212. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units(a);
  6213. }
  6214. }
  6215. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6216. planner.reset_acceleration_rates();
  6217. }
  6218. #if 0 // Not used for Sprinter/grbl gen6
  6219. inline void gcode_M202() {
  6220. LOOP_XYZE(i) {
  6221. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  6222. }
  6223. }
  6224. #endif
  6225. /**
  6226. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6227. *
  6228. * With multiple extruders use T to specify which one.
  6229. */
  6230. inline void gcode_M203() {
  6231. GET_TARGET_EXTRUDER(203);
  6232. LOOP_XYZE(i)
  6233. if (code_seen(axis_codes[i])) {
  6234. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6235. planner.max_feedrate_mm_s[a] = code_value_axis_units(a);
  6236. }
  6237. }
  6238. /**
  6239. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6240. *
  6241. * P = Printing moves
  6242. * R = Retract only (no X, Y, Z) moves
  6243. * T = Travel (non printing) moves
  6244. *
  6245. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6246. */
  6247. inline void gcode_M204() {
  6248. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6249. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6250. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6251. }
  6252. if (code_seen('P')) {
  6253. planner.acceleration = code_value_linear_units();
  6254. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6255. }
  6256. if (code_seen('R')) {
  6257. planner.retract_acceleration = code_value_linear_units();
  6258. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6259. }
  6260. if (code_seen('T')) {
  6261. planner.travel_acceleration = code_value_linear_units();
  6262. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6263. }
  6264. }
  6265. /**
  6266. * M205: Set Advanced Settings
  6267. *
  6268. * S = Min Feed Rate (units/s)
  6269. * T = Min Travel Feed Rate (units/s)
  6270. * B = Min Segment Time (µs)
  6271. * X = Max X Jerk (units/sec^2)
  6272. * Y = Max Y Jerk (units/sec^2)
  6273. * Z = Max Z Jerk (units/sec^2)
  6274. * E = Max E Jerk (units/sec^2)
  6275. */
  6276. inline void gcode_M205() {
  6277. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6278. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6279. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6280. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  6281. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  6282. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  6283. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  6284. }
  6285. #if HAS_M206_COMMAND
  6286. /**
  6287. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6288. */
  6289. inline void gcode_M206() {
  6290. LOOP_XYZ(i)
  6291. if (code_seen(axis_codes[i]))
  6292. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  6293. #if ENABLED(MORGAN_SCARA)
  6294. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  6295. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  6296. #endif
  6297. SYNC_PLAN_POSITION_KINEMATIC();
  6298. report_current_position();
  6299. }
  6300. #endif // HAS_M206_COMMAND
  6301. #if ENABLED(DELTA)
  6302. /**
  6303. * M665: Set delta configurations
  6304. *
  6305. * H = diagonal rod // AC-version
  6306. * L = diagonal rod
  6307. * R = delta radius
  6308. * S = segments per second
  6309. * A = Alpha (Tower 1) diagonal rod trim
  6310. * B = Beta (Tower 2) diagonal rod trim
  6311. * C = Gamma (Tower 3) diagonal rod trim
  6312. */
  6313. inline void gcode_M665() {
  6314. if (code_seen('H')) {
  6315. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6316. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6317. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6318. update_software_endstops(Z_AXIS);
  6319. }
  6320. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6321. if (code_seen('R')) delta_radius = code_value_linear_units();
  6322. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6323. if (code_seen('A')) delta_diagonal_rod_trim[A_AXIS] = code_value_linear_units();
  6324. if (code_seen('B')) delta_diagonal_rod_trim[B_AXIS] = code_value_linear_units();
  6325. if (code_seen('C')) delta_diagonal_rod_trim[C_AXIS] = code_value_linear_units();
  6326. if (code_seen('I')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6327. if (code_seen('J')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6328. if (code_seen('K')) delta_tower_angle_trim[C_AXIS] = code_value_linear_units();
  6329. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6330. }
  6331. /**
  6332. * M666: Set delta endstop adjustment
  6333. */
  6334. inline void gcode_M666() {
  6335. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6336. if (DEBUGGING(LEVELING)) {
  6337. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6338. }
  6339. #endif
  6340. LOOP_XYZ(i) {
  6341. if (code_seen(axis_codes[i])) {
  6342. endstop_adj[i] = code_value_axis_units(i);
  6343. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6344. if (DEBUGGING(LEVELING)) {
  6345. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6346. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6347. }
  6348. #endif
  6349. }
  6350. }
  6351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6352. if (DEBUGGING(LEVELING)) {
  6353. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6354. }
  6355. #endif
  6356. }
  6357. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6358. /**
  6359. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6360. */
  6361. inline void gcode_M666() {
  6362. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  6363. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6364. }
  6365. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6366. #if ENABLED(FWRETRACT)
  6367. /**
  6368. * M207: Set firmware retraction values
  6369. *
  6370. * S[+units] retract_length
  6371. * W[+units] retract_length_swap (multi-extruder)
  6372. * F[units/min] retract_feedrate_mm_s
  6373. * Z[units] retract_zlift
  6374. */
  6375. inline void gcode_M207() {
  6376. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6377. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6378. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  6379. #if EXTRUDERS > 1
  6380. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6381. #endif
  6382. }
  6383. /**
  6384. * M208: Set firmware un-retraction values
  6385. *
  6386. * S[+units] retract_recover_length (in addition to M207 S*)
  6387. * W[+units] retract_recover_length_swap (multi-extruder)
  6388. * F[units/min] retract_recover_feedrate_mm_s
  6389. */
  6390. inline void gcode_M208() {
  6391. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6392. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6393. #if EXTRUDERS > 1
  6394. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6395. #endif
  6396. }
  6397. /**
  6398. * M209: Enable automatic retract (M209 S1)
  6399. * For slicers that don't support G10/11, reversed extrude-only
  6400. * moves will be classified as retraction.
  6401. */
  6402. inline void gcode_M209() {
  6403. if (code_seen('S')) {
  6404. autoretract_enabled = code_value_bool();
  6405. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6406. }
  6407. }
  6408. #endif // FWRETRACT
  6409. /**
  6410. * M211: Enable, Disable, and/or Report software endstops
  6411. *
  6412. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6413. */
  6414. inline void gcode_M211() {
  6415. SERIAL_ECHO_START;
  6416. #if HAS_SOFTWARE_ENDSTOPS
  6417. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6418. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6419. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6420. #else
  6421. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6422. SERIAL_ECHOPGM(MSG_OFF);
  6423. #endif
  6424. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6425. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6426. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6427. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6428. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6429. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6430. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6431. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6432. }
  6433. #if HOTENDS > 1
  6434. /**
  6435. * M218 - set hotend offset (in linear units)
  6436. *
  6437. * T<tool>
  6438. * X<xoffset>
  6439. * Y<yoffset>
  6440. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6441. */
  6442. inline void gcode_M218() {
  6443. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6444. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  6445. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  6446. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6447. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  6448. #endif
  6449. SERIAL_ECHO_START;
  6450. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6451. HOTEND_LOOP() {
  6452. SERIAL_CHAR(' ');
  6453. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6454. SERIAL_CHAR(',');
  6455. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6456. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6457. SERIAL_CHAR(',');
  6458. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6459. #endif
  6460. }
  6461. SERIAL_EOL;
  6462. }
  6463. #endif // HOTENDS > 1
  6464. /**
  6465. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6466. */
  6467. inline void gcode_M220() {
  6468. if (code_seen('S')) feedrate_percentage = code_value_int();
  6469. }
  6470. /**
  6471. * M221: Set extrusion percentage (M221 T0 S95)
  6472. */
  6473. inline void gcode_M221() {
  6474. if (get_target_extruder_from_command(221)) return;
  6475. if (code_seen('S'))
  6476. flow_percentage[target_extruder] = code_value_int();
  6477. }
  6478. /**
  6479. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6480. */
  6481. inline void gcode_M226() {
  6482. if (code_seen('P')) {
  6483. int pin_number = code_value_int(),
  6484. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6485. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6486. int target = LOW;
  6487. stepper.synchronize();
  6488. pinMode(pin_number, INPUT);
  6489. switch (pin_state) {
  6490. case 1:
  6491. target = HIGH;
  6492. break;
  6493. case 0:
  6494. target = LOW;
  6495. break;
  6496. case -1:
  6497. target = !digitalRead(pin_number);
  6498. break;
  6499. }
  6500. while (digitalRead(pin_number) != target) idle();
  6501. } // pin_state -1 0 1 && pin_number > -1
  6502. } // code_seen('P')
  6503. }
  6504. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6505. /**
  6506. * M260: Send data to a I2C slave device
  6507. *
  6508. * This is a PoC, the formating and arguments for the GCODE will
  6509. * change to be more compatible, the current proposal is:
  6510. *
  6511. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6512. *
  6513. * M260 B<byte-1 value in base 10>
  6514. * M260 B<byte-2 value in base 10>
  6515. * M260 B<byte-3 value in base 10>
  6516. *
  6517. * M260 S1 ; Send the buffered data and reset the buffer
  6518. * M260 R1 ; Reset the buffer without sending data
  6519. *
  6520. */
  6521. inline void gcode_M260() {
  6522. // Set the target address
  6523. if (code_seen('A')) i2c.address(code_value_byte());
  6524. // Add a new byte to the buffer
  6525. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6526. // Flush the buffer to the bus
  6527. if (code_seen('S')) i2c.send();
  6528. // Reset and rewind the buffer
  6529. else if (code_seen('R')) i2c.reset();
  6530. }
  6531. /**
  6532. * M261: Request X bytes from I2C slave device
  6533. *
  6534. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6535. */
  6536. inline void gcode_M261() {
  6537. if (code_seen('A')) i2c.address(code_value_byte());
  6538. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6539. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6540. i2c.relay(bytes);
  6541. }
  6542. else {
  6543. SERIAL_ERROR_START;
  6544. SERIAL_ERRORLN("Bad i2c request");
  6545. }
  6546. }
  6547. #endif // EXPERIMENTAL_I2CBUS
  6548. #if HAS_SERVOS
  6549. /**
  6550. * M280: Get or set servo position. P<index> [S<angle>]
  6551. */
  6552. inline void gcode_M280() {
  6553. if (!code_seen('P')) return;
  6554. int servo_index = code_value_int();
  6555. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6556. if (code_seen('S'))
  6557. MOVE_SERVO(servo_index, code_value_int());
  6558. else {
  6559. SERIAL_ECHO_START;
  6560. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6561. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6562. }
  6563. }
  6564. else {
  6565. SERIAL_ERROR_START;
  6566. SERIAL_ECHOPAIR("Servo ", servo_index);
  6567. SERIAL_ECHOLNPGM(" out of range");
  6568. }
  6569. }
  6570. #endif // HAS_SERVOS
  6571. #if HAS_BUZZER
  6572. /**
  6573. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6574. */
  6575. inline void gcode_M300() {
  6576. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6577. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6578. // Limits the tone duration to 0-5 seconds.
  6579. NOMORE(duration, 5000);
  6580. BUZZ(duration, frequency);
  6581. }
  6582. #endif // HAS_BUZZER
  6583. #if ENABLED(PIDTEMP)
  6584. /**
  6585. * M301: Set PID parameters P I D (and optionally C, L)
  6586. *
  6587. * P[float] Kp term
  6588. * I[float] Ki term (unscaled)
  6589. * D[float] Kd term (unscaled)
  6590. *
  6591. * With PID_EXTRUSION_SCALING:
  6592. *
  6593. * C[float] Kc term
  6594. * L[float] LPQ length
  6595. */
  6596. inline void gcode_M301() {
  6597. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6598. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6599. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6600. if (e < HOTENDS) { // catch bad input value
  6601. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6602. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6603. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6604. #if ENABLED(PID_EXTRUSION_SCALING)
  6605. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6606. if (code_seen('L')) lpq_len = code_value_float();
  6607. NOMORE(lpq_len, LPQ_MAX_LEN);
  6608. #endif
  6609. thermalManager.updatePID();
  6610. SERIAL_ECHO_START;
  6611. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6612. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6613. #endif // PID_PARAMS_PER_HOTEND
  6614. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6615. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6616. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6617. #if ENABLED(PID_EXTRUSION_SCALING)
  6618. //Kc does not have scaling applied above, or in resetting defaults
  6619. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6620. #endif
  6621. SERIAL_EOL;
  6622. }
  6623. else {
  6624. SERIAL_ERROR_START;
  6625. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6626. }
  6627. }
  6628. #endif // PIDTEMP
  6629. #if ENABLED(PIDTEMPBED)
  6630. inline void gcode_M304() {
  6631. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6632. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6633. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6634. thermalManager.updatePID();
  6635. SERIAL_ECHO_START;
  6636. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6637. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6638. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6639. }
  6640. #endif // PIDTEMPBED
  6641. #if defined(CHDK) || HAS_PHOTOGRAPH
  6642. /**
  6643. * M240: Trigger a camera by emulating a Canon RC-1
  6644. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6645. */
  6646. inline void gcode_M240() {
  6647. #ifdef CHDK
  6648. OUT_WRITE(CHDK, HIGH);
  6649. chdkHigh = millis();
  6650. chdkActive = true;
  6651. #elif HAS_PHOTOGRAPH
  6652. const uint8_t NUM_PULSES = 16;
  6653. const float PULSE_LENGTH = 0.01524;
  6654. for (int i = 0; i < NUM_PULSES; i++) {
  6655. WRITE(PHOTOGRAPH_PIN, HIGH);
  6656. _delay_ms(PULSE_LENGTH);
  6657. WRITE(PHOTOGRAPH_PIN, LOW);
  6658. _delay_ms(PULSE_LENGTH);
  6659. }
  6660. delay(7.33);
  6661. for (int i = 0; i < NUM_PULSES; i++) {
  6662. WRITE(PHOTOGRAPH_PIN, HIGH);
  6663. _delay_ms(PULSE_LENGTH);
  6664. WRITE(PHOTOGRAPH_PIN, LOW);
  6665. _delay_ms(PULSE_LENGTH);
  6666. }
  6667. #endif // !CHDK && HAS_PHOTOGRAPH
  6668. }
  6669. #endif // CHDK || PHOTOGRAPH_PIN
  6670. #if HAS_LCD_CONTRAST
  6671. /**
  6672. * M250: Read and optionally set the LCD contrast
  6673. */
  6674. inline void gcode_M250() {
  6675. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6676. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6677. SERIAL_PROTOCOL(lcd_contrast);
  6678. SERIAL_EOL;
  6679. }
  6680. #endif // HAS_LCD_CONTRAST
  6681. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6682. /**
  6683. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6684. *
  6685. * S<temperature> sets the minimum extrude temperature
  6686. * P<bool> enables (1) or disables (0) cold extrusion
  6687. *
  6688. * Examples:
  6689. *
  6690. * M302 ; report current cold extrusion state
  6691. * M302 P0 ; enable cold extrusion checking
  6692. * M302 P1 ; disables cold extrusion checking
  6693. * M302 S0 ; always allow extrusion (disables checking)
  6694. * M302 S170 ; only allow extrusion above 170
  6695. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6696. */
  6697. inline void gcode_M302() {
  6698. bool seen_S = code_seen('S');
  6699. if (seen_S) {
  6700. thermalManager.extrude_min_temp = code_value_temp_abs();
  6701. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6702. }
  6703. if (code_seen('P'))
  6704. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6705. else if (!seen_S) {
  6706. // Report current state
  6707. SERIAL_ECHO_START;
  6708. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6709. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6710. SERIAL_ECHOLNPGM("C)");
  6711. }
  6712. }
  6713. #endif // PREVENT_COLD_EXTRUSION
  6714. /**
  6715. * M303: PID relay autotune
  6716. *
  6717. * S<temperature> sets the target temperature. (default 150C)
  6718. * E<extruder> (-1 for the bed) (default 0)
  6719. * C<cycles>
  6720. * U<bool> with a non-zero value will apply the result to current settings
  6721. */
  6722. inline void gcode_M303() {
  6723. #if HAS_PID_HEATING
  6724. int e = code_seen('E') ? code_value_int() : 0;
  6725. int c = code_seen('C') ? code_value_int() : 5;
  6726. bool u = code_seen('U') && code_value_bool();
  6727. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6728. if (WITHIN(e, 0, HOTENDS - 1))
  6729. target_extruder = e;
  6730. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6731. thermalManager.PID_autotune(temp, e, c, u);
  6732. KEEPALIVE_STATE(IN_HANDLER);
  6733. #else
  6734. SERIAL_ERROR_START;
  6735. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6736. #endif
  6737. }
  6738. #if ENABLED(MORGAN_SCARA)
  6739. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6740. if (IsRunning()) {
  6741. forward_kinematics_SCARA(delta_a, delta_b);
  6742. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6743. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6744. destination[Z_AXIS] = current_position[Z_AXIS];
  6745. prepare_move_to_destination();
  6746. return true;
  6747. }
  6748. return false;
  6749. }
  6750. /**
  6751. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6752. */
  6753. inline bool gcode_M360() {
  6754. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6755. return SCARA_move_to_cal(0, 120);
  6756. }
  6757. /**
  6758. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6759. */
  6760. inline bool gcode_M361() {
  6761. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6762. return SCARA_move_to_cal(90, 130);
  6763. }
  6764. /**
  6765. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6766. */
  6767. inline bool gcode_M362() {
  6768. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6769. return SCARA_move_to_cal(60, 180);
  6770. }
  6771. /**
  6772. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6773. */
  6774. inline bool gcode_M363() {
  6775. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6776. return SCARA_move_to_cal(50, 90);
  6777. }
  6778. /**
  6779. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6780. */
  6781. inline bool gcode_M364() {
  6782. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6783. return SCARA_move_to_cal(45, 135);
  6784. }
  6785. #endif // SCARA
  6786. #if ENABLED(EXT_SOLENOID)
  6787. void enable_solenoid(const uint8_t num) {
  6788. switch (num) {
  6789. case 0:
  6790. OUT_WRITE(SOL0_PIN, HIGH);
  6791. break;
  6792. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6793. case 1:
  6794. OUT_WRITE(SOL1_PIN, HIGH);
  6795. break;
  6796. #endif
  6797. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6798. case 2:
  6799. OUT_WRITE(SOL2_PIN, HIGH);
  6800. break;
  6801. #endif
  6802. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6803. case 3:
  6804. OUT_WRITE(SOL3_PIN, HIGH);
  6805. break;
  6806. #endif
  6807. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6808. case 4:
  6809. OUT_WRITE(SOL4_PIN, HIGH);
  6810. break;
  6811. #endif
  6812. default:
  6813. SERIAL_ECHO_START;
  6814. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6815. break;
  6816. }
  6817. }
  6818. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6819. void disable_all_solenoids() {
  6820. OUT_WRITE(SOL0_PIN, LOW);
  6821. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6822. OUT_WRITE(SOL1_PIN, LOW);
  6823. #endif
  6824. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6825. OUT_WRITE(SOL2_PIN, LOW);
  6826. #endif
  6827. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6828. OUT_WRITE(SOL3_PIN, LOW);
  6829. #endif
  6830. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6831. OUT_WRITE(SOL4_PIN, LOW);
  6832. #endif
  6833. }
  6834. /**
  6835. * M380: Enable solenoid on the active extruder
  6836. */
  6837. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6838. /**
  6839. * M381: Disable all solenoids
  6840. */
  6841. inline void gcode_M381() { disable_all_solenoids(); }
  6842. #endif // EXT_SOLENOID
  6843. /**
  6844. * M400: Finish all moves
  6845. */
  6846. inline void gcode_M400() { stepper.synchronize(); }
  6847. #if HAS_BED_PROBE
  6848. /**
  6849. * M401: Engage Z Servo endstop if available
  6850. */
  6851. inline void gcode_M401() { DEPLOY_PROBE(); }
  6852. /**
  6853. * M402: Retract Z Servo endstop if enabled
  6854. */
  6855. inline void gcode_M402() { STOW_PROBE(); }
  6856. #endif // HAS_BED_PROBE
  6857. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6858. /**
  6859. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6860. */
  6861. inline void gcode_M404() {
  6862. if (code_seen('W')) {
  6863. filament_width_nominal = code_value_linear_units();
  6864. }
  6865. else {
  6866. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6867. SERIAL_PROTOCOLLN(filament_width_nominal);
  6868. }
  6869. }
  6870. /**
  6871. * M405: Turn on filament sensor for control
  6872. */
  6873. inline void gcode_M405() {
  6874. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6875. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6876. if (code_seen('D')) meas_delay_cm = code_value_int();
  6877. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6878. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6879. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  6880. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6881. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  6882. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6883. }
  6884. filament_sensor = true;
  6885. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6886. //SERIAL_PROTOCOL(filament_width_meas);
  6887. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6888. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6889. }
  6890. /**
  6891. * M406: Turn off filament sensor for control
  6892. */
  6893. inline void gcode_M406() { filament_sensor = false; }
  6894. /**
  6895. * M407: Get measured filament diameter on serial output
  6896. */
  6897. inline void gcode_M407() {
  6898. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6899. SERIAL_PROTOCOLLN(filament_width_meas);
  6900. }
  6901. #endif // FILAMENT_WIDTH_SENSOR
  6902. void quickstop_stepper() {
  6903. stepper.quick_stop();
  6904. stepper.synchronize();
  6905. set_current_from_steppers_for_axis(ALL_AXES);
  6906. SYNC_PLAN_POSITION_KINEMATIC();
  6907. }
  6908. #if PLANNER_LEVELING
  6909. /**
  6910. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  6911. *
  6912. * S[bool] Turns leveling on or off
  6913. * Z[height] Sets the Z fade height (0 or none to disable)
  6914. * V[bool] Verbose - Print the leveling grid
  6915. *
  6916. * With AUTO_BED_LEVELING_UBL only:
  6917. *
  6918. * L[index] Load UBL mesh from index (0 is default)
  6919. */
  6920. inline void gcode_M420() {
  6921. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6922. // L to load a mesh from the EEPROM
  6923. if (code_seen('L')) {
  6924. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  6925. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  6926. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  6927. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  6928. return;
  6929. }
  6930. ubl.load_mesh(storage_slot);
  6931. if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
  6932. ubl.state.eeprom_storage_slot = storage_slot;
  6933. }
  6934. #endif // AUTO_BED_LEVELING_UBL
  6935. // V to print the matrix or mesh
  6936. if (code_seen('V')) {
  6937. #if ABL_PLANAR
  6938. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  6939. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  6940. if (bilinear_grid_spacing[X_AXIS]) {
  6941. print_bilinear_leveling_grid();
  6942. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  6943. bed_level_virt_print();
  6944. #endif
  6945. }
  6946. #elif ENABLED(MESH_BED_LEVELING)
  6947. if (mbl.has_mesh()) {
  6948. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  6949. mbl_mesh_report();
  6950. }
  6951. #endif
  6952. }
  6953. #if ENABLED(AUTO_BED_LEVELING_UBL)
  6954. // L to load a mesh from the EEPROM
  6955. if (code_seen('L') || code_seen('V')) {
  6956. ubl.display_map(0); // Currently only supports one map type
  6957. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  6958. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  6959. }
  6960. #endif
  6961. bool to_enable = false;
  6962. if (code_seen('S')) {
  6963. to_enable = code_value_bool();
  6964. set_bed_leveling_enabled(to_enable);
  6965. }
  6966. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  6967. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  6968. #endif
  6969. const bool new_status =
  6970. #if ENABLED(MESH_BED_LEVELING)
  6971. mbl.active()
  6972. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  6973. ubl.state.active
  6974. #else
  6975. planner.abl_enabled
  6976. #endif
  6977. ;
  6978. if (to_enable && !new_status) {
  6979. SERIAL_ERROR_START;
  6980. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  6981. }
  6982. SERIAL_ECHO_START;
  6983. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  6984. }
  6985. #endif
  6986. #if ENABLED(MESH_BED_LEVELING)
  6987. /**
  6988. * M421: Set a single Mesh Bed Leveling Z coordinate
  6989. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  6990. */
  6991. inline void gcode_M421() {
  6992. int8_t px = 0, py = 0;
  6993. float z = 0;
  6994. bool hasX, hasY, hasZ, hasI, hasJ;
  6995. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  6996. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  6997. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  6998. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  6999. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  7000. if (hasX && hasY && hasZ) {
  7001. if (px >= 0 && py >= 0)
  7002. mbl.set_z(px, py, z);
  7003. else {
  7004. SERIAL_ERROR_START;
  7005. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7006. }
  7007. }
  7008. else if (hasI && hasJ && hasZ) {
  7009. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7010. mbl.set_z(px, py, z);
  7011. else {
  7012. SERIAL_ERROR_START;
  7013. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7014. }
  7015. }
  7016. else {
  7017. SERIAL_ERROR_START;
  7018. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7019. }
  7020. }
  7021. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7022. /**
  7023. * M421: Set a single Mesh Bed Leveling Z coordinate
  7024. *
  7025. * M421 I<xindex> J<yindex> Z<linear>
  7026. */
  7027. inline void gcode_M421() {
  7028. int8_t px = 0, py = 0;
  7029. float z = 0;
  7030. bool hasI, hasJ, hasZ;
  7031. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  7032. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  7033. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  7034. if (hasI && hasJ && hasZ) {
  7035. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7036. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7037. ubl.z_values[px][py] = z;
  7038. #else
  7039. bed_level_grid[px][py] = z;
  7040. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7041. bed_level_virt_interpolate();
  7042. #endif
  7043. #endif
  7044. }
  7045. else {
  7046. SERIAL_ERROR_START;
  7047. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7048. }
  7049. }
  7050. else {
  7051. SERIAL_ERROR_START;
  7052. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7053. }
  7054. }
  7055. #endif
  7056. #if HAS_M206_COMMAND
  7057. /**
  7058. * M428: Set home_offset based on the distance between the
  7059. * current_position and the nearest "reference point."
  7060. * If an axis is past center its endstop position
  7061. * is the reference-point. Otherwise it uses 0. This allows
  7062. * the Z offset to be set near the bed when using a max endstop.
  7063. *
  7064. * M428 can't be used more than 2cm away from 0 or an endstop.
  7065. *
  7066. * Use M206 to set these values directly.
  7067. */
  7068. inline void gcode_M428() {
  7069. bool err = false;
  7070. LOOP_XYZ(i) {
  7071. if (axis_homed[i]) {
  7072. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7073. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7074. if (WITHIN(diff, -20, 20)) {
  7075. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7076. }
  7077. else {
  7078. SERIAL_ERROR_START;
  7079. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7080. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7081. BUZZ(200, 40);
  7082. err = true;
  7083. break;
  7084. }
  7085. }
  7086. }
  7087. if (!err) {
  7088. SYNC_PLAN_POSITION_KINEMATIC();
  7089. report_current_position();
  7090. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7091. BUZZ(100, 659);
  7092. BUZZ(100, 698);
  7093. }
  7094. }
  7095. #endif // HAS_M206_COMMAND
  7096. /**
  7097. * M500: Store settings in EEPROM
  7098. */
  7099. inline void gcode_M500() {
  7100. (void)settings.save();
  7101. }
  7102. /**
  7103. * M501: Read settings from EEPROM
  7104. */
  7105. inline void gcode_M501() {
  7106. (void)settings.load();
  7107. }
  7108. /**
  7109. * M502: Revert to default settings
  7110. */
  7111. inline void gcode_M502() {
  7112. (void)settings.reset();
  7113. }
  7114. /**
  7115. * M503: print settings currently in memory
  7116. */
  7117. inline void gcode_M503() {
  7118. (void)settings.report(code_seen('S') && !code_value_bool());
  7119. }
  7120. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7121. /**
  7122. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7123. */
  7124. inline void gcode_M540() {
  7125. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7126. }
  7127. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7128. #if HAS_BED_PROBE
  7129. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7130. static float last_zoffset = NAN;
  7131. if (!isnan(last_zoffset)) {
  7132. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7133. const float diff = zprobe_zoffset - last_zoffset;
  7134. #endif
  7135. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7136. // Correct bilinear grid for new probe offset
  7137. if (diff) {
  7138. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7139. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7140. bed_level_grid[x][y] -= diff;
  7141. }
  7142. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7143. bed_level_virt_interpolate();
  7144. #endif
  7145. #endif
  7146. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7147. if (!no_babystep && planner.abl_enabled)
  7148. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7149. #else
  7150. UNUSED(no_babystep);
  7151. #endif
  7152. }
  7153. last_zoffset = zprobe_zoffset;
  7154. }
  7155. inline void gcode_M851() {
  7156. SERIAL_ECHO_START;
  7157. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7158. if (code_seen('Z')) {
  7159. const float value = code_value_axis_units(Z_AXIS);
  7160. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7161. zprobe_zoffset = value;
  7162. refresh_zprobe_zoffset();
  7163. SERIAL_ECHO(zprobe_zoffset);
  7164. }
  7165. else
  7166. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7167. }
  7168. else
  7169. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7170. SERIAL_EOL;
  7171. }
  7172. #endif // HAS_BED_PROBE
  7173. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7174. void filament_change_beep(const bool init=false) {
  7175. static millis_t next_buzz = 0;
  7176. static uint16_t runout_beep = 0;
  7177. if (init) next_buzz = runout_beep = 0;
  7178. const millis_t ms = millis();
  7179. if (ELAPSED(ms, next_buzz)) {
  7180. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7181. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7182. BUZZ(300, 2000);
  7183. runout_beep++;
  7184. }
  7185. }
  7186. }
  7187. static bool busy_doing_M600 = false;
  7188. /**
  7189. * M600: Pause for filament change
  7190. *
  7191. * E[distance] - Retract the filament this far (negative value)
  7192. * Z[distance] - Move the Z axis by this distance
  7193. * X[position] - Move to this X position, with Y
  7194. * Y[position] - Move to this Y position, with X
  7195. * L[distance] - Retract distance for removal (manual reload)
  7196. *
  7197. * Default values are used for omitted arguments.
  7198. *
  7199. */
  7200. inline void gcode_M600() {
  7201. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7202. SERIAL_ERROR_START;
  7203. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7204. return;
  7205. }
  7206. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7207. // Pause the print job timer
  7208. const bool job_running = print_job_timer.isRunning();
  7209. print_job_timer.pause();
  7210. // Show initial message and wait for synchronize steppers
  7211. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7212. stepper.synchronize();
  7213. // Save current position of all axes
  7214. float lastpos[XYZE];
  7215. COPY(lastpos, current_position);
  7216. set_destination_to_current();
  7217. // Initial retract before move to filament change position
  7218. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7219. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7220. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7221. #endif
  7222. ;
  7223. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7224. // Lift Z axis
  7225. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  7226. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7227. FILAMENT_CHANGE_Z_ADD
  7228. #else
  7229. 0
  7230. #endif
  7231. ;
  7232. if (z_lift > 0) {
  7233. destination[Z_AXIS] += z_lift;
  7234. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7235. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7236. }
  7237. // Move XY axes to filament exchange position
  7238. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  7239. #ifdef FILAMENT_CHANGE_X_POS
  7240. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7241. #endif
  7242. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  7243. #ifdef FILAMENT_CHANGE_Y_POS
  7244. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7245. #endif
  7246. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7247. stepper.synchronize();
  7248. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7249. idle();
  7250. // Unload filament
  7251. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7252. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7253. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7254. #endif
  7255. ;
  7256. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7257. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7258. stepper.synchronize();
  7259. disable_e_steppers();
  7260. safe_delay(100);
  7261. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7262. bool nozzle_timed_out = false;
  7263. float temps[4];
  7264. // Wait for filament insert by user and press button
  7265. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7266. #if HAS_BUZZER
  7267. filament_change_beep(true);
  7268. #endif
  7269. idle();
  7270. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7271. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7272. wait_for_user = true; // LCD click or M108 will clear this
  7273. while (wait_for_user) {
  7274. if (nozzle_timed_out)
  7275. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7276. #if HAS_BUZZER
  7277. filament_change_beep();
  7278. #endif
  7279. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7280. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7281. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7282. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7283. }
  7284. idle(true);
  7285. }
  7286. KEEPALIVE_STATE(IN_HANDLER);
  7287. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7288. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7289. // Show "wait for heating"
  7290. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7291. wait_for_heatup = true;
  7292. while (wait_for_heatup) {
  7293. idle();
  7294. wait_for_heatup = false;
  7295. HOTEND_LOOP() {
  7296. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7297. wait_for_heatup = true;
  7298. break;
  7299. }
  7300. }
  7301. }
  7302. // Show "insert filament"
  7303. if (nozzle_timed_out)
  7304. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7305. #if HAS_BUZZER
  7306. filament_change_beep(true);
  7307. #endif
  7308. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7309. wait_for_user = true; // LCD click or M108 will clear this
  7310. while (wait_for_user && nozzle_timed_out) {
  7311. #if HAS_BUZZER
  7312. filament_change_beep();
  7313. #endif
  7314. idle(true);
  7315. }
  7316. KEEPALIVE_STATE(IN_HANDLER);
  7317. // Show "load" message
  7318. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7319. // Load filament
  7320. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7321. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7322. + FILAMENT_CHANGE_LOAD_LENGTH
  7323. #endif
  7324. ;
  7325. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7326. stepper.synchronize();
  7327. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7328. do {
  7329. // "Wait for filament extrude"
  7330. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7331. // Extrude filament to get into hotend
  7332. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7333. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7334. stepper.synchronize();
  7335. // Show "Extrude More" / "Resume" menu and wait for reply
  7336. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7337. wait_for_user = false;
  7338. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7339. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7340. KEEPALIVE_STATE(IN_HANDLER);
  7341. // Keep looping if "Extrude More" was selected
  7342. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7343. #endif
  7344. // "Wait for print to resume"
  7345. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7346. // Set extruder to saved position
  7347. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7348. planner.set_e_position_mm(current_position[E_AXIS]);
  7349. #if IS_KINEMATIC
  7350. // Move XYZ to starting position
  7351. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7352. #else
  7353. // Move XY to starting position, then Z
  7354. destination[X_AXIS] = lastpos[X_AXIS];
  7355. destination[Y_AXIS] = lastpos[Y_AXIS];
  7356. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7357. destination[Z_AXIS] = lastpos[Z_AXIS];
  7358. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7359. #endif
  7360. stepper.synchronize();
  7361. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7362. filament_ran_out = false;
  7363. #endif
  7364. // Show status screen
  7365. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7366. // Resume the print job timer if it was running
  7367. if (job_running) print_job_timer.start();
  7368. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7369. }
  7370. #endif // FILAMENT_CHANGE_FEATURE
  7371. #if ENABLED(DUAL_X_CARRIAGE)
  7372. /**
  7373. * M605: Set dual x-carriage movement mode
  7374. *
  7375. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7376. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7377. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7378. * units x-offset and an optional differential hotend temperature of
  7379. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7380. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7381. *
  7382. * Note: the X axis should be homed after changing dual x-carriage mode.
  7383. */
  7384. inline void gcode_M605() {
  7385. stepper.synchronize();
  7386. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7387. switch (dual_x_carriage_mode) {
  7388. case DXC_FULL_CONTROL_MODE:
  7389. case DXC_AUTO_PARK_MODE:
  7390. break;
  7391. case DXC_DUPLICATION_MODE:
  7392. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  7393. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7394. SERIAL_ECHO_START;
  7395. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7396. SERIAL_CHAR(' ');
  7397. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7398. SERIAL_CHAR(',');
  7399. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7400. SERIAL_CHAR(' ');
  7401. SERIAL_ECHO(duplicate_extruder_x_offset);
  7402. SERIAL_CHAR(',');
  7403. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7404. break;
  7405. default:
  7406. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7407. break;
  7408. }
  7409. active_extruder_parked = false;
  7410. extruder_duplication_enabled = false;
  7411. delayed_move_time = 0;
  7412. }
  7413. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7414. inline void gcode_M605() {
  7415. stepper.synchronize();
  7416. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7417. SERIAL_ECHO_START;
  7418. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7419. }
  7420. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7421. #if ENABLED(LIN_ADVANCE)
  7422. /**
  7423. * M905: Set advance factor
  7424. */
  7425. inline void gcode_M905() {
  7426. stepper.synchronize();
  7427. const float newK = code_seen('K') ? code_value_float() : -1,
  7428. newD = code_seen('D') ? code_value_float() : -1,
  7429. newW = code_seen('W') ? code_value_float() : -1,
  7430. newH = code_seen('H') ? code_value_float() : -1;
  7431. if (newK >= 0.0) planner.set_extruder_advance_k(newK);
  7432. SERIAL_ECHO_START;
  7433. SERIAL_ECHOLNPAIR("Advance factor: ", planner.get_extruder_advance_k());
  7434. if (newD >= 0 || newW >= 0 || newH >= 0) {
  7435. const float ratio = (!newD || !newW || !newH) ? 0 : (newW * newH) / (sq(newD * 0.5) * M_PI);
  7436. planner.set_advance_ed_ratio(ratio);
  7437. SERIAL_ECHO_START;
  7438. SERIAL_ECHOPGM("E/D ratio: ");
  7439. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Automatic");
  7440. }
  7441. }
  7442. #endif // LIN_ADVANCE
  7443. #if ENABLED(HAVE_TMC2130)
  7444. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7445. SERIAL_CHAR(name);
  7446. SERIAL_ECHOPGM(" axis driver current: ");
  7447. SERIAL_ECHOLN(st.getCurrent());
  7448. }
  7449. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7450. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7451. tmc2130_get_current(st, name);
  7452. }
  7453. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7454. SERIAL_CHAR(name);
  7455. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7456. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7457. SERIAL_EOL;
  7458. }
  7459. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7460. st.clear_otpw();
  7461. SERIAL_CHAR(name);
  7462. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7463. }
  7464. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7465. SERIAL_CHAR(name);
  7466. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7467. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7468. }
  7469. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7470. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7471. tmc2130_get_pwmthrs(st, name, spmm);
  7472. }
  7473. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7474. SERIAL_CHAR(name);
  7475. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7476. SERIAL_ECHOLN(st.sgt());
  7477. }
  7478. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7479. st.sgt(sgt_val);
  7480. tmc2130_get_sgt(st, name);
  7481. }
  7482. /**
  7483. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7484. * Report driver currents when no axis specified
  7485. *
  7486. * S1: Enable automatic current control
  7487. * S0: Disable
  7488. */
  7489. inline void gcode_M906() {
  7490. uint16_t values[XYZE];
  7491. LOOP_XYZE(i)
  7492. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7493. #if ENABLED(X_IS_TMC2130)
  7494. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7495. else tmc2130_get_current(stepperX, 'X');
  7496. #endif
  7497. #if ENABLED(Y_IS_TMC2130)
  7498. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7499. else tmc2130_get_current(stepperY, 'Y');
  7500. #endif
  7501. #if ENABLED(Z_IS_TMC2130)
  7502. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7503. else tmc2130_get_current(stepperZ, 'Z');
  7504. #endif
  7505. #if ENABLED(E0_IS_TMC2130)
  7506. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7507. else tmc2130_get_current(stepperE0, 'E');
  7508. #endif
  7509. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7510. if (code_seen('S')) auto_current_control = code_value_bool();
  7511. #endif
  7512. }
  7513. /**
  7514. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7515. * The flag is held by the library and persist until manually cleared by M912
  7516. */
  7517. inline void gcode_M911() {
  7518. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7519. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7520. #if ENABLED(X_IS_TMC2130)
  7521. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7522. #endif
  7523. #if ENABLED(Y_IS_TMC2130)
  7524. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7525. #endif
  7526. #if ENABLED(Z_IS_TMC2130)
  7527. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7528. #endif
  7529. #if ENABLED(E0_IS_TMC2130)
  7530. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7531. #endif
  7532. }
  7533. /**
  7534. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7535. */
  7536. inline void gcode_M912() {
  7537. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7538. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7539. #if ENABLED(X_IS_TMC2130)
  7540. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7541. #endif
  7542. #if ENABLED(Y_IS_TMC2130)
  7543. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7544. #endif
  7545. #if ENABLED(Z_IS_TMC2130)
  7546. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7547. #endif
  7548. #if ENABLED(E0_IS_TMC2130)
  7549. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7550. #endif
  7551. }
  7552. /**
  7553. * M913: Set HYBRID_THRESHOLD speed.
  7554. */
  7555. #if ENABLED(HYBRID_THRESHOLD)
  7556. inline void gcode_M913() {
  7557. uint16_t values[XYZE];
  7558. LOOP_XYZE(i)
  7559. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7560. #if ENABLED(X_IS_TMC2130)
  7561. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7562. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7563. #endif
  7564. #if ENABLED(Y_IS_TMC2130)
  7565. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7566. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7567. #endif
  7568. #if ENABLED(Z_IS_TMC2130)
  7569. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7570. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7571. #endif
  7572. #if ENABLED(E0_IS_TMC2130)
  7573. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7574. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7575. #endif
  7576. }
  7577. #endif // HYBRID_THRESHOLD
  7578. /**
  7579. * M914: Set SENSORLESS_HOMING sensitivity.
  7580. */
  7581. #if ENABLED(SENSORLESS_HOMING)
  7582. inline void gcode_M914() {
  7583. #if ENABLED(X_IS_TMC2130)
  7584. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7585. else tmc2130_get_sgt(stepperX, 'X');
  7586. #endif
  7587. #if ENABLED(Y_IS_TMC2130)
  7588. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7589. else tmc2130_get_sgt(stepperY, 'Y');
  7590. #endif
  7591. }
  7592. #endif // SENSORLESS_HOMING
  7593. #endif // HAVE_TMC2130
  7594. /**
  7595. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7596. */
  7597. inline void gcode_M907() {
  7598. #if HAS_DIGIPOTSS
  7599. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7600. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7601. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7602. #elif HAS_MOTOR_CURRENT_PWM
  7603. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7604. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7605. #endif
  7606. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7607. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7608. #endif
  7609. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7610. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7611. #endif
  7612. #endif
  7613. #if ENABLED(DIGIPOT_I2C)
  7614. // this one uses actual amps in floating point
  7615. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7616. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7617. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7618. #endif
  7619. #if ENABLED(DAC_STEPPER_CURRENT)
  7620. if (code_seen('S')) {
  7621. const float dac_percent = code_value_float();
  7622. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7623. }
  7624. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7625. #endif
  7626. }
  7627. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7628. /**
  7629. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7630. */
  7631. inline void gcode_M908() {
  7632. #if HAS_DIGIPOTSS
  7633. stepper.digitalPotWrite(
  7634. code_seen('P') ? code_value_int() : 0,
  7635. code_seen('S') ? code_value_int() : 0
  7636. );
  7637. #endif
  7638. #ifdef DAC_STEPPER_CURRENT
  7639. dac_current_raw(
  7640. code_seen('P') ? code_value_byte() : -1,
  7641. code_seen('S') ? code_value_ushort() : 0
  7642. );
  7643. #endif
  7644. }
  7645. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7646. inline void gcode_M909() { dac_print_values(); }
  7647. inline void gcode_M910() { dac_commit_eeprom(); }
  7648. #endif
  7649. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7650. #if HAS_MICROSTEPS
  7651. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7652. inline void gcode_M350() {
  7653. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7654. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7655. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7656. stepper.microstep_readings();
  7657. }
  7658. /**
  7659. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7660. * S# determines MS1 or MS2, X# sets the pin high/low.
  7661. */
  7662. inline void gcode_M351() {
  7663. if (code_seen('S')) switch (code_value_byte()) {
  7664. case 1:
  7665. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7666. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7667. break;
  7668. case 2:
  7669. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7670. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7671. break;
  7672. }
  7673. stepper.microstep_readings();
  7674. }
  7675. #endif // HAS_MICROSTEPS
  7676. #if HAS_CASE_LIGHT
  7677. uint8_t case_light_brightness = 255;
  7678. void update_case_light() {
  7679. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7680. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7681. }
  7682. #endif // HAS_CASE_LIGHT
  7683. /**
  7684. * M355: Turn case lights on/off and set brightness
  7685. *
  7686. * S<bool> Turn case light on or off
  7687. * P<byte> Set case light brightness (PWM pin required)
  7688. */
  7689. inline void gcode_M355() {
  7690. #if HAS_CASE_LIGHT
  7691. if (code_seen('P')) case_light_brightness = code_value_byte();
  7692. if (code_seen('S')) case_light_on = code_value_bool();
  7693. update_case_light();
  7694. SERIAL_ECHO_START;
  7695. SERIAL_ECHOPGM("Case lights ");
  7696. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7697. #else
  7698. SERIAL_ERROR_START;
  7699. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7700. #endif // HAS_CASE_LIGHT
  7701. }
  7702. #if ENABLED(MIXING_EXTRUDER)
  7703. /**
  7704. * M163: Set a single mix factor for a mixing extruder
  7705. * This is called "weight" by some systems.
  7706. *
  7707. * S[index] The channel index to set
  7708. * P[float] The mix value
  7709. *
  7710. */
  7711. inline void gcode_M163() {
  7712. int mix_index = code_seen('S') ? code_value_int() : 0;
  7713. if (mix_index < MIXING_STEPPERS) {
  7714. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7715. NOLESS(mix_value, 0.0);
  7716. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7717. }
  7718. }
  7719. #if MIXING_VIRTUAL_TOOLS > 1
  7720. /**
  7721. * M164: Store the current mix factors as a virtual tool.
  7722. *
  7723. * S[index] The virtual tool to store
  7724. *
  7725. */
  7726. inline void gcode_M164() {
  7727. int tool_index = code_seen('S') ? code_value_int() : 0;
  7728. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7729. normalize_mix();
  7730. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7731. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7732. }
  7733. }
  7734. #endif
  7735. #if ENABLED(DIRECT_MIXING_IN_G1)
  7736. /**
  7737. * M165: Set multiple mix factors for a mixing extruder.
  7738. * Factors that are left out will be set to 0.
  7739. * All factors together must add up to 1.0.
  7740. *
  7741. * A[factor] Mix factor for extruder stepper 1
  7742. * B[factor] Mix factor for extruder stepper 2
  7743. * C[factor] Mix factor for extruder stepper 3
  7744. * D[factor] Mix factor for extruder stepper 4
  7745. * H[factor] Mix factor for extruder stepper 5
  7746. * I[factor] Mix factor for extruder stepper 6
  7747. *
  7748. */
  7749. inline void gcode_M165() { gcode_get_mix(); }
  7750. #endif
  7751. #endif // MIXING_EXTRUDER
  7752. /**
  7753. * M999: Restart after being stopped
  7754. *
  7755. * Default behaviour is to flush the serial buffer and request
  7756. * a resend to the host starting on the last N line received.
  7757. *
  7758. * Sending "M999 S1" will resume printing without flushing the
  7759. * existing command buffer.
  7760. *
  7761. */
  7762. inline void gcode_M999() {
  7763. Running = true;
  7764. lcd_reset_alert_level();
  7765. if (code_seen('S') && code_value_bool()) return;
  7766. // gcode_LastN = Stopped_gcode_LastN;
  7767. FlushSerialRequestResend();
  7768. }
  7769. #if ENABLED(SWITCHING_EXTRUDER)
  7770. inline void move_extruder_servo(uint8_t e) {
  7771. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7772. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7773. safe_delay(500);
  7774. }
  7775. #endif
  7776. inline void invalid_extruder_error(const uint8_t &e) {
  7777. SERIAL_ECHO_START;
  7778. SERIAL_CHAR('T');
  7779. SERIAL_ECHO_F(e, DEC);
  7780. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7781. }
  7782. /**
  7783. * Perform a tool-change, which may result in moving the
  7784. * previous tool out of the way and the new tool into place.
  7785. */
  7786. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7787. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7788. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7789. return invalid_extruder_error(tmp_extruder);
  7790. // T0-Tnnn: Switch virtual tool by changing the mix
  7791. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7792. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7793. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7794. #if HOTENDS > 1
  7795. if (tmp_extruder >= EXTRUDERS)
  7796. return invalid_extruder_error(tmp_extruder);
  7797. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7798. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7799. if (tmp_extruder != active_extruder) {
  7800. if (!no_move && axis_unhomed_error(true, true, true)) {
  7801. SERIAL_ECHOLNPGM("No move on toolchange");
  7802. no_move = true;
  7803. }
  7804. // Save current position to destination, for use later
  7805. set_destination_to_current();
  7806. #if ENABLED(DUAL_X_CARRIAGE)
  7807. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7808. if (DEBUGGING(LEVELING)) {
  7809. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7810. switch (dual_x_carriage_mode) {
  7811. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7812. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7813. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7814. }
  7815. }
  7816. #endif
  7817. const float xhome = x_home_pos(active_extruder);
  7818. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7819. && IsRunning()
  7820. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7821. ) {
  7822. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7823. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7824. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7825. #endif
  7826. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7827. if (DEBUGGING(LEVELING)) {
  7828. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7829. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7830. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7831. }
  7832. #endif
  7833. // Park old head: 1) raise 2) move to park position 3) lower
  7834. for (uint8_t i = 0; i < 3; i++)
  7835. planner.buffer_line(
  7836. i == 0 ? current_position[X_AXIS] : xhome,
  7837. current_position[Y_AXIS],
  7838. i == 2 ? current_position[Z_AXIS] : raised_z,
  7839. current_position[E_AXIS],
  7840. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7841. active_extruder
  7842. );
  7843. stepper.synchronize();
  7844. }
  7845. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7846. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7847. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7848. // Activate the new extruder
  7849. active_extruder = tmp_extruder;
  7850. // This function resets the max/min values - the current position may be overwritten below.
  7851. set_axis_is_at_home(X_AXIS);
  7852. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7853. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7854. #endif
  7855. // Only when auto-parking are carriages safe to move
  7856. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7857. switch (dual_x_carriage_mode) {
  7858. case DXC_FULL_CONTROL_MODE:
  7859. // New current position is the position of the activated extruder
  7860. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7861. // Save the inactive extruder's position (from the old current_position)
  7862. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7863. break;
  7864. case DXC_AUTO_PARK_MODE:
  7865. // record raised toolhead position for use by unpark
  7866. COPY(raised_parked_position, current_position);
  7867. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7868. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7869. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7870. #endif
  7871. active_extruder_parked = true;
  7872. delayed_move_time = 0;
  7873. break;
  7874. case DXC_DUPLICATION_MODE:
  7875. // If the new extruder is the left one, set it "parked"
  7876. // This triggers the second extruder to move into the duplication position
  7877. active_extruder_parked = (active_extruder == 0);
  7878. if (active_extruder_parked)
  7879. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7880. else
  7881. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7882. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7883. extruder_duplication_enabled = false;
  7884. break;
  7885. }
  7886. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7887. if (DEBUGGING(LEVELING)) {
  7888. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  7889. DEBUG_POS("New extruder (parked)", current_position);
  7890. }
  7891. #endif
  7892. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  7893. #else // !DUAL_X_CARRIAGE
  7894. #if ENABLED(SWITCHING_EXTRUDER)
  7895. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  7896. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  7897. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  7898. // Always raise by some amount (destination copied from current_position earlier)
  7899. current_position[Z_AXIS] += z_raise;
  7900. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7901. stepper.synchronize();
  7902. move_extruder_servo(active_extruder);
  7903. #endif
  7904. /**
  7905. * Set current_position to the position of the new nozzle.
  7906. * Offsets are based on linear distance, so we need to get
  7907. * the resulting position in coordinate space.
  7908. *
  7909. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  7910. * - With mesh leveling, update Z for the new position
  7911. * - Otherwise, just use the raw linear distance
  7912. *
  7913. * Software endstops are altered here too. Consider a case where:
  7914. * E0 at X=0 ... E1 at X=10
  7915. * When we switch to E1 now X=10, but E1 can't move left.
  7916. * To express this we apply the change in XY to the software endstops.
  7917. * E1 can move farther right than E0, so the right limit is extended.
  7918. *
  7919. * Note that we don't adjust the Z software endstops. Why not?
  7920. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  7921. * because the bed is 1mm lower at the new position. As long as
  7922. * the first nozzle is out of the way, the carriage should be
  7923. * allowed to move 1mm lower. This technically "breaks" the
  7924. * Z software endstop. But this is technically correct (and
  7925. * there is no viable alternative).
  7926. */
  7927. #if ABL_PLANAR
  7928. // Offset extruder, make sure to apply the bed level rotation matrix
  7929. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  7930. hotend_offset[Y_AXIS][tmp_extruder],
  7931. 0),
  7932. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  7933. hotend_offset[Y_AXIS][active_extruder],
  7934. 0),
  7935. offset_vec = tmp_offset_vec - act_offset_vec;
  7936. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7937. if (DEBUGGING(LEVELING)) {
  7938. tmp_offset_vec.debug("tmp_offset_vec");
  7939. act_offset_vec.debug("act_offset_vec");
  7940. offset_vec.debug("offset_vec (BEFORE)");
  7941. }
  7942. #endif
  7943. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  7944. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7945. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  7946. #endif
  7947. // Adjustments to the current position
  7948. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  7949. current_position[Z_AXIS] += offset_vec.z;
  7950. #else // !ABL_PLANAR
  7951. const float xydiff[2] = {
  7952. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  7953. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  7954. };
  7955. #if ENABLED(MESH_BED_LEVELING)
  7956. if (mbl.active()) {
  7957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7958. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  7959. #endif
  7960. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  7961. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  7962. z1 = current_position[Z_AXIS], z2 = z1;
  7963. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  7964. planner.apply_leveling(x2, y2, z2);
  7965. current_position[Z_AXIS] += z2 - z1;
  7966. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7967. if (DEBUGGING(LEVELING))
  7968. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  7969. #endif
  7970. }
  7971. #endif // MESH_BED_LEVELING
  7972. #endif // !HAS_ABL
  7973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7974. if (DEBUGGING(LEVELING)) {
  7975. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  7976. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  7977. SERIAL_ECHOLNPGM(" }");
  7978. }
  7979. #endif
  7980. // The newly-selected extruder XY is actually at...
  7981. current_position[X_AXIS] += xydiff[X_AXIS];
  7982. current_position[Y_AXIS] += xydiff[Y_AXIS];
  7983. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  7984. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  7985. #if HAS_POSITION_SHIFT
  7986. position_shift[i] += xydiff[i];
  7987. #endif
  7988. update_software_endstops((AxisEnum)i);
  7989. }
  7990. #endif
  7991. // Set the new active extruder
  7992. active_extruder = tmp_extruder;
  7993. #endif // !DUAL_X_CARRIAGE
  7994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7995. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  7996. #endif
  7997. // Tell the planner the new "current position"
  7998. SYNC_PLAN_POSITION_KINEMATIC();
  7999. // Move to the "old position" (move the extruder into place)
  8000. if (!no_move && IsRunning()) {
  8001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8002. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8003. #endif
  8004. prepare_move_to_destination();
  8005. }
  8006. #if ENABLED(SWITCHING_EXTRUDER)
  8007. // Move back down, if needed. (Including when the new tool is higher.)
  8008. if (z_raise != z_diff) {
  8009. destination[Z_AXIS] += z_diff;
  8010. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8011. prepare_move_to_destination();
  8012. }
  8013. #endif
  8014. } // (tmp_extruder != active_extruder)
  8015. stepper.synchronize();
  8016. #if ENABLED(EXT_SOLENOID)
  8017. disable_all_solenoids();
  8018. enable_solenoid_on_active_extruder();
  8019. #endif // EXT_SOLENOID
  8020. feedrate_mm_s = old_feedrate_mm_s;
  8021. #else // HOTENDS <= 1
  8022. // Set the new active extruder
  8023. active_extruder = tmp_extruder;
  8024. UNUSED(fr_mm_s);
  8025. UNUSED(no_move);
  8026. #endif // HOTENDS <= 1
  8027. SERIAL_ECHO_START;
  8028. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8029. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8030. }
  8031. /**
  8032. * T0-T3: Switch tool, usually switching extruders
  8033. *
  8034. * F[units/min] Set the movement feedrate
  8035. * S1 Don't move the tool in XY after change
  8036. */
  8037. inline void gcode_T(uint8_t tmp_extruder) {
  8038. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8039. if (DEBUGGING(LEVELING)) {
  8040. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8041. SERIAL_CHAR(')');
  8042. SERIAL_EOL;
  8043. DEBUG_POS("BEFORE", current_position);
  8044. }
  8045. #endif
  8046. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8047. tool_change(tmp_extruder);
  8048. #elif HOTENDS > 1
  8049. tool_change(
  8050. tmp_extruder,
  8051. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  8052. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8053. );
  8054. #endif
  8055. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8056. if (DEBUGGING(LEVELING)) {
  8057. DEBUG_POS("AFTER", current_position);
  8058. SERIAL_ECHOLNPGM("<<< gcode_T");
  8059. }
  8060. #endif
  8061. }
  8062. /**
  8063. * Process a single command and dispatch it to its handler
  8064. * This is called from the main loop()
  8065. */
  8066. void process_next_command() {
  8067. current_command = command_queue[cmd_queue_index_r];
  8068. if (DEBUGGING(ECHO)) {
  8069. SERIAL_ECHO_START;
  8070. SERIAL_ECHOLN(current_command);
  8071. }
  8072. // Sanitize the current command:
  8073. // - Skip leading spaces
  8074. // - Bypass N[-0-9][0-9]*[ ]*
  8075. // - Overwrite * with nul to mark the end
  8076. while (*current_command == ' ') ++current_command;
  8077. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8078. current_command += 2; // skip N[-0-9]
  8079. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8080. while (*current_command == ' ') ++current_command; // skip [ ]*
  8081. }
  8082. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8083. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8084. char *cmd_ptr = current_command;
  8085. // Get the command code, which must be G, M, or T
  8086. char command_code = *cmd_ptr++;
  8087. // Skip spaces to get the numeric part
  8088. while (*cmd_ptr == ' ') cmd_ptr++;
  8089. // Allow for decimal point in command
  8090. #if ENABLED(G38_PROBE_TARGET)
  8091. uint8_t subcode = 0;
  8092. #endif
  8093. uint16_t codenum = 0; // define ahead of goto
  8094. // Bail early if there's no code
  8095. bool code_is_good = NUMERIC(*cmd_ptr);
  8096. if (!code_is_good) goto ExitUnknownCommand;
  8097. // Get and skip the code number
  8098. do {
  8099. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8100. cmd_ptr++;
  8101. } while (NUMERIC(*cmd_ptr));
  8102. // Allow for decimal point in command
  8103. #if ENABLED(G38_PROBE_TARGET)
  8104. if (*cmd_ptr == '.') {
  8105. cmd_ptr++;
  8106. while (NUMERIC(*cmd_ptr))
  8107. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8108. }
  8109. #endif
  8110. // Skip all spaces to get to the first argument, or nul
  8111. while (*cmd_ptr == ' ') cmd_ptr++;
  8112. // The command's arguments (if any) start here, for sure!
  8113. current_command_args = cmd_ptr;
  8114. KEEPALIVE_STATE(IN_HANDLER);
  8115. // Handle a known G, M, or T
  8116. switch (command_code) {
  8117. case 'G': switch (codenum) {
  8118. // G0, G1
  8119. case 0:
  8120. case 1:
  8121. #if IS_SCARA
  8122. gcode_G0_G1(codenum == 0);
  8123. #else
  8124. gcode_G0_G1();
  8125. #endif
  8126. break;
  8127. // G2, G3
  8128. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8129. case 2: // G2 - CW ARC
  8130. case 3: // G3 - CCW ARC
  8131. gcode_G2_G3(codenum == 2);
  8132. break;
  8133. #endif
  8134. // G4 Dwell
  8135. case 4:
  8136. gcode_G4();
  8137. break;
  8138. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8139. // G5
  8140. case 5: // G5 - Cubic B_spline
  8141. gcode_G5();
  8142. break;
  8143. #endif // BEZIER_CURVE_SUPPORT
  8144. #if ENABLED(FWRETRACT)
  8145. case 10: // G10: retract
  8146. case 11: // G11: retract_recover
  8147. gcode_G10_G11(codenum == 10);
  8148. break;
  8149. #endif // FWRETRACT
  8150. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8151. case 12:
  8152. gcode_G12(); // G12: Nozzle Clean
  8153. break;
  8154. #endif // NOZZLE_CLEAN_FEATURE
  8155. #if ENABLED(INCH_MODE_SUPPORT)
  8156. case 20: //G20: Inch Mode
  8157. gcode_G20();
  8158. break;
  8159. case 21: //G21: MM Mode
  8160. gcode_G21();
  8161. break;
  8162. #endif // INCH_MODE_SUPPORT
  8163. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8164. case 26: // G26: Mesh Validation Pattern generation
  8165. gcode_G26();
  8166. break;
  8167. #endif // AUTO_BED_LEVELING_UBL
  8168. #if ENABLED(NOZZLE_PARK_FEATURE)
  8169. case 27: // G27: Nozzle Park
  8170. gcode_G27();
  8171. break;
  8172. #endif // NOZZLE_PARK_FEATURE
  8173. case 28: // G28: Home all axes, one at a time
  8174. gcode_G28();
  8175. break;
  8176. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  8177. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8178. // or provides access to the UBL System if enabled.
  8179. gcode_G29();
  8180. break;
  8181. #endif // PLANNER_LEVELING
  8182. #if HAS_BED_PROBE
  8183. case 30: // G30 Single Z probe
  8184. gcode_G30();
  8185. break;
  8186. #if ENABLED(Z_PROBE_SLED)
  8187. case 31: // G31: dock the sled
  8188. gcode_G31();
  8189. break;
  8190. case 32: // G32: undock the sled
  8191. gcode_G32();
  8192. break;
  8193. #endif // Z_PROBE_SLED
  8194. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8195. case 33: // G33: Delta Auto Calibrate
  8196. gcode_G33();
  8197. break;
  8198. #endif // DELTA_AUTO_CALIBRATION
  8199. #endif // HAS_BED_PROBE
  8200. #if ENABLED(G38_PROBE_TARGET)
  8201. case 38: // G38.2 & G38.3
  8202. if (subcode == 2 || subcode == 3)
  8203. gcode_G38(subcode == 2);
  8204. break;
  8205. #endif
  8206. case 90: // G90
  8207. relative_mode = false;
  8208. break;
  8209. case 91: // G91
  8210. relative_mode = true;
  8211. break;
  8212. case 92: // G92
  8213. gcode_G92();
  8214. break;
  8215. }
  8216. break;
  8217. case 'M': switch (codenum) {
  8218. #if HAS_RESUME_CONTINUE
  8219. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8220. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8221. gcode_M0_M1();
  8222. break;
  8223. #endif // ULTIPANEL
  8224. case 17: // M17: Enable all stepper motors
  8225. gcode_M17();
  8226. break;
  8227. #if ENABLED(SDSUPPORT)
  8228. case 20: // M20: list SD card
  8229. gcode_M20(); break;
  8230. case 21: // M21: init SD card
  8231. gcode_M21(); break;
  8232. case 22: // M22: release SD card
  8233. gcode_M22(); break;
  8234. case 23: // M23: Select file
  8235. gcode_M23(); break;
  8236. case 24: // M24: Start SD print
  8237. gcode_M24(); break;
  8238. case 25: // M25: Pause SD print
  8239. gcode_M25(); break;
  8240. case 26: // M26: Set SD index
  8241. gcode_M26(); break;
  8242. case 27: // M27: Get SD status
  8243. gcode_M27(); break;
  8244. case 28: // M28: Start SD write
  8245. gcode_M28(); break;
  8246. case 29: // M29: Stop SD write
  8247. gcode_M29(); break;
  8248. case 30: // M30 <filename> Delete File
  8249. gcode_M30(); break;
  8250. case 32: // M32: Select file and start SD print
  8251. gcode_M32(); break;
  8252. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8253. case 33: // M33: Get the long full path to a file or folder
  8254. gcode_M33(); break;
  8255. #endif
  8256. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8257. case 34: //M34 - Set SD card sorting options
  8258. gcode_M34(); break;
  8259. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8260. case 928: // M928: Start SD write
  8261. gcode_M928(); break;
  8262. #endif //SDSUPPORT
  8263. case 31: // M31: Report time since the start of SD print or last M109
  8264. gcode_M31(); break;
  8265. case 42: // M42: Change pin state
  8266. gcode_M42(); break;
  8267. #if ENABLED(PINS_DEBUGGING)
  8268. case 43: // M43: Read pin state
  8269. gcode_M43(); break;
  8270. #endif
  8271. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8272. case 48: // M48: Z probe repeatability test
  8273. gcode_M48();
  8274. break;
  8275. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8276. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8277. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8278. gcode_M49();
  8279. break;
  8280. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8281. case 75: // M75: Start print timer
  8282. gcode_M75(); break;
  8283. case 76: // M76: Pause print timer
  8284. gcode_M76(); break;
  8285. case 77: // M77: Stop print timer
  8286. gcode_M77(); break;
  8287. #if ENABLED(PRINTCOUNTER)
  8288. case 78: // M78: Show print statistics
  8289. gcode_M78(); break;
  8290. #endif
  8291. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8292. case 100: // M100: Free Memory Report
  8293. gcode_M100();
  8294. break;
  8295. #endif
  8296. case 104: // M104: Set hot end temperature
  8297. gcode_M104();
  8298. break;
  8299. case 110: // M110: Set Current Line Number
  8300. gcode_M110();
  8301. break;
  8302. case 111: // M111: Set debug level
  8303. gcode_M111();
  8304. break;
  8305. #if DISABLED(EMERGENCY_PARSER)
  8306. case 108: // M108: Cancel Waiting
  8307. gcode_M108();
  8308. break;
  8309. case 112: // M112: Emergency Stop
  8310. gcode_M112();
  8311. break;
  8312. case 410: // M410 quickstop - Abort all the planned moves.
  8313. gcode_M410();
  8314. break;
  8315. #endif
  8316. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8317. case 113: // M113: Set Host Keepalive interval
  8318. gcode_M113();
  8319. break;
  8320. #endif
  8321. case 140: // M140: Set bed temperature
  8322. gcode_M140();
  8323. break;
  8324. case 105: // M105: Report current temperature
  8325. gcode_M105();
  8326. KEEPALIVE_STATE(NOT_BUSY);
  8327. return; // "ok" already printed
  8328. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8329. case 155: // M155: Set temperature auto-report interval
  8330. gcode_M155();
  8331. break;
  8332. #endif
  8333. case 109: // M109: Wait for hotend temperature to reach target
  8334. gcode_M109();
  8335. break;
  8336. #if HAS_TEMP_BED
  8337. case 190: // M190: Wait for bed temperature to reach target
  8338. gcode_M190();
  8339. break;
  8340. #endif // HAS_TEMP_BED
  8341. #if FAN_COUNT > 0
  8342. case 106: // M106: Fan On
  8343. gcode_M106();
  8344. break;
  8345. case 107: // M107: Fan Off
  8346. gcode_M107();
  8347. break;
  8348. #endif // FAN_COUNT > 0
  8349. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8350. case 125: // M125: Store current position and move to filament change position
  8351. gcode_M125(); break;
  8352. #endif
  8353. #if ENABLED(BARICUDA)
  8354. // PWM for HEATER_1_PIN
  8355. #if HAS_HEATER_1
  8356. case 126: // M126: valve open
  8357. gcode_M126();
  8358. break;
  8359. case 127: // M127: valve closed
  8360. gcode_M127();
  8361. break;
  8362. #endif // HAS_HEATER_1
  8363. // PWM for HEATER_2_PIN
  8364. #if HAS_HEATER_2
  8365. case 128: // M128: valve open
  8366. gcode_M128();
  8367. break;
  8368. case 129: // M129: valve closed
  8369. gcode_M129();
  8370. break;
  8371. #endif // HAS_HEATER_2
  8372. #endif // BARICUDA
  8373. #if HAS_POWER_SWITCH
  8374. case 80: // M80: Turn on Power Supply
  8375. gcode_M80();
  8376. break;
  8377. #endif // HAS_POWER_SWITCH
  8378. case 81: // M81: Turn off Power, including Power Supply, if possible
  8379. gcode_M81();
  8380. break;
  8381. case 82: // M83: Set E axis normal mode (same as other axes)
  8382. gcode_M82();
  8383. break;
  8384. case 83: // M83: Set E axis relative mode
  8385. gcode_M83();
  8386. break;
  8387. case 18: // M18 => M84
  8388. case 84: // M84: Disable all steppers or set timeout
  8389. gcode_M18_M84();
  8390. break;
  8391. case 85: // M85: Set inactivity stepper shutdown timeout
  8392. gcode_M85();
  8393. break;
  8394. case 92: // M92: Set the steps-per-unit for one or more axes
  8395. gcode_M92();
  8396. break;
  8397. case 114: // M114: Report current position
  8398. gcode_M114();
  8399. break;
  8400. case 115: // M115: Report capabilities
  8401. gcode_M115();
  8402. break;
  8403. case 117: // M117: Set LCD message text, if possible
  8404. gcode_M117();
  8405. break;
  8406. case 119: // M119: Report endstop states
  8407. gcode_M119();
  8408. break;
  8409. case 120: // M120: Enable endstops
  8410. gcode_M120();
  8411. break;
  8412. case 121: // M121: Disable endstops
  8413. gcode_M121();
  8414. break;
  8415. #if ENABLED(ULTIPANEL)
  8416. case 145: // M145: Set material heatup parameters
  8417. gcode_M145();
  8418. break;
  8419. #endif
  8420. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8421. case 149: // M149: Set temperature units
  8422. gcode_M149();
  8423. break;
  8424. #endif
  8425. #if HAS_COLOR_LEDS
  8426. case 150: // M150: Set Status LED Color
  8427. gcode_M150();
  8428. break;
  8429. #endif // BLINKM
  8430. #if ENABLED(MIXING_EXTRUDER)
  8431. case 163: // M163: Set a component weight for mixing extruder
  8432. gcode_M163();
  8433. break;
  8434. #if MIXING_VIRTUAL_TOOLS > 1
  8435. case 164: // M164: Save current mix as a virtual extruder
  8436. gcode_M164();
  8437. break;
  8438. #endif
  8439. #if ENABLED(DIRECT_MIXING_IN_G1)
  8440. case 165: // M165: Set multiple mix weights
  8441. gcode_M165();
  8442. break;
  8443. #endif
  8444. #endif
  8445. case 200: // M200: Set filament diameter, E to cubic units
  8446. gcode_M200();
  8447. break;
  8448. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8449. gcode_M201();
  8450. break;
  8451. #if 0 // Not used for Sprinter/grbl gen6
  8452. case 202: // M202
  8453. gcode_M202();
  8454. break;
  8455. #endif
  8456. case 203: // M203: Set max feedrate (units/sec)
  8457. gcode_M203();
  8458. break;
  8459. case 204: // M204: Set acceleration
  8460. gcode_M204();
  8461. break;
  8462. case 205: //M205: Set advanced settings
  8463. gcode_M205();
  8464. break;
  8465. #if HAS_M206_COMMAND
  8466. case 206: // M206: Set home offsets
  8467. gcode_M206();
  8468. break;
  8469. #endif
  8470. #if ENABLED(DELTA)
  8471. case 665: // M665: Set delta configurations
  8472. gcode_M665();
  8473. break;
  8474. #endif
  8475. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8476. case 666: // M666: Set delta or dual endstop adjustment
  8477. gcode_M666();
  8478. break;
  8479. #endif
  8480. #if ENABLED(FWRETRACT)
  8481. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8482. gcode_M207();
  8483. break;
  8484. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8485. gcode_M208();
  8486. break;
  8487. case 209: // M209: Turn Automatic Retract Detection on/off
  8488. gcode_M209();
  8489. break;
  8490. #endif // FWRETRACT
  8491. case 211: // M211: Enable, Disable, and/or Report software endstops
  8492. gcode_M211();
  8493. break;
  8494. #if HOTENDS > 1
  8495. case 218: // M218: Set a tool offset
  8496. gcode_M218();
  8497. break;
  8498. #endif
  8499. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8500. gcode_M220();
  8501. break;
  8502. case 221: // M221: Set Flow Percentage
  8503. gcode_M221();
  8504. break;
  8505. case 226: // M226: Wait until a pin reaches a state
  8506. gcode_M226();
  8507. break;
  8508. #if HAS_SERVOS
  8509. case 280: // M280: Set servo position absolute
  8510. gcode_M280();
  8511. break;
  8512. #endif // HAS_SERVOS
  8513. #if HAS_BUZZER
  8514. case 300: // M300: Play beep tone
  8515. gcode_M300();
  8516. break;
  8517. #endif // HAS_BUZZER
  8518. #if ENABLED(PIDTEMP)
  8519. case 301: // M301: Set hotend PID parameters
  8520. gcode_M301();
  8521. break;
  8522. #endif // PIDTEMP
  8523. #if ENABLED(PIDTEMPBED)
  8524. case 304: // M304: Set bed PID parameters
  8525. gcode_M304();
  8526. break;
  8527. #endif // PIDTEMPBED
  8528. #if defined(CHDK) || HAS_PHOTOGRAPH
  8529. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8530. gcode_M240();
  8531. break;
  8532. #endif // CHDK || PHOTOGRAPH_PIN
  8533. #if HAS_LCD_CONTRAST
  8534. case 250: // M250: Set LCD contrast
  8535. gcode_M250();
  8536. break;
  8537. #endif // HAS_LCD_CONTRAST
  8538. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8539. case 260: // M260: Send data to an i2c slave
  8540. gcode_M260();
  8541. break;
  8542. case 261: // M261: Request data from an i2c slave
  8543. gcode_M261();
  8544. break;
  8545. #endif // EXPERIMENTAL_I2CBUS
  8546. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8547. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8548. gcode_M302();
  8549. break;
  8550. #endif // PREVENT_COLD_EXTRUSION
  8551. case 303: // M303: PID autotune
  8552. gcode_M303();
  8553. break;
  8554. #if ENABLED(MORGAN_SCARA)
  8555. case 360: // M360: SCARA Theta pos1
  8556. if (gcode_M360()) return;
  8557. break;
  8558. case 361: // M361: SCARA Theta pos2
  8559. if (gcode_M361()) return;
  8560. break;
  8561. case 362: // M362: SCARA Psi pos1
  8562. if (gcode_M362()) return;
  8563. break;
  8564. case 363: // M363: SCARA Psi pos2
  8565. if (gcode_M363()) return;
  8566. break;
  8567. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8568. if (gcode_M364()) return;
  8569. break;
  8570. #endif // SCARA
  8571. case 400: // M400: Finish all moves
  8572. gcode_M400();
  8573. break;
  8574. #if HAS_BED_PROBE
  8575. case 401: // M401: Deploy probe
  8576. gcode_M401();
  8577. break;
  8578. case 402: // M402: Stow probe
  8579. gcode_M402();
  8580. break;
  8581. #endif // HAS_BED_PROBE
  8582. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8583. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8584. gcode_M404();
  8585. break;
  8586. case 405: // M405: Turn on filament sensor for control
  8587. gcode_M405();
  8588. break;
  8589. case 406: // M406: Turn off filament sensor for control
  8590. gcode_M406();
  8591. break;
  8592. case 407: // M407: Display measured filament diameter
  8593. gcode_M407();
  8594. break;
  8595. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  8596. #if PLANNER_LEVELING
  8597. case 420: // M420: Enable/Disable Bed Leveling
  8598. gcode_M420();
  8599. break;
  8600. #endif
  8601. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8602. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8603. gcode_M421();
  8604. break;
  8605. #endif
  8606. #if HAS_M206_COMMAND
  8607. case 428: // M428: Apply current_position to home_offset
  8608. gcode_M428();
  8609. break;
  8610. #endif
  8611. case 500: // M500: Store settings in EEPROM
  8612. gcode_M500();
  8613. break;
  8614. case 501: // M501: Read settings from EEPROM
  8615. gcode_M501();
  8616. break;
  8617. case 502: // M502: Revert to default settings
  8618. gcode_M502();
  8619. break;
  8620. case 503: // M503: print settings currently in memory
  8621. gcode_M503();
  8622. break;
  8623. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8624. case 540: // M540: Set abort on endstop hit for SD printing
  8625. gcode_M540();
  8626. break;
  8627. #endif
  8628. #if HAS_BED_PROBE
  8629. case 851: // M851: Set Z Probe Z Offset
  8630. gcode_M851();
  8631. break;
  8632. #endif // HAS_BED_PROBE
  8633. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8634. case 600: // M600: Pause for filament change
  8635. gcode_M600();
  8636. break;
  8637. #endif // FILAMENT_CHANGE_FEATURE
  8638. #if ENABLED(DUAL_X_CARRIAGE)
  8639. case 605: // M605: Set Dual X Carriage movement mode
  8640. gcode_M605();
  8641. break;
  8642. #endif // DUAL_X_CARRIAGE
  8643. #if ENABLED(LIN_ADVANCE)
  8644. case 905: // M905: Set advance K factor.
  8645. gcode_M905();
  8646. break;
  8647. #endif
  8648. #if ENABLED(HAVE_TMC2130)
  8649. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8650. gcode_M906();
  8651. break;
  8652. #endif
  8653. case 907: // M907: Set digital trimpot motor current using axis codes.
  8654. gcode_M907();
  8655. break;
  8656. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8657. case 908: // M908: Control digital trimpot directly.
  8658. gcode_M908();
  8659. break;
  8660. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8661. case 909: // M909: Print digipot/DAC current value
  8662. gcode_M909();
  8663. break;
  8664. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8665. gcode_M910();
  8666. break;
  8667. #endif
  8668. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8669. #if ENABLED(HAVE_TMC2130)
  8670. case 911: // M911: Report TMC2130 prewarn triggered flags
  8671. gcode_M911();
  8672. break;
  8673. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8674. gcode_M912();
  8675. break;
  8676. #if ENABLED(HYBRID_THRESHOLD)
  8677. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8678. gcode_M913();
  8679. break;
  8680. #endif
  8681. #if ENABLED(SENSORLESS_HOMING)
  8682. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8683. gcode_M914();
  8684. break;
  8685. #endif
  8686. #endif
  8687. #if HAS_MICROSTEPS
  8688. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8689. gcode_M350();
  8690. break;
  8691. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8692. gcode_M351();
  8693. break;
  8694. #endif // HAS_MICROSTEPS
  8695. case 355: // M355 Turn case lights on/off
  8696. gcode_M355();
  8697. break;
  8698. case 999: // M999: Restart after being Stopped
  8699. gcode_M999();
  8700. break;
  8701. }
  8702. break;
  8703. case 'T':
  8704. gcode_T(codenum);
  8705. break;
  8706. default: code_is_good = false;
  8707. }
  8708. KEEPALIVE_STATE(NOT_BUSY);
  8709. ExitUnknownCommand:
  8710. // Still unknown command? Throw an error
  8711. if (!code_is_good) unknown_command_error();
  8712. ok_to_send();
  8713. }
  8714. /**
  8715. * Send a "Resend: nnn" message to the host to
  8716. * indicate that a command needs to be re-sent.
  8717. */
  8718. void FlushSerialRequestResend() {
  8719. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8720. MYSERIAL.flush();
  8721. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8722. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8723. ok_to_send();
  8724. }
  8725. /**
  8726. * Send an "ok" message to the host, indicating
  8727. * that a command was successfully processed.
  8728. *
  8729. * If ADVANCED_OK is enabled also include:
  8730. * N<int> Line number of the command, if any
  8731. * P<int> Planner space remaining
  8732. * B<int> Block queue space remaining
  8733. */
  8734. void ok_to_send() {
  8735. refresh_cmd_timeout();
  8736. if (!send_ok[cmd_queue_index_r]) return;
  8737. SERIAL_PROTOCOLPGM(MSG_OK);
  8738. #if ENABLED(ADVANCED_OK)
  8739. char* p = command_queue[cmd_queue_index_r];
  8740. if (*p == 'N') {
  8741. SERIAL_PROTOCOL(' ');
  8742. SERIAL_ECHO(*p++);
  8743. while (NUMERIC_SIGNED(*p))
  8744. SERIAL_ECHO(*p++);
  8745. }
  8746. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8747. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8748. #endif
  8749. SERIAL_EOL;
  8750. }
  8751. #if HAS_SOFTWARE_ENDSTOPS
  8752. /**
  8753. * Constrain the given coordinates to the software endstops.
  8754. */
  8755. void clamp_to_software_endstops(float target[XYZ]) {
  8756. if (!soft_endstops_enabled) return;
  8757. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8758. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8759. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8760. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8761. #endif
  8762. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8763. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8764. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8765. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8766. #endif
  8767. }
  8768. #endif
  8769. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8770. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8771. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8772. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8773. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8774. #define ABL_BG_GRID(X,Y) bed_level_grid_virt[X][Y]
  8775. #else
  8776. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8777. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8778. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8779. #define ABL_BG_GRID(X,Y) bed_level_grid[X][Y]
  8780. #endif
  8781. // Get the Z adjustment for non-linear bed leveling
  8782. float bilinear_z_offset(float cartesian[XYZ]) {
  8783. // XY relative to the probed area
  8784. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  8785. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  8786. // Convert to grid box units
  8787. float ratio_x = x / ABL_BG_SPACING(X_AXIS),
  8788. ratio_y = y / ABL_BG_SPACING(Y_AXIS);
  8789. // Whole units for the grid line indices. Constrained within bounds.
  8790. const int gridx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1),
  8791. gridy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1),
  8792. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1),
  8793. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8794. // Subtract whole to get the ratio within the grid box
  8795. ratio_x -= gridx; ratio_y -= gridy;
  8796. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  8797. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  8798. // Z at the box corners
  8799. const float z1 = ABL_BG_GRID(gridx, gridy), // left-front
  8800. z2 = ABL_BG_GRID(gridx, nexty), // left-back
  8801. z3 = ABL_BG_GRID(nextx, gridy), // right-front
  8802. z4 = ABL_BG_GRID(nextx, nexty), // right-back
  8803. // Bilinear interpolate
  8804. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  8805. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  8806. offset = L + ratio_x * (R - L);
  8807. /*
  8808. static float last_offset = 0;
  8809. if (fabs(last_offset - offset) > 0.2) {
  8810. SERIAL_ECHOPGM("Sudden Shift at ");
  8811. SERIAL_ECHOPAIR("x=", x);
  8812. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8813. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8814. SERIAL_ECHOPAIR(" y=", y);
  8815. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8816. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8817. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8818. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8819. SERIAL_ECHOPAIR(" z1=", z1);
  8820. SERIAL_ECHOPAIR(" z2=", z2);
  8821. SERIAL_ECHOPAIR(" z3=", z3);
  8822. SERIAL_ECHOLNPAIR(" z4=", z4);
  8823. SERIAL_ECHOPAIR(" L=", L);
  8824. SERIAL_ECHOPAIR(" R=", R);
  8825. SERIAL_ECHOLNPAIR(" offset=", offset);
  8826. }
  8827. last_offset = offset;
  8828. */
  8829. return offset;
  8830. }
  8831. #endif // AUTO_BED_LEVELING_BILINEAR
  8832. #if ENABLED(DELTA)
  8833. /**
  8834. * Recalculate factors used for delta kinematics whenever
  8835. * settings have been changed (e.g., by M665).
  8836. */
  8837. void recalc_delta_settings(float radius, float diagonal_rod) {
  8838. delta_tower[A_AXIS][X_AXIS] = -sin(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  8839. delta_tower[A_AXIS][Y_AXIS] = -cos(RADIANS(60 - delta_tower_angle_trim[A_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  8840. delta_tower[B_AXIS][X_AXIS] = sin(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  8841. delta_tower[B_AXIS][Y_AXIS] = -cos(RADIANS(60 + delta_tower_angle_trim[B_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  8842. delta_tower[C_AXIS][X_AXIS] = -sin(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3); // back middle tower
  8843. delta_tower[C_AXIS][Y_AXIS] = cos(RADIANS( delta_tower_angle_trim[C_AXIS])) * (radius + DELTA_RADIUS_TRIM_TOWER_3);
  8844. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[A_AXIS]);
  8845. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[B_AXIS]);
  8846. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + delta_diagonal_rod_trim[C_AXIS]);
  8847. }
  8848. #if ENABLED(DELTA_FAST_SQRT)
  8849. /**
  8850. * Fast inverse sqrt from Quake III Arena
  8851. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8852. */
  8853. float Q_rsqrt(float number) {
  8854. long i;
  8855. float x2, y;
  8856. const float threehalfs = 1.5f;
  8857. x2 = number * 0.5f;
  8858. y = number;
  8859. i = * ( long * ) &y; // evil floating point bit level hacking
  8860. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  8861. y = * ( float * ) &i;
  8862. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  8863. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  8864. return y;
  8865. }
  8866. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  8867. #else
  8868. #define _SQRT(n) sqrt(n)
  8869. #endif
  8870. /**
  8871. * Delta Inverse Kinematics
  8872. *
  8873. * Calculate the tower positions for a given logical
  8874. * position, storing the result in the delta[] array.
  8875. *
  8876. * This is an expensive calculation, requiring 3 square
  8877. * roots per segmented linear move, and strains the limits
  8878. * of a Mega2560 with a Graphical Display.
  8879. *
  8880. * Suggested optimizations include:
  8881. *
  8882. * - Disable the home_offset (M206) and/or position_shift (G92)
  8883. * features to remove up to 12 float additions.
  8884. *
  8885. * - Use a fast-inverse-sqrt function and add the reciprocal.
  8886. * (see above)
  8887. */
  8888. // Macro to obtain the Z position of an individual tower
  8889. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  8890. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  8891. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  8892. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  8893. ) \
  8894. )
  8895. #define DELTA_RAW_IK() do { \
  8896. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  8897. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  8898. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  8899. } while(0)
  8900. #define DELTA_LOGICAL_IK() do { \
  8901. const float raw[XYZ] = { \
  8902. RAW_X_POSITION(logical[X_AXIS]), \
  8903. RAW_Y_POSITION(logical[Y_AXIS]), \
  8904. RAW_Z_POSITION(logical[Z_AXIS]) \
  8905. }; \
  8906. DELTA_RAW_IK(); \
  8907. } while(0)
  8908. #define DELTA_DEBUG() do { \
  8909. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  8910. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  8911. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  8912. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  8913. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  8914. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  8915. } while(0)
  8916. void inverse_kinematics(const float logical[XYZ]) {
  8917. DELTA_LOGICAL_IK();
  8918. // DELTA_DEBUG();
  8919. }
  8920. /**
  8921. * Calculate the highest Z position where the
  8922. * effector has the full range of XY motion.
  8923. */
  8924. float delta_safe_distance_from_top() {
  8925. float cartesian[XYZ] = {
  8926. LOGICAL_X_POSITION(0),
  8927. LOGICAL_Y_POSITION(0),
  8928. LOGICAL_Z_POSITION(0)
  8929. };
  8930. inverse_kinematics(cartesian);
  8931. float distance = delta[A_AXIS];
  8932. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  8933. inverse_kinematics(cartesian);
  8934. return abs(distance - delta[A_AXIS]);
  8935. }
  8936. /**
  8937. * Delta Forward Kinematics
  8938. *
  8939. * See the Wikipedia article "Trilateration"
  8940. * https://en.wikipedia.org/wiki/Trilateration
  8941. *
  8942. * Establish a new coordinate system in the plane of the
  8943. * three carriage points. This system has its origin at
  8944. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  8945. * plane with a Z component of zero.
  8946. * We will define unit vectors in this coordinate system
  8947. * in our original coordinate system. Then when we calculate
  8948. * the Xnew, Ynew and Znew values, we can translate back into
  8949. * the original system by moving along those unit vectors
  8950. * by the corresponding values.
  8951. *
  8952. * Variable names matched to Marlin, c-version, and avoid the
  8953. * use of any vector library.
  8954. *
  8955. * by Andreas Hardtung 2016-06-07
  8956. * based on a Java function from "Delta Robot Kinematics V3"
  8957. * by Steve Graves
  8958. *
  8959. * The result is stored in the cartes[] array.
  8960. */
  8961. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  8962. // Create a vector in old coordinates along x axis of new coordinate
  8963. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  8964. // Get the Magnitude of vector.
  8965. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  8966. // Create unit vector by dividing by magnitude.
  8967. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  8968. // Get the vector from the origin of the new system to the third point.
  8969. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  8970. // Use the dot product to find the component of this vector on the X axis.
  8971. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  8972. // Create a vector along the x axis that represents the x component of p13.
  8973. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  8974. // Subtract the X component from the original vector leaving only Y. We use the
  8975. // variable that will be the unit vector after we scale it.
  8976. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  8977. // The magnitude of Y component
  8978. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  8979. // Convert to a unit vector
  8980. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  8981. // The cross product of the unit x and y is the unit z
  8982. // float[] ez = vectorCrossProd(ex, ey);
  8983. float ez[3] = {
  8984. ex[1] * ey[2] - ex[2] * ey[1],
  8985. ex[2] * ey[0] - ex[0] * ey[2],
  8986. ex[0] * ey[1] - ex[1] * ey[0]
  8987. };
  8988. // We now have the d, i and j values defined in Wikipedia.
  8989. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  8990. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  8991. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  8992. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  8993. // Start from the origin of the old coordinates and add vectors in the
  8994. // old coords that represent the Xnew, Ynew and Znew to find the point
  8995. // in the old system.
  8996. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  8997. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  8998. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  8999. }
  9000. void forward_kinematics_DELTA(float point[ABC]) {
  9001. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9002. }
  9003. #endif // DELTA
  9004. /**
  9005. * Get the stepper positions in the cartes[] array.
  9006. * Forward kinematics are applied for DELTA and SCARA.
  9007. *
  9008. * The result is in the current coordinate space with
  9009. * leveling applied. The coordinates need to be run through
  9010. * unapply_leveling to obtain the "ideal" coordinates
  9011. * suitable for current_position, etc.
  9012. */
  9013. void get_cartesian_from_steppers() {
  9014. #if ENABLED(DELTA)
  9015. forward_kinematics_DELTA(
  9016. stepper.get_axis_position_mm(A_AXIS),
  9017. stepper.get_axis_position_mm(B_AXIS),
  9018. stepper.get_axis_position_mm(C_AXIS)
  9019. );
  9020. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9021. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9022. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9023. #elif IS_SCARA
  9024. forward_kinematics_SCARA(
  9025. stepper.get_axis_position_degrees(A_AXIS),
  9026. stepper.get_axis_position_degrees(B_AXIS)
  9027. );
  9028. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9029. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9030. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9031. #else
  9032. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9033. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9034. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9035. #endif
  9036. }
  9037. /**
  9038. * Set the current_position for an axis based on
  9039. * the stepper positions, removing any leveling that
  9040. * may have been applied.
  9041. */
  9042. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9043. get_cartesian_from_steppers();
  9044. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  9045. planner.unapply_leveling(cartes);
  9046. #endif
  9047. if (axis == ALL_AXES)
  9048. COPY(current_position, cartes);
  9049. else
  9050. current_position[axis] = cartes[axis];
  9051. }
  9052. #if ENABLED(MESH_BED_LEVELING)
  9053. /**
  9054. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9055. * splitting the move where it crosses mesh borders.
  9056. */
  9057. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  9058. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9059. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9060. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9061. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9062. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9063. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9064. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9065. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9066. if (cx1 == cx2 && cy1 == cy2) {
  9067. // Start and end on same mesh square
  9068. line_to_destination(fr_mm_s);
  9069. set_current_to_destination();
  9070. return;
  9071. }
  9072. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9073. float normalized_dist, end[XYZE];
  9074. // Split at the left/front border of the right/top square
  9075. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9076. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9077. COPY(end, destination);
  9078. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9079. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9080. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9081. CBI(x_splits, gcx);
  9082. }
  9083. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9084. COPY(end, destination);
  9085. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9086. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9087. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9088. CBI(y_splits, gcy);
  9089. }
  9090. else {
  9091. // Already split on a border
  9092. line_to_destination(fr_mm_s);
  9093. set_current_to_destination();
  9094. return;
  9095. }
  9096. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9097. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9098. // Do the split and look for more borders
  9099. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9100. // Restore destination from stack
  9101. COPY(destination, end);
  9102. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9103. }
  9104. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9105. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / ABL_BG_SPACING(A##_AXIS))
  9106. /**
  9107. * Prepare a bilinear-leveled linear move on Cartesian,
  9108. * splitting the move where it crosses grid borders.
  9109. */
  9110. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9111. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9112. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9113. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9114. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9115. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9116. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9117. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9118. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9119. if (cx1 == cx2 && cy1 == cy2) {
  9120. // Start and end on same mesh square
  9121. line_to_destination(fr_mm_s);
  9122. set_current_to_destination();
  9123. return;
  9124. }
  9125. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9126. float normalized_dist, end[XYZE];
  9127. // Split at the left/front border of the right/top square
  9128. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9129. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9130. COPY(end, destination);
  9131. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9132. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9133. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9134. CBI(x_splits, gcx);
  9135. }
  9136. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9137. COPY(end, destination);
  9138. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9139. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9140. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9141. CBI(y_splits, gcy);
  9142. }
  9143. else {
  9144. // Already split on a border
  9145. line_to_destination(fr_mm_s);
  9146. set_current_to_destination();
  9147. return;
  9148. }
  9149. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9150. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9151. // Do the split and look for more borders
  9152. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9153. // Restore destination from stack
  9154. COPY(destination, end);
  9155. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9156. }
  9157. #endif // AUTO_BED_LEVELING_BILINEAR
  9158. #if IS_KINEMATIC
  9159. /**
  9160. * Prepare a linear move in a DELTA or SCARA setup.
  9161. *
  9162. * This calls planner.buffer_line several times, adding
  9163. * small incremental moves for DELTA or SCARA.
  9164. */
  9165. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9166. // Get the top feedrate of the move in the XY plane
  9167. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9168. // If the move is only in Z/E don't split up the move
  9169. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9170. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9171. return true;
  9172. }
  9173. // Get the cartesian distances moved in XYZE
  9174. float difference[XYZE];
  9175. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9176. // Get the linear distance in XYZ
  9177. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9178. // If the move is very short, check the E move distance
  9179. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9180. // No E move either? Game over.
  9181. if (UNEAR_ZERO(cartesian_mm)) return false;
  9182. // Minimum number of seconds to move the given distance
  9183. float seconds = cartesian_mm / _feedrate_mm_s;
  9184. // The number of segments-per-second times the duration
  9185. // gives the number of segments
  9186. uint16_t segments = delta_segments_per_second * seconds;
  9187. // For SCARA minimum segment size is 0.25mm
  9188. #if IS_SCARA
  9189. NOMORE(segments, cartesian_mm * 4);
  9190. #endif
  9191. // At least one segment is required
  9192. NOLESS(segments, 1);
  9193. // The approximate length of each segment
  9194. const float inv_segments = 1.0 / float(segments),
  9195. segment_distance[XYZE] = {
  9196. difference[X_AXIS] * inv_segments,
  9197. difference[Y_AXIS] * inv_segments,
  9198. difference[Z_AXIS] * inv_segments,
  9199. difference[E_AXIS] * inv_segments
  9200. };
  9201. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9202. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9203. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9204. #if IS_SCARA
  9205. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9206. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9207. feed_factor = inv_segment_length * _feedrate_mm_s;
  9208. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9209. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9210. #endif
  9211. // Get the logical current position as starting point
  9212. float logical[XYZE];
  9213. COPY(logical, current_position);
  9214. // Drop one segment so the last move is to the exact target.
  9215. // If there's only 1 segment, loops will be skipped entirely.
  9216. --segments;
  9217. // Calculate and execute the segments
  9218. for (uint16_t s = segments + 1; --s;) {
  9219. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9220. #if ENABLED(DELTA)
  9221. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9222. #else
  9223. inverse_kinematics(logical);
  9224. #endif
  9225. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9226. #if IS_SCARA
  9227. // For SCARA scale the feed rate from mm/s to degrees/s
  9228. // Use ratio between the length of the move and the larger angle change
  9229. const float adiff = abs(delta[A_AXIS] - oldA),
  9230. bdiff = abs(delta[B_AXIS] - oldB);
  9231. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9232. oldA = delta[A_AXIS];
  9233. oldB = delta[B_AXIS];
  9234. #else
  9235. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9236. #endif
  9237. }
  9238. // Since segment_distance is only approximate,
  9239. // the final move must be to the exact destination.
  9240. #if IS_SCARA
  9241. // For SCARA scale the feed rate from mm/s to degrees/s
  9242. // With segments > 1 length is 1 segment, otherwise total length
  9243. inverse_kinematics(ltarget);
  9244. ADJUST_DELTA(logical);
  9245. const float adiff = abs(delta[A_AXIS] - oldA),
  9246. bdiff = abs(delta[B_AXIS] - oldB);
  9247. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9248. #else
  9249. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9250. #endif
  9251. return true;
  9252. }
  9253. #else // !IS_KINEMATIC
  9254. /**
  9255. * Prepare a linear move in a Cartesian setup.
  9256. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9257. *
  9258. * Returns true if the caller didn't update current_position.
  9259. */
  9260. inline bool prepare_move_to_destination_cartesian() {
  9261. // Do not use feedrate_percentage for E or Z only moves
  9262. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9263. line_to_destination();
  9264. }
  9265. else {
  9266. #if ENABLED(MESH_BED_LEVELING)
  9267. if (mbl.active()) {
  9268. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9269. return false;
  9270. }
  9271. else
  9272. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9273. if (ubl.state.active) {
  9274. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9275. return false;
  9276. }
  9277. else
  9278. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9279. if (planner.abl_enabled) {
  9280. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9281. return false;
  9282. }
  9283. else
  9284. #endif
  9285. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9286. }
  9287. return true;
  9288. }
  9289. #endif // !IS_KINEMATIC
  9290. #if ENABLED(DUAL_X_CARRIAGE)
  9291. /**
  9292. * Prepare a linear move in a dual X axis setup
  9293. */
  9294. inline bool prepare_move_to_destination_dualx() {
  9295. if (active_extruder_parked) {
  9296. switch (dual_x_carriage_mode) {
  9297. case DXC_FULL_CONTROL_MODE:
  9298. break;
  9299. case DXC_AUTO_PARK_MODE:
  9300. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9301. // This is a travel move (with no extrusion)
  9302. // Skip it, but keep track of the current position
  9303. // (so it can be used as the start of the next non-travel move)
  9304. if (delayed_move_time != 0xFFFFFFFFUL) {
  9305. set_current_to_destination();
  9306. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9307. delayed_move_time = millis();
  9308. return false;
  9309. }
  9310. }
  9311. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9312. for (uint8_t i = 0; i < 3; i++)
  9313. planner.buffer_line(
  9314. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9315. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9316. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9317. current_position[E_AXIS],
  9318. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9319. active_extruder
  9320. );
  9321. delayed_move_time = 0;
  9322. active_extruder_parked = false;
  9323. break;
  9324. case DXC_DUPLICATION_MODE:
  9325. if (active_extruder == 0) {
  9326. // move duplicate extruder into correct duplication position.
  9327. planner.set_position_mm(
  9328. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9329. current_position[Y_AXIS],
  9330. current_position[Z_AXIS],
  9331. current_position[E_AXIS]
  9332. );
  9333. planner.buffer_line(
  9334. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9335. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9336. planner.max_feedrate_mm_s[X_AXIS], 1
  9337. );
  9338. SYNC_PLAN_POSITION_KINEMATIC();
  9339. stepper.synchronize();
  9340. extruder_duplication_enabled = true;
  9341. active_extruder_parked = false;
  9342. }
  9343. break;
  9344. }
  9345. }
  9346. return true;
  9347. }
  9348. #endif // DUAL_X_CARRIAGE
  9349. /**
  9350. * Prepare a single move and get ready for the next one
  9351. *
  9352. * This may result in several calls to planner.buffer_line to
  9353. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9354. */
  9355. void prepare_move_to_destination() {
  9356. clamp_to_software_endstops(destination);
  9357. refresh_cmd_timeout();
  9358. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9359. if (!DEBUGGING(DRYRUN)) {
  9360. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9361. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9362. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9363. SERIAL_ECHO_START;
  9364. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9365. }
  9366. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9367. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9368. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9369. SERIAL_ECHO_START;
  9370. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9371. }
  9372. #endif
  9373. }
  9374. }
  9375. #endif
  9376. #if IS_KINEMATIC
  9377. if (!prepare_kinematic_move_to(destination)) return;
  9378. #else
  9379. #if ENABLED(DUAL_X_CARRIAGE)
  9380. if (!prepare_move_to_destination_dualx()) return;
  9381. #endif
  9382. if (!prepare_move_to_destination_cartesian()) return;
  9383. #endif
  9384. set_current_to_destination();
  9385. }
  9386. #if ENABLED(ARC_SUPPORT)
  9387. /**
  9388. * Plan an arc in 2 dimensions
  9389. *
  9390. * The arc is approximated by generating many small linear segments.
  9391. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9392. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9393. * larger segments will tend to be more efficient. Your slicer should have
  9394. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9395. */
  9396. void plan_arc(
  9397. float logical[XYZE], // Destination position
  9398. float* offset, // Center of rotation relative to current_position
  9399. uint8_t clockwise // Clockwise?
  9400. ) {
  9401. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  9402. center_X = current_position[X_AXIS] + offset[X_AXIS],
  9403. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  9404. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9405. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  9406. r_X = -offset[X_AXIS], // Radius vector from center to current location
  9407. r_Y = -offset[Y_AXIS],
  9408. rt_X = logical[X_AXIS] - center_X,
  9409. rt_Y = logical[Y_AXIS] - center_Y;
  9410. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9411. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9412. if (angular_travel < 0) angular_travel += RADIANS(360);
  9413. if (clockwise) angular_travel -= RADIANS(360);
  9414. // Make a circle if the angular rotation is 0
  9415. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9416. angular_travel += RADIANS(360);
  9417. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9418. if (mm_of_travel < 0.001) return;
  9419. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9420. if (segments == 0) segments = 1;
  9421. /**
  9422. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9423. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9424. * r_T = [cos(phi) -sin(phi);
  9425. * sin(phi) cos(phi)] * r ;
  9426. *
  9427. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9428. * defined from the circle center to the initial position. Each line segment is formed by successive
  9429. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9430. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9431. * all double numbers are single precision on the Arduino. (True double precision will not have
  9432. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9433. * tool precision in some cases. Therefore, arc path correction is implemented.
  9434. *
  9435. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9436. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9437. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9438. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9439. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9440. * issue for CNC machines with the single precision Arduino calculations.
  9441. *
  9442. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9443. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9444. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9445. * This is important when there are successive arc motions.
  9446. */
  9447. // Vector rotation matrix values
  9448. float arc_target[XYZE],
  9449. theta_per_segment = angular_travel / segments,
  9450. linear_per_segment = linear_travel / segments,
  9451. extruder_per_segment = extruder_travel / segments,
  9452. sin_T = theta_per_segment,
  9453. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9454. // Initialize the linear axis
  9455. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9456. // Initialize the extruder axis
  9457. arc_target[E_AXIS] = current_position[E_AXIS];
  9458. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9459. millis_t next_idle_ms = millis() + 200UL;
  9460. int8_t count = 0;
  9461. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9462. thermalManager.manage_heater();
  9463. if (ELAPSED(millis(), next_idle_ms)) {
  9464. next_idle_ms = millis() + 200UL;
  9465. idle();
  9466. }
  9467. if (++count < N_ARC_CORRECTION) {
  9468. // Apply vector rotation matrix to previous r_X / 1
  9469. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9470. r_X = r_X * cos_T - r_Y * sin_T;
  9471. r_Y = r_new_Y;
  9472. }
  9473. else {
  9474. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9475. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9476. // To reduce stuttering, the sin and cos could be computed at different times.
  9477. // For now, compute both at the same time.
  9478. float cos_Ti = cos(i * theta_per_segment),
  9479. sin_Ti = sin(i * theta_per_segment);
  9480. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9481. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9482. count = 0;
  9483. }
  9484. // Update arc_target location
  9485. arc_target[X_AXIS] = center_X + r_X;
  9486. arc_target[Y_AXIS] = center_Y + r_Y;
  9487. arc_target[Z_AXIS] += linear_per_segment;
  9488. arc_target[E_AXIS] += extruder_per_segment;
  9489. clamp_to_software_endstops(arc_target);
  9490. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9491. }
  9492. // Ensure last segment arrives at target location.
  9493. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9494. // As far as the parser is concerned, the position is now == target. In reality the
  9495. // motion control system might still be processing the action and the real tool position
  9496. // in any intermediate location.
  9497. set_current_to_destination();
  9498. }
  9499. #endif
  9500. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9501. void plan_cubic_move(const float offset[4]) {
  9502. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9503. // As far as the parser is concerned, the position is now == destination. In reality the
  9504. // motion control system might still be processing the action and the real tool position
  9505. // in any intermediate location.
  9506. set_current_to_destination();
  9507. }
  9508. #endif // BEZIER_CURVE_SUPPORT
  9509. #if HAS_CONTROLLERFAN
  9510. void controllerFan() {
  9511. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9512. nextMotorCheck = 0; // Last time the state was checked
  9513. const millis_t ms = millis();
  9514. if (ELAPSED(ms, nextMotorCheck)) {
  9515. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9516. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9517. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9518. #if E_STEPPERS > 1
  9519. || E1_ENABLE_READ == E_ENABLE_ON
  9520. #if HAS_X2_ENABLE
  9521. || X2_ENABLE_READ == X_ENABLE_ON
  9522. #endif
  9523. #if E_STEPPERS > 2
  9524. || E2_ENABLE_READ == E_ENABLE_ON
  9525. #if E_STEPPERS > 3
  9526. || E3_ENABLE_READ == E_ENABLE_ON
  9527. #if E_STEPPERS > 4
  9528. || E4_ENABLE_READ == E_ENABLE_ON
  9529. #endif // E_STEPPERS > 4
  9530. #endif // E_STEPPERS > 3
  9531. #endif // E_STEPPERS > 2
  9532. #endif // E_STEPPERS > 1
  9533. ) {
  9534. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9535. }
  9536. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9537. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9538. // allows digital or PWM fan output to be used (see M42 handling)
  9539. WRITE(CONTROLLERFAN_PIN, speed);
  9540. analogWrite(CONTROLLERFAN_PIN, speed);
  9541. }
  9542. }
  9543. #endif // HAS_CONTROLLERFAN
  9544. #if ENABLED(MORGAN_SCARA)
  9545. /**
  9546. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9547. * Maths and first version by QHARLEY.
  9548. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9549. */
  9550. void forward_kinematics_SCARA(const float &a, const float &b) {
  9551. float a_sin = sin(RADIANS(a)) * L1,
  9552. a_cos = cos(RADIANS(a)) * L1,
  9553. b_sin = sin(RADIANS(b)) * L2,
  9554. b_cos = cos(RADIANS(b)) * L2;
  9555. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9556. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9557. /*
  9558. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9559. SERIAL_ECHOPAIR(" b=", b);
  9560. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9561. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9562. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9563. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9564. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9565. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9566. //*/
  9567. }
  9568. /**
  9569. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9570. *
  9571. * See http://forums.reprap.org/read.php?185,283327
  9572. *
  9573. * Maths and first version by QHARLEY.
  9574. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9575. */
  9576. void inverse_kinematics(const float logical[XYZ]) {
  9577. static float C2, S2, SK1, SK2, THETA, PSI;
  9578. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9579. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9580. if (L1 == L2)
  9581. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9582. else
  9583. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9584. S2 = sqrt(sq(C2) - 1);
  9585. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9586. SK1 = L1 + L2 * C2;
  9587. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9588. SK2 = L2 * S2;
  9589. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9590. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9591. // Angle of Arm2
  9592. PSI = atan2(S2, C2);
  9593. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9594. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9595. delta[C_AXIS] = logical[Z_AXIS];
  9596. /*
  9597. DEBUG_POS("SCARA IK", logical);
  9598. DEBUG_POS("SCARA IK", delta);
  9599. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9600. SERIAL_ECHOPAIR(",", sy);
  9601. SERIAL_ECHOPAIR(" C2=", C2);
  9602. SERIAL_ECHOPAIR(" S2=", S2);
  9603. SERIAL_ECHOPAIR(" Theta=", THETA);
  9604. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9605. //*/
  9606. }
  9607. #endif // MORGAN_SCARA
  9608. #if ENABLED(TEMP_STAT_LEDS)
  9609. static bool red_led = false;
  9610. static millis_t next_status_led_update_ms = 0;
  9611. void handle_status_leds(void) {
  9612. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9613. next_status_led_update_ms += 500; // Update every 0.5s
  9614. float max_temp = 0.0;
  9615. #if HAS_TEMP_BED
  9616. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9617. #endif
  9618. HOTEND_LOOP() {
  9619. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9620. }
  9621. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9622. if (new_led != red_led) {
  9623. red_led = new_led;
  9624. #if PIN_EXISTS(STAT_LED_RED)
  9625. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9626. #if PIN_EXISTS(STAT_LED_BLUE)
  9627. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9628. #endif
  9629. #else
  9630. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9631. #endif
  9632. }
  9633. }
  9634. }
  9635. #endif
  9636. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9637. void handle_filament_runout() {
  9638. if (!filament_ran_out) {
  9639. filament_ran_out = true;
  9640. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9641. stepper.synchronize();
  9642. }
  9643. }
  9644. #endif // FILAMENT_RUNOUT_SENSOR
  9645. #if ENABLED(FAST_PWM_FAN)
  9646. void setPwmFrequency(uint8_t pin, int val) {
  9647. val &= 0x07;
  9648. switch (digitalPinToTimer(pin)) {
  9649. #ifdef TCCR0A
  9650. case TIMER0A:
  9651. case TIMER0B:
  9652. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  9653. // TCCR0B |= val;
  9654. break;
  9655. #endif
  9656. #ifdef TCCR1A
  9657. case TIMER1A:
  9658. case TIMER1B:
  9659. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9660. // TCCR1B |= val;
  9661. break;
  9662. #endif
  9663. #ifdef TCCR2
  9664. case TIMER2:
  9665. case TIMER2:
  9666. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  9667. TCCR2 |= val;
  9668. break;
  9669. #endif
  9670. #ifdef TCCR2A
  9671. case TIMER2A:
  9672. case TIMER2B:
  9673. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  9674. TCCR2B |= val;
  9675. break;
  9676. #endif
  9677. #ifdef TCCR3A
  9678. case TIMER3A:
  9679. case TIMER3B:
  9680. case TIMER3C:
  9681. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  9682. TCCR3B |= val;
  9683. break;
  9684. #endif
  9685. #ifdef TCCR4A
  9686. case TIMER4A:
  9687. case TIMER4B:
  9688. case TIMER4C:
  9689. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  9690. TCCR4B |= val;
  9691. break;
  9692. #endif
  9693. #ifdef TCCR5A
  9694. case TIMER5A:
  9695. case TIMER5B:
  9696. case TIMER5C:
  9697. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  9698. TCCR5B |= val;
  9699. break;
  9700. #endif
  9701. }
  9702. }
  9703. #endif // FAST_PWM_FAN
  9704. float calculate_volumetric_multiplier(float diameter) {
  9705. if (!volumetric_enabled || diameter == 0) return 1.0;
  9706. return 1.0 / (M_PI * sq(diameter * 0.5));
  9707. }
  9708. void calculate_volumetric_multipliers() {
  9709. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9710. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9711. }
  9712. void enable_all_steppers() {
  9713. enable_X();
  9714. enable_Y();
  9715. enable_Z();
  9716. enable_E0();
  9717. enable_E1();
  9718. enable_E2();
  9719. enable_E3();
  9720. enable_E4();
  9721. }
  9722. void disable_e_steppers() {
  9723. disable_E0();
  9724. disable_E1();
  9725. disable_E2();
  9726. disable_E3();
  9727. disable_E4();
  9728. }
  9729. void disable_all_steppers() {
  9730. disable_X();
  9731. disable_Y();
  9732. disable_Z();
  9733. disable_e_steppers();
  9734. }
  9735. #if ENABLED(HAVE_TMC2130)
  9736. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9737. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9738. const bool is_otpw = st.checkOT();
  9739. // Report if a warning was triggered
  9740. static bool previous_otpw = false;
  9741. if (is_otpw && !previous_otpw) {
  9742. char timestamp[10];
  9743. duration_t elapsed = print_job_timer.duration();
  9744. const bool has_days = (elapsed.value > 60*60*24L);
  9745. (void)elapsed.toDigital(timestamp, has_days);
  9746. SERIAL_ECHO(timestamp);
  9747. SERIAL_ECHO(": ");
  9748. SERIAL_ECHO(axisID);
  9749. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9750. }
  9751. previous_otpw = is_otpw;
  9752. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9753. // Return if user has not enabled current control start with M906 S1.
  9754. if (!auto_current_control) return;
  9755. /**
  9756. * Decrease current if is_otpw is true.
  9757. * Bail out if driver is disabled.
  9758. * Increase current if OTPW has not been triggered yet.
  9759. */
  9760. uint16_t current = st.getCurrent();
  9761. if (is_otpw) {
  9762. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9763. #if ENABLED(REPORT_CURRENT_CHANGE)
  9764. SERIAL_ECHO(axisID);
  9765. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9766. #endif
  9767. }
  9768. else if (!st.isEnabled())
  9769. return;
  9770. else if (!is_otpw && !st.getOTPW()) {
  9771. current += CURRENT_STEP;
  9772. if (current <= AUTO_ADJUST_MAX) {
  9773. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9774. #if ENABLED(REPORT_CURRENT_CHANGE)
  9775. SERIAL_ECHO(axisID);
  9776. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9777. #endif
  9778. }
  9779. }
  9780. SERIAL_EOL;
  9781. #endif
  9782. }
  9783. void checkOverTemp() {
  9784. static millis_t next_cOT = 0;
  9785. if (ELAPSED(millis(), next_cOT)) {
  9786. next_cOT = millis() + 5000;
  9787. #if ENABLED(X_IS_TMC2130)
  9788. automatic_current_control(stepperX, "X");
  9789. #endif
  9790. #if ENABLED(Y_IS_TMC2130)
  9791. automatic_current_control(stepperY, "Y");
  9792. #endif
  9793. #if ENABLED(Z_IS_TMC2130)
  9794. automatic_current_control(stepperZ, "Z");
  9795. #endif
  9796. #if ENABLED(X2_IS_TMC2130)
  9797. automatic_current_control(stepperX2, "X2");
  9798. #endif
  9799. #if ENABLED(Y2_IS_TMC2130)
  9800. automatic_current_control(stepperY2, "Y2");
  9801. #endif
  9802. #if ENABLED(Z2_IS_TMC2130)
  9803. automatic_current_control(stepperZ2, "Z2");
  9804. #endif
  9805. #if ENABLED(E0_IS_TMC2130)
  9806. automatic_current_control(stepperE0, "E0");
  9807. #endif
  9808. #if ENABLED(E1_IS_TMC2130)
  9809. automatic_current_control(stepperE1, "E1");
  9810. #endif
  9811. #if ENABLED(E2_IS_TMC2130)
  9812. automatic_current_control(stepperE2, "E2");
  9813. #endif
  9814. #if ENABLED(E3_IS_TMC2130)
  9815. automatic_current_control(stepperE3, "E3");
  9816. #endif
  9817. #if ENABLED(E4_IS_TMC2130)
  9818. automatic_current_control(stepperE4, "E4");
  9819. #endif
  9820. #if ENABLED(E4_IS_TMC2130)
  9821. automatic_current_control(stepperE4);
  9822. #endif
  9823. }
  9824. }
  9825. #endif // HAVE_TMC2130
  9826. /**
  9827. * Manage several activities:
  9828. * - Check for Filament Runout
  9829. * - Keep the command buffer full
  9830. * - Check for maximum inactive time between commands
  9831. * - Check for maximum inactive time between stepper commands
  9832. * - Check if pin CHDK needs to go LOW
  9833. * - Check for KILL button held down
  9834. * - Check for HOME button held down
  9835. * - Check if cooling fan needs to be switched on
  9836. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9837. */
  9838. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9839. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9840. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9841. handle_filament_runout();
  9842. #endif
  9843. if (commands_in_queue < BUFSIZE) get_available_commands();
  9844. const millis_t ms = millis();
  9845. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  9846. SERIAL_ERROR_START;
  9847. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  9848. kill(PSTR(MSG_KILLED));
  9849. }
  9850. // Prevent steppers timing-out in the middle of M600
  9851. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  9852. #define M600_TEST !busy_doing_M600
  9853. #else
  9854. #define M600_TEST true
  9855. #endif
  9856. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  9857. && !ignore_stepper_queue && !planner.blocks_queued()) {
  9858. #if ENABLED(DISABLE_INACTIVE_X)
  9859. disable_X();
  9860. #endif
  9861. #if ENABLED(DISABLE_INACTIVE_Y)
  9862. disable_Y();
  9863. #endif
  9864. #if ENABLED(DISABLE_INACTIVE_Z)
  9865. disable_Z();
  9866. #endif
  9867. #if ENABLED(DISABLE_INACTIVE_E)
  9868. disable_e_steppers();
  9869. #endif
  9870. }
  9871. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  9872. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  9873. chdkActive = false;
  9874. WRITE(CHDK, LOW);
  9875. }
  9876. #endif
  9877. #if HAS_KILL
  9878. // Check if the kill button was pressed and wait just in case it was an accidental
  9879. // key kill key press
  9880. // -------------------------------------------------------------------------------
  9881. static int killCount = 0; // make the inactivity button a bit less responsive
  9882. const int KILL_DELAY = 750;
  9883. if (!READ(KILL_PIN))
  9884. killCount++;
  9885. else if (killCount > 0)
  9886. killCount--;
  9887. // Exceeded threshold and we can confirm that it was not accidental
  9888. // KILL the machine
  9889. // ----------------------------------------------------------------
  9890. if (killCount >= KILL_DELAY) {
  9891. SERIAL_ERROR_START;
  9892. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  9893. kill(PSTR(MSG_KILLED));
  9894. }
  9895. #endif
  9896. #if HAS_HOME
  9897. // Check to see if we have to home, use poor man's debouncer
  9898. // ---------------------------------------------------------
  9899. static int homeDebounceCount = 0; // poor man's debouncing count
  9900. const int HOME_DEBOUNCE_DELAY = 2500;
  9901. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  9902. if (!homeDebounceCount) {
  9903. enqueue_and_echo_commands_P(PSTR("G28"));
  9904. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  9905. }
  9906. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  9907. homeDebounceCount++;
  9908. else
  9909. homeDebounceCount = 0;
  9910. }
  9911. #endif
  9912. #if HAS_CONTROLLERFAN
  9913. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  9914. #endif
  9915. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  9916. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  9917. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  9918. bool oldstatus;
  9919. #if ENABLED(SWITCHING_EXTRUDER)
  9920. oldstatus = E0_ENABLE_READ;
  9921. enable_E0();
  9922. #else // !SWITCHING_EXTRUDER
  9923. switch (active_extruder) {
  9924. case 0:
  9925. oldstatus = E0_ENABLE_READ;
  9926. enable_E0();
  9927. break;
  9928. #if E_STEPPERS > 1
  9929. case 1:
  9930. oldstatus = E1_ENABLE_READ;
  9931. enable_E1();
  9932. break;
  9933. #if E_STEPPERS > 2
  9934. case 2:
  9935. oldstatus = E2_ENABLE_READ;
  9936. enable_E2();
  9937. break;
  9938. #if E_STEPPERS > 3
  9939. case 3:
  9940. oldstatus = E3_ENABLE_READ;
  9941. enable_E3();
  9942. break;
  9943. #if E_STEPPERS > 4
  9944. case 4:
  9945. oldstatus = E4_ENABLE_READ;
  9946. enable_E4();
  9947. break;
  9948. #endif // E_STEPPERS > 4
  9949. #endif // E_STEPPERS > 3
  9950. #endif // E_STEPPERS > 2
  9951. #endif // E_STEPPERS > 1
  9952. }
  9953. #endif // !SWITCHING_EXTRUDER
  9954. previous_cmd_ms = ms; // refresh_cmd_timeout()
  9955. const float olde = current_position[E_AXIS];
  9956. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  9957. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  9958. current_position[E_AXIS] = olde;
  9959. planner.set_e_position_mm(olde);
  9960. stepper.synchronize();
  9961. #if ENABLED(SWITCHING_EXTRUDER)
  9962. E0_ENABLE_WRITE(oldstatus);
  9963. #else
  9964. switch (active_extruder) {
  9965. case 0:
  9966. E0_ENABLE_WRITE(oldstatus);
  9967. break;
  9968. #if E_STEPPERS > 1
  9969. case 1:
  9970. E1_ENABLE_WRITE(oldstatus);
  9971. break;
  9972. #if E_STEPPERS > 2
  9973. case 2:
  9974. E2_ENABLE_WRITE(oldstatus);
  9975. break;
  9976. #if E_STEPPERS > 3
  9977. case 3:
  9978. E3_ENABLE_WRITE(oldstatus);
  9979. break;
  9980. #if E_STEPPERS > 4
  9981. case 4:
  9982. E4_ENABLE_WRITE(oldstatus);
  9983. break;
  9984. #endif // E_STEPPERS > 4
  9985. #endif // E_STEPPERS > 3
  9986. #endif // E_STEPPERS > 2
  9987. #endif // E_STEPPERS > 1
  9988. }
  9989. #endif // !SWITCHING_EXTRUDER
  9990. }
  9991. #endif // EXTRUDER_RUNOUT_PREVENT
  9992. #if ENABLED(DUAL_X_CARRIAGE)
  9993. // handle delayed move timeout
  9994. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  9995. // travel moves have been received so enact them
  9996. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  9997. set_destination_to_current();
  9998. prepare_move_to_destination();
  9999. }
  10000. #endif
  10001. #if ENABLED(TEMP_STAT_LEDS)
  10002. handle_status_leds();
  10003. #endif
  10004. #if ENABLED(HAVE_TMC2130)
  10005. checkOverTemp();
  10006. #endif
  10007. planner.check_axes_activity();
  10008. }
  10009. /**
  10010. * Standard idle routine keeps the machine alive
  10011. */
  10012. void idle(
  10013. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10014. bool no_stepper_sleep/*=false*/
  10015. #endif
  10016. ) {
  10017. lcd_update();
  10018. host_keepalive();
  10019. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10020. auto_report_temperatures();
  10021. #endif
  10022. manage_inactivity(
  10023. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10024. no_stepper_sleep
  10025. #endif
  10026. );
  10027. thermalManager.manage_heater();
  10028. #if ENABLED(PRINTCOUNTER)
  10029. print_job_timer.tick();
  10030. #endif
  10031. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10032. buzzer.tick();
  10033. #endif
  10034. }
  10035. /**
  10036. * Kill all activity and lock the machine.
  10037. * After this the machine will need to be reset.
  10038. */
  10039. void kill(const char* lcd_msg) {
  10040. SERIAL_ERROR_START;
  10041. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10042. thermalManager.disable_all_heaters();
  10043. disable_all_steppers();
  10044. #if ENABLED(ULTRA_LCD)
  10045. kill_screen(lcd_msg);
  10046. #else
  10047. UNUSED(lcd_msg);
  10048. #endif
  10049. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10050. cli(); // Stop interrupts
  10051. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10052. thermalManager.disable_all_heaters(); //turn off heaters again
  10053. #if HAS_POWER_SWITCH
  10054. SET_INPUT(PS_ON_PIN);
  10055. #endif
  10056. suicide();
  10057. while (1) {
  10058. #if ENABLED(USE_WATCHDOG)
  10059. watchdog_reset();
  10060. #endif
  10061. } // Wait for reset
  10062. }
  10063. /**
  10064. * Turn off heaters and stop the print in progress
  10065. * After a stop the machine may be resumed with M999
  10066. */
  10067. void stop() {
  10068. thermalManager.disable_all_heaters();
  10069. if (IsRunning()) {
  10070. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10071. SERIAL_ERROR_START;
  10072. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10073. LCD_MESSAGEPGM(MSG_STOPPED);
  10074. safe_delay(350); // allow enough time for messages to get out before stopping
  10075. Running = false;
  10076. }
  10077. }
  10078. /**
  10079. * Marlin entry-point: Set up before the program loop
  10080. * - Set up the kill pin, filament runout, power hold
  10081. * - Start the serial port
  10082. * - Print startup messages and diagnostics
  10083. * - Get EEPROM or default settings
  10084. * - Initialize managers for:
  10085. * • temperature
  10086. * • planner
  10087. * • watchdog
  10088. * • stepper
  10089. * • photo pin
  10090. * • servos
  10091. * • LCD controller
  10092. * • Digipot I2C
  10093. * • Z probe sled
  10094. * • status LEDs
  10095. */
  10096. void setup() {
  10097. #ifdef DISABLE_JTAG
  10098. // Disable JTAG on AT90USB chips to free up pins for IO
  10099. MCUCR = 0x80;
  10100. MCUCR = 0x80;
  10101. #endif
  10102. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10103. setup_filrunoutpin();
  10104. #endif
  10105. setup_killpin();
  10106. setup_powerhold();
  10107. #if HAS_STEPPER_RESET
  10108. disableStepperDrivers();
  10109. #endif
  10110. MYSERIAL.begin(BAUDRATE);
  10111. SERIAL_PROTOCOLLNPGM("start");
  10112. SERIAL_ECHO_START;
  10113. // Check startup - does nothing if bootloader sets MCUSR to 0
  10114. byte mcu = MCUSR;
  10115. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10116. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10117. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10118. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10119. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10120. MCUSR = 0;
  10121. SERIAL_ECHOPGM(MSG_MARLIN);
  10122. SERIAL_CHAR(' ');
  10123. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10124. SERIAL_EOL;
  10125. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10126. SERIAL_ECHO_START;
  10127. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10128. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10129. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10130. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10131. #endif
  10132. SERIAL_ECHO_START;
  10133. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10134. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10135. // Send "ok" after commands by default
  10136. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10137. // Load data from EEPROM if available (or use defaults)
  10138. // This also updates variables in the planner, elsewhere
  10139. (void)settings.load();
  10140. #if HAS_M206_COMMAND
  10141. // Initialize current position based on home_offset
  10142. COPY(current_position, home_offset);
  10143. #else
  10144. ZERO(current_position);
  10145. #endif
  10146. // Vital to init stepper/planner equivalent for current_position
  10147. SYNC_PLAN_POSITION_KINEMATIC();
  10148. thermalManager.init(); // Initialize temperature loop
  10149. #if ENABLED(USE_WATCHDOG)
  10150. watchdog_init();
  10151. #endif
  10152. stepper.init(); // Initialize stepper, this enables interrupts!
  10153. servo_init();
  10154. #if HAS_PHOTOGRAPH
  10155. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10156. #endif
  10157. #if HAS_CASE_LIGHT
  10158. update_case_light();
  10159. #endif
  10160. #if HAS_BED_PROBE
  10161. endstops.enable_z_probe(false);
  10162. #endif
  10163. #if HAS_CONTROLLERFAN
  10164. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  10165. #endif
  10166. #if HAS_STEPPER_RESET
  10167. enableStepperDrivers();
  10168. #endif
  10169. #if ENABLED(DIGIPOT_I2C)
  10170. digipot_i2c_init();
  10171. #endif
  10172. #if ENABLED(DAC_STEPPER_CURRENT)
  10173. dac_init();
  10174. #endif
  10175. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10176. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10177. #endif
  10178. setup_homepin();
  10179. #if PIN_EXISTS(STAT_LED_RED)
  10180. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10181. #endif
  10182. #if PIN_EXISTS(STAT_LED_BLUE)
  10183. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10184. #endif
  10185. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10186. SET_OUTPUT(RGB_LED_R_PIN);
  10187. SET_OUTPUT(RGB_LED_G_PIN);
  10188. SET_OUTPUT(RGB_LED_B_PIN);
  10189. #if ENABLED(RGBW_LED)
  10190. SET_OUTPUT(RGB_LED_W_PIN);
  10191. #endif
  10192. #endif
  10193. lcd_init();
  10194. #if ENABLED(SHOW_BOOTSCREEN)
  10195. #if ENABLED(DOGLCD)
  10196. safe_delay(BOOTSCREEN_TIMEOUT);
  10197. #elif ENABLED(ULTRA_LCD)
  10198. bootscreen();
  10199. #if DISABLED(SDSUPPORT)
  10200. lcd_init();
  10201. #endif
  10202. #endif
  10203. #endif
  10204. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10205. // Initialize mixing to 100% color 1
  10206. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10207. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10208. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10209. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10210. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10211. #endif
  10212. #if ENABLED(BLTOUCH)
  10213. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  10214. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  10215. set_bltouch_deployed(false); // error condition.
  10216. #endif
  10217. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10218. i2c.onReceive(i2c_on_receive);
  10219. i2c.onRequest(i2c_on_request);
  10220. #endif
  10221. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10222. setup_endstop_interrupts();
  10223. #endif
  10224. }
  10225. /**
  10226. * The main Marlin program loop
  10227. *
  10228. * - Save or log commands to SD
  10229. * - Process available commands (if not saving)
  10230. * - Call heater manager
  10231. * - Call inactivity manager
  10232. * - Call endstop manager
  10233. * - Call LCD update
  10234. */
  10235. void loop() {
  10236. if (commands_in_queue < BUFSIZE) get_available_commands();
  10237. #if ENABLED(SDSUPPORT)
  10238. card.checkautostart(false);
  10239. #endif
  10240. if (commands_in_queue) {
  10241. #if ENABLED(SDSUPPORT)
  10242. if (card.saving) {
  10243. char* command = command_queue[cmd_queue_index_r];
  10244. if (strstr_P(command, PSTR("M29"))) {
  10245. // M29 closes the file
  10246. card.closefile();
  10247. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10248. ok_to_send();
  10249. }
  10250. else {
  10251. // Write the string from the read buffer to SD
  10252. card.write_command(command);
  10253. if (card.logging)
  10254. process_next_command(); // The card is saving because it's logging
  10255. else
  10256. ok_to_send();
  10257. }
  10258. }
  10259. else
  10260. process_next_command();
  10261. #else
  10262. process_next_command();
  10263. #endif // SDSUPPORT
  10264. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10265. if (commands_in_queue) {
  10266. --commands_in_queue;
  10267. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  10268. }
  10269. }
  10270. endstops.report_state();
  10271. idle();
  10272. }