My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G31 - Dock sled (Z_PROBE_SLED only)
  67. // G32 - Undock sled (Z_PROBE_SLED only)
  68. // G90 - Use Absolute Coordinates
  69. // G91 - Use Relative Coordinates
  70. // G92 - Set current position to coordinates given
  71. // M Codes
  72. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  73. // M1 - Same as M0
  74. // M17 - Enable/Power all stepper motors
  75. // M18 - Disable all stepper motors; same as M84
  76. // M20 - List SD card
  77. // M21 - Init SD card
  78. // M22 - Release SD card
  79. // M23 - Select SD file (M23 filename.g)
  80. // M24 - Start/resume SD print
  81. // M25 - Pause SD print
  82. // M26 - Set SD position in bytes (M26 S12345)
  83. // M27 - Report SD print status
  84. // M28 - Start SD write (M28 filename.g)
  85. // M29 - Stop SD write
  86. // M30 - Delete file from SD (M30 filename.g)
  87. // M31 - Output time since last M109 or SD card start to serial
  88. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  89. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  90. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  91. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  92. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  93. // M80 - Turn on Power Supply
  94. // M81 - Turn off Power Supply
  95. // M82 - Set E codes absolute (default)
  96. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  97. // M84 - Disable steppers until next move,
  98. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  99. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  100. // M92 - Set axis_steps_per_unit - same syntax as G92
  101. // M104 - Set extruder target temp
  102. // M105 - Read current temp
  103. // M106 - Fan on
  104. // M107 - Fan off
  105. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  106. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  107. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  108. // M112 - Emergency stop
  109. // M114 - Output current position to serial port
  110. // M115 - Capabilities string
  111. // M117 - display message
  112. // M119 - Output Endstop status to serial port
  113. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  114. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  115. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  116. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  117. // M140 - Set bed target temp
  118. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  119. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  120. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  121. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  122. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  123. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  124. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  125. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  126. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  127. // M206 - set additional homing offset
  128. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  129. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  130. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  131. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  132. // M220 S<factor in percent>- set speed factor override percentage
  133. // M221 S<factor in percent>- set extrude factor override percentage
  134. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  135. // M240 - Trigger a camera to take a photograph
  136. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  137. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  138. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  139. // M301 - Set PID parameters P I and D
  140. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  141. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  142. // M304 - Set bed PID parameters P I and D
  143. // M400 - Finish all moves
  144. // M401 - Lower z-probe if present
  145. // M402 - Raise z-probe if present
  146. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  147. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  148. // M406 - Turn off Filament Sensor extrusion control
  149. // M407 - Displays measured filament diameter
  150. // M500 - stores parameters in EEPROM
  151. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  152. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  153. // M503 - print the current settings (from memory not from EEPROM)
  154. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  155. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  156. // M665 - set delta configurations
  157. // M666 - set delta endstop adjustment
  158. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  159. // M907 - Set digital trimpot motor current using axis codes.
  160. // M908 - Control digital trimpot directly.
  161. // M350 - Set microstepping mode.
  162. // M351 - Toggle MS1 MS2 pins directly.
  163. // ************ SCARA Specific - This can change to suit future G-code regulations
  164. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  165. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  166. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  167. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  168. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  169. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  170. //************* SCARA End ***************
  171. // M928 - Start SD logging (M928 filename.g) - ended by M29
  172. // M999 - Restart after being stopped by error
  173. //Stepper Movement Variables
  174. //===========================================================================
  175. //=============================imported variables============================
  176. //===========================================================================
  177. //===========================================================================
  178. //=============================public variables=============================
  179. //===========================================================================
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  185. int feedmultiply=100; //100->1 200->2
  186. int saved_feedmultiply;
  187. int extrudemultiply=100; //100->1 200->2
  188. int extruder_multiply[EXTRUDERS] = {100
  189. #if EXTRUDERS > 1
  190. , 100
  191. #if EXTRUDERS > 2
  192. , 100
  193. #endif
  194. #endif
  195. };
  196. bool volumetric_enabled = false;
  197. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  198. #if EXTRUDERS > 1
  199. , DEFAULT_NOMINAL_FILAMENT_DIA
  200. #if EXTRUDERS > 2
  201. , DEFAULT_NOMINAL_FILAMENT_DIA
  202. #endif
  203. #endif
  204. };
  205. float volumetric_multiplier[EXTRUDERS] = {1.0
  206. #if EXTRUDERS > 1
  207. , 1.0
  208. #if EXTRUDERS > 2
  209. , 1.0
  210. #endif
  211. #endif
  212. };
  213. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  214. float add_homing[3]={0,0,0};
  215. #ifdef DELTA
  216. float endstop_adj[3]={0,0,0};
  217. #endif
  218. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  219. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  220. bool axis_known_position[3] = {false, false, false};
  221. float zprobe_zoffset;
  222. // Extruder offset
  223. #if EXTRUDERS > 1
  224. #ifndef DUAL_X_CARRIAGE
  225. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  226. #else
  227. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  228. #endif
  229. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  230. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  231. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  232. #endif
  233. };
  234. #endif
  235. uint8_t active_extruder = 0;
  236. int fanSpeed=0;
  237. #ifdef SERVO_ENDSTOPS
  238. int servo_endstops[] = SERVO_ENDSTOPS;
  239. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  240. #endif
  241. #ifdef BARICUDA
  242. int ValvePressure=0;
  243. int EtoPPressure=0;
  244. #endif
  245. #ifdef FWRETRACT
  246. bool autoretract_enabled=false;
  247. bool retracted[EXTRUDERS]={false
  248. #if EXTRUDERS > 1
  249. , false
  250. #if EXTRUDERS > 2
  251. , false
  252. #endif
  253. #endif
  254. };
  255. bool retracted_swap[EXTRUDERS]={false
  256. #if EXTRUDERS > 1
  257. , false
  258. #if EXTRUDERS > 2
  259. , false
  260. #endif
  261. #endif
  262. };
  263. float retract_length = RETRACT_LENGTH;
  264. float retract_length_swap = RETRACT_LENGTH_SWAP;
  265. float retract_feedrate = RETRACT_FEEDRATE;
  266. float retract_zlift = RETRACT_ZLIFT;
  267. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  268. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  269. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  270. #endif
  271. #ifdef ULTIPANEL
  272. #ifdef PS_DEFAULT_OFF
  273. bool powersupply = false;
  274. #else
  275. bool powersupply = true;
  276. #endif
  277. #endif
  278. #ifdef DELTA
  279. float delta[3] = {0.0, 0.0, 0.0};
  280. #define SIN_60 0.8660254037844386
  281. #define COS_60 0.5
  282. // these are the default values, can be overriden with M665
  283. float delta_radius= DELTA_RADIUS;
  284. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  285. float delta_tower1_y= -COS_60*delta_radius;
  286. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  287. float delta_tower2_y= -COS_60*delta_radius;
  288. float delta_tower3_x= 0.0; // back middle tower
  289. float delta_tower3_y= delta_radius;
  290. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  291. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  292. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  293. #endif
  294. #ifdef SCARA // Build size scaling
  295. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  296. #endif
  297. bool cancel_heatup = false ;
  298. #ifdef FILAMENT_SENSOR
  299. //Variables for Filament Sensor input
  300. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  301. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  302. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  303. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  304. int delay_index1=0; //index into ring buffer
  305. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  306. float delay_dist=0; //delay distance counter
  307. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  308. #endif
  309. const char errormagic[] PROGMEM = "Error:";
  310. const char echomagic[] PROGMEM = "echo:";
  311. //===========================================================================
  312. //=============================Private Variables=============================
  313. //===========================================================================
  314. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  315. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  316. #ifndef DELTA
  317. static float delta[3] = {0.0, 0.0, 0.0};
  318. #endif
  319. static float offset[3] = {0.0, 0.0, 0.0};
  320. static bool home_all_axis = true;
  321. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  322. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  323. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  324. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  325. static bool fromsd[BUFSIZE];
  326. static int bufindr = 0;
  327. static int bufindw = 0;
  328. static int buflen = 0;
  329. //static int i = 0;
  330. static char serial_char;
  331. static int serial_count = 0;
  332. static boolean comment_mode = false;
  333. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  334. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  335. //static float tt = 0;
  336. //static float bt = 0;
  337. //Inactivity shutdown variables
  338. static unsigned long previous_millis_cmd = 0;
  339. static unsigned long previous_millis_ok = 0;
  340. static unsigned long max_inactive_time = 0;
  341. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  342. unsigned long starttime=0;
  343. unsigned long stoptime=0;
  344. static uint8_t tmp_extruder;
  345. bool Stopped=false;
  346. #if NUM_SERVOS > 0
  347. Servo servos[NUM_SERVOS];
  348. #endif
  349. bool CooldownNoWait = true;
  350. bool target_direction;
  351. //Insert variables if CHDK is defined
  352. #ifdef CHDK
  353. unsigned long chdkHigh = 0;
  354. boolean chdkActive = false;
  355. #endif
  356. //===========================================================================
  357. //=============================Routines======================================
  358. //===========================================================================
  359. void get_arc_coordinates();
  360. bool setTargetedHotend(int code);
  361. void serial_echopair_P(const char *s_P, float v)
  362. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  363. void serial_echopair_P(const char *s_P, double v)
  364. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  365. void serial_echopair_P(const char *s_P, unsigned long v)
  366. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  367. #ifdef SDSUPPORT
  368. #include "SdFatUtil.h"
  369. int freeMemory() { return SdFatUtil::FreeRam(); }
  370. #else
  371. extern "C" {
  372. extern unsigned int __bss_end;
  373. extern unsigned int __heap_start;
  374. extern void *__brkval;
  375. int freeMemory() {
  376. int free_memory;
  377. if ((int)__brkval == 0)
  378. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  379. else
  380. free_memory = ((int)&free_memory) - ((int)__brkval);
  381. return free_memory;
  382. }
  383. }
  384. #endif //!SDSUPPORT
  385. //adds an command to the main command buffer
  386. //thats really done in a non-safe way.
  387. //needs overworking someday
  388. void enquecommand(const char *cmd)
  389. {
  390. if(buflen < BUFSIZE)
  391. {
  392. //this is dangerous if a mixing of serial and this happens
  393. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  394. SERIAL_ECHO_START;
  395. SERIAL_ECHOPGM(MSG_Enqueing);
  396. SERIAL_ECHO(cmdbuffer[bufindw]);
  397. SERIAL_ECHOLNPGM("\"");
  398. bufindw= (bufindw + 1)%BUFSIZE;
  399. buflen += 1;
  400. }
  401. }
  402. void enquecommand_P(const char *cmd)
  403. {
  404. if(buflen < BUFSIZE)
  405. {
  406. //this is dangerous if a mixing of serial and this happens
  407. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  408. SERIAL_ECHO_START;
  409. SERIAL_ECHOPGM(MSG_Enqueing);
  410. SERIAL_ECHO(cmdbuffer[bufindw]);
  411. SERIAL_ECHOLNPGM("\"");
  412. bufindw= (bufindw + 1)%BUFSIZE;
  413. buflen += 1;
  414. }
  415. }
  416. void setup_killpin()
  417. {
  418. #if defined(KILL_PIN) && KILL_PIN > -1
  419. SET_INPUT(KILL_PIN);
  420. WRITE(KILL_PIN,HIGH);
  421. #endif
  422. }
  423. // Set home pin
  424. void setup_homepin(void)
  425. {
  426. #if defined(HOME_PIN) && HOME_PIN > -1
  427. SET_INPUT(HOME_PIN);
  428. WRITE(HOME_PIN,HIGH);
  429. #endif
  430. }
  431. void setup_photpin()
  432. {
  433. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  434. SET_OUTPUT(PHOTOGRAPH_PIN);
  435. WRITE(PHOTOGRAPH_PIN, LOW);
  436. #endif
  437. }
  438. void setup_powerhold()
  439. {
  440. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  441. SET_OUTPUT(SUICIDE_PIN);
  442. WRITE(SUICIDE_PIN, HIGH);
  443. #endif
  444. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  445. SET_OUTPUT(PS_ON_PIN);
  446. #if defined(PS_DEFAULT_OFF)
  447. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  448. #else
  449. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  450. #endif
  451. #endif
  452. }
  453. void suicide()
  454. {
  455. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  456. SET_OUTPUT(SUICIDE_PIN);
  457. WRITE(SUICIDE_PIN, LOW);
  458. #endif
  459. }
  460. void servo_init()
  461. {
  462. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  463. servos[0].attach(SERVO0_PIN);
  464. #endif
  465. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  466. servos[1].attach(SERVO1_PIN);
  467. #endif
  468. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  469. servos[2].attach(SERVO2_PIN);
  470. #endif
  471. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  472. servos[3].attach(SERVO3_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 5)
  475. #error "TODO: enter initalisation code for more servos"
  476. #endif
  477. // Set position of Servo Endstops that are defined
  478. #ifdef SERVO_ENDSTOPS
  479. for(int8_t i = 0; i < 3; i++)
  480. {
  481. if(servo_endstops[i] > -1) {
  482. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  483. }
  484. }
  485. #endif
  486. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  487. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  488. servos[servo_endstops[Z_AXIS]].detach();
  489. #endif
  490. }
  491. void setup()
  492. {
  493. setup_killpin();
  494. setup_powerhold();
  495. MYSERIAL.begin(BAUDRATE);
  496. SERIAL_PROTOCOLLNPGM("start");
  497. SERIAL_ECHO_START;
  498. // Check startup - does nothing if bootloader sets MCUSR to 0
  499. byte mcu = MCUSR;
  500. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  501. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  502. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  503. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  504. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  505. MCUSR=0;
  506. SERIAL_ECHOPGM(MSG_MARLIN);
  507. SERIAL_ECHOLNPGM(VERSION_STRING);
  508. #ifdef STRING_VERSION_CONFIG_H
  509. #ifdef STRING_CONFIG_H_AUTHOR
  510. SERIAL_ECHO_START;
  511. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  512. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  513. SERIAL_ECHOPGM(MSG_AUTHOR);
  514. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  515. SERIAL_ECHOPGM("Compiled: ");
  516. SERIAL_ECHOLNPGM(__DATE__);
  517. #endif
  518. #endif
  519. SERIAL_ECHO_START;
  520. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  521. SERIAL_ECHO(freeMemory());
  522. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  523. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  524. for(int8_t i = 0; i < BUFSIZE; i++)
  525. {
  526. fromsd[i] = false;
  527. }
  528. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  529. Config_RetrieveSettings();
  530. tp_init(); // Initialize temperature loop
  531. plan_init(); // Initialize planner;
  532. watchdog_init();
  533. st_init(); // Initialize stepper, this enables interrupts!
  534. setup_photpin();
  535. servo_init();
  536. lcd_init();
  537. _delay_ms(1000); // wait 1sec to display the splash screen
  538. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  539. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  540. #endif
  541. #ifdef DIGIPOT_I2C
  542. digipot_i2c_init();
  543. #endif
  544. #ifdef Z_PROBE_SLED
  545. pinMode(SERVO0_PIN, OUTPUT);
  546. digitalWrite(SERVO0_PIN, LOW); // turn it off
  547. #endif // Z_PROBE_SLED
  548. setup_homepin();
  549. }
  550. void loop()
  551. {
  552. if(buflen < (BUFSIZE-1))
  553. get_command();
  554. #ifdef SDSUPPORT
  555. card.checkautostart(false);
  556. #endif
  557. if(buflen)
  558. {
  559. #ifdef SDSUPPORT
  560. if(card.saving)
  561. {
  562. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  563. {
  564. card.write_command(cmdbuffer[bufindr]);
  565. if(card.logging)
  566. {
  567. process_commands();
  568. }
  569. else
  570. {
  571. SERIAL_PROTOCOLLNPGM(MSG_OK);
  572. previous_millis_ok = millis();
  573. }
  574. }
  575. else
  576. {
  577. card.closefile();
  578. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  579. }
  580. }
  581. else
  582. {
  583. process_commands();
  584. }
  585. #else
  586. process_commands();
  587. #endif //SDSUPPORT
  588. buflen = (buflen-1);
  589. bufindr = (bufindr + 1)%BUFSIZE;
  590. }
  591. //check heater every n milliseconds
  592. manage_heater();
  593. manage_inactivity();
  594. checkHitEndstops();
  595. lcd_update();
  596. }
  597. void get_command()
  598. {
  599. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  600. serial_char = MYSERIAL.read();
  601. if(serial_char == '\n' ||
  602. serial_char == '\r' ||
  603. (serial_char == ':' && comment_mode == false) ||
  604. serial_count >= (MAX_CMD_SIZE - 1) )
  605. {
  606. if(!serial_count) { //if empty line
  607. comment_mode = false; //for new command
  608. return;
  609. }
  610. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  611. if(!comment_mode){
  612. comment_mode = false; //for new command
  613. fromsd[bufindw] = false;
  614. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  615. {
  616. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  617. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  618. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  619. SERIAL_ERROR_START;
  620. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  621. SERIAL_ERRORLN(gcode_LastN);
  622. //Serial.println(gcode_N);
  623. FlushSerialRequestResend();
  624. serial_count = 0;
  625. return;
  626. }
  627. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  628. {
  629. byte checksum = 0;
  630. byte count = 0;
  631. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  632. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  633. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  634. SERIAL_ERROR_START;
  635. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  636. SERIAL_ERRORLN(gcode_LastN);
  637. FlushSerialRequestResend();
  638. serial_count = 0;
  639. return;
  640. }
  641. //if no errors, continue parsing
  642. }
  643. else
  644. {
  645. SERIAL_ERROR_START;
  646. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  647. SERIAL_ERRORLN(gcode_LastN);
  648. FlushSerialRequestResend();
  649. serial_count = 0;
  650. return;
  651. }
  652. gcode_LastN = gcode_N;
  653. //if no errors, continue parsing
  654. }
  655. else // if we don't receive 'N' but still see '*'
  656. {
  657. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  658. {
  659. SERIAL_ERROR_START;
  660. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  661. SERIAL_ERRORLN(gcode_LastN);
  662. serial_count = 0;
  663. return;
  664. }
  665. }
  666. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  667. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  668. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  669. case 0:
  670. case 1:
  671. case 2:
  672. case 3:
  673. if (Stopped == true) {
  674. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  675. LCD_MESSAGEPGM(MSG_STOPPED);
  676. }
  677. break;
  678. default:
  679. break;
  680. }
  681. }
  682. //If command was e-stop process now
  683. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  684. kill();
  685. bufindw = (bufindw + 1)%BUFSIZE;
  686. buflen += 1;
  687. }
  688. serial_count = 0; //clear buffer
  689. }
  690. else
  691. {
  692. if(serial_char == ';') comment_mode = true;
  693. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  694. }
  695. }
  696. #ifdef SDSUPPORT
  697. if(!card.sdprinting || serial_count!=0){
  698. return;
  699. }
  700. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  701. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  702. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  703. static bool stop_buffering=false;
  704. if(buflen==0) stop_buffering=false;
  705. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  706. int16_t n=card.get();
  707. serial_char = (char)n;
  708. if(serial_char == '\n' ||
  709. serial_char == '\r' ||
  710. (serial_char == '#' && comment_mode == false) ||
  711. (serial_char == ':' && comment_mode == false) ||
  712. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  713. {
  714. if(card.eof()){
  715. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  716. stoptime=millis();
  717. char time[30];
  718. unsigned long t=(stoptime-starttime)/1000;
  719. int hours, minutes;
  720. minutes=(t/60)%60;
  721. hours=t/60/60;
  722. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  723. SERIAL_ECHO_START;
  724. SERIAL_ECHOLN(time);
  725. lcd_setstatus(time);
  726. card.printingHasFinished();
  727. card.checkautostart(true);
  728. }
  729. if(serial_char=='#')
  730. stop_buffering=true;
  731. if(!serial_count)
  732. {
  733. comment_mode = false; //for new command
  734. return; //if empty line
  735. }
  736. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  737. // if(!comment_mode){
  738. fromsd[bufindw] = true;
  739. buflen += 1;
  740. bufindw = (bufindw + 1)%BUFSIZE;
  741. // }
  742. comment_mode = false; //for new command
  743. serial_count = 0; //clear buffer
  744. }
  745. else
  746. {
  747. if(serial_char == ';') comment_mode = true;
  748. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  749. }
  750. }
  751. #endif //SDSUPPORT
  752. }
  753. float code_value()
  754. {
  755. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  756. }
  757. long code_value_long()
  758. {
  759. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  760. }
  761. bool code_seen(char code)
  762. {
  763. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  764. return (strchr_pointer != NULL); //Return True if a character was found
  765. }
  766. #define DEFINE_PGM_READ_ANY(type, reader) \
  767. static inline type pgm_read_any(const type *p) \
  768. { return pgm_read_##reader##_near(p); }
  769. DEFINE_PGM_READ_ANY(float, float);
  770. DEFINE_PGM_READ_ANY(signed char, byte);
  771. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  772. static const PROGMEM type array##_P[3] = \
  773. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  774. static inline type array(int axis) \
  775. { return pgm_read_any(&array##_P[axis]); }
  776. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  777. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  778. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  779. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  780. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  781. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  782. #ifdef DUAL_X_CARRIAGE
  783. #if EXTRUDERS == 1 || defined(COREXY) \
  784. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  785. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  786. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  787. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  788. #endif
  789. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  790. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  791. #endif
  792. #define DXC_FULL_CONTROL_MODE 0
  793. #define DXC_AUTO_PARK_MODE 1
  794. #define DXC_DUPLICATION_MODE 2
  795. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  796. static float x_home_pos(int extruder) {
  797. if (extruder == 0)
  798. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  799. else
  800. // In dual carriage mode the extruder offset provides an override of the
  801. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  802. // This allow soft recalibration of the second extruder offset position without firmware reflash
  803. // (through the M218 command).
  804. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  805. }
  806. static int x_home_dir(int extruder) {
  807. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  808. }
  809. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  810. static bool active_extruder_parked = false; // used in mode 1 & 2
  811. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  812. static unsigned long delayed_move_time = 0; // used in mode 1
  813. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  814. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  815. bool extruder_duplication_enabled = false; // used in mode 2
  816. #endif //DUAL_X_CARRIAGE
  817. static void axis_is_at_home(int axis) {
  818. #ifdef DUAL_X_CARRIAGE
  819. if (axis == X_AXIS) {
  820. if (active_extruder != 0) {
  821. current_position[X_AXIS] = x_home_pos(active_extruder);
  822. min_pos[X_AXIS] = X2_MIN_POS;
  823. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  824. return;
  825. }
  826. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  827. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  828. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  829. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  830. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  831. return;
  832. }
  833. }
  834. #endif
  835. #ifdef SCARA
  836. float homeposition[3];
  837. char i;
  838. if (axis < 2)
  839. {
  840. for (i=0; i<3; i++)
  841. {
  842. homeposition[i] = base_home_pos(i);
  843. }
  844. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  845. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  846. // Works out real Homeposition angles using inverse kinematics,
  847. // and calculates homing offset using forward kinematics
  848. calculate_delta(homeposition);
  849. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  850. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  851. for (i=0; i<2; i++)
  852. {
  853. delta[i] -= add_homing[i];
  854. }
  855. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  856. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  857. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  858. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  859. calculate_SCARA_forward_Transform(delta);
  860. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  861. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  862. current_position[axis] = delta[axis];
  863. // SCARA home positions are based on configuration since the actual limits are determined by the
  864. // inverse kinematic transform.
  865. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  866. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  867. }
  868. else
  869. {
  870. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  871. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  872. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  873. }
  874. #else
  875. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  876. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  877. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  878. #endif
  879. }
  880. #ifdef ENABLE_AUTO_BED_LEVELING
  881. #ifdef AUTO_BED_LEVELING_GRID
  882. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  883. {
  884. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  885. planeNormal.debug("planeNormal");
  886. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  887. //bedLevel.debug("bedLevel");
  888. //plan_bed_level_matrix.debug("bed level before");
  889. //vector_3 uncorrected_position = plan_get_position_mm();
  890. //uncorrected_position.debug("position before");
  891. vector_3 corrected_position = plan_get_position();
  892. // corrected_position.debug("position after");
  893. current_position[X_AXIS] = corrected_position.x;
  894. current_position[Y_AXIS] = corrected_position.y;
  895. current_position[Z_AXIS] = corrected_position.z;
  896. // put the bed at 0 so we don't go below it.
  897. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  898. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  899. }
  900. #else // not AUTO_BED_LEVELING_GRID
  901. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  902. plan_bed_level_matrix.set_to_identity();
  903. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  904. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  905. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  906. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  907. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  908. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  909. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  910. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  911. vector_3 corrected_position = plan_get_position();
  912. current_position[X_AXIS] = corrected_position.x;
  913. current_position[Y_AXIS] = corrected_position.y;
  914. current_position[Z_AXIS] = corrected_position.z;
  915. // put the bed at 0 so we don't go below it.
  916. current_position[Z_AXIS] = zprobe_zoffset;
  917. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  918. }
  919. #endif // AUTO_BED_LEVELING_GRID
  920. static void run_z_probe() {
  921. plan_bed_level_matrix.set_to_identity();
  922. feedrate = homing_feedrate[Z_AXIS];
  923. // move down until you find the bed
  924. float zPosition = -10;
  925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  926. st_synchronize();
  927. // we have to let the planner know where we are right now as it is not where we said to go.
  928. zPosition = st_get_position_mm(Z_AXIS);
  929. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  930. // move up the retract distance
  931. zPosition += home_retract_mm(Z_AXIS);
  932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  933. st_synchronize();
  934. // move back down slowly to find bed
  935. feedrate = homing_feedrate[Z_AXIS]/4;
  936. zPosition -= home_retract_mm(Z_AXIS) * 2;
  937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  938. st_synchronize();
  939. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  940. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  941. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  942. }
  943. static void do_blocking_move_to(float x, float y, float z) {
  944. float oldFeedRate = feedrate;
  945. feedrate = homing_feedrate[Z_AXIS];
  946. current_position[Z_AXIS] = z;
  947. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  948. st_synchronize();
  949. feedrate = XY_TRAVEL_SPEED;
  950. current_position[X_AXIS] = x;
  951. current_position[Y_AXIS] = y;
  952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  953. st_synchronize();
  954. feedrate = oldFeedRate;
  955. }
  956. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  957. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  958. }
  959. static void setup_for_endstop_move() {
  960. saved_feedrate = feedrate;
  961. saved_feedmultiply = feedmultiply;
  962. feedmultiply = 100;
  963. previous_millis_cmd = millis();
  964. enable_endstops(true);
  965. }
  966. static void clean_up_after_endstop_move() {
  967. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  968. enable_endstops(false);
  969. #endif
  970. feedrate = saved_feedrate;
  971. feedmultiply = saved_feedmultiply;
  972. previous_millis_cmd = millis();
  973. }
  974. static void engage_z_probe() {
  975. // Engage Z Servo endstop if enabled
  976. #ifdef SERVO_ENDSTOPS
  977. if (servo_endstops[Z_AXIS] > -1) {
  978. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  979. servos[servo_endstops[Z_AXIS]].attach(0);
  980. #endif
  981. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  982. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  983. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  984. servos[servo_endstops[Z_AXIS]].detach();
  985. #endif
  986. }
  987. #endif
  988. }
  989. static void retract_z_probe() {
  990. // Retract Z Servo endstop if enabled
  991. #ifdef SERVO_ENDSTOPS
  992. if (servo_endstops[Z_AXIS] > -1) {
  993. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  994. servos[servo_endstops[Z_AXIS]].attach(0);
  995. #endif
  996. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  997. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  998. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  999. servos[servo_endstops[Z_AXIS]].detach();
  1000. #endif
  1001. }
  1002. #endif
  1003. }
  1004. /// Probe bed height at position (x,y), returns the measured z value
  1005. static float probe_pt(float x, float y, float z_before) {
  1006. // move to right place
  1007. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1008. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1009. #ifndef Z_PROBE_SLED
  1010. engage_z_probe(); // Engage Z Servo endstop if available
  1011. #endif // Z_PROBE_SLED
  1012. run_z_probe();
  1013. float measured_z = current_position[Z_AXIS];
  1014. #ifndef Z_PROBE_SLED
  1015. retract_z_probe();
  1016. #endif // Z_PROBE_SLED
  1017. SERIAL_PROTOCOLPGM(MSG_BED);
  1018. SERIAL_PROTOCOLPGM(" x: ");
  1019. SERIAL_PROTOCOL(x);
  1020. SERIAL_PROTOCOLPGM(" y: ");
  1021. SERIAL_PROTOCOL(y);
  1022. SERIAL_PROTOCOLPGM(" z: ");
  1023. SERIAL_PROTOCOL(measured_z);
  1024. SERIAL_PROTOCOLPGM("\n");
  1025. return measured_z;
  1026. }
  1027. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1028. static void homeaxis(int axis) {
  1029. #define HOMEAXIS_DO(LETTER) \
  1030. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1031. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1032. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1033. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1034. 0) {
  1035. int axis_home_dir = home_dir(axis);
  1036. #ifdef DUAL_X_CARRIAGE
  1037. if (axis == X_AXIS)
  1038. axis_home_dir = x_home_dir(active_extruder);
  1039. #endif
  1040. current_position[axis] = 0;
  1041. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1042. #ifndef Z_PROBE_SLED
  1043. // Engage Servo endstop if enabled
  1044. #ifdef SERVO_ENDSTOPS
  1045. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1046. if (axis==Z_AXIS) {
  1047. engage_z_probe();
  1048. }
  1049. else
  1050. #endif
  1051. if (servo_endstops[axis] > -1) {
  1052. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1053. }
  1054. #endif
  1055. #endif // Z_PROBE_SLED
  1056. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1057. feedrate = homing_feedrate[axis];
  1058. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1059. st_synchronize();
  1060. current_position[axis] = 0;
  1061. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1062. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1063. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1064. st_synchronize();
  1065. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1066. #ifdef DELTA
  1067. feedrate = homing_feedrate[axis]/10;
  1068. #else
  1069. feedrate = homing_feedrate[axis]/2 ;
  1070. #endif
  1071. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1072. st_synchronize();
  1073. #ifdef DELTA
  1074. // retrace by the amount specified in endstop_adj
  1075. if (endstop_adj[axis] * axis_home_dir < 0) {
  1076. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1077. destination[axis] = endstop_adj[axis];
  1078. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1079. st_synchronize();
  1080. }
  1081. #endif
  1082. axis_is_at_home(axis);
  1083. destination[axis] = current_position[axis];
  1084. feedrate = 0.0;
  1085. endstops_hit_on_purpose();
  1086. axis_known_position[axis] = true;
  1087. // Retract Servo endstop if enabled
  1088. #ifdef SERVO_ENDSTOPS
  1089. if (servo_endstops[axis] > -1) {
  1090. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1091. }
  1092. #endif
  1093. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1094. #ifndef Z_PROBE_SLED
  1095. if (axis==Z_AXIS) retract_z_probe();
  1096. #endif
  1097. #endif
  1098. }
  1099. }
  1100. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1101. void refresh_cmd_timeout(void)
  1102. {
  1103. previous_millis_cmd = millis();
  1104. }
  1105. #ifdef FWRETRACT
  1106. void retract(bool retracting, bool swapretract = false) {
  1107. if(retracting && !retracted[active_extruder]) {
  1108. destination[X_AXIS]=current_position[X_AXIS];
  1109. destination[Y_AXIS]=current_position[Y_AXIS];
  1110. destination[Z_AXIS]=current_position[Z_AXIS];
  1111. destination[E_AXIS]=current_position[E_AXIS];
  1112. if (swapretract) {
  1113. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1114. } else {
  1115. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1116. }
  1117. plan_set_e_position(current_position[E_AXIS]);
  1118. float oldFeedrate = feedrate;
  1119. feedrate=retract_feedrate*60;
  1120. retracted[active_extruder]=true;
  1121. prepare_move();
  1122. current_position[Z_AXIS]-=retract_zlift;
  1123. #ifdef DELTA
  1124. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1125. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1126. #else
  1127. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1128. #endif
  1129. prepare_move();
  1130. feedrate = oldFeedrate;
  1131. } else if(!retracting && retracted[active_extruder]) {
  1132. destination[X_AXIS]=current_position[X_AXIS];
  1133. destination[Y_AXIS]=current_position[Y_AXIS];
  1134. destination[Z_AXIS]=current_position[Z_AXIS];
  1135. destination[E_AXIS]=current_position[E_AXIS];
  1136. current_position[Z_AXIS]+=retract_zlift;
  1137. #ifdef DELTA
  1138. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1139. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1140. #else
  1141. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1142. #endif
  1143. //prepare_move();
  1144. if (swapretract) {
  1145. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1146. } else {
  1147. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1148. }
  1149. plan_set_e_position(current_position[E_AXIS]);
  1150. float oldFeedrate = feedrate;
  1151. feedrate=retract_recover_feedrate*60;
  1152. retracted[active_extruder]=false;
  1153. prepare_move();
  1154. feedrate = oldFeedrate;
  1155. }
  1156. } //retract
  1157. #endif //FWRETRACT
  1158. #ifdef Z_PROBE_SLED
  1159. //
  1160. // Method to dock/undock a sled designed by Charles Bell.
  1161. //
  1162. // dock[in] If true, move to MAX_X and engage the electromagnet
  1163. // offset[in] The additional distance to move to adjust docking location
  1164. //
  1165. static void dock_sled(bool dock, int offset=0) {
  1166. int z_loc;
  1167. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1168. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1169. SERIAL_ECHO_START;
  1170. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1171. return;
  1172. }
  1173. if (dock) {
  1174. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1175. current_position[Y_AXIS],
  1176. current_position[Z_AXIS]);
  1177. // turn off magnet
  1178. digitalWrite(SERVO0_PIN, LOW);
  1179. } else {
  1180. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1181. z_loc = Z_RAISE_BEFORE_PROBING;
  1182. else
  1183. z_loc = current_position[Z_AXIS];
  1184. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1185. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1186. // turn on magnet
  1187. digitalWrite(SERVO0_PIN, HIGH);
  1188. }
  1189. }
  1190. #endif
  1191. void process_commands()
  1192. {
  1193. unsigned long codenum; //throw away variable
  1194. char *starpos = NULL;
  1195. #ifdef ENABLE_AUTO_BED_LEVELING
  1196. float x_tmp, y_tmp, z_tmp, real_z;
  1197. #endif
  1198. if(code_seen('G'))
  1199. {
  1200. switch((int)code_value())
  1201. {
  1202. case 0: // G0 -> G1
  1203. case 1: // G1
  1204. if(Stopped == false) {
  1205. get_coordinates(); // For X Y Z E F
  1206. #ifdef FWRETRACT
  1207. if(autoretract_enabled)
  1208. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1209. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1210. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1211. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1212. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1213. retract(!retracted);
  1214. return;
  1215. }
  1216. }
  1217. #endif //FWRETRACT
  1218. prepare_move();
  1219. //ClearToSend();
  1220. }
  1221. break;
  1222. #ifndef SCARA //disable arc support
  1223. case 2: // G2 - CW ARC
  1224. if(Stopped == false) {
  1225. get_arc_coordinates();
  1226. prepare_arc_move(true);
  1227. }
  1228. break;
  1229. case 3: // G3 - CCW ARC
  1230. if(Stopped == false) {
  1231. get_arc_coordinates();
  1232. prepare_arc_move(false);
  1233. }
  1234. break;
  1235. #endif
  1236. case 4: // G4 dwell
  1237. LCD_MESSAGEPGM(MSG_DWELL);
  1238. codenum = 0;
  1239. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1240. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1241. st_synchronize();
  1242. codenum += millis(); // keep track of when we started waiting
  1243. previous_millis_cmd = millis();
  1244. while(millis() < codenum) {
  1245. manage_heater();
  1246. manage_inactivity();
  1247. lcd_update();
  1248. }
  1249. break;
  1250. #ifdef FWRETRACT
  1251. case 10: // G10 retract
  1252. #if EXTRUDERS > 1
  1253. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1254. retract(true,retracted_swap[active_extruder]);
  1255. #else
  1256. retract(true);
  1257. #endif
  1258. break;
  1259. case 11: // G11 retract_recover
  1260. #if EXTRUDERS > 1
  1261. retract(false,retracted_swap[active_extruder]);
  1262. #else
  1263. retract(false);
  1264. #endif
  1265. break;
  1266. #endif //FWRETRACT
  1267. case 28: //G28 Home all Axis one at a time
  1268. #ifdef ENABLE_AUTO_BED_LEVELING
  1269. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1270. #endif //ENABLE_AUTO_BED_LEVELING
  1271. saved_feedrate = feedrate;
  1272. saved_feedmultiply = feedmultiply;
  1273. feedmultiply = 100;
  1274. previous_millis_cmd = millis();
  1275. enable_endstops(true);
  1276. for(int8_t i=0; i < NUM_AXIS; i++) {
  1277. destination[i] = current_position[i];
  1278. }
  1279. feedrate = 0.0;
  1280. #ifdef DELTA
  1281. // A delta can only safely home all axis at the same time
  1282. // all axis have to home at the same time
  1283. // Move all carriages up together until the first endstop is hit.
  1284. current_position[X_AXIS] = 0;
  1285. current_position[Y_AXIS] = 0;
  1286. current_position[Z_AXIS] = 0;
  1287. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1288. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1289. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1290. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1291. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1292. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1293. st_synchronize();
  1294. endstops_hit_on_purpose();
  1295. current_position[X_AXIS] = destination[X_AXIS];
  1296. current_position[Y_AXIS] = destination[Y_AXIS];
  1297. current_position[Z_AXIS] = destination[Z_AXIS];
  1298. // take care of back off and rehome now we are all at the top
  1299. HOMEAXIS(X);
  1300. HOMEAXIS(Y);
  1301. HOMEAXIS(Z);
  1302. calculate_delta(current_position);
  1303. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1304. #else // NOT DELTA
  1305. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1306. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1307. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1308. HOMEAXIS(Z);
  1309. }
  1310. #endif
  1311. #ifdef QUICK_HOME
  1312. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1313. {
  1314. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1315. #ifndef DUAL_X_CARRIAGE
  1316. int x_axis_home_dir = home_dir(X_AXIS);
  1317. #else
  1318. int x_axis_home_dir = x_home_dir(active_extruder);
  1319. extruder_duplication_enabled = false;
  1320. #endif
  1321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1322. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1323. feedrate = homing_feedrate[X_AXIS];
  1324. if(homing_feedrate[Y_AXIS]<feedrate)
  1325. feedrate = homing_feedrate[Y_AXIS];
  1326. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1327. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1328. } else {
  1329. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1330. }
  1331. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1332. st_synchronize();
  1333. axis_is_at_home(X_AXIS);
  1334. axis_is_at_home(Y_AXIS);
  1335. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1336. destination[X_AXIS] = current_position[X_AXIS];
  1337. destination[Y_AXIS] = current_position[Y_AXIS];
  1338. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1339. feedrate = 0.0;
  1340. st_synchronize();
  1341. endstops_hit_on_purpose();
  1342. current_position[X_AXIS] = destination[X_AXIS];
  1343. current_position[Y_AXIS] = destination[Y_AXIS];
  1344. #ifndef SCARA
  1345. current_position[Z_AXIS] = destination[Z_AXIS];
  1346. #endif
  1347. }
  1348. #endif
  1349. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1350. {
  1351. #ifdef DUAL_X_CARRIAGE
  1352. int tmp_extruder = active_extruder;
  1353. extruder_duplication_enabled = false;
  1354. active_extruder = !active_extruder;
  1355. HOMEAXIS(X);
  1356. inactive_extruder_x_pos = current_position[X_AXIS];
  1357. active_extruder = tmp_extruder;
  1358. HOMEAXIS(X);
  1359. // reset state used by the different modes
  1360. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1361. delayed_move_time = 0;
  1362. active_extruder_parked = true;
  1363. #else
  1364. HOMEAXIS(X);
  1365. #endif
  1366. }
  1367. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1368. HOMEAXIS(Y);
  1369. }
  1370. if(code_seen(axis_codes[X_AXIS]))
  1371. {
  1372. if(code_value_long() != 0) {
  1373. #ifdef SCARA
  1374. current_position[X_AXIS]=code_value();
  1375. #else
  1376. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1377. #endif
  1378. }
  1379. }
  1380. if(code_seen(axis_codes[Y_AXIS])) {
  1381. if(code_value_long() != 0) {
  1382. #ifdef SCARA
  1383. current_position[Y_AXIS]=code_value();
  1384. #else
  1385. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1386. #endif
  1387. }
  1388. }
  1389. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1390. #ifndef Z_SAFE_HOMING
  1391. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1392. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1393. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1394. feedrate = max_feedrate[Z_AXIS];
  1395. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1396. st_synchronize();
  1397. #endif
  1398. HOMEAXIS(Z);
  1399. }
  1400. #else // Z Safe mode activated.
  1401. if(home_all_axis) {
  1402. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1403. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1404. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1405. feedrate = XY_TRAVEL_SPEED/60;
  1406. current_position[Z_AXIS] = 0;
  1407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1408. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1409. st_synchronize();
  1410. current_position[X_AXIS] = destination[X_AXIS];
  1411. current_position[Y_AXIS] = destination[Y_AXIS];
  1412. HOMEAXIS(Z);
  1413. }
  1414. // Let's see if X and Y are homed and probe is inside bed area.
  1415. if(code_seen(axis_codes[Z_AXIS])) {
  1416. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1417. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1418. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1419. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1420. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1421. current_position[Z_AXIS] = 0;
  1422. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1423. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1424. feedrate = max_feedrate[Z_AXIS];
  1425. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1426. st_synchronize();
  1427. HOMEAXIS(Z);
  1428. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1429. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1430. SERIAL_ECHO_START;
  1431. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1432. } else {
  1433. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1434. SERIAL_ECHO_START;
  1435. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1436. }
  1437. }
  1438. #endif
  1439. #endif
  1440. if(code_seen(axis_codes[Z_AXIS])) {
  1441. if(code_value_long() != 0) {
  1442. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1443. }
  1444. }
  1445. #ifdef ENABLE_AUTO_BED_LEVELING
  1446. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1447. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1448. }
  1449. #endif
  1450. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1451. #endif // else DELTA
  1452. #ifdef SCARA
  1453. calculate_delta(current_position);
  1454. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1455. #endif // SCARA
  1456. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1457. enable_endstops(false);
  1458. #endif
  1459. feedrate = saved_feedrate;
  1460. feedmultiply = saved_feedmultiply;
  1461. previous_millis_cmd = millis();
  1462. endstops_hit_on_purpose();
  1463. break;
  1464. #ifdef ENABLE_AUTO_BED_LEVELING
  1465. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1466. {
  1467. #if Z_MIN_PIN == -1
  1468. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1469. #endif
  1470. // Prevent user from running a G29 without first homing in X and Y
  1471. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1472. {
  1473. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1474. SERIAL_ECHO_START;
  1475. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1476. break; // abort G29, since we don't know where we are
  1477. }
  1478. #ifdef Z_PROBE_SLED
  1479. dock_sled(false);
  1480. #endif // Z_PROBE_SLED
  1481. st_synchronize();
  1482. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1483. //vector_3 corrected_position = plan_get_position_mm();
  1484. //corrected_position.debug("position before G29");
  1485. plan_bed_level_matrix.set_to_identity();
  1486. vector_3 uncorrected_position = plan_get_position();
  1487. //uncorrected_position.debug("position durring G29");
  1488. current_position[X_AXIS] = uncorrected_position.x;
  1489. current_position[Y_AXIS] = uncorrected_position.y;
  1490. current_position[Z_AXIS] = uncorrected_position.z;
  1491. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1492. setup_for_endstop_move();
  1493. feedrate = homing_feedrate[Z_AXIS];
  1494. #ifdef AUTO_BED_LEVELING_GRID
  1495. // probe at the points of a lattice grid
  1496. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1497. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1498. // solve the plane equation ax + by + d = z
  1499. // A is the matrix with rows [x y 1] for all the probed points
  1500. // B is the vector of the Z positions
  1501. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1502. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1503. // "A" matrix of the linear system of equations
  1504. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1505. // "B" vector of Z points
  1506. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1507. int probePointCounter = 0;
  1508. bool zig = true;
  1509. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1510. {
  1511. int xProbe, xInc;
  1512. if (zig)
  1513. {
  1514. xProbe = LEFT_PROBE_BED_POSITION;
  1515. //xEnd = RIGHT_PROBE_BED_POSITION;
  1516. xInc = xGridSpacing;
  1517. zig = false;
  1518. } else // zag
  1519. {
  1520. xProbe = RIGHT_PROBE_BED_POSITION;
  1521. //xEnd = LEFT_PROBE_BED_POSITION;
  1522. xInc = -xGridSpacing;
  1523. zig = true;
  1524. }
  1525. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1526. {
  1527. float z_before;
  1528. if (probePointCounter == 0)
  1529. {
  1530. // raise before probing
  1531. z_before = Z_RAISE_BEFORE_PROBING;
  1532. } else
  1533. {
  1534. // raise extruder
  1535. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1536. }
  1537. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1538. eqnBVector[probePointCounter] = measured_z;
  1539. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1540. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1541. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1542. probePointCounter++;
  1543. xProbe += xInc;
  1544. }
  1545. }
  1546. clean_up_after_endstop_move();
  1547. // solve lsq problem
  1548. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1549. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1550. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1551. SERIAL_PROTOCOLPGM(" b: ");
  1552. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1553. SERIAL_PROTOCOLPGM(" d: ");
  1554. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1555. set_bed_level_equation_lsq(plane_equation_coefficients);
  1556. free(plane_equation_coefficients);
  1557. #else // AUTO_BED_LEVELING_GRID not defined
  1558. // Probe at 3 arbitrary points
  1559. // probe 1
  1560. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1561. // probe 2
  1562. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1563. // probe 3
  1564. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1565. clean_up_after_endstop_move();
  1566. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1567. #endif // AUTO_BED_LEVELING_GRID
  1568. st_synchronize();
  1569. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1570. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1571. // When the bed is uneven, this height must be corrected.
  1572. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1573. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1574. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1575. z_tmp = current_position[Z_AXIS];
  1576. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1577. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1578. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1579. #ifdef Z_PROBE_SLED
  1580. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1581. #endif // Z_PROBE_SLED
  1582. }
  1583. break;
  1584. #ifndef Z_PROBE_SLED
  1585. case 30: // G30 Single Z Probe
  1586. {
  1587. engage_z_probe(); // Engage Z Servo endstop if available
  1588. st_synchronize();
  1589. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1590. setup_for_endstop_move();
  1591. feedrate = homing_feedrate[Z_AXIS];
  1592. run_z_probe();
  1593. SERIAL_PROTOCOLPGM(MSG_BED);
  1594. SERIAL_PROTOCOLPGM(" X: ");
  1595. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1596. SERIAL_PROTOCOLPGM(" Y: ");
  1597. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1598. SERIAL_PROTOCOLPGM(" Z: ");
  1599. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1600. SERIAL_PROTOCOLPGM("\n");
  1601. clean_up_after_endstop_move();
  1602. retract_z_probe(); // Retract Z Servo endstop if available
  1603. }
  1604. break;
  1605. #else
  1606. case 31: // dock the sled
  1607. dock_sled(true);
  1608. break;
  1609. case 32: // undock the sled
  1610. dock_sled(false);
  1611. break;
  1612. #endif // Z_PROBE_SLED
  1613. #endif // ENABLE_AUTO_BED_LEVELING
  1614. case 90: // G90
  1615. relative_mode = false;
  1616. break;
  1617. case 91: // G91
  1618. relative_mode = true;
  1619. break;
  1620. case 92: // G92
  1621. if(!code_seen(axis_codes[E_AXIS]))
  1622. st_synchronize();
  1623. for(int8_t i=0; i < NUM_AXIS; i++) {
  1624. if(code_seen(axis_codes[i])) {
  1625. if(i == E_AXIS) {
  1626. current_position[i] = code_value();
  1627. plan_set_e_position(current_position[E_AXIS]);
  1628. }
  1629. else {
  1630. #ifdef SCARA
  1631. if (i == X_AXIS || i == Y_AXIS) {
  1632. current_position[i] = code_value();
  1633. }
  1634. else {
  1635. current_position[i] = code_value()+add_homing[i];
  1636. }
  1637. #else
  1638. current_position[i] = code_value()+add_homing[i];
  1639. #endif
  1640. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1641. }
  1642. }
  1643. }
  1644. break;
  1645. }
  1646. }
  1647. else if(code_seen('M'))
  1648. {
  1649. switch( (int)code_value() )
  1650. {
  1651. #ifdef ULTIPANEL
  1652. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1653. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1654. {
  1655. char *src = strchr_pointer + 2;
  1656. codenum = 0;
  1657. bool hasP = false, hasS = false;
  1658. if (code_seen('P')) {
  1659. codenum = code_value(); // milliseconds to wait
  1660. hasP = codenum > 0;
  1661. }
  1662. if (code_seen('S')) {
  1663. codenum = code_value() * 1000; // seconds to wait
  1664. hasS = codenum > 0;
  1665. }
  1666. starpos = strchr(src, '*');
  1667. if (starpos != NULL) *(starpos) = '\0';
  1668. while (*src == ' ') ++src;
  1669. if (!hasP && !hasS && *src != '\0') {
  1670. lcd_setstatus(src);
  1671. } else {
  1672. LCD_MESSAGEPGM(MSG_USERWAIT);
  1673. }
  1674. lcd_ignore_click();
  1675. st_synchronize();
  1676. previous_millis_cmd = millis();
  1677. if (codenum > 0){
  1678. codenum += millis(); // keep track of when we started waiting
  1679. while(millis() < codenum && !lcd_clicked()){
  1680. manage_heater();
  1681. manage_inactivity();
  1682. lcd_update();
  1683. }
  1684. lcd_ignore_click(false);
  1685. }else{
  1686. if (!lcd_detected())
  1687. break;
  1688. while(!lcd_clicked()){
  1689. manage_heater();
  1690. manage_inactivity();
  1691. lcd_update();
  1692. }
  1693. }
  1694. if (IS_SD_PRINTING)
  1695. LCD_MESSAGEPGM(MSG_RESUMING);
  1696. else
  1697. LCD_MESSAGEPGM(WELCOME_MSG);
  1698. }
  1699. break;
  1700. #endif
  1701. case 17:
  1702. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1703. enable_x();
  1704. enable_y();
  1705. enable_z();
  1706. enable_e0();
  1707. enable_e1();
  1708. enable_e2();
  1709. break;
  1710. #ifdef SDSUPPORT
  1711. case 20: // M20 - list SD card
  1712. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1713. card.ls();
  1714. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1715. break;
  1716. case 21: // M21 - init SD card
  1717. card.initsd();
  1718. break;
  1719. case 22: //M22 - release SD card
  1720. card.release();
  1721. break;
  1722. case 23: //M23 - Select file
  1723. starpos = (strchr(strchr_pointer + 4,'*'));
  1724. if(starpos!=NULL)
  1725. *(starpos)='\0';
  1726. card.openFile(strchr_pointer + 4,true);
  1727. break;
  1728. case 24: //M24 - Start SD print
  1729. card.startFileprint();
  1730. starttime=millis();
  1731. break;
  1732. case 25: //M25 - Pause SD print
  1733. card.pauseSDPrint();
  1734. break;
  1735. case 26: //M26 - Set SD index
  1736. if(card.cardOK && code_seen('S')) {
  1737. card.setIndex(code_value_long());
  1738. }
  1739. break;
  1740. case 27: //M27 - Get SD status
  1741. card.getStatus();
  1742. break;
  1743. case 28: //M28 - Start SD write
  1744. starpos = (strchr(strchr_pointer + 4,'*'));
  1745. if(starpos != NULL){
  1746. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1747. strchr_pointer = strchr(npos,' ') + 1;
  1748. *(starpos) = '\0';
  1749. }
  1750. card.openFile(strchr_pointer+4,false);
  1751. break;
  1752. case 29: //M29 - Stop SD write
  1753. //processed in write to file routine above
  1754. //card,saving = false;
  1755. break;
  1756. case 30: //M30 <filename> Delete File
  1757. if (card.cardOK){
  1758. card.closefile();
  1759. starpos = (strchr(strchr_pointer + 4,'*'));
  1760. if(starpos != NULL){
  1761. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1762. strchr_pointer = strchr(npos,' ') + 1;
  1763. *(starpos) = '\0';
  1764. }
  1765. card.removeFile(strchr_pointer + 4);
  1766. }
  1767. break;
  1768. case 32: //M32 - Select file and start SD print
  1769. {
  1770. if(card.sdprinting) {
  1771. st_synchronize();
  1772. }
  1773. starpos = (strchr(strchr_pointer + 4,'*'));
  1774. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1775. if(namestartpos==NULL)
  1776. {
  1777. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1778. }
  1779. else
  1780. namestartpos++; //to skip the '!'
  1781. if(starpos!=NULL)
  1782. *(starpos)='\0';
  1783. bool call_procedure=(code_seen('P'));
  1784. if(strchr_pointer>namestartpos)
  1785. call_procedure=false; //false alert, 'P' found within filename
  1786. if( card.cardOK )
  1787. {
  1788. card.openFile(namestartpos,true,!call_procedure);
  1789. if(code_seen('S'))
  1790. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1791. card.setIndex(code_value_long());
  1792. card.startFileprint();
  1793. if(!call_procedure)
  1794. starttime=millis(); //procedure calls count as normal print time.
  1795. }
  1796. } break;
  1797. case 928: //M928 - Start SD write
  1798. starpos = (strchr(strchr_pointer + 5,'*'));
  1799. if(starpos != NULL){
  1800. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1801. strchr_pointer = strchr(npos,' ') + 1;
  1802. *(starpos) = '\0';
  1803. }
  1804. card.openLogFile(strchr_pointer+5);
  1805. break;
  1806. #endif //SDSUPPORT
  1807. case 31: //M31 take time since the start of the SD print or an M109 command
  1808. {
  1809. stoptime=millis();
  1810. char time[30];
  1811. unsigned long t=(stoptime-starttime)/1000;
  1812. int sec,min;
  1813. min=t/60;
  1814. sec=t%60;
  1815. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1816. SERIAL_ECHO_START;
  1817. SERIAL_ECHOLN(time);
  1818. lcd_setstatus(time);
  1819. autotempShutdown();
  1820. }
  1821. break;
  1822. case 42: //M42 -Change pin status via gcode
  1823. if (code_seen('S'))
  1824. {
  1825. int pin_status = code_value();
  1826. int pin_number = LED_PIN;
  1827. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1828. pin_number = code_value();
  1829. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1830. {
  1831. if (sensitive_pins[i] == pin_number)
  1832. {
  1833. pin_number = -1;
  1834. break;
  1835. }
  1836. }
  1837. #if defined(FAN_PIN) && FAN_PIN > -1
  1838. if (pin_number == FAN_PIN)
  1839. fanSpeed = pin_status;
  1840. #endif
  1841. if (pin_number > -1)
  1842. {
  1843. pinMode(pin_number, OUTPUT);
  1844. digitalWrite(pin_number, pin_status);
  1845. analogWrite(pin_number, pin_status);
  1846. }
  1847. }
  1848. break;
  1849. // M48 Z-Probe repeatability measurement function.
  1850. //
  1851. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  1852. //
  1853. // This function assumes the bed has been homed. Specificaly, that a G28 command
  1854. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  1855. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  1856. // regenerated.
  1857. //
  1858. // The number of samples will default to 10 if not specified. You can use upper or lower case
  1859. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  1860. // N for its communication protocol and will get horribly confused if you send it a capital N.
  1861. //
  1862. #ifdef ENABLE_AUTO_BED_LEVELING
  1863. #ifdef Z_PROBE_REPEATABILITY_TEST
  1864. case 48: // M48 Z-Probe repeatability
  1865. {
  1866. #if Z_MIN_PIN == -1
  1867. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  1868. #endif
  1869. double sum=0.0;
  1870. double mean=0.0;
  1871. double sigma=0.0;
  1872. double sample_set[50];
  1873. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  1874. double X_current, Y_current, Z_current;
  1875. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  1876. if (code_seen('V') || code_seen('v')) {
  1877. verbose_level = code_value();
  1878. if (verbose_level<0 || verbose_level>4 ) {
  1879. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  1880. goto Sigma_Exit;
  1881. }
  1882. }
  1883. if (verbose_level > 0) {
  1884. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  1885. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  1886. }
  1887. if (code_seen('n')) {
  1888. n_samples = code_value();
  1889. if (n_samples<4 || n_samples>50 ) {
  1890. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  1891. goto Sigma_Exit;
  1892. }
  1893. }
  1894. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  1895. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  1896. Z_current = st_get_position_mm(Z_AXIS);
  1897. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1898. ext_position = st_get_position_mm(E_AXIS);
  1899. if (code_seen('E') || code_seen('e') )
  1900. engage_probe_for_each_reading++;
  1901. if (code_seen('X') || code_seen('x') ) {
  1902. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  1903. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  1904. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  1905. goto Sigma_Exit;
  1906. }
  1907. }
  1908. if (code_seen('Y') || code_seen('y') ) {
  1909. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1910. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  1911. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  1912. goto Sigma_Exit;
  1913. }
  1914. }
  1915. if (code_seen('L') || code_seen('l') ) {
  1916. n_legs = code_value();
  1917. if ( n_legs==1 )
  1918. n_legs = 2;
  1919. if ( n_legs<0 || n_legs>15 ) {
  1920. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  1921. goto Sigma_Exit;
  1922. }
  1923. }
  1924. //
  1925. // Do all the preliminary setup work. First raise the probe.
  1926. //
  1927. st_synchronize();
  1928. plan_bed_level_matrix.set_to_identity();
  1929. plan_buffer_line( X_current, Y_current, Z_start_location,
  1930. ext_position,
  1931. homing_feedrate[Z_AXIS]/60,
  1932. active_extruder);
  1933. st_synchronize();
  1934. //
  1935. // Now get everything to the specified probe point So we can safely do a probe to
  1936. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  1937. // use that as a starting point for each probe.
  1938. //
  1939. if (verbose_level > 2)
  1940. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  1941. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1942. ext_position,
  1943. homing_feedrate[X_AXIS]/60,
  1944. active_extruder);
  1945. st_synchronize();
  1946. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  1947. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  1948. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1949. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  1950. //
  1951. // OK, do the inital probe to get us close to the bed.
  1952. // Then retrace the right amount and use that in subsequent probes
  1953. //
  1954. engage_z_probe();
  1955. setup_for_endstop_move();
  1956. run_z_probe();
  1957. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1958. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  1959. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  1960. ext_position,
  1961. homing_feedrate[X_AXIS]/60,
  1962. active_extruder);
  1963. st_synchronize();
  1964. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  1965. if (engage_probe_for_each_reading)
  1966. retract_z_probe();
  1967. for( n=0; n<n_samples; n++) {
  1968. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  1969. if ( n_legs) {
  1970. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  1971. int rotational_direction, l;
  1972. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  1973. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  1974. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  1975. //SERIAL_ECHOPAIR("starting radius: ",radius);
  1976. //SERIAL_ECHOPAIR(" theta: ",theta);
  1977. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  1978. //SERIAL_PROTOCOLLNPGM("");
  1979. for( l=0; l<n_legs-1; l++) {
  1980. if (rotational_direction==1)
  1981. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1982. else
  1983. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  1984. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  1985. if ( radius<0.0 )
  1986. radius = -radius;
  1987. X_current = X_probe_location + cos(theta) * radius;
  1988. Y_current = Y_probe_location + sin(theta) * radius;
  1989. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  1990. X_current = X_MIN_POS;
  1991. if ( X_current>X_MAX_POS)
  1992. X_current = X_MAX_POS;
  1993. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  1994. Y_current = Y_MIN_POS;
  1995. if ( Y_current>Y_MAX_POS)
  1996. Y_current = Y_MAX_POS;
  1997. if (verbose_level>3 ) {
  1998. SERIAL_ECHOPAIR("x: ", X_current);
  1999. SERIAL_ECHOPAIR("y: ", Y_current);
  2000. SERIAL_PROTOCOLLNPGM("");
  2001. }
  2002. do_blocking_move_to( X_current, Y_current, Z_current );
  2003. }
  2004. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2005. }
  2006. if (engage_probe_for_each_reading) {
  2007. engage_z_probe();
  2008. delay(1000);
  2009. }
  2010. setup_for_endstop_move();
  2011. run_z_probe();
  2012. sample_set[n] = current_position[Z_AXIS];
  2013. //
  2014. // Get the current mean for the data points we have so far
  2015. //
  2016. sum=0.0;
  2017. for( j=0; j<=n; j++) {
  2018. sum = sum + sample_set[j];
  2019. }
  2020. mean = sum / (double (n+1));
  2021. //
  2022. // Now, use that mean to calculate the standard deviation for the
  2023. // data points we have so far
  2024. //
  2025. sum=0.0;
  2026. for( j=0; j<=n; j++) {
  2027. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2028. }
  2029. sigma = sqrt( sum / (double (n+1)) );
  2030. if (verbose_level > 1) {
  2031. SERIAL_PROTOCOL(n+1);
  2032. SERIAL_PROTOCOL(" of ");
  2033. SERIAL_PROTOCOL(n_samples);
  2034. SERIAL_PROTOCOLPGM(" z: ");
  2035. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2036. }
  2037. if (verbose_level > 2) {
  2038. SERIAL_PROTOCOL(" mean: ");
  2039. SERIAL_PROTOCOL_F(mean,6);
  2040. SERIAL_PROTOCOL(" sigma: ");
  2041. SERIAL_PROTOCOL_F(sigma,6);
  2042. }
  2043. if (verbose_level > 0)
  2044. SERIAL_PROTOCOLPGM("\n");
  2045. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2046. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2047. st_synchronize();
  2048. if (engage_probe_for_each_reading) {
  2049. retract_z_probe();
  2050. delay(1000);
  2051. }
  2052. }
  2053. retract_z_probe();
  2054. delay(1000);
  2055. clean_up_after_endstop_move();
  2056. // enable_endstops(true);
  2057. if (verbose_level > 0) {
  2058. SERIAL_PROTOCOLPGM("Mean: ");
  2059. SERIAL_PROTOCOL_F(mean, 6);
  2060. SERIAL_PROTOCOLPGM("\n");
  2061. }
  2062. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2063. SERIAL_PROTOCOL_F(sigma, 6);
  2064. SERIAL_PROTOCOLPGM("\n\n");
  2065. Sigma_Exit:
  2066. break;
  2067. }
  2068. #endif // Z_PROBE_REPEATABILITY_TEST
  2069. #endif // ENABLE_AUTO_BED_LEVELING
  2070. case 104: // M104
  2071. if(setTargetedHotend(104)){
  2072. break;
  2073. }
  2074. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2075. #ifdef DUAL_X_CARRIAGE
  2076. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2077. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2078. #endif
  2079. setWatch();
  2080. break;
  2081. case 112: // M112 -Emergency Stop
  2082. kill();
  2083. break;
  2084. case 140: // M140 set bed temp
  2085. if (code_seen('S')) setTargetBed(code_value());
  2086. break;
  2087. case 105 : // M105
  2088. if(setTargetedHotend(105)){
  2089. break;
  2090. }
  2091. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2092. SERIAL_PROTOCOLPGM("ok T:");
  2093. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2094. SERIAL_PROTOCOLPGM(" /");
  2095. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2096. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2097. SERIAL_PROTOCOLPGM(" B:");
  2098. SERIAL_PROTOCOL_F(degBed(),1);
  2099. SERIAL_PROTOCOLPGM(" /");
  2100. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2101. #endif //TEMP_BED_PIN
  2102. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2103. SERIAL_PROTOCOLPGM(" T");
  2104. SERIAL_PROTOCOL(cur_extruder);
  2105. SERIAL_PROTOCOLPGM(":");
  2106. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2107. SERIAL_PROTOCOLPGM(" /");
  2108. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2109. }
  2110. #else
  2111. SERIAL_ERROR_START;
  2112. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2113. #endif
  2114. SERIAL_PROTOCOLPGM(" @:");
  2115. #ifdef EXTRUDER_WATTS
  2116. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2117. SERIAL_PROTOCOLPGM("W");
  2118. #else
  2119. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2120. #endif
  2121. SERIAL_PROTOCOLPGM(" B@:");
  2122. #ifdef BED_WATTS
  2123. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2124. SERIAL_PROTOCOLPGM("W");
  2125. #else
  2126. SERIAL_PROTOCOL(getHeaterPower(-1));
  2127. #endif
  2128. #ifdef SHOW_TEMP_ADC_VALUES
  2129. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2130. SERIAL_PROTOCOLPGM(" ADC B:");
  2131. SERIAL_PROTOCOL_F(degBed(),1);
  2132. SERIAL_PROTOCOLPGM("C->");
  2133. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2134. #endif
  2135. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2136. SERIAL_PROTOCOLPGM(" T");
  2137. SERIAL_PROTOCOL(cur_extruder);
  2138. SERIAL_PROTOCOLPGM(":");
  2139. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2140. SERIAL_PROTOCOLPGM("C->");
  2141. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2142. }
  2143. #endif
  2144. SERIAL_PROTOCOLLN("");
  2145. return;
  2146. break;
  2147. case 109:
  2148. {// M109 - Wait for extruder heater to reach target.
  2149. if(setTargetedHotend(109)){
  2150. break;
  2151. }
  2152. LCD_MESSAGEPGM(MSG_HEATING);
  2153. #ifdef AUTOTEMP
  2154. autotemp_enabled=false;
  2155. #endif
  2156. if (code_seen('S')) {
  2157. setTargetHotend(code_value(), tmp_extruder);
  2158. #ifdef DUAL_X_CARRIAGE
  2159. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2160. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2161. #endif
  2162. CooldownNoWait = true;
  2163. } else if (code_seen('R')) {
  2164. setTargetHotend(code_value(), tmp_extruder);
  2165. #ifdef DUAL_X_CARRIAGE
  2166. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2167. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2168. #endif
  2169. CooldownNoWait = false;
  2170. }
  2171. #ifdef AUTOTEMP
  2172. if (code_seen('S')) autotemp_min=code_value();
  2173. if (code_seen('B')) autotemp_max=code_value();
  2174. if (code_seen('F'))
  2175. {
  2176. autotemp_factor=code_value();
  2177. autotemp_enabled=true;
  2178. }
  2179. #endif
  2180. setWatch();
  2181. codenum = millis();
  2182. /* See if we are heating up or cooling down */
  2183. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2184. cancel_heatup = false;
  2185. #ifdef TEMP_RESIDENCY_TIME
  2186. long residencyStart;
  2187. residencyStart = -1;
  2188. /* continue to loop until we have reached the target temp
  2189. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2190. while((!cancel_heatup)&&((residencyStart == -1) ||
  2191. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2192. #else
  2193. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2194. #endif //TEMP_RESIDENCY_TIME
  2195. if( (millis() - codenum) > 1000UL )
  2196. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2197. SERIAL_PROTOCOLPGM("T:");
  2198. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2199. SERIAL_PROTOCOLPGM(" E:");
  2200. SERIAL_PROTOCOL((int)tmp_extruder);
  2201. #ifdef TEMP_RESIDENCY_TIME
  2202. SERIAL_PROTOCOLPGM(" W:");
  2203. if(residencyStart > -1)
  2204. {
  2205. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2206. SERIAL_PROTOCOLLN( codenum );
  2207. }
  2208. else
  2209. {
  2210. SERIAL_PROTOCOLLN( "?" );
  2211. }
  2212. #else
  2213. SERIAL_PROTOCOLLN("");
  2214. #endif
  2215. codenum = millis();
  2216. }
  2217. manage_heater();
  2218. manage_inactivity();
  2219. lcd_update();
  2220. #ifdef TEMP_RESIDENCY_TIME
  2221. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2222. or when current temp falls outside the hysteresis after target temp was reached */
  2223. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2224. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2225. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2226. {
  2227. residencyStart = millis();
  2228. }
  2229. #endif //TEMP_RESIDENCY_TIME
  2230. }
  2231. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2232. starttime=millis();
  2233. previous_millis_cmd = millis();
  2234. }
  2235. break;
  2236. case 190: // M190 - Wait for bed heater to reach target.
  2237. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2238. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2239. if (code_seen('S')) {
  2240. setTargetBed(code_value());
  2241. CooldownNoWait = true;
  2242. } else if (code_seen('R')) {
  2243. setTargetBed(code_value());
  2244. CooldownNoWait = false;
  2245. }
  2246. codenum = millis();
  2247. cancel_heatup = false;
  2248. target_direction = isHeatingBed(); // true if heating, false if cooling
  2249. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2250. {
  2251. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2252. {
  2253. float tt=degHotend(active_extruder);
  2254. SERIAL_PROTOCOLPGM("T:");
  2255. SERIAL_PROTOCOL(tt);
  2256. SERIAL_PROTOCOLPGM(" E:");
  2257. SERIAL_PROTOCOL((int)active_extruder);
  2258. SERIAL_PROTOCOLPGM(" B:");
  2259. SERIAL_PROTOCOL_F(degBed(),1);
  2260. SERIAL_PROTOCOLLN("");
  2261. codenum = millis();
  2262. }
  2263. manage_heater();
  2264. manage_inactivity();
  2265. lcd_update();
  2266. }
  2267. LCD_MESSAGEPGM(MSG_BED_DONE);
  2268. previous_millis_cmd = millis();
  2269. #endif
  2270. break;
  2271. #if defined(FAN_PIN) && FAN_PIN > -1
  2272. case 106: //M106 Fan On
  2273. if (code_seen('S')){
  2274. fanSpeed=constrain(code_value(),0,255);
  2275. }
  2276. else {
  2277. fanSpeed=255;
  2278. }
  2279. break;
  2280. case 107: //M107 Fan Off
  2281. fanSpeed = 0;
  2282. break;
  2283. #endif //FAN_PIN
  2284. #ifdef BARICUDA
  2285. // PWM for HEATER_1_PIN
  2286. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2287. case 126: //M126 valve open
  2288. if (code_seen('S')){
  2289. ValvePressure=constrain(code_value(),0,255);
  2290. }
  2291. else {
  2292. ValvePressure=255;
  2293. }
  2294. break;
  2295. case 127: //M127 valve closed
  2296. ValvePressure = 0;
  2297. break;
  2298. #endif //HEATER_1_PIN
  2299. // PWM for HEATER_2_PIN
  2300. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2301. case 128: //M128 valve open
  2302. if (code_seen('S')){
  2303. EtoPPressure=constrain(code_value(),0,255);
  2304. }
  2305. else {
  2306. EtoPPressure=255;
  2307. }
  2308. break;
  2309. case 129: //M129 valve closed
  2310. EtoPPressure = 0;
  2311. break;
  2312. #endif //HEATER_2_PIN
  2313. #endif
  2314. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2315. case 80: // M80 - Turn on Power Supply
  2316. SET_OUTPUT(PS_ON_PIN); //GND
  2317. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2318. // If you have a switch on suicide pin, this is useful
  2319. // if you want to start another print with suicide feature after
  2320. // a print without suicide...
  2321. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2322. SET_OUTPUT(SUICIDE_PIN);
  2323. WRITE(SUICIDE_PIN, HIGH);
  2324. #endif
  2325. #ifdef ULTIPANEL
  2326. powersupply = true;
  2327. LCD_MESSAGEPGM(WELCOME_MSG);
  2328. lcd_update();
  2329. #endif
  2330. break;
  2331. #endif
  2332. case 81: // M81 - Turn off Power Supply
  2333. disable_heater();
  2334. st_synchronize();
  2335. disable_e0();
  2336. disable_e1();
  2337. disable_e2();
  2338. finishAndDisableSteppers();
  2339. fanSpeed = 0;
  2340. delay(1000); // Wait a little before to switch off
  2341. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2342. st_synchronize();
  2343. suicide();
  2344. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2345. SET_OUTPUT(PS_ON_PIN);
  2346. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2347. #endif
  2348. #ifdef ULTIPANEL
  2349. powersupply = false;
  2350. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  2351. lcd_update();
  2352. #endif
  2353. break;
  2354. case 82:
  2355. axis_relative_modes[3] = false;
  2356. break;
  2357. case 83:
  2358. axis_relative_modes[3] = true;
  2359. break;
  2360. case 18: //compatibility
  2361. case 84: // M84
  2362. if(code_seen('S')){
  2363. stepper_inactive_time = code_value() * 1000;
  2364. }
  2365. else
  2366. {
  2367. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2368. if(all_axis)
  2369. {
  2370. st_synchronize();
  2371. disable_e0();
  2372. disable_e1();
  2373. disable_e2();
  2374. finishAndDisableSteppers();
  2375. }
  2376. else
  2377. {
  2378. st_synchronize();
  2379. if(code_seen('X')) disable_x();
  2380. if(code_seen('Y')) disable_y();
  2381. if(code_seen('Z')) disable_z();
  2382. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2383. if(code_seen('E')) {
  2384. disable_e0();
  2385. disable_e1();
  2386. disable_e2();
  2387. }
  2388. #endif
  2389. }
  2390. }
  2391. break;
  2392. case 85: // M85
  2393. if(code_seen('S')) {
  2394. max_inactive_time = code_value() * 1000;
  2395. }
  2396. break;
  2397. case 92: // M92
  2398. for(int8_t i=0; i < NUM_AXIS; i++)
  2399. {
  2400. if(code_seen(axis_codes[i]))
  2401. {
  2402. if(i == 3) { // E
  2403. float value = code_value();
  2404. if(value < 20.0) {
  2405. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2406. max_e_jerk *= factor;
  2407. max_feedrate[i] *= factor;
  2408. axis_steps_per_sqr_second[i] *= factor;
  2409. }
  2410. axis_steps_per_unit[i] = value;
  2411. }
  2412. else {
  2413. axis_steps_per_unit[i] = code_value();
  2414. }
  2415. }
  2416. }
  2417. break;
  2418. case 115: // M115
  2419. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2420. break;
  2421. case 117: // M117 display message
  2422. starpos = (strchr(strchr_pointer + 5,'*'));
  2423. if(starpos!=NULL)
  2424. *(starpos)='\0';
  2425. lcd_setstatus(strchr_pointer + 5);
  2426. break;
  2427. case 114: // M114
  2428. SERIAL_PROTOCOLPGM("X:");
  2429. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2430. SERIAL_PROTOCOLPGM(" Y:");
  2431. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2432. SERIAL_PROTOCOLPGM(" Z:");
  2433. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2434. SERIAL_PROTOCOLPGM(" E:");
  2435. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2436. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2437. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2438. SERIAL_PROTOCOLPGM(" Y:");
  2439. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2440. SERIAL_PROTOCOLPGM(" Z:");
  2441. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2442. SERIAL_PROTOCOLLN("");
  2443. #ifdef SCARA
  2444. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2445. SERIAL_PROTOCOL(delta[X_AXIS]);
  2446. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2447. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2448. SERIAL_PROTOCOLLN("");
  2449. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2450. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2451. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2452. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2453. SERIAL_PROTOCOLLN("");
  2454. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2455. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2456. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2457. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2458. SERIAL_PROTOCOLLN("");
  2459. SERIAL_PROTOCOLLN("");
  2460. #endif
  2461. break;
  2462. case 120: // M120
  2463. enable_endstops(false) ;
  2464. break;
  2465. case 121: // M121
  2466. enable_endstops(true) ;
  2467. break;
  2468. case 119: // M119
  2469. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2470. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2471. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2472. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2473. #endif
  2474. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2475. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2476. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2477. #endif
  2478. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2479. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2480. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2481. #endif
  2482. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2483. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2484. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2485. #endif
  2486. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2487. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2488. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2489. #endif
  2490. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2491. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2492. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2493. #endif
  2494. break;
  2495. //TODO: update for all axis, use for loop
  2496. #ifdef BLINKM
  2497. case 150: // M150
  2498. {
  2499. byte red;
  2500. byte grn;
  2501. byte blu;
  2502. if(code_seen('R')) red = code_value();
  2503. if(code_seen('U')) grn = code_value();
  2504. if(code_seen('B')) blu = code_value();
  2505. SendColors(red,grn,blu);
  2506. }
  2507. break;
  2508. #endif //BLINKM
  2509. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2510. {
  2511. tmp_extruder = active_extruder;
  2512. if(code_seen('T')) {
  2513. tmp_extruder = code_value();
  2514. if(tmp_extruder >= EXTRUDERS) {
  2515. SERIAL_ECHO_START;
  2516. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2517. break;
  2518. }
  2519. }
  2520. float area = .0;
  2521. if(code_seen('D')) {
  2522. float diameter = (float)code_value();
  2523. if (diameter == 0.0) {
  2524. // setting any extruder filament size disables volumetric on the assumption that
  2525. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2526. // for all extruders
  2527. volumetric_enabled = false;
  2528. } else {
  2529. filament_size[tmp_extruder] = (float)code_value();
  2530. // make sure all extruders have some sane value for the filament size
  2531. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2532. #if EXTRUDERS > 1
  2533. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2534. #if EXTRUDERS > 2
  2535. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2536. #endif
  2537. #endif
  2538. volumetric_enabled = true;
  2539. }
  2540. } else {
  2541. //reserved for setting filament diameter via UFID or filament measuring device
  2542. break;
  2543. }
  2544. calculate_volumetric_multipliers();
  2545. }
  2546. break;
  2547. case 201: // M201
  2548. for(int8_t i=0; i < NUM_AXIS; i++)
  2549. {
  2550. if(code_seen(axis_codes[i]))
  2551. {
  2552. max_acceleration_units_per_sq_second[i] = code_value();
  2553. }
  2554. }
  2555. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2556. reset_acceleration_rates();
  2557. break;
  2558. #if 0 // Not used for Sprinter/grbl gen6
  2559. case 202: // M202
  2560. for(int8_t i=0; i < NUM_AXIS; i++) {
  2561. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2562. }
  2563. break;
  2564. #endif
  2565. case 203: // M203 max feedrate mm/sec
  2566. for(int8_t i=0; i < NUM_AXIS; i++) {
  2567. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2568. }
  2569. break;
  2570. case 204: // M204 acclereration S normal moves T filmanent only moves
  2571. {
  2572. if(code_seen('S')) acceleration = code_value() ;
  2573. if(code_seen('T')) retract_acceleration = code_value() ;
  2574. }
  2575. break;
  2576. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2577. {
  2578. if(code_seen('S')) minimumfeedrate = code_value();
  2579. if(code_seen('T')) mintravelfeedrate = code_value();
  2580. if(code_seen('B')) minsegmenttime = code_value() ;
  2581. if(code_seen('X')) max_xy_jerk = code_value() ;
  2582. if(code_seen('Z')) max_z_jerk = code_value() ;
  2583. if(code_seen('E')) max_e_jerk = code_value() ;
  2584. }
  2585. break;
  2586. case 206: // M206 additional homing offset
  2587. for(int8_t i=0; i < 3; i++)
  2588. {
  2589. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2590. }
  2591. #ifdef SCARA
  2592. if(code_seen('T')) // Theta
  2593. {
  2594. add_homing[X_AXIS] = code_value() ;
  2595. }
  2596. if(code_seen('P')) // Psi
  2597. {
  2598. add_homing[Y_AXIS] = code_value() ;
  2599. }
  2600. #endif
  2601. break;
  2602. #ifdef DELTA
  2603. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2604. if(code_seen('L')) {
  2605. delta_diagonal_rod= code_value();
  2606. }
  2607. if(code_seen('R')) {
  2608. delta_radius= code_value();
  2609. }
  2610. if(code_seen('S')) {
  2611. delta_segments_per_second= code_value();
  2612. }
  2613. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2614. break;
  2615. case 666: // M666 set delta endstop adjustemnt
  2616. for(int8_t i=0; i < 3; i++)
  2617. {
  2618. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2619. }
  2620. break;
  2621. #endif
  2622. #ifdef FWRETRACT
  2623. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2624. {
  2625. if(code_seen('S'))
  2626. {
  2627. retract_length = code_value() ;
  2628. }
  2629. if(code_seen('F'))
  2630. {
  2631. retract_feedrate = code_value()/60 ;
  2632. }
  2633. if(code_seen('Z'))
  2634. {
  2635. retract_zlift = code_value() ;
  2636. }
  2637. }break;
  2638. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2639. {
  2640. if(code_seen('S'))
  2641. {
  2642. retract_recover_length = code_value() ;
  2643. }
  2644. if(code_seen('F'))
  2645. {
  2646. retract_recover_feedrate = code_value()/60 ;
  2647. }
  2648. }break;
  2649. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2650. {
  2651. if(code_seen('S'))
  2652. {
  2653. int t= code_value() ;
  2654. switch(t)
  2655. {
  2656. case 0:
  2657. {
  2658. autoretract_enabled=false;
  2659. retracted[0]=false;
  2660. #if EXTRUDERS > 1
  2661. retracted[1]=false;
  2662. #endif
  2663. #if EXTRUDERS > 2
  2664. retracted[2]=false;
  2665. #endif
  2666. }break;
  2667. case 1:
  2668. {
  2669. autoretract_enabled=true;
  2670. retracted[0]=false;
  2671. #if EXTRUDERS > 1
  2672. retracted[1]=false;
  2673. #endif
  2674. #if EXTRUDERS > 2
  2675. retracted[2]=false;
  2676. #endif
  2677. }break;
  2678. default:
  2679. SERIAL_ECHO_START;
  2680. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2681. SERIAL_ECHO(cmdbuffer[bufindr]);
  2682. SERIAL_ECHOLNPGM("\"");
  2683. }
  2684. }
  2685. }break;
  2686. #endif // FWRETRACT
  2687. #if EXTRUDERS > 1
  2688. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2689. {
  2690. if(setTargetedHotend(218)){
  2691. break;
  2692. }
  2693. if(code_seen('X'))
  2694. {
  2695. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2696. }
  2697. if(code_seen('Y'))
  2698. {
  2699. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2700. }
  2701. #ifdef DUAL_X_CARRIAGE
  2702. if(code_seen('Z'))
  2703. {
  2704. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2705. }
  2706. #endif
  2707. SERIAL_ECHO_START;
  2708. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2709. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2710. {
  2711. SERIAL_ECHO(" ");
  2712. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2713. SERIAL_ECHO(",");
  2714. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2715. #ifdef DUAL_X_CARRIAGE
  2716. SERIAL_ECHO(",");
  2717. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2718. #endif
  2719. }
  2720. SERIAL_ECHOLN("");
  2721. }break;
  2722. #endif
  2723. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2724. {
  2725. if(code_seen('S'))
  2726. {
  2727. feedmultiply = code_value() ;
  2728. }
  2729. }
  2730. break;
  2731. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2732. {
  2733. if(code_seen('S'))
  2734. {
  2735. int tmp_code = code_value();
  2736. if (code_seen('T'))
  2737. {
  2738. if(setTargetedHotend(221)){
  2739. break;
  2740. }
  2741. extruder_multiply[tmp_extruder] = tmp_code;
  2742. }
  2743. else
  2744. {
  2745. extrudemultiply = tmp_code ;
  2746. }
  2747. }
  2748. }
  2749. break;
  2750. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2751. {
  2752. if(code_seen('P')){
  2753. int pin_number = code_value(); // pin number
  2754. int pin_state = -1; // required pin state - default is inverted
  2755. if(code_seen('S')) pin_state = code_value(); // required pin state
  2756. if(pin_state >= -1 && pin_state <= 1){
  2757. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2758. {
  2759. if (sensitive_pins[i] == pin_number)
  2760. {
  2761. pin_number = -1;
  2762. break;
  2763. }
  2764. }
  2765. if (pin_number > -1)
  2766. {
  2767. int target = LOW;
  2768. st_synchronize();
  2769. pinMode(pin_number, INPUT);
  2770. switch(pin_state){
  2771. case 1:
  2772. target = HIGH;
  2773. break;
  2774. case 0:
  2775. target = LOW;
  2776. break;
  2777. case -1:
  2778. target = !digitalRead(pin_number);
  2779. break;
  2780. }
  2781. while(digitalRead(pin_number) != target){
  2782. manage_heater();
  2783. manage_inactivity();
  2784. lcd_update();
  2785. }
  2786. }
  2787. }
  2788. }
  2789. }
  2790. break;
  2791. #if NUM_SERVOS > 0
  2792. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2793. {
  2794. int servo_index = -1;
  2795. int servo_position = 0;
  2796. if (code_seen('P'))
  2797. servo_index = code_value();
  2798. if (code_seen('S')) {
  2799. servo_position = code_value();
  2800. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2801. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2802. servos[servo_index].attach(0);
  2803. #endif
  2804. servos[servo_index].write(servo_position);
  2805. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2806. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2807. servos[servo_index].detach();
  2808. #endif
  2809. }
  2810. else {
  2811. SERIAL_ECHO_START;
  2812. SERIAL_ECHO("Servo ");
  2813. SERIAL_ECHO(servo_index);
  2814. SERIAL_ECHOLN(" out of range");
  2815. }
  2816. }
  2817. else if (servo_index >= 0) {
  2818. SERIAL_PROTOCOL(MSG_OK);
  2819. SERIAL_PROTOCOL(" Servo ");
  2820. SERIAL_PROTOCOL(servo_index);
  2821. SERIAL_PROTOCOL(": ");
  2822. SERIAL_PROTOCOL(servos[servo_index].read());
  2823. SERIAL_PROTOCOLLN("");
  2824. previous_millis_ok = millis();
  2825. }
  2826. }
  2827. break;
  2828. #endif // NUM_SERVOS > 0
  2829. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2830. case 300: // M300
  2831. {
  2832. int beepS = code_seen('S') ? code_value() : 110;
  2833. int beepP = code_seen('P') ? code_value() : 1000;
  2834. if (beepS > 0)
  2835. {
  2836. #if BEEPER > 0
  2837. tone(BEEPER, beepS);
  2838. delay(beepP);
  2839. noTone(BEEPER);
  2840. #elif defined(ULTRALCD)
  2841. lcd_buzz(beepS, beepP);
  2842. #elif defined(LCD_USE_I2C_BUZZER)
  2843. lcd_buzz(beepP, beepS);
  2844. #endif
  2845. }
  2846. else
  2847. {
  2848. delay(beepP);
  2849. }
  2850. }
  2851. break;
  2852. #endif // M300
  2853. #ifdef PIDTEMP
  2854. case 301: // M301
  2855. {
  2856. if(code_seen('P')) Kp = code_value();
  2857. if(code_seen('I')) Ki = scalePID_i(code_value());
  2858. if(code_seen('D')) Kd = scalePID_d(code_value());
  2859. #ifdef PID_ADD_EXTRUSION_RATE
  2860. if(code_seen('C')) Kc = code_value();
  2861. #endif
  2862. updatePID();
  2863. SERIAL_PROTOCOL(MSG_OK);
  2864. SERIAL_PROTOCOL(" p:");
  2865. SERIAL_PROTOCOL(Kp);
  2866. SERIAL_PROTOCOL(" i:");
  2867. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2868. SERIAL_PROTOCOL(" d:");
  2869. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2870. #ifdef PID_ADD_EXTRUSION_RATE
  2871. SERIAL_PROTOCOL(" c:");
  2872. //Kc does not have scaling applied above, or in resetting defaults
  2873. SERIAL_PROTOCOL(Kc);
  2874. #endif
  2875. SERIAL_PROTOCOLLN("");
  2876. }
  2877. break;
  2878. #endif //PIDTEMP
  2879. #ifdef PIDTEMPBED
  2880. case 304: // M304
  2881. {
  2882. if(code_seen('P')) bedKp = code_value();
  2883. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2884. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2885. updatePID();
  2886. SERIAL_PROTOCOL(MSG_OK);
  2887. SERIAL_PROTOCOL(" p:");
  2888. SERIAL_PROTOCOL(bedKp);
  2889. SERIAL_PROTOCOL(" i:");
  2890. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2891. SERIAL_PROTOCOL(" d:");
  2892. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2893. SERIAL_PROTOCOLLN("");
  2894. previous_millis_ok = millis();
  2895. }
  2896. break;
  2897. #endif //PIDTEMP
  2898. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2899. {
  2900. #ifdef CHDK
  2901. SET_OUTPUT(CHDK);
  2902. WRITE(CHDK, HIGH);
  2903. chdkHigh = millis();
  2904. chdkActive = true;
  2905. #else
  2906. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2907. const uint8_t NUM_PULSES=16;
  2908. const float PULSE_LENGTH=0.01524;
  2909. for(int i=0; i < NUM_PULSES; i++) {
  2910. WRITE(PHOTOGRAPH_PIN, HIGH);
  2911. _delay_ms(PULSE_LENGTH);
  2912. WRITE(PHOTOGRAPH_PIN, LOW);
  2913. _delay_ms(PULSE_LENGTH);
  2914. }
  2915. delay(7.33);
  2916. for(int i=0; i < NUM_PULSES; i++) {
  2917. WRITE(PHOTOGRAPH_PIN, HIGH);
  2918. _delay_ms(PULSE_LENGTH);
  2919. WRITE(PHOTOGRAPH_PIN, LOW);
  2920. _delay_ms(PULSE_LENGTH);
  2921. }
  2922. #endif
  2923. #endif //chdk end if
  2924. }
  2925. break;
  2926. #ifdef DOGLCD
  2927. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2928. {
  2929. if (code_seen('C')) {
  2930. lcd_setcontrast( ((int)code_value())&63 );
  2931. }
  2932. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2933. SERIAL_PROTOCOL(lcd_contrast);
  2934. SERIAL_PROTOCOLLN("");
  2935. }
  2936. break;
  2937. #endif
  2938. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2939. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2940. {
  2941. float temp = .0;
  2942. if (code_seen('S')) temp=code_value();
  2943. set_extrude_min_temp(temp);
  2944. }
  2945. break;
  2946. #endif
  2947. case 303: // M303 PID autotune
  2948. {
  2949. float temp = 150.0;
  2950. int e=0;
  2951. int c=5;
  2952. if (code_seen('E')) e=code_value();
  2953. if (e<0)
  2954. temp=70;
  2955. if (code_seen('S')) temp=code_value();
  2956. if (code_seen('C')) c=code_value();
  2957. PID_autotune(temp, e, c);
  2958. }
  2959. break;
  2960. #ifdef SCARA
  2961. case 360: // M360 SCARA Theta pos1
  2962. SERIAL_ECHOLN(" Cal: Theta 0 ");
  2963. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2964. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2965. if(Stopped == false) {
  2966. //get_coordinates(); // For X Y Z E F
  2967. delta[X_AXIS] = 0;
  2968. delta[Y_AXIS] = 120;
  2969. calculate_SCARA_forward_Transform(delta);
  2970. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  2971. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  2972. prepare_move();
  2973. //ClearToSend();
  2974. return;
  2975. }
  2976. break;
  2977. case 361: // SCARA Theta pos2
  2978. SERIAL_ECHOLN(" Cal: Theta 90 ");
  2979. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2980. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2981. if(Stopped == false) {
  2982. //get_coordinates(); // For X Y Z E F
  2983. delta[X_AXIS] = 90;
  2984. delta[Y_AXIS] = 130;
  2985. calculate_SCARA_forward_Transform(delta);
  2986. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  2987. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  2988. prepare_move();
  2989. //ClearToSend();
  2990. return;
  2991. }
  2992. break;
  2993. case 362: // SCARA Psi pos1
  2994. SERIAL_ECHOLN(" Cal: Psi 0 ");
  2995. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  2996. //SERIAL_ECHOLN(" Soft endstops disabled ");
  2997. if(Stopped == false) {
  2998. //get_coordinates(); // For X Y Z E F
  2999. delta[X_AXIS] = 60;
  3000. delta[Y_AXIS] = 180;
  3001. calculate_SCARA_forward_Transform(delta);
  3002. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3003. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3004. prepare_move();
  3005. //ClearToSend();
  3006. return;
  3007. }
  3008. break;
  3009. case 363: // SCARA Psi pos2
  3010. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3011. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3012. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3013. if(Stopped == false) {
  3014. //get_coordinates(); // For X Y Z E F
  3015. delta[X_AXIS] = 50;
  3016. delta[Y_AXIS] = 90;
  3017. calculate_SCARA_forward_Transform(delta);
  3018. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3019. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3020. prepare_move();
  3021. //ClearToSend();
  3022. return;
  3023. }
  3024. break;
  3025. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3026. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3027. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3028. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3029. if(Stopped == false) {
  3030. //get_coordinates(); // For X Y Z E F
  3031. delta[X_AXIS] = 45;
  3032. delta[Y_AXIS] = 135;
  3033. calculate_SCARA_forward_Transform(delta);
  3034. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3035. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3036. prepare_move();
  3037. //ClearToSend();
  3038. return;
  3039. }
  3040. break;
  3041. case 365: // M364 Set SCARA scaling for X Y Z
  3042. for(int8_t i=0; i < 3; i++)
  3043. {
  3044. if(code_seen(axis_codes[i]))
  3045. {
  3046. axis_scaling[i] = code_value();
  3047. }
  3048. }
  3049. break;
  3050. #endif
  3051. case 400: // M400 finish all moves
  3052. {
  3053. st_synchronize();
  3054. }
  3055. break;
  3056. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3057. case 401:
  3058. {
  3059. engage_z_probe(); // Engage Z Servo endstop if available
  3060. }
  3061. break;
  3062. case 402:
  3063. {
  3064. retract_z_probe(); // Retract Z Servo endstop if enabled
  3065. }
  3066. break;
  3067. #endif
  3068. #ifdef FILAMENT_SENSOR
  3069. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3070. {
  3071. #if (FILWIDTH_PIN > -1)
  3072. if(code_seen('N')) filament_width_nominal=code_value();
  3073. else{
  3074. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3075. SERIAL_PROTOCOLLN(filament_width_nominal);
  3076. }
  3077. #endif
  3078. }
  3079. break;
  3080. case 405: //M405 Turn on filament sensor for control
  3081. {
  3082. if(code_seen('D')) meas_delay_cm=code_value();
  3083. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3084. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3085. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3086. {
  3087. int temp_ratio = widthFil_to_size_ratio();
  3088. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3089. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3090. }
  3091. delay_index1=0;
  3092. delay_index2=0;
  3093. }
  3094. filament_sensor = true ;
  3095. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3096. //SERIAL_PROTOCOL(filament_width_meas);
  3097. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3098. //SERIAL_PROTOCOL(extrudemultiply);
  3099. }
  3100. break;
  3101. case 406: //M406 Turn off filament sensor for control
  3102. {
  3103. filament_sensor = false ;
  3104. }
  3105. break;
  3106. case 407: //M407 Display measured filament diameter
  3107. {
  3108. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3109. SERIAL_PROTOCOLLN(filament_width_meas);
  3110. }
  3111. break;
  3112. #endif
  3113. case 500: // M500 Store settings in EEPROM
  3114. {
  3115. Config_StoreSettings();
  3116. }
  3117. break;
  3118. case 501: // M501 Read settings from EEPROM
  3119. {
  3120. Config_RetrieveSettings();
  3121. }
  3122. break;
  3123. case 502: // M502 Revert to default settings
  3124. {
  3125. Config_ResetDefault();
  3126. }
  3127. break;
  3128. case 503: // M503 print settings currently in memory
  3129. {
  3130. Config_PrintSettings();
  3131. }
  3132. break;
  3133. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3134. case 540:
  3135. {
  3136. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3137. }
  3138. break;
  3139. #endif
  3140. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3141. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3142. {
  3143. float value;
  3144. if (code_seen('Z'))
  3145. {
  3146. value = code_value();
  3147. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3148. {
  3149. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3150. SERIAL_ECHO_START;
  3151. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3152. SERIAL_PROTOCOLLN("");
  3153. previous_millis_ok = millis();
  3154. }
  3155. else
  3156. {
  3157. SERIAL_ECHO_START;
  3158. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3159. SERIAL_ECHOPGM(MSG_Z_MIN);
  3160. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3161. SERIAL_ECHOPGM(MSG_Z_MAX);
  3162. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3163. SERIAL_PROTOCOLLN("");
  3164. }
  3165. }
  3166. else
  3167. {
  3168. SERIAL_ECHO_START;
  3169. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3170. SERIAL_ECHO(-zprobe_zoffset);
  3171. SERIAL_PROTOCOLLN("");
  3172. }
  3173. break;
  3174. }
  3175. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3176. #ifdef FILAMENTCHANGEENABLE
  3177. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3178. {
  3179. float target[4];
  3180. float lastpos[4];
  3181. target[X_AXIS]=current_position[X_AXIS];
  3182. target[Y_AXIS]=current_position[Y_AXIS];
  3183. target[Z_AXIS]=current_position[Z_AXIS];
  3184. target[E_AXIS]=current_position[E_AXIS];
  3185. lastpos[X_AXIS]=current_position[X_AXIS];
  3186. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3187. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3188. lastpos[E_AXIS]=current_position[E_AXIS];
  3189. //retract by E
  3190. if(code_seen('E'))
  3191. {
  3192. target[E_AXIS]+= code_value();
  3193. }
  3194. else
  3195. {
  3196. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3197. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3198. #endif
  3199. }
  3200. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3201. //lift Z
  3202. if(code_seen('Z'))
  3203. {
  3204. target[Z_AXIS]+= code_value();
  3205. }
  3206. else
  3207. {
  3208. #ifdef FILAMENTCHANGE_ZADD
  3209. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3210. #endif
  3211. }
  3212. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3213. //move xy
  3214. if(code_seen('X'))
  3215. {
  3216. target[X_AXIS]+= code_value();
  3217. }
  3218. else
  3219. {
  3220. #ifdef FILAMENTCHANGE_XPOS
  3221. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3222. #endif
  3223. }
  3224. if(code_seen('Y'))
  3225. {
  3226. target[Y_AXIS]= code_value();
  3227. }
  3228. else
  3229. {
  3230. #ifdef FILAMENTCHANGE_YPOS
  3231. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3232. #endif
  3233. }
  3234. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3235. if(code_seen('L'))
  3236. {
  3237. target[E_AXIS]+= code_value();
  3238. }
  3239. else
  3240. {
  3241. #ifdef FILAMENTCHANGE_FINALRETRACT
  3242. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3243. #endif
  3244. }
  3245. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  3246. //finish moves
  3247. st_synchronize();
  3248. //disable extruder steppers so filament can be removed
  3249. disable_e0();
  3250. disable_e1();
  3251. disable_e2();
  3252. delay(100);
  3253. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3254. uint8_t cnt=0;
  3255. while(!lcd_clicked()){
  3256. cnt++;
  3257. manage_heater();
  3258. manage_inactivity(true);
  3259. lcd_update();
  3260. if(cnt==0)
  3261. {
  3262. #if BEEPER > 0
  3263. SET_OUTPUT(BEEPER);
  3264. WRITE(BEEPER,HIGH);
  3265. delay(3);
  3266. WRITE(BEEPER,LOW);
  3267. delay(3);
  3268. #else
  3269. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3270. lcd_buzz(1000/6,100);
  3271. #else
  3272. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3273. #endif
  3274. #endif
  3275. }
  3276. }
  3277. //return to normal
  3278. if(code_seen('L'))
  3279. {
  3280. target[E_AXIS]+= -code_value();
  3281. }
  3282. else
  3283. {
  3284. #ifdef FILAMENTCHANGE_FINALRETRACT
  3285. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  3286. #endif
  3287. }
  3288. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3289. plan_set_e_position(current_position[E_AXIS]);
  3290. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  3291. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  3292. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  3293. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  3294. }
  3295. break;
  3296. #endif //FILAMENTCHANGEENABLE
  3297. #ifdef DUAL_X_CARRIAGE
  3298. case 605: // Set dual x-carriage movement mode:
  3299. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3300. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3301. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3302. // millimeters x-offset and an optional differential hotend temperature of
  3303. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3304. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3305. //
  3306. // Note: the X axis should be homed after changing dual x-carriage mode.
  3307. {
  3308. st_synchronize();
  3309. if (code_seen('S'))
  3310. dual_x_carriage_mode = code_value();
  3311. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3312. {
  3313. if (code_seen('X'))
  3314. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3315. if (code_seen('R'))
  3316. duplicate_extruder_temp_offset = code_value();
  3317. SERIAL_ECHO_START;
  3318. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3319. SERIAL_ECHO(" ");
  3320. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3321. SERIAL_ECHO(",");
  3322. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3323. SERIAL_ECHO(" ");
  3324. SERIAL_ECHO(duplicate_extruder_x_offset);
  3325. SERIAL_ECHO(",");
  3326. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3327. }
  3328. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3329. {
  3330. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3331. }
  3332. active_extruder_parked = false;
  3333. extruder_duplication_enabled = false;
  3334. delayed_move_time = 0;
  3335. }
  3336. break;
  3337. #endif //DUAL_X_CARRIAGE
  3338. case 907: // M907 Set digital trimpot motor current using axis codes.
  3339. {
  3340. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3341. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3342. if(code_seen('B')) digipot_current(4,code_value());
  3343. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3344. #endif
  3345. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3346. if(code_seen('X')) digipot_current(0, code_value());
  3347. #endif
  3348. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3349. if(code_seen('Z')) digipot_current(1, code_value());
  3350. #endif
  3351. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3352. if(code_seen('E')) digipot_current(2, code_value());
  3353. #endif
  3354. #ifdef DIGIPOT_I2C
  3355. // this one uses actual amps in floating point
  3356. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3357. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3358. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3359. #endif
  3360. }
  3361. break;
  3362. case 908: // M908 Control digital trimpot directly.
  3363. {
  3364. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3365. uint8_t channel,current;
  3366. if(code_seen('P')) channel=code_value();
  3367. if(code_seen('S')) current=code_value();
  3368. digitalPotWrite(channel, current);
  3369. #endif
  3370. }
  3371. break;
  3372. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3373. {
  3374. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3375. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3376. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3377. if(code_seen('B')) microstep_mode(4,code_value());
  3378. microstep_readings();
  3379. #endif
  3380. }
  3381. break;
  3382. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3383. {
  3384. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3385. if(code_seen('S')) switch((int)code_value())
  3386. {
  3387. case 1:
  3388. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3389. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3390. break;
  3391. case 2:
  3392. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3393. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3394. break;
  3395. }
  3396. microstep_readings();
  3397. #endif
  3398. }
  3399. break;
  3400. case 999: // M999: Restart after being stopped
  3401. Stopped = false;
  3402. lcd_reset_alert_level();
  3403. gcode_LastN = Stopped_gcode_LastN;
  3404. FlushSerialRequestResend();
  3405. break;
  3406. }
  3407. }
  3408. else if(code_seen('T'))
  3409. {
  3410. tmp_extruder = code_value();
  3411. if(tmp_extruder >= EXTRUDERS) {
  3412. SERIAL_ECHO_START;
  3413. SERIAL_ECHO("T");
  3414. SERIAL_ECHO(tmp_extruder);
  3415. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3416. }
  3417. else {
  3418. boolean make_move = false;
  3419. if(code_seen('F')) {
  3420. make_move = true;
  3421. next_feedrate = code_value();
  3422. if(next_feedrate > 0.0) {
  3423. feedrate = next_feedrate;
  3424. }
  3425. }
  3426. #if EXTRUDERS > 1
  3427. if(tmp_extruder != active_extruder) {
  3428. // Save current position to return to after applying extruder offset
  3429. memcpy(destination, current_position, sizeof(destination));
  3430. #ifdef DUAL_X_CARRIAGE
  3431. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3432. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3433. {
  3434. // Park old head: 1) raise 2) move to park position 3) lower
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3436. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3437. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3438. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3439. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3440. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3441. st_synchronize();
  3442. }
  3443. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3444. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3445. extruder_offset[Y_AXIS][active_extruder] +
  3446. extruder_offset[Y_AXIS][tmp_extruder];
  3447. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3448. extruder_offset[Z_AXIS][active_extruder] +
  3449. extruder_offset[Z_AXIS][tmp_extruder];
  3450. active_extruder = tmp_extruder;
  3451. // This function resets the max/min values - the current position may be overwritten below.
  3452. axis_is_at_home(X_AXIS);
  3453. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3454. {
  3455. current_position[X_AXIS] = inactive_extruder_x_pos;
  3456. inactive_extruder_x_pos = destination[X_AXIS];
  3457. }
  3458. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3459. {
  3460. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3461. if (active_extruder == 0 || active_extruder_parked)
  3462. current_position[X_AXIS] = inactive_extruder_x_pos;
  3463. else
  3464. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3465. inactive_extruder_x_pos = destination[X_AXIS];
  3466. extruder_duplication_enabled = false;
  3467. }
  3468. else
  3469. {
  3470. // record raised toolhead position for use by unpark
  3471. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3472. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3473. active_extruder_parked = true;
  3474. delayed_move_time = 0;
  3475. }
  3476. #else
  3477. // Offset extruder (only by XY)
  3478. int i;
  3479. for(i = 0; i < 2; i++) {
  3480. current_position[i] = current_position[i] -
  3481. extruder_offset[i][active_extruder] +
  3482. extruder_offset[i][tmp_extruder];
  3483. }
  3484. // Set the new active extruder and position
  3485. active_extruder = tmp_extruder;
  3486. #endif //else DUAL_X_CARRIAGE
  3487. #ifdef DELTA
  3488. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3489. //sent position to plan_set_position();
  3490. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3491. #else
  3492. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3493. #endif
  3494. // Move to the old position if 'F' was in the parameters
  3495. if(make_move && Stopped == false) {
  3496. prepare_move();
  3497. }
  3498. }
  3499. #endif
  3500. SERIAL_ECHO_START;
  3501. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3502. SERIAL_PROTOCOLLN((int)active_extruder);
  3503. }
  3504. }
  3505. else
  3506. {
  3507. SERIAL_ECHO_START;
  3508. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3509. SERIAL_ECHO(cmdbuffer[bufindr]);
  3510. SERIAL_ECHOLNPGM("\"");
  3511. }
  3512. ClearToSend();
  3513. }
  3514. void FlushSerialRequestResend()
  3515. {
  3516. //char cmdbuffer[bufindr][100]="Resend:";
  3517. MYSERIAL.flush();
  3518. SERIAL_PROTOCOLPGM(MSG_RESEND);
  3519. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3520. ClearToSend();
  3521. }
  3522. void ClearToSend()
  3523. {
  3524. previous_millis_cmd = millis();
  3525. #ifdef SDSUPPORT
  3526. if(fromsd[bufindr])
  3527. return;
  3528. #endif //SDSUPPORT
  3529. SERIAL_PROTOCOLLNPGM(MSG_OK);
  3530. previous_millis_ok = millis();
  3531. }
  3532. void get_coordinates()
  3533. {
  3534. bool seen[4]={false,false,false,false};
  3535. for(int8_t i=0; i < NUM_AXIS; i++) {
  3536. if(code_seen(axis_codes[i]))
  3537. {
  3538. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3539. seen[i]=true;
  3540. }
  3541. else destination[i] = current_position[i]; //Are these else lines really needed?
  3542. }
  3543. if(code_seen('F')) {
  3544. next_feedrate = code_value();
  3545. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3546. }
  3547. }
  3548. void get_arc_coordinates()
  3549. {
  3550. #ifdef SF_ARC_FIX
  3551. bool relative_mode_backup = relative_mode;
  3552. relative_mode = true;
  3553. #endif
  3554. get_coordinates();
  3555. #ifdef SF_ARC_FIX
  3556. relative_mode=relative_mode_backup;
  3557. #endif
  3558. if(code_seen('I')) {
  3559. offset[0] = code_value();
  3560. }
  3561. else {
  3562. offset[0] = 0.0;
  3563. }
  3564. if(code_seen('J')) {
  3565. offset[1] = code_value();
  3566. }
  3567. else {
  3568. offset[1] = 0.0;
  3569. }
  3570. }
  3571. void clamp_to_software_endstops(float target[3])
  3572. {
  3573. if (min_software_endstops) {
  3574. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3575. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3576. float negative_z_offset = 0;
  3577. #ifdef ENABLE_AUTO_BED_LEVELING
  3578. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3579. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3580. #endif
  3581. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3582. }
  3583. if (max_software_endstops) {
  3584. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3585. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3586. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3587. }
  3588. }
  3589. #ifdef DELTA
  3590. void recalc_delta_settings(float radius, float diagonal_rod)
  3591. {
  3592. delta_tower1_x= -SIN_60*radius; // front left tower
  3593. delta_tower1_y= -COS_60*radius;
  3594. delta_tower2_x= SIN_60*radius; // front right tower
  3595. delta_tower2_y= -COS_60*radius;
  3596. delta_tower3_x= 0.0; // back middle tower
  3597. delta_tower3_y= radius;
  3598. delta_diagonal_rod_2= sq(diagonal_rod);
  3599. }
  3600. void calculate_delta(float cartesian[3])
  3601. {
  3602. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3603. - sq(delta_tower1_x-cartesian[X_AXIS])
  3604. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3605. ) + cartesian[Z_AXIS];
  3606. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3607. - sq(delta_tower2_x-cartesian[X_AXIS])
  3608. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3609. ) + cartesian[Z_AXIS];
  3610. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3611. - sq(delta_tower3_x-cartesian[X_AXIS])
  3612. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3613. ) + cartesian[Z_AXIS];
  3614. /*
  3615. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3616. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3617. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3618. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3619. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3620. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3621. */
  3622. }
  3623. #endif
  3624. void prepare_move()
  3625. {
  3626. clamp_to_software_endstops(destination);
  3627. previous_millis_cmd = millis();
  3628. #ifdef SCARA //for now same as delta-code
  3629. float difference[NUM_AXIS];
  3630. for (int8_t i=0; i < NUM_AXIS; i++) {
  3631. difference[i] = destination[i] - current_position[i];
  3632. }
  3633. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  3634. sq(difference[Y_AXIS]) +
  3635. sq(difference[Z_AXIS]));
  3636. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3637. if (cartesian_mm < 0.000001) { return; }
  3638. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3639. int steps = max(1, int(scara_segments_per_second * seconds));
  3640. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3641. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3642. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3643. for (int s = 1; s <= steps; s++) {
  3644. float fraction = float(s) / float(steps);
  3645. for(int8_t i=0; i < NUM_AXIS; i++) {
  3646. destination[i] = current_position[i] + difference[i] * fraction;
  3647. }
  3648. calculate_delta(destination);
  3649. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  3650. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  3651. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  3652. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  3653. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3654. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3655. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3656. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3657. active_extruder);
  3658. }
  3659. #endif // SCARA
  3660. #ifdef DELTA
  3661. float difference[NUM_AXIS];
  3662. for (int8_t i=0; i < NUM_AXIS; i++) {
  3663. difference[i] = destination[i] - current_position[i];
  3664. }
  3665. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3666. sq(difference[Y_AXIS]) +
  3667. sq(difference[Z_AXIS]));
  3668. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3669. if (cartesian_mm < 0.000001) { return; }
  3670. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3671. int steps = max(1, int(delta_segments_per_second * seconds));
  3672. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3673. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3674. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3675. for (int s = 1; s <= steps; s++) {
  3676. float fraction = float(s) / float(steps);
  3677. for(int8_t i=0; i < NUM_AXIS; i++) {
  3678. destination[i] = current_position[i] + difference[i] * fraction;
  3679. }
  3680. calculate_delta(destination);
  3681. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3682. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3683. active_extruder);
  3684. }
  3685. #endif // DELTA
  3686. #ifdef DUAL_X_CARRIAGE
  3687. if (active_extruder_parked)
  3688. {
  3689. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3690. {
  3691. // move duplicate extruder into correct duplication position.
  3692. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3693. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3694. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3695. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3696. st_synchronize();
  3697. extruder_duplication_enabled = true;
  3698. active_extruder_parked = false;
  3699. }
  3700. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3701. {
  3702. if (current_position[E_AXIS] == destination[E_AXIS])
  3703. {
  3704. // this is a travel move - skit it but keep track of current position (so that it can later
  3705. // be used as start of first non-travel move)
  3706. if (delayed_move_time != 0xFFFFFFFFUL)
  3707. {
  3708. memcpy(current_position, destination, sizeof(current_position));
  3709. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3710. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3711. delayed_move_time = millis();
  3712. return;
  3713. }
  3714. }
  3715. delayed_move_time = 0;
  3716. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3717. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3718. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3719. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3721. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3722. active_extruder_parked = false;
  3723. }
  3724. }
  3725. #endif //DUAL_X_CARRIAGE
  3726. #if ! (defined DELTA || defined SCARA)
  3727. // Do not use feedmultiply for E or Z only moves
  3728. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3729. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3730. }
  3731. else {
  3732. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3733. }
  3734. #endif // !(DELTA || SCARA)
  3735. for(int8_t i=0; i < NUM_AXIS; i++) {
  3736. current_position[i] = destination[i];
  3737. }
  3738. }
  3739. void prepare_arc_move(char isclockwise) {
  3740. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3741. // Trace the arc
  3742. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3743. // As far as the parser is concerned, the position is now == target. In reality the
  3744. // motion control system might still be processing the action and the real tool position
  3745. // in any intermediate location.
  3746. for(int8_t i=0; i < NUM_AXIS; i++) {
  3747. current_position[i] = destination[i];
  3748. }
  3749. previous_millis_cmd = millis();
  3750. }
  3751. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3752. #if defined(FAN_PIN)
  3753. #if CONTROLLERFAN_PIN == FAN_PIN
  3754. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3755. #endif
  3756. #endif
  3757. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3758. unsigned long lastMotorCheck = 0;
  3759. void controllerFan()
  3760. {
  3761. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3762. {
  3763. lastMotorCheck = millis();
  3764. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3765. #if EXTRUDERS > 2
  3766. || !READ(E2_ENABLE_PIN)
  3767. #endif
  3768. #if EXTRUDER > 1
  3769. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3770. || !READ(X2_ENABLE_PIN)
  3771. #endif
  3772. || !READ(E1_ENABLE_PIN)
  3773. #endif
  3774. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3775. {
  3776. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3777. }
  3778. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3779. {
  3780. digitalWrite(CONTROLLERFAN_PIN, 0);
  3781. analogWrite(CONTROLLERFAN_PIN, 0);
  3782. }
  3783. else
  3784. {
  3785. // allows digital or PWM fan output to be used (see M42 handling)
  3786. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3787. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3788. }
  3789. }
  3790. }
  3791. #endif
  3792. #ifdef SCARA
  3793. void calculate_SCARA_forward_Transform(float f_scara[3])
  3794. {
  3795. // Perform forward kinematics, and place results in delta[3]
  3796. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3797. float x_sin, x_cos, y_sin, y_cos;
  3798. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  3799. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  3800. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3801. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  3802. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3803. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  3804. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  3805. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  3806. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  3807. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  3808. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  3809. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  3810. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  3811. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  3812. }
  3813. void calculate_delta(float cartesian[3]){
  3814. //reverse kinematics.
  3815. // Perform reversed kinematics, and place results in delta[3]
  3816. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  3817. float SCARA_pos[2];
  3818. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  3819. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  3820. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  3821. #if (Linkage_1 == Linkage_2)
  3822. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  3823. #else
  3824. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  3825. #endif
  3826. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  3827. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  3828. SCARA_K2 = Linkage_2 * SCARA_S2;
  3829. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  3830. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  3831. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  3832. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  3833. delta[Z_AXIS] = cartesian[Z_AXIS];
  3834. /*
  3835. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3836. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3837. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3838. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  3839. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  3840. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3841. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3842. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3843. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  3844. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  3845. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  3846. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  3847. SERIAL_ECHOLN(" ");*/
  3848. }
  3849. #endif
  3850. #ifdef TEMP_STAT_LEDS
  3851. static bool blue_led = false;
  3852. static bool red_led = false;
  3853. static uint32_t stat_update = 0;
  3854. void handle_status_leds(void) {
  3855. float max_temp = 0.0;
  3856. if(millis() > stat_update) {
  3857. stat_update += 500; // Update every 0.5s
  3858. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3859. max_temp = max(max_temp, degHotend(cur_extruder));
  3860. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3861. }
  3862. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3863. max_temp = max(max_temp, degTargetBed());
  3864. max_temp = max(max_temp, degBed());
  3865. #endif
  3866. if((max_temp > 55.0) && (red_led == false)) {
  3867. digitalWrite(STAT_LED_RED, 1);
  3868. digitalWrite(STAT_LED_BLUE, 0);
  3869. red_led = true;
  3870. blue_led = false;
  3871. }
  3872. if((max_temp < 54.0) && (blue_led == false)) {
  3873. digitalWrite(STAT_LED_RED, 0);
  3874. digitalWrite(STAT_LED_BLUE, 1);
  3875. red_led = false;
  3876. blue_led = true;
  3877. }
  3878. }
  3879. }
  3880. #endif
  3881. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  3882. {
  3883. #if defined(KILL_PIN) && KILL_PIN > -1
  3884. static int killCount = 0; // make the inactivity button a bit less responsive
  3885. const int KILL_DELAY = 10000;
  3886. #endif
  3887. #if defined(HOME_PIN) && HOME_PIN > -1
  3888. static int homeDebounceCount = 0; // poor man's debouncing count
  3889. const int HOME_DEBOUNCE_DELAY = 10000;
  3890. #endif
  3891. if(buflen < (BUFSIZE-1))
  3892. get_command();
  3893. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3894. if(max_inactive_time)
  3895. kill();
  3896. // If 'OK' is garbled on sending PC won't receive it. Both machines will wait on each other forever.
  3897. // This resends OK if nothing is heard from PC for a while to avoid this bad case.
  3898. if( (millis() - previous_millis_ok) > max_inactive_time/4 ) {
  3899. SERIAL_PROTOCOL(MSG_OK);
  3900. previous_millis_ok=millis();
  3901. }
  3902. if(stepper_inactive_time) {
  3903. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3904. {
  3905. if(blocks_queued() == false && ignore_stepper_queue == false) {
  3906. disable_x();
  3907. disable_y();
  3908. disable_z();
  3909. disable_e0();
  3910. disable_e1();
  3911. disable_e2();
  3912. }
  3913. }
  3914. }
  3915. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3916. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  3917. {
  3918. chdkActive = false;
  3919. WRITE(CHDK, LOW);
  3920. }
  3921. #endif
  3922. #if defined(KILL_PIN) && KILL_PIN > -1
  3923. // Check if the kill button was pressed and wait just in case it was an accidental
  3924. // key kill key press
  3925. // -------------------------------------------------------------------------------
  3926. if( 0 == READ(KILL_PIN) )
  3927. {
  3928. killCount++;
  3929. }
  3930. else if (killCount > 0)
  3931. {
  3932. killCount--;
  3933. }
  3934. // Exceeded threshold and we can confirm that it was not accidental
  3935. // KILL the machine
  3936. // ----------------------------------------------------------------
  3937. if ( killCount >= KILL_DELAY)
  3938. {
  3939. kill();
  3940. }
  3941. #endif
  3942. #if defined(HOME_PIN) && HOME_PIN > -1
  3943. // Check to see if we have to home, use poor man's debouncer
  3944. // ---------------------------------------------------------
  3945. if ( 0 == READ(HOME_PIN) )
  3946. {
  3947. if (homeDebounceCount == 0)
  3948. {
  3949. enquecommand_P((PSTR("G28")));
  3950. homeDebounceCount++;
  3951. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  3952. }
  3953. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  3954. {
  3955. homeDebounceCount++;
  3956. }
  3957. else
  3958. {
  3959. homeDebounceCount = 0;
  3960. }
  3961. }
  3962. #endif
  3963. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3964. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3965. #endif
  3966. #ifdef EXTRUDER_RUNOUT_PREVENT
  3967. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3968. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3969. {
  3970. bool oldstatus=READ(E0_ENABLE_PIN);
  3971. enable_e0();
  3972. float oldepos=current_position[E_AXIS];
  3973. float oldedes=destination[E_AXIS];
  3974. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3975. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3976. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3977. current_position[E_AXIS]=oldepos;
  3978. destination[E_AXIS]=oldedes;
  3979. plan_set_e_position(oldepos);
  3980. previous_millis_cmd=millis();
  3981. st_synchronize();
  3982. WRITE(E0_ENABLE_PIN,oldstatus);
  3983. }
  3984. #endif
  3985. #if defined(DUAL_X_CARRIAGE)
  3986. // handle delayed move timeout
  3987. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3988. {
  3989. // travel moves have been received so enact them
  3990. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3991. memcpy(destination,current_position,sizeof(destination));
  3992. prepare_move();
  3993. }
  3994. #endif
  3995. #ifdef TEMP_STAT_LEDS
  3996. handle_status_leds();
  3997. #endif
  3998. check_axes_activity();
  3999. }
  4000. void kill()
  4001. {
  4002. cli(); // Stop interrupts
  4003. disable_heater();
  4004. disable_x();
  4005. disable_y();
  4006. disable_z();
  4007. disable_e0();
  4008. disable_e1();
  4009. disable_e2();
  4010. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4011. pinMode(PS_ON_PIN,INPUT);
  4012. #endif
  4013. SERIAL_ERROR_START;
  4014. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4015. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4016. // FMC small patch to update the LCD before ending
  4017. sei(); // enable interrupts
  4018. for ( int i=5; i--; lcd_update())
  4019. {
  4020. delay(200);
  4021. }
  4022. cli(); // disable interrupts
  4023. suicide();
  4024. while(1) { /* Intentionally left empty */ } // Wait for reset
  4025. }
  4026. void Stop()
  4027. {
  4028. disable_heater();
  4029. if(Stopped == false) {
  4030. Stopped = true;
  4031. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4032. SERIAL_ERROR_START;
  4033. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4034. LCD_MESSAGEPGM(MSG_STOPPED);
  4035. }
  4036. }
  4037. bool IsStopped() { return Stopped; };
  4038. #ifdef FAST_PWM_FAN
  4039. void setPwmFrequency(uint8_t pin, int val)
  4040. {
  4041. val &= 0x07;
  4042. switch(digitalPinToTimer(pin))
  4043. {
  4044. #if defined(TCCR0A)
  4045. case TIMER0A:
  4046. case TIMER0B:
  4047. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4048. // TCCR0B |= val;
  4049. break;
  4050. #endif
  4051. #if defined(TCCR1A)
  4052. case TIMER1A:
  4053. case TIMER1B:
  4054. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4055. // TCCR1B |= val;
  4056. break;
  4057. #endif
  4058. #if defined(TCCR2)
  4059. case TIMER2:
  4060. case TIMER2:
  4061. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4062. TCCR2 |= val;
  4063. break;
  4064. #endif
  4065. #if defined(TCCR2A)
  4066. case TIMER2A:
  4067. case TIMER2B:
  4068. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4069. TCCR2B |= val;
  4070. break;
  4071. #endif
  4072. #if defined(TCCR3A)
  4073. case TIMER3A:
  4074. case TIMER3B:
  4075. case TIMER3C:
  4076. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4077. TCCR3B |= val;
  4078. break;
  4079. #endif
  4080. #if defined(TCCR4A)
  4081. case TIMER4A:
  4082. case TIMER4B:
  4083. case TIMER4C:
  4084. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4085. TCCR4B |= val;
  4086. break;
  4087. #endif
  4088. #if defined(TCCR5A)
  4089. case TIMER5A:
  4090. case TIMER5B:
  4091. case TIMER5C:
  4092. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4093. TCCR5B |= val;
  4094. break;
  4095. #endif
  4096. }
  4097. }
  4098. #endif //FAST_PWM_FAN
  4099. bool setTargetedHotend(int code){
  4100. tmp_extruder = active_extruder;
  4101. if(code_seen('T')) {
  4102. tmp_extruder = code_value();
  4103. if(tmp_extruder >= EXTRUDERS) {
  4104. SERIAL_ECHO_START;
  4105. switch(code){
  4106. case 104:
  4107. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4108. break;
  4109. case 105:
  4110. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4111. break;
  4112. case 109:
  4113. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4114. break;
  4115. case 218:
  4116. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4117. break;
  4118. case 221:
  4119. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4120. break;
  4121. }
  4122. SERIAL_ECHOLN(tmp_extruder);
  4123. return true;
  4124. }
  4125. }
  4126. return false;
  4127. }
  4128. float calculate_volumetric_multiplier(float diameter) {
  4129. float area = .0;
  4130. float radius = .0;
  4131. radius = diameter * .5;
  4132. if (! volumetric_enabled || radius == 0) {
  4133. area = 1;
  4134. }
  4135. else {
  4136. area = M_PI * pow(radius, 2);
  4137. }
  4138. return 1.0 / area;
  4139. }
  4140. void calculate_volumetric_multipliers() {
  4141. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4142. #if EXTRUDERS > 1
  4143. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4144. #if EXTRUDERS > 2
  4145. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4146. #endif
  4147. #endif
  4148. }