123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046 |
- /*
- Reprap firmware based on Sprinter and grbl.
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /*
- This firmware is a mashup between Sprinter and grbl.
- (https://github.com/kliment/Sprinter)
- (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
-
- This firmware is optimized for gen6 electronics.
- */
-
- #include "fastio.h"
- #include "Configuration.h"
- #include "pins.h"
- #include "Marlin.h"
- #include "speed_lookuptable.h"
-
- char version_string[] = "0.9.8";
-
- #ifdef SDSUPPORT
- #include "SdFat.h"
- #endif //SDSUPPORT
-
- #ifndef CRITICAL_SECTION_START
- #define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
- #define CRITICAL_SECTION_END SREG = _sreg
- #endif //CRITICAL_SECTION_START
-
- // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
- // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
-
- //Implemented Codes
- //-------------------
- // G0 -> G1
- // G1 - Coordinated Movement X Y Z E
- // G4 - Dwell S<seconds> or P<milliseconds>
- // G28 - Home all Axis
- // G90 - Use Absolute Coordinates
- // G91 - Use Relative Coordinates
- // G92 - Set current position to cordinates given
-
- //RepRap M Codes
- // M104 - Set extruder target temp
- // M105 - Read current temp
- // M106 - Fan on
- // M107 - Fan off
- // M109 - Wait for extruder current temp to reach target temp.
- // M114 - Display current position
-
- //Custom M Codes
- // M80 - Turn on Power Supply
- // M20 - List SD card
- // M21 - Init SD card
- // M22 - Release SD card
- // M23 - Select SD file (M23 filename.g)
- // M24 - Start/resume SD print
- // M25 - Pause SD print
- // M26 - Set SD position in bytes (M26 S12345)
- // M27 - Report SD print status
- // M28 - Start SD write (M28 filename.g)
- // M29 - Stop SD write
- // M81 - Turn off Power Supply
- // M82 - Set E codes absolute (default)
- // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
- // M84 - Disable steppers until next move,
- // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
- // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
- // M92 - Set axis_steps_per_unit - same syntax as G92
- // M115 - Capabilities string
- // M140 - Set bed target temp
- // M190 - Wait for bed current temp to reach target temp.
- // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
- // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
- // M301 - Set PID parameters P I and D
-
- //Stepper Movement Variables
-
- char axis_codes[NUM_AXIS] = {
- 'X', 'Y', 'Z', 'E'};
- float destination[NUM_AXIS] = {
- 0.0, 0.0, 0.0, 0.0};
- float current_position[NUM_AXIS] = {
- 0.0, 0.0, 0.0, 0.0};
- bool home_all_axis = true;
- long feedrate = 1500, next_feedrate, saved_feedrate;
- long gcode_N, gcode_LastN;
- bool relative_mode = false; //Determines Absolute or Relative Coordinates
- bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
- unsigned long axis_steps_per_sqr_second[NUM_AXIS];
-
- // comm variables
- #define MAX_CMD_SIZE 96
- #define BUFSIZE 8
- char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
- bool fromsd[BUFSIZE];
- int bufindr = 0;
- int bufindw = 0;
- int buflen = 0;
- int i = 0;
- char serial_char;
- int serial_count = 0;
- boolean comment_mode = false;
- char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
-
- // Manage heater variables.
-
- int target_raw = 0;
- int current_raw = 0;
- unsigned char temp_meas_ready = false;
-
- #ifdef PIDTEMP
- double temp_iState = 0;
- double temp_dState = 0;
- double pTerm;
- double iTerm;
- double dTerm;
- //int output;
- double pid_error;
- double temp_iState_min;
- double temp_iState_max;
- double pid_setpoint = 0.0;
- double pid_input;
- double pid_output;
- bool pid_reset;
- #endif //PIDTEMP
-
- #ifdef WATCHPERIOD
- int watch_raw = -1000;
- unsigned long watchmillis = 0;
- #endif //WATCHPERIOD
- #ifdef MINTEMP
- int minttemp = temp2analogh(MINTEMP);
- #endif //MINTEMP
- #ifdef MAXTEMP
- int maxttemp = temp2analogh(MAXTEMP);
- #endif //MAXTEMP
-
- //Inactivity shutdown variables
- unsigned long previous_millis_cmd = 0;
- unsigned long max_inactive_time = 0;
- unsigned long stepper_inactive_time = 0;
-
- #ifdef SDSUPPORT
- Sd2Card card;
- SdVolume volume;
- SdFile root;
- SdFile file;
- uint32_t filesize = 0;
- uint32_t sdpos = 0;
- bool sdmode = false;
- bool sdactive = false;
- bool savetosd = false;
- int16_t n;
-
- void initsd(){
- sdactive = false;
- #if SDSS >- 1
- if(root.isOpen())
- root.close();
- if (!card.init(SPI_FULL_SPEED,SDSS)){
- //if (!card.init(SPI_HALF_SPEED,SDSS))
- Serial.println("SD init fail");
- }
- else if (!volume.init(&card))
- Serial.println("volume.init failed");
- else if (!root.openRoot(&volume))
- Serial.println("openRoot failed");
- else
- sdactive = true;
- #endif //SDSS
- }
-
- inline void write_command(char *buf){
- char* begin = buf;
- char* npos = 0;
- char* end = buf + strlen(buf) - 1;
-
- file.writeError = false;
- if((npos = strchr(buf, 'N')) != NULL){
- begin = strchr(npos, ' ') + 1;
- end = strchr(npos, '*') - 1;
- }
- end[1] = '\r';
- end[2] = '\n';
- end[3] = '\0';
- //Serial.println(begin);
- file.write(begin);
- if (file.writeError){
- Serial.println("error writing to file");
- }
- }
- #endif //SDSUPPORT
-
-
- void setup()
- {
- Serial.begin(BAUDRATE);
- Serial.print("Marlin ");
- Serial.println(version_string);
- Serial.println("start");
-
- for(int i = 0; i < BUFSIZE; i++){
- fromsd[i] = false;
- }
-
- //Initialize Dir Pins
- #if X_DIR_PIN > -1
- SET_OUTPUT(X_DIR_PIN);
- #endif
- #if Y_DIR_PIN > -1
- SET_OUTPUT(Y_DIR_PIN);
- #endif
- #if Z_DIR_PIN > -1
- SET_OUTPUT(Z_DIR_PIN);
- #endif
- #if E_DIR_PIN > -1
- SET_OUTPUT(E_DIR_PIN);
- #endif
-
- //Initialize Enable Pins - steppers default to disabled.
-
- #if (X_ENABLE_PIN > -1)
- SET_OUTPUT(X_ENABLE_PIN);
- if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
- #endif
- #if (Y_ENABLE_PIN > -1)
- SET_OUTPUT(Y_ENABLE_PIN);
- if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
- #endif
- #if (Z_ENABLE_PIN > -1)
- SET_OUTPUT(Z_ENABLE_PIN);
- if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
- #endif
- #if (E_ENABLE_PIN > -1)
- SET_OUTPUT(E_ENABLE_PIN);
- if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
- #endif
-
- //endstops and pullups
- #ifdef ENDSTOPPULLUPS
- #if X_MIN_PIN > -1
- SET_INPUT(X_MIN_PIN);
- WRITE(X_MIN_PIN,HIGH);
- #endif
- #if X_MAX_PIN > -1
- SET_INPUT(X_MAX_PIN);
- WRITE(X_MAX_PIN,HIGH);
- #endif
- #if Y_MIN_PIN > -1
- SET_INPUT(Y_MIN_PIN);
- WRITE(Y_MIN_PIN,HIGH);
- #endif
- #if Y_MAX_PIN > -1
- SET_INPUT(Y_MAX_PIN);
- WRITE(Y_MAX_PIN,HIGH);
- #endif
- #if Z_MIN_PIN > -1
- SET_INPUT(Z_MIN_PIN);
- WRITE(Z_MIN_PIN,HIGH);
- #endif
- #if Z_MAX_PIN > -1
- SET_INPUT(Z_MAX_PIN);
- WRITE(Z_MAX_PIN,HIGH);
- #endif
- #else //ENDSTOPPULLUPS
- #if X_MIN_PIN > -1
- SET_INPUT(X_MIN_PIN);
- #endif
- #if X_MAX_PIN > -1
- SET_INPUT(X_MAX_PIN);
- #endif
- #if Y_MIN_PIN > -1
- SET_INPUT(Y_MIN_PIN);
- #endif
- #if Y_MAX_PIN > -1
- SET_INPUT(Y_MAX_PIN);
- #endif
- #if Z_MIN_PIN > -1
- SET_INPUT(Z_MIN_PIN);
- #endif
- #if Z_MAX_PIN > -1
- SET_INPUT(Z_MAX_PIN);
- #endif
- #endif //ENDSTOPPULLUPS
-
- #if (HEATER_0_PIN > -1)
- SET_OUTPUT(HEATER_0_PIN);
- #endif
- #if (HEATER_1_PIN > -1)
- SET_OUTPUT(HEATER_1_PIN);
- #endif
-
- //Initialize Step Pins
- #if (X_STEP_PIN > -1)
- SET_OUTPUT(X_STEP_PIN);
- #endif
- #if (Y_STEP_PIN > -1)
- SET_OUTPUT(Y_STEP_PIN);
- #endif
- #if (Z_STEP_PIN > -1)
- SET_OUTPUT(Z_STEP_PIN);
- #endif
- #if (E_STEP_PIN > -1)
- SET_OUTPUT(E_STEP_PIN);
- #endif
- for(int i=0; i < NUM_AXIS; i++){
- axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
- }
-
- #ifdef PIDTEMP
- temp_iState_min = 0.0;
- temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
- #endif //PIDTEMP
-
- #ifdef SDSUPPORT
- //power to SD reader
- #if SDPOWER > -1
- SET_OUTPUT(SDPOWER);
- WRITE(SDPOWER,HIGH);
- #endif //SDPOWER
- initsd();
-
- #endif //SDSUPPORT
- plan_init(); // Initialize planner;
- st_init(); // Initialize stepper;
- tp_init(); // Initialize temperature loop
- }
-
-
- void loop()
- {
- if(buflen<3)
- get_command();
-
- if(buflen){
- #ifdef SDSUPPORT
- if(savetosd){
- if(strstr(cmdbuffer[bufindr],"M29") == NULL){
- write_command(cmdbuffer[bufindr]);
- Serial.println("ok");
- }
- else{
- file.sync();
- file.close();
- savetosd = false;
- Serial.println("Done saving file.");
- }
- }
- else{
- process_commands();
- }
- #else
- process_commands();
- #endif //SDSUPPORT
- buflen = (buflen-1);
- bufindr = (bufindr + 1)%BUFSIZE;
- }
- //check heater every n milliseconds
- manage_heater();
- manage_inactivity(1);
- }
-
-
- inline void get_command()
- {
- while( Serial.available() > 0 && buflen < BUFSIZE) {
- serial_char = Serial.read();
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
- {
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = false;
- if(strstr(cmdbuffer[bufindw], "N") != NULL)
- {
- strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
- gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
- if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
- Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
- Serial.println(gcode_LastN);
- //Serial.println(gcode_N);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- if(strstr(cmdbuffer[bufindw], "*") != NULL)
- {
- byte checksum = 0;
- byte count = 0;
- while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
- strchr_pointer = strchr(cmdbuffer[bufindw], '*');
-
- if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
- Serial.print("Error: checksum mismatch, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
- //if no errors, continue parsing
- }
- else
- {
- Serial.print("Error: No Checksum with line number, Last Line:");
- Serial.println(gcode_LastN);
- FlushSerialRequestResend();
- serial_count = 0;
- return;
- }
-
- gcode_LastN = gcode_N;
- //if no errors, continue parsing
- }
- else // if we don't receive 'N' but still see '*'
- {
- if((strstr(cmdbuffer[bufindw], "*") != NULL))
- {
- Serial.print("Error: No Line Number with checksum, Last Line:");
- Serial.println(gcode_LastN);
- serial_count = 0;
- return;
- }
- }
- if((strstr(cmdbuffer[bufindw], "G") != NULL)){
- strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
- switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
- case 0:
- case 1:
- #ifdef SDSUPPORT
- if(savetosd)
- break;
- #endif //SDSUPPORT
- Serial.println("ok");
- break;
- default:
- break;
- }
-
- }
- bufindw = (bufindw + 1)%BUFSIZE;
- buflen += 1;
-
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
- }
- #ifdef SDSUPPORT
- if(!sdmode || serial_count!=0){
- return;
- }
- while( filesize > sdpos && buflen < BUFSIZE) {
- n = file.read();
- serial_char = (char)n;
- if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
- {
- sdpos = file.curPosition();
- if(sdpos >= filesize){
- sdmode = false;
- Serial.println("Done printing file");
- }
- if(!serial_count) return; //if empty line
- cmdbuffer[bufindw][serial_count] = 0; //terminate string
- if(!comment_mode){
- fromsd[bufindw] = true;
- buflen += 1;
- bufindw = (bufindw + 1)%BUFSIZE;
- }
- comment_mode = false; //for new command
- serial_count = 0; //clear buffer
- }
- else
- {
- if(serial_char == ';') comment_mode = true;
- if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
- }
- }
- #endif //SDSUPPORT
-
- }
-
-
- inline float code_value() {
- return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
- }
- inline long code_value_long() {
- return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
- }
- inline bool code_seen(char code_string[]) {
- return (strstr(cmdbuffer[bufindr], code_string) != NULL);
- } //Return True if the string was found
-
- inline bool code_seen(char code)
- {
- strchr_pointer = strchr(cmdbuffer[bufindr], code);
- return (strchr_pointer != NULL); //Return True if a character was found
- }
-
- inline void process_commands()
- {
- unsigned long codenum; //throw away variable
- char *starpos = NULL;
-
- if(code_seen('G'))
- {
- switch((int)code_value())
- {
- case 0: // G0 -> G1
- case 1: // G1
- get_coordinates(); // For X Y Z E F
- prepare_move();
- previous_millis_cmd = millis();
- //ClearToSend();
- return;
- //break;
- case 4: // G4 dwell
- codenum = 0;
- if(code_seen('P')) codenum = code_value(); // milliseconds to wait
- if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
- codenum += millis(); // keep track of when we started waiting
- while(millis() < codenum ){
- manage_heater();
- }
- break;
- case 28: //G28 Home all Axis one at a time
- saved_feedrate = feedrate;
- for(int i=0; i < NUM_AXIS; i++) {
- destination[i] = current_position[i];
- }
- feedrate = 0;
-
- home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
-
- if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
- if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
- st_synchronize();
- current_position[X_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
- feedrate = homing_feedrate[X_AXIS];
- prepare_move();
-
- st_synchronize();
- current_position[X_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = -5 * X_HOME_DIR;
- prepare_move();
-
- st_synchronize();
- destination[X_AXIS] = 10 * X_HOME_DIR;
- feedrate = homing_feedrate[X_AXIS]/2 ;
- prepare_move();
- st_synchronize();
-
- current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[X_AXIS] = current_position[X_AXIS];
- feedrate = 0;
- }
- }
-
- if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
- if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
- current_position[Y_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
- feedrate = homing_feedrate[Y_AXIS];
- prepare_move();
- st_synchronize();
-
- current_position[Y_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = -5 * Y_HOME_DIR;
- prepare_move();
- st_synchronize();
-
- destination[Y_AXIS] = 10 * Y_HOME_DIR;
- feedrate = homing_feedrate[Y_AXIS]/2;
- prepare_move();
- st_synchronize();
-
- current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Y_AXIS] = current_position[Y_AXIS];
- feedrate = 0;
- }
- }
-
- if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
- if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
- current_position[Z_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
- feedrate = homing_feedrate[Z_AXIS];
- prepare_move();
- st_synchronize();
-
- current_position[Z_AXIS] = 0;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = -2 * Z_HOME_DIR;
- prepare_move();
- st_synchronize();
-
- destination[Z_AXIS] = 3 * Z_HOME_DIR;
- feedrate = homing_feedrate[Z_AXIS]/2;
- prepare_move();
- st_synchronize();
-
- current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- destination[Z_AXIS] = current_position[Z_AXIS];
- feedrate = 0;
- }
- }
- feedrate = saved_feedrate;
- previous_millis_cmd = millis();
- break;
- case 90: // G90
- relative_mode = false;
- break;
- case 91: // G91
- relative_mode = true;
- break;
- case 92: // G92
- if(!code_seen(axis_codes[E_AXIS]))
- st_synchronize();
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) current_position[i] = code_value();
- }
- plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
- break;
-
- }
- }
-
- else if(code_seen('M'))
- {
-
- switch( (int)code_value() )
- {
- #ifdef SDSUPPORT
-
- case 20: // M20 - list SD card
- Serial.println("Begin file list");
- root.ls();
- Serial.println("End file list");
- break;
- case 21: // M21 - init SD card
- sdmode = false;
- initsd();
- break;
- case 22: //M22 - release SD card
- sdmode = false;
- sdactive = false;
- break;
- case 23: //M23 - Select file
- if(sdactive){
- sdmode = false;
- file.close();
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos!=NULL)
- *(starpos-1)='\0';
- if (file.open(&root, strchr_pointer + 4, O_READ)) {
- Serial.print("File opened:");
- Serial.print(strchr_pointer + 4);
- Serial.print(" Size:");
- Serial.println(file.fileSize());
- sdpos = 0;
- filesize = file.fileSize();
- Serial.println("File selected");
- }
- else{
- Serial.println("file.open failed");
- }
- }
- break;
- case 24: //M24 - Start SD print
- if(sdactive){
- sdmode = true;
- }
- break;
- case 25: //M25 - Pause SD print
- if(sdmode){
- sdmode = false;
- }
- break;
- case 26: //M26 - Set SD index
- if(sdactive && code_seen('S')){
- sdpos = code_value_long();
- file.seekSet(sdpos);
- }
- break;
- case 27: //M27 - Get SD status
- if(sdactive){
- Serial.print("SD printing byte ");
- Serial.print(sdpos);
- Serial.print("/");
- Serial.println(filesize);
- }
- else{
- Serial.println("Not SD printing");
- }
- break;
- case 28: //M28 - Start SD write
- if(sdactive){
- char* npos = 0;
- file.close();
- sdmode = false;
- starpos = (strchr(strchr_pointer + 4,'*'));
- if(starpos != NULL){
- npos = strchr(cmdbuffer[bufindr], 'N');
- strchr_pointer = strchr(npos,' ') + 1;
- *(starpos-1) = '\0';
- }
- if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
- {
- Serial.print("open failed, File: ");
- Serial.print(strchr_pointer + 4);
- Serial.print(".");
- }
- else{
- savetosd = true;
- Serial.print("Writing to file: ");
- Serial.println(strchr_pointer + 4);
- }
- }
- break;
- case 29: //M29 - Stop SD write
- //processed in write to file routine above
- //savetosd = false;
- break;
- #endif //SDSUPPORT
- case 104: // M104
- #ifdef PID_OPENLOOP
- if (code_seen('S')) PidTemp_Output = code_value() * (PID_MAX/100.0);
- if(pid_output > PID_MAX) pid_output = PID_MAX;
- if(pid_output < 0) pid_output = 0;
- #else //PID_OPENLOOP
- if (code_seen('S')) {
- target_raw = temp2analogh(code_value());
- #ifdef PIDTEMP
- pid_setpoint = code_value();
- #endif //PIDTEMP
- }
- #ifdef WATCHPERIOD
- if(target_raw > current_raw){
- watchmillis = max(1,millis());
- watch_raw = current_raw;
- }
- else{
- watchmillis = 0;
- }
- #endif //WATCHPERIOD
- #endif //PID_OPENLOOP
- break;
- case 105: // M105
- Serial.print("ok T:");
- Serial.println(analog2temp(current_raw));
- return;
- //break;
- case 109: // M109 - Wait for extruder heater to reach target.
- if (code_seen('S')) {
- target_raw = temp2analogh(code_value());
- #ifdef PIDTEMP
- pid_setpoint = code_value();
- #endif //PIDTEMP
- }
- #ifdef WATCHPERIOD
- if(target_raw>current_raw){
- watchmillis = max(1,millis());
- watch_raw = current_raw;
- }
- else{
- watchmillis = 0;
- }
- #endif //WATCHERPERIOD
- codenum = millis();
- while(current_raw < target_raw) {
- if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
- {
- Serial.print("T:");
- Serial.println( analog2temp(current_raw));
- codenum = millis();
- }
- manage_heater();
- }
- break;
- case 190:
- break;
- case 82:
- axis_relative_modes[3] = false;
- break;
- case 83:
- axis_relative_modes[3] = true;
- break;
- case 84:
- if(code_seen('S')){
- stepper_inactive_time = code_value() * 1000;
- }
- else{
- st_synchronize();
- disable_x();
- disable_y();
- disable_z();
- disable_e();
- }
- break;
- case 85: // M85
- code_seen('S');
- max_inactive_time = code_value() * 1000;
- break;
- case 92: // M92
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
- }
-
- break;
- case 115: // M115
- Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
- break;
- case 114: // M114
- Serial.print("X:");
- Serial.print(current_position[X_AXIS]);
- Serial.print("Y:");
- Serial.print(current_position[Y_AXIS]);
- Serial.print("Z:");
- Serial.print(current_position[Z_AXIS]);
- Serial.print("E:");
- Serial.println(current_position[E_AXIS]);
- break;
- case 119: // M119
- #if (X_MIN_PIN > -1)
- Serial.print("x_min:");
- Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
- #endif
- #if (X_MAX_PIN > -1)
- Serial.print("x_max:");
- Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
- #endif
- #if (Y_MIN_PIN > -1)
- Serial.print("y_min:");
- Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
- #endif
- #if (Y_MAX_PIN > -1)
- Serial.print("y_max:");
- Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
- #endif
- #if (Z_MIN_PIN > -1)
- Serial.print("z_min:");
- Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
- #endif
- #if (Z_MAX_PIN > -1)
- Serial.print("z_max:");
- Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
- #endif
- Serial.println("");
- break;
- //TODO: update for all axis, use for loop
- case 201: // M201
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
- }
- break;
- #if 0 // Not used for Sprinter/grbl gen6
- case 202: // M202
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
- }
- break;
- #endif
- #ifdef PIDTEMP
- case 301: // M301
- if(code_seen('P')) Kp = code_value();
- if(code_seen('I')) Ki = code_value()*PID_dT;
- if(code_seen('D')) Kd = code_value()/PID_dT;
- Serial.print("Kp ");Serial.println(Kp);
- Serial.print("Ki ");Serial.println(Ki/PID_dT);
- Serial.print("Kd ");Serial.println(Kd*PID_dT);
- temp_iState_min = 0.0;
- temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
- break;
- #endif //PIDTEMP
- }
- }
- else{
- Serial.println("Unknown command:");
- Serial.println(cmdbuffer[bufindr]);
- }
-
- ClearToSend();
- }
-
- void FlushSerialRequestResend()
- {
- //char cmdbuffer[bufindr][100]="Resend:";
- Serial.flush();
- Serial.print("Resend:");
- Serial.println(gcode_LastN + 1);
- ClearToSend();
- }
-
- void ClearToSend()
- {
- previous_millis_cmd = millis();
- #ifdef SDSUPPORT
- if(fromsd[bufindr])
- return;
- #endif //SDSUPPORT
- Serial.println("ok");
- }
-
- inline void get_coordinates()
- {
- for(int i=0; i < NUM_AXIS; i++) {
- if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
- else destination[i] = current_position[i]; //Are these else lines really needed?
- }
- if(code_seen('F')) {
- next_feedrate = code_value();
- if(next_feedrate > 0.0) feedrate = next_feedrate;
- }
- }
-
- void prepare_move()
- {
- plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60.0);
- for(int i=0; i < NUM_AXIS; i++) {
- current_position[i] = destination[i];
- }
- }
-
- void manage_heater()
- {
- float pid_input;
- float pid_output;
- if(temp_meas_ready != true)
- return;
-
- CRITICAL_SECTION_START;
- temp_meas_ready = false;
- CRITICAL_SECTION_END;
-
- #ifdef PIDTEMP
- pid_input = analog2temp(current_raw);
-
- #ifndef PID_OPENLOOP
- pid_error = pid_setpoint - pid_input;
- if(pid_error > 10){
- pid_output = PID_MAX;
- pid_reset = true;
- }
- else if(pid_error < -10) {
- pid_output = 0;
- pid_reset = true;
- }
- else {
- if(pid_reset == true) {
- temp_iState = 0.0;
- pid_reset = false;
- }
- pTerm = Kp * pid_error;
- temp_iState += pid_error;
- temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
- iTerm = Ki * temp_iState;
- #define K1 0.8
- #define K2 (1.0-K1)
- dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
- temp_dState = pid_input;
- pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
- }
- #endif //PID_OPENLOOP
- #ifdef PID_DEBUG
- Serial.print(" Input ");
- Serial.print(pid_input);
- Serial.print(" Output ");
- Serial.print(pid_output);
- Serial.print(" pTerm ");
- Serial.print(pTerm);
- Serial.print(" iTerm ");
- Serial.print(iTerm);
- Serial.print(" dTerm ");
- Serial.print(dTerm);
- Serial.println();
- #endif //PID_DEBUG
- OCR2B = pid_output;
- #endif //PIDTEMP
- }
-
-
- int temp2analogu(int celsius, const short table[][2], int numtemps) {
- int raw = 0;
- byte i;
-
- for (i=1; i<numtemps; i++) {
- if (table[i][1] < celsius) {
- raw = table[i-1][0] +
- (celsius - table[i-1][1]) *
- (table[i][0] - table[i-1][0]) /
- (table[i][1] - table[i-1][1]);
-
- break;
- }
- }
- // Overflow: Set to last value in the table
- if (i == numtemps) raw = table[i-1][0];
-
- return 16383 - raw;
- }
-
- float analog2tempu(int raw,const short table[][2], int numtemps) {
- float celsius = 0.0;
- byte i;
-
- raw = 16383 - raw;
- for (i=1; i<numtemps; i++) {
- if (table[i][0] > raw) {
- celsius = (float)table[i-1][1] +
- (float)(raw - table[i-1][0]) *
- (float)(table[i][1] - table[i-1][1]) /
- (float)(table[i][0] - table[i-1][0]);
-
- break;
- }
- }
- // Overflow: Set to last value in the table
- if (i == numtemps) celsius = table[i-1][1];
-
- return celsius;
- }
-
-
- inline void kill()
- {
- target_raw=0;
- #ifdef PIDTEMP
- pid_setpoint = 0.0;
- #endif //PIDTEMP
- OCR2B = 0;
- WRITE(HEATER_0_PIN,LOW);
-
- disable_x();
- disable_y();
- disable_z();
- disable_e();
-
- }
-
- inline void manage_inactivity(byte debug) {
- if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
- if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
- disable_x();
- disable_y();
- disable_z();
- disable_e();
- }
- check_axes_activity();
- }
-
- // Planner
-
- /*
- Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
-
- s == speed, a == acceleration, t == time, d == distance
-
- Basic definitions:
-
- Speed[s_, a_, t_] := s + (a*t)
- Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
-
- Distance to reach a specific speed with a constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
- d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
-
- Speed after a given distance of travel with constant acceleration:
-
- Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
- m -> Sqrt[2 a d + s^2]
-
- DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
-
- When to start braking (di) to reach a specified destionation speed (s2) after accelerating
- from initial speed s1 without ever stopping at a plateau:
-
- Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
- di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
-
- IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
- */
-
-
- // The number of linear motions that can be in the plan at any give time
- #define BLOCK_BUFFER_SIZE 16
- #define BLOCK_BUFFER_MASK 0x0f
-
- static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
- static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
- static volatile unsigned char block_buffer_tail; // Index of the block to process now
-
- // The current position of the tool in absolute steps
- static long position[4];
-
- #define ONE_MINUTE_OF_MICROSECONDS 60000000.0
-
- // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
- // given acceleration:
- inline long estimate_acceleration_distance(long initial_rate, long target_rate, long acceleration) {
- return(
- (target_rate*target_rate-initial_rate*initial_rate)/
- (2L*acceleration)
- );
- }
-
- // This function gives you the point at which you must start braking (at the rate of -acceleration) if
- // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
- // a total travel of distance. This can be used to compute the intersection point between acceleration and
- // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
-
- inline long intersection_distance(long initial_rate, long final_rate, long acceleration, long distance) {
- return(
- (2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
- (4*acceleration)
- );
- }
-
- // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
-
- void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
- if(block->busy == true) return; // If block is busy then bail out.
- float entry_factor = entry_speed / block->nominal_speed;
- float exit_factor = exit_speed / block->nominal_speed;
- long initial_rate = ceil(block->nominal_rate*entry_factor);
- long final_rate = ceil(block->nominal_rate*exit_factor);
-
- #ifdef ADVANCE
- long initial_advance = block->advance*entry_factor*entry_factor;
- long final_advance = block->advance*exit_factor*exit_factor;
- #endif // ADVANCE
-
- // Limit minimal step rate (Otherwise the timer will overflow.)
- if(initial_rate <120) initial_rate=120;
- if(final_rate < 120) final_rate=120;
-
- // Calculate the acceleration steps
- long acceleration = block->acceleration_st;
- long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
- long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
- // Calculate the size of Plateau of Nominal Rate.
- long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
-
- // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
- // have to use intersection_distance() to calculate when to abort acceleration and start braking
- // in order to reach the final_rate exactly at the end of this block.
- if (plateau_steps < 0) {
- accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
- plateau_steps = 0;
- }
-
- long decelerate_after = accelerate_steps+plateau_steps;
- long acceleration_rate = (long)((float)acceleration * 8.388608);
-
- CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
- if(block->busy == false) { // Don't update variables if block is busy.
- block->accelerate_until = accelerate_steps;
- block->decelerate_after = decelerate_after;
- block->acceleration_rate = acceleration_rate;
- block->initial_rate = initial_rate;
- block->final_rate = final_rate;
- #ifdef ADVANCE
- block->initial_advance = initial_advance;
- block->final_advance = final_advance;
- #endif ADVANCE
- }
- CRITICAL_SECTION_END;
- }
-
- // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
- // acceleration within the allotted distance.
- inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
- return(
- sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
- );
- }
-
- // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
- // This method will calculate the junction jerk as the euclidean distance between the nominal
- // velocities of the respective blocks.
- inline float junction_jerk(block_t *before, block_t *after) {
- return(sqrt(
- pow((before->speed_x-after->speed_x), 2)+
- pow((before->speed_y-after->speed_y), 2)));
- }
-
- // Return the safe speed which is max_jerk/2, e.g. the
- // speed under which you cannot exceed max_jerk no matter what you do.
- float safe_speed(block_t *block) {
- float safe_speed;
- safe_speed = max_xy_jerk/2;
- if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
- if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
- return safe_speed;
- }
-
- // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
- void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!current) {
- return;
- }
-
- float entry_speed = current->nominal_speed;
- float exit_factor;
- float exit_speed;
- if (next) {
- exit_speed = next->entry_speed;
- }
- else {
- exit_speed = safe_speed(current);
- }
-
- // Calculate the entry_factor for the current block.
- if (previous) {
- // Reduce speed so that junction_jerk is within the maximum allowed
- float jerk = junction_jerk(previous, current);
- if((previous->steps_x == 0) && (previous->steps_y == 0)) {
- entry_speed = safe_speed(current);
- }
- else if (jerk > max_xy_jerk) {
- entry_speed = (max_xy_jerk/jerk) * entry_speed;
- }
- if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
- entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
- }
- // If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
- if (entry_speed > exit_speed) {
- float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
- if (max_entry_speed < entry_speed) {
- entry_speed = max_entry_speed;
- }
- }
- }
- else {
- entry_speed = safe_speed(current);
- }
- // Store result
- current->entry_speed = entry_speed;
- }
-
- // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
- // implements the reverse pass.
- void planner_reverse_pass() {
- char block_index = block_buffer_head;
- block_t *block[3] = {
- NULL, NULL, NULL };
- while(block_index != block_buffer_tail) {
- block[2]= block[1];
- block[1]= block[0];
- block[0] = &block_buffer[block_index];
- planner_reverse_pass_kernel(block[0], block[1], block[2]);
- block_index--;
- if(block_index < 0) {
- block_index = BLOCK_BUFFER_SIZE-1;
- }
- }
- // planner_reverse_pass_kernel(NULL, block[0], block[1]);
- }
-
- // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
- void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
- if(!current) {
- return;
- }
- if(previous) {
- // If the previous block is an acceleration block, but it is not long enough to
- // complete the full speed change within the block, we need to adjust out entry
- // speed accordingly. Remember current->entry_factor equals the exit factor of
- // the previous block.
- if(previous->entry_speed < current->entry_speed) {
- float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
- if (max_entry_speed < current->entry_speed) {
- current->entry_speed = max_entry_speed;
- }
- }
- }
- }
-
- // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
- // implements the forward pass.
- void planner_forward_pass() {
- char block_index = block_buffer_tail;
- block_t *block[3] = {
- NULL, NULL, NULL };
-
- while(block_index != block_buffer_head) {
- block[0] = block[1];
- block[1] = block[2];
- block[2] = &block_buffer[block_index];
- planner_forward_pass_kernel(block[0],block[1],block[2]);
- block_index = (block_index+1) & BLOCK_BUFFER_MASK;
- }
- planner_forward_pass_kernel(block[1], block[2], NULL);
- }
-
- // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
- // entry_factor for each junction. Must be called by planner_recalculate() after
- // updating the blocks.
- void planner_recalculate_trapezoids() {
- char block_index = block_buffer_tail;
- block_t *current;
- block_t *next = NULL;
- while(block_index != block_buffer_head) {
- current = next;
- next = &block_buffer[block_index];
- if (current) {
- calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
- }
- block_index = (block_index+1) & BLOCK_BUFFER_MASK;
- }
- calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
- }
-
- // Recalculates the motion plan according to the following algorithm:
- //
- // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
- // so that:
- // a. The junction jerk is within the set limit
- // b. No speed reduction within one block requires faster deceleration than the one, true constant
- // acceleration.
- // 2. Go over every block in chronological order and dial down junction speed reduction values if
- // a. The speed increase within one block would require faster accelleration than the one, true
- // constant acceleration.
- //
- // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
- // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
- // the set limit. Finally it will:
- //
- // 3. Recalculate trapezoids for all blocks.
-
- void planner_recalculate() {
- planner_reverse_pass();
- planner_forward_pass();
- planner_recalculate_trapezoids();
- }
-
- void plan_init() {
- block_buffer_head = 0;
- block_buffer_tail = 0;
- memset(position, 0, sizeof(position)); // clear position
- }
-
-
- inline void plan_discard_current_block() {
- if (block_buffer_head != block_buffer_tail) {
- block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
- }
- }
-
- inline block_t *plan_get_current_block() {
- if (block_buffer_head == block_buffer_tail) {
- return(NULL);
- }
- block_t *block = &block_buffer[block_buffer_tail];
- block->busy = true;
- return(block);
- }
-
- void check_axes_activity() {
- unsigned char x_active = 0;
- unsigned char y_active = 0;
- unsigned char z_active = 0;
- unsigned char e_active = 0;
- block_t *block;
-
- if(block_buffer_tail != block_buffer_head) {
- char block_index = block_buffer_tail;
- while(block_index != block_buffer_head) {
- block = &block_buffer[block_index];
- if(block->steps_x != 0) x_active++;
- if(block->steps_y != 0) y_active++;
- if(block->steps_z != 0) z_active++;
- if(block->steps_e != 0) e_active++;
- block_index = (block_index+1) & BLOCK_BUFFER_MASK;
- }
- }
- if((DISABLE_X) && (x_active == 0)) disable_x();
- if((DISABLE_Y) && (y_active == 0)) disable_y();
- if((DISABLE_Z) && (z_active == 0)) disable_z();
- if((DISABLE_E) && (e_active == 0)) disable_e();
- }
-
- // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
- // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
- // calculation the caller must also provide the physical length of the line in millimeters.
- void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
-
- // The target position of the tool in absolute steps
- // Calculate target position in absolute steps
- long target[4];
- target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
-
- // Calculate the buffer head after we push this byte
- int next_buffer_head = (block_buffer_head + 1) & BLOCK_BUFFER_MASK;
-
- // If the buffer is full: good! That means we are well ahead of the robot.
- // Rest here until there is room in the buffer.
- while(block_buffer_tail == next_buffer_head) {
- manage_heater();
- manage_inactivity(1);
- }
-
- // Prepare to set up new block
- block_t *block = &block_buffer[block_buffer_head];
-
- // Mark block as not busy (Not executed by the stepper interrupt)
- block->busy = false;
-
- // Number of steps for each axis
- block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
- block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
- block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
- block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
- block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
-
- // Bail if this is a zero-length block
- if (block->step_event_count == 0) {
- return;
- };
-
- //enable active axes
- if(block->steps_x != 0) enable_x();
- if(block->steps_y != 0) enable_y();
- if(block->steps_z != 0) enable_z();
- if(block->steps_e != 0) enable_e();
-
- float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
- float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
- float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
- float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
- block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
-
- unsigned long microseconds;
- microseconds = lround((block->millimeters/feed_rate)*1000000);
-
- // Calculate speed in mm/minute for each axis
- float multiplier = 60.0*1000000.0/microseconds;
- block->speed_z = delta_z_mm * multiplier;
- block->speed_x = delta_x_mm * multiplier;
- block->speed_y = delta_y_mm * multiplier;
- block->speed_e = delta_e_mm * multiplier;
-
- // Limit speed per axis
- float speed_factor = 1;
- float tmp_speed_factor;
- if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
- speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
- }
- if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
- tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
- }
- if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
- tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
- }
- if(abs(block->speed_e) > max_feedrate[E_AXIS]){
- tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
- if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
- }
- multiplier = multiplier * speed_factor;
- block->speed_z = delta_z_mm * multiplier;
- block->speed_x = delta_x_mm * multiplier;
- block->speed_y = delta_y_mm * multiplier;
- block->speed_e = delta_e_mm * multiplier;
- block->nominal_speed = block->millimeters * multiplier;
- block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
-
- if(block->nominal_rate < 120) block->nominal_rate = 120;
- block->entry_speed = safe_speed(block);
-
- // Compute the acceleration rate for the trapezoid generator.
- float travel_per_step = block->millimeters/block->step_event_count;
- if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
- block->acceleration = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
- }
- else {
- block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
- // Limit acceleration per axis
- if((block->acceleration_st * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
- if((block->acceleration_st * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
- if((block->acceleration_st * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
- if(((block->acceleration_st / block->step_event_count) * block->steps_z ) > axis_steps_per_sqr_second[Z_AXIS])
- block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
- }
- block->acceleration = block->acceleration_st * travel_per_step;
-
- #ifdef ADVANCE
- // Calculate advance rate
- if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
- block->advance_rate = 0;
- block->advance = 0;
- }
- else {
- long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
- float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
- (block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
- block->advance = advance;
- if(acc_dist == 0) {
- block->advance_rate = 0;
- }
- else {
- block->advance_rate = advance / (float)acc_dist;
- }
- }
-
- #endif // ADVANCE
-
- // compute a preliminary conservative acceleration trapezoid
- float safespeed = safe_speed(block);
- calculate_trapezoid_for_block(block, safespeed, safespeed);
-
- // Compute direction bits for this block
- block->direction_bits = 0;
- if (target[X_AXIS] < position[X_AXIS]) {
- block->direction_bits |= (1<<X_AXIS);
- }
- if (target[Y_AXIS] < position[Y_AXIS]) {
- block->direction_bits |= (1<<Y_AXIS);
- }
- if (target[Z_AXIS] < position[Z_AXIS]) {
- block->direction_bits |= (1<<Z_AXIS);
- }
- if (target[E_AXIS] < position[E_AXIS]) {
- block->direction_bits |= (1<<E_AXIS);
- }
-
- // Move buffer head
- block_buffer_head = next_buffer_head;
-
- // Update position
- memcpy(position, target, sizeof(target)); // position[] = target[]
-
- planner_recalculate();
- st_wake_up();
- }
-
- void plan_set_position(float x, float y, float z, float e)
- {
- position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
- position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
- position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
- position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
- }
-
- // Stepper
-
- // intRes = intIn1 * intIn2 >> 16
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 24 bit result
- #define MultiU16X8toH16(intRes, charIn1, intIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %A1, %A2 \n\t" \
- "add %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r0 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (charIn1), \
- "d" (intIn2) \
- : \
- "r26" \
- )
-
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 48bit result
- #define MultiU24X24toH16(intRes, longIn1, longIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "mov r27, r1 \n\t" \
- "mul %B1, %C2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %C1, %C2 \n\t" \
- "add %B0, r0 \n\t" \
- "mul %C1, %B2 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %A1, %C2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %B2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %C1, %A2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %A2 \n\t" \
- "add r27, r1 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r27 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (longIn1), \
- "d" (longIn2) \
- : \
- "r26" , "r27" \
- )
-
- // Some useful constants
-
- #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
- #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
-
- static block_t *current_block; // A pointer to the block currently being traced
-
- // Variables used by The Stepper Driver Interrupt
- static unsigned char out_bits; // The next stepping-bits to be output
- static long counter_x, // Counter variables for the bresenham line tracer
- counter_y,
- counter_z,
- counter_e;
- static unsigned long step_events_completed; // The number of step events executed in the current block
- static long advance_rate, advance, final_advance = 0;
- static short old_advance = 0;
- static short e_steps;
- static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
- static long acceleration_time, deceleration_time;
- static long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
- static unsigned short acc_step_rate; // needed for deccelaration start point
-
-
-
- // __________________________
- // /| |\ _________________ ^
- // / | | \ /| |\ |
- // / | | \ / | | \ s
- // / | | | | | \ p
- // / | | | | | \ e
- // +-----+------------------------+---+--+---------------+----+ e
- // | BLOCK 1 | BLOCK 2 | d
- //
- // time ----->
- //
- // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- // first block->accelerate_until step_events_completed, then keeps going at constant speed until
- // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- // The slope of acceleration is calculated with the leib ramp alghorithm.
-
- void st_wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- inline unsigned short calc_timer(unsigned short step_rate) {
- unsigned short timer;
- if(step_rate < 32) step_rate = 32;
- step_rate -= 32; // Correct for minimal speed
- if(step_rate >= (8*256)){ // higher step rate
- unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
- unsigned char tmp_step_rate = (step_rate & 0x00ff);
- unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
- MultiU16X8toH16(timer, tmp_step_rate, gain);
- timer = (unsigned short)pgm_read_word_near(table_address) - timer;
- }
- else { // lower step rates
- unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
- table_address += ((step_rate)>>1) & 0xfffc;
- timer = (unsigned short)pgm_read_word_near(table_address);
- timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
- }
- if(timer < 100) timer = 100;
- return timer;
- }
-
- // Initializes the trapezoid generator from the current block. Called whenever a new
- // block begins.
- inline void trapezoid_generator_reset() {
- accelerate_until = current_block->accelerate_until;
- decelerate_after = current_block->decelerate_after;
- acceleration_rate = current_block->acceleration_rate;
- initial_rate = current_block->initial_rate;
- final_rate = current_block->final_rate;
- nominal_rate = current_block->nominal_rate;
- advance = current_block->initial_advance;
- final_advance = current_block->final_advance;
- deceleration_time = 0;
- advance_rate = current_block->advance_rate;
-
- // step_rate to timer interval
- acc_step_rate = initial_rate;
- acceleration_time = calc_timer(acc_step_rate);
- OCR1A = acceleration_time;
- }
-
- // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
- // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
- ISR(TIMER1_COMPA_vect)
- {
- if(busy){ /*Serial.println("BUSY")*/;
- return;
- } // The busy-flag is used to avoid reentering this interrupt
-
- busy = true;
- sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
-
- // If there is no current block, attempt to pop one from the buffer
- if (current_block == NULL) {
- // Anything in the buffer?
- current_block = plan_get_current_block();
- if (current_block != NULL) {
- trapezoid_generator_reset();
- counter_x = -(current_block->step_event_count >> 1);
- counter_y = counter_x;
- counter_z = counter_x;
- counter_e = counter_x;
- step_events_completed = 0;
- e_steps = 0;
- }
- else {
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- }
- }
-
- if (current_block != NULL) {
- // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
- out_bits = current_block->direction_bits;
-
- #ifdef ADVANCE
- // Calculate E early.
- counter_e += current_block->steps_e;
- if (counter_e > 0) {
- counter_e -= current_block->step_event_count;
- if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
- CRITICAL_SECTION_START;
- e_steps--;
- CRITICAL_SECTION_END;
- }
- else {
- CRITICAL_SECTION_START;
- e_steps++;
- CRITICAL_SECTION_END;
- }
- }
- // Do E steps + advance steps
- CRITICAL_SECTION_START;
- e_steps += ((advance >> 16) - old_advance);
- CRITICAL_SECTION_END;
- old_advance = advance >> 16;
- #endif //ADVANCE
-
- // Set direction en check limit switches
- if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
- WRITE(X_DIR_PIN, INVERT_X_DIR);
- if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
- step_events_completed = current_block->step_event_count;
- }
- }
- else // +direction
- WRITE(X_DIR_PIN,!INVERT_X_DIR);
-
- if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
- WRITE(Y_DIR_PIN,INVERT_Y_DIR);
- if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
- step_events_completed = current_block->step_event_count;
- }
- }
- else // +direction
- WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
-
- if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
- WRITE(Z_DIR_PIN,INVERT_Z_DIR);
- if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
- step_events_completed = current_block->step_event_count;
- }
- }
- else // +direction
- WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
-
- #ifndef ADVANCE
- if ((out_bits & (1<<E_AXIS)) != 0) // -direction
- WRITE(E_DIR_PIN,INVERT_E_DIR);
- else // +direction
- WRITE(E_DIR_PIN,!INVERT_E_DIR);
- #endif //!ADVANCE
-
- counter_x += current_block->steps_x;
- if (counter_x > 0) {
- WRITE(X_STEP_PIN, HIGH);
- counter_x -= current_block->step_event_count;
- WRITE(X_STEP_PIN, LOW);
- }
-
- counter_y += current_block->steps_y;
- if (counter_y > 0) {
- WRITE(Y_STEP_PIN, HIGH);
- counter_y -= current_block->step_event_count;
- WRITE(Y_STEP_PIN, LOW);
- }
-
- counter_z += current_block->steps_z;
- if (counter_z > 0) {
- WRITE(Z_STEP_PIN, HIGH);
- counter_z -= current_block->step_event_count;
- WRITE(Z_STEP_PIN, LOW);
- }
-
- #ifndef ADVANCE
- counter_e += current_block->steps_e;
- if (counter_e > 0) {
- WRITE(E_STEP_PIN, HIGH);
- counter_e -= current_block->step_event_count;
- WRITE(E_STEP_PIN, LOW);
- }
- #endif //!ADVANCE
-
- // Calculare new timer value
- unsigned short timer;
- unsigned short step_rate;
- if (step_events_completed < accelerate_until) {
- MultiU24X24toH16(acc_step_rate, acceleration_time, acceleration_rate);
- acc_step_rate += initial_rate;
-
- // upper limit
- if(acc_step_rate > nominal_rate)
- acc_step_rate = nominal_rate;
-
- // step_rate to timer interval
- timer = calc_timer(acc_step_rate);
- advance += advance_rate;
- acceleration_time += timer;
- OCR1A = timer;
- }
- else if (step_events_completed >= decelerate_after) {
- MultiU24X24toH16(step_rate, deceleration_time, acceleration_rate);
-
- if(step_rate > acc_step_rate) { // Check step_rate stays positive
- step_rate = final_rate;
- }
- else {
- step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
- }
-
- // lower limit
- if(step_rate < final_rate)
- step_rate = final_rate;
-
- // step_rate to timer interval
- timer = calc_timer(step_rate);
- #ifdef ADVANCE
- advance -= advance_rate;
- if(advance < final_advance)
- advance = final_advance;
- #endif //ADVANCE
- deceleration_time += timer;
- OCR1A = timer;
- }
- // If current block is finished, reset pointer
- step_events_completed += 1;
- if (step_events_completed >= current_block->step_event_count) {
- current_block = NULL;
- plan_discard_current_block();
- }
- }
- busy=false;
- }
-
- #ifdef ADVANCE
-
- unsigned char old_OCR0A;
- // Timer interrupt for E. e_steps is set in the main routine;
- // Timer 0 is shared with millies
- ISR(TIMER0_COMPA_vect)
- {
- // Critical section needed because Timer 1 interrupt has higher priority.
- // The pin set functions are placed on trategic position to comply with the stepper driver timing.
- WRITE(E_STEP_PIN, LOW);
- // Set E direction (Depends on E direction + advance)
- if (e_steps < 0) {
- WRITE(E_DIR_PIN,INVERT_E_DIR);
- e_steps++;
- WRITE(E_STEP_PIN, HIGH);
- }
- if (e_steps > 0) {
- WRITE(E_DIR_PIN,!INVERT_E_DIR);
- e_steps--;
- WRITE(E_STEP_PIN, HIGH);
- }
- old_OCR0A += 25; // 10kHz interrupt
- OCR0A = old_OCR0A;
- }
- #endif // ADVANCE
-
- void st_init()
- {
- // waveform generation = 0100 = CTC
- TCCR1B &= ~(1<<WGM13);
- TCCR1B |= (1<<WGM12);
- TCCR1A &= ~(1<<WGM11);
- TCCR1A &= ~(1<<WGM10);
-
- // output mode = 00 (disconnected)
- TCCR1A &= ~(3<<COM1A0);
- TCCR1A &= ~(3<<COM1B0);
- TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
-
- OCR1A = 0x4000;
- DISABLE_STEPPER_DRIVER_INTERRUPT();
-
- #ifdef ADVANCE
- e_steps = 0;
- TIMSK0 |= (1<<OCIE0A);
- #endif //ADVANCE
- sei();
- }
-
- // Block until all buffered steps are executed
- void st_synchronize()
- {
- while(plan_get_current_block()) {
- manage_heater();
- manage_inactivity(1);
- }
- }
-
- // Temperature loop
-
- void tp_init()
- {
- DIDR0 = 1<<5; // TEMP_0_PIN for GEN6
- ADMUX = ((1 << REFS0) | (5 & 0x07));
- ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, 1/128 prescaler.
- TCCR2B = 0; //Stop timer in case of running
-
- #ifdef PIDTEMP
- TCCR2A = 0x23; //OC2A disable; FastPWM noninverting; FastPWM mode 7
- #else
- TCCR2A = 0x03; //OC2A disable; FastPWM noninverting; FastPWM mode 7
- #endif //PIDTEMP
- OCR2A = 156; //Period is ~10ms
- OCR2B = 0; //Duty Cycle for heater pin is 0 (startup)
- TIMSK2 = 0x01; //Enable overflow interrupt
- TCCR2B = 0x0F; //1/1024 prescaler, start
- }
-
- static unsigned char temp_count = 0;
- static unsigned long raw_temp_value = 0;
-
- ISR(TIMER2_OVF_vect)
- {
- // uint8_t low, high;
-
- // low = ADCL;
- // high = ADCH;
- raw_temp_value += ADC;
- // raw_temp_value = (ADCH <<8) | ADCL;
- ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, Enable Interrupt, 1/128 prescaler.
- // raw_temp_value += (high <<8) | low;
- temp_count++;
-
- if(temp_count >= 16)
- {
- current_raw = 16383 - raw_temp_value;
- temp_meas_ready = true;
- temp_count = 0;
- raw_temp_value = 0;
- #ifdef MAXTEMP
- if(current_raw >= maxttemp) {
- target_raw = 0;
- #ifdef PIDTEMP
- OCR2B = 0;
- #else
- WRITE(HEATER_0_PIN,LOW);
- #endif //PIDTEMP
- }
- #endif //MAXTEMP
- #ifdef MINTEMP
- if(current_raw <= minttemp) {
- target_raw = 0;
- #ifdef PIDTEMP
- OCR2B = 0;
- #else
- WRITE(HEATER_0_PIN,LOW);
- #endif //PIDTEMP
- }
- #endif //MAXTEMP
- #ifndef PIDTEMP
- if(current_raw >= target_raw)
- {
- WRITE(HEATER_0_PIN,LOW);
- }
- else
- {
- WRITE(HEATER_0_PIN,HIGH);
- }
- #endif //PIDTEMP
- }
- }
-
|