My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 139KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <https://www.gnu.org/licenses/>.
  41. */
  42. /**
  43. * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
  44. * and Philipp Tiefenbacher.
  45. */
  46. /**
  47. * __________________________
  48. * /| |\ _________________ ^
  49. * / | | \ /| |\ |
  50. * / | | \ / | | \ s
  51. * / | | | | | \ p
  52. * / | | | | | \ e
  53. * +-----+------------------------+---+--+---------------+----+ e
  54. * | BLOCK 1 | BLOCK 2 | d
  55. *
  56. * time ----->
  57. *
  58. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  59. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  60. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  61. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  62. */
  63. /**
  64. * Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
  65. * method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
  66. */
  67. /**
  68. * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
  69. * Equations based on Synthethos TinyG2 sources, but the fixed-point
  70. * implementation is new, as we are running the ISR with a variable period.
  71. * Also implemented the Bézier velocity curve evaluation in ARM assembler,
  72. * to avoid impacting ISR speed.
  73. */
  74. #include "stepper.h"
  75. Stepper stepper; // Singleton
  76. #define BABYSTEPPING_EXTRA_DIR_WAIT
  77. #ifdef __AVR__
  78. #include "stepper/speed_lookuptable.h"
  79. #endif
  80. #include "endstops.h"
  81. #include "planner.h"
  82. #include "motion.h"
  83. #include "../lcd/marlinui.h"
  84. #include "../gcode/queue.h"
  85. #include "../sd/cardreader.h"
  86. #include "../MarlinCore.h"
  87. #include "../HAL/shared/Delay.h"
  88. #if ENABLED(BD_SENSOR)
  89. #include "../feature/bedlevel/bdl/bdl.h"
  90. #endif
  91. #if ENABLED(INTEGRATED_BABYSTEPPING)
  92. #include "../feature/babystep.h"
  93. #endif
  94. #if MB(ALLIGATOR)
  95. #include "../feature/dac/dac_dac084s085.h"
  96. #endif
  97. #if HAS_MOTOR_CURRENT_SPI
  98. #include <SPI.h>
  99. #endif
  100. #if ENABLED(MIXING_EXTRUDER)
  101. #include "../feature/mixing.h"
  102. #endif
  103. #if HAS_FILAMENT_RUNOUT_DISTANCE
  104. #include "../feature/runout.h"
  105. #endif
  106. #if ENABLED(AUTO_POWER_CONTROL)
  107. #include "../feature/power.h"
  108. #endif
  109. #if ENABLED(POWER_LOSS_RECOVERY)
  110. #include "../feature/powerloss.h"
  111. #endif
  112. #if HAS_CUTTER
  113. #include "../feature/spindle_laser.h"
  114. #endif
  115. #if ENABLED(EXTENSIBLE_UI)
  116. #include "../lcd/extui/ui_api.h"
  117. #endif
  118. #if ENABLED(I2S_STEPPER_STREAM)
  119. #include "../HAL/ESP32/i2s.h"
  120. #endif
  121. // public:
  122. #if EITHER(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  123. bool Stepper::separate_multi_axis = false;
  124. #endif
  125. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  126. bool Stepper::initialized; // = false
  127. uint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
  128. #if HAS_MOTOR_CURRENT_SPI
  129. constexpr uint32_t Stepper::digipot_count[];
  130. #endif
  131. #endif
  132. stepper_flags_t Stepper::axis_enabled; // {0}
  133. // private:
  134. block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced
  135. axis_bits_t Stepper::last_direction_bits, // = 0
  136. Stepper::axis_did_move; // = 0
  137. bool Stepper::abort_current_block;
  138. #if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDER
  139. uint8_t Stepper::last_moved_extruder = 0xFF;
  140. #endif
  141. #if ENABLED(X_DUAL_ENDSTOPS)
  142. bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
  143. #endif
  144. #if ENABLED(Y_DUAL_ENDSTOPS)
  145. bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
  146. #endif
  147. #if EITHER(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
  148. bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false
  149. #if NUM_Z_STEPPERS >= 3
  150. , Stepper::locked_Z3_motor = false
  151. #if NUM_Z_STEPPERS >= 4
  152. , Stepper::locked_Z4_motor = false
  153. #endif
  154. #endif
  155. ;
  156. #endif
  157. uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
  158. uint8_t Stepper::steps_per_isr;
  159. #if ENABLED(FREEZE_FEATURE)
  160. bool Stepper::frozen; // = false
  161. #endif
  162. IF_DISABLED(ADAPTIVE_STEP_SMOOTHING, constexpr) uint8_t Stepper::oversampling_factor;
  163. xyze_long_t Stepper::delta_error{0};
  164. xyze_ulong_t Stepper::advance_dividend{0};
  165. uint32_t Stepper::advance_divisor = 0,
  166. Stepper::step_events_completed = 0, // The number of step events executed in the current block
  167. Stepper::accelerate_until, // The count at which to stop accelerating
  168. Stepper::decelerate_after, // The count at which to start decelerating
  169. Stepper::step_event_count; // The total event count for the current block
  170. #if EITHER(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
  171. uint8_t Stepper::stepper_extruder;
  172. #else
  173. constexpr uint8_t Stepper::stepper_extruder;
  174. #endif
  175. #if ENABLED(S_CURVE_ACCELERATION)
  176. int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
  177. int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
  178. int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
  179. uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
  180. uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
  181. #ifdef __AVR__
  182. bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
  183. #endif
  184. bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
  185. #endif
  186. #if ENABLED(LIN_ADVANCE)
  187. uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
  188. Stepper::la_interval = LA_ADV_NEVER;
  189. int32_t Stepper::la_delta_error = 0,
  190. Stepper::la_dividend = 0,
  191. Stepper::la_advance_steps = 0;
  192. #endif
  193. #if ENABLED(INTEGRATED_BABYSTEPPING)
  194. uint32_t Stepper::nextBabystepISR = BABYSTEP_NEVER;
  195. #endif
  196. #if ENABLED(DIRECT_STEPPING)
  197. page_step_state_t Stepper::page_step_state;
  198. #endif
  199. int32_t Stepper::ticks_nominal = -1;
  200. #if DISABLED(S_CURVE_ACCELERATION)
  201. uint32_t Stepper::acc_step_rate; // needed for deceleration start point
  202. #endif
  203. xyz_long_t Stepper::endstops_trigsteps;
  204. xyze_long_t Stepper::count_position{0};
  205. xyze_int8_t Stepper::count_direction{0};
  206. #define MINDIR(A) (count_direction[_AXIS(A)] < 0)
  207. #define MAXDIR(A) (count_direction[_AXIS(A)] > 0)
  208. #define STEPTEST(A,M,I) TERN0(HAS_ ##A## ##I## _ ##M, !(TEST(endstops.state(), A## ##I## _ ##M) && M## DIR(A)) && !locked_ ##A## ##I## _motor)
  209. #define DUAL_ENDSTOP_APPLY_STEP(A,V) \
  210. if (separate_multi_axis) { \
  211. if (ENABLED(A##_HOME_TO_MIN)) { \
  212. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  213. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  214. } \
  215. else if (ENABLED(A##_HOME_TO_MAX)) { \
  216. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  217. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  218. } \
  219. } \
  220. else { \
  221. A##_STEP_WRITE(V); \
  222. A##2_STEP_WRITE(V); \
  223. }
  224. #define DUAL_SEPARATE_APPLY_STEP(A,V) \
  225. if (separate_multi_axis) { \
  226. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  227. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  228. } \
  229. else { \
  230. A##_STEP_WRITE(V); \
  231. A##2_STEP_WRITE(V); \
  232. }
  233. #define TRIPLE_ENDSTOP_APPLY_STEP(A,V) \
  234. if (separate_multi_axis) { \
  235. if (ENABLED(A##_HOME_TO_MIN)) { \
  236. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  237. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  238. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  239. } \
  240. else if (ENABLED(A##_HOME_TO_MAX)) { \
  241. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  242. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  243. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  244. } \
  245. } \
  246. else { \
  247. A##_STEP_WRITE(V); \
  248. A##2_STEP_WRITE(V); \
  249. A##3_STEP_WRITE(V); \
  250. }
  251. #define TRIPLE_SEPARATE_APPLY_STEP(A,V) \
  252. if (separate_multi_axis) { \
  253. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  254. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  255. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  256. } \
  257. else { \
  258. A## _STEP_WRITE(V); \
  259. A##2_STEP_WRITE(V); \
  260. A##3_STEP_WRITE(V); \
  261. }
  262. #define QUAD_ENDSTOP_APPLY_STEP(A,V) \
  263. if (separate_multi_axis) { \
  264. if (ENABLED(A##_HOME_TO_MIN)) { \
  265. if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
  266. if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
  267. if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
  268. if (STEPTEST(A,MIN,4)) A##4_STEP_WRITE(V); \
  269. } \
  270. else if (ENABLED(A##_HOME_TO_MAX)) { \
  271. if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
  272. if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
  273. if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
  274. if (STEPTEST(A,MAX,4)) A##4_STEP_WRITE(V); \
  275. } \
  276. } \
  277. else { \
  278. A## _STEP_WRITE(V); \
  279. A##2_STEP_WRITE(V); \
  280. A##3_STEP_WRITE(V); \
  281. A##4_STEP_WRITE(V); \
  282. }
  283. #define QUAD_SEPARATE_APPLY_STEP(A,V) \
  284. if (separate_multi_axis) { \
  285. if (!locked_##A## _motor) A## _STEP_WRITE(V); \
  286. if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
  287. if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
  288. if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \
  289. } \
  290. else { \
  291. A## _STEP_WRITE(V); \
  292. A##2_STEP_WRITE(V); \
  293. A##3_STEP_WRITE(V); \
  294. A##4_STEP_WRITE(V); \
  295. }
  296. #if HAS_DUAL_X_STEPPERS
  297. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ ENABLED(INVERT_X2_VS_X_DIR)); }while(0)
  298. #if ENABLED(X_DUAL_ENDSTOPS)
  299. #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
  300. #else
  301. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  302. #endif
  303. #elif ENABLED(DUAL_X_CARRIAGE)
  304. #define X_APPLY_DIR(v,ALWAYS) do{ \
  305. if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(v); X2_DIR_WRITE((v) ^ idex_mirrored_mode); } \
  306. else if (last_moved_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  307. }while(0)
  308. #define X_APPLY_STEP(v,ALWAYS) do{ \
  309. if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(v); X2_STEP_WRITE(v); } \
  310. else if (last_moved_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  311. }while(0)
  312. #else
  313. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  314. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  315. #endif
  316. #if HAS_DUAL_Y_STEPPERS
  317. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) ^ ENABLED(INVERT_Y2_VS_Y_DIR)); }while(0)
  318. #if ENABLED(Y_DUAL_ENDSTOPS)
  319. #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
  320. #else
  321. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  322. #endif
  323. #elif HAS_Y_AXIS
  324. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  325. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  326. #endif
  327. #if NUM_Z_STEPPERS == 4
  328. #define Z_APPLY_DIR(v,Q) do{ \
  329. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); \
  330. Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); Z4_DIR_WRITE((v) ^ ENABLED(INVERT_Z4_VS_Z_DIR)); \
  331. }while(0)
  332. #if ENABLED(Z_MULTI_ENDSTOPS)
  333. #define Z_APPLY_STEP(v,Q) QUAD_ENDSTOP_APPLY_STEP(Z,v)
  334. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  335. #define Z_APPLY_STEP(v,Q) QUAD_SEPARATE_APPLY_STEP(Z,v)
  336. #else
  337. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); Z4_STEP_WRITE(v); }while(0)
  338. #endif
  339. #elif NUM_Z_STEPPERS == 3
  340. #define Z_APPLY_DIR(v,Q) do{ \
  341. Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); Z3_DIR_WRITE((v) ^ ENABLED(INVERT_Z3_VS_Z_DIR)); \
  342. }while(0)
  343. #if ENABLED(Z_MULTI_ENDSTOPS)
  344. #define Z_APPLY_STEP(v,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,v)
  345. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  346. #define Z_APPLY_STEP(v,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,v)
  347. #else
  348. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); Z3_STEP_WRITE(v); }while(0)
  349. #endif
  350. #elif NUM_Z_STEPPERS == 2
  351. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE((v) ^ ENABLED(INVERT_Z2_VS_Z_DIR)); }while(0)
  352. #if ENABLED(Z_MULTI_ENDSTOPS)
  353. #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
  354. #elif ENABLED(Z_STEPPER_AUTO_ALIGN)
  355. #define Z_APPLY_STEP(v,Q) DUAL_SEPARATE_APPLY_STEP(Z,v)
  356. #else
  357. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  358. #endif
  359. #elif HAS_Z_AXIS
  360. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  361. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  362. #endif
  363. #if HAS_I_AXIS
  364. #define I_APPLY_DIR(v,Q) I_DIR_WRITE(v)
  365. #define I_APPLY_STEP(v,Q) I_STEP_WRITE(v)
  366. #endif
  367. #if HAS_J_AXIS
  368. #define J_APPLY_DIR(v,Q) J_DIR_WRITE(v)
  369. #define J_APPLY_STEP(v,Q) J_STEP_WRITE(v)
  370. #endif
  371. #if HAS_K_AXIS
  372. #define K_APPLY_DIR(v,Q) K_DIR_WRITE(v)
  373. #define K_APPLY_STEP(v,Q) K_STEP_WRITE(v)
  374. #endif
  375. #if HAS_U_AXIS
  376. #define U_APPLY_DIR(v,Q) U_DIR_WRITE(v)
  377. #define U_APPLY_STEP(v,Q) U_STEP_WRITE(v)
  378. #endif
  379. #if HAS_V_AXIS
  380. #define V_APPLY_DIR(v,Q) V_DIR_WRITE(v)
  381. #define V_APPLY_STEP(v,Q) V_STEP_WRITE(v)
  382. #endif
  383. #if HAS_W_AXIS
  384. #define W_APPLY_DIR(v,Q) W_DIR_WRITE(v)
  385. #define W_APPLY_STEP(v,Q) W_STEP_WRITE(v)
  386. #endif
  387. #if DISABLED(MIXING_EXTRUDER)
  388. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v)
  389. #endif
  390. #define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000))
  391. #define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE))
  392. // Round up when converting from ns to timer ticks
  393. #define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK))
  394. #define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES))
  395. #define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS)))
  396. #define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS)))
  397. #define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0
  398. #define START_TIMED_PULSE(DIR) (start_pulse_count = HAL_timer_get_count(MF_TIMER_PULSE))
  399. #define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(MF_TIMER_PULSE) - start_pulse_count) { }
  400. #define START_HIGH_PULSE() START_TIMED_PULSE(HIGH)
  401. #define AWAIT_HIGH_PULSE() AWAIT_TIMED_PULSE(HIGH)
  402. #define START_LOW_PULSE() START_TIMED_PULSE(LOW)
  403. #define AWAIT_LOW_PULSE() AWAIT_TIMED_PULSE(LOW)
  404. #if MINIMUM_STEPPER_PRE_DIR_DELAY > 0
  405. #define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY)
  406. #else
  407. #define DIR_WAIT_BEFORE()
  408. #endif
  409. #if MINIMUM_STEPPER_POST_DIR_DELAY > 0
  410. #define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY)
  411. #else
  412. #define DIR_WAIT_AFTER()
  413. #endif
  414. void Stepper::enable_axis(const AxisEnum axis) {
  415. #define _CASE_ENABLE(N) case N##_AXIS: ENABLE_AXIS_##N(); break;
  416. switch (axis) {
  417. MAIN_AXIS_MAP(_CASE_ENABLE)
  418. default: break;
  419. }
  420. mark_axis_enabled(axis);
  421. }
  422. bool Stepper::disable_axis(const AxisEnum axis) {
  423. mark_axis_disabled(axis);
  424. TERN_(DWIN_LCD_PROUI, set_axis_untrusted(axis)); // MRISCOC workaround: https://github.com/MarlinFirmware/Marlin/issues/23095
  425. // If all the axes that share the enabled bit are disabled
  426. const bool can_disable = can_axis_disable(axis);
  427. if (can_disable) {
  428. #define _CASE_DISABLE(N) case N##_AXIS: DISABLE_AXIS_##N(); break;
  429. switch (axis) {
  430. MAIN_AXIS_MAP(_CASE_DISABLE)
  431. default: break;
  432. }
  433. }
  434. return can_disable;
  435. }
  436. #if HAS_EXTRUDERS
  437. void Stepper::enable_extruder(E_TERN_(const uint8_t eindex)) {
  438. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  439. #define _CASE_ENA_E(N) case N: ENABLE_AXIS_E##N(); mark_axis_enabled(E_AXIS E_OPTARG(eindex)); break;
  440. switch (eindex) {
  441. REPEAT(E_STEPPERS, _CASE_ENA_E)
  442. }
  443. }
  444. bool Stepper::disable_extruder(E_TERN_(const uint8_t eindex/*=0*/)) {
  445. IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
  446. mark_axis_disabled(E_AXIS E_OPTARG(eindex));
  447. const bool can_disable = can_axis_disable(E_AXIS E_OPTARG(eindex));
  448. if (can_disable) {
  449. #define _CASE_DIS_E(N) case N: DISABLE_AXIS_E##N(); break;
  450. switch (eindex) { REPEAT(E_STEPPERS, _CASE_DIS_E) }
  451. }
  452. return can_disable;
  453. }
  454. void Stepper::enable_e_steppers() {
  455. #define _ENA_E(N) ENABLE_EXTRUDER(N);
  456. REPEAT(EXTRUDERS, _ENA_E)
  457. }
  458. void Stepper::disable_e_steppers() {
  459. #define _DIS_E(N) DISABLE_EXTRUDER(N);
  460. REPEAT(EXTRUDERS, _DIS_E)
  461. }
  462. #endif
  463. void Stepper::enable_all_steppers() {
  464. TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
  465. NUM_AXIS_CODE(
  466. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  467. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS),
  468. enable_axis(U_AXIS), enable_axis(V_AXIS), enable_axis(W_AXIS)
  469. );
  470. enable_e_steppers();
  471. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersEnabled());
  472. }
  473. void Stepper::disable_all_steppers() {
  474. NUM_AXIS_CODE(
  475. disable_axis(X_AXIS), disable_axis(Y_AXIS), disable_axis(Z_AXIS),
  476. disable_axis(I_AXIS), disable_axis(J_AXIS), disable_axis(K_AXIS),
  477. disable_axis(U_AXIS), disable_axis(V_AXIS), disable_axis(W_AXIS)
  478. );
  479. disable_e_steppers();
  480. TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
  481. }
  482. /**
  483. * Set the stepper direction of each axis
  484. *
  485. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  486. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  487. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  488. */
  489. void Stepper::set_directions() {
  490. DIR_WAIT_BEFORE();
  491. #define SET_STEP_DIR(A) \
  492. if (motor_direction(_AXIS(A))) { \
  493. A##_APPLY_DIR(INVERT_##A##_DIR, false); \
  494. count_direction[_AXIS(A)] = -1; \
  495. } \
  496. else { \
  497. A##_APPLY_DIR(!INVERT_##A##_DIR, false); \
  498. count_direction[_AXIS(A)] = 1; \
  499. }
  500. TERN_(HAS_X_DIR, SET_STEP_DIR(X)); // A
  501. TERN_(HAS_Y_DIR, SET_STEP_DIR(Y)); // B
  502. TERN_(HAS_Z_DIR, SET_STEP_DIR(Z)); // C
  503. TERN_(HAS_I_DIR, SET_STEP_DIR(I));
  504. TERN_(HAS_J_DIR, SET_STEP_DIR(J));
  505. TERN_(HAS_K_DIR, SET_STEP_DIR(K));
  506. TERN_(HAS_U_DIR, SET_STEP_DIR(U));
  507. TERN_(HAS_V_DIR, SET_STEP_DIR(V));
  508. TERN_(HAS_W_DIR, SET_STEP_DIR(W));
  509. #if ENABLED(MIXING_EXTRUDER)
  510. // Because this is valid for the whole block we don't know
  511. // what E steppers will step. Likely all. Set all.
  512. if (motor_direction(E_AXIS)) {
  513. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  514. count_direction.e = -1;
  515. }
  516. else {
  517. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  518. count_direction.e = 1;
  519. }
  520. #elif HAS_EXTRUDERS
  521. if (motor_direction(E_AXIS)) {
  522. REV_E_DIR(stepper_extruder);
  523. count_direction.e = -1;
  524. }
  525. else {
  526. NORM_E_DIR(stepper_extruder);
  527. count_direction.e = 1;
  528. }
  529. #endif
  530. DIR_WAIT_AFTER();
  531. }
  532. #if ENABLED(S_CURVE_ACCELERATION)
  533. /**
  534. * This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
  535. * a "linear pop" velocity curve; with pop being the sixth derivative of position:
  536. * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
  537. *
  538. * The Bézier curve takes the form:
  539. *
  540. * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
  541. *
  542. * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
  543. * through B_5(t) are the Bernstein basis as follows:
  544. *
  545. * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
  546. * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
  547. * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
  548. * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
  549. * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
  550. * B_5(t) = t^5 = t^5
  551. * ^ ^ ^ ^ ^ ^
  552. * | | | | | |
  553. * A B C D E F
  554. *
  555. * Unfortunately, we cannot use forward-differencing to calculate each position through
  556. * the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
  557. *
  558. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
  559. *
  560. * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
  561. * through t of the Bézier form of V(t), we can determine that:
  562. *
  563. * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
  564. * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
  565. * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
  566. * D = 10*P_0 - 20*P_1 + 10*P_2
  567. * E = - 5*P_0 + 5*P_1
  568. * F = P_0
  569. *
  570. * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
  571. * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
  572. * which, after simplification, resolves to:
  573. *
  574. * A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
  575. * B = 15*P_i - 15*P_t = 15*(P_i - P_t)
  576. * C = -10*P_i + 10*P_t = 10*(P_t - P_i)
  577. * D = 0
  578. * E = 0
  579. * F = P_i
  580. *
  581. * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
  582. * the Bézier curve at each point:
  583. *
  584. * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
  585. *
  586. * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
  587. * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
  588. * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
  589. * overflows on the evaluation of the Bézier curve, means we can use
  590. *
  591. * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
  592. * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
  593. * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
  594. * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
  595. * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
  596. *
  597. * The trapezoid generator state contains the following information, that we will use to create and evaluate
  598. * the Bézier curve:
  599. *
  600. * blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
  601. * blk->initial_rate [VI] = The initial steps per second (=velocity)
  602. * blk->final_rate [VF] = The ending steps per second (=velocity)
  603. * and the count of events completed (step_events_completed) [CS] (=distance until now)
  604. *
  605. * Note the abbreviations we use in the following formulae are between []s
  606. *
  607. * For Any 32bit CPU:
  608. *
  609. * At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
  610. *
  611. * A = 6*128*(VF - VI) = 768*(VF - VI)
  612. * B = 15*128*(VI - VF) = 1920*(VI - VF)
  613. * C = 10*128*(VF - VI) = 1280*(VF - VI)
  614. * F = 128*VI = 128*VI
  615. * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
  616. *
  617. * And for each point, evaluate the curve with the following sequence:
  618. *
  619. * void lsrs(uint32_t& d, uint32_t s, int cnt) {
  620. * d = s >> cnt;
  621. * }
  622. * void lsls(uint32_t& d, uint32_t s, int cnt) {
  623. * d = s << cnt;
  624. * }
  625. * void lsrs(int32_t& d, uint32_t s, int cnt) {
  626. * d = uint32_t(s) >> cnt;
  627. * }
  628. * void lsls(int32_t& d, uint32_t s, int cnt) {
  629. * d = uint32_t(s) << cnt;
  630. * }
  631. * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
  632. * uint64_t res = uint64_t(op1) * op2;
  633. * rlo = uint32_t(res & 0xFFFFFFFF);
  634. * rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
  635. * }
  636. * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
  637. * int64_t mul = int64_t(op1) * op2;
  638. * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
  639. * mul += s;
  640. * rlo = int32_t(mul & 0xFFFFFFFF);
  641. * rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
  642. * }
  643. * int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
  644. * uint32_t flo = 0;
  645. * uint32_t fhi = bezier_AV * curr_step;
  646. * uint32_t t = fhi;
  647. * int32_t alo = bezier_F;
  648. * int32_t ahi = 0;
  649. * int32_t A = bezier_A;
  650. * int32_t B = bezier_B;
  651. * int32_t C = bezier_C;
  652. *
  653. * lsrs(ahi, alo, 1); // a = F << 31
  654. * lsls(alo, alo, 31); //
  655. * umull(flo, fhi, fhi, t); // f *= t
  656. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  657. * lsrs(flo, fhi, 1); //
  658. * smlal(alo, ahi, flo, C); // a+=(f>>33)*C
  659. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  660. * lsrs(flo, fhi, 1); //
  661. * smlal(alo, ahi, flo, B); // a+=(f>>33)*B
  662. * umull(flo, fhi, fhi, t); // f>>=32; f*=t
  663. * lsrs(flo, fhi, 1); // f>>=33;
  664. * smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
  665. * lsrs(alo, ahi, 6); // a>>=38
  666. *
  667. * return alo;
  668. * }
  669. *
  670. * This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
  671. *
  672. * For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
  673. * Let's reduce precision as much as possible. After some experimentation we found that:
  674. *
  675. * Assume t and AV with 24 bits is enough
  676. * A = 6*(VF - VI)
  677. * B = 15*(VI - VF)
  678. * C = 10*(VF - VI)
  679. * F = VI
  680. * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
  681. *
  682. * Instead of storing sign for each coefficient, we will store its absolute value,
  683. * and flag the sign of the A coefficient, so we can save to store the sign bit.
  684. * It always holds that sign(A) = - sign(B) = sign(C)
  685. *
  686. * So, the resulting range of the coefficients are:
  687. *
  688. * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
  689. * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
  690. * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
  691. * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
  692. * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
  693. *
  694. * And for each curve, estimate its coefficients with:
  695. *
  696. * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
  697. * // Calculate the Bézier coefficients
  698. * if (v1 < v0) {
  699. * A_negative = true;
  700. * bezier_A = 6 * (v0 - v1);
  701. * bezier_B = 15 * (v0 - v1);
  702. * bezier_C = 10 * (v0 - v1);
  703. * }
  704. * else {
  705. * A_negative = false;
  706. * bezier_A = 6 * (v1 - v0);
  707. * bezier_B = 15 * (v1 - v0);
  708. * bezier_C = 10 * (v1 - v0);
  709. * }
  710. * bezier_F = v0;
  711. * }
  712. *
  713. * And for each point, evaluate the curve with the following sequence:
  714. *
  715. * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
  716. * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
  717. * r = (uint64_t(op1) * op2) >> 8;
  718. * }
  719. * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
  720. * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
  721. * r = (uint32_t(op1) * op2) >> 16;
  722. * }
  723. * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
  724. * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
  725. * r = uint24_t((uint64_t(op1) * op2) >> 16);
  726. * }
  727. *
  728. * int32_t _eval_bezier_curve(uint32_t curr_step) {
  729. * // To save computing, the first step is always the initial speed
  730. * if (!curr_step)
  731. * return bezier_F;
  732. *
  733. * uint16_t t;
  734. * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
  735. * uint16_t f = t;
  736. * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
  737. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
  738. * uint24_t acc = bezier_F; // Range 20 bits (unsigned)
  739. * if (A_negative) {
  740. * uint24_t v;
  741. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  742. * acc -= v;
  743. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  744. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  745. * acc += v;
  746. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  747. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  748. * acc -= v;
  749. * }
  750. * else {
  751. * uint24_t v;
  752. * umul16x24to24hi(v, f, bezier_C); // Range 21bits
  753. * acc += v;
  754. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
  755. * umul16x24to24hi(v, f, bezier_B); // Range 22bits
  756. * acc -= v;
  757. * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
  758. * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
  759. * acc += v;
  760. * }
  761. * return acc;
  762. * }
  763. * These functions are translated to assembler for optimal performance.
  764. * Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
  765. */
  766. #ifdef __AVR__
  767. // For AVR we use assembly to maximize speed
  768. void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  769. // Store advance
  770. bezier_AV = av;
  771. // Calculate the rest of the coefficients
  772. uint8_t r2 = v0 & 0xFF;
  773. uint8_t r3 = (v0 >> 8) & 0xFF;
  774. uint8_t r12 = (v0 >> 16) & 0xFF;
  775. uint8_t r5 = v1 & 0xFF;
  776. uint8_t r6 = (v1 >> 8) & 0xFF;
  777. uint8_t r7 = (v1 >> 16) & 0xFF;
  778. uint8_t r4,r8,r9,r10,r11;
  779. __asm__ __volatile__(
  780. /* Calculate the Bézier coefficients */
  781. /* %10:%1:%0 = v0*/
  782. /* %5:%4:%3 = v1*/
  783. /* %7:%6:%10 = temporary*/
  784. /* %9 = val (must be high register!)*/
  785. /* %10 (must be high register!)*/
  786. /* Store initial velocity*/
  787. A("sts bezier_F, %0")
  788. A("sts bezier_F+1, %1")
  789. A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
  790. /* Get delta speed */
  791. A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
  792. A("clr %8") /* %8 = 0 */
  793. A("sub %0,%3")
  794. A("sbc %1,%4")
  795. A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
  796. A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
  797. /* Result was negative, get the absolute value*/
  798. A("com %10")
  799. A("com %1")
  800. A("neg %0")
  801. A("sbc %1,%2")
  802. A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
  803. A("clr %2") /* %2 = 0, means A_negative = false */
  804. /* Store negative flag*/
  805. L("1")
  806. A("sts A_negative, %2") /* Store negative flag */
  807. /* Compute coefficients A,B and C [20 cycles worst case]*/
  808. A("ldi %9,6") /* %9 = 6 */
  809. A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
  810. A("sts bezier_A, r0")
  811. A("mov %6,r1")
  812. A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
  813. A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
  814. A("add %6,r0")
  815. A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
  816. A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
  817. A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
  818. A("sts bezier_A+1, %6")
  819. A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
  820. A("ldi %9,15") /* %9 = 15 */
  821. A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
  822. A("sts bezier_B, r0")
  823. A("mov %6,r1")
  824. A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
  825. A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
  826. A("add %6,r0")
  827. A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
  828. A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
  829. A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
  830. A("sts bezier_B+1, %6")
  831. A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
  832. A("ldi %9,10") /* %9 = 10 */
  833. A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
  834. A("sts bezier_C, r0")
  835. A("mov %6,r1")
  836. A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
  837. A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
  838. A("add %6,r0")
  839. A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
  840. A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
  841. A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
  842. A("sts bezier_C+1, %6")
  843. " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
  844. : "+r" (r2),
  845. "+d" (r3),
  846. "=r" (r4),
  847. "+r" (r5),
  848. "+r" (r6),
  849. "+r" (r7),
  850. "=r" (r8),
  851. "=r" (r9),
  852. "=r" (r10),
  853. "=d" (r11),
  854. "+r" (r12)
  855. :
  856. : "r0", "r1", "cc", "memory"
  857. );
  858. }
  859. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  860. // If dealing with the first step, save expensive computing and return the initial speed
  861. if (!curr_step)
  862. return bezier_F;
  863. uint8_t r0 = 0; /* Zero register */
  864. uint8_t r2 = (curr_step) & 0xFF;
  865. uint8_t r3 = (curr_step >> 8) & 0xFF;
  866. uint8_t r4 = (curr_step >> 16) & 0xFF;
  867. uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
  868. __asm__ __volatile(
  869. /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
  870. A("lds %9,bezier_AV") /* %9 = LO(AV)*/
  871. A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
  872. A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  873. A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
  874. A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
  875. A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
  876. A("add %7,r0")
  877. A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
  878. A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
  879. A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
  880. A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
  881. A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
  882. A("add %7,r0")
  883. A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
  884. A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
  885. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
  886. A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
  887. A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
  888. /* %8:%7 = t*/
  889. /* uint16_t f = t;*/
  890. A("mov %5,%7") /* %6:%5 = f*/
  891. A("mov %6,%8")
  892. /* %6:%5 = f*/
  893. /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
  894. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  895. A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
  896. A("clr %10") /* %10 = 0*/
  897. A("clr %11") /* %11 = 0*/
  898. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  899. A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
  900. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  901. A("adc %11,%0") /* %11 += carry*/
  902. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  903. A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
  904. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
  905. A("adc %11,%0") /* %11 += carry*/
  906. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  907. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  908. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  909. A("mov %5,%10") /* %6:%5 = */
  910. A("mov %6,%11") /* f = %10:%11*/
  911. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  912. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  913. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  914. A("clr %10") /* %10 = 0*/
  915. A("clr %11") /* %11 = 0*/
  916. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  917. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  918. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  919. A("adc %11,%0") /* %11 += carry*/
  920. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  921. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  922. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  923. A("adc %11,%0") /* %11 += carry*/
  924. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  925. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  926. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  927. A("mov %5,%10") /* %6:%5 =*/
  928. A("mov %6,%11") /* f = %10:%11*/
  929. /* [15 +17*2] = [49]*/
  930. /* %4:%3:%2 will be acc from now on*/
  931. /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
  932. A("clr %9") /* "decimal place we get for free"*/
  933. A("lds %2,bezier_F")
  934. A("lds %3,bezier_F+1")
  935. A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
  936. /* if (A_negative) {*/
  937. A("lds r0,A_negative")
  938. A("or r0,%0") /* Is flag signalling negative? */
  939. A("brne 3f") /* If yes, Skip next instruction if A was negative*/
  940. A("rjmp 1f") /* Otherwise, jump */
  941. /* uint24_t v; */
  942. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
  943. /* acc -= v; */
  944. L("3")
  945. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  946. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  947. A("sub %9,r1")
  948. A("sbc %2,%0")
  949. A("sbc %3,%0")
  950. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
  951. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  952. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  953. A("sub %9,r0")
  954. A("sbc %2,r1")
  955. A("sbc %3,%0")
  956. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
  957. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  958. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  959. A("sub %2,r0")
  960. A("sbc %3,r1")
  961. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
  962. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  963. A("sub %9,r0")
  964. A("sbc %2,r1")
  965. A("sbc %3,%0")
  966. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
  967. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  968. A("sub %2,r0")
  969. A("sbc %3,r1")
  970. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
  971. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  972. A("sub %3,r0")
  973. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
  974. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  975. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  976. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  977. A("clr %10") /* %10 = 0*/
  978. A("clr %11") /* %11 = 0*/
  979. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  980. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  981. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  982. A("adc %11,%0") /* %11 += carry*/
  983. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  984. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  985. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  986. A("adc %11,%0") /* %11 += carry*/
  987. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  988. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  989. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  990. A("mov %5,%10") /* %6:%5 =*/
  991. A("mov %6,%11") /* f = %10:%11*/
  992. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  993. /* acc += v; */
  994. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  995. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  996. A("add %9,r1")
  997. A("adc %2,%0")
  998. A("adc %3,%0")
  999. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
  1000. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  1001. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1002. A("add %9,r0")
  1003. A("adc %2,r1")
  1004. A("adc %3,%0")
  1005. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
  1006. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1007. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1008. A("add %2,r0")
  1009. A("adc %3,r1")
  1010. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
  1011. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1012. A("add %9,r0")
  1013. A("adc %2,r1")
  1014. A("adc %3,%0")
  1015. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
  1016. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1017. A("add %2,r0")
  1018. A("adc %3,r1")
  1019. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
  1020. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1021. A("add %3,r0")
  1022. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
  1023. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1024. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1025. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1026. A("clr %10") /* %10 = 0*/
  1027. A("clr %11") /* %11 = 0*/
  1028. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1029. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1030. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1031. A("adc %11,%0") /* %11 += carry*/
  1032. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1033. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1034. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1035. A("adc %11,%0") /* %11 += carry*/
  1036. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1037. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1038. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1039. A("mov %5,%10") /* %6:%5 =*/
  1040. A("mov %6,%11") /* f = %10:%11*/
  1041. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1042. /* acc -= v; */
  1043. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1044. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1045. A("sub %9,r1")
  1046. A("sbc %2,%0")
  1047. A("sbc %3,%0")
  1048. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
  1049. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1050. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1051. A("sub %9,r0")
  1052. A("sbc %2,r1")
  1053. A("sbc %3,%0")
  1054. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
  1055. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1056. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1057. A("sub %2,r0")
  1058. A("sbc %3,r1")
  1059. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
  1060. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1061. A("sub %9,r0")
  1062. A("sbc %2,r1")
  1063. A("sbc %3,%0")
  1064. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
  1065. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1066. A("sub %2,r0")
  1067. A("sbc %3,r1")
  1068. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
  1069. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1070. A("sub %3,r0")
  1071. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
  1072. A("jmp 2f") /* Done!*/
  1073. L("1")
  1074. /* uint24_t v; */
  1075. /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
  1076. /* acc += v; */
  1077. A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
  1078. A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
  1079. A("add %9,r1")
  1080. A("adc %2,%0")
  1081. A("adc %3,%0")
  1082. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
  1083. A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
  1084. A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1085. A("add %9,r0")
  1086. A("adc %2,r1")
  1087. A("adc %3,%0")
  1088. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
  1089. A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
  1090. A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
  1091. A("add %2,r0")
  1092. A("adc %3,r1")
  1093. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
  1094. A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
  1095. A("add %9,r0")
  1096. A("adc %2,r1")
  1097. A("adc %3,%0")
  1098. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
  1099. A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
  1100. A("add %2,r0")
  1101. A("adc %3,r1")
  1102. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
  1103. A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
  1104. A("add %3,r0")
  1105. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
  1106. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
  1107. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1108. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1109. A("clr %10") /* %10 = 0*/
  1110. A("clr %11") /* %11 = 0*/
  1111. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1112. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1113. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1114. A("adc %11,%0") /* %11 += carry*/
  1115. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1116. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1117. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1118. A("adc %11,%0") /* %11 += carry*/
  1119. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1120. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1121. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1122. A("mov %5,%10") /* %6:%5 =*/
  1123. A("mov %6,%11") /* f = %10:%11*/
  1124. /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
  1125. /* acc -= v;*/
  1126. A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
  1127. A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
  1128. A("sub %9,r1")
  1129. A("sbc %2,%0")
  1130. A("sbc %3,%0")
  1131. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
  1132. A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
  1133. A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1134. A("sub %9,r0")
  1135. A("sbc %2,r1")
  1136. A("sbc %3,%0")
  1137. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
  1138. A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
  1139. A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
  1140. A("sub %2,r0")
  1141. A("sbc %3,r1")
  1142. A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
  1143. A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
  1144. A("sub %9,r0")
  1145. A("sbc %2,r1")
  1146. A("sbc %3,%0")
  1147. A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
  1148. A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
  1149. A("sub %2,r0")
  1150. A("sbc %3,r1")
  1151. A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
  1152. A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
  1153. A("sub %3,r0")
  1154. A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
  1155. /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
  1156. A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
  1157. A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
  1158. A("clr %10") /* %10 = 0*/
  1159. A("clr %11") /* %11 = 0*/
  1160. A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
  1161. A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
  1162. A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
  1163. A("adc %11,%0") /* %11 += carry*/
  1164. A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
  1165. A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
  1166. A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
  1167. A("adc %11,%0") /* %11 += carry*/
  1168. A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
  1169. A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
  1170. A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
  1171. A("mov %5,%10") /* %6:%5 =*/
  1172. A("mov %6,%11") /* f = %10:%11*/
  1173. /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
  1174. /* acc += v; */
  1175. A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
  1176. A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
  1177. A("add %9,r1")
  1178. A("adc %2,%0")
  1179. A("adc %3,%0")
  1180. A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
  1181. A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
  1182. A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1183. A("add %9,r0")
  1184. A("adc %2,r1")
  1185. A("adc %3,%0")
  1186. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
  1187. A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
  1188. A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
  1189. A("add %2,r0")
  1190. A("adc %3,r1")
  1191. A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
  1192. A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
  1193. A("add %9,r0")
  1194. A("adc %2,r1")
  1195. A("adc %3,%0")
  1196. A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
  1197. A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
  1198. A("add %2,r0")
  1199. A("adc %3,r1")
  1200. A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
  1201. A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
  1202. A("add %3,r0")
  1203. A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
  1204. L("2")
  1205. " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
  1206. : "+r"(r0),
  1207. "+r"(r1),
  1208. "+r"(r2),
  1209. "+r"(r3),
  1210. "+r"(r4),
  1211. "+r"(r5),
  1212. "+r"(r6),
  1213. "+r"(r7),
  1214. "+r"(r8),
  1215. "+r"(r9),
  1216. "+r"(r10),
  1217. "+r"(r11)
  1218. :
  1219. :"cc","r0","r1"
  1220. );
  1221. return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
  1222. }
  1223. #else
  1224. // For all the other 32bit CPUs
  1225. FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
  1226. // Calculate the Bézier coefficients
  1227. bezier_A = 768 * (v1 - v0);
  1228. bezier_B = 1920 * (v0 - v1);
  1229. bezier_C = 1280 * (v1 - v0);
  1230. bezier_F = 128 * v0;
  1231. bezier_AV = av;
  1232. }
  1233. FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
  1234. #if (defined(__arm__) || defined(__thumb__)) && __ARM_ARCH >= 6 && !defined(STM32G0B1xx) // TODO: Test define STM32G0xx versus STM32G0B1xx
  1235. // For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
  1236. uint32_t flo = 0;
  1237. uint32_t fhi = bezier_AV * curr_step;
  1238. uint32_t t = fhi;
  1239. int32_t alo = bezier_F;
  1240. int32_t ahi = 0;
  1241. int32_t A = bezier_A;
  1242. int32_t B = bezier_B;
  1243. int32_t C = bezier_C;
  1244. __asm__ __volatile__(
  1245. ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
  1246. A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
  1247. A("lsls %[alo],%[alo],#31") // 1 cycles
  1248. A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
  1249. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1250. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1251. A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
  1252. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1253. A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
  1254. A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
  1255. A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
  1256. A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
  1257. A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
  1258. A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
  1259. : [alo]"+r"( alo ) ,
  1260. [flo]"+r"( flo ) ,
  1261. [fhi]"+r"( fhi ) ,
  1262. [ahi]"+r"( ahi ) ,
  1263. [A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
  1264. [B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
  1265. [C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
  1266. [t]"+r"( t ) // we list all registers as input-outputs.
  1267. :
  1268. : "cc"
  1269. );
  1270. return alo;
  1271. #else
  1272. // For non ARM targets, we provide a fallback implementation. Really doubt it
  1273. // will be useful, unless the processor is fast and 32bit
  1274. uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
  1275. uint64_t f = t;
  1276. f *= t; // Range 32*2 = 64 bits (unsigned)
  1277. f >>= 32; // Range 32 bits (unsigned)
  1278. f *= t; // Range 32*2 = 64 bits (unsigned)
  1279. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1280. int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
  1281. acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
  1282. f *= t; // Range 32*2 = 64 bits
  1283. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1284. acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
  1285. f *= t; // Range 32*2 = 64 bits
  1286. f >>= 32; // Range 32 bits : f = t^3 (unsigned)
  1287. acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
  1288. acc >>= (31 + 7); // Range 24bits (plus sign)
  1289. return (int32_t) acc;
  1290. #endif
  1291. }
  1292. #endif
  1293. #endif // S_CURVE_ACCELERATION
  1294. /**
  1295. * Stepper Driver Interrupt
  1296. *
  1297. * Directly pulses the stepper motors at high frequency.
  1298. */
  1299. HAL_STEP_TIMER_ISR() {
  1300. HAL_timer_isr_prologue(MF_TIMER_STEP);
  1301. Stepper::isr();
  1302. HAL_timer_isr_epilogue(MF_TIMER_STEP);
  1303. }
  1304. #ifdef CPU_32_BIT
  1305. #define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B)
  1306. #else
  1307. #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
  1308. #endif
  1309. void Stepper::isr() {
  1310. static uint32_t nextMainISR = 0; // Interval until the next main Stepper Pulse phase (0 = Now)
  1311. #ifndef __AVR__
  1312. // Disable interrupts, to avoid ISR preemption while we reprogram the period
  1313. // (AVR enters the ISR with global interrupts disabled, so no need to do it here)
  1314. hal.isr_off();
  1315. #endif
  1316. // Program timer compare for the maximum period, so it does NOT
  1317. // flag an interrupt while this ISR is running - So changes from small
  1318. // periods to big periods are respected and the timer does not reset to 0
  1319. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(HAL_TIMER_TYPE_MAX));
  1320. // Count of ticks for the next ISR
  1321. hal_timer_t next_isr_ticks = 0;
  1322. // Limit the amount of iterations
  1323. uint8_t max_loops = 10;
  1324. // We need this variable here to be able to use it in the following loop
  1325. hal_timer_t min_ticks;
  1326. do {
  1327. // Enable ISRs to reduce USART processing latency
  1328. hal.isr_on();
  1329. if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses
  1330. #if ENABLED(LIN_ADVANCE)
  1331. if (!nextAdvanceISR) { // 0 = Do Linear Advance E Stepper pulses
  1332. advance_isr();
  1333. nextAdvanceISR = la_interval;
  1334. }
  1335. else if (nextAdvanceISR == LA_ADV_NEVER) // Start LA steps if necessary
  1336. nextAdvanceISR = la_interval;
  1337. #endif
  1338. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1339. const bool is_babystep = (nextBabystepISR == 0); // 0 = Do Babystepping (XY)Z pulses
  1340. if (is_babystep) nextBabystepISR = babystepping_isr();
  1341. #endif
  1342. // ^== Time critical. NOTHING besides pulse generation should be above here!!!
  1343. if (!nextMainISR) nextMainISR = block_phase_isr(); // Manage acc/deceleration, get next block
  1344. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1345. if (is_babystep) // Avoid ANY stepping too soon after baby-stepping
  1346. NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step
  1347. if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping
  1348. NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping
  1349. #endif
  1350. // Get the interval to the next ISR call
  1351. const uint32_t interval = _MIN(
  1352. uint32_t(HAL_TIMER_TYPE_MAX), // Come back in a very long time
  1353. nextMainISR // Time until the next Pulse / Block phase
  1354. OPTARG(LIN_ADVANCE, nextAdvanceISR) // Come back early for Linear Advance?
  1355. OPTARG(INTEGRATED_BABYSTEPPING, nextBabystepISR) // Come back early for Babystepping?
  1356. );
  1357. //
  1358. // Compute remaining time for each ISR phase
  1359. // NEVER : The phase is idle
  1360. // Zero : The phase will occur on the next ISR call
  1361. // Non-zero : The phase will occur on a future ISR call
  1362. //
  1363. nextMainISR -= interval;
  1364. #if ENABLED(LIN_ADVANCE)
  1365. if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval;
  1366. #endif
  1367. #if ENABLED(INTEGRATED_BABYSTEPPING)
  1368. if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval;
  1369. #endif
  1370. /**
  1371. * This needs to avoid a race-condition caused by interleaving
  1372. * of interrupts required by both the LA and Stepper algorithms.
  1373. *
  1374. * Assume the following tick times for stepper pulses:
  1375. * Stepper ISR (S): 1 1000 2000 3000 4000
  1376. * Linear Adv. (E): 10 1010 2010 3010 4010
  1377. *
  1378. * The current algorithm tries to interleave them, giving:
  1379. * 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
  1380. *
  1381. * Ideal timing would yield these delta periods:
  1382. * 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
  1383. *
  1384. * But, since each event must fire an ISR with a minimum duration, the
  1385. * minimum delta might be 900, so deltas under 900 get rounded up:
  1386. * 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
  1387. *
  1388. * It works, but divides the speed of all motors by half, leading to a sudden
  1389. * reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
  1390. * accounting for double/quad stepping, which makes it even worse).
  1391. */
  1392. // Compute the tick count for the next ISR
  1393. next_isr_ticks += interval;
  1394. /**
  1395. * The following section must be done with global interrupts disabled.
  1396. * We want nothing to interrupt it, as that could mess the calculations
  1397. * we do for the next value to program in the period register of the
  1398. * stepper timer and lead to skipped ISRs (if the value we happen to program
  1399. * is less than the current count due to something preempting between the
  1400. * read and the write of the new period value).
  1401. */
  1402. hal.isr_off();
  1403. /**
  1404. * Get the current tick value + margin
  1405. * Assuming at least 6µs between calls to this ISR...
  1406. * On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
  1407. * On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
  1408. */
  1409. min_ticks = HAL_timer_get_count(MF_TIMER_STEP) + hal_timer_t(TERN(__AVR__, 8, 1) * (STEPPER_TIMER_TICKS_PER_US));
  1410. /**
  1411. * NB: If for some reason the stepper monopolizes the MPU, eventually the
  1412. * timer will wrap around (and so will 'next_isr_ticks'). So, limit the
  1413. * loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
  1414. * timing, since the MCU isn't fast enough.
  1415. */
  1416. if (!--max_loops) next_isr_ticks = min_ticks;
  1417. // Advance pulses if not enough time to wait for the next ISR
  1418. } while (next_isr_ticks < min_ticks);
  1419. // Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
  1420. // sure that the time has not arrived yet - Warrantied by the scheduler
  1421. // Set the next ISR to fire at the proper time
  1422. HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(next_isr_ticks));
  1423. // Don't forget to finally reenable interrupts
  1424. hal.isr_on();
  1425. }
  1426. #if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE
  1427. #define ISR_PULSE_CONTROL 1
  1428. #endif
  1429. #if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM)
  1430. #define ISR_MULTI_STEPS 1
  1431. #endif
  1432. /**
  1433. * This phase of the ISR should ONLY create the pulses for the steppers.
  1434. * This prevents jitter caused by the interval between the start of the
  1435. * interrupt and the start of the pulses. DON'T add any logic ahead of the
  1436. * call to this method that might cause variation in the timing. The aim
  1437. * is to keep pulse timing as regular as possible.
  1438. */
  1439. void Stepper::pulse_phase_isr() {
  1440. // If we must abort the current block, do so!
  1441. if (abort_current_block) {
  1442. abort_current_block = false;
  1443. if (current_block) discard_current_block();
  1444. }
  1445. // If there is no current block, do nothing
  1446. if (!current_block) return;
  1447. // Skipping step processing causes motion to freeze
  1448. if (TERN0(FREEZE_FEATURE, frozen)) return;
  1449. // Count of pending loops and events for this iteration
  1450. const uint32_t pending_events = step_event_count - step_events_completed;
  1451. uint8_t events_to_do = _MIN(pending_events, steps_per_isr);
  1452. // Just update the value we will get at the end of the loop
  1453. step_events_completed += events_to_do;
  1454. // Take multiple steps per interrupt (For high speed moves)
  1455. #if ISR_MULTI_STEPS
  1456. bool firstStep = true;
  1457. USING_TIMED_PULSE();
  1458. #endif
  1459. xyze_bool_t step_needed{0};
  1460. do {
  1461. #define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS)
  1462. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  1463. // Determine if a pulse is needed using Bresenham
  1464. #define PULSE_PREP(AXIS) do{ \
  1465. delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \
  1466. step_needed[_AXIS(AXIS)] = (delta_error[_AXIS(AXIS)] >= 0); \
  1467. if (step_needed[_AXIS(AXIS)]) { \
  1468. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  1469. delta_error[_AXIS(AXIS)] -= advance_divisor; \
  1470. } \
  1471. }while(0)
  1472. // Start an active pulse if needed
  1473. #define PULSE_START(AXIS) do{ \
  1474. if (step_needed[_AXIS(AXIS)]) { \
  1475. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), 0); \
  1476. } \
  1477. }while(0)
  1478. // Stop an active pulse if needed
  1479. #define PULSE_STOP(AXIS) do { \
  1480. if (step_needed[_AXIS(AXIS)]) { \
  1481. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), 0); \
  1482. } \
  1483. }while(0)
  1484. // Direct Stepping page?
  1485. const bool is_page = current_block->is_page();
  1486. #if ENABLED(DIRECT_STEPPING)
  1487. // Direct stepping is currently not ready for HAS_I_AXIS
  1488. if (is_page) {
  1489. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1490. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
  1491. if ((VALUE) < 7) SBI(dm, _AXIS(AXIS)); \
  1492. else if ((VALUE) > 7) CBI(dm, _AXIS(AXIS)); \
  1493. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1494. page_step_state.bd[_AXIS(AXIS)] += VALUE; \
  1495. }while(0)
  1496. #define PAGE_PULSE_PREP(AXIS) do{ \
  1497. step_needed[_AXIS(AXIS)] = \
  1498. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7]); \
  1499. }while(0)
  1500. switch (page_step_state.segment_steps) {
  1501. case DirectStepping::Config::SEGMENT_STEPS:
  1502. page_step_state.segment_idx += 2;
  1503. page_step_state.segment_steps = 0;
  1504. // fallthru
  1505. case 0: {
  1506. const uint8_t low = page_step_state.page[page_step_state.segment_idx],
  1507. high = page_step_state.page[page_step_state.segment_idx + 1];
  1508. axis_bits_t dm = last_direction_bits;
  1509. PAGE_SEGMENT_UPDATE(X, low >> 4);
  1510. PAGE_SEGMENT_UPDATE(Y, low & 0xF);
  1511. PAGE_SEGMENT_UPDATE(Z, high >> 4);
  1512. PAGE_SEGMENT_UPDATE(E, high & 0xF);
  1513. if (dm != last_direction_bits)
  1514. set_directions(dm);
  1515. } break;
  1516. default: break;
  1517. }
  1518. PAGE_PULSE_PREP(X);
  1519. PAGE_PULSE_PREP(Y);
  1520. PAGE_PULSE_PREP(Z);
  1521. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1522. page_step_state.segment_steps++;
  1523. #elif STEPPER_PAGE_FORMAT == SP_4x2_256
  1524. #define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \
  1525. page_step_state.sd[_AXIS(AXIS)] = VALUE; \
  1526. page_step_state.bd[_AXIS(AXIS)] += VALUE;
  1527. #define PAGE_PULSE_PREP(AXIS) do{ \
  1528. step_needed[_AXIS(AXIS)] = \
  1529. pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3]); \
  1530. }while(0)
  1531. switch (page_step_state.segment_steps) {
  1532. case DirectStepping::Config::SEGMENT_STEPS:
  1533. page_step_state.segment_idx++;
  1534. page_step_state.segment_steps = 0;
  1535. // fallthru
  1536. case 0: {
  1537. const uint8_t b = page_step_state.page[page_step_state.segment_idx];
  1538. PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3);
  1539. PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3);
  1540. PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3);
  1541. PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3);
  1542. } break;
  1543. default: break;
  1544. }
  1545. PAGE_PULSE_PREP(X);
  1546. PAGE_PULSE_PREP(Y);
  1547. PAGE_PULSE_PREP(Z);
  1548. TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
  1549. page_step_state.segment_steps++;
  1550. #elif STEPPER_PAGE_FORMAT == SP_4x1_512
  1551. #define PAGE_PULSE_PREP(AXIS, BITS) do{ \
  1552. step_needed[_AXIS(AXIS)] = (steps >> BITS) & 0x1; \
  1553. if (step_needed[_AXIS(AXIS)]) \
  1554. page_step_state.bd[_AXIS(AXIS)]++; \
  1555. }while(0)
  1556. uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1];
  1557. if (page_step_state.segment_idx & 0x1) steps >>= 4;
  1558. PAGE_PULSE_PREP(X, 3);
  1559. PAGE_PULSE_PREP(Y, 2);
  1560. PAGE_PULSE_PREP(Z, 1);
  1561. PAGE_PULSE_PREP(E, 0);
  1562. page_step_state.segment_idx++;
  1563. #else
  1564. #error "Unknown direct stepping page format!"
  1565. #endif
  1566. }
  1567. #endif // DIRECT_STEPPING
  1568. if (!is_page) {
  1569. // Determine if pulses are needed
  1570. #if HAS_X_STEP
  1571. PULSE_PREP(X);
  1572. #endif
  1573. #if HAS_Y_STEP
  1574. PULSE_PREP(Y);
  1575. #endif
  1576. #if HAS_Z_STEP
  1577. PULSE_PREP(Z);
  1578. #endif
  1579. #if HAS_I_STEP
  1580. PULSE_PREP(I);
  1581. #endif
  1582. #if HAS_J_STEP
  1583. PULSE_PREP(J);
  1584. #endif
  1585. #if HAS_K_STEP
  1586. PULSE_PREP(K);
  1587. #endif
  1588. #if HAS_U_STEP
  1589. PULSE_PREP(U);
  1590. #endif
  1591. #if HAS_V_STEP
  1592. PULSE_PREP(V);
  1593. #endif
  1594. #if HAS_W_STEP
  1595. PULSE_PREP(W);
  1596. #endif
  1597. #if EITHER(HAS_E0_STEP, MIXING_EXTRUDER)
  1598. PULSE_PREP(E);
  1599. #if ENABLED(LIN_ADVANCE)
  1600. if (step_needed.e && current_block->la_advance_rate) {
  1601. // don't actually step here, but do subtract movements steps
  1602. // from the linear advance step count
  1603. step_needed.e = false;
  1604. count_position.e -= count_direction.e;
  1605. la_advance_steps--;
  1606. }
  1607. #endif
  1608. #endif
  1609. }
  1610. #if ISR_MULTI_STEPS
  1611. if (firstStep)
  1612. firstStep = false;
  1613. else
  1614. AWAIT_LOW_PULSE();
  1615. #endif
  1616. // Pulse start
  1617. #if HAS_X_STEP
  1618. PULSE_START(X);
  1619. #endif
  1620. #if HAS_Y_STEP
  1621. PULSE_START(Y);
  1622. #endif
  1623. #if HAS_Z_STEP
  1624. PULSE_START(Z);
  1625. #endif
  1626. #if HAS_I_STEP
  1627. PULSE_START(I);
  1628. #endif
  1629. #if HAS_J_STEP
  1630. PULSE_START(J);
  1631. #endif
  1632. #if HAS_K_STEP
  1633. PULSE_START(K);
  1634. #endif
  1635. #if HAS_U_STEP
  1636. PULSE_START(U);
  1637. #endif
  1638. #if HAS_V_STEP
  1639. PULSE_START(V);
  1640. #endif
  1641. #if HAS_W_STEP
  1642. PULSE_START(W);
  1643. #endif
  1644. #if ENABLED(MIXING_EXTRUDER)
  1645. if (step_needed.e) E_STEP_WRITE(mixer.get_next_stepper(), !INVERT_E_STEP_PIN);
  1646. #elif HAS_E0_STEP
  1647. PULSE_START(E);
  1648. #endif
  1649. TERN_(I2S_STEPPER_STREAM, i2s_push_sample());
  1650. // TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s
  1651. #if ISR_MULTI_STEPS
  1652. START_HIGH_PULSE();
  1653. AWAIT_HIGH_PULSE();
  1654. #endif
  1655. // Pulse stop
  1656. #if HAS_X_STEP
  1657. PULSE_STOP(X);
  1658. #endif
  1659. #if HAS_Y_STEP
  1660. PULSE_STOP(Y);
  1661. #endif
  1662. #if HAS_Z_STEP
  1663. PULSE_STOP(Z);
  1664. #endif
  1665. #if HAS_I_STEP
  1666. PULSE_STOP(I);
  1667. #endif
  1668. #if HAS_J_STEP
  1669. PULSE_STOP(J);
  1670. #endif
  1671. #if HAS_K_STEP
  1672. PULSE_STOP(K);
  1673. #endif
  1674. #if HAS_U_STEP
  1675. PULSE_STOP(U);
  1676. #endif
  1677. #if HAS_V_STEP
  1678. PULSE_STOP(V);
  1679. #endif
  1680. #if HAS_W_STEP
  1681. PULSE_STOP(W);
  1682. #endif
  1683. #if ENABLED(MIXING_EXTRUDER)
  1684. if (step_needed.e) E_STEP_WRITE(mixer.get_stepper(), INVERT_E_STEP_PIN);
  1685. #elif HAS_E0_STEP
  1686. PULSE_STOP(E);
  1687. #endif
  1688. #if ISR_MULTI_STEPS
  1689. if (events_to_do) START_LOW_PULSE();
  1690. #endif
  1691. } while (--events_to_do);
  1692. }
  1693. // Calculate timer interval, with all limits applied.
  1694. uint32_t Stepper::calc_timer_interval(uint32_t step_rate) {
  1695. #ifdef CPU_32_BIT
  1696. // In case of high-performance processor, it is able to calculate in real-time
  1697. return uint32_t(STEPPER_TIMER_RATE) / step_rate;
  1698. #else
  1699. // AVR is able to keep up at 30khz Stepping ISR rate.
  1700. constexpr uint32_t min_step_rate = (F_CPU) / 500000U;
  1701. if (step_rate <= min_step_rate) {
  1702. step_rate = 0;
  1703. uintptr_t table_address = (uintptr_t)&speed_lookuptable_slow[0][0];
  1704. return uint16_t(pgm_read_word(table_address));
  1705. }
  1706. else {
  1707. step_rate -= min_step_rate; // Correct for minimal speed
  1708. if (step_rate >= 0x0800) { // higher step rate
  1709. const uint8_t rate_mod_256 = (step_rate & 0x00FF);
  1710. const uintptr_t table_address = uintptr_t(&speed_lookuptable_fast[uint8_t(step_rate >> 8)][0]),
  1711. gain = uint16_t(pgm_read_word(table_address + 2));
  1712. return uint16_t(pgm_read_word(table_address)) - MultiU16X8toH16(rate_mod_256, gain);
  1713. }
  1714. else { // lower step rates
  1715. uintptr_t table_address = uintptr_t(&speed_lookuptable_slow[0][0]);
  1716. table_address += (step_rate >> 1) & 0xFFFC;
  1717. return uint16_t(pgm_read_word(table_address))
  1718. - ((uint16_t(pgm_read_word(table_address + 2)) * uint8_t(step_rate & 0x0007)) >> 3);
  1719. }
  1720. }
  1721. #endif
  1722. }
  1723. // Get the timer interval and the number of loops to perform per tick
  1724. uint32_t Stepper::calc_timer_interval(uint32_t step_rate, uint8_t &loops) {
  1725. uint8_t multistep = 1;
  1726. #if DISABLED(DISABLE_MULTI_STEPPING)
  1727. // The stepping frequency limits for each multistepping rate
  1728. static const uint32_t limit[] PROGMEM = {
  1729. ( MAX_STEP_ISR_FREQUENCY_1X ),
  1730. ( MAX_STEP_ISR_FREQUENCY_2X >> 1),
  1731. ( MAX_STEP_ISR_FREQUENCY_4X >> 2),
  1732. ( MAX_STEP_ISR_FREQUENCY_8X >> 3),
  1733. ( MAX_STEP_ISR_FREQUENCY_16X >> 4),
  1734. ( MAX_STEP_ISR_FREQUENCY_32X >> 5),
  1735. ( MAX_STEP_ISR_FREQUENCY_64X >> 6),
  1736. (MAX_STEP_ISR_FREQUENCY_128X >> 7)
  1737. };
  1738. // Select the proper multistepping
  1739. uint8_t idx = 0;
  1740. while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) {
  1741. step_rate >>= 1;
  1742. multistep <<= 1;
  1743. ++idx;
  1744. };
  1745. #else
  1746. NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
  1747. #endif
  1748. loops = multistep;
  1749. return calc_timer_interval(step_rate);
  1750. }
  1751. // This is the last half of the stepper interrupt: This one processes and
  1752. // properly schedules blocks from the planner. This is executed after creating
  1753. // the step pulses, so it is not time critical, as pulses are already done.
  1754. uint32_t Stepper::block_phase_isr() {
  1755. // If no queued movements, just wait 1ms for the next block
  1756. uint32_t interval = (STEPPER_TIMER_RATE) / 1000UL;
  1757. // If there is a current block
  1758. if (current_block) {
  1759. // If current block is finished, reset pointer and finalize state
  1760. if (step_events_completed >= step_event_count) {
  1761. #if ENABLED(DIRECT_STEPPING)
  1762. // Direct stepping is currently not ready for HAS_I_AXIS
  1763. #if STEPPER_PAGE_FORMAT == SP_4x4D_128
  1764. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1765. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7;
  1766. #elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256
  1767. #define PAGE_SEGMENT_UPDATE_POS(AXIS) \
  1768. count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)];
  1769. #endif
  1770. if (current_block->is_page()) {
  1771. PAGE_SEGMENT_UPDATE_POS(X);
  1772. PAGE_SEGMENT_UPDATE_POS(Y);
  1773. PAGE_SEGMENT_UPDATE_POS(Z);
  1774. PAGE_SEGMENT_UPDATE_POS(E);
  1775. }
  1776. #endif
  1777. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block));
  1778. discard_current_block();
  1779. }
  1780. else {
  1781. // Step events not completed yet...
  1782. // Are we in acceleration phase ?
  1783. if (step_events_completed <= accelerate_until) { // Calculate new timer value
  1784. #if ENABLED(S_CURVE_ACCELERATION)
  1785. // Get the next speed to use (Jerk limited!)
  1786. uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time
  1787. ? _eval_bezier_curve(acceleration_time)
  1788. : current_block->cruise_rate;
  1789. #else
  1790. acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
  1791. NOMORE(acc_step_rate, current_block->nominal_rate);
  1792. #endif
  1793. // acc_step_rate is in steps/second
  1794. // step_rate to timer interval and steps per stepper isr
  1795. interval = calc_timer_interval(acc_step_rate << oversampling_factor, steps_per_isr);
  1796. acceleration_time += interval;
  1797. #if ENABLED(LIN_ADVANCE)
  1798. if (current_block->la_advance_rate) {
  1799. const uint32_t la_step_rate = la_advance_steps < current_block->max_adv_steps ? current_block->la_advance_rate : 0;
  1800. la_interval = calc_timer_interval(acc_step_rate + la_step_rate) << current_block->la_scaling;
  1801. }
  1802. #endif
  1803. /**
  1804. * Adjust Laser Power - Accelerating
  1805. *
  1806. * isPowered - True when a move is powered.
  1807. * isEnabled - laser power is active.
  1808. *
  1809. * Laser power variables are calulated and stored in this block by the planner code.
  1810. * trap_ramp_active_pwr - the active power in this block across accel or decel trap steps.
  1811. * trap_ramp_entry_incr - holds the precalculated value to increase the current power per accel step.
  1812. *
  1813. * Apply the starting active power and then increase power per step by the trap_ramp_entry_incr value if positive.
  1814. */
  1815. #if ENABLED(LASER_POWER_TRAP)
  1816. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
  1817. if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
  1818. if (current_block->laser.trap_ramp_entry_incr > 0) {
  1819. cutter.apply_power(current_block->laser.trap_ramp_active_pwr);
  1820. current_block->laser.trap_ramp_active_pwr += current_block->laser.trap_ramp_entry_incr;
  1821. }
  1822. }
  1823. // Not a powered move.
  1824. else cutter.apply_power(0);
  1825. }
  1826. #endif
  1827. }
  1828. // Are we in Deceleration phase ?
  1829. else if (step_events_completed > decelerate_after) {
  1830. uint32_t step_rate;
  1831. #if ENABLED(S_CURVE_ACCELERATION)
  1832. // If this is the 1st time we process the 2nd half of the trapezoid...
  1833. if (!bezier_2nd_half) {
  1834. // Initialize the Bézier speed curve
  1835. _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
  1836. bezier_2nd_half = true;
  1837. // The first point starts at cruise rate. Just save evaluation of the Bézier curve
  1838. step_rate = current_block->cruise_rate;
  1839. }
  1840. else {
  1841. // Calculate the next speed to use
  1842. step_rate = deceleration_time < current_block->deceleration_time
  1843. ? _eval_bezier_curve(deceleration_time)
  1844. : current_block->final_rate;
  1845. }
  1846. #else
  1847. // Using the old trapezoidal control
  1848. step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
  1849. if (step_rate < acc_step_rate) { // Still decelerating?
  1850. step_rate = acc_step_rate - step_rate;
  1851. NOLESS(step_rate, current_block->final_rate);
  1852. }
  1853. else
  1854. step_rate = current_block->final_rate;
  1855. #endif
  1856. // step_rate to timer interval and steps per stepper isr
  1857. interval = calc_timer_interval(step_rate << oversampling_factor, steps_per_isr);
  1858. deceleration_time += interval;
  1859. #if ENABLED(LIN_ADVANCE)
  1860. if (current_block->la_advance_rate) {
  1861. const uint32_t la_step_rate = la_advance_steps > current_block->final_adv_steps ? current_block->la_advance_rate : 0;
  1862. if (la_step_rate != step_rate) {
  1863. bool reverse_e = la_step_rate > step_rate;
  1864. la_interval = calc_timer_interval(reverse_e ? la_step_rate - step_rate : step_rate - la_step_rate) << current_block->la_scaling;
  1865. if (reverse_e != motor_direction(E_AXIS)) {
  1866. TBI(last_direction_bits, E_AXIS);
  1867. count_direction.e = -count_direction.e;
  1868. DIR_WAIT_BEFORE();
  1869. if (reverse_e) {
  1870. #if ENABLED(MIXING_EXTRUDER)
  1871. MIXER_STEPPER_LOOP(j) REV_E_DIR(j);
  1872. #else
  1873. REV_E_DIR(stepper_extruder);
  1874. #endif
  1875. }
  1876. else {
  1877. #if ENABLED(MIXING_EXTRUDER)
  1878. MIXER_STEPPER_LOOP(j) NORM_E_DIR(j);
  1879. #else
  1880. NORM_E_DIR(stepper_extruder);
  1881. #endif
  1882. }
  1883. DIR_WAIT_AFTER();
  1884. }
  1885. }
  1886. }
  1887. #endif // LIN_ADVANCE
  1888. /*
  1889. * Adjust Laser Power - Decelerating
  1890. * trap_ramp_entry_decr - holds the precalculated value to decrease the current power per decel step.
  1891. */
  1892. #if ENABLED(LASER_POWER_TRAP)
  1893. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
  1894. if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
  1895. if (current_block->laser.trap_ramp_exit_decr > 0) {
  1896. current_block->laser.trap_ramp_active_pwr -= current_block->laser.trap_ramp_exit_decr;
  1897. cutter.apply_power(current_block->laser.trap_ramp_active_pwr);
  1898. }
  1899. // Not a powered move.
  1900. else cutter.apply_power(0);
  1901. }
  1902. }
  1903. #endif
  1904. }
  1905. else { // Must be in cruise phase otherwise
  1906. // Calculate the ticks_nominal for this nominal speed, if not done yet
  1907. if (ticks_nominal < 0) {
  1908. // step_rate to timer interval and loops for the nominal speed
  1909. ticks_nominal = calc_timer_interval(current_block->nominal_rate << oversampling_factor, steps_per_isr);
  1910. #if ENABLED(LIN_ADVANCE)
  1911. if (current_block->la_advance_rate)
  1912. la_interval = calc_timer_interval(current_block->nominal_rate) << current_block->la_scaling;
  1913. #endif
  1914. }
  1915. // The timer interval is just the nominal value for the nominal speed
  1916. interval = ticks_nominal;
  1917. }
  1918. /**
  1919. * Adjust Laser Power - Cruise
  1920. * power - direct or floor adjusted active laser power.
  1921. */
  1922. #if ENABLED(LASER_POWER_TRAP)
  1923. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
  1924. if (step_events_completed + 1 == accelerate_until) {
  1925. if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
  1926. if (current_block->laser.trap_ramp_entry_incr > 0) {
  1927. current_block->laser.trap_ramp_active_pwr = current_block->laser.power;
  1928. cutter.apply_power(current_block->laser.power);
  1929. }
  1930. }
  1931. // Not a powered move.
  1932. else cutter.apply_power(0);
  1933. }
  1934. }
  1935. #endif
  1936. }
  1937. #if ENABLED(LASER_FEATURE)
  1938. /**
  1939. * CUTTER_MODE_DYNAMIC is experimental and developing.
  1940. * Super-fast method to dynamically adjust the laser power OCR value based on the input feedrate in mm-per-minute.
  1941. * TODO: Set up Min/Max OCR offsets to allow tuning and scaling of various lasers.
  1942. * TODO: Integrate accel/decel +-rate into the dynamic laser power calc.
  1943. */
  1944. if (cutter.cutter_mode == CUTTER_MODE_DYNAMIC
  1945. && planner.laser_inline.status.isPowered // isPowered flag set on any parsed G1, G2, G3, or G5 move; cleared on any others.
  1946. && cutter.last_block_power != current_block->laser.power // Prevent constant update without change
  1947. ) {
  1948. cutter.apply_power(current_block->laser.power);
  1949. cutter.last_block_power = current_block->laser.power;
  1950. }
  1951. #endif
  1952. }
  1953. else { // !current_block
  1954. #if ENABLED(LASER_FEATURE)
  1955. if (cutter.cutter_mode == CUTTER_MODE_DYNAMIC)
  1956. cutter.apply_power(0); // No movement in dynamic mode so turn Laser off
  1957. #endif
  1958. }
  1959. // If there is no current block at this point, attempt to pop one from the buffer
  1960. // and prepare its movement
  1961. if (!current_block) {
  1962. // Anything in the buffer?
  1963. if ((current_block = planner.get_current_block())) {
  1964. // Sync block? Sync the stepper counts or fan speeds and return
  1965. while (current_block->is_sync()) {
  1966. #if ENABLED(LASER_POWER_SYNC)
  1967. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
  1968. if (current_block->is_pwr_sync()) {
  1969. planner.laser_inline.status.isSyncPower = true;
  1970. cutter.apply_power(current_block->laser.power);
  1971. }
  1972. }
  1973. #endif
  1974. TERN_(LASER_SYNCHRONOUS_M106_M107, if (current_block->is_fan_sync()) planner.sync_fan_speeds(current_block->fan_speed));
  1975. if (!(current_block->is_fan_sync() || current_block->is_pwr_sync())) _set_position(current_block->position);
  1976. discard_current_block();
  1977. // Try to get a new block
  1978. if (!(current_block = planner.get_current_block()))
  1979. return interval; // No more queued movements!
  1980. }
  1981. // For non-inline cutter, grossly apply power
  1982. #if HAS_CUTTER
  1983. if (cutter.cutter_mode == CUTTER_MODE_STANDARD) {
  1984. cutter.apply_power(current_block->cutter_power);
  1985. }
  1986. #endif
  1987. #if ENABLED(POWER_LOSS_RECOVERY)
  1988. recovery.info.sdpos = current_block->sdpos;
  1989. recovery.info.current_position = current_block->start_position;
  1990. #endif
  1991. #if ENABLED(DIRECT_STEPPING)
  1992. if (current_block->is_page()) {
  1993. page_step_state.segment_steps = 0;
  1994. page_step_state.segment_idx = 0;
  1995. page_step_state.page = page_manager.get_page(current_block->page_idx);
  1996. page_step_state.bd.reset();
  1997. if (DirectStepping::Config::DIRECTIONAL)
  1998. current_block->direction_bits = last_direction_bits;
  1999. if (!page_step_state.page) {
  2000. discard_current_block();
  2001. return interval;
  2002. }
  2003. }
  2004. #endif
  2005. // Flag all moving axes for proper endstop handling
  2006. #if IS_CORE
  2007. // Define conditions for checking endstops
  2008. #define S_(N) current_block->steps[CORE_AXIS_##N]
  2009. #define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N)
  2010. #endif
  2011. #if CORE_IS_XY || CORE_IS_XZ
  2012. /**
  2013. * Head direction in -X axis for CoreXY and CoreXZ bots.
  2014. *
  2015. * If steps differ, both axes are moving.
  2016. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
  2017. * If DeltaA == DeltaB, the movement is only in the 1st axis (X)
  2018. */
  2019. #if EITHER(COREXY, COREXZ)
  2020. #define X_CMP(A,B) ((A)==(B))
  2021. #else
  2022. #define X_CMP(A,B) ((A)!=(B))
  2023. #endif
  2024. #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) )
  2025. #elif ENABLED(MARKFORGED_XY)
  2026. #define X_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  2027. #else
  2028. #define X_MOVE_TEST !!current_block->steps.a
  2029. #endif
  2030. #if CORE_IS_XY || CORE_IS_YZ
  2031. /**
  2032. * Head direction in -Y axis for CoreXY / CoreYZ bots.
  2033. *
  2034. * If steps differ, both axes are moving
  2035. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
  2036. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
  2037. */
  2038. #if EITHER(COREYX, COREYZ)
  2039. #define Y_CMP(A,B) ((A)==(B))
  2040. #else
  2041. #define Y_CMP(A,B) ((A)!=(B))
  2042. #endif
  2043. #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) )
  2044. #elif ENABLED(MARKFORGED_YX)
  2045. #define Y_MOVE_TEST (current_block->steps.a != current_block->steps.b)
  2046. #else
  2047. #define Y_MOVE_TEST !!current_block->steps.b
  2048. #endif
  2049. #if CORE_IS_XZ || CORE_IS_YZ
  2050. /**
  2051. * Head direction in -Z axis for CoreXZ or CoreYZ bots.
  2052. *
  2053. * If steps differ, both axes are moving
  2054. * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
  2055. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
  2056. */
  2057. #if EITHER(COREZX, COREZY)
  2058. #define Z_CMP(A,B) ((A)==(B))
  2059. #else
  2060. #define Z_CMP(A,B) ((A)!=(B))
  2061. #endif
  2062. #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) )
  2063. #else
  2064. #define Z_MOVE_TEST !!current_block->steps.c
  2065. #endif
  2066. axis_bits_t axis_bits = 0;
  2067. NUM_AXIS_CODE(
  2068. if (X_MOVE_TEST) SBI(axis_bits, A_AXIS),
  2069. if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS),
  2070. if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS),
  2071. if (current_block->steps.i) SBI(axis_bits, I_AXIS),
  2072. if (current_block->steps.j) SBI(axis_bits, J_AXIS),
  2073. if (current_block->steps.k) SBI(axis_bits, K_AXIS),
  2074. if (current_block->steps.u) SBI(axis_bits, U_AXIS),
  2075. if (current_block->steps.v) SBI(axis_bits, V_AXIS),
  2076. if (current_block->steps.w) SBI(axis_bits, W_AXIS)
  2077. );
  2078. //if (current_block->steps.e) SBI(axis_bits, E_AXIS);
  2079. //if (current_block->steps.a) SBI(axis_bits, X_HEAD);
  2080. //if (current_block->steps.b) SBI(axis_bits, Y_HEAD);
  2081. //if (current_block->steps.c) SBI(axis_bits, Z_HEAD);
  2082. axis_did_move = axis_bits;
  2083. // No acceleration / deceleration time elapsed so far
  2084. acceleration_time = deceleration_time = 0;
  2085. #if ENABLED(ADAPTIVE_STEP_SMOOTHING)
  2086. uint8_t oversampling = 0; // Assume no axis smoothing (via oversampling)
  2087. // Decide if axis smoothing is possible
  2088. uint32_t max_rate = current_block->nominal_rate; // Get the step event rate
  2089. while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible...
  2090. max_rate <<= 1; // Try to double the rate
  2091. if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit
  2092. ++oversampling; // Increase the oversampling (used for left-shift)
  2093. }
  2094. oversampling_factor = oversampling; // For all timer interval calculations
  2095. #else
  2096. constexpr uint8_t oversampling = 0;
  2097. #endif
  2098. // Based on the oversampling factor, do the calculations
  2099. step_event_count = current_block->step_event_count << oversampling;
  2100. // Initialize Bresenham delta errors to 1/2
  2101. delta_error = TERN_(LIN_ADVANCE, la_delta_error =) -int32_t(step_event_count);
  2102. // Calculate Bresenham dividends and divisors
  2103. advance_dividend = current_block->steps << 1;
  2104. advance_divisor = step_event_count << 1;
  2105. // No step events completed so far
  2106. step_events_completed = 0;
  2107. // Compute the acceleration and deceleration points
  2108. accelerate_until = current_block->accelerate_until << oversampling;
  2109. decelerate_after = current_block->decelerate_after << oversampling;
  2110. TERN_(MIXING_EXTRUDER, mixer.stepper_setup(current_block->b_color));
  2111. E_TERN_(stepper_extruder = current_block->extruder);
  2112. // Initialize the trapezoid generator from the current block.
  2113. #if ENABLED(LIN_ADVANCE)
  2114. #if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
  2115. // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
  2116. if (stepper_extruder != last_moved_extruder) la_advance_steps = 0;
  2117. #endif
  2118. if (current_block->la_advance_rate) {
  2119. // apply LA scaling and discount the effect of frequency scaling
  2120. la_dividend = (advance_dividend.e << current_block->la_scaling) << oversampling;
  2121. }
  2122. #endif
  2123. if ( ENABLED(DUAL_X_CARRIAGE) // TODO: Find out why this fixes "jittery" small circles
  2124. || current_block->direction_bits != last_direction_bits
  2125. || TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)
  2126. ) {
  2127. E_TERN_(last_moved_extruder = stepper_extruder);
  2128. set_directions(current_block->direction_bits);
  2129. }
  2130. #if ENABLED(LASER_FEATURE)
  2131. if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) { // Planner controls the laser
  2132. if (planner.laser_inline.status.isSyncPower)
  2133. // If the previous block was a M3 sync power then skip the trap power init otherwise it will 0 the sync power.
  2134. planner.laser_inline.status.isSyncPower = false; // Clear the flag to process subsequent trap calc's.
  2135. else if (current_block->laser.status.isEnabled) {
  2136. #if ENABLED(LASER_POWER_TRAP)
  2137. TERN_(DEBUG_LASER_TRAP, SERIAL_ECHO_MSG("InitTrapPwr:",current_block->laser.trap_ramp_active_pwr));
  2138. cutter.apply_power(current_block->laser.status.isPowered ? current_block->laser.trap_ramp_active_pwr : 0);
  2139. #else
  2140. TERN_(DEBUG_CUTTER_POWER, SERIAL_ECHO_MSG("InlinePwr:",current_block->laser.power));
  2141. cutter.apply_power(current_block->laser.status.isPowered ? current_block->laser.power : 0);
  2142. #endif
  2143. }
  2144. }
  2145. #endif // LASER_FEATURE
  2146. // If the endstop is already pressed, endstop interrupts won't invoke
  2147. // endstop_triggered and the move will grind. So check here for a
  2148. // triggered endstop, which marks the block for discard on the next ISR.
  2149. endstops.update();
  2150. #if ENABLED(Z_LATE_ENABLE)
  2151. // If delayed Z enable, enable it now. This option will severely interfere with
  2152. // timing between pulses when chaining motion between blocks, and it could lead
  2153. // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
  2154. if (current_block->steps.z) enable_axis(Z_AXIS);
  2155. #endif
  2156. // Mark the time_nominal as not calculated yet
  2157. ticks_nominal = -1;
  2158. #if ENABLED(S_CURVE_ACCELERATION)
  2159. // Initialize the Bézier speed curve
  2160. _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
  2161. // We haven't started the 2nd half of the trapezoid
  2162. bezier_2nd_half = false;
  2163. #else
  2164. // Set as deceleration point the initial rate of the block
  2165. acc_step_rate = current_block->initial_rate;
  2166. #endif
  2167. // Calculate the initial timer interval
  2168. interval = calc_timer_interval(current_block->initial_rate << oversampling_factor, steps_per_isr);
  2169. acceleration_time += interval;
  2170. #if ENABLED(LIN_ADVANCE)
  2171. if (current_block->la_advance_rate) {
  2172. const uint32_t la_step_rate = la_advance_steps < current_block->max_adv_steps ? current_block->la_advance_rate : 0;
  2173. la_interval = calc_timer_interval(current_block->initial_rate + la_step_rate) << current_block->la_scaling;
  2174. }
  2175. #endif
  2176. }
  2177. }
  2178. // Return the interval to wait
  2179. return interval;
  2180. }
  2181. #if ENABLED(LIN_ADVANCE)
  2182. // Timer interrupt for E. LA_steps is set in the main routine
  2183. void Stepper::advance_isr() {
  2184. // Apply Bresenham algorithm so that linear advance can piggy back on
  2185. // the acceleration and speed values calculated in block_phase_isr().
  2186. // This helps keep LA in sync with, for example, S_CURVE_ACCELERATION.
  2187. la_delta_error += la_dividend;
  2188. const bool step_needed = la_delta_error >= 0;
  2189. if (step_needed) {
  2190. count_position.e += count_direction.e;
  2191. la_advance_steps += count_direction.e;
  2192. la_delta_error -= advance_divisor;
  2193. // Set the STEP pulse ON
  2194. E_STEP_WRITE(TERN(MIXING_EXTRUDER, mixer.get_next_stepper(), stepper_extruder), !INVERT_E_STEP_PIN);
  2195. }
  2196. TERN_(I2S_STEPPER_STREAM, i2s_push_sample());
  2197. if (step_needed) {
  2198. // Enforce a minimum duration for STEP pulse ON
  2199. #if ISR_PULSE_CONTROL
  2200. USING_TIMED_PULSE();
  2201. START_HIGH_PULSE();
  2202. AWAIT_HIGH_PULSE();
  2203. #endif
  2204. // Set the STEP pulse OFF
  2205. E_STEP_WRITE(TERN(MIXING_EXTRUDER, mixer.get_stepper(), stepper_extruder), INVERT_E_STEP_PIN);
  2206. }
  2207. }
  2208. #endif // LIN_ADVANCE
  2209. #if ENABLED(INTEGRATED_BABYSTEPPING)
  2210. // Timer interrupt for baby-stepping
  2211. uint32_t Stepper::babystepping_isr() {
  2212. babystep.task();
  2213. return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER;
  2214. }
  2215. #endif
  2216. // Check if the given block is busy or not - Must not be called from ISR contexts
  2217. // The current_block could change in the middle of the read by an Stepper ISR, so
  2218. // we must explicitly prevent that!
  2219. bool Stepper::is_block_busy(const block_t * const block) {
  2220. #ifdef __AVR__
  2221. // A SW memory barrier, to ensure GCC does not overoptimize loops
  2222. #define sw_barrier() asm volatile("": : :"memory");
  2223. // Keep reading until 2 consecutive reads return the same value,
  2224. // meaning there was no update in-between caused by an interrupt.
  2225. // This works because stepper ISRs happen at a slower rate than
  2226. // successive reads of a variable, so 2 consecutive reads with
  2227. // the same value means no interrupt updated it.
  2228. block_t *vold, *vnew = current_block;
  2229. sw_barrier();
  2230. do {
  2231. vold = vnew;
  2232. vnew = current_block;
  2233. sw_barrier();
  2234. } while (vold != vnew);
  2235. #else
  2236. block_t *vnew = current_block;
  2237. #endif
  2238. // Return if the block is busy or not
  2239. return block == vnew;
  2240. }
  2241. void Stepper::init() {
  2242. #if MB(ALLIGATOR)
  2243. const float motor_current[] = MOTOR_CURRENT;
  2244. unsigned int digipot_motor = 0;
  2245. LOOP_L_N(i, 3 + EXTRUDERS) {
  2246. digipot_motor = 255 * (motor_current[i] / 2.5);
  2247. dac084s085::setValue(i, digipot_motor);
  2248. }
  2249. #endif
  2250. // Init Microstepping Pins
  2251. TERN_(HAS_MICROSTEPS, microstep_init());
  2252. // Init Dir Pins
  2253. TERN_(HAS_X_DIR, X_DIR_INIT());
  2254. TERN_(HAS_X2_DIR, X2_DIR_INIT());
  2255. #if HAS_Y_DIR
  2256. Y_DIR_INIT();
  2257. #if BOTH(HAS_DUAL_Y_STEPPERS, HAS_Y2_DIR)
  2258. Y2_DIR_INIT();
  2259. #endif
  2260. #endif
  2261. #if HAS_Z_DIR
  2262. Z_DIR_INIT();
  2263. #if NUM_Z_STEPPERS >= 2 && HAS_Z2_DIR
  2264. Z2_DIR_INIT();
  2265. #endif
  2266. #if NUM_Z_STEPPERS >= 3 && HAS_Z3_DIR
  2267. Z3_DIR_INIT();
  2268. #endif
  2269. #if NUM_Z_STEPPERS >= 4 && HAS_Z4_DIR
  2270. Z4_DIR_INIT();
  2271. #endif
  2272. #endif
  2273. #if HAS_I_DIR
  2274. I_DIR_INIT();
  2275. #endif
  2276. #if HAS_J_DIR
  2277. J_DIR_INIT();
  2278. #endif
  2279. #if HAS_K_DIR
  2280. K_DIR_INIT();
  2281. #endif
  2282. #if HAS_U_DIR
  2283. U_DIR_INIT();
  2284. #endif
  2285. #if HAS_V_DIR
  2286. V_DIR_INIT();
  2287. #endif
  2288. #if HAS_W_DIR
  2289. W_DIR_INIT();
  2290. #endif
  2291. #if HAS_E0_DIR
  2292. E0_DIR_INIT();
  2293. #endif
  2294. #if HAS_E1_DIR
  2295. E1_DIR_INIT();
  2296. #endif
  2297. #if HAS_E2_DIR
  2298. E2_DIR_INIT();
  2299. #endif
  2300. #if HAS_E3_DIR
  2301. E3_DIR_INIT();
  2302. #endif
  2303. #if HAS_E4_DIR
  2304. E4_DIR_INIT();
  2305. #endif
  2306. #if HAS_E5_DIR
  2307. E5_DIR_INIT();
  2308. #endif
  2309. #if HAS_E6_DIR
  2310. E6_DIR_INIT();
  2311. #endif
  2312. #if HAS_E7_DIR
  2313. E7_DIR_INIT();
  2314. #endif
  2315. // Init Enable Pins - steppers default to disabled.
  2316. #if HAS_X_ENABLE
  2317. X_ENABLE_INIT();
  2318. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  2319. #if BOTH(HAS_X2_STEPPER, HAS_X2_ENABLE)
  2320. X2_ENABLE_INIT();
  2321. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  2322. #endif
  2323. #endif
  2324. #if HAS_Y_ENABLE
  2325. Y_ENABLE_INIT();
  2326. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  2327. #if BOTH(HAS_DUAL_Y_STEPPERS, HAS_Y2_ENABLE)
  2328. Y2_ENABLE_INIT();
  2329. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  2330. #endif
  2331. #endif
  2332. #if HAS_Z_ENABLE
  2333. Z_ENABLE_INIT();
  2334. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  2335. #if NUM_Z_STEPPERS >= 2 && HAS_Z2_ENABLE
  2336. Z2_ENABLE_INIT();
  2337. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  2338. #endif
  2339. #if NUM_Z_STEPPERS >= 3 && HAS_Z3_ENABLE
  2340. Z3_ENABLE_INIT();
  2341. if (!Z_ENABLE_ON) Z3_ENABLE_WRITE(HIGH);
  2342. #endif
  2343. #if NUM_Z_STEPPERS >= 4 && HAS_Z4_ENABLE
  2344. Z4_ENABLE_INIT();
  2345. if (!Z_ENABLE_ON) Z4_ENABLE_WRITE(HIGH);
  2346. #endif
  2347. #endif
  2348. #if HAS_I_ENABLE
  2349. I_ENABLE_INIT();
  2350. if (!I_ENABLE_ON) I_ENABLE_WRITE(HIGH);
  2351. #endif
  2352. #if HAS_J_ENABLE
  2353. J_ENABLE_INIT();
  2354. if (!J_ENABLE_ON) J_ENABLE_WRITE(HIGH);
  2355. #endif
  2356. #if HAS_K_ENABLE
  2357. K_ENABLE_INIT();
  2358. if (!K_ENABLE_ON) K_ENABLE_WRITE(HIGH);
  2359. #endif
  2360. #if HAS_U_ENABLE
  2361. U_ENABLE_INIT();
  2362. if (!U_ENABLE_ON) U_ENABLE_WRITE(HIGH);
  2363. #endif
  2364. #if HAS_V_ENABLE
  2365. V_ENABLE_INIT();
  2366. if (!V_ENABLE_ON) V_ENABLE_WRITE(HIGH);
  2367. #endif
  2368. #if HAS_W_ENABLE
  2369. W_ENABLE_INIT();
  2370. if (!W_ENABLE_ON) W_ENABLE_WRITE(HIGH);
  2371. #endif
  2372. #if HAS_E0_ENABLE
  2373. E0_ENABLE_INIT();
  2374. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  2375. #endif
  2376. #if HAS_E1_ENABLE
  2377. E1_ENABLE_INIT();
  2378. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  2379. #endif
  2380. #if HAS_E2_ENABLE
  2381. E2_ENABLE_INIT();
  2382. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  2383. #endif
  2384. #if HAS_E3_ENABLE
  2385. E3_ENABLE_INIT();
  2386. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  2387. #endif
  2388. #if HAS_E4_ENABLE
  2389. E4_ENABLE_INIT();
  2390. if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
  2391. #endif
  2392. #if HAS_E5_ENABLE
  2393. E5_ENABLE_INIT();
  2394. if (!E_ENABLE_ON) E5_ENABLE_WRITE(HIGH);
  2395. #endif
  2396. #if HAS_E6_ENABLE
  2397. E6_ENABLE_INIT();
  2398. if (!E_ENABLE_ON) E6_ENABLE_WRITE(HIGH);
  2399. #endif
  2400. #if HAS_E7_ENABLE
  2401. E7_ENABLE_INIT();
  2402. if (!E_ENABLE_ON) E7_ENABLE_WRITE(HIGH);
  2403. #endif
  2404. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT()
  2405. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  2406. #define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS()
  2407. #define AXIS_INIT(AXIS, PIN) \
  2408. _STEP_INIT(AXIS); \
  2409. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  2410. _DISABLE_AXIS(AXIS)
  2411. #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
  2412. // Init Step Pins
  2413. #if HAS_X_STEP
  2414. #if HAS_X2_STEPPER
  2415. X2_STEP_INIT();
  2416. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  2417. #endif
  2418. AXIS_INIT(X, X);
  2419. #endif
  2420. #if HAS_Y_STEP
  2421. #if HAS_DUAL_Y_STEPPERS
  2422. Y2_STEP_INIT();
  2423. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  2424. #endif
  2425. AXIS_INIT(Y, Y);
  2426. #endif
  2427. #if HAS_Z_STEP
  2428. #if NUM_Z_STEPPERS >= 2
  2429. Z2_STEP_INIT();
  2430. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  2431. #endif
  2432. #if NUM_Z_STEPPERS >= 3
  2433. Z3_STEP_INIT();
  2434. Z3_STEP_WRITE(INVERT_Z_STEP_PIN);
  2435. #endif
  2436. #if NUM_Z_STEPPERS >= 4
  2437. Z4_STEP_INIT();
  2438. Z4_STEP_WRITE(INVERT_Z_STEP_PIN);
  2439. #endif
  2440. AXIS_INIT(Z, Z);
  2441. #endif
  2442. #if HAS_I_STEP
  2443. AXIS_INIT(I, I);
  2444. #endif
  2445. #if HAS_J_STEP
  2446. AXIS_INIT(J, J);
  2447. #endif
  2448. #if HAS_K_STEP
  2449. AXIS_INIT(K, K);
  2450. #endif
  2451. #if HAS_U_STEP
  2452. AXIS_INIT(U, U);
  2453. #endif
  2454. #if HAS_V_STEP
  2455. AXIS_INIT(V, V);
  2456. #endif
  2457. #if HAS_W_STEP
  2458. AXIS_INIT(W, W);
  2459. #endif
  2460. #if E_STEPPERS && HAS_E0_STEP
  2461. E_AXIS_INIT(0);
  2462. #endif
  2463. #if (E_STEPPERS > 1 || ENABLED(E_DUAL_STEPPER_DRIVERS)) && HAS_E1_STEP
  2464. E_AXIS_INIT(1);
  2465. #endif
  2466. #if E_STEPPERS > 2 && HAS_E2_STEP
  2467. E_AXIS_INIT(2);
  2468. #endif
  2469. #if E_STEPPERS > 3 && HAS_E3_STEP
  2470. E_AXIS_INIT(3);
  2471. #endif
  2472. #if E_STEPPERS > 4 && HAS_E4_STEP
  2473. E_AXIS_INIT(4);
  2474. #endif
  2475. #if E_STEPPERS > 5 && HAS_E5_STEP
  2476. E_AXIS_INIT(5);
  2477. #endif
  2478. #if E_STEPPERS > 6 && HAS_E6_STEP
  2479. E_AXIS_INIT(6);
  2480. #endif
  2481. #if E_STEPPERS > 7 && HAS_E7_STEP
  2482. E_AXIS_INIT(7);
  2483. #endif
  2484. #if DISABLED(I2S_STEPPER_STREAM)
  2485. HAL_timer_start(MF_TIMER_STEP, 122); // Init Stepper ISR to 122 Hz for quick starting
  2486. wake_up();
  2487. sei();
  2488. #endif
  2489. // Init direction bits for first moves
  2490. set_directions(0
  2491. NUM_AXIS_GANG(
  2492. | TERN0(INVERT_X_DIR, _BV(X_AXIS)),
  2493. | TERN0(INVERT_Y_DIR, _BV(Y_AXIS)),
  2494. | TERN0(INVERT_Z_DIR, _BV(Z_AXIS)),
  2495. | TERN0(INVERT_I_DIR, _BV(I_AXIS)),
  2496. | TERN0(INVERT_J_DIR, _BV(J_AXIS)),
  2497. | TERN0(INVERT_K_DIR, _BV(K_AXIS)),
  2498. | TERN0(INVERT_U_DIR, _BV(U_AXIS)),
  2499. | TERN0(INVERT_V_DIR, _BV(V_AXIS)),
  2500. | TERN0(INVERT_W_DIR, _BV(W_AXIS))
  2501. )
  2502. );
  2503. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2504. initialized = true;
  2505. digipot_init();
  2506. #endif
  2507. }
  2508. /**
  2509. * Set the stepper positions directly in steps
  2510. *
  2511. * The input is based on the typical per-axis XYZE steps.
  2512. * For CORE machines XYZ needs to be translated to ABC.
  2513. *
  2514. * This allows get_axis_position_mm to correctly
  2515. * derive the current XYZE position later on.
  2516. */
  2517. void Stepper::_set_position(const abce_long_t &spos) {
  2518. #if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
  2519. #if CORE_IS_XY
  2520. // corexy positioning
  2521. // these equations follow the form of the dA and dB equations on https://www.corexy.com/theory.html
  2522. count_position.set(spos.a + spos.b, CORESIGN(spos.a - spos.b), spos.c);
  2523. #elif CORE_IS_XZ
  2524. // corexz planning
  2525. count_position.set(spos.a + spos.c, spos.b, CORESIGN(spos.a - spos.c));
  2526. #elif CORE_IS_YZ
  2527. // coreyz planning
  2528. count_position.set(spos.a, spos.b + spos.c, CORESIGN(spos.b - spos.c));
  2529. #elif ENABLED(MARKFORGED_XY)
  2530. count_position.set(spos.a - spos.b, spos.b, spos.c);
  2531. #elif ENABLED(MARKFORGED_YX)
  2532. count_position.set(spos.a, spos.b - spos.a, spos.c);
  2533. #endif
  2534. SECONDARY_AXIS_CODE(
  2535. count_position.i = spos.i,
  2536. count_position.j = spos.j,
  2537. count_position.k = spos.k,
  2538. count_position.u = spos.u,
  2539. count_position.v = spos.v,
  2540. count_position.w = spos.w
  2541. );
  2542. TERN_(HAS_EXTRUDERS, count_position.e = spos.e);
  2543. #else
  2544. // default non-h-bot planning
  2545. count_position = spos;
  2546. #endif
  2547. }
  2548. /**
  2549. * Get a stepper's position in steps.
  2550. */
  2551. int32_t Stepper::position(const AxisEnum axis) {
  2552. #ifdef __AVR__
  2553. // Protect the access to the position. Only required for AVR, as
  2554. // any 32bit CPU offers atomic access to 32bit variables
  2555. const bool was_enabled = suspend();
  2556. #endif
  2557. const int32_t v = count_position[axis];
  2558. #ifdef __AVR__
  2559. // Reenable Stepper ISR
  2560. if (was_enabled) wake_up();
  2561. #endif
  2562. return v;
  2563. }
  2564. // Set the current position in steps
  2565. void Stepper::set_position(const xyze_long_t &spos) {
  2566. planner.synchronize();
  2567. const bool was_enabled = suspend();
  2568. _set_position(spos);
  2569. if (was_enabled) wake_up();
  2570. }
  2571. void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) {
  2572. planner.synchronize();
  2573. #ifdef __AVR__
  2574. // Protect the access to the position. Only required for AVR, as
  2575. // any 32bit CPU offers atomic access to 32bit variables
  2576. const bool was_enabled = suspend();
  2577. #endif
  2578. count_position[a] = v;
  2579. #ifdef __AVR__
  2580. // Reenable Stepper ISR
  2581. if (was_enabled) wake_up();
  2582. #endif
  2583. }
  2584. // Signal endstops were triggered - This function can be called from
  2585. // an ISR context (Temperature, Stepper or limits ISR), so we must
  2586. // be very careful here. If the interrupt being preempted was the
  2587. // Stepper ISR (this CAN happen with the endstop limits ISR) then
  2588. // when the stepper ISR resumes, we must be very sure that the movement
  2589. // is properly canceled
  2590. void Stepper::endstop_triggered(const AxisEnum axis) {
  2591. const bool was_enabled = suspend();
  2592. endstops_trigsteps[axis] = (
  2593. #if IS_CORE
  2594. (axis == CORE_AXIS_2
  2595. ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
  2596. : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
  2597. ) * double(0.5)
  2598. #elif ENABLED(MARKFORGED_XY)
  2599. axis == CORE_AXIS_1
  2600. ? count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]
  2601. : count_position[CORE_AXIS_2]
  2602. #elif ENABLED(MARKFORGED_YX)
  2603. axis == CORE_AXIS_1
  2604. ? count_position[CORE_AXIS_1]
  2605. : count_position[CORE_AXIS_2] - count_position[CORE_AXIS_1]
  2606. #else // !IS_CORE
  2607. count_position[axis]
  2608. #endif
  2609. );
  2610. // Discard the rest of the move if there is a current block
  2611. quick_stop();
  2612. if (was_enabled) wake_up();
  2613. }
  2614. int32_t Stepper::triggered_position(const AxisEnum axis) {
  2615. #ifdef __AVR__
  2616. // Protect the access to the position. Only required for AVR, as
  2617. // any 32bit CPU offers atomic access to 32bit variables
  2618. const bool was_enabled = suspend();
  2619. #endif
  2620. const int32_t v = endstops_trigsteps[axis];
  2621. #ifdef __AVR__
  2622. // Reenable Stepper ISR
  2623. if (was_enabled) wake_up();
  2624. #endif
  2625. return v;
  2626. }
  2627. #if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2628. #define SAYS_A 1
  2629. #endif
  2630. #if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
  2631. #define SAYS_B 1
  2632. #endif
  2633. #if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA)
  2634. #define SAYS_C 1
  2635. #endif
  2636. void Stepper::report_a_position(const xyz_long_t &pos) {
  2637. SERIAL_ECHOLNPGM_P(
  2638. LIST_N(DOUBLE(NUM_AXES),
  2639. TERN(SAYS_A, PSTR(STR_COUNT_A), PSTR(STR_COUNT_X)), pos.x,
  2640. TERN(SAYS_B, PSTR("B:"), SP_Y_LBL), pos.y,
  2641. TERN(SAYS_C, PSTR("C:"), SP_Z_LBL), pos.z,
  2642. SP_I_LBL, pos.i,
  2643. SP_J_LBL, pos.j,
  2644. SP_K_LBL, pos.k,
  2645. SP_U_LBL, pos.u,
  2646. SP_V_LBL, pos.v,
  2647. SP_W_LBL, pos.w
  2648. )
  2649. );
  2650. }
  2651. void Stepper::report_positions() {
  2652. #ifdef __AVR__
  2653. // Protect the access to the position.
  2654. const bool was_enabled = suspend();
  2655. #endif
  2656. const xyz_long_t pos = count_position;
  2657. #ifdef __AVR__
  2658. if (was_enabled) wake_up();
  2659. #endif
  2660. report_a_position(pos);
  2661. }
  2662. #if ENABLED(BABYSTEPPING)
  2663. #define _ENABLE_AXIS(A) enable_axis(_AXIS(A))
  2664. #define _READ_DIR(AXIS) AXIS ##_DIR_READ()
  2665. #define _INVERT_DIR(AXIS) ENABLED(INVERT_## AXIS ##_DIR)
  2666. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  2667. #if MINIMUM_STEPPER_PULSE
  2668. #define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
  2669. #else
  2670. #define STEP_PULSE_CYCLES 0
  2671. #endif
  2672. #if ENABLED(DELTA)
  2673. #define CYCLES_EATEN_BABYSTEP (2 * 15)
  2674. #else
  2675. #define CYCLES_EATEN_BABYSTEP 0
  2676. #endif
  2677. #if CYCLES_EATEN_BABYSTEP < STEP_PULSE_CYCLES
  2678. #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
  2679. #else
  2680. #define EXTRA_CYCLES_BABYSTEP 0
  2681. #endif
  2682. #if EXTRA_CYCLES_BABYSTEP > 20
  2683. #define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(MF_TIMER_PULSE)
  2684. #define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(MF_TIMER_PULSE) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
  2685. #else
  2686. #define _SAVE_START() NOOP
  2687. #if EXTRA_CYCLES_BABYSTEP > 0
  2688. #define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
  2689. #elif ENABLED(DELTA)
  2690. #define _PULSE_WAIT() DELAY_US(2);
  2691. #elif STEP_PULSE_CYCLES > 0
  2692. #define _PULSE_WAIT() NOOP
  2693. #else
  2694. #define _PULSE_WAIT() DELAY_US(4);
  2695. #endif
  2696. #endif
  2697. #if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT)
  2698. #define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE
  2699. #define EXTRA_DIR_WAIT_AFTER DIR_WAIT_AFTER
  2700. #else
  2701. #define EXTRA_DIR_WAIT_BEFORE()
  2702. #define EXTRA_DIR_WAIT_AFTER()
  2703. #endif
  2704. #if DISABLED(DELTA)
  2705. #define BABYSTEP_AXIS(AXIS, INV, DIR) do{ \
  2706. const uint8_t old_dir = _READ_DIR(AXIS); \
  2707. _ENABLE_AXIS(AXIS); \
  2708. DIR_WAIT_BEFORE(); \
  2709. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INV); \
  2710. DIR_WAIT_AFTER(); \
  2711. _SAVE_START(); \
  2712. _APPLY_STEP(AXIS, !_INVERT_STEP_PIN(AXIS), true); \
  2713. _PULSE_WAIT(); \
  2714. _APPLY_STEP(AXIS, _INVERT_STEP_PIN(AXIS), true); \
  2715. EXTRA_DIR_WAIT_BEFORE(); \
  2716. _APPLY_DIR(AXIS, old_dir); \
  2717. EXTRA_DIR_WAIT_AFTER(); \
  2718. }while(0)
  2719. #endif
  2720. #if IS_CORE
  2721. #define BABYSTEP_CORE(A, B, INV, DIR, ALT) do{ \
  2722. const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \
  2723. _ENABLE_AXIS(A); _ENABLE_AXIS(B); \
  2724. DIR_WAIT_BEFORE(); \
  2725. _APPLY_DIR(A, _INVERT_DIR(A)^DIR^INV); \
  2726. _APPLY_DIR(B, _INVERT_DIR(B)^DIR^INV^ALT); \
  2727. DIR_WAIT_AFTER(); \
  2728. _SAVE_START(); \
  2729. _APPLY_STEP(A, !_INVERT_STEP_PIN(A), true); \
  2730. _APPLY_STEP(B, !_INVERT_STEP_PIN(B), true); \
  2731. _PULSE_WAIT(); \
  2732. _APPLY_STEP(A, _INVERT_STEP_PIN(A), true); \
  2733. _APPLY_STEP(B, _INVERT_STEP_PIN(B), true); \
  2734. EXTRA_DIR_WAIT_BEFORE(); \
  2735. _APPLY_DIR(A, old_dir.a); _APPLY_DIR(B, old_dir.b); \
  2736. EXTRA_DIR_WAIT_AFTER(); \
  2737. }while(0)
  2738. #endif
  2739. // MUST ONLY BE CALLED BY AN ISR,
  2740. // No other ISR should ever interrupt this!
  2741. void Stepper::do_babystep(const AxisEnum axis, const bool direction) {
  2742. IF_DISABLED(INTEGRATED_BABYSTEPPING, cli());
  2743. switch (axis) {
  2744. #if ENABLED(BABYSTEP_XY)
  2745. case X_AXIS:
  2746. #if CORE_IS_XY
  2747. BABYSTEP_CORE(X, Y, 0, direction, 0);
  2748. #elif CORE_IS_XZ
  2749. BABYSTEP_CORE(X, Z, 0, direction, 0);
  2750. #else
  2751. BABYSTEP_AXIS(X, 0, direction);
  2752. #endif
  2753. break;
  2754. case Y_AXIS:
  2755. #if CORE_IS_XY
  2756. BABYSTEP_CORE(X, Y, 1, !direction, (CORESIGN(1)>0));
  2757. #elif CORE_IS_YZ
  2758. BABYSTEP_CORE(Y, Z, 0, direction, (CORESIGN(1)<0));
  2759. #else
  2760. BABYSTEP_AXIS(Y, 0, direction);
  2761. #endif
  2762. break;
  2763. #endif
  2764. case Z_AXIS: {
  2765. #if CORE_IS_XZ
  2766. BABYSTEP_CORE(X, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2767. #elif CORE_IS_YZ
  2768. BABYSTEP_CORE(Y, Z, BABYSTEP_INVERT_Z, direction, (CORESIGN(1)<0));
  2769. #elif DISABLED(DELTA)
  2770. BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction);
  2771. #else // DELTA
  2772. const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  2773. NUM_AXIS_CODE(
  2774. enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
  2775. enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS),
  2776. enable_axis(U_AXIS), enable_axis(V_AXIS), enable_axis(W_AXIS)
  2777. );
  2778. DIR_WAIT_BEFORE();
  2779. const xyz_byte_t old_dir = NUM_AXIS_ARRAY(
  2780. X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ(),
  2781. I_DIR_READ(), J_DIR_READ(), K_DIR_READ(),
  2782. U_DIR_READ(), V_DIR_READ(), W_DIR_READ()
  2783. );
  2784. X_DIR_WRITE(ENABLED(INVERT_X_DIR) ^ z_direction);
  2785. #ifdef Y_DIR_WRITE
  2786. Y_DIR_WRITE(ENABLED(INVERT_Y_DIR) ^ z_direction);
  2787. #endif
  2788. #ifdef Z_DIR_WRITE
  2789. Z_DIR_WRITE(ENABLED(INVERT_Z_DIR) ^ z_direction);
  2790. #endif
  2791. #ifdef I_DIR_WRITE
  2792. I_DIR_WRITE(ENABLED(INVERT_I_DIR) ^ z_direction);
  2793. #endif
  2794. #ifdef J_DIR_WRITE
  2795. J_DIR_WRITE(ENABLED(INVERT_J_DIR) ^ z_direction);
  2796. #endif
  2797. #ifdef K_DIR_WRITE
  2798. K_DIR_WRITE(ENABLED(INVERT_K_DIR) ^ z_direction);
  2799. #endif
  2800. #ifdef U_DIR_WRITE
  2801. U_DIR_WRITE(ENABLED(INVERT_U_DIR) ^ z_direction);
  2802. #endif
  2803. #ifdef V_DIR_WRITE
  2804. V_DIR_WRITE(ENABLED(INVERT_V_DIR) ^ z_direction);
  2805. #endif
  2806. #ifdef W_DIR_WRITE
  2807. W_DIR_WRITE(ENABLED(INVERT_W_DIR) ^ z_direction);
  2808. #endif
  2809. DIR_WAIT_AFTER();
  2810. _SAVE_START();
  2811. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  2812. #ifdef Y_STEP_WRITE
  2813. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  2814. #endif
  2815. #ifdef Z_STEP_WRITE
  2816. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  2817. #endif
  2818. #ifdef I_STEP_WRITE
  2819. I_STEP_WRITE(!INVERT_I_STEP_PIN);
  2820. #endif
  2821. #ifdef J_STEP_WRITE
  2822. J_STEP_WRITE(!INVERT_J_STEP_PIN);
  2823. #endif
  2824. #ifdef K_STEP_WRITE
  2825. K_STEP_WRITE(!INVERT_K_STEP_PIN);
  2826. #endif
  2827. #ifdef U_STEP_WRITE
  2828. U_STEP_WRITE(!INVERT_U_STEP_PIN);
  2829. #endif
  2830. #ifdef V_STEP_WRITE
  2831. V_STEP_WRITE(!INVERT_V_STEP_PIN);
  2832. #endif
  2833. #ifdef W_STEP_WRITE
  2834. W_STEP_WRITE(!INVERT_W_STEP_PIN);
  2835. #endif
  2836. _PULSE_WAIT();
  2837. X_STEP_WRITE(INVERT_X_STEP_PIN);
  2838. #ifdef Y_STEP_WRITE
  2839. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  2840. #endif
  2841. #ifdef Z_STEP_WRITE
  2842. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  2843. #endif
  2844. #ifdef I_STEP_WRITE
  2845. I_STEP_WRITE(INVERT_I_STEP_PIN);
  2846. #endif
  2847. #ifdef J_STEP_WRITE
  2848. J_STEP_WRITE(INVERT_J_STEP_PIN);
  2849. #endif
  2850. #ifdef K_STEP_WRITE
  2851. K_STEP_WRITE(INVERT_K_STEP_PIN);
  2852. #endif
  2853. #ifdef U_STEP_WRITE
  2854. U_STEP_WRITE(INVERT_U_STEP_PIN);
  2855. #endif
  2856. #ifdef V_STEP_WRITE
  2857. V_STEP_WRITE(INVERT_V_STEP_PIN);
  2858. #endif
  2859. #ifdef W_STEP_WRITE
  2860. W_STEP_WRITE(INVERT_W_STEP_PIN);
  2861. #endif
  2862. // Restore direction bits
  2863. EXTRA_DIR_WAIT_BEFORE();
  2864. X_DIR_WRITE(old_dir.x);
  2865. #ifdef Y_DIR_WRITE
  2866. Y_DIR_WRITE(old_dir.y);
  2867. #endif
  2868. #ifdef Z_DIR_WRITE
  2869. Z_DIR_WRITE(old_dir.z);
  2870. #endif
  2871. #ifdef I_DIR_WRITE
  2872. I_DIR_WRITE(old_dir.i);
  2873. #endif
  2874. #ifdef J_DIR_WRITE
  2875. J_DIR_WRITE(old_dir.j);
  2876. #endif
  2877. #ifdef K_DIR_WRITE
  2878. K_DIR_WRITE(old_dir.k);
  2879. #endif
  2880. #ifdef U_DIR_WRITE
  2881. U_DIR_WRITE(old_dir.u);
  2882. #endif
  2883. #ifdef V_DIR_WRITE
  2884. V_DIR_WRITE(old_dir.v);
  2885. #endif
  2886. #ifdef W_DIR_WRITE
  2887. W_DIR_WRITE(old_dir.w);
  2888. #endif
  2889. EXTRA_DIR_WAIT_AFTER();
  2890. #endif
  2891. } break;
  2892. #if HAS_I_AXIS
  2893. case I_AXIS: BABYSTEP_AXIS(I, 0, direction); break;
  2894. #endif
  2895. #if HAS_J_AXIS
  2896. case J_AXIS: BABYSTEP_AXIS(J, 0, direction); break;
  2897. #endif
  2898. #if HAS_K_AXIS
  2899. case K_AXIS: BABYSTEP_AXIS(K, 0, direction); break;
  2900. #endif
  2901. #if HAS_U_AXIS
  2902. case U_AXIS: BABYSTEP_AXIS(U, 0, direction); break;
  2903. #endif
  2904. #if HAS_V_AXIS
  2905. case V_AXIS: BABYSTEP_AXIS(V, 0, direction); break;
  2906. #endif
  2907. #if HAS_W_AXIS
  2908. case W_AXIS: BABYSTEP_AXIS(W, 0, direction); break;
  2909. #endif
  2910. default: break;
  2911. }
  2912. IF_DISABLED(INTEGRATED_BABYSTEPPING, sei());
  2913. }
  2914. #endif // BABYSTEPPING
  2915. /**
  2916. * Software-controlled Stepper Motor Current
  2917. */
  2918. #if HAS_MOTOR_CURRENT_SPI
  2919. // From Arduino DigitalPotControl example
  2920. void Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) {
  2921. WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
  2922. SPI.transfer(address); // Send the address and value via SPI
  2923. SPI.transfer(value);
  2924. WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
  2925. //delay(10);
  2926. }
  2927. #endif // HAS_MOTOR_CURRENT_SPI
  2928. #if HAS_MOTOR_CURRENT_PWM
  2929. void Stepper::refresh_motor_power() {
  2930. if (!initialized) return;
  2931. LOOP_L_N(i, COUNT(motor_current_setting)) {
  2932. switch (i) {
  2933. #if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y, MOTOR_CURRENT_PWM_I, MOTOR_CURRENT_PWM_J, MOTOR_CURRENT_PWM_K, MOTOR_CURRENT_PWM_U, MOTOR_CURRENT_PWM_V, MOTOR_CURRENT_PWM_W)
  2934. case 0:
  2935. #endif
  2936. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2937. case 1:
  2938. #endif
  2939. #if ANY_PIN(MOTOR_CURRENT_PWM_E, MOTOR_CURRENT_PWM_E0, MOTOR_CURRENT_PWM_E1)
  2940. case 2:
  2941. #endif
  2942. set_digipot_current(i, motor_current_setting[i]);
  2943. default: break;
  2944. }
  2945. }
  2946. }
  2947. #endif // HAS_MOTOR_CURRENT_PWM
  2948. #if !MB(PRINTRBOARD_G2)
  2949. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  2950. void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {
  2951. if (WITHIN(driver, 0, MOTOR_CURRENT_COUNT - 1))
  2952. motor_current_setting[driver] = current; // update motor_current_setting
  2953. if (!initialized) return;
  2954. #if HAS_MOTOR_CURRENT_SPI
  2955. //SERIAL_ECHOLNPGM("Digipotss current ", current);
  2956. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  2957. set_digipot_value_spi(digipot_ch[driver], current);
  2958. #elif HAS_MOTOR_CURRENT_PWM
  2959. #define _WRITE_CURRENT_PWM(P) hal.set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  2960. switch (driver) {
  2961. case 0:
  2962. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  2963. _WRITE_CURRENT_PWM(X);
  2964. #endif
  2965. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  2966. _WRITE_CURRENT_PWM(Y);
  2967. #endif
  2968. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  2969. _WRITE_CURRENT_PWM(XY);
  2970. #endif
  2971. #if PIN_EXISTS(MOTOR_CURRENT_PWM_I)
  2972. _WRITE_CURRENT_PWM(I);
  2973. #endif
  2974. #if PIN_EXISTS(MOTOR_CURRENT_PWM_J)
  2975. _WRITE_CURRENT_PWM(J);
  2976. #endif
  2977. #if PIN_EXISTS(MOTOR_CURRENT_PWM_K)
  2978. _WRITE_CURRENT_PWM(K);
  2979. #endif
  2980. #if PIN_EXISTS(MOTOR_CURRENT_PWM_U)
  2981. _WRITE_CURRENT_PWM(U);
  2982. #endif
  2983. #if PIN_EXISTS(MOTOR_CURRENT_PWM_V)
  2984. _WRITE_CURRENT_PWM(V);
  2985. #endif
  2986. #if PIN_EXISTS(MOTOR_CURRENT_PWM_W)
  2987. _WRITE_CURRENT_PWM(W);
  2988. #endif
  2989. break;
  2990. case 1:
  2991. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  2992. _WRITE_CURRENT_PWM(Z);
  2993. #endif
  2994. break;
  2995. case 2:
  2996. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  2997. _WRITE_CURRENT_PWM(E);
  2998. #endif
  2999. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  3000. _WRITE_CURRENT_PWM(E0);
  3001. #endif
  3002. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  3003. _WRITE_CURRENT_PWM(E1);
  3004. #endif
  3005. break;
  3006. }
  3007. #endif
  3008. }
  3009. void Stepper::digipot_init() {
  3010. #if HAS_MOTOR_CURRENT_SPI
  3011. SPI.begin();
  3012. SET_OUTPUT(DIGIPOTSS_PIN);
  3013. LOOP_L_N(i, COUNT(motor_current_setting))
  3014. set_digipot_current(i, motor_current_setting[i]);
  3015. #elif HAS_MOTOR_CURRENT_PWM
  3016. #ifdef __SAM3X8E__
  3017. #define _RESET_CURRENT_PWM_FREQ(P) NOOP
  3018. #else
  3019. #define _RESET_CURRENT_PWM_FREQ(P) hal.set_pwm_frequency(pin_t(P), MOTOR_CURRENT_PWM_FREQUENCY)
  3020. #endif
  3021. #define INIT_CURRENT_PWM(P) do{ SET_PWM(MOTOR_CURRENT_PWM_## P ##_PIN); _RESET_CURRENT_PWM_FREQ(MOTOR_CURRENT_PWM_## P ##_PIN); }while(0)
  3022. #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
  3023. INIT_CURRENT_PWM(X);
  3024. #endif
  3025. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
  3026. INIT_CURRENT_PWM(Y);
  3027. #endif
  3028. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  3029. INIT_CURRENT_PWM(XY);
  3030. #endif
  3031. #if PIN_EXISTS(MOTOR_CURRENT_PWM_I)
  3032. INIT_CURRENT_PWM(I);
  3033. #endif
  3034. #if PIN_EXISTS(MOTOR_CURRENT_PWM_J)
  3035. INIT_CURRENT_PWM(J);
  3036. #endif
  3037. #if PIN_EXISTS(MOTOR_CURRENT_PWM_K)
  3038. INIT_CURRENT_PWM(K);
  3039. #endif
  3040. #if PIN_EXISTS(MOTOR_CURRENT_PWM_U)
  3041. INIT_CURRENT_PWM(U);
  3042. #endif
  3043. #if PIN_EXISTS(MOTOR_CURRENT_PWM_V)
  3044. INIT_CURRENT_PWM(V);
  3045. #endif
  3046. #if PIN_EXISTS(MOTOR_CURRENT_PWM_W)
  3047. INIT_CURRENT_PWM(W);
  3048. #endif
  3049. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  3050. INIT_CURRENT_PWM(Z);
  3051. #endif
  3052. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  3053. INIT_CURRENT_PWM(E);
  3054. #endif
  3055. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
  3056. INIT_CURRENT_PWM(E0);
  3057. #endif
  3058. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
  3059. INIT_CURRENT_PWM(E1);
  3060. #endif
  3061. refresh_motor_power();
  3062. #endif
  3063. }
  3064. #endif
  3065. #else // PRINTRBOARD_G2
  3066. #include HAL_PATH(../HAL, fastio/G2_PWM.h)
  3067. #endif
  3068. #if HAS_MICROSTEPS
  3069. /**
  3070. * Software-controlled Microstepping
  3071. */
  3072. void Stepper::microstep_init() {
  3073. #if HAS_X_MS_PINS
  3074. SET_OUTPUT(X_MS1_PIN); SET_OUTPUT(X_MS2_PIN);
  3075. #if PIN_EXISTS(X_MS3)
  3076. SET_OUTPUT(X_MS3_PIN);
  3077. #endif
  3078. #endif
  3079. #if HAS_X2_MS_PINS
  3080. SET_OUTPUT(X2_MS1_PIN); SET_OUTPUT(X2_MS2_PIN);
  3081. #if PIN_EXISTS(X2_MS3)
  3082. SET_OUTPUT(X2_MS3_PIN);
  3083. #endif
  3084. #endif
  3085. #if HAS_Y_MS_PINS
  3086. SET_OUTPUT(Y_MS1_PIN); SET_OUTPUT(Y_MS2_PIN);
  3087. #if PIN_EXISTS(Y_MS3)
  3088. SET_OUTPUT(Y_MS3_PIN);
  3089. #endif
  3090. #endif
  3091. #if HAS_Y2_MS_PINS
  3092. SET_OUTPUT(Y2_MS1_PIN); SET_OUTPUT(Y2_MS2_PIN);
  3093. #if PIN_EXISTS(Y2_MS3)
  3094. SET_OUTPUT(Y2_MS3_PIN);
  3095. #endif
  3096. #endif
  3097. #if HAS_Z_MS_PINS
  3098. SET_OUTPUT(Z_MS1_PIN); SET_OUTPUT(Z_MS2_PIN);
  3099. #if PIN_EXISTS(Z_MS3)
  3100. SET_OUTPUT(Z_MS3_PIN);
  3101. #endif
  3102. #endif
  3103. #if HAS_Z2_MS_PINS
  3104. SET_OUTPUT(Z2_MS1_PIN); SET_OUTPUT(Z2_MS2_PIN);
  3105. #if PIN_EXISTS(Z2_MS3)
  3106. SET_OUTPUT(Z2_MS3_PIN);
  3107. #endif
  3108. #endif
  3109. #if HAS_Z3_MS_PINS
  3110. SET_OUTPUT(Z3_MS1_PIN); SET_OUTPUT(Z3_MS2_PIN);
  3111. #if PIN_EXISTS(Z3_MS3)
  3112. SET_OUTPUT(Z3_MS3_PIN);
  3113. #endif
  3114. #endif
  3115. #if HAS_Z4_MS_PINS
  3116. SET_OUTPUT(Z4_MS1_PIN); SET_OUTPUT(Z4_MS2_PIN);
  3117. #if PIN_EXISTS(Z4_MS3)
  3118. SET_OUTPUT(Z4_MS3_PIN);
  3119. #endif
  3120. #endif
  3121. #if HAS_I_MS_PINS
  3122. SET_OUTPUT(I_MS1_PIN); SET_OUTPUT(I_MS2_PIN);
  3123. #if PIN_EXISTS(I_MS3)
  3124. SET_OUTPUT(I_MS3_PIN);
  3125. #endif
  3126. #endif
  3127. #if HAS_J_MS_PINS
  3128. SET_OUTPUT(J_MS1_PIN); SET_OUTPUT(J_MS2_PIN);
  3129. #if PIN_EXISTS(J_MS3)
  3130. SET_OUTPUT(J_MS3_PIN);
  3131. #endif
  3132. #endif
  3133. #if HAS_K_MS_PINS
  3134. SET_OUTPUT(K_MS1_PIN); SET_OUTPUT(K_MS2_PIN);
  3135. #if PIN_EXISTS(K_MS3)
  3136. SET_OUTPUT(K_MS3_PIN);
  3137. #endif
  3138. #endif
  3139. #if HAS_U_MS_PINS
  3140. SET_OUTPUT(U_MS1_PIN); SET_OUTPUT(U_MS2_PIN);
  3141. #if PIN_EXISTS(U_MS3)
  3142. SET_OUTPUT(U_MS3_PIN);
  3143. #endif
  3144. #endif
  3145. #if HAS_V_MS_PINS
  3146. SET_OUTPUT(V_MS1_PIN); SET_OUTPUT(V_MS2_PIN);
  3147. #if PIN_EXISTS(V_MS3)
  3148. SET_OUTPUT(V_MS3_PIN);
  3149. #endif
  3150. #endif
  3151. #if HAS_W_MS_PINS
  3152. SET_OUTPUT(W_MS1_PIN); SET_OUTPUT(W_MS2_PIN);
  3153. #if PIN_EXISTS(W_MS3)
  3154. SET_OUTPUT(W_MS3_PIN);
  3155. #endif
  3156. #endif
  3157. #if HAS_E0_MS_PINS
  3158. SET_OUTPUT(E0_MS1_PIN); SET_OUTPUT(E0_MS2_PIN);
  3159. #if PIN_EXISTS(E0_MS3)
  3160. SET_OUTPUT(E0_MS3_PIN);
  3161. #endif
  3162. #endif
  3163. #if HAS_E1_MS_PINS
  3164. SET_OUTPUT(E1_MS1_PIN); SET_OUTPUT(E1_MS2_PIN);
  3165. #if PIN_EXISTS(E1_MS3)
  3166. SET_OUTPUT(E1_MS3_PIN);
  3167. #endif
  3168. #endif
  3169. #if HAS_E2_MS_PINS
  3170. SET_OUTPUT(E2_MS1_PIN); SET_OUTPUT(E2_MS2_PIN);
  3171. #if PIN_EXISTS(E2_MS3)
  3172. SET_OUTPUT(E2_MS3_PIN);
  3173. #endif
  3174. #endif
  3175. #if HAS_E3_MS_PINS
  3176. SET_OUTPUT(E3_MS1_PIN); SET_OUTPUT(E3_MS2_PIN);
  3177. #if PIN_EXISTS(E3_MS3)
  3178. SET_OUTPUT(E3_MS3_PIN);
  3179. #endif
  3180. #endif
  3181. #if HAS_E4_MS_PINS
  3182. SET_OUTPUT(E4_MS1_PIN); SET_OUTPUT(E4_MS2_PIN);
  3183. #if PIN_EXISTS(E4_MS3)
  3184. SET_OUTPUT(E4_MS3_PIN);
  3185. #endif
  3186. #endif
  3187. #if HAS_E5_MS_PINS
  3188. SET_OUTPUT(E5_MS1_PIN); SET_OUTPUT(E5_MS2_PIN);
  3189. #if PIN_EXISTS(E5_MS3)
  3190. SET_OUTPUT(E5_MS3_PIN);
  3191. #endif
  3192. #endif
  3193. #if HAS_E6_MS_PINS
  3194. SET_OUTPUT(E6_MS1_PIN); SET_OUTPUT(E6_MS2_PIN);
  3195. #if PIN_EXISTS(E6_MS3)
  3196. SET_OUTPUT(E6_MS3_PIN);
  3197. #endif
  3198. #endif
  3199. #if HAS_E7_MS_PINS
  3200. SET_OUTPUT(E7_MS1_PIN); SET_OUTPUT(E7_MS2_PIN);
  3201. #if PIN_EXISTS(E7_MS3)
  3202. SET_OUTPUT(E7_MS3_PIN);
  3203. #endif
  3204. #endif
  3205. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  3206. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  3207. microstep_mode(i, microstep_modes[i]);
  3208. }
  3209. void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) {
  3210. if (ms1 >= 0) switch (driver) {
  3211. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3212. case X_AXIS:
  3213. #if HAS_X_MS_PINS
  3214. WRITE(X_MS1_PIN, ms1);
  3215. #endif
  3216. #if HAS_X2_MS_PINS
  3217. WRITE(X2_MS1_PIN, ms1);
  3218. #endif
  3219. break;
  3220. #endif
  3221. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3222. case Y_AXIS:
  3223. #if HAS_Y_MS_PINS
  3224. WRITE(Y_MS1_PIN, ms1);
  3225. #endif
  3226. #if HAS_Y2_MS_PINS
  3227. WRITE(Y2_MS1_PIN, ms1);
  3228. #endif
  3229. break;
  3230. #endif
  3231. #if HAS_SOME_Z_MS_PINS
  3232. case Z_AXIS:
  3233. #if HAS_Z_MS_PINS
  3234. WRITE(Z_MS1_PIN, ms1);
  3235. #endif
  3236. #if HAS_Z2_MS_PINS
  3237. WRITE(Z2_MS1_PIN, ms1);
  3238. #endif
  3239. #if HAS_Z3_MS_PINS
  3240. WRITE(Z3_MS1_PIN, ms1);
  3241. #endif
  3242. #if HAS_Z4_MS_PINS
  3243. WRITE(Z4_MS1_PIN, ms1);
  3244. #endif
  3245. break;
  3246. #endif
  3247. #if HAS_I_MS_PINS
  3248. case I_AXIS: WRITE(I_MS1_PIN, ms1); break
  3249. #endif
  3250. #if HAS_J_MS_PINS
  3251. case J_AXIS: WRITE(J_MS1_PIN, ms1); break
  3252. #endif
  3253. #if HAS_K_MS_PINS
  3254. case K_AXIS: WRITE(K_MS1_PIN, ms1); break
  3255. #endif
  3256. #if HAS_U_MS_PINS
  3257. case U_AXIS: WRITE(U_MS1_PIN, ms1); break
  3258. #endif
  3259. #if HAS_V_MS_PINS
  3260. case V_AXIS: WRITE(V_MS1_PIN, ms1); break
  3261. #endif
  3262. #if HAS_W_MS_PINS
  3263. case W_AXIS: WRITE(W_MS1_PIN, ms1); break
  3264. #endif
  3265. #if HAS_E0_MS_PINS
  3266. case E_AXIS: WRITE(E0_MS1_PIN, ms1); break;
  3267. #endif
  3268. #if HAS_E1_MS_PINS
  3269. case (E_AXIS + 1): WRITE(E1_MS1_PIN, ms1); break;
  3270. #endif
  3271. #if HAS_E2_MS_PINS
  3272. case (E_AXIS + 2): WRITE(E2_MS1_PIN, ms1); break;
  3273. #endif
  3274. #if HAS_E3_MS_PINS
  3275. case (E_AXIS + 3): WRITE(E3_MS1_PIN, ms1); break;
  3276. #endif
  3277. #if HAS_E4_MS_PINS
  3278. case (E_AXIS + 4): WRITE(E4_MS1_PIN, ms1); break;
  3279. #endif
  3280. #if HAS_E5_MS_PINS
  3281. case (E_AXIS + 5): WRITE(E5_MS1_PIN, ms1); break;
  3282. #endif
  3283. #if HAS_E6_MS_PINS
  3284. case (E_AXIS + 6): WRITE(E6_MS1_PIN, ms1); break;
  3285. #endif
  3286. #if HAS_E7_MS_PINS
  3287. case (E_AXIS + 7): WRITE(E7_MS1_PIN, ms1); break;
  3288. #endif
  3289. }
  3290. if (ms2 >= 0) switch (driver) {
  3291. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3292. case X_AXIS:
  3293. #if HAS_X_MS_PINS
  3294. WRITE(X_MS2_PIN, ms2);
  3295. #endif
  3296. #if HAS_X2_MS_PINS
  3297. WRITE(X2_MS2_PIN, ms2);
  3298. #endif
  3299. break;
  3300. #endif
  3301. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3302. case Y_AXIS:
  3303. #if HAS_Y_MS_PINS
  3304. WRITE(Y_MS2_PIN, ms2);
  3305. #endif
  3306. #if HAS_Y2_MS_PINS
  3307. WRITE(Y2_MS2_PIN, ms2);
  3308. #endif
  3309. break;
  3310. #endif
  3311. #if HAS_SOME_Z_MS_PINS
  3312. case Z_AXIS:
  3313. #if HAS_Z_MS_PINS
  3314. WRITE(Z_MS2_PIN, ms2);
  3315. #endif
  3316. #if HAS_Z2_MS_PINS
  3317. WRITE(Z2_MS2_PIN, ms2);
  3318. #endif
  3319. #if HAS_Z3_MS_PINS
  3320. WRITE(Z3_MS2_PIN, ms2);
  3321. #endif
  3322. #if HAS_Z4_MS_PINS
  3323. WRITE(Z4_MS2_PIN, ms2);
  3324. #endif
  3325. break;
  3326. #endif
  3327. #if HAS_I_MS_PINS
  3328. case I_AXIS: WRITE(I_MS2_PIN, ms2); break
  3329. #endif
  3330. #if HAS_J_MS_PINS
  3331. case J_AXIS: WRITE(J_MS2_PIN, ms2); break
  3332. #endif
  3333. #if HAS_K_MS_PINS
  3334. case K_AXIS: WRITE(K_MS2_PIN, ms2); break
  3335. #endif
  3336. #if HAS_U_MS_PINS
  3337. case U_AXIS: WRITE(U_MS2_PIN, ms2); break
  3338. #endif
  3339. #if HAS_V_MS_PINS
  3340. case V_AXIS: WRITE(V_MS2_PIN, ms2); break
  3341. #endif
  3342. #if HAS_W_MS_PINS
  3343. case W_AXIS: WRITE(W_MS2_PIN, ms2); break
  3344. #endif
  3345. #if HAS_E0_MS_PINS
  3346. case E_AXIS: WRITE(E0_MS2_PIN, ms2); break;
  3347. #endif
  3348. #if HAS_E1_MS_PINS
  3349. case (E_AXIS + 1): WRITE(E1_MS2_PIN, ms2); break;
  3350. #endif
  3351. #if HAS_E2_MS_PINS
  3352. case (E_AXIS + 2): WRITE(E2_MS2_PIN, ms2); break;
  3353. #endif
  3354. #if HAS_E3_MS_PINS
  3355. case (E_AXIS + 3): WRITE(E3_MS2_PIN, ms2); break;
  3356. #endif
  3357. #if HAS_E4_MS_PINS
  3358. case (E_AXIS + 4): WRITE(E4_MS2_PIN, ms2); break;
  3359. #endif
  3360. #if HAS_E5_MS_PINS
  3361. case (E_AXIS + 5): WRITE(E5_MS2_PIN, ms2); break;
  3362. #endif
  3363. #if HAS_E6_MS_PINS
  3364. case (E_AXIS + 6): WRITE(E6_MS2_PIN, ms2); break;
  3365. #endif
  3366. #if HAS_E7_MS_PINS
  3367. case (E_AXIS + 7): WRITE(E7_MS2_PIN, ms2); break;
  3368. #endif
  3369. }
  3370. if (ms3 >= 0) switch (driver) {
  3371. #if HAS_X_MS_PINS || HAS_X2_MS_PINS
  3372. case X_AXIS:
  3373. #if HAS_X_MS_PINS && PIN_EXISTS(X_MS3)
  3374. WRITE(X_MS3_PIN, ms3);
  3375. #endif
  3376. #if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3)
  3377. WRITE(X2_MS3_PIN, ms3);
  3378. #endif
  3379. break;
  3380. #endif
  3381. #if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
  3382. case Y_AXIS:
  3383. #if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3)
  3384. WRITE(Y_MS3_PIN, ms3);
  3385. #endif
  3386. #if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3)
  3387. WRITE(Y2_MS3_PIN, ms3);
  3388. #endif
  3389. break;
  3390. #endif
  3391. #if HAS_SOME_Z_MS_PINS
  3392. case Z_AXIS:
  3393. #if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3)
  3394. WRITE(Z_MS3_PIN, ms3);
  3395. #endif
  3396. #if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3)
  3397. WRITE(Z2_MS3_PIN, ms3);
  3398. #endif
  3399. #if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3)
  3400. WRITE(Z3_MS3_PIN, ms3);
  3401. #endif
  3402. #if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3)
  3403. WRITE(Z4_MS3_PIN, ms3);
  3404. #endif
  3405. break;
  3406. #endif
  3407. #if HAS_I_MS_PINS
  3408. case I_AXIS: WRITE(I_MS3_PIN, ms3); break
  3409. #endif
  3410. #if HAS_J_MS_PINS
  3411. case J_AXIS: WRITE(J_MS3_PIN, ms3); break
  3412. #endif
  3413. #if HAS_K_MS_PINS
  3414. case K_AXIS: WRITE(K_MS3_PIN, ms3); break
  3415. #endif
  3416. #if HAS_U_MS_PINS
  3417. case U_AXIS: WRITE(U_MS3_PIN, ms3); break
  3418. #endif
  3419. #if HAS_V_MS_PINS
  3420. case V_AXIS: WRITE(V_MS3_PIN, ms3); break
  3421. #endif
  3422. #if HAS_W_MS_PINS
  3423. case W_AXIS: WRITE(W_MS3_PIN, ms3); break
  3424. #endif
  3425. #if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3)
  3426. case E_AXIS: WRITE(E0_MS3_PIN, ms3); break;
  3427. #endif
  3428. #if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3)
  3429. case (E_AXIS + 1): WRITE(E1_MS3_PIN, ms3); break;
  3430. #endif
  3431. #if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3)
  3432. case (E_AXIS + 2): WRITE(E2_MS3_PIN, ms3); break;
  3433. #endif
  3434. #if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3)
  3435. case (E_AXIS + 3): WRITE(E3_MS3_PIN, ms3); break;
  3436. #endif
  3437. #if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3)
  3438. case (E_AXIS + 4): WRITE(E4_MS3_PIN, ms3); break;
  3439. #endif
  3440. #if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3)
  3441. case (E_AXIS + 5): WRITE(E5_MS3_PIN, ms3); break;
  3442. #endif
  3443. #if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3)
  3444. case (E_AXIS + 6): WRITE(E6_MS3_PIN, ms3); break;
  3445. #endif
  3446. #if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3)
  3447. case (E_AXIS + 7): WRITE(E7_MS3_PIN, ms3); break;
  3448. #endif
  3449. }
  3450. }
  3451. void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
  3452. switch (stepping_mode) {
  3453. #if HAS_MICROSTEP1
  3454. case 1: microstep_ms(driver, MICROSTEP1); break;
  3455. #endif
  3456. #if HAS_MICROSTEP2
  3457. case 2: microstep_ms(driver, MICROSTEP2); break;
  3458. #endif
  3459. #if HAS_MICROSTEP4
  3460. case 4: microstep_ms(driver, MICROSTEP4); break;
  3461. #endif
  3462. #if HAS_MICROSTEP8
  3463. case 8: microstep_ms(driver, MICROSTEP8); break;
  3464. #endif
  3465. #if HAS_MICROSTEP16
  3466. case 16: microstep_ms(driver, MICROSTEP16); break;
  3467. #endif
  3468. #if HAS_MICROSTEP32
  3469. case 32: microstep_ms(driver, MICROSTEP32); break;
  3470. #endif
  3471. #if HAS_MICROSTEP64
  3472. case 64: microstep_ms(driver, MICROSTEP64); break;
  3473. #endif
  3474. #if HAS_MICROSTEP128
  3475. case 128: microstep_ms(driver, MICROSTEP128); break;
  3476. #endif
  3477. default: SERIAL_ERROR_MSG("Microsteps unavailable"); break;
  3478. }
  3479. }
  3480. void Stepper::microstep_readings() {
  3481. #define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN))
  3482. #define MS_LINE(A) do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0)
  3483. SERIAL_ECHOPGM("MS1|2|3 Pins");
  3484. #if HAS_X_MS_PINS
  3485. MS_LINE(X);
  3486. #if PIN_EXISTS(X_MS3)
  3487. PIN_CHAR(X_MS3);
  3488. #endif
  3489. #endif
  3490. #if HAS_Y_MS_PINS
  3491. MS_LINE(Y);
  3492. #if PIN_EXISTS(Y_MS3)
  3493. PIN_CHAR(Y_MS3);
  3494. #endif
  3495. #endif
  3496. #if HAS_Z_MS_PINS
  3497. MS_LINE(Z);
  3498. #if PIN_EXISTS(Z_MS3)
  3499. PIN_CHAR(Z_MS3);
  3500. #endif
  3501. #endif
  3502. #if HAS_I_MS_PINS
  3503. MS_LINE(I);
  3504. #if PIN_EXISTS(I_MS3)
  3505. PIN_CHAR(I_MS3);
  3506. #endif
  3507. #endif
  3508. #if HAS_J_MS_PINS
  3509. MS_LINE(J);
  3510. #if PIN_EXISTS(J_MS3)
  3511. PIN_CHAR(J_MS3);
  3512. #endif
  3513. #endif
  3514. #if HAS_K_MS_PINS
  3515. MS_LINE(K);
  3516. #if PIN_EXISTS(K_MS3)
  3517. PIN_CHAR(K_MS3);
  3518. #endif
  3519. #endif
  3520. #if HAS_U_MS_PINS
  3521. MS_LINE(U);
  3522. #if PIN_EXISTS(U_MS3)
  3523. PIN_CHAR(U_MS3);
  3524. #endif
  3525. #endif
  3526. #if HAS_V_MS_PINS
  3527. MS_LINE(V);
  3528. #if PIN_EXISTS(V_MS3)
  3529. PIN_CHAR(V_MS3);
  3530. #endif
  3531. #endif
  3532. #if HAS_W_MS_PINS
  3533. MS_LINE(W);
  3534. #if PIN_EXISTS(W_MS3)
  3535. PIN_CHAR(W_MS3);
  3536. #endif
  3537. #endif
  3538. #if HAS_E0_MS_PINS
  3539. MS_LINE(E0);
  3540. #if PIN_EXISTS(E0_MS3)
  3541. PIN_CHAR(E0_MS3);
  3542. #endif
  3543. #endif
  3544. #if HAS_E1_MS_PINS
  3545. MS_LINE(E1);
  3546. #if PIN_EXISTS(E1_MS3)
  3547. PIN_CHAR(E1_MS3);
  3548. #endif
  3549. #endif
  3550. #if HAS_E2_MS_PINS
  3551. MS_LINE(E2);
  3552. #if PIN_EXISTS(E2_MS3)
  3553. PIN_CHAR(E2_MS3);
  3554. #endif
  3555. #endif
  3556. #if HAS_E3_MS_PINS
  3557. MS_LINE(E3);
  3558. #if PIN_EXISTS(E3_MS3)
  3559. PIN_CHAR(E3_MS3);
  3560. #endif
  3561. #endif
  3562. #if HAS_E4_MS_PINS
  3563. MS_LINE(E4);
  3564. #if PIN_EXISTS(E4_MS3)
  3565. PIN_CHAR(E4_MS3);
  3566. #endif
  3567. #endif
  3568. #if HAS_E5_MS_PINS
  3569. MS_LINE(E5);
  3570. #if PIN_EXISTS(E5_MS3)
  3571. PIN_CHAR(E5_MS3);
  3572. #endif
  3573. #endif
  3574. #if HAS_E6_MS_PINS
  3575. MS_LINE(E6);
  3576. #if PIN_EXISTS(E6_MS3)
  3577. PIN_CHAR(E6_MS3);
  3578. #endif
  3579. #endif
  3580. #if HAS_E7_MS_PINS
  3581. MS_LINE(E7);
  3582. #if PIN_EXISTS(E7_MS3)
  3583. PIN_CHAR(E7_MS3);
  3584. #endif
  3585. #endif
  3586. SERIAL_EOL();
  3587. }
  3588. #endif // HAS_MICROSTEPS