My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

Marlin_main.cpp 279KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #include "nozzle.h"
  57. #include "duration_t.h"
  58. #include "types.h"
  59. #if ENABLED(USE_WATCHDOG)
  60. #include "watchdog.h"
  61. #endif
  62. #if ENABLED(BLINKM)
  63. #include "blinkm.h"
  64. #include "Wire.h"
  65. #endif
  66. #if HAS_SERVOS
  67. #include "servo.h"
  68. #endif
  69. #if HAS_DIGIPOTSS
  70. #include <SPI.h>
  71. #endif
  72. #if ENABLED(DAC_STEPPER_CURRENT)
  73. #include "stepper_dac.h"
  74. #endif
  75. #if ENABLED(EXPERIMENTAL_I2CBUS)
  76. #include "twibus.h"
  77. #endif
  78. /**
  79. * Look here for descriptions of G-codes:
  80. * - http://linuxcnc.org/handbook/gcode/g-code.html
  81. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  82. *
  83. * Help us document these G-codes online:
  84. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  85. * - http://reprap.org/wiki/G-code
  86. *
  87. * -----------------
  88. * Implemented Codes
  89. * -----------------
  90. *
  91. * "G" Codes
  92. *
  93. * G0 -> G1
  94. * G1 - Coordinated Movement X Y Z E
  95. * G2 - CW ARC
  96. * G3 - CCW ARC
  97. * G4 - Dwell S<seconds> or P<milliseconds>
  98. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  99. * G10 - Retract filament according to settings of M207
  100. * G11 - Retract recover filament according to settings of M208
  101. * G12 - Clean tool
  102. * G20 - Set input units to inches
  103. * G21 - Set input units to millimeters
  104. * G28 - Home one or more axes
  105. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  106. * G30 - Single Z probe, probes bed at current XY location.
  107. * G31 - Dock sled (Z_PROBE_SLED only)
  108. * G32 - Undock sled (Z_PROBE_SLED only)
  109. * G90 - Use Absolute Coordinates
  110. * G91 - Use Relative Coordinates
  111. * G92 - Set current position to coordinates given
  112. *
  113. * "M" Codes
  114. *
  115. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  116. * M1 - Same as M0
  117. * M17 - Enable/Power all stepper motors
  118. * M18 - Disable all stepper motors; same as M84
  119. * M20 - List SD card
  120. * M21 - Init SD card
  121. * M22 - Release SD card
  122. * M23 - Select SD file (M23 filename.g)
  123. * M24 - Start/resume SD print
  124. * M25 - Pause SD print
  125. * M26 - Set SD position in bytes (M26 S12345)
  126. * M27 - Report SD print status
  127. * M28 - Start SD write (M28 filename.g)
  128. * M29 - Stop SD write
  129. * M30 - Delete file from SD (M30 filename.g)
  130. * M31 - Output time since last M109 or SD card start to serial
  131. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  132. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  133. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  134. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  135. * M33 - Get the longname version of a path
  136. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  137. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  138. * M75 - Start the print job timer
  139. * M76 - Pause the print job timer
  140. * M77 - Stop the print job timer
  141. * M78 - Show statistical information about the print jobs
  142. * M80 - Turn on Power Supply
  143. * M81 - Turn off Power Supply
  144. * M82 - Set E codes absolute (default)
  145. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  146. * M84 - Disable steppers until next move,
  147. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  148. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  149. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  150. * M104 - Set extruder target temp
  151. * M105 - Read current temp
  152. * M106 - Fan on
  153. * M107 - Fan off
  154. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  155. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  156. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  157. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  158. * M110 - Set the current line number
  159. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  160. * M112 - Emergency stop
  161. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  162. * M114 - Output current position to serial port
  163. * M115 - Capabilities string
  164. * M117 - Display a message on the controller screen
  165. * M119 - Output Endstop status to serial port
  166. * M120 - Enable endstop detection
  167. * M121 - Disable endstop detection
  168. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  169. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  170. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  172. * M140 - Set bed target temp
  173. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  174. * M149 - Set temperature units
  175. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  176. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  177. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  178. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  179. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  180. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  181. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  182. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  183. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  184. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  185. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  186. * M205 - Set advanced settings. Current units apply:
  187. S<print> T<travel> minimum speeds
  188. B<minimum segment time>
  189. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  190. * M206 - Set additional homing offset
  191. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  192. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  193. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  194. Every normal extrude-only move will be classified as retract depending on the direction.
  195. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  196. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  197. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  198. * M221 - Set Flow Percentage: S<percent>
  199. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  200. * M240 - Trigger a camera to take a photograph
  201. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  202. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  203. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  204. * M301 - Set PID parameters P I and D
  205. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  206. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  207. * M304 - Set bed PID parameters P I and D
  208. * M380 - Activate solenoid on active extruder
  209. * M381 - Disable all solenoids
  210. * M400 - Finish all moves
  211. * M401 - Lower Z probe if present
  212. * M402 - Raise Z probe if present
  213. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  214. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  215. * M406 - Disable Filament Sensor extrusion control
  216. * M407 - Display measured filament diameter in millimeters
  217. * M410 - Quickstop. Abort all the planned moves
  218. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  219. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  220. * M428 - Set the home_offset logically based on the current_position
  221. * M500 - Store parameters in EEPROM
  222. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  225. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  226. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  227. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  228. * M666 - Set delta endstop adjustment
  229. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  230. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  231. * M907 - Set digital trimpot motor current using axis codes.
  232. * M908 - Control digital trimpot directly.
  233. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  234. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  235. * M350 - Set microstepping mode.
  236. * M351 - Toggle MS1 MS2 pins directly.
  237. *
  238. * ************ SCARA Specific - This can change to suit future G-code regulations
  239. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  240. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  241. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  242. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  243. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  244. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  245. * ************* SCARA End ***************
  246. *
  247. * ************ Custom codes - This can change to suit future G-code regulations
  248. * M100 - Watch Free Memory (For Debugging Only)
  249. * M928 - Start SD logging (M928 filename.g) - ended by M29
  250. * M999 - Restart after being stopped by error
  251. *
  252. * "T" Codes
  253. *
  254. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  255. *
  256. */
  257. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  258. void gcode_M100();
  259. #endif
  260. #if ENABLED(SDSUPPORT)
  261. CardReader card;
  262. #endif
  263. #if ENABLED(EXPERIMENTAL_I2CBUS)
  264. TWIBus i2c;
  265. #endif
  266. bool Running = true;
  267. uint8_t marlin_debug_flags = DEBUG_NONE;
  268. float current_position[NUM_AXIS] = { 0.0 };
  269. static float destination[NUM_AXIS] = { 0.0 };
  270. bool axis_known_position[XYZ] = { false };
  271. bool axis_homed[XYZ] = { false };
  272. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  273. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  274. static char* current_command, *current_command_args;
  275. static uint8_t cmd_queue_index_r = 0,
  276. cmd_queue_index_w = 0,
  277. commands_in_queue = 0;
  278. #if ENABLED(INCH_MODE_SUPPORT)
  279. float linear_unit_factor = 1.0;
  280. float volumetric_unit_factor = 1.0;
  281. #endif
  282. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  283. TempUnit input_temp_units = TEMPUNIT_C;
  284. #endif
  285. /**
  286. * Feed rates are often configured with mm/m
  287. * but the planner and stepper like mm/s units.
  288. */
  289. const float homing_feedrate_mm_s[] = {
  290. #if ENABLED(DELTA)
  291. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  292. #else
  293. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  294. #endif
  295. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  296. };
  297. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  298. int feedrate_percentage = 100, saved_feedrate_percentage;
  299. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  300. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  301. bool volumetric_enabled = false;
  302. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  303. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  304. // The distance that XYZ has been offset by G92. Reset by G28.
  305. float position_shift[XYZ] = { 0 };
  306. // This offset is added to the configured home position.
  307. // Set by M206, M428, or menu item. Saved to EEPROM.
  308. float home_offset[XYZ] = { 0 };
  309. // Software Endstops are based on the configured limits.
  310. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  311. bool soft_endstops_enabled = true;
  312. #endif
  313. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  314. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  315. #if FAN_COUNT > 0
  316. int fanSpeeds[FAN_COUNT] = { 0 };
  317. #endif
  318. // The active extruder (tool). Set with T<extruder> command.
  319. uint8_t active_extruder = 0;
  320. // Relative Mode. Enable with G91, disable with G90.
  321. static bool relative_mode = false;
  322. volatile bool wait_for_heatup = true;
  323. const char errormagic[] PROGMEM = "Error:";
  324. const char echomagic[] PROGMEM = "echo:";
  325. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  326. static int serial_count = 0;
  327. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  328. static char* seen_pointer;
  329. // Next Immediate GCode Command pointer. NULL if none.
  330. const char* queued_commands_P = NULL;
  331. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  332. // Inactivity shutdown
  333. millis_t previous_cmd_ms = 0;
  334. static millis_t max_inactive_time = 0;
  335. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  336. // Print Job Timer
  337. #if ENABLED(PRINTCOUNTER)
  338. PrintCounter print_job_timer = PrintCounter();
  339. #else
  340. Stopwatch print_job_timer = Stopwatch();
  341. #endif
  342. // Buzzer - I2C on the LCD or a BEEPER_PIN
  343. #if ENABLED(LCD_USE_I2C_BUZZER)
  344. #define BUZZ(d,f) lcd_buzz(d, f)
  345. #elif HAS_BUZZER
  346. Buzzer buzzer;
  347. #define BUZZ(d,f) buzzer.tone(d, f)
  348. #else
  349. #define BUZZ(d,f) NOOP
  350. #endif
  351. static uint8_t target_extruder;
  352. #if HAS_BED_PROBE
  353. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  354. #endif
  355. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  357. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  358. bool bed_leveling_in_progress = false;
  359. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  360. #elif defined(XY_PROBE_SPEED)
  361. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  362. #else
  363. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  364. #endif
  365. #if ENABLED(Z_DUAL_ENDSTOPS)
  366. float z_endstop_adj = 0;
  367. #endif
  368. // Extruder offsets
  369. #if HOTENDS > 1
  370. float hotend_offset[][HOTENDS] = {
  371. HOTEND_OFFSET_X,
  372. HOTEND_OFFSET_Y
  373. #ifdef HOTEND_OFFSET_Z
  374. , HOTEND_OFFSET_Z
  375. #endif
  376. };
  377. #endif
  378. #if HAS_Z_SERVO_ENDSTOP
  379. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  380. #endif
  381. #if ENABLED(BARICUDA)
  382. int baricuda_valve_pressure = 0;
  383. int baricuda_e_to_p_pressure = 0;
  384. #endif
  385. #if ENABLED(FWRETRACT)
  386. bool autoretract_enabled = false;
  387. bool retracted[EXTRUDERS] = { false };
  388. bool retracted_swap[EXTRUDERS] = { false };
  389. float retract_length = RETRACT_LENGTH;
  390. float retract_length_swap = RETRACT_LENGTH_SWAP;
  391. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  392. float retract_zlift = RETRACT_ZLIFT;
  393. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  394. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  395. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  396. #endif // FWRETRACT
  397. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  398. bool powersupply =
  399. #if ENABLED(PS_DEFAULT_OFF)
  400. false
  401. #else
  402. true
  403. #endif
  404. ;
  405. #endif
  406. #if ENABLED(DELTA)
  407. #define TOWER_1 X_AXIS
  408. #define TOWER_2 Y_AXIS
  409. #define TOWER_3 Z_AXIS
  410. float delta[ABC];
  411. float cartesian_position[XYZ] = { 0 };
  412. #define SIN_60 0.8660254037844386
  413. #define COS_60 0.5
  414. float endstop_adj[ABC] = { 0 };
  415. // these are the default values, can be overriden with M665
  416. float delta_radius = DELTA_RADIUS;
  417. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  418. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  419. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  420. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  421. float delta_tower3_x = 0; // back middle tower
  422. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  423. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  424. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  425. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  426. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  427. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  428. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  429. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  430. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  431. float delta_clip_start_height = Z_MAX_POS;
  432. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  433. int delta_grid_spacing[2] = { 0, 0 };
  434. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  435. #endif
  436. float delta_safe_distance_from_top();
  437. #else
  438. static bool home_all_axis = true;
  439. #endif
  440. #if ENABLED(SCARA)
  441. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  442. float delta[ABC];
  443. float axis_scaling[ABC] = { 1, 1, 1 }; // Build size scaling, default to 1
  444. #endif
  445. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  446. //Variables for Filament Sensor input
  447. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  448. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  449. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  450. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  451. int filwidth_delay_index1 = 0; //index into ring buffer
  452. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  453. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  454. #endif
  455. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  456. static bool filament_ran_out = false;
  457. #endif
  458. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  459. FilamentChangeMenuResponse filament_change_menu_response;
  460. #endif
  461. #if ENABLED(MIXING_EXTRUDER)
  462. float mixing_factor[MIXING_STEPPERS];
  463. #if MIXING_VIRTUAL_TOOLS > 1
  464. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  465. #endif
  466. #endif
  467. static bool send_ok[BUFSIZE];
  468. #if HAS_SERVOS
  469. Servo servo[NUM_SERVOS];
  470. #define MOVE_SERVO(I, P) servo[I].move(P)
  471. #if HAS_Z_SERVO_ENDSTOP
  472. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  473. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  474. #endif
  475. #endif
  476. #ifdef CHDK
  477. millis_t chdkHigh = 0;
  478. boolean chdkActive = false;
  479. #endif
  480. #if ENABLED(PID_EXTRUSION_SCALING)
  481. int lpq_len = 20;
  482. #endif
  483. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  484. static MarlinBusyState busy_state = NOT_BUSY;
  485. static millis_t next_busy_signal_ms = 0;
  486. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  487. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  488. #else
  489. #define host_keepalive() ;
  490. #define KEEPALIVE_STATE(n) ;
  491. #endif // HOST_KEEPALIVE_FEATURE
  492. /**
  493. * ***************************************************************************
  494. * ******************************** FUNCTIONS ********************************
  495. * ***************************************************************************
  496. */
  497. void stop();
  498. void get_available_commands();
  499. void process_next_command();
  500. void prepare_move_to_destination();
  501. void set_current_from_steppers_for_axis(AxisEnum axis);
  502. #if ENABLED(ARC_SUPPORT)
  503. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  504. #endif
  505. #if ENABLED(BEZIER_CURVE_SUPPORT)
  506. void plan_cubic_move(const float offset[4]);
  507. #endif
  508. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  509. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  510. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  511. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  512. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  513. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  514. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  515. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  516. static void report_current_position();
  517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  518. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  519. serialprintPGM(prefix);
  520. SERIAL_ECHOPAIR("(", x);
  521. SERIAL_ECHOPAIR(", ", y);
  522. SERIAL_ECHOPAIR(", ", z);
  523. SERIAL_ECHOPGM(")");
  524. if (suffix) serialprintPGM(suffix);
  525. else SERIAL_EOL;
  526. }
  527. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  528. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  529. }
  530. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  531. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  532. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  533. }
  534. #endif
  535. #define DEBUG_POS(SUFFIX,VAR) do { \
  536. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  537. #endif
  538. /**
  539. * sync_plan_position
  540. * Set planner / stepper positions to the cartesian current_position.
  541. * The stepper code translates these coordinates into step units.
  542. * Allows translation between steps and millimeters for cartesian & core robots
  543. */
  544. inline void sync_plan_position() {
  545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  546. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  547. #endif
  548. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  549. }
  550. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  551. #if ENABLED(DELTA) || ENABLED(SCARA)
  552. inline void sync_plan_position_delta() {
  553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  554. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  555. #endif
  556. inverse_kinematics(current_position);
  557. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  558. }
  559. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  560. #else
  561. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  562. #endif
  563. #if ENABLED(SDSUPPORT)
  564. #include "SdFatUtil.h"
  565. int freeMemory() { return SdFatUtil::FreeRam(); }
  566. #else
  567. extern "C" {
  568. extern unsigned int __bss_end;
  569. extern unsigned int __heap_start;
  570. extern void* __brkval;
  571. int freeMemory() {
  572. int free_memory;
  573. if ((int)__brkval == 0)
  574. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  575. else
  576. free_memory = ((int)&free_memory) - ((int)__brkval);
  577. return free_memory;
  578. }
  579. }
  580. #endif //!SDSUPPORT
  581. #if ENABLED(DIGIPOT_I2C)
  582. extern void digipot_i2c_set_current(int channel, float current);
  583. extern void digipot_i2c_init();
  584. #endif
  585. /**
  586. * Inject the next "immediate" command, when possible.
  587. * Return true if any immediate commands remain to inject.
  588. */
  589. static bool drain_queued_commands_P() {
  590. if (queued_commands_P != NULL) {
  591. size_t i = 0;
  592. char c, cmd[30];
  593. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  594. cmd[sizeof(cmd) - 1] = '\0';
  595. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  596. cmd[i] = '\0';
  597. if (enqueue_and_echo_command(cmd)) { // success?
  598. if (c) // newline char?
  599. queued_commands_P += i + 1; // advance to the next command
  600. else
  601. queued_commands_P = NULL; // nul char? no more commands
  602. }
  603. }
  604. return (queued_commands_P != NULL); // return whether any more remain
  605. }
  606. /**
  607. * Record one or many commands to run from program memory.
  608. * Aborts the current queue, if any.
  609. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  610. */
  611. void enqueue_and_echo_commands_P(const char* pgcode) {
  612. queued_commands_P = pgcode;
  613. drain_queued_commands_P(); // first command executed asap (when possible)
  614. }
  615. void clear_command_queue() {
  616. cmd_queue_index_r = cmd_queue_index_w;
  617. commands_in_queue = 0;
  618. }
  619. /**
  620. * Once a new command is in the ring buffer, call this to commit it
  621. */
  622. inline void _commit_command(bool say_ok) {
  623. send_ok[cmd_queue_index_w] = say_ok;
  624. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  625. commands_in_queue++;
  626. }
  627. /**
  628. * Copy a command directly into the main command buffer, from RAM.
  629. * Returns true if successfully adds the command
  630. */
  631. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  632. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  633. strcpy(command_queue[cmd_queue_index_w], cmd);
  634. _commit_command(say_ok);
  635. return true;
  636. }
  637. void enqueue_and_echo_command_now(const char* cmd) {
  638. while (!enqueue_and_echo_command(cmd)) idle();
  639. }
  640. /**
  641. * Enqueue with Serial Echo
  642. */
  643. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  644. if (_enqueuecommand(cmd, say_ok)) {
  645. SERIAL_ECHO_START;
  646. SERIAL_ECHOPGM(MSG_Enqueueing);
  647. SERIAL_ECHO(cmd);
  648. SERIAL_ECHOLNPGM("\"");
  649. return true;
  650. }
  651. return false;
  652. }
  653. void setup_killpin() {
  654. #if HAS_KILL
  655. SET_INPUT(KILL_PIN);
  656. WRITE(KILL_PIN, HIGH);
  657. #endif
  658. }
  659. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  660. void setup_filrunoutpin() {
  661. pinMode(FIL_RUNOUT_PIN, INPUT);
  662. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  663. WRITE(FIL_RUNOUT_PIN, HIGH);
  664. #endif
  665. }
  666. #endif
  667. // Set home pin
  668. void setup_homepin(void) {
  669. #if HAS_HOME
  670. SET_INPUT(HOME_PIN);
  671. WRITE(HOME_PIN, HIGH);
  672. #endif
  673. }
  674. void setup_photpin() {
  675. #if HAS_PHOTOGRAPH
  676. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  677. #endif
  678. }
  679. void setup_powerhold() {
  680. #if HAS_SUICIDE
  681. OUT_WRITE(SUICIDE_PIN, HIGH);
  682. #endif
  683. #if HAS_POWER_SWITCH
  684. #if ENABLED(PS_DEFAULT_OFF)
  685. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  686. #else
  687. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  688. #endif
  689. #endif
  690. }
  691. void suicide() {
  692. #if HAS_SUICIDE
  693. OUT_WRITE(SUICIDE_PIN, LOW);
  694. #endif
  695. }
  696. void servo_init() {
  697. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  698. servo[0].attach(SERVO0_PIN);
  699. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  700. #endif
  701. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  702. servo[1].attach(SERVO1_PIN);
  703. servo[1].detach();
  704. #endif
  705. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  706. servo[2].attach(SERVO2_PIN);
  707. servo[2].detach();
  708. #endif
  709. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  710. servo[3].attach(SERVO3_PIN);
  711. servo[3].detach();
  712. #endif
  713. #if HAS_Z_SERVO_ENDSTOP
  714. /**
  715. * Set position of Z Servo Endstop
  716. *
  717. * The servo might be deployed and positioned too low to stow
  718. * when starting up the machine or rebooting the board.
  719. * There's no way to know where the nozzle is positioned until
  720. * homing has been done - no homing with z-probe without init!
  721. *
  722. */
  723. STOW_Z_SERVO();
  724. #endif
  725. #if HAS_BED_PROBE
  726. endstops.enable_z_probe(false);
  727. #endif
  728. }
  729. /**
  730. * Stepper Reset (RigidBoard, et.al.)
  731. */
  732. #if HAS_STEPPER_RESET
  733. void disableStepperDrivers() {
  734. pinMode(STEPPER_RESET_PIN, OUTPUT);
  735. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  736. }
  737. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  738. #endif
  739. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  740. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  741. i2c.receive(bytes);
  742. }
  743. void i2c_on_request() { // just send dummy data for now
  744. i2c.reply("Hello World!\n");
  745. }
  746. #endif
  747. /**
  748. * Marlin entry-point: Set up before the program loop
  749. * - Set up the kill pin, filament runout, power hold
  750. * - Start the serial port
  751. * - Print startup messages and diagnostics
  752. * - Get EEPROM or default settings
  753. * - Initialize managers for:
  754. * • temperature
  755. * • planner
  756. * • watchdog
  757. * • stepper
  758. * • photo pin
  759. * • servos
  760. * • LCD controller
  761. * • Digipot I2C
  762. * • Z probe sled
  763. * • status LEDs
  764. */
  765. void setup() {
  766. #ifdef DISABLE_JTAG
  767. // Disable JTAG on AT90USB chips to free up pins for IO
  768. MCUCR = 0x80;
  769. MCUCR = 0x80;
  770. #endif
  771. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  772. setup_filrunoutpin();
  773. #endif
  774. setup_killpin();
  775. setup_powerhold();
  776. #if HAS_STEPPER_RESET
  777. disableStepperDrivers();
  778. #endif
  779. MYSERIAL.begin(BAUDRATE);
  780. SERIAL_PROTOCOLLNPGM("start");
  781. SERIAL_ECHO_START;
  782. // Check startup - does nothing if bootloader sets MCUSR to 0
  783. byte mcu = MCUSR;
  784. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  785. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  786. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  787. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  788. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  789. MCUSR = 0;
  790. SERIAL_ECHOPGM(MSG_MARLIN);
  791. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  792. #ifdef STRING_DISTRIBUTION_DATE
  793. #ifdef STRING_CONFIG_H_AUTHOR
  794. SERIAL_ECHO_START;
  795. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  796. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  797. SERIAL_ECHOPGM(MSG_AUTHOR);
  798. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  799. SERIAL_ECHOPGM("Compiled: ");
  800. SERIAL_ECHOLNPGM(__DATE__);
  801. #endif // STRING_CONFIG_H_AUTHOR
  802. #endif // STRING_DISTRIBUTION_DATE
  803. SERIAL_ECHO_START;
  804. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  805. SERIAL_ECHO(freeMemory());
  806. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  807. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  808. // Send "ok" after commands by default
  809. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  810. // Load data from EEPROM if available (or use defaults)
  811. // This also updates variables in the planner, elsewhere
  812. Config_RetrieveSettings();
  813. // Initialize current position based on home_offset
  814. memcpy(current_position, home_offset, sizeof(home_offset));
  815. // Vital to init stepper/planner equivalent for current_position
  816. SYNC_PLAN_POSITION_KINEMATIC();
  817. thermalManager.init(); // Initialize temperature loop
  818. #if ENABLED(USE_WATCHDOG)
  819. watchdog_init();
  820. #endif
  821. stepper.init(); // Initialize stepper, this enables interrupts!
  822. setup_photpin();
  823. servo_init();
  824. #if HAS_CONTROLLERFAN
  825. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  826. #endif
  827. #if HAS_STEPPER_RESET
  828. enableStepperDrivers();
  829. #endif
  830. #if ENABLED(DIGIPOT_I2C)
  831. digipot_i2c_init();
  832. #endif
  833. #if ENABLED(DAC_STEPPER_CURRENT)
  834. dac_init();
  835. #endif
  836. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  837. pinMode(SLED_PIN, OUTPUT);
  838. digitalWrite(SLED_PIN, LOW); // turn it off
  839. #endif // Z_PROBE_SLED
  840. setup_homepin();
  841. #ifdef STAT_LED_RED
  842. pinMode(STAT_LED_RED, OUTPUT);
  843. digitalWrite(STAT_LED_RED, LOW); // turn it off
  844. #endif
  845. #ifdef STAT_LED_BLUE
  846. pinMode(STAT_LED_BLUE, OUTPUT);
  847. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  848. #endif
  849. lcd_init();
  850. #if ENABLED(SHOW_BOOTSCREEN)
  851. #if ENABLED(DOGLCD)
  852. safe_delay(BOOTSCREEN_TIMEOUT);
  853. #elif ENABLED(ULTRA_LCD)
  854. bootscreen();
  855. lcd_init();
  856. #endif
  857. #endif
  858. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  859. // Initialize mixing to 100% color 1
  860. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  861. mixing_factor[i] = (i == 0) ? 1 : 0;
  862. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  863. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  864. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  865. #endif
  866. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  867. i2c.onReceive(i2c_on_receive);
  868. i2c.onRequest(i2c_on_request);
  869. #endif
  870. }
  871. /**
  872. * The main Marlin program loop
  873. *
  874. * - Save or log commands to SD
  875. * - Process available commands (if not saving)
  876. * - Call heater manager
  877. * - Call inactivity manager
  878. * - Call endstop manager
  879. * - Call LCD update
  880. */
  881. void loop() {
  882. if (commands_in_queue < BUFSIZE) get_available_commands();
  883. #if ENABLED(SDSUPPORT)
  884. card.checkautostart(false);
  885. #endif
  886. if (commands_in_queue) {
  887. #if ENABLED(SDSUPPORT)
  888. if (card.saving) {
  889. char* command = command_queue[cmd_queue_index_r];
  890. if (strstr_P(command, PSTR("M29"))) {
  891. // M29 closes the file
  892. card.closefile();
  893. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  894. ok_to_send();
  895. }
  896. else {
  897. // Write the string from the read buffer to SD
  898. card.write_command(command);
  899. if (card.logging)
  900. process_next_command(); // The card is saving because it's logging
  901. else
  902. ok_to_send();
  903. }
  904. }
  905. else
  906. process_next_command();
  907. #else
  908. process_next_command();
  909. #endif // SDSUPPORT
  910. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  911. if (commands_in_queue) {
  912. --commands_in_queue;
  913. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  914. }
  915. }
  916. endstops.report_state();
  917. idle();
  918. }
  919. void gcode_line_error(const char* err, bool doFlush = true) {
  920. SERIAL_ERROR_START;
  921. serialprintPGM(err);
  922. SERIAL_ERRORLN(gcode_LastN);
  923. //Serial.println(gcode_N);
  924. if (doFlush) FlushSerialRequestResend();
  925. serial_count = 0;
  926. }
  927. inline void get_serial_commands() {
  928. static char serial_line_buffer[MAX_CMD_SIZE];
  929. static boolean serial_comment_mode = false;
  930. // If the command buffer is empty for too long,
  931. // send "wait" to indicate Marlin is still waiting.
  932. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  933. static millis_t last_command_time = 0;
  934. millis_t ms = millis();
  935. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  936. SERIAL_ECHOLNPGM(MSG_WAIT);
  937. last_command_time = ms;
  938. }
  939. #endif
  940. /**
  941. * Loop while serial characters are incoming and the queue is not full
  942. */
  943. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  944. char serial_char = MYSERIAL.read();
  945. /**
  946. * If the character ends the line
  947. */
  948. if (serial_char == '\n' || serial_char == '\r') {
  949. serial_comment_mode = false; // end of line == end of comment
  950. if (!serial_count) continue; // skip empty lines
  951. serial_line_buffer[serial_count] = 0; // terminate string
  952. serial_count = 0; //reset buffer
  953. char* command = serial_line_buffer;
  954. while (*command == ' ') command++; // skip any leading spaces
  955. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  956. char* apos = strchr(command, '*');
  957. if (npos) {
  958. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  959. if (M110) {
  960. char* n2pos = strchr(command + 4, 'N');
  961. if (n2pos) npos = n2pos;
  962. }
  963. gcode_N = strtol(npos + 1, NULL, 10);
  964. if (gcode_N != gcode_LastN + 1 && !M110) {
  965. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  966. return;
  967. }
  968. if (apos) {
  969. byte checksum = 0, count = 0;
  970. while (command[count] != '*') checksum ^= command[count++];
  971. if (strtol(apos + 1, NULL, 10) != checksum) {
  972. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  973. return;
  974. }
  975. // if no errors, continue parsing
  976. }
  977. else {
  978. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  979. return;
  980. }
  981. gcode_LastN = gcode_N;
  982. // if no errors, continue parsing
  983. }
  984. else if (apos) { // No '*' without 'N'
  985. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  986. return;
  987. }
  988. // Movement commands alert when stopped
  989. if (IsStopped()) {
  990. char* gpos = strchr(command, 'G');
  991. if (gpos) {
  992. int codenum = strtol(gpos + 1, NULL, 10);
  993. switch (codenum) {
  994. case 0:
  995. case 1:
  996. case 2:
  997. case 3:
  998. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  999. LCD_MESSAGEPGM(MSG_STOPPED);
  1000. break;
  1001. }
  1002. }
  1003. }
  1004. #if DISABLED(EMERGENCY_PARSER)
  1005. // If command was e-stop process now
  1006. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  1007. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1008. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1009. #endif
  1010. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1011. last_command_time = ms;
  1012. #endif
  1013. // Add the command to the queue
  1014. _enqueuecommand(serial_line_buffer, true);
  1015. }
  1016. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1017. // Keep fetching, but ignore normal characters beyond the max length
  1018. // The command will be injected when EOL is reached
  1019. }
  1020. else if (serial_char == '\\') { // Handle escapes
  1021. if (MYSERIAL.available() > 0) {
  1022. // if we have one more character, copy it over
  1023. serial_char = MYSERIAL.read();
  1024. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1025. }
  1026. // otherwise do nothing
  1027. }
  1028. else { // it's not a newline, carriage return or escape char
  1029. if (serial_char == ';') serial_comment_mode = true;
  1030. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1031. }
  1032. } // queue has space, serial has data
  1033. }
  1034. #if ENABLED(SDSUPPORT)
  1035. inline void get_sdcard_commands() {
  1036. static bool stop_buffering = false,
  1037. sd_comment_mode = false;
  1038. if (!card.sdprinting) return;
  1039. /**
  1040. * '#' stops reading from SD to the buffer prematurely, so procedural
  1041. * macro calls are possible. If it occurs, stop_buffering is triggered
  1042. * and the buffer is run dry; this character _can_ occur in serial com
  1043. * due to checksums, however, no checksums are used in SD printing.
  1044. */
  1045. if (commands_in_queue == 0) stop_buffering = false;
  1046. uint16_t sd_count = 0;
  1047. bool card_eof = card.eof();
  1048. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1049. int16_t n = card.get();
  1050. char sd_char = (char)n;
  1051. card_eof = card.eof();
  1052. if (card_eof || n == -1
  1053. || sd_char == '\n' || sd_char == '\r'
  1054. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1055. ) {
  1056. if (card_eof) {
  1057. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1058. card.printingHasFinished();
  1059. card.checkautostart(true);
  1060. }
  1061. else if (n == -1) {
  1062. SERIAL_ERROR_START;
  1063. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1064. }
  1065. if (sd_char == '#') stop_buffering = true;
  1066. sd_comment_mode = false; //for new command
  1067. if (!sd_count) continue; //skip empty lines
  1068. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1069. sd_count = 0; //clear buffer
  1070. _commit_command(false);
  1071. }
  1072. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1073. /**
  1074. * Keep fetching, but ignore normal characters beyond the max length
  1075. * The command will be injected when EOL is reached
  1076. */
  1077. }
  1078. else {
  1079. if (sd_char == ';') sd_comment_mode = true;
  1080. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1081. }
  1082. }
  1083. }
  1084. #endif // SDSUPPORT
  1085. /**
  1086. * Add to the circular command queue the next command from:
  1087. * - The command-injection queue (queued_commands_P)
  1088. * - The active serial input (usually USB)
  1089. * - The SD card file being actively printed
  1090. */
  1091. void get_available_commands() {
  1092. // if any immediate commands remain, don't get other commands yet
  1093. if (drain_queued_commands_P()) return;
  1094. get_serial_commands();
  1095. #if ENABLED(SDSUPPORT)
  1096. get_sdcard_commands();
  1097. #endif
  1098. }
  1099. inline bool code_has_value() {
  1100. int i = 1;
  1101. char c = seen_pointer[i];
  1102. while (c == ' ') c = seen_pointer[++i];
  1103. if (c == '-' || c == '+') c = seen_pointer[++i];
  1104. if (c == '.') c = seen_pointer[++i];
  1105. return NUMERIC(c);
  1106. }
  1107. inline float code_value_float() {
  1108. float ret;
  1109. char* e = strchr(seen_pointer, 'E');
  1110. if (e) {
  1111. *e = 0;
  1112. ret = strtod(seen_pointer + 1, NULL);
  1113. *e = 'E';
  1114. }
  1115. else
  1116. ret = strtod(seen_pointer + 1, NULL);
  1117. return ret;
  1118. }
  1119. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1120. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1121. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1122. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1123. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1124. inline bool code_value_bool() { return code_value_byte() > 0; }
  1125. #if ENABLED(INCH_MODE_SUPPORT)
  1126. inline void set_input_linear_units(LinearUnit units) {
  1127. switch (units) {
  1128. case LINEARUNIT_INCH:
  1129. linear_unit_factor = 25.4;
  1130. break;
  1131. case LINEARUNIT_MM:
  1132. default:
  1133. linear_unit_factor = 1.0;
  1134. break;
  1135. }
  1136. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1137. }
  1138. inline float axis_unit_factor(int axis) {
  1139. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1140. }
  1141. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1142. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1143. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1144. #else
  1145. inline float code_value_linear_units() { return code_value_float(); }
  1146. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1147. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1148. #endif
  1149. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1150. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1151. float code_value_temp_abs() {
  1152. switch (input_temp_units) {
  1153. case TEMPUNIT_C:
  1154. return code_value_float();
  1155. case TEMPUNIT_F:
  1156. return (code_value_float() - 32) * 0.5555555556;
  1157. case TEMPUNIT_K:
  1158. return code_value_float() - 272.15;
  1159. default:
  1160. return code_value_float();
  1161. }
  1162. }
  1163. float code_value_temp_diff() {
  1164. switch (input_temp_units) {
  1165. case TEMPUNIT_C:
  1166. case TEMPUNIT_K:
  1167. return code_value_float();
  1168. case TEMPUNIT_F:
  1169. return code_value_float() * 0.5555555556;
  1170. default:
  1171. return code_value_float();
  1172. }
  1173. }
  1174. #else
  1175. float code_value_temp_abs() { return code_value_float(); }
  1176. float code_value_temp_diff() { return code_value_float(); }
  1177. #endif
  1178. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1179. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1180. bool code_seen(char code) {
  1181. seen_pointer = strchr(current_command_args, code);
  1182. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1183. }
  1184. /**
  1185. * Set target_extruder from the T parameter or the active_extruder
  1186. *
  1187. * Returns TRUE if the target is invalid
  1188. */
  1189. bool get_target_extruder_from_command(int code) {
  1190. if (code_seen('T')) {
  1191. if (code_value_byte() >= EXTRUDERS) {
  1192. SERIAL_ECHO_START;
  1193. SERIAL_CHAR('M');
  1194. SERIAL_ECHO(code);
  1195. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1196. return true;
  1197. }
  1198. target_extruder = code_value_byte();
  1199. }
  1200. else
  1201. target_extruder = active_extruder;
  1202. return false;
  1203. }
  1204. #define DEFINE_PGM_READ_ANY(type, reader) \
  1205. static inline type pgm_read_any(const type *p) \
  1206. { return pgm_read_##reader##_near(p); }
  1207. DEFINE_PGM_READ_ANY(float, float);
  1208. DEFINE_PGM_READ_ANY(signed char, byte);
  1209. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1210. static const PROGMEM type array##_P[XYZ] = \
  1211. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1212. static inline type array(int axis) \
  1213. { return pgm_read_any(&array##_P[axis]); }
  1214. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1215. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1216. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1217. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1218. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1219. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1220. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1221. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1222. #endif
  1223. #if ENABLED(DUAL_X_CARRIAGE)
  1224. #define DXC_FULL_CONTROL_MODE 0
  1225. #define DXC_AUTO_PARK_MODE 1
  1226. #define DXC_DUPLICATION_MODE 2
  1227. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1228. static float x_home_pos(int extruder) {
  1229. if (extruder == 0)
  1230. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1231. else
  1232. /**
  1233. * In dual carriage mode the extruder offset provides an override of the
  1234. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1235. * This allow soft recalibration of the second extruder offset position
  1236. * without firmware reflash (through the M218 command).
  1237. */
  1238. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1239. }
  1240. static int x_home_dir(int extruder) {
  1241. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1242. }
  1243. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1244. static bool active_extruder_parked = false; // used in mode 1 & 2
  1245. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1246. static millis_t delayed_move_time = 0; // used in mode 1
  1247. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1248. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1249. #endif //DUAL_X_CARRIAGE
  1250. /**
  1251. * Software endstops can be used to monitor the open end of
  1252. * an axis that has a hardware endstop on the other end. Or
  1253. * they can prevent axes from moving past endstops and grinding.
  1254. *
  1255. * To keep doing their job as the coordinate system changes,
  1256. * the software endstop positions must be refreshed to remain
  1257. * at the same positions relative to the machine.
  1258. */
  1259. void update_software_endstops(AxisEnum axis) {
  1260. float offs = LOGICAL_POSITION(0, axis);
  1261. #if ENABLED(DUAL_X_CARRIAGE)
  1262. if (axis == X_AXIS) {
  1263. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1264. if (active_extruder != 0) {
  1265. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1266. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1267. return;
  1268. }
  1269. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1270. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1271. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1272. return;
  1273. }
  1274. }
  1275. else
  1276. #endif
  1277. {
  1278. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1279. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1280. }
  1281. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1282. if (DEBUGGING(LEVELING)) {
  1283. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1284. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1285. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1286. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1287. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1288. }
  1289. #endif
  1290. #if ENABLED(DELTA)
  1291. if (axis == Z_AXIS)
  1292. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1293. #endif
  1294. }
  1295. /**
  1296. * Change the home offset for an axis, update the current
  1297. * position and the software endstops to retain the same
  1298. * relative distance to the new home.
  1299. *
  1300. * Since this changes the current_position, code should
  1301. * call sync_plan_position soon after this.
  1302. */
  1303. static void set_home_offset(AxisEnum axis, float v) {
  1304. current_position[axis] += v - home_offset[axis];
  1305. home_offset[axis] = v;
  1306. update_software_endstops(axis);
  1307. }
  1308. static void set_axis_is_at_home(AxisEnum axis) {
  1309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1310. if (DEBUGGING(LEVELING)) {
  1311. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1312. SERIAL_ECHOLNPGM(")");
  1313. }
  1314. #endif
  1315. position_shift[axis] = 0;
  1316. #if ENABLED(DUAL_X_CARRIAGE)
  1317. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1318. if (active_extruder != 0)
  1319. current_position[X_AXIS] = x_home_pos(active_extruder);
  1320. else
  1321. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1322. update_software_endstops(X_AXIS);
  1323. return;
  1324. }
  1325. #endif
  1326. #if ENABLED(SCARA)
  1327. if (axis == X_AXIS || axis == Y_AXIS) {
  1328. float homeposition[XYZ];
  1329. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1330. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1331. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1332. /**
  1333. * Works out real Homeposition angles using inverse kinematics,
  1334. * and calculates homing offset using forward kinematics
  1335. */
  1336. inverse_kinematics(homeposition);
  1337. forward_kinematics_SCARA(delta);
  1338. // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
  1339. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1340. current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
  1341. /**
  1342. * SCARA home positions are based on configuration since the actual
  1343. * limits are determined by the inverse kinematic transform.
  1344. */
  1345. soft_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1346. soft_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1347. }
  1348. else
  1349. #endif
  1350. {
  1351. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1352. update_software_endstops(axis);
  1353. if (axis == Z_AXIS) {
  1354. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1355. #if DISABLED(Z_MIN_PROBE_ENDSTOP)
  1356. current_position[Z_AXIS] -= zprobe_zoffset;
  1357. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1358. if (DEBUGGING(LEVELING)) {
  1359. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1360. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1361. }
  1362. #endif
  1363. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1364. if (DEBUGGING(LEVELING))
  1365. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1366. #endif
  1367. #endif
  1368. }
  1369. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1370. if (axis == Z_AXIS) {
  1371. current_position[Z_AXIS] -= zprobe_zoffset;
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) {
  1374. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1375. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1376. }
  1377. #endif
  1378. }
  1379. #elif HAS_BED_PROBE && Z_HOME_DIR < 0 && ENABLED(DEBUG_LEVELING_FEATURE)
  1380. if (DEBUGGING(LEVELING))
  1381. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1382. #endif
  1383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1384. if (DEBUGGING(LEVELING)) {
  1385. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1386. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1387. DEBUG_POS("", current_position);
  1388. }
  1389. #endif
  1390. }
  1391. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1392. if (DEBUGGING(LEVELING)) {
  1393. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1394. SERIAL_ECHOLNPGM(")");
  1395. }
  1396. #endif
  1397. }
  1398. /**
  1399. * Some planner shorthand inline functions
  1400. */
  1401. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1402. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1403. int hbd = homing_bump_divisor[axis];
  1404. if (hbd < 1) {
  1405. hbd = 10;
  1406. SERIAL_ECHO_START;
  1407. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1408. }
  1409. return homing_feedrate_mm_s[axis] / hbd;
  1410. }
  1411. //
  1412. // line_to_current_position
  1413. // Move the planner to the current position from wherever it last moved
  1414. // (or from wherever it has been told it is located).
  1415. //
  1416. inline void line_to_current_position() {
  1417. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1418. }
  1419. inline void line_to_z(float zPosition) {
  1420. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1421. }
  1422. //
  1423. // line_to_destination
  1424. // Move the planner, not necessarily synced with current_position
  1425. //
  1426. inline void line_to_destination(float fr_mm_s) {
  1427. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1428. }
  1429. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1430. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1431. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1432. #if ENABLED(DELTA)
  1433. /**
  1434. * Calculate delta, start a line, and set current_position to destination
  1435. */
  1436. void prepare_move_to_destination_raw() {
  1437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1438. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1439. #endif
  1440. refresh_cmd_timeout();
  1441. inverse_kinematics(destination);
  1442. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1443. set_current_to_destination();
  1444. }
  1445. #endif
  1446. /**
  1447. * Plan a move to (X, Y, Z) and set the current_position
  1448. * The final current_position may not be the one that was requested
  1449. */
  1450. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1451. float old_feedrate_mm_s = feedrate_mm_s;
  1452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1453. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1454. #endif
  1455. #if ENABLED(DELTA)
  1456. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1457. set_destination_to_current(); // sync destination at the start
  1458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1459. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1460. #endif
  1461. // when in the danger zone
  1462. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1463. if (z > delta_clip_start_height) { // staying in the danger zone
  1464. destination[X_AXIS] = x; // move directly (uninterpolated)
  1465. destination[Y_AXIS] = y;
  1466. destination[Z_AXIS] = z;
  1467. prepare_move_to_destination_raw(); // set_current_to_destination
  1468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1469. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1470. #endif
  1471. return;
  1472. }
  1473. else {
  1474. destination[Z_AXIS] = delta_clip_start_height;
  1475. prepare_move_to_destination_raw(); // set_current_to_destination
  1476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1477. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1478. #endif
  1479. }
  1480. }
  1481. if (z > current_position[Z_AXIS]) { // raising?
  1482. destination[Z_AXIS] = z;
  1483. prepare_move_to_destination_raw(); // set_current_to_destination
  1484. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1485. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1486. #endif
  1487. }
  1488. destination[X_AXIS] = x;
  1489. destination[Y_AXIS] = y;
  1490. prepare_move_to_destination(); // set_current_to_destination
  1491. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1492. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1493. #endif
  1494. if (z < current_position[Z_AXIS]) { // lowering?
  1495. destination[Z_AXIS] = z;
  1496. prepare_move_to_destination_raw(); // set_current_to_destination
  1497. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1498. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1499. #endif
  1500. }
  1501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1502. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1503. #endif
  1504. #else
  1505. // If Z needs to raise, do it before moving XY
  1506. if (current_position[Z_AXIS] < z) {
  1507. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1508. current_position[Z_AXIS] = z;
  1509. line_to_current_position();
  1510. }
  1511. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1512. current_position[X_AXIS] = x;
  1513. current_position[Y_AXIS] = y;
  1514. line_to_current_position();
  1515. // If Z needs to lower, do it after moving XY
  1516. if (current_position[Z_AXIS] > z) {
  1517. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1518. current_position[Z_AXIS] = z;
  1519. line_to_current_position();
  1520. }
  1521. #endif
  1522. stepper.synchronize();
  1523. feedrate_mm_s = old_feedrate_mm_s;
  1524. }
  1525. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1526. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1527. }
  1528. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1529. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1530. }
  1531. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1532. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1533. }
  1534. //
  1535. // Prepare to do endstop or probe moves
  1536. // with custom feedrates.
  1537. //
  1538. // - Save current feedrates
  1539. // - Reset the rate multiplier
  1540. // - Reset the command timeout
  1541. // - Enable the endstops (for endstop moves)
  1542. //
  1543. static void setup_for_endstop_or_probe_move() {
  1544. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1545. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1546. #endif
  1547. saved_feedrate_mm_s = feedrate_mm_s;
  1548. saved_feedrate_percentage = feedrate_percentage;
  1549. feedrate_percentage = 100;
  1550. refresh_cmd_timeout();
  1551. }
  1552. static void clean_up_after_endstop_or_probe_move() {
  1553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1554. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1555. #endif
  1556. feedrate_mm_s = saved_feedrate_mm_s;
  1557. feedrate_percentage = saved_feedrate_percentage;
  1558. refresh_cmd_timeout();
  1559. }
  1560. #if HAS_BED_PROBE
  1561. /**
  1562. * Raise Z to a minimum height to make room for a probe to move
  1563. */
  1564. inline void do_probe_raise(float z_raise) {
  1565. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1566. if (DEBUGGING(LEVELING)) {
  1567. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1568. SERIAL_ECHOLNPGM(")");
  1569. }
  1570. #endif
  1571. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1572. if (z_dest > current_position[Z_AXIS])
  1573. do_blocking_move_to_z(z_dest);
  1574. }
  1575. #endif //HAS_BED_PROBE
  1576. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1577. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1578. const bool xx = x && !axis_homed[X_AXIS],
  1579. yy = y && !axis_homed[Y_AXIS],
  1580. zz = z && !axis_homed[Z_AXIS];
  1581. if (xx || yy || zz) {
  1582. SERIAL_ECHO_START;
  1583. SERIAL_ECHOPGM(MSG_HOME " ");
  1584. if (xx) SERIAL_ECHOPGM(MSG_X);
  1585. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1586. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1587. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1588. #if ENABLED(ULTRA_LCD)
  1589. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1590. strcat_P(message, PSTR(MSG_HOME " "));
  1591. if (xx) strcat_P(message, PSTR(MSG_X));
  1592. if (yy) strcat_P(message, PSTR(MSG_Y));
  1593. if (zz) strcat_P(message, PSTR(MSG_Z));
  1594. strcat_P(message, PSTR(" " MSG_FIRST));
  1595. lcd_setstatus(message);
  1596. #endif
  1597. return true;
  1598. }
  1599. return false;
  1600. }
  1601. #endif
  1602. #if ENABLED(Z_PROBE_SLED)
  1603. #ifndef SLED_DOCKING_OFFSET
  1604. #define SLED_DOCKING_OFFSET 0
  1605. #endif
  1606. /**
  1607. * Method to dock/undock a sled designed by Charles Bell.
  1608. *
  1609. * stow[in] If false, move to MAX_X and engage the solenoid
  1610. * If true, move to MAX_X and release the solenoid
  1611. */
  1612. static void dock_sled(bool stow) {
  1613. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1614. if (DEBUGGING(LEVELING)) {
  1615. SERIAL_ECHOPAIR("dock_sled(", stow);
  1616. SERIAL_ECHOLNPGM(")");
  1617. }
  1618. #endif
  1619. // Dock sled a bit closer to ensure proper capturing
  1620. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1621. #if PIN_EXISTS(SLED)
  1622. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1623. #endif
  1624. }
  1625. #endif // Z_PROBE_SLED
  1626. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1627. void run_deploy_moves_script() {
  1628. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1629. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1630. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1636. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1637. #endif
  1638. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1639. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1640. #endif
  1641. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1642. #endif
  1643. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1644. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1645. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1652. #endif
  1653. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1654. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1655. #endif
  1656. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1657. #endif
  1658. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1666. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1667. #endif
  1668. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1669. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1670. #endif
  1671. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1672. #endif
  1673. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1674. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1675. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1681. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1682. #endif
  1683. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1684. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1685. #endif
  1686. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1687. #endif
  1688. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1689. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1690. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1693. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1694. #endif
  1695. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1696. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1697. #endif
  1698. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1699. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1700. #endif
  1701. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1702. #endif
  1703. }
  1704. void run_stow_moves_script() {
  1705. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1707. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1710. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1711. #endif
  1712. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1713. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1714. #endif
  1715. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1716. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1717. #endif
  1718. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1719. #endif
  1720. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1722. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1723. #endif
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1725. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1726. #endif
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1728. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1729. #endif
  1730. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1731. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1732. #endif
  1733. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1734. #endif
  1735. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1736. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1737. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1738. #endif
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1740. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1741. #endif
  1742. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1743. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1744. #endif
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1746. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1747. #endif
  1748. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1749. #endif
  1750. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1752. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1753. #endif
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1755. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1756. #endif
  1757. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1758. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1759. #endif
  1760. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1761. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1762. #endif
  1763. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1764. #endif
  1765. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1766. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1767. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1768. #endif
  1769. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1770. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1771. #endif
  1772. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1773. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1774. #endif
  1775. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1776. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1777. #endif
  1778. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1779. #endif
  1780. }
  1781. #endif
  1782. #if HAS_BED_PROBE
  1783. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1784. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1785. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1786. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1787. #else
  1788. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1789. #endif
  1790. #endif
  1791. #define DEPLOY_PROBE() set_probe_deployed( true )
  1792. #define STOW_PROBE() set_probe_deployed( false )
  1793. // returns false for ok and true for failure
  1794. static bool set_probe_deployed(bool deploy) {
  1795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1796. if (DEBUGGING(LEVELING)) {
  1797. DEBUG_POS("set_probe_deployed", current_position);
  1798. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1799. }
  1800. #endif
  1801. if (endstops.z_probe_enabled == deploy) return false;
  1802. // Make room for probe
  1803. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1804. #if ENABLED(Z_PROBE_SLED)
  1805. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1806. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1807. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1808. #endif
  1809. float oldXpos = current_position[X_AXIS]; // save x position
  1810. float oldYpos = current_position[Y_AXIS]; // save y position
  1811. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1812. // If endstop is already false, the Z probe is deployed
  1813. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1814. // Would a goto be less ugly?
  1815. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1816. // for a triggered when stowed manual probe.
  1817. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1818. // otherwise an Allen-Key probe can't be stowed.
  1819. #endif
  1820. #if ENABLED(Z_PROBE_SLED)
  1821. dock_sled(!deploy);
  1822. #elif HAS_Z_SERVO_ENDSTOP
  1823. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1824. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1825. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1826. #endif
  1827. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1828. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1829. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1830. if (IsRunning()) {
  1831. SERIAL_ERROR_START;
  1832. SERIAL_ERRORLNPGM("Z-Probe failed");
  1833. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1834. }
  1835. stop();
  1836. return true;
  1837. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1838. #endif
  1839. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1840. endstops.enable_z_probe( deploy );
  1841. return false;
  1842. }
  1843. static void do_probe_move(float z, float fr_mm_m) {
  1844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1845. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1846. #endif
  1847. // Move down until probe triggered
  1848. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1849. // Clear endstop flags
  1850. endstops.hit_on_purpose();
  1851. // Get Z where the steppers were interrupted
  1852. set_current_from_steppers_for_axis(Z_AXIS);
  1853. // Tell the planner where we actually are
  1854. SYNC_PLAN_POSITION_KINEMATIC();
  1855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1856. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1857. #endif
  1858. }
  1859. // Do a single Z probe and return with current_position[Z_AXIS]
  1860. // at the height where the probe triggered.
  1861. static float run_z_probe() {
  1862. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1863. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1864. #endif
  1865. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1866. refresh_cmd_timeout();
  1867. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1868. planner.bed_level_matrix.set_to_identity();
  1869. #endif
  1870. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1871. // Do a first probe at the fast speed
  1872. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1873. // move up by the bump distance
  1874. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1875. #else
  1876. // move fast, close to the bed
  1877. float z = LOGICAL_Z_POSITION(home_bump_mm(Z_AXIS));
  1878. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1879. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1880. #endif
  1881. // move down slowly to find bed
  1882. do_probe_move(-10, Z_PROBE_SPEED_SLOW);
  1883. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1884. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1885. #endif
  1886. return current_position[Z_AXIS];
  1887. }
  1888. //
  1889. // - Move to the given XY
  1890. // - Deploy the probe, if not already deployed
  1891. // - Probe the bed, get the Z position
  1892. // - Depending on the 'stow' flag
  1893. // - Stow the probe, or
  1894. // - Raise to the BETWEEN height
  1895. // - Return the probed Z position
  1896. //
  1897. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1898. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1899. if (DEBUGGING(LEVELING)) {
  1900. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1901. SERIAL_ECHOPAIR(", ", y);
  1902. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1903. SERIAL_ECHOLNPGM(")");
  1904. DEBUG_POS("", current_position);
  1905. }
  1906. #endif
  1907. float old_feedrate_mm_s = feedrate_mm_s;
  1908. // Ensure a minimum height before moving the probe
  1909. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1910. // Move to the XY where we shall probe
  1911. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1912. if (DEBUGGING(LEVELING)) {
  1913. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1914. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1915. SERIAL_ECHOLNPGM(")");
  1916. }
  1917. #endif
  1918. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1919. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1921. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1922. #endif
  1923. if (DEPLOY_PROBE()) return NAN;
  1924. float measured_z = run_z_probe();
  1925. if (stow) {
  1926. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1927. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1928. #endif
  1929. if (STOW_PROBE()) return NAN;
  1930. }
  1931. else {
  1932. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1933. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1934. #endif
  1935. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1936. }
  1937. if (verbose_level > 2) {
  1938. SERIAL_PROTOCOLPGM("Bed X: ");
  1939. SERIAL_PROTOCOL_F(x, 3);
  1940. SERIAL_PROTOCOLPGM(" Y: ");
  1941. SERIAL_PROTOCOL_F(y, 3);
  1942. SERIAL_PROTOCOLPGM(" Z: ");
  1943. SERIAL_PROTOCOL_F(measured_z, 3);
  1944. SERIAL_EOL;
  1945. }
  1946. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1947. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1948. #endif
  1949. feedrate_mm_s = old_feedrate_mm_s;
  1950. return measured_z;
  1951. }
  1952. #endif // HAS_BED_PROBE
  1953. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1954. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1955. #if DISABLED(DELTA)
  1956. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1957. //planner.bed_level_matrix.debug("bed level before");
  1958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1959. planner.bed_level_matrix.set_to_identity();
  1960. if (DEBUGGING(LEVELING)) {
  1961. vector_3 uncorrected_position = planner.adjusted_position();
  1962. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1963. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1964. }
  1965. #endif
  1966. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1967. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1968. vector_3 corrected_position = planner.adjusted_position();
  1969. current_position[X_AXIS] = corrected_position.x;
  1970. current_position[Y_AXIS] = corrected_position.y;
  1971. current_position[Z_AXIS] = corrected_position.z;
  1972. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1973. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1974. #endif
  1975. SYNC_PLAN_POSITION_KINEMATIC();
  1976. }
  1977. #endif // !DELTA
  1978. #else // !AUTO_BED_LEVELING_GRID
  1979. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1980. planner.bed_level_matrix.set_to_identity();
  1981. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1982. if (DEBUGGING(LEVELING)) {
  1983. vector_3 uncorrected_position = planner.adjusted_position();
  1984. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1985. }
  1986. #endif
  1987. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1988. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1989. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1990. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1991. if (planeNormal.z < 0) {
  1992. planeNormal.x = -planeNormal.x;
  1993. planeNormal.y = -planeNormal.y;
  1994. planeNormal.z = -planeNormal.z;
  1995. }
  1996. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1997. vector_3 corrected_position = planner.adjusted_position();
  1998. current_position[X_AXIS] = corrected_position.x;
  1999. current_position[Y_AXIS] = corrected_position.y;
  2000. current_position[Z_AXIS] = corrected_position.z;
  2001. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2002. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  2003. #endif
  2004. SYNC_PLAN_POSITION_KINEMATIC();
  2005. }
  2006. #endif // !AUTO_BED_LEVELING_GRID
  2007. #if ENABLED(DELTA)
  2008. /**
  2009. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  2010. */
  2011. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  2012. if (bed_level[x][y] != 0.0) {
  2013. return; // Don't overwrite good values.
  2014. }
  2015. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  2016. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  2017. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  2018. float median = c; // Median is robust (ignores outliers).
  2019. if (a < b) {
  2020. if (b < c) median = b;
  2021. if (c < a) median = a;
  2022. }
  2023. else { // b <= a
  2024. if (c < b) median = b;
  2025. if (a < c) median = a;
  2026. }
  2027. bed_level[x][y] = median;
  2028. }
  2029. /**
  2030. * Fill in the unprobed points (corners of circular print surface)
  2031. * using linear extrapolation, away from the center.
  2032. */
  2033. static void extrapolate_unprobed_bed_level() {
  2034. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  2035. for (int y = 0; y <= half; y++) {
  2036. for (int x = 0; x <= half; x++) {
  2037. if (x + y < 3) continue;
  2038. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  2039. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  2040. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  2041. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  2042. }
  2043. }
  2044. }
  2045. /**
  2046. * Print calibration results for plotting or manual frame adjustment.
  2047. */
  2048. static void print_bed_level() {
  2049. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2050. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2051. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  2052. SERIAL_PROTOCOLCHAR(' ');
  2053. }
  2054. SERIAL_EOL;
  2055. }
  2056. }
  2057. /**
  2058. * Reset calibration results to zero.
  2059. */
  2060. void reset_bed_level() {
  2061. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2062. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2063. #endif
  2064. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  2065. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  2066. bed_level[x][y] = 0.0;
  2067. }
  2068. }
  2069. }
  2070. #endif // DELTA
  2071. #endif // AUTO_BED_LEVELING_FEATURE
  2072. /**
  2073. * Home an individual axis
  2074. */
  2075. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  2076. float old_feedrate_mm_s = feedrate_mm_s;
  2077. current_position[axis] = where;
  2078. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis];
  2079. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  2080. stepper.synchronize();
  2081. feedrate_mm_s = old_feedrate_mm_s;
  2082. }
  2083. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2084. static void homeaxis(AxisEnum axis) {
  2085. #define HOMEAXIS_DO(LETTER) \
  2086. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2087. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2089. if (DEBUGGING(LEVELING)) {
  2090. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2091. SERIAL_ECHOLNPGM(")");
  2092. }
  2093. #endif
  2094. int axis_home_dir =
  2095. #if ENABLED(DUAL_X_CARRIAGE)
  2096. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2097. #endif
  2098. home_dir(axis);
  2099. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2100. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2101. if (axis == Z_AXIS) {
  2102. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2103. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2104. #endif
  2105. if (DEPLOY_PROBE()) return;
  2106. }
  2107. #endif
  2108. // Set the axis position as setup for the move
  2109. current_position[axis] = 0;
  2110. sync_plan_position();
  2111. // Set a flag for Z motor locking
  2112. #if ENABLED(Z_DUAL_ENDSTOPS)
  2113. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2114. #endif
  2115. // Move towards the endstop until an endstop is triggered
  2116. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2117. // Set the axis position as setup for the move
  2118. current_position[axis] = 0;
  2119. sync_plan_position();
  2120. // Move away from the endstop by the axis HOME_BUMP_MM
  2121. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  2122. // Move slowly towards the endstop until triggered
  2123. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  2124. // reset current_position to 0 to reflect hitting endpoint
  2125. current_position[axis] = 0;
  2126. sync_plan_position();
  2127. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2128. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2129. #endif
  2130. #if ENABLED(Z_DUAL_ENDSTOPS)
  2131. if (axis == Z_AXIS) {
  2132. float adj = fabs(z_endstop_adj);
  2133. bool lockZ1;
  2134. if (axis_home_dir > 0) {
  2135. adj = -adj;
  2136. lockZ1 = (z_endstop_adj > 0);
  2137. }
  2138. else
  2139. lockZ1 = (z_endstop_adj < 0);
  2140. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2141. // Move to the adjusted endstop height
  2142. do_homing_move(axis, adj);
  2143. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2144. stepper.set_homing_flag(false);
  2145. } // Z_AXIS
  2146. #endif
  2147. #if ENABLED(DELTA)
  2148. // retrace by the amount specified in endstop_adj
  2149. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2151. if (DEBUGGING(LEVELING)) {
  2152. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2153. DEBUG_POS("", current_position);
  2154. }
  2155. #endif
  2156. do_homing_move(axis, endstop_adj[axis]);
  2157. }
  2158. #endif
  2159. // Set the axis position to its home position (plus home offsets)
  2160. set_axis_is_at_home(axis);
  2161. SYNC_PLAN_POSITION_KINEMATIC();
  2162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2163. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2164. #endif
  2165. destination[axis] = current_position[axis];
  2166. endstops.hit_on_purpose(); // clear endstop hit flags
  2167. axis_known_position[axis] = true;
  2168. axis_homed[axis] = true;
  2169. // Put away the Z probe
  2170. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2171. if (axis == Z_AXIS) {
  2172. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2173. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2174. #endif
  2175. if (STOW_PROBE()) return;
  2176. }
  2177. #endif
  2178. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2179. if (DEBUGGING(LEVELING)) {
  2180. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2181. SERIAL_ECHOLNPGM(")");
  2182. }
  2183. #endif
  2184. } // homeaxis()
  2185. #if ENABLED(FWRETRACT)
  2186. void retract(bool retracting, bool swapping = false) {
  2187. if (retracting == retracted[active_extruder]) return;
  2188. float old_feedrate_mm_s = feedrate_mm_s;
  2189. set_destination_to_current();
  2190. if (retracting) {
  2191. feedrate_mm_s = retract_feedrate_mm_s;
  2192. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2193. sync_plan_position_e();
  2194. prepare_move_to_destination();
  2195. if (retract_zlift > 0.01) {
  2196. current_position[Z_AXIS] -= retract_zlift;
  2197. SYNC_PLAN_POSITION_KINEMATIC();
  2198. prepare_move_to_destination();
  2199. }
  2200. }
  2201. else {
  2202. if (retract_zlift > 0.01) {
  2203. current_position[Z_AXIS] += retract_zlift;
  2204. SYNC_PLAN_POSITION_KINEMATIC();
  2205. }
  2206. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2207. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2208. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2209. sync_plan_position_e();
  2210. prepare_move_to_destination();
  2211. }
  2212. feedrate_mm_s = old_feedrate_mm_s;
  2213. retracted[active_extruder] = retracting;
  2214. } // retract()
  2215. #endif // FWRETRACT
  2216. #if ENABLED(MIXING_EXTRUDER)
  2217. void normalize_mix() {
  2218. float mix_total = 0.0;
  2219. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2220. float v = mixing_factor[i];
  2221. if (v < 0) v = mixing_factor[i] = 0;
  2222. mix_total += v;
  2223. }
  2224. // Scale all values if they don't add up to ~1.0
  2225. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2226. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2227. float mix_scale = 1.0 / mix_total;
  2228. for (int i = 0; i < MIXING_STEPPERS; i++)
  2229. mixing_factor[i] *= mix_scale;
  2230. }
  2231. }
  2232. #if ENABLED(DIRECT_MIXING_IN_G1)
  2233. // Get mixing parameters from the GCode
  2234. // Factors that are left out are set to 0
  2235. // The total "must" be 1.0 (but it will be normalized)
  2236. void gcode_get_mix() {
  2237. const char* mixing_codes = "ABCDHI";
  2238. for (int i = 0; i < MIXING_STEPPERS; i++)
  2239. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2240. normalize_mix();
  2241. }
  2242. #endif
  2243. #endif
  2244. /**
  2245. * ***************************************************************************
  2246. * ***************************** G-CODE HANDLING *****************************
  2247. * ***************************************************************************
  2248. */
  2249. /**
  2250. * Set XYZE destination and feedrate from the current GCode command
  2251. *
  2252. * - Set destination from included axis codes
  2253. * - Set to current for missing axis codes
  2254. * - Set the feedrate, if included
  2255. */
  2256. void gcode_get_destination() {
  2257. LOOP_XYZE(i) {
  2258. if (code_seen(axis_codes[i]))
  2259. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2260. else
  2261. destination[i] = current_position[i];
  2262. }
  2263. if (code_seen('F') && code_value_linear_units() > 0.0)
  2264. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2265. #if ENABLED(PRINTCOUNTER)
  2266. if (!DEBUGGING(DRYRUN))
  2267. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2268. #endif
  2269. // Get ABCDHI mixing factors
  2270. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2271. gcode_get_mix();
  2272. #endif
  2273. }
  2274. void unknown_command_error() {
  2275. SERIAL_ECHO_START;
  2276. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2277. SERIAL_ECHO(current_command);
  2278. SERIAL_ECHOLNPGM("\"");
  2279. }
  2280. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2281. /**
  2282. * Output a "busy" message at regular intervals
  2283. * while the machine is not accepting commands.
  2284. */
  2285. void host_keepalive() {
  2286. millis_t ms = millis();
  2287. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2288. if (PENDING(ms, next_busy_signal_ms)) return;
  2289. switch (busy_state) {
  2290. case IN_HANDLER:
  2291. case IN_PROCESS:
  2292. SERIAL_ECHO_START;
  2293. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2294. break;
  2295. case PAUSED_FOR_USER:
  2296. SERIAL_ECHO_START;
  2297. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2298. break;
  2299. case PAUSED_FOR_INPUT:
  2300. SERIAL_ECHO_START;
  2301. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2302. break;
  2303. default:
  2304. break;
  2305. }
  2306. }
  2307. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2308. }
  2309. #endif //HOST_KEEPALIVE_FEATURE
  2310. /**
  2311. * G0, G1: Coordinated movement of X Y Z E axes
  2312. */
  2313. inline void gcode_G0_G1() {
  2314. if (IsRunning()) {
  2315. gcode_get_destination(); // For X Y Z E F
  2316. #if ENABLED(FWRETRACT)
  2317. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2318. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2319. // Is this move an attempt to retract or recover?
  2320. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2321. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2322. sync_plan_position_e(); // AND from the planner
  2323. retract(!retracted[active_extruder]);
  2324. return;
  2325. }
  2326. }
  2327. #endif //FWRETRACT
  2328. prepare_move_to_destination();
  2329. }
  2330. }
  2331. /**
  2332. * G2: Clockwise Arc
  2333. * G3: Counterclockwise Arc
  2334. */
  2335. #if ENABLED(ARC_SUPPORT)
  2336. inline void gcode_G2_G3(bool clockwise) {
  2337. if (IsRunning()) {
  2338. #if ENABLED(SF_ARC_FIX)
  2339. bool relative_mode_backup = relative_mode;
  2340. relative_mode = true;
  2341. #endif
  2342. gcode_get_destination();
  2343. #if ENABLED(SF_ARC_FIX)
  2344. relative_mode = relative_mode_backup;
  2345. #endif
  2346. // Center of arc as offset from current_position
  2347. float arc_offset[2] = {
  2348. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2349. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2350. };
  2351. // Send an arc to the planner
  2352. plan_arc(destination, arc_offset, clockwise);
  2353. refresh_cmd_timeout();
  2354. }
  2355. }
  2356. #endif
  2357. /**
  2358. * G4: Dwell S<seconds> or P<milliseconds>
  2359. */
  2360. inline void gcode_G4() {
  2361. millis_t dwell_ms = 0;
  2362. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2363. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2364. stepper.synchronize();
  2365. refresh_cmd_timeout();
  2366. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2367. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2368. while (PENDING(millis(), dwell_ms)) idle();
  2369. }
  2370. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2371. /**
  2372. * Parameters interpreted according to:
  2373. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2374. * However I, J omission is not supported at this point; all
  2375. * parameters can be omitted and default to zero.
  2376. */
  2377. /**
  2378. * G5: Cubic B-spline
  2379. */
  2380. inline void gcode_G5() {
  2381. if (IsRunning()) {
  2382. gcode_get_destination();
  2383. float offset[] = {
  2384. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2385. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2386. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2387. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2388. };
  2389. plan_cubic_move(offset);
  2390. }
  2391. }
  2392. #endif // BEZIER_CURVE_SUPPORT
  2393. #if ENABLED(FWRETRACT)
  2394. /**
  2395. * G10 - Retract filament according to settings of M207
  2396. * G11 - Recover filament according to settings of M208
  2397. */
  2398. inline void gcode_G10_G11(bool doRetract=false) {
  2399. #if EXTRUDERS > 1
  2400. if (doRetract) {
  2401. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2402. }
  2403. #endif
  2404. retract(doRetract
  2405. #if EXTRUDERS > 1
  2406. , retracted_swap[active_extruder]
  2407. #endif
  2408. );
  2409. }
  2410. #endif //FWRETRACT
  2411. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2412. /**
  2413. * G12: Clean the nozzle
  2414. */
  2415. inline void gcode_G12() {
  2416. // Don't allow nozzle cleaning without homing first
  2417. if (axis_unhomed_error(true, true, true)) { return; }
  2418. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2419. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2420. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2421. Nozzle::clean(pattern, strokes, objects);
  2422. }
  2423. #endif
  2424. #if ENABLED(INCH_MODE_SUPPORT)
  2425. /**
  2426. * G20: Set input mode to inches
  2427. */
  2428. inline void gcode_G20() {
  2429. set_input_linear_units(LINEARUNIT_INCH);
  2430. }
  2431. /**
  2432. * G21: Set input mode to millimeters
  2433. */
  2434. inline void gcode_G21() {
  2435. set_input_linear_units(LINEARUNIT_MM);
  2436. }
  2437. #endif
  2438. #if ENABLED(NOZZLE_PARK_FEATURE)
  2439. /**
  2440. * G27: Park the nozzle
  2441. */
  2442. inline void gcode_G27() {
  2443. // Don't allow nozzle parking without homing first
  2444. if (axis_unhomed_error(true, true, true)) { return; }
  2445. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2446. Nozzle::park(z_action);
  2447. }
  2448. #endif // NOZZLE_PARK_FEATURE
  2449. #if ENABLED(QUICK_HOME)
  2450. static void quick_home_xy() {
  2451. // Pretend the current position is 0,0
  2452. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2453. sync_plan_position();
  2454. int x_axis_home_dir =
  2455. #if ENABLED(DUAL_X_CARRIAGE)
  2456. x_home_dir(active_extruder)
  2457. #else
  2458. home_dir(X_AXIS)
  2459. #endif
  2460. ;
  2461. float mlx = max_length(X_AXIS),
  2462. mly = max_length(Y_AXIS),
  2463. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2464. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2465. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2466. endstops.hit_on_purpose(); // clear endstop hit flags
  2467. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2468. }
  2469. #endif // QUICK_HOME
  2470. /**
  2471. * G28: Home all axes according to settings
  2472. *
  2473. * Parameters
  2474. *
  2475. * None Home to all axes with no parameters.
  2476. * With QUICK_HOME enabled XY will home together, then Z.
  2477. *
  2478. * Cartesian parameters
  2479. *
  2480. * X Home to the X endstop
  2481. * Y Home to the Y endstop
  2482. * Z Home to the Z endstop
  2483. *
  2484. */
  2485. inline void gcode_G28() {
  2486. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2487. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2488. #endif
  2489. // Wait for planner moves to finish!
  2490. stepper.synchronize();
  2491. // For auto bed leveling, clear the level matrix
  2492. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2493. planner.bed_level_matrix.set_to_identity();
  2494. #if ENABLED(DELTA)
  2495. reset_bed_level();
  2496. #endif
  2497. #endif
  2498. // Always home with tool 0 active
  2499. #if HOTENDS > 1
  2500. uint8_t old_tool_index = active_extruder;
  2501. tool_change(0, 0, true);
  2502. #endif
  2503. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2504. extruder_duplication_enabled = false;
  2505. #endif
  2506. /**
  2507. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2508. * on again when homing all axis
  2509. */
  2510. #if ENABLED(MESH_BED_LEVELING)
  2511. float pre_home_z = MESH_HOME_SEARCH_Z;
  2512. if (mbl.active()) {
  2513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2514. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2515. #endif
  2516. // Save known Z position if already homed
  2517. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2518. pre_home_z = current_position[Z_AXIS];
  2519. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2520. }
  2521. mbl.set_active(false);
  2522. current_position[Z_AXIS] = pre_home_z;
  2523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2524. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2525. #endif
  2526. }
  2527. #endif
  2528. setup_for_endstop_or_probe_move();
  2529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2530. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2531. #endif
  2532. endstops.enable(true); // Enable endstops for next homing move
  2533. #if ENABLED(DELTA)
  2534. /**
  2535. * A delta can only safely home all axes at the same time
  2536. */
  2537. // Pretend the current position is 0,0,0
  2538. // This is like quick_home_xy() but for 3 towers.
  2539. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2540. sync_plan_position();
  2541. // Move all carriages up together until the first endstop is hit.
  2542. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 3.0 * (Z_MAX_LENGTH);
  2543. feedrate_mm_s = 1.732 * homing_feedrate_mm_s[X_AXIS];
  2544. line_to_current_position();
  2545. stepper.synchronize();
  2546. endstops.hit_on_purpose(); // clear endstop hit flags
  2547. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = 0.0;
  2548. // take care of back off and rehome. Now one carriage is at the top.
  2549. HOMEAXIS(X);
  2550. HOMEAXIS(Y);
  2551. HOMEAXIS(Z);
  2552. SYNC_PLAN_POSITION_KINEMATIC();
  2553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2554. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2555. #endif
  2556. #else // NOT DELTA
  2557. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2558. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2559. set_destination_to_current();
  2560. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2561. if (home_all_axis || homeZ) {
  2562. HOMEAXIS(Z);
  2563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2564. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2565. #endif
  2566. }
  2567. #else
  2568. if (home_all_axis || homeX || homeY) {
  2569. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2570. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2571. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2572. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2573. if (DEBUGGING(LEVELING))
  2574. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2575. #endif
  2576. do_blocking_move_to_z(destination[Z_AXIS]);
  2577. }
  2578. }
  2579. #endif
  2580. #if ENABLED(QUICK_HOME)
  2581. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2582. #endif
  2583. #if ENABLED(HOME_Y_BEFORE_X)
  2584. // Home Y
  2585. if (home_all_axis || homeY) {
  2586. HOMEAXIS(Y);
  2587. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2588. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2589. #endif
  2590. }
  2591. #endif
  2592. // Home X
  2593. if (home_all_axis || homeX) {
  2594. #if ENABLED(DUAL_X_CARRIAGE)
  2595. int tmp_extruder = active_extruder;
  2596. active_extruder = !active_extruder;
  2597. HOMEAXIS(X);
  2598. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2599. active_extruder = tmp_extruder;
  2600. HOMEAXIS(X);
  2601. // reset state used by the different modes
  2602. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2603. delayed_move_time = 0;
  2604. active_extruder_parked = true;
  2605. #else
  2606. HOMEAXIS(X);
  2607. #endif
  2608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2609. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2610. #endif
  2611. }
  2612. #if DISABLED(HOME_Y_BEFORE_X)
  2613. // Home Y
  2614. if (home_all_axis || homeY) {
  2615. HOMEAXIS(Y);
  2616. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2617. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2618. #endif
  2619. }
  2620. #endif
  2621. // Home Z last if homing towards the bed
  2622. #if Z_HOME_DIR < 0
  2623. if (home_all_axis || homeZ) {
  2624. #if ENABLED(Z_SAFE_HOMING)
  2625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2626. if (DEBUGGING(LEVELING)) {
  2627. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2628. }
  2629. #endif
  2630. if (home_all_axis) {
  2631. /**
  2632. * At this point we already have Z at Z_HOMING_HEIGHT height
  2633. * No need to move Z any more as this height should already be safe
  2634. * enough to reach Z_SAFE_HOMING XY positions.
  2635. * Just make sure the planner is in sync.
  2636. */
  2637. SYNC_PLAN_POSITION_KINEMATIC();
  2638. /**
  2639. * Move the Z probe (or just the nozzle) to the safe homing point
  2640. */
  2641. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2642. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2643. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2644. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2645. if (DEBUGGING(LEVELING)) {
  2646. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2647. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2648. }
  2649. #endif
  2650. // Move in the XY plane
  2651. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2652. }
  2653. // Let's see if X and Y are homed
  2654. if (axis_unhomed_error(true, true, false)) return;
  2655. /**
  2656. * Make sure the Z probe is within the physical limits
  2657. * NOTE: This doesn't necessarily ensure the Z probe is also
  2658. * within the bed!
  2659. */
  2660. float cpx = RAW_CURRENT_POSITION(X_AXIS), cpy = RAW_CURRENT_POSITION(Y_AXIS);
  2661. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2662. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2663. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2664. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2665. // Home the Z axis
  2666. HOMEAXIS(Z);
  2667. }
  2668. else {
  2669. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2670. SERIAL_ECHO_START;
  2671. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2672. }
  2673. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2674. if (DEBUGGING(LEVELING)) {
  2675. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2676. }
  2677. #endif
  2678. #else // !Z_SAFE_HOMING
  2679. HOMEAXIS(Z);
  2680. #endif // !Z_SAFE_HOMING
  2681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2682. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2683. #endif
  2684. } // home_all_axis || homeZ
  2685. #endif // Z_HOME_DIR < 0
  2686. SYNC_PLAN_POSITION_KINEMATIC();
  2687. #endif // !DELTA (gcode_G28)
  2688. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2689. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2690. #endif
  2691. endstops.not_homing();
  2692. endstops.hit_on_purpose(); // clear endstop hit flags
  2693. // Enable mesh leveling again
  2694. #if ENABLED(MESH_BED_LEVELING)
  2695. if (mbl.has_mesh()) {
  2696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2697. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2698. #endif
  2699. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2700. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2701. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2702. #endif
  2703. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2704. #if Z_HOME_DIR > 0
  2705. + Z_MAX_POS
  2706. #endif
  2707. ;
  2708. SYNC_PLAN_POSITION_KINEMATIC();
  2709. mbl.set_active(true);
  2710. #if ENABLED(MESH_G28_REST_ORIGIN)
  2711. current_position[Z_AXIS] = 0.0;
  2712. set_destination_to_current();
  2713. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2714. line_to_destination();
  2715. stepper.synchronize();
  2716. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2717. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2718. #endif
  2719. #else
  2720. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2721. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2722. #if Z_HOME_DIR > 0
  2723. + Z_MAX_POS
  2724. #endif
  2725. ;
  2726. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2727. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2728. #endif
  2729. #endif
  2730. }
  2731. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2732. current_position[Z_AXIS] = pre_home_z;
  2733. SYNC_PLAN_POSITION_KINEMATIC();
  2734. mbl.set_active(true);
  2735. current_position[Z_AXIS] = pre_home_z -
  2736. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2738. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2739. #endif
  2740. }
  2741. }
  2742. #endif
  2743. #if ENABLED(DELTA)
  2744. // move to a height where we can use the full xy-area
  2745. do_blocking_move_to_z(delta_clip_start_height);
  2746. #endif
  2747. clean_up_after_endstop_or_probe_move();
  2748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2749. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2750. #endif
  2751. // Restore the active tool after homing
  2752. #if HOTENDS > 1
  2753. tool_change(old_tool_index, 0, true);
  2754. #endif
  2755. report_current_position();
  2756. }
  2757. #if HAS_PROBING_PROCEDURE
  2758. void out_of_range_error(const char* p_edge) {
  2759. SERIAL_PROTOCOLPGM("?Probe ");
  2760. serialprintPGM(p_edge);
  2761. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2762. }
  2763. #endif
  2764. #if ENABLED(MESH_BED_LEVELING)
  2765. inline void _mbl_goto_xy(float x, float y) {
  2766. float old_feedrate_mm_s = feedrate_mm_s;
  2767. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2768. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2769. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2770. + Z_PROBE_TRAVEL_HEIGHT
  2771. #elif Z_HOMING_HEIGHT > 0
  2772. + Z_HOMING_HEIGHT
  2773. #endif
  2774. ;
  2775. line_to_current_position();
  2776. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2777. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2778. line_to_current_position();
  2779. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2780. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2781. line_to_current_position();
  2782. #endif
  2783. feedrate_mm_s = old_feedrate_mm_s;
  2784. stepper.synchronize();
  2785. }
  2786. /**
  2787. * G29: Mesh-based Z probe, probes a grid and produces a
  2788. * mesh to compensate for variable bed height
  2789. *
  2790. * Parameters With MESH_BED_LEVELING:
  2791. *
  2792. * S0 Produce a mesh report
  2793. * S1 Start probing mesh points
  2794. * S2 Probe the next mesh point
  2795. * S3 Xn Yn Zn.nn Manually modify a single point
  2796. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2797. * S5 Reset and disable mesh
  2798. *
  2799. * The S0 report the points as below
  2800. *
  2801. * +----> X-axis 1-n
  2802. * |
  2803. * |
  2804. * v Y-axis 1-n
  2805. *
  2806. */
  2807. inline void gcode_G29() {
  2808. static int probe_point = -1;
  2809. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2810. if (state < 0 || state > 5) {
  2811. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2812. return;
  2813. }
  2814. int8_t px, py;
  2815. switch (state) {
  2816. case MeshReport:
  2817. if (mbl.has_mesh()) {
  2818. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2819. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2820. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2821. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2822. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2823. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2824. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2825. SERIAL_PROTOCOLPGM(" ");
  2826. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2827. }
  2828. SERIAL_EOL;
  2829. }
  2830. }
  2831. else
  2832. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2833. break;
  2834. case MeshStart:
  2835. mbl.reset();
  2836. probe_point = 0;
  2837. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2838. break;
  2839. case MeshNext:
  2840. if (probe_point < 0) {
  2841. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2842. return;
  2843. }
  2844. // For each G29 S2...
  2845. if (probe_point == 0) {
  2846. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2847. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2848. #if Z_HOME_DIR > 0
  2849. + Z_MAX_POS
  2850. #endif
  2851. ;
  2852. SYNC_PLAN_POSITION_KINEMATIC();
  2853. }
  2854. else {
  2855. // For G29 S2 after adjusting Z.
  2856. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2857. }
  2858. // If there's another point to sample, move there with optional lift.
  2859. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2860. mbl.zigzag(probe_point, px, py);
  2861. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2862. probe_point++;
  2863. }
  2864. else {
  2865. // One last "return to the bed" (as originally coded) at completion
  2866. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2867. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2868. + Z_PROBE_TRAVEL_HEIGHT
  2869. #elif Z_HOMING_HEIGHT > 0
  2870. + Z_HOMING_HEIGHT
  2871. #endif
  2872. ;
  2873. line_to_current_position();
  2874. stepper.synchronize();
  2875. // After recording the last point, activate the mbl and home
  2876. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2877. probe_point = -1;
  2878. mbl.set_has_mesh(true);
  2879. enqueue_and_echo_commands_P(PSTR("G28"));
  2880. }
  2881. break;
  2882. case MeshSet:
  2883. if (code_seen('X')) {
  2884. px = code_value_int() - 1;
  2885. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2886. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2887. return;
  2888. }
  2889. }
  2890. else {
  2891. SERIAL_PROTOCOLLNPGM("X not entered.");
  2892. return;
  2893. }
  2894. if (code_seen('Y')) {
  2895. py = code_value_int() - 1;
  2896. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2897. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2898. return;
  2899. }
  2900. }
  2901. else {
  2902. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2903. return;
  2904. }
  2905. if (code_seen('Z')) {
  2906. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2907. }
  2908. else {
  2909. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2910. return;
  2911. }
  2912. break;
  2913. case MeshSetZOffset:
  2914. if (code_seen('Z')) {
  2915. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2916. }
  2917. else {
  2918. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2919. return;
  2920. }
  2921. break;
  2922. case MeshReset:
  2923. if (mbl.active()) {
  2924. current_position[Z_AXIS] +=
  2925. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2926. mbl.reset();
  2927. SYNC_PLAN_POSITION_KINEMATIC();
  2928. }
  2929. else
  2930. mbl.reset();
  2931. } // switch(state)
  2932. report_current_position();
  2933. }
  2934. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2935. /**
  2936. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2937. * Will fail if the printer has not been homed with G28.
  2938. *
  2939. * Enhanced G29 Auto Bed Leveling Probe Routine
  2940. *
  2941. * Parameters With AUTO_BED_LEVELING_GRID:
  2942. *
  2943. * P Set the size of the grid that will be probed (P x P points).
  2944. * Not supported by non-linear delta printer bed leveling.
  2945. * Example: "G29 P4"
  2946. *
  2947. * S Set the XY travel speed between probe points (in units/min)
  2948. *
  2949. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2950. * or clean the rotation Matrix. Useful to check the topology
  2951. * after a first run of G29.
  2952. *
  2953. * V Set the verbose level (0-4). Example: "G29 V3"
  2954. *
  2955. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2956. * This is useful for manual bed leveling and finding flaws in the bed (to
  2957. * assist with part placement).
  2958. * Not supported by non-linear delta printer bed leveling.
  2959. *
  2960. * F Set the Front limit of the probing grid
  2961. * B Set the Back limit of the probing grid
  2962. * L Set the Left limit of the probing grid
  2963. * R Set the Right limit of the probing grid
  2964. *
  2965. * Global Parameters:
  2966. *
  2967. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2968. * Include "E" to engage/disengage the Z probe for each sample.
  2969. * There's no extra effect if you have a fixed Z probe.
  2970. * Usage: "G29 E" or "G29 e"
  2971. *
  2972. */
  2973. inline void gcode_G29() {
  2974. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2975. if (DEBUGGING(LEVELING)) {
  2976. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2977. DEBUG_POS("", current_position);
  2978. }
  2979. #endif
  2980. // Don't allow auto-leveling without homing first
  2981. if (axis_unhomed_error(true, true, true)) return;
  2982. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2983. if (verbose_level < 0 || verbose_level > 4) {
  2984. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2985. return;
  2986. }
  2987. bool dryrun = code_seen('D');
  2988. bool stow_probe_after_each = code_seen('E');
  2989. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2990. #if DISABLED(DELTA)
  2991. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2992. #endif
  2993. if (verbose_level > 0) {
  2994. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2995. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2996. }
  2997. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2998. #if DISABLED(DELTA)
  2999. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  3000. if (auto_bed_leveling_grid_points < 2) {
  3001. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  3002. return;
  3003. }
  3004. #endif
  3005. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3006. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3007. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3008. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3009. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3010. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3011. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3012. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3013. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3014. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3015. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3016. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3017. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3018. if (left_out || right_out || front_out || back_out) {
  3019. if (left_out) {
  3020. out_of_range_error(PSTR("(L)eft"));
  3021. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3022. }
  3023. if (right_out) {
  3024. out_of_range_error(PSTR("(R)ight"));
  3025. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3026. }
  3027. if (front_out) {
  3028. out_of_range_error(PSTR("(F)ront"));
  3029. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3030. }
  3031. if (back_out) {
  3032. out_of_range_error(PSTR("(B)ack"));
  3033. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3034. }
  3035. return;
  3036. }
  3037. #endif // AUTO_BED_LEVELING_GRID
  3038. if (!dryrun) {
  3039. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  3040. if (DEBUGGING(LEVELING)) {
  3041. vector_3 corrected_position = planner.adjusted_position();
  3042. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  3043. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  3044. }
  3045. #endif
  3046. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  3047. planner.bed_level_matrix.set_to_identity();
  3048. #if ENABLED(DELTA)
  3049. reset_bed_level();
  3050. #else //!DELTA
  3051. //vector_3 corrected_position = planner.adjusted_position();
  3052. //corrected_position.debug("position before G29");
  3053. vector_3 uncorrected_position = planner.adjusted_position();
  3054. //uncorrected_position.debug("position during G29");
  3055. current_position[X_AXIS] = uncorrected_position.x;
  3056. current_position[Y_AXIS] = uncorrected_position.y;
  3057. current_position[Z_AXIS] = uncorrected_position.z;
  3058. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3059. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  3060. #endif
  3061. SYNC_PLAN_POSITION_KINEMATIC();
  3062. #endif // !DELTA
  3063. }
  3064. stepper.synchronize();
  3065. setup_for_endstop_or_probe_move();
  3066. // Deploy the probe. Probe will raise if needed.
  3067. if (DEPLOY_PROBE()) return;
  3068. bed_leveling_in_progress = true;
  3069. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3070. // probe at the points of a lattice grid
  3071. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  3072. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  3073. #if ENABLED(DELTA)
  3074. delta_grid_spacing[X_AXIS] = xGridSpacing;
  3075. delta_grid_spacing[Y_AXIS] = yGridSpacing;
  3076. float zoffset = zprobe_zoffset;
  3077. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3078. #else // !DELTA
  3079. /**
  3080. * solve the plane equation ax + by + d = z
  3081. * A is the matrix with rows [x y 1] for all the probed points
  3082. * B is the vector of the Z positions
  3083. * the normal vector to the plane is formed by the coefficients of the
  3084. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3085. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3086. */
  3087. int abl2 = sq(auto_bed_leveling_grid_points);
  3088. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3089. eqnBVector[abl2], // "B" vector of Z points
  3090. mean = 0.0;
  3091. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  3092. #endif // !DELTA
  3093. int probePointCounter = 0;
  3094. bool zig = auto_bed_leveling_grid_points & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  3095. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3096. float yBase = front_probe_bed_position + yGridSpacing * yCount,
  3097. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3098. int xStart, xStop, xInc;
  3099. if (zig) {
  3100. xStart = 0;
  3101. xStop = auto_bed_leveling_grid_points;
  3102. xInc = 1;
  3103. }
  3104. else {
  3105. xStart = auto_bed_leveling_grid_points - 1;
  3106. xStop = -1;
  3107. xInc = -1;
  3108. }
  3109. zig = !zig;
  3110. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3111. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3112. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3113. #if ENABLED(DELTA)
  3114. // Avoid probing outside the round or hexagonal area of a delta printer
  3115. if (sq(xProbe) + sq(yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
  3116. #endif
  3117. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3118. #if DISABLED(DELTA)
  3119. mean += measured_z;
  3120. eqnBVector[probePointCounter] = measured_z;
  3121. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3122. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3123. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3124. indexIntoAB[xCount][yCount] = probePointCounter;
  3125. #else
  3126. bed_level[xCount][yCount] = measured_z + zoffset;
  3127. #endif
  3128. probePointCounter++;
  3129. idle();
  3130. } //xProbe
  3131. } //yProbe
  3132. #else // !AUTO_BED_LEVELING_GRID
  3133. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3134. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3135. #endif
  3136. // Probe at 3 arbitrary points
  3137. float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
  3138. LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
  3139. stow_probe_after_each, verbose_level),
  3140. z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
  3141. LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
  3142. stow_probe_after_each, verbose_level),
  3143. z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
  3144. LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
  3145. stow_probe_after_each, verbose_level);
  3146. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3147. #endif // !AUTO_BED_LEVELING_GRID
  3148. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3149. if (STOW_PROBE()) return;
  3150. // Restore state after probing
  3151. clean_up_after_endstop_or_probe_move();
  3152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3153. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3154. #endif
  3155. // Calculate leveling, print reports, correct the position
  3156. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3157. #if ENABLED(DELTA)
  3158. if (!dryrun) extrapolate_unprobed_bed_level();
  3159. print_bed_level();
  3160. #else // !DELTA
  3161. // solve lsq problem
  3162. double plane_equation_coefficients[3];
  3163. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3164. mean /= abl2;
  3165. if (verbose_level) {
  3166. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3167. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3168. SERIAL_PROTOCOLPGM(" b: ");
  3169. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3170. SERIAL_PROTOCOLPGM(" d: ");
  3171. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3172. SERIAL_EOL;
  3173. if (verbose_level > 2) {
  3174. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3175. SERIAL_PROTOCOL_F(mean, 8);
  3176. SERIAL_EOL;
  3177. }
  3178. }
  3179. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3180. // Show the Topography map if enabled
  3181. if (do_topography_map) {
  3182. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3183. " +--- BACK --+\n"
  3184. " | |\n"
  3185. " L | (+) | R\n"
  3186. " E | | I\n"
  3187. " F | (-) N (+) | G\n"
  3188. " T | | H\n"
  3189. " | (-) | T\n"
  3190. " | |\n"
  3191. " O-- FRONT --+\n"
  3192. " (0,0)");
  3193. float min_diff = 999;
  3194. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3195. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3196. int ind = indexIntoAB[xx][yy];
  3197. float diff = eqnBVector[ind] - mean;
  3198. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3199. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3200. z_tmp = 0;
  3201. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3202. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3203. if (diff >= 0.0)
  3204. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3205. else
  3206. SERIAL_PROTOCOLCHAR(' ');
  3207. SERIAL_PROTOCOL_F(diff, 5);
  3208. } // xx
  3209. SERIAL_EOL;
  3210. } // yy
  3211. SERIAL_EOL;
  3212. if (verbose_level > 3) {
  3213. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3214. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3215. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3216. int ind = indexIntoAB[xx][yy];
  3217. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3218. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3219. z_tmp = 0;
  3220. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3221. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3222. if (diff >= 0.0)
  3223. SERIAL_PROTOCOLPGM(" +");
  3224. // Include + for column alignment
  3225. else
  3226. SERIAL_PROTOCOLCHAR(' ');
  3227. SERIAL_PROTOCOL_F(diff, 5);
  3228. } // xx
  3229. SERIAL_EOL;
  3230. } // yy
  3231. SERIAL_EOL;
  3232. }
  3233. } //do_topography_map
  3234. #endif //!DELTA
  3235. #endif // AUTO_BED_LEVELING_GRID
  3236. #if DISABLED(DELTA)
  3237. if (verbose_level > 0)
  3238. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3239. if (!dryrun) {
  3240. /**
  3241. * Correct the Z height difference from Z probe position and nozzle tip position.
  3242. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3243. * from the nozzle. When the bed is uneven, this height must be corrected.
  3244. */
  3245. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3246. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3247. z_tmp = current_position[Z_AXIS],
  3248. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3250. if (DEBUGGING(LEVELING)) {
  3251. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3252. SERIAL_ECHOLNPAIR(" ... z_tmp = ", z_tmp);
  3253. }
  3254. #endif
  3255. // Apply the correction sending the Z probe offset
  3256. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3257. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3258. if (DEBUGGING(LEVELING))
  3259. SERIAL_ECHOLNPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3260. #endif
  3261. // Adjust the current Z and send it to the planner.
  3262. current_position[Z_AXIS] += z_tmp - stepper_z;
  3263. SYNC_PLAN_POSITION_KINEMATIC();
  3264. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3265. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3266. #endif
  3267. }
  3268. #endif // !DELTA
  3269. #ifdef Z_PROBE_END_SCRIPT
  3270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3271. if (DEBUGGING(LEVELING)) {
  3272. SERIAL_ECHOPGM("Z Probe End Script: ");
  3273. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3274. }
  3275. #endif
  3276. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3277. stepper.synchronize();
  3278. #endif
  3279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3280. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3281. #endif
  3282. bed_leveling_in_progress = false;
  3283. report_current_position();
  3284. KEEPALIVE_STATE(IN_HANDLER);
  3285. }
  3286. #endif //AUTO_BED_LEVELING_FEATURE
  3287. #if HAS_BED_PROBE
  3288. /**
  3289. * G30: Do a single Z probe at the current XY
  3290. */
  3291. inline void gcode_G30() {
  3292. setup_for_endstop_or_probe_move();
  3293. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3294. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3295. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3296. true, 1);
  3297. SERIAL_PROTOCOLPGM("Bed X: ");
  3298. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3299. SERIAL_PROTOCOLPGM(" Y: ");
  3300. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3301. SERIAL_PROTOCOLPGM(" Z: ");
  3302. SERIAL_PROTOCOL(measured_z + 0.0001);
  3303. SERIAL_EOL;
  3304. clean_up_after_endstop_or_probe_move();
  3305. report_current_position();
  3306. }
  3307. #if ENABLED(Z_PROBE_SLED)
  3308. /**
  3309. * G31: Deploy the Z probe
  3310. */
  3311. inline void gcode_G31() { DEPLOY_PROBE(); }
  3312. /**
  3313. * G32: Stow the Z probe
  3314. */
  3315. inline void gcode_G32() { STOW_PROBE(); }
  3316. #endif // Z_PROBE_SLED
  3317. #endif // HAS_BED_PROBE
  3318. /**
  3319. * G92: Set current position to given X Y Z E
  3320. */
  3321. inline void gcode_G92() {
  3322. bool didE = code_seen('E');
  3323. if (!didE) stepper.synchronize();
  3324. bool didXYZ = false;
  3325. LOOP_XYZE(i) {
  3326. if (code_seen(axis_codes[i])) {
  3327. float p = current_position[i],
  3328. v = code_value_axis_units(i);
  3329. current_position[i] = v;
  3330. if (i != E_AXIS) {
  3331. position_shift[i] += v - p; // Offset the coordinate space
  3332. update_software_endstops((AxisEnum)i);
  3333. didXYZ = true;
  3334. }
  3335. }
  3336. }
  3337. if (didXYZ)
  3338. SYNC_PLAN_POSITION_KINEMATIC();
  3339. else if (didE)
  3340. sync_plan_position_e();
  3341. }
  3342. #if ENABLED(ULTIPANEL)
  3343. /**
  3344. * M0: Unconditional stop - Wait for user button press on LCD
  3345. * M1: Conditional stop - Wait for user button press on LCD
  3346. */
  3347. inline void gcode_M0_M1() {
  3348. char* args = current_command_args;
  3349. millis_t codenum = 0;
  3350. bool hasP = false, hasS = false;
  3351. if (code_seen('P')) {
  3352. codenum = code_value_millis(); // milliseconds to wait
  3353. hasP = codenum > 0;
  3354. }
  3355. if (code_seen('S')) {
  3356. codenum = code_value_millis_from_seconds(); // seconds to wait
  3357. hasS = codenum > 0;
  3358. }
  3359. if (!hasP && !hasS && *args != '\0')
  3360. lcd_setstatus(args, true);
  3361. else {
  3362. LCD_MESSAGEPGM(MSG_USERWAIT);
  3363. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3364. dontExpireStatus();
  3365. #endif
  3366. }
  3367. lcd_ignore_click();
  3368. stepper.synchronize();
  3369. refresh_cmd_timeout();
  3370. if (codenum > 0) {
  3371. codenum += previous_cmd_ms; // wait until this time for a click
  3372. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3373. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3374. KEEPALIVE_STATE(IN_HANDLER);
  3375. lcd_ignore_click(false);
  3376. }
  3377. else {
  3378. if (!lcd_detected()) return;
  3379. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3380. while (!lcd_clicked()) idle();
  3381. KEEPALIVE_STATE(IN_HANDLER);
  3382. }
  3383. if (IS_SD_PRINTING)
  3384. LCD_MESSAGEPGM(MSG_RESUMING);
  3385. else
  3386. LCD_MESSAGEPGM(WELCOME_MSG);
  3387. }
  3388. #endif // ULTIPANEL
  3389. /**
  3390. * M17: Enable power on all stepper motors
  3391. */
  3392. inline void gcode_M17() {
  3393. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3394. enable_all_steppers();
  3395. }
  3396. #if ENABLED(SDSUPPORT)
  3397. /**
  3398. * M20: List SD card to serial output
  3399. */
  3400. inline void gcode_M20() {
  3401. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3402. card.ls();
  3403. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3404. }
  3405. /**
  3406. * M21: Init SD Card
  3407. */
  3408. inline void gcode_M21() {
  3409. card.initsd();
  3410. }
  3411. /**
  3412. * M22: Release SD Card
  3413. */
  3414. inline void gcode_M22() {
  3415. card.release();
  3416. }
  3417. /**
  3418. * M23: Open a file
  3419. */
  3420. inline void gcode_M23() {
  3421. card.openFile(current_command_args, true);
  3422. }
  3423. /**
  3424. * M24: Start SD Print
  3425. */
  3426. inline void gcode_M24() {
  3427. card.startFileprint();
  3428. print_job_timer.start();
  3429. }
  3430. /**
  3431. * M25: Pause SD Print
  3432. */
  3433. inline void gcode_M25() {
  3434. card.pauseSDPrint();
  3435. }
  3436. /**
  3437. * M26: Set SD Card file index
  3438. */
  3439. inline void gcode_M26() {
  3440. if (card.cardOK && code_seen('S'))
  3441. card.setIndex(code_value_long());
  3442. }
  3443. /**
  3444. * M27: Get SD Card status
  3445. */
  3446. inline void gcode_M27() {
  3447. card.getStatus();
  3448. }
  3449. /**
  3450. * M28: Start SD Write
  3451. */
  3452. inline void gcode_M28() {
  3453. card.openFile(current_command_args, false);
  3454. }
  3455. /**
  3456. * M29: Stop SD Write
  3457. * Processed in write to file routine above
  3458. */
  3459. inline void gcode_M29() {
  3460. // card.saving = false;
  3461. }
  3462. /**
  3463. * M30 <filename>: Delete SD Card file
  3464. */
  3465. inline void gcode_M30() {
  3466. if (card.cardOK) {
  3467. card.closefile();
  3468. card.removeFile(current_command_args);
  3469. }
  3470. }
  3471. #endif //SDSUPPORT
  3472. /**
  3473. * M31: Get the time since the start of SD Print (or last M109)
  3474. */
  3475. inline void gcode_M31() {
  3476. char buffer[21];
  3477. duration_t elapsed = print_job_timer.duration();
  3478. elapsed.toString(buffer);
  3479. lcd_setstatus(buffer);
  3480. SERIAL_ECHO_START;
  3481. SERIAL_ECHOPGM("Print time: ");
  3482. SERIAL_ECHOLN(buffer);
  3483. thermalManager.autotempShutdown();
  3484. }
  3485. #if ENABLED(SDSUPPORT)
  3486. /**
  3487. * M32: Select file and start SD Print
  3488. */
  3489. inline void gcode_M32() {
  3490. if (card.sdprinting)
  3491. stepper.synchronize();
  3492. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3493. if (!namestartpos)
  3494. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3495. else
  3496. namestartpos++; //to skip the '!'
  3497. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3498. if (card.cardOK) {
  3499. card.openFile(namestartpos, true, call_procedure);
  3500. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3501. card.setIndex(code_value_long());
  3502. card.startFileprint();
  3503. // Procedure calls count as normal print time.
  3504. if (!call_procedure) print_job_timer.start();
  3505. }
  3506. }
  3507. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3508. /**
  3509. * M33: Get the long full path of a file or folder
  3510. *
  3511. * Parameters:
  3512. * <dospath> Case-insensitive DOS-style path to a file or folder
  3513. *
  3514. * Example:
  3515. * M33 miscel~1/armchair/armcha~1.gco
  3516. *
  3517. * Output:
  3518. * /Miscellaneous/Armchair/Armchair.gcode
  3519. */
  3520. inline void gcode_M33() {
  3521. card.printLongPath(current_command_args);
  3522. }
  3523. #endif
  3524. /**
  3525. * M928: Start SD Write
  3526. */
  3527. inline void gcode_M928() {
  3528. card.openLogFile(current_command_args);
  3529. }
  3530. #endif // SDSUPPORT
  3531. /**
  3532. * M42: Change pin status via GCode
  3533. *
  3534. * P<pin> Pin number (LED if omitted)
  3535. * S<byte> Pin status from 0 - 255
  3536. */
  3537. inline void gcode_M42() {
  3538. if (!code_seen('S')) return;
  3539. int pin_status = code_value_int();
  3540. if (pin_status < 0 || pin_status > 255) return;
  3541. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3542. if (pin_number < 0) return;
  3543. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3544. if (pin_number == sensitive_pins[i]) return;
  3545. pinMode(pin_number, OUTPUT);
  3546. digitalWrite(pin_number, pin_status);
  3547. analogWrite(pin_number, pin_status);
  3548. #if FAN_COUNT > 0
  3549. switch (pin_number) {
  3550. #if HAS_FAN0
  3551. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3552. #endif
  3553. #if HAS_FAN1
  3554. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3555. #endif
  3556. #if HAS_FAN2
  3557. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3558. #endif
  3559. }
  3560. #endif
  3561. }
  3562. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3563. /**
  3564. * M48: Z probe repeatability measurement function.
  3565. *
  3566. * Usage:
  3567. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3568. * P = Number of sampled points (4-50, default 10)
  3569. * X = Sample X position
  3570. * Y = Sample Y position
  3571. * V = Verbose level (0-4, default=1)
  3572. * E = Engage Z probe for each reading
  3573. * L = Number of legs of movement before probe
  3574. * S = Schizoid (Or Star if you prefer)
  3575. *
  3576. * This function assumes the bed has been homed. Specifically, that a G28 command
  3577. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3578. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3579. * regenerated.
  3580. */
  3581. inline void gcode_M48() {
  3582. if (axis_unhomed_error(true, true, true)) return;
  3583. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3584. if (verbose_level < 0 || verbose_level > 4) {
  3585. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3586. return;
  3587. }
  3588. if (verbose_level > 0)
  3589. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3590. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3591. if (n_samples < 4 || n_samples > 50) {
  3592. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3593. return;
  3594. }
  3595. float X_current = current_position[X_AXIS],
  3596. Y_current = current_position[Y_AXIS];
  3597. bool stow_probe_after_each = code_seen('E');
  3598. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3599. #if DISABLED(DELTA)
  3600. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3601. out_of_range_error(PSTR("X"));
  3602. return;
  3603. }
  3604. #endif
  3605. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3606. #if DISABLED(DELTA)
  3607. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3608. out_of_range_error(PSTR("Y"));
  3609. return;
  3610. }
  3611. #else
  3612. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3613. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3614. return;
  3615. }
  3616. #endif
  3617. bool seen_L = code_seen('L');
  3618. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3619. if (n_legs > 15) {
  3620. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3621. return;
  3622. }
  3623. if (n_legs == 1) n_legs = 2;
  3624. bool schizoid_flag = code_seen('S');
  3625. if (schizoid_flag && !seen_L) n_legs = 7;
  3626. /**
  3627. * Now get everything to the specified probe point So we can safely do a
  3628. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3629. * we don't want to use that as a starting point for each probe.
  3630. */
  3631. if (verbose_level > 2)
  3632. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3633. #if ENABLED(DELTA)
  3634. // we don't do bed level correction in M48 because we want the raw data when we probe
  3635. reset_bed_level();
  3636. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3637. // we don't do bed level correction in M48 because we want the raw data when we probe
  3638. planner.bed_level_matrix.set_to_identity();
  3639. #endif
  3640. setup_for_endstop_or_probe_move();
  3641. // Move to the first point, deploy, and probe
  3642. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3643. randomSeed(millis());
  3644. double mean = 0, sigma = 0, sample_set[n_samples];
  3645. for (uint8_t n = 0; n < n_samples; n++) {
  3646. if (n_legs) {
  3647. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3648. float angle = random(0.0, 360.0),
  3649. radius = random(
  3650. #if ENABLED(DELTA)
  3651. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3652. #else
  3653. 5, X_MAX_LENGTH / 8
  3654. #endif
  3655. );
  3656. if (verbose_level > 3) {
  3657. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3658. SERIAL_ECHOPAIR(" angle: ", angle);
  3659. SERIAL_ECHOPGM(" Direction: ");
  3660. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3661. SERIAL_ECHOLNPGM("Clockwise");
  3662. }
  3663. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3664. double delta_angle;
  3665. if (schizoid_flag)
  3666. // The points of a 5 point star are 72 degrees apart. We need to
  3667. // skip a point and go to the next one on the star.
  3668. delta_angle = dir * 2.0 * 72.0;
  3669. else
  3670. // If we do this line, we are just trying to move further
  3671. // around the circle.
  3672. delta_angle = dir * (float) random(25, 45);
  3673. angle += delta_angle;
  3674. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3675. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3676. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3677. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3678. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3679. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3680. #if DISABLED(DELTA)
  3681. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3682. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3683. #else
  3684. // If we have gone out too far, we can do a simple fix and scale the numbers
  3685. // back in closer to the origin.
  3686. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3687. X_current /= 1.25;
  3688. Y_current /= 1.25;
  3689. if (verbose_level > 3) {
  3690. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3691. SERIAL_ECHOLNPAIR(", ", Y_current);
  3692. }
  3693. }
  3694. #endif
  3695. if (verbose_level > 3) {
  3696. SERIAL_PROTOCOLPGM("Going to:");
  3697. SERIAL_ECHOPAIR(" X", X_current);
  3698. SERIAL_ECHOPAIR(" Y", Y_current);
  3699. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3700. }
  3701. do_blocking_move_to_xy(X_current, Y_current);
  3702. } // n_legs loop
  3703. } // n_legs
  3704. // Probe a single point
  3705. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3706. /**
  3707. * Get the current mean for the data points we have so far
  3708. */
  3709. double sum = 0.0;
  3710. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3711. mean = sum / (n + 1);
  3712. /**
  3713. * Now, use that mean to calculate the standard deviation for the
  3714. * data points we have so far
  3715. */
  3716. sum = 0.0;
  3717. for (uint8_t j = 0; j <= n; j++)
  3718. sum += sq(sample_set[j] - mean);
  3719. sigma = sqrt(sum / (n + 1));
  3720. if (verbose_level > 0) {
  3721. if (verbose_level > 1) {
  3722. SERIAL_PROTOCOL(n + 1);
  3723. SERIAL_PROTOCOLPGM(" of ");
  3724. SERIAL_PROTOCOL((int)n_samples);
  3725. SERIAL_PROTOCOLPGM(" z: ");
  3726. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3727. if (verbose_level > 2) {
  3728. SERIAL_PROTOCOLPGM(" mean: ");
  3729. SERIAL_PROTOCOL_F(mean, 6);
  3730. SERIAL_PROTOCOLPGM(" sigma: ");
  3731. SERIAL_PROTOCOL_F(sigma, 6);
  3732. }
  3733. }
  3734. SERIAL_EOL;
  3735. }
  3736. } // End of probe loop
  3737. if (STOW_PROBE()) return;
  3738. if (verbose_level > 0) {
  3739. SERIAL_PROTOCOLPGM("Mean: ");
  3740. SERIAL_PROTOCOL_F(mean, 6);
  3741. SERIAL_EOL;
  3742. }
  3743. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3744. SERIAL_PROTOCOL_F(sigma, 6);
  3745. SERIAL_EOL; SERIAL_EOL;
  3746. clean_up_after_endstop_or_probe_move();
  3747. report_current_position();
  3748. }
  3749. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3750. /**
  3751. * M75: Start print timer
  3752. */
  3753. inline void gcode_M75() { print_job_timer.start(); }
  3754. /**
  3755. * M76: Pause print timer
  3756. */
  3757. inline void gcode_M76() { print_job_timer.pause(); }
  3758. /**
  3759. * M77: Stop print timer
  3760. */
  3761. inline void gcode_M77() { print_job_timer.stop(); }
  3762. #if ENABLED(PRINTCOUNTER)
  3763. /**
  3764. * M78: Show print statistics
  3765. */
  3766. inline void gcode_M78() {
  3767. // "M78 S78" will reset the statistics
  3768. if (code_seen('S') && code_value_int() == 78)
  3769. print_job_timer.initStats();
  3770. else print_job_timer.showStats();
  3771. }
  3772. #endif
  3773. /**
  3774. * M104: Set hot end temperature
  3775. */
  3776. inline void gcode_M104() {
  3777. if (get_target_extruder_from_command(104)) return;
  3778. if (DEBUGGING(DRYRUN)) return;
  3779. #if ENABLED(SINGLENOZZLE)
  3780. if (target_extruder != active_extruder) return;
  3781. #endif
  3782. if (code_seen('S')) {
  3783. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3784. #if ENABLED(DUAL_X_CARRIAGE)
  3785. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3786. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3787. #endif
  3788. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3789. /**
  3790. * Stop the timer at the end of print, starting is managed by
  3791. * 'heat and wait' M109.
  3792. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3793. * stand by mode, for instance in a dual extruder setup, without affecting
  3794. * the running print timer.
  3795. */
  3796. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3797. print_job_timer.stop();
  3798. LCD_MESSAGEPGM(WELCOME_MSG);
  3799. }
  3800. #endif
  3801. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3802. }
  3803. }
  3804. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3805. void print_heaterstates() {
  3806. #if HAS_TEMP_HOTEND
  3807. SERIAL_PROTOCOLPGM(" T:");
  3808. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3809. SERIAL_PROTOCOLPGM(" /");
  3810. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3811. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3812. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3813. SERIAL_CHAR(')');
  3814. #endif
  3815. #endif
  3816. #if HAS_TEMP_BED
  3817. SERIAL_PROTOCOLPGM(" B:");
  3818. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3819. SERIAL_PROTOCOLPGM(" /");
  3820. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3821. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3822. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3823. SERIAL_CHAR(')');
  3824. #endif
  3825. #endif
  3826. #if HOTENDS > 1
  3827. HOTEND_LOOP() {
  3828. SERIAL_PROTOCOLPAIR(" T", e);
  3829. SERIAL_PROTOCOLCHAR(':');
  3830. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3831. SERIAL_PROTOCOLPGM(" /");
  3832. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3833. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3834. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3835. SERIAL_CHAR(')');
  3836. #endif
  3837. }
  3838. #endif
  3839. SERIAL_PROTOCOLPGM(" @:");
  3840. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3841. #if HAS_TEMP_BED
  3842. SERIAL_PROTOCOLPGM(" B@:");
  3843. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3844. #endif
  3845. #if HOTENDS > 1
  3846. HOTEND_LOOP() {
  3847. SERIAL_PROTOCOLPAIR(" @", e);
  3848. SERIAL_PROTOCOLCHAR(':');
  3849. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3850. }
  3851. #endif
  3852. }
  3853. #endif
  3854. /**
  3855. * M105: Read hot end and bed temperature
  3856. */
  3857. inline void gcode_M105() {
  3858. if (get_target_extruder_from_command(105)) return;
  3859. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3860. SERIAL_PROTOCOLPGM(MSG_OK);
  3861. print_heaterstates();
  3862. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3863. SERIAL_ERROR_START;
  3864. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3865. #endif
  3866. SERIAL_EOL;
  3867. }
  3868. #if FAN_COUNT > 0
  3869. /**
  3870. * M106: Set Fan Speed
  3871. *
  3872. * S<int> Speed between 0-255
  3873. * P<index> Fan index, if more than one fan
  3874. */
  3875. inline void gcode_M106() {
  3876. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3877. p = code_seen('P') ? code_value_ushort() : 0;
  3878. NOMORE(s, 255);
  3879. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3880. }
  3881. /**
  3882. * M107: Fan Off
  3883. */
  3884. inline void gcode_M107() {
  3885. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3886. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3887. }
  3888. #endif // FAN_COUNT > 0
  3889. #if DISABLED(EMERGENCY_PARSER)
  3890. /**
  3891. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3892. */
  3893. inline void gcode_M108() { wait_for_heatup = false; }
  3894. /**
  3895. * M112: Emergency Stop
  3896. */
  3897. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3898. /**
  3899. * M410: Quickstop - Abort all planned moves
  3900. *
  3901. * This will stop the carriages mid-move, so most likely they
  3902. * will be out of sync with the stepper position after this.
  3903. */
  3904. inline void gcode_M410() { quickstop_stepper(); }
  3905. #endif
  3906. #ifndef MIN_COOLING_SLOPE_DEG
  3907. #define MIN_COOLING_SLOPE_DEG 1.50
  3908. #endif
  3909. #ifndef MIN_COOLING_SLOPE_TIME
  3910. #define MIN_COOLING_SLOPE_TIME 60
  3911. #endif
  3912. /**
  3913. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3914. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3915. */
  3916. inline void gcode_M109() {
  3917. if (get_target_extruder_from_command(109)) return;
  3918. if (DEBUGGING(DRYRUN)) return;
  3919. #if ENABLED(SINGLENOZZLE)
  3920. if (target_extruder != active_extruder) return;
  3921. #endif
  3922. bool no_wait_for_cooling = code_seen('S');
  3923. if (no_wait_for_cooling || code_seen('R')) {
  3924. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3925. #if ENABLED(DUAL_X_CARRIAGE)
  3926. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3927. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3928. #endif
  3929. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3930. /**
  3931. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3932. * stand by mode, for instance in a dual extruder setup, without affecting
  3933. * the running print timer.
  3934. */
  3935. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3936. print_job_timer.stop();
  3937. LCD_MESSAGEPGM(WELCOME_MSG);
  3938. }
  3939. /**
  3940. * We do not check if the timer is already running because this check will
  3941. * be done for us inside the Stopwatch::start() method thus a running timer
  3942. * will not restart.
  3943. */
  3944. else print_job_timer.start();
  3945. #endif
  3946. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3947. }
  3948. #if ENABLED(AUTOTEMP)
  3949. planner.autotemp_M109();
  3950. #endif
  3951. #if TEMP_RESIDENCY_TIME > 0
  3952. millis_t residency_start_ms = 0;
  3953. // Loop until the temperature has stabilized
  3954. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3955. #else
  3956. // Loop until the temperature is very close target
  3957. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3958. #endif //TEMP_RESIDENCY_TIME > 0
  3959. float theTarget = -1.0, old_temp = 9999.0;
  3960. bool wants_to_cool = false;
  3961. wait_for_heatup = true;
  3962. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3963. KEEPALIVE_STATE(NOT_BUSY);
  3964. do {
  3965. // Target temperature might be changed during the loop
  3966. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3967. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3968. theTarget = thermalManager.degTargetHotend(target_extruder);
  3969. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3970. if (no_wait_for_cooling && wants_to_cool) break;
  3971. }
  3972. now = millis();
  3973. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3974. next_temp_ms = now + 1000UL;
  3975. print_heaterstates();
  3976. #if TEMP_RESIDENCY_TIME > 0
  3977. SERIAL_PROTOCOLPGM(" W:");
  3978. if (residency_start_ms) {
  3979. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3980. SERIAL_PROTOCOLLN(rem);
  3981. }
  3982. else {
  3983. SERIAL_PROTOCOLLNPGM("?");
  3984. }
  3985. #else
  3986. SERIAL_EOL;
  3987. #endif
  3988. }
  3989. idle();
  3990. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3991. float temp = thermalManager.degHotend(target_extruder);
  3992. #if TEMP_RESIDENCY_TIME > 0
  3993. float temp_diff = fabs(theTarget - temp);
  3994. if (!residency_start_ms) {
  3995. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3996. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3997. }
  3998. else if (temp_diff > TEMP_HYSTERESIS) {
  3999. // Restart the timer whenever the temperature falls outside the hysteresis.
  4000. residency_start_ms = now;
  4001. }
  4002. #endif //TEMP_RESIDENCY_TIME > 0
  4003. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4004. if (wants_to_cool) {
  4005. // break after MIN_COOLING_SLOPE_TIME seconds
  4006. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4007. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4008. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4009. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4010. old_temp = temp;
  4011. }
  4012. }
  4013. } while (wait_for_heatup && TEMP_CONDITIONS);
  4014. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4015. KEEPALIVE_STATE(IN_HANDLER);
  4016. }
  4017. #if HAS_TEMP_BED
  4018. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4019. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4020. #endif
  4021. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4022. #define MIN_COOLING_SLOPE_TIME_BED 60
  4023. #endif
  4024. /**
  4025. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4026. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4027. */
  4028. inline void gcode_M190() {
  4029. if (DEBUGGING(DRYRUN)) return;
  4030. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4031. bool no_wait_for_cooling = code_seen('S');
  4032. if (no_wait_for_cooling || code_seen('R')) {
  4033. thermalManager.setTargetBed(code_value_temp_abs());
  4034. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4035. if (code_value_temp_abs() > BED_MINTEMP) {
  4036. /**
  4037. * We start the timer when 'heating and waiting' command arrives, LCD
  4038. * functions never wait. Cooling down managed by extruders.
  4039. *
  4040. * We do not check if the timer is already running because this check will
  4041. * be done for us inside the Stopwatch::start() method thus a running timer
  4042. * will not restart.
  4043. */
  4044. print_job_timer.start();
  4045. }
  4046. #endif
  4047. }
  4048. #if TEMP_BED_RESIDENCY_TIME > 0
  4049. millis_t residency_start_ms = 0;
  4050. // Loop until the temperature has stabilized
  4051. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4052. #else
  4053. // Loop until the temperature is very close target
  4054. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4055. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4056. float theTarget = -1.0, old_temp = 9999.0;
  4057. bool wants_to_cool = false;
  4058. wait_for_heatup = true;
  4059. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4060. KEEPALIVE_STATE(NOT_BUSY);
  4061. target_extruder = active_extruder; // for print_heaterstates
  4062. do {
  4063. // Target temperature might be changed during the loop
  4064. if (theTarget != thermalManager.degTargetBed()) {
  4065. wants_to_cool = thermalManager.isCoolingBed();
  4066. theTarget = thermalManager.degTargetBed();
  4067. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4068. if (no_wait_for_cooling && wants_to_cool) break;
  4069. }
  4070. now = millis();
  4071. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4072. next_temp_ms = now + 1000UL;
  4073. print_heaterstates();
  4074. #if TEMP_BED_RESIDENCY_TIME > 0
  4075. SERIAL_PROTOCOLPGM(" W:");
  4076. if (residency_start_ms) {
  4077. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4078. SERIAL_PROTOCOLLN(rem);
  4079. }
  4080. else {
  4081. SERIAL_PROTOCOLLNPGM("?");
  4082. }
  4083. #else
  4084. SERIAL_EOL;
  4085. #endif
  4086. }
  4087. idle();
  4088. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4089. float temp = thermalManager.degBed();
  4090. #if TEMP_BED_RESIDENCY_TIME > 0
  4091. float temp_diff = fabs(theTarget - temp);
  4092. if (!residency_start_ms) {
  4093. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4094. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4095. }
  4096. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4097. // Restart the timer whenever the temperature falls outside the hysteresis.
  4098. residency_start_ms = now;
  4099. }
  4100. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4101. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4102. if (wants_to_cool) {
  4103. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4104. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4105. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4106. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4107. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4108. old_temp = temp;
  4109. }
  4110. }
  4111. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4112. LCD_MESSAGEPGM(MSG_BED_DONE);
  4113. KEEPALIVE_STATE(IN_HANDLER);
  4114. }
  4115. #endif // HAS_TEMP_BED
  4116. /**
  4117. * M110: Set Current Line Number
  4118. */
  4119. inline void gcode_M110() {
  4120. if (code_seen('N')) gcode_N = code_value_long();
  4121. }
  4122. /**
  4123. * M111: Set the debug level
  4124. */
  4125. inline void gcode_M111() {
  4126. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4127. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4128. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4129. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4130. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4131. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4133. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4134. #endif
  4135. const static char* const debug_strings[] PROGMEM = {
  4136. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4138. str_debug_32
  4139. #endif
  4140. };
  4141. SERIAL_ECHO_START;
  4142. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4143. if (marlin_debug_flags) {
  4144. uint8_t comma = 0;
  4145. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4146. if (TEST(marlin_debug_flags, i)) {
  4147. if (comma++) SERIAL_CHAR(',');
  4148. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4149. }
  4150. }
  4151. }
  4152. else {
  4153. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4154. }
  4155. SERIAL_EOL;
  4156. }
  4157. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4158. /**
  4159. * M113: Get or set Host Keepalive interval (0 to disable)
  4160. *
  4161. * S<seconds> Optional. Set the keepalive interval.
  4162. */
  4163. inline void gcode_M113() {
  4164. if (code_seen('S')) {
  4165. host_keepalive_interval = code_value_byte();
  4166. NOMORE(host_keepalive_interval, 60);
  4167. }
  4168. else {
  4169. SERIAL_ECHO_START;
  4170. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4171. }
  4172. }
  4173. #endif
  4174. #if ENABLED(BARICUDA)
  4175. #if HAS_HEATER_1
  4176. /**
  4177. * M126: Heater 1 valve open
  4178. */
  4179. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4180. /**
  4181. * M127: Heater 1 valve close
  4182. */
  4183. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4184. #endif
  4185. #if HAS_HEATER_2
  4186. /**
  4187. * M128: Heater 2 valve open
  4188. */
  4189. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4190. /**
  4191. * M129: Heater 2 valve close
  4192. */
  4193. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4194. #endif
  4195. #endif //BARICUDA
  4196. /**
  4197. * M140: Set bed temperature
  4198. */
  4199. inline void gcode_M140() {
  4200. if (DEBUGGING(DRYRUN)) return;
  4201. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4202. }
  4203. #if ENABLED(ULTIPANEL)
  4204. /**
  4205. * M145: Set the heatup state for a material in the LCD menu
  4206. * S<material> (0=PLA, 1=ABS)
  4207. * H<hotend temp>
  4208. * B<bed temp>
  4209. * F<fan speed>
  4210. */
  4211. inline void gcode_M145() {
  4212. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4213. if (material < 0 || material > 1) {
  4214. SERIAL_ERROR_START;
  4215. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4216. }
  4217. else {
  4218. int v;
  4219. switch (material) {
  4220. case 0:
  4221. if (code_seen('H')) {
  4222. v = code_value_int();
  4223. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4224. }
  4225. if (code_seen('F')) {
  4226. v = code_value_int();
  4227. preheatFanSpeed1 = constrain(v, 0, 255);
  4228. }
  4229. #if TEMP_SENSOR_BED != 0
  4230. if (code_seen('B')) {
  4231. v = code_value_int();
  4232. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4233. }
  4234. #endif
  4235. break;
  4236. case 1:
  4237. if (code_seen('H')) {
  4238. v = code_value_int();
  4239. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4240. }
  4241. if (code_seen('F')) {
  4242. v = code_value_int();
  4243. preheatFanSpeed2 = constrain(v, 0, 255);
  4244. }
  4245. #if TEMP_SENSOR_BED != 0
  4246. if (code_seen('B')) {
  4247. v = code_value_int();
  4248. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4249. }
  4250. #endif
  4251. break;
  4252. }
  4253. }
  4254. }
  4255. #endif
  4256. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4257. /**
  4258. * M149: Set temperature units
  4259. */
  4260. inline void gcode_M149() {
  4261. if (code_seen('C')) {
  4262. set_input_temp_units(TEMPUNIT_C);
  4263. } else if (code_seen('K')) {
  4264. set_input_temp_units(TEMPUNIT_K);
  4265. } else if (code_seen('F')) {
  4266. set_input_temp_units(TEMPUNIT_F);
  4267. }
  4268. }
  4269. #endif
  4270. #if HAS_POWER_SWITCH
  4271. /**
  4272. * M80: Turn on Power Supply
  4273. */
  4274. inline void gcode_M80() {
  4275. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4276. /**
  4277. * If you have a switch on suicide pin, this is useful
  4278. * if you want to start another print with suicide feature after
  4279. * a print without suicide...
  4280. */
  4281. #if HAS_SUICIDE
  4282. OUT_WRITE(SUICIDE_PIN, HIGH);
  4283. #endif
  4284. #if ENABLED(ULTIPANEL)
  4285. powersupply = true;
  4286. LCD_MESSAGEPGM(WELCOME_MSG);
  4287. lcd_update();
  4288. #endif
  4289. }
  4290. #endif // HAS_POWER_SWITCH
  4291. /**
  4292. * M81: Turn off Power, including Power Supply, if there is one.
  4293. *
  4294. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4295. */
  4296. inline void gcode_M81() {
  4297. thermalManager.disable_all_heaters();
  4298. stepper.finish_and_disable();
  4299. #if FAN_COUNT > 0
  4300. #if FAN_COUNT > 1
  4301. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4302. #else
  4303. fanSpeeds[0] = 0;
  4304. #endif
  4305. #endif
  4306. delay(1000); // Wait 1 second before switching off
  4307. #if HAS_SUICIDE
  4308. stepper.synchronize();
  4309. suicide();
  4310. #elif HAS_POWER_SWITCH
  4311. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4312. #endif
  4313. #if ENABLED(ULTIPANEL)
  4314. #if HAS_POWER_SWITCH
  4315. powersupply = false;
  4316. #endif
  4317. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4318. lcd_update();
  4319. #endif
  4320. }
  4321. /**
  4322. * M82: Set E codes absolute (default)
  4323. */
  4324. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4325. /**
  4326. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4327. */
  4328. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4329. /**
  4330. * M18, M84: Disable all stepper motors
  4331. */
  4332. inline void gcode_M18_M84() {
  4333. if (code_seen('S')) {
  4334. stepper_inactive_time = code_value_millis_from_seconds();
  4335. }
  4336. else {
  4337. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4338. if (all_axis) {
  4339. stepper.finish_and_disable();
  4340. }
  4341. else {
  4342. stepper.synchronize();
  4343. if (code_seen('X')) disable_x();
  4344. if (code_seen('Y')) disable_y();
  4345. if (code_seen('Z')) disable_z();
  4346. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4347. if (code_seen('E')) {
  4348. disable_e0();
  4349. disable_e1();
  4350. disable_e2();
  4351. disable_e3();
  4352. }
  4353. #endif
  4354. }
  4355. }
  4356. }
  4357. /**
  4358. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4359. */
  4360. inline void gcode_M85() {
  4361. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4362. }
  4363. /**
  4364. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4365. * (Follows the same syntax as G92)
  4366. */
  4367. inline void gcode_M92() {
  4368. LOOP_XYZE(i) {
  4369. if (code_seen(axis_codes[i])) {
  4370. if (i == E_AXIS) {
  4371. float value = code_value_per_axis_unit(i);
  4372. if (value < 20.0) {
  4373. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4374. planner.max_e_jerk *= factor;
  4375. planner.max_feedrate_mm_s[i] *= factor;
  4376. planner.max_acceleration_steps_per_s2[i] *= factor;
  4377. }
  4378. planner.axis_steps_per_mm[i] = value;
  4379. }
  4380. else {
  4381. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4382. }
  4383. }
  4384. }
  4385. planner.refresh_positioning();
  4386. }
  4387. /**
  4388. * Output the current position to serial
  4389. */
  4390. static void report_current_position() {
  4391. SERIAL_PROTOCOLPGM("X:");
  4392. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4393. SERIAL_PROTOCOLPGM(" Y:");
  4394. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4395. SERIAL_PROTOCOLPGM(" Z:");
  4396. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4397. SERIAL_PROTOCOLPGM(" E:");
  4398. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4399. stepper.report_positions();
  4400. #if ENABLED(SCARA)
  4401. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4402. SERIAL_PROTOCOL(delta[X_AXIS]);
  4403. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4404. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4405. SERIAL_EOL;
  4406. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4407. SERIAL_PROTOCOL(delta[X_AXIS]);
  4408. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4409. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4410. SERIAL_EOL;
  4411. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4412. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4413. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4414. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4415. SERIAL_EOL; SERIAL_EOL;
  4416. #endif
  4417. }
  4418. /**
  4419. * M114: Output current position to serial port
  4420. */
  4421. inline void gcode_M114() { report_current_position(); }
  4422. /**
  4423. * M115: Capabilities string
  4424. */
  4425. inline void gcode_M115() {
  4426. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4427. }
  4428. /**
  4429. * M117: Set LCD Status Message
  4430. */
  4431. inline void gcode_M117() {
  4432. lcd_setstatus(current_command_args);
  4433. }
  4434. /**
  4435. * M119: Output endstop states to serial output
  4436. */
  4437. inline void gcode_M119() { endstops.M119(); }
  4438. /**
  4439. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4440. */
  4441. inline void gcode_M120() { endstops.enable_globally(true); }
  4442. /**
  4443. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4444. */
  4445. inline void gcode_M121() { endstops.enable_globally(false); }
  4446. #if ENABLED(BLINKM)
  4447. /**
  4448. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4449. */
  4450. inline void gcode_M150() {
  4451. SendColors(
  4452. code_seen('R') ? code_value_byte() : 0,
  4453. code_seen('U') ? code_value_byte() : 0,
  4454. code_seen('B') ? code_value_byte() : 0
  4455. );
  4456. }
  4457. #endif // BLINKM
  4458. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4459. /**
  4460. * M155: Send data to a I2C slave device
  4461. *
  4462. * This is a PoC, the formating and arguments for the GCODE will
  4463. * change to be more compatible, the current proposal is:
  4464. *
  4465. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4466. *
  4467. * M155 B<byte-1 value in base 10>
  4468. * M155 B<byte-2 value in base 10>
  4469. * M155 B<byte-3 value in base 10>
  4470. *
  4471. * M155 S1 ; Send the buffered data and reset the buffer
  4472. * M155 R1 ; Reset the buffer without sending data
  4473. *
  4474. */
  4475. inline void gcode_M155() {
  4476. // Set the target address
  4477. if (code_seen('A')) i2c.address(code_value_byte());
  4478. // Add a new byte to the buffer
  4479. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4480. // Flush the buffer to the bus
  4481. if (code_seen('S')) i2c.send();
  4482. // Reset and rewind the buffer
  4483. else if (code_seen('R')) i2c.reset();
  4484. }
  4485. /**
  4486. * M156: Request X bytes from I2C slave device
  4487. *
  4488. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4489. */
  4490. inline void gcode_M156() {
  4491. if (code_seen('A')) i2c.address(code_value_byte());
  4492. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4493. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4494. i2c.relay(bytes);
  4495. }
  4496. else {
  4497. SERIAL_ERROR_START;
  4498. SERIAL_ERRORLN("Bad i2c request");
  4499. }
  4500. }
  4501. #endif // EXPERIMENTAL_I2CBUS
  4502. /**
  4503. * M200: Set filament diameter and set E axis units to cubic units
  4504. *
  4505. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4506. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4507. */
  4508. inline void gcode_M200() {
  4509. if (get_target_extruder_from_command(200)) return;
  4510. if (code_seen('D')) {
  4511. // setting any extruder filament size disables volumetric on the assumption that
  4512. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4513. // for all extruders
  4514. volumetric_enabled = (code_value_linear_units() != 0.0);
  4515. if (volumetric_enabled) {
  4516. filament_size[target_extruder] = code_value_linear_units();
  4517. // make sure all extruders have some sane value for the filament size
  4518. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4519. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4520. }
  4521. }
  4522. else {
  4523. //reserved for setting filament diameter via UFID or filament measuring device
  4524. return;
  4525. }
  4526. calculate_volumetric_multipliers();
  4527. }
  4528. /**
  4529. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4530. */
  4531. inline void gcode_M201() {
  4532. LOOP_XYZE(i) {
  4533. if (code_seen(axis_codes[i])) {
  4534. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4535. }
  4536. }
  4537. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4538. planner.reset_acceleration_rates();
  4539. }
  4540. #if 0 // Not used for Sprinter/grbl gen6
  4541. inline void gcode_M202() {
  4542. LOOP_XYZE(i) {
  4543. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4544. }
  4545. }
  4546. #endif
  4547. /**
  4548. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4549. */
  4550. inline void gcode_M203() {
  4551. LOOP_XYZE(i)
  4552. if (code_seen(axis_codes[i]))
  4553. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4554. }
  4555. /**
  4556. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4557. *
  4558. * P = Printing moves
  4559. * R = Retract only (no X, Y, Z) moves
  4560. * T = Travel (non printing) moves
  4561. *
  4562. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4563. */
  4564. inline void gcode_M204() {
  4565. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4566. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4567. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4568. }
  4569. if (code_seen('P')) {
  4570. planner.acceleration = code_value_linear_units();
  4571. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4572. }
  4573. if (code_seen('R')) {
  4574. planner.retract_acceleration = code_value_linear_units();
  4575. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4576. }
  4577. if (code_seen('T')) {
  4578. planner.travel_acceleration = code_value_linear_units();
  4579. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4580. }
  4581. }
  4582. /**
  4583. * M205: Set Advanced Settings
  4584. *
  4585. * S = Min Feed Rate (units/s)
  4586. * T = Min Travel Feed Rate (units/s)
  4587. * B = Min Segment Time (µs)
  4588. * X = Max XY Jerk (units/sec^2)
  4589. * Z = Max Z Jerk (units/sec^2)
  4590. * E = Max E Jerk (units/sec^2)
  4591. */
  4592. inline void gcode_M205() {
  4593. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4594. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4595. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4596. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4597. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4598. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4599. }
  4600. /**
  4601. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4602. */
  4603. inline void gcode_M206() {
  4604. LOOP_XYZ(i)
  4605. if (code_seen(axis_codes[i]))
  4606. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4607. #if ENABLED(SCARA)
  4608. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4609. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4610. #endif
  4611. SYNC_PLAN_POSITION_KINEMATIC();
  4612. report_current_position();
  4613. }
  4614. #if ENABLED(DELTA)
  4615. /**
  4616. * M665: Set delta configurations
  4617. *
  4618. * L = diagonal rod
  4619. * R = delta radius
  4620. * S = segments per second
  4621. * A = Alpha (Tower 1) diagonal rod trim
  4622. * B = Beta (Tower 2) diagonal rod trim
  4623. * C = Gamma (Tower 3) diagonal rod trim
  4624. */
  4625. inline void gcode_M665() {
  4626. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4627. if (code_seen('R')) delta_radius = code_value_linear_units();
  4628. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4629. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4630. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4631. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4632. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4633. }
  4634. /**
  4635. * M666: Set delta endstop adjustment
  4636. */
  4637. inline void gcode_M666() {
  4638. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4639. if (DEBUGGING(LEVELING)) {
  4640. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4641. }
  4642. #endif
  4643. LOOP_XYZ(i) {
  4644. if (code_seen(axis_codes[i])) {
  4645. endstop_adj[i] = code_value_axis_units(i);
  4646. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4647. if (DEBUGGING(LEVELING)) {
  4648. SERIAL_ECHOPGM("endstop_adj[");
  4649. SERIAL_ECHO(axis_codes[i]);
  4650. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4651. }
  4652. #endif
  4653. }
  4654. }
  4655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4656. if (DEBUGGING(LEVELING)) {
  4657. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4658. }
  4659. #endif
  4660. }
  4661. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4662. /**
  4663. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4664. */
  4665. inline void gcode_M666() {
  4666. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4667. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4668. }
  4669. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4670. #if ENABLED(FWRETRACT)
  4671. /**
  4672. * M207: Set firmware retraction values
  4673. *
  4674. * S[+units] retract_length
  4675. * W[+units] retract_length_swap (multi-extruder)
  4676. * F[units/min] retract_feedrate_mm_s
  4677. * Z[units] retract_zlift
  4678. */
  4679. inline void gcode_M207() {
  4680. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4681. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4682. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4683. #if EXTRUDERS > 1
  4684. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4685. #endif
  4686. }
  4687. /**
  4688. * M208: Set firmware un-retraction values
  4689. *
  4690. * S[+units] retract_recover_length (in addition to M207 S*)
  4691. * W[+units] retract_recover_length_swap (multi-extruder)
  4692. * F[units/min] retract_recover_feedrate_mm_s
  4693. */
  4694. inline void gcode_M208() {
  4695. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4696. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4697. #if EXTRUDERS > 1
  4698. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4699. #endif
  4700. }
  4701. /**
  4702. * M209: Enable automatic retract (M209 S1)
  4703. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4704. */
  4705. inline void gcode_M209() {
  4706. if (code_seen('S')) {
  4707. autoretract_enabled = code_value_bool();
  4708. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4709. }
  4710. }
  4711. #endif // FWRETRACT
  4712. /**
  4713. * M211: Enable, Disable, and/or Report software endstops
  4714. *
  4715. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4716. */
  4717. inline void gcode_M211() {
  4718. SERIAL_ECHO_START;
  4719. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4720. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4721. #endif
  4722. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4723. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": ");
  4724. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4725. #else
  4726. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": " MSG_OFF);
  4727. #endif
  4728. SERIAL_ECHOPGM(" " MSG_SOFT_MIN ": ");
  4729. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4730. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4731. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4732. SERIAL_ECHOPGM(" " MSG_SOFT_MAX ": ");
  4733. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4734. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4735. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4736. }
  4737. #if HOTENDS > 1
  4738. /**
  4739. * M218 - set hotend offset (in linear units)
  4740. *
  4741. * T<tool>
  4742. * X<xoffset>
  4743. * Y<yoffset>
  4744. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4745. */
  4746. inline void gcode_M218() {
  4747. if (get_target_extruder_from_command(218)) return;
  4748. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4749. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4750. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4751. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4752. #endif
  4753. SERIAL_ECHO_START;
  4754. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4755. HOTEND_LOOP() {
  4756. SERIAL_CHAR(' ');
  4757. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4758. SERIAL_CHAR(',');
  4759. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4760. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4761. SERIAL_CHAR(',');
  4762. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4763. #endif
  4764. }
  4765. SERIAL_EOL;
  4766. }
  4767. #endif // HOTENDS > 1
  4768. /**
  4769. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4770. */
  4771. inline void gcode_M220() {
  4772. if (code_seen('S')) feedrate_percentage = code_value_int();
  4773. }
  4774. /**
  4775. * M221: Set extrusion percentage (M221 T0 S95)
  4776. */
  4777. inline void gcode_M221() {
  4778. if (get_target_extruder_from_command(221)) return;
  4779. if (code_seen('S'))
  4780. flow_percentage[target_extruder] = code_value_int();
  4781. }
  4782. /**
  4783. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4784. */
  4785. inline void gcode_M226() {
  4786. if (code_seen('P')) {
  4787. int pin_number = code_value_int();
  4788. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4789. if (pin_state >= -1 && pin_state <= 1) {
  4790. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4791. if (sensitive_pins[i] == pin_number) {
  4792. pin_number = -1;
  4793. break;
  4794. }
  4795. }
  4796. if (pin_number > -1) {
  4797. int target = LOW;
  4798. stepper.synchronize();
  4799. pinMode(pin_number, INPUT);
  4800. switch (pin_state) {
  4801. case 1:
  4802. target = HIGH;
  4803. break;
  4804. case 0:
  4805. target = LOW;
  4806. break;
  4807. case -1:
  4808. target = !digitalRead(pin_number);
  4809. break;
  4810. }
  4811. while (digitalRead(pin_number) != target) idle();
  4812. } // pin_number > -1
  4813. } // pin_state -1 0 1
  4814. } // code_seen('P')
  4815. }
  4816. #if HAS_SERVOS
  4817. /**
  4818. * M280: Get or set servo position. P<index> [S<angle>]
  4819. */
  4820. inline void gcode_M280() {
  4821. if (!code_seen('P')) return;
  4822. int servo_index = code_value_int();
  4823. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4824. if (code_seen('S'))
  4825. MOVE_SERVO(servo_index, code_value_int());
  4826. else {
  4827. SERIAL_ECHO_START;
  4828. SERIAL_ECHOPGM(" Servo ");
  4829. SERIAL_ECHO(servo_index);
  4830. SERIAL_ECHOPGM(": ");
  4831. SERIAL_ECHOLN(servo[servo_index].read());
  4832. }
  4833. }
  4834. else {
  4835. SERIAL_ERROR_START;
  4836. SERIAL_ERROR("Servo ");
  4837. SERIAL_ERROR(servo_index);
  4838. SERIAL_ERRORLN(" out of range");
  4839. }
  4840. }
  4841. #endif // HAS_SERVOS
  4842. #if HAS_BUZZER
  4843. /**
  4844. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4845. */
  4846. inline void gcode_M300() {
  4847. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4848. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4849. // Limits the tone duration to 0-5 seconds.
  4850. NOMORE(duration, 5000);
  4851. BUZZ(duration, frequency);
  4852. }
  4853. #endif // HAS_BUZZER
  4854. #if ENABLED(PIDTEMP)
  4855. /**
  4856. * M301: Set PID parameters P I D (and optionally C, L)
  4857. *
  4858. * P[float] Kp term
  4859. * I[float] Ki term (unscaled)
  4860. * D[float] Kd term (unscaled)
  4861. *
  4862. * With PID_EXTRUSION_SCALING:
  4863. *
  4864. * C[float] Kc term
  4865. * L[float] LPQ length
  4866. */
  4867. inline void gcode_M301() {
  4868. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4869. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4870. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4871. if (e < HOTENDS) { // catch bad input value
  4872. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4873. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4874. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4875. #if ENABLED(PID_EXTRUSION_SCALING)
  4876. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4877. if (code_seen('L')) lpq_len = code_value_float();
  4878. NOMORE(lpq_len, LPQ_MAX_LEN);
  4879. #endif
  4880. thermalManager.updatePID();
  4881. SERIAL_ECHO_START;
  4882. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4883. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4884. SERIAL_ECHO(e);
  4885. #endif // PID_PARAMS_PER_HOTEND
  4886. SERIAL_ECHOPGM(" p:");
  4887. SERIAL_ECHO(PID_PARAM(Kp, e));
  4888. SERIAL_ECHOPGM(" i:");
  4889. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4890. SERIAL_ECHOPGM(" d:");
  4891. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4892. #if ENABLED(PID_EXTRUSION_SCALING)
  4893. SERIAL_ECHOPGM(" c:");
  4894. //Kc does not have scaling applied above, or in resetting defaults
  4895. SERIAL_ECHO(PID_PARAM(Kc, e));
  4896. #endif
  4897. SERIAL_EOL;
  4898. }
  4899. else {
  4900. SERIAL_ERROR_START;
  4901. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4902. }
  4903. }
  4904. #endif // PIDTEMP
  4905. #if ENABLED(PIDTEMPBED)
  4906. inline void gcode_M304() {
  4907. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4908. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4909. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4910. thermalManager.updatePID();
  4911. SERIAL_ECHO_START;
  4912. SERIAL_ECHOPGM(" p:");
  4913. SERIAL_ECHO(thermalManager.bedKp);
  4914. SERIAL_ECHOPGM(" i:");
  4915. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4916. SERIAL_ECHOPGM(" d:");
  4917. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4918. }
  4919. #endif // PIDTEMPBED
  4920. #if defined(CHDK) || HAS_PHOTOGRAPH
  4921. /**
  4922. * M240: Trigger a camera by emulating a Canon RC-1
  4923. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4924. */
  4925. inline void gcode_M240() {
  4926. #ifdef CHDK
  4927. OUT_WRITE(CHDK, HIGH);
  4928. chdkHigh = millis();
  4929. chdkActive = true;
  4930. #elif HAS_PHOTOGRAPH
  4931. const uint8_t NUM_PULSES = 16;
  4932. const float PULSE_LENGTH = 0.01524;
  4933. for (int i = 0; i < NUM_PULSES; i++) {
  4934. WRITE(PHOTOGRAPH_PIN, HIGH);
  4935. _delay_ms(PULSE_LENGTH);
  4936. WRITE(PHOTOGRAPH_PIN, LOW);
  4937. _delay_ms(PULSE_LENGTH);
  4938. }
  4939. delay(7.33);
  4940. for (int i = 0; i < NUM_PULSES; i++) {
  4941. WRITE(PHOTOGRAPH_PIN, HIGH);
  4942. _delay_ms(PULSE_LENGTH);
  4943. WRITE(PHOTOGRAPH_PIN, LOW);
  4944. _delay_ms(PULSE_LENGTH);
  4945. }
  4946. #endif // !CHDK && HAS_PHOTOGRAPH
  4947. }
  4948. #endif // CHDK || PHOTOGRAPH_PIN
  4949. #if HAS_LCD_CONTRAST
  4950. /**
  4951. * M250: Read and optionally set the LCD contrast
  4952. */
  4953. inline void gcode_M250() {
  4954. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4955. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4956. SERIAL_PROTOCOL(lcd_contrast);
  4957. SERIAL_EOL;
  4958. }
  4959. #endif // HAS_LCD_CONTRAST
  4960. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4961. /**
  4962. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4963. *
  4964. * S<temperature> sets the minimum extrude temperature
  4965. * P<bool> enables (1) or disables (0) cold extrusion
  4966. *
  4967. * Examples:
  4968. *
  4969. * M302 ; report current cold extrusion state
  4970. * M302 P0 ; enable cold extrusion checking
  4971. * M302 P1 ; disables cold extrusion checking
  4972. * M302 S0 ; always allow extrusion (disables checking)
  4973. * M302 S170 ; only allow extrusion above 170
  4974. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4975. */
  4976. inline void gcode_M302() {
  4977. bool seen_S = code_seen('S');
  4978. if (seen_S) {
  4979. thermalManager.extrude_min_temp = code_value_temp_abs();
  4980. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4981. }
  4982. if (code_seen('P'))
  4983. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4984. else if (!seen_S) {
  4985. // Report current state
  4986. SERIAL_ECHO_START;
  4987. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4988. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4989. SERIAL_ECHOLNPGM("C)");
  4990. }
  4991. }
  4992. #endif // PREVENT_COLD_EXTRUSION
  4993. /**
  4994. * M303: PID relay autotune
  4995. *
  4996. * S<temperature> sets the target temperature. (default 150C)
  4997. * E<extruder> (-1 for the bed) (default 0)
  4998. * C<cycles>
  4999. * U<bool> with a non-zero value will apply the result to current settings
  5000. */
  5001. inline void gcode_M303() {
  5002. #if HAS_PID_HEATING
  5003. int e = code_seen('E') ? code_value_int() : 0;
  5004. int c = code_seen('C') ? code_value_int() : 5;
  5005. bool u = code_seen('U') && code_value_bool();
  5006. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5007. if (e >= 0 && e < HOTENDS)
  5008. target_extruder = e;
  5009. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5010. thermalManager.PID_autotune(temp, e, c, u);
  5011. KEEPALIVE_STATE(IN_HANDLER);
  5012. #else
  5013. SERIAL_ERROR_START;
  5014. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5015. #endif
  5016. }
  5017. #if ENABLED(SCARA)
  5018. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  5019. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  5020. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  5021. if (IsRunning()) {
  5022. //gcode_get_destination(); // For X Y Z E F
  5023. delta[X_AXIS] = delta_x;
  5024. delta[Y_AXIS] = delta_y;
  5025. forward_kinematics_SCARA(delta);
  5026. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  5027. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  5028. prepare_move_to_destination();
  5029. //ok_to_send();
  5030. return true;
  5031. }
  5032. return false;
  5033. }
  5034. /**
  5035. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5036. */
  5037. inline bool gcode_M360() {
  5038. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5039. return SCARA_move_to_cal(0, 120);
  5040. }
  5041. /**
  5042. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5043. */
  5044. inline bool gcode_M361() {
  5045. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5046. return SCARA_move_to_cal(90, 130);
  5047. }
  5048. /**
  5049. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5050. */
  5051. inline bool gcode_M362() {
  5052. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5053. return SCARA_move_to_cal(60, 180);
  5054. }
  5055. /**
  5056. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5057. */
  5058. inline bool gcode_M363() {
  5059. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5060. return SCARA_move_to_cal(50, 90);
  5061. }
  5062. /**
  5063. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5064. */
  5065. inline bool gcode_M364() {
  5066. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5067. return SCARA_move_to_cal(45, 135);
  5068. }
  5069. /**
  5070. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  5071. */
  5072. inline void gcode_M365() {
  5073. LOOP_XYZ(i)
  5074. if (code_seen(axis_codes[i]))
  5075. axis_scaling[i] = code_value_float();
  5076. }
  5077. #endif // SCARA
  5078. #if ENABLED(EXT_SOLENOID)
  5079. void enable_solenoid(uint8_t num) {
  5080. switch (num) {
  5081. case 0:
  5082. OUT_WRITE(SOL0_PIN, HIGH);
  5083. break;
  5084. #if HAS_SOLENOID_1
  5085. case 1:
  5086. OUT_WRITE(SOL1_PIN, HIGH);
  5087. break;
  5088. #endif
  5089. #if HAS_SOLENOID_2
  5090. case 2:
  5091. OUT_WRITE(SOL2_PIN, HIGH);
  5092. break;
  5093. #endif
  5094. #if HAS_SOLENOID_3
  5095. case 3:
  5096. OUT_WRITE(SOL3_PIN, HIGH);
  5097. break;
  5098. #endif
  5099. default:
  5100. SERIAL_ECHO_START;
  5101. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5102. break;
  5103. }
  5104. }
  5105. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5106. void disable_all_solenoids() {
  5107. OUT_WRITE(SOL0_PIN, LOW);
  5108. OUT_WRITE(SOL1_PIN, LOW);
  5109. OUT_WRITE(SOL2_PIN, LOW);
  5110. OUT_WRITE(SOL3_PIN, LOW);
  5111. }
  5112. /**
  5113. * M380: Enable solenoid on the active extruder
  5114. */
  5115. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5116. /**
  5117. * M381: Disable all solenoids
  5118. */
  5119. inline void gcode_M381() { disable_all_solenoids(); }
  5120. #endif // EXT_SOLENOID
  5121. /**
  5122. * M400: Finish all moves
  5123. */
  5124. inline void gcode_M400() { stepper.synchronize(); }
  5125. #if HAS_BED_PROBE
  5126. /**
  5127. * M401: Engage Z Servo endstop if available
  5128. */
  5129. inline void gcode_M401() { DEPLOY_PROBE(); }
  5130. /**
  5131. * M402: Retract Z Servo endstop if enabled
  5132. */
  5133. inline void gcode_M402() { STOW_PROBE(); }
  5134. #endif // HAS_BED_PROBE
  5135. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5136. /**
  5137. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5138. */
  5139. inline void gcode_M404() {
  5140. if (code_seen('W')) {
  5141. filament_width_nominal = code_value_linear_units();
  5142. }
  5143. else {
  5144. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5145. SERIAL_PROTOCOLLN(filament_width_nominal);
  5146. }
  5147. }
  5148. /**
  5149. * M405: Turn on filament sensor for control
  5150. */
  5151. inline void gcode_M405() {
  5152. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5153. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5154. if (code_seen('D')) meas_delay_cm = code_value_int();
  5155. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5156. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5157. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5158. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5159. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5160. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5161. }
  5162. filament_sensor = true;
  5163. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5164. //SERIAL_PROTOCOL(filament_width_meas);
  5165. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5166. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5167. }
  5168. /**
  5169. * M406: Turn off filament sensor for control
  5170. */
  5171. inline void gcode_M406() { filament_sensor = false; }
  5172. /**
  5173. * M407: Get measured filament diameter on serial output
  5174. */
  5175. inline void gcode_M407() {
  5176. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5177. SERIAL_PROTOCOLLN(filament_width_meas);
  5178. }
  5179. #endif // FILAMENT_WIDTH_SENSOR
  5180. void quickstop_stepper() {
  5181. stepper.quick_stop();
  5182. #if DISABLED(SCARA)
  5183. stepper.synchronize();
  5184. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5185. SYNC_PLAN_POSITION_KINEMATIC();
  5186. #endif
  5187. }
  5188. #if ENABLED(MESH_BED_LEVELING)
  5189. /**
  5190. * M420: Enable/Disable Mesh Bed Leveling
  5191. */
  5192. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5193. /**
  5194. * M421: Set a single Mesh Bed Leveling Z coordinate
  5195. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5196. */
  5197. inline void gcode_M421() {
  5198. int8_t px = 0, py = 0;
  5199. float z = 0;
  5200. bool hasX, hasY, hasZ, hasI, hasJ;
  5201. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5202. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5203. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5204. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5205. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5206. if (hasX && hasY && hasZ) {
  5207. if (px >= 0 && py >= 0)
  5208. mbl.set_z(px, py, z);
  5209. else {
  5210. SERIAL_ERROR_START;
  5211. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5212. }
  5213. }
  5214. else if (hasI && hasJ && hasZ) {
  5215. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5216. mbl.set_z(px, py, z);
  5217. else {
  5218. SERIAL_ERROR_START;
  5219. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5220. }
  5221. }
  5222. else {
  5223. SERIAL_ERROR_START;
  5224. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5225. }
  5226. }
  5227. #endif
  5228. /**
  5229. * M428: Set home_offset based on the distance between the
  5230. * current_position and the nearest "reference point."
  5231. * If an axis is past center its endstop position
  5232. * is the reference-point. Otherwise it uses 0. This allows
  5233. * the Z offset to be set near the bed when using a max endstop.
  5234. *
  5235. * M428 can't be used more than 2cm away from 0 or an endstop.
  5236. *
  5237. * Use M206 to set these values directly.
  5238. */
  5239. inline void gcode_M428() {
  5240. bool err = false;
  5241. LOOP_XYZ(i) {
  5242. if (axis_homed[i]) {
  5243. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5244. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5245. if (diff > -20 && diff < 20) {
  5246. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5247. }
  5248. else {
  5249. SERIAL_ERROR_START;
  5250. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5251. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5252. BUZZ(200, 40);
  5253. err = true;
  5254. break;
  5255. }
  5256. }
  5257. }
  5258. if (!err) {
  5259. SYNC_PLAN_POSITION_KINEMATIC();
  5260. report_current_position();
  5261. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5262. BUZZ(200, 659);
  5263. BUZZ(200, 698);
  5264. }
  5265. }
  5266. /**
  5267. * M500: Store settings in EEPROM
  5268. */
  5269. inline void gcode_M500() {
  5270. Config_StoreSettings();
  5271. }
  5272. /**
  5273. * M501: Read settings from EEPROM
  5274. */
  5275. inline void gcode_M501() {
  5276. Config_RetrieveSettings();
  5277. }
  5278. /**
  5279. * M502: Revert to default settings
  5280. */
  5281. inline void gcode_M502() {
  5282. Config_ResetDefault();
  5283. }
  5284. /**
  5285. * M503: print settings currently in memory
  5286. */
  5287. inline void gcode_M503() {
  5288. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5289. }
  5290. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5291. /**
  5292. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5293. */
  5294. inline void gcode_M540() {
  5295. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5296. }
  5297. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5298. #if HAS_BED_PROBE
  5299. inline void gcode_M851() {
  5300. SERIAL_ECHO_START;
  5301. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5302. SERIAL_CHAR(' ');
  5303. if (code_seen('Z')) {
  5304. float value = code_value_axis_units(Z_AXIS);
  5305. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5306. zprobe_zoffset = value;
  5307. SERIAL_ECHO(zprobe_zoffset);
  5308. }
  5309. else {
  5310. SERIAL_ECHOPGM(MSG_Z_MIN);
  5311. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5312. SERIAL_CHAR(' ');
  5313. SERIAL_ECHOPGM(MSG_Z_MAX);
  5314. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5315. }
  5316. }
  5317. else {
  5318. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5319. }
  5320. SERIAL_EOL;
  5321. }
  5322. #endif // HAS_BED_PROBE
  5323. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5324. /**
  5325. * M600: Pause for filament change
  5326. *
  5327. * E[distance] - Retract the filament this far (negative value)
  5328. * Z[distance] - Move the Z axis by this distance
  5329. * X[position] - Move to this X position, with Y
  5330. * Y[position] - Move to this Y position, with X
  5331. * L[distance] - Retract distance for removal (manual reload)
  5332. *
  5333. * Default values are used for omitted arguments.
  5334. *
  5335. */
  5336. inline void gcode_M600() {
  5337. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5338. SERIAL_ERROR_START;
  5339. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5340. return;
  5341. }
  5342. // Show initial message and wait for synchronize steppers
  5343. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5344. stepper.synchronize();
  5345. float lastpos[NUM_AXIS];
  5346. // Save current position of all axes
  5347. LOOP_XYZE(i)
  5348. lastpos[i] = destination[i] = current_position[i];
  5349. // Define runplan for move axes
  5350. #if ENABLED(DELTA)
  5351. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5352. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5353. #else
  5354. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5355. #endif
  5356. KEEPALIVE_STATE(IN_HANDLER);
  5357. // Initial retract before move to filament change position
  5358. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5359. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5360. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5361. #endif
  5362. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5363. // Lift Z axis
  5364. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5365. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5366. FILAMENT_CHANGE_Z_ADD
  5367. #else
  5368. 0
  5369. #endif
  5370. ;
  5371. if (z_lift > 0) {
  5372. destination[Z_AXIS] += z_lift;
  5373. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5374. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5375. }
  5376. // Move XY axes to filament exchange position
  5377. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5378. #ifdef FILAMENT_CHANGE_X_POS
  5379. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5380. #endif
  5381. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5382. #ifdef FILAMENT_CHANGE_Y_POS
  5383. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5384. #endif
  5385. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5386. stepper.synchronize();
  5387. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5388. // Unload filament
  5389. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5390. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5391. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5392. #endif
  5393. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5394. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5395. stepper.synchronize();
  5396. disable_e0();
  5397. disable_e1();
  5398. disable_e2();
  5399. disable_e3();
  5400. delay(100);
  5401. #if HAS_BUZZER
  5402. millis_t next_tick = 0;
  5403. #endif
  5404. // Wait for filament insert by user and press button
  5405. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5406. while (!lcd_clicked()) {
  5407. #if HAS_BUZZER
  5408. millis_t ms = millis();
  5409. if (ms >= next_tick) {
  5410. BUZZ(300, 2000);
  5411. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5412. }
  5413. #endif
  5414. idle(true);
  5415. }
  5416. delay(100);
  5417. while (lcd_clicked()) idle(true);
  5418. delay(100);
  5419. // Show load message
  5420. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5421. // Load filament
  5422. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5423. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5424. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5425. #endif
  5426. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5427. stepper.synchronize();
  5428. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5429. do {
  5430. // Extrude filament to get into hotend
  5431. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5432. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5433. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5434. stepper.synchronize();
  5435. // Ask user if more filament should be extruded
  5436. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5437. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5438. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5439. KEEPALIVE_STATE(IN_HANDLER);
  5440. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5441. #endif
  5442. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5443. KEEPALIVE_STATE(IN_HANDLER);
  5444. // Set extruder to saved position
  5445. current_position[E_AXIS] = lastpos[E_AXIS];
  5446. destination[E_AXIS] = lastpos[E_AXIS];
  5447. planner.set_e_position_mm(current_position[E_AXIS]);
  5448. #if ENABLED(DELTA)
  5449. // Move XYZ to starting position, then E
  5450. inverse_kinematics(lastpos);
  5451. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5452. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5453. #else
  5454. // Move XY to starting position, then Z, then E
  5455. destination[X_AXIS] = lastpos[X_AXIS];
  5456. destination[Y_AXIS] = lastpos[Y_AXIS];
  5457. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5458. destination[Z_AXIS] = lastpos[Z_AXIS];
  5459. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5460. #endif
  5461. stepper.synchronize();
  5462. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5463. filament_ran_out = false;
  5464. #endif
  5465. // Show status screen
  5466. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5467. }
  5468. #endif // FILAMENT_CHANGE_FEATURE
  5469. #if ENABLED(DUAL_X_CARRIAGE)
  5470. /**
  5471. * M605: Set dual x-carriage movement mode
  5472. *
  5473. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5474. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5475. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5476. * units x-offset and an optional differential hotend temperature of
  5477. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5478. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5479. *
  5480. * Note: the X axis should be homed after changing dual x-carriage mode.
  5481. */
  5482. inline void gcode_M605() {
  5483. stepper.synchronize();
  5484. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5485. switch (dual_x_carriage_mode) {
  5486. case DXC_DUPLICATION_MODE:
  5487. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5488. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5489. SERIAL_ECHO_START;
  5490. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5491. SERIAL_CHAR(' ');
  5492. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5493. SERIAL_CHAR(',');
  5494. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5495. SERIAL_CHAR(' ');
  5496. SERIAL_ECHO(duplicate_extruder_x_offset);
  5497. SERIAL_CHAR(',');
  5498. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5499. break;
  5500. case DXC_FULL_CONTROL_MODE:
  5501. case DXC_AUTO_PARK_MODE:
  5502. break;
  5503. default:
  5504. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5505. break;
  5506. }
  5507. active_extruder_parked = false;
  5508. extruder_duplication_enabled = false;
  5509. delayed_move_time = 0;
  5510. }
  5511. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5512. inline void gcode_M605() {
  5513. stepper.synchronize();
  5514. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5515. SERIAL_ECHO_START;
  5516. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5517. }
  5518. #endif // M605
  5519. #if ENABLED(LIN_ADVANCE)
  5520. /**
  5521. * M905: Set advance factor
  5522. */
  5523. inline void gcode_M905() {
  5524. stepper.synchronize();
  5525. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5526. }
  5527. #endif
  5528. /**
  5529. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5530. */
  5531. inline void gcode_M907() {
  5532. #if HAS_DIGIPOTSS
  5533. LOOP_XYZE(i)
  5534. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5535. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5536. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5537. #endif
  5538. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5539. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5540. #endif
  5541. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5542. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5543. #endif
  5544. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5545. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5546. #endif
  5547. #if ENABLED(DIGIPOT_I2C)
  5548. // this one uses actual amps in floating point
  5549. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5550. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5551. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5552. #endif
  5553. #if ENABLED(DAC_STEPPER_CURRENT)
  5554. if (code_seen('S')) {
  5555. float dac_percent = code_value_float();
  5556. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5557. }
  5558. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5559. #endif
  5560. }
  5561. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5562. /**
  5563. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5564. */
  5565. inline void gcode_M908() {
  5566. #if HAS_DIGIPOTSS
  5567. stepper.digitalPotWrite(
  5568. code_seen('P') ? code_value_int() : 0,
  5569. code_seen('S') ? code_value_int() : 0
  5570. );
  5571. #endif
  5572. #ifdef DAC_STEPPER_CURRENT
  5573. dac_current_raw(
  5574. code_seen('P') ? code_value_byte() : -1,
  5575. code_seen('S') ? code_value_ushort() : 0
  5576. );
  5577. #endif
  5578. }
  5579. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5580. inline void gcode_M909() { dac_print_values(); }
  5581. inline void gcode_M910() { dac_commit_eeprom(); }
  5582. #endif
  5583. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5584. #if HAS_MICROSTEPS
  5585. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5586. inline void gcode_M350() {
  5587. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5588. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5589. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5590. stepper.microstep_readings();
  5591. }
  5592. /**
  5593. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5594. * S# determines MS1 or MS2, X# sets the pin high/low.
  5595. */
  5596. inline void gcode_M351() {
  5597. if (code_seen('S')) switch (code_value_byte()) {
  5598. case 1:
  5599. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5600. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5601. break;
  5602. case 2:
  5603. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5604. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5605. break;
  5606. }
  5607. stepper.microstep_readings();
  5608. }
  5609. #endif // HAS_MICROSTEPS
  5610. #if ENABLED(MIXING_EXTRUDER)
  5611. /**
  5612. * M163: Set a single mix factor for a mixing extruder
  5613. * This is called "weight" by some systems.
  5614. *
  5615. * S[index] The channel index to set
  5616. * P[float] The mix value
  5617. *
  5618. */
  5619. inline void gcode_M163() {
  5620. int mix_index = code_seen('S') ? code_value_int() : 0;
  5621. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5622. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5623. }
  5624. #if MIXING_VIRTUAL_TOOLS > 1
  5625. /**
  5626. * M164: Store the current mix factors as a virtual tool.
  5627. *
  5628. * S[index] The virtual tool to store
  5629. *
  5630. */
  5631. inline void gcode_M164() {
  5632. int tool_index = code_seen('S') ? code_value_int() : 0;
  5633. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5634. normalize_mix();
  5635. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5636. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5637. }
  5638. }
  5639. #endif
  5640. #if ENABLED(DIRECT_MIXING_IN_G1)
  5641. /**
  5642. * M165: Set multiple mix factors for a mixing extruder.
  5643. * Factors that are left out will be set to 0.
  5644. * All factors together must add up to 1.0.
  5645. *
  5646. * A[factor] Mix factor for extruder stepper 1
  5647. * B[factor] Mix factor for extruder stepper 2
  5648. * C[factor] Mix factor for extruder stepper 3
  5649. * D[factor] Mix factor for extruder stepper 4
  5650. * H[factor] Mix factor for extruder stepper 5
  5651. * I[factor] Mix factor for extruder stepper 6
  5652. *
  5653. */
  5654. inline void gcode_M165() { gcode_get_mix(); }
  5655. #endif
  5656. #endif // MIXING_EXTRUDER
  5657. /**
  5658. * M999: Restart after being stopped
  5659. *
  5660. * Default behaviour is to flush the serial buffer and request
  5661. * a resend to the host starting on the last N line received.
  5662. *
  5663. * Sending "M999 S1" will resume printing without flushing the
  5664. * existing command buffer.
  5665. *
  5666. */
  5667. inline void gcode_M999() {
  5668. Running = true;
  5669. lcd_reset_alert_level();
  5670. if (code_seen('S') && code_value_bool()) return;
  5671. // gcode_LastN = Stopped_gcode_LastN;
  5672. FlushSerialRequestResend();
  5673. }
  5674. #if ENABLED(SWITCHING_EXTRUDER)
  5675. inline void move_extruder_servo(uint8_t e) {
  5676. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5677. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5678. }
  5679. #endif
  5680. inline void invalid_extruder_error(const uint8_t &e) {
  5681. SERIAL_ECHO_START;
  5682. SERIAL_CHAR('T');
  5683. SERIAL_PROTOCOL_F(e, DEC);
  5684. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5685. }
  5686. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5687. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5688. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5689. invalid_extruder_error(tmp_extruder);
  5690. return;
  5691. }
  5692. // T0-Tnnn: Switch virtual tool by changing the mix
  5693. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5694. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5695. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5696. #if HOTENDS > 1
  5697. if (tmp_extruder >= EXTRUDERS) {
  5698. invalid_extruder_error(tmp_extruder);
  5699. return;
  5700. }
  5701. float old_feedrate_mm_s = feedrate_mm_s;
  5702. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5703. if (tmp_extruder != active_extruder) {
  5704. if (!no_move && axis_unhomed_error(true, true, true)) {
  5705. SERIAL_ECHOLNPGM("No move on toolchange");
  5706. no_move = true;
  5707. }
  5708. // Save current position to destination, for use later
  5709. set_destination_to_current();
  5710. #if ENABLED(DUAL_X_CARRIAGE)
  5711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5712. if (DEBUGGING(LEVELING)) {
  5713. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5714. switch (dual_x_carriage_mode) {
  5715. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5716. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5717. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5718. }
  5719. }
  5720. #endif
  5721. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5722. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5723. ) {
  5724. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5725. if (DEBUGGING(LEVELING)) {
  5726. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5727. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5728. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5729. }
  5730. #endif
  5731. // Park old head: 1) raise 2) move to park position 3) lower
  5732. for (uint8_t i = 0; i < 3; i++)
  5733. planner.buffer_line(
  5734. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5735. current_position[Y_AXIS],
  5736. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5737. current_position[E_AXIS],
  5738. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5739. active_extruder
  5740. );
  5741. stepper.synchronize();
  5742. }
  5743. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5744. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5745. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5746. active_extruder = tmp_extruder;
  5747. // This function resets the max/min values - the current position may be overwritten below.
  5748. set_axis_is_at_home(X_AXIS);
  5749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5750. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5751. #endif
  5752. switch (dual_x_carriage_mode) {
  5753. case DXC_FULL_CONTROL_MODE:
  5754. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5755. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5756. break;
  5757. case DXC_DUPLICATION_MODE:
  5758. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5759. if (active_extruder_parked)
  5760. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5761. else
  5762. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5763. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5764. extruder_duplication_enabled = false;
  5765. break;
  5766. default:
  5767. // record raised toolhead position for use by unpark
  5768. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5769. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5770. active_extruder_parked = true;
  5771. delayed_move_time = 0;
  5772. break;
  5773. }
  5774. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5775. if (DEBUGGING(LEVELING)) {
  5776. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5777. DEBUG_POS("New extruder (parked)", current_position);
  5778. }
  5779. #endif
  5780. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5781. #else // !DUAL_X_CARRIAGE
  5782. #if ENABLED(SWITCHING_EXTRUDER)
  5783. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5784. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5785. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5786. // Always raise by some amount
  5787. planner.buffer_line(
  5788. current_position[X_AXIS],
  5789. current_position[Y_AXIS],
  5790. current_position[Z_AXIS] + z_raise,
  5791. current_position[E_AXIS],
  5792. planner.max_feedrate_mm_s[Z_AXIS],
  5793. active_extruder
  5794. );
  5795. stepper.synchronize();
  5796. move_extruder_servo(active_extruder);
  5797. delay(500);
  5798. // Move back down, if needed
  5799. if (z_raise != z_diff) {
  5800. planner.buffer_line(
  5801. current_position[X_AXIS],
  5802. current_position[Y_AXIS],
  5803. current_position[Z_AXIS] + z_diff,
  5804. current_position[E_AXIS],
  5805. planner.max_feedrate_mm_s[Z_AXIS],
  5806. active_extruder
  5807. );
  5808. stepper.synchronize();
  5809. }
  5810. #endif
  5811. /**
  5812. * Set current_position to the position of the new nozzle.
  5813. * Offsets are based on linear distance, so we need to get
  5814. * the resulting position in coordinate space.
  5815. *
  5816. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5817. * - With mesh leveling, update Z for the new position
  5818. * - Otherwise, just use the raw linear distance
  5819. *
  5820. * Software endstops are altered here too. Consider a case where:
  5821. * E0 at X=0 ... E1 at X=10
  5822. * When we switch to E1 now X=10, but E1 can't move left.
  5823. * To express this we apply the change in XY to the software endstops.
  5824. * E1 can move farther right than E0, so the right limit is extended.
  5825. *
  5826. * Note that we don't adjust the Z software endstops. Why not?
  5827. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5828. * because the bed is 1mm lower at the new position. As long as
  5829. * the first nozzle is out of the way, the carriage should be
  5830. * allowed to move 1mm lower. This technically "breaks" the
  5831. * Z software endstop. But this is technically correct (and
  5832. * there is no viable alternative).
  5833. */
  5834. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5835. // Offset extruder, make sure to apply the bed level rotation matrix
  5836. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5837. hotend_offset[Y_AXIS][tmp_extruder],
  5838. 0),
  5839. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5840. hotend_offset[Y_AXIS][active_extruder],
  5841. 0),
  5842. offset_vec = tmp_offset_vec - act_offset_vec;
  5843. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5844. if (DEBUGGING(LEVELING)) {
  5845. tmp_offset_vec.debug("tmp_offset_vec");
  5846. act_offset_vec.debug("act_offset_vec");
  5847. offset_vec.debug("offset_vec (BEFORE)");
  5848. }
  5849. #endif
  5850. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5852. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5853. #endif
  5854. // Adjustments to the current position
  5855. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5856. current_position[Z_AXIS] += offset_vec.z;
  5857. #else // !AUTO_BED_LEVELING_FEATURE
  5858. float xydiff[2] = {
  5859. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5860. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5861. };
  5862. #if ENABLED(MESH_BED_LEVELING)
  5863. if (mbl.active()) {
  5864. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5865. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5866. #endif
  5867. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5868. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5869. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5871. if (DEBUGGING(LEVELING))
  5872. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5873. #endif
  5874. }
  5875. #endif // MESH_BED_LEVELING
  5876. #endif // !AUTO_BED_LEVELING_FEATURE
  5877. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5878. if (DEBUGGING(LEVELING)) {
  5879. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5880. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5881. SERIAL_ECHOLNPGM(" }");
  5882. }
  5883. #endif
  5884. // The newly-selected extruder XY is actually at...
  5885. current_position[X_AXIS] += xydiff[X_AXIS];
  5886. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5887. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5888. position_shift[i] += xydiff[i];
  5889. update_software_endstops((AxisEnum)i);
  5890. }
  5891. // Set the new active extruder
  5892. active_extruder = tmp_extruder;
  5893. #endif // !DUAL_X_CARRIAGE
  5894. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5895. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5896. #endif
  5897. // Tell the planner the new "current position"
  5898. SYNC_PLAN_POSITION_KINEMATIC();
  5899. // Move to the "old position" (move the extruder into place)
  5900. if (!no_move && IsRunning()) {
  5901. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5902. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5903. #endif
  5904. prepare_move_to_destination();
  5905. }
  5906. } // (tmp_extruder != active_extruder)
  5907. stepper.synchronize();
  5908. #if ENABLED(EXT_SOLENOID)
  5909. disable_all_solenoids();
  5910. enable_solenoid_on_active_extruder();
  5911. #endif // EXT_SOLENOID
  5912. feedrate_mm_s = old_feedrate_mm_s;
  5913. #else // HOTENDS <= 1
  5914. // Set the new active extruder
  5915. active_extruder = tmp_extruder;
  5916. UNUSED(fr_mm_s);
  5917. UNUSED(no_move);
  5918. #endif // HOTENDS <= 1
  5919. SERIAL_ECHO_START;
  5920. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5921. SERIAL_PROTOCOLLN((int)active_extruder);
  5922. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5923. }
  5924. /**
  5925. * T0-T3: Switch tool, usually switching extruders
  5926. *
  5927. * F[units/min] Set the movement feedrate
  5928. * S1 Don't move the tool in XY after change
  5929. */
  5930. inline void gcode_T(uint8_t tmp_extruder) {
  5931. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5932. if (DEBUGGING(LEVELING)) {
  5933. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5934. SERIAL_ECHOLNPGM(")");
  5935. DEBUG_POS("BEFORE", current_position);
  5936. }
  5937. #endif
  5938. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5939. tool_change(tmp_extruder);
  5940. #elif HOTENDS > 1
  5941. tool_change(
  5942. tmp_extruder,
  5943. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5944. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5945. );
  5946. #endif
  5947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5948. if (DEBUGGING(LEVELING)) {
  5949. DEBUG_POS("AFTER", current_position);
  5950. SERIAL_ECHOLNPGM("<<< gcode_T");
  5951. }
  5952. #endif
  5953. }
  5954. /**
  5955. * Process a single command and dispatch it to its handler
  5956. * This is called from the main loop()
  5957. */
  5958. void process_next_command() {
  5959. current_command = command_queue[cmd_queue_index_r];
  5960. if (DEBUGGING(ECHO)) {
  5961. SERIAL_ECHO_START;
  5962. SERIAL_ECHOLN(current_command);
  5963. }
  5964. // Sanitize the current command:
  5965. // - Skip leading spaces
  5966. // - Bypass N[-0-9][0-9]*[ ]*
  5967. // - Overwrite * with nul to mark the end
  5968. while (*current_command == ' ') ++current_command;
  5969. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5970. current_command += 2; // skip N[-0-9]
  5971. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5972. while (*current_command == ' ') ++current_command; // skip [ ]*
  5973. }
  5974. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5975. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5976. char *cmd_ptr = current_command;
  5977. // Get the command code, which must be G, M, or T
  5978. char command_code = *cmd_ptr++;
  5979. // Skip spaces to get the numeric part
  5980. while (*cmd_ptr == ' ') cmd_ptr++;
  5981. uint16_t codenum = 0; // define ahead of goto
  5982. // Bail early if there's no code
  5983. bool code_is_good = NUMERIC(*cmd_ptr);
  5984. if (!code_is_good) goto ExitUnknownCommand;
  5985. // Get and skip the code number
  5986. do {
  5987. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5988. cmd_ptr++;
  5989. } while (NUMERIC(*cmd_ptr));
  5990. // Skip all spaces to get to the first argument, or nul
  5991. while (*cmd_ptr == ' ') cmd_ptr++;
  5992. // The command's arguments (if any) start here, for sure!
  5993. current_command_args = cmd_ptr;
  5994. KEEPALIVE_STATE(IN_HANDLER);
  5995. // Handle a known G, M, or T
  5996. switch (command_code) {
  5997. case 'G': switch (codenum) {
  5998. // G0, G1
  5999. case 0:
  6000. case 1:
  6001. gcode_G0_G1();
  6002. break;
  6003. // G2, G3
  6004. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6005. case 2: // G2 - CW ARC
  6006. case 3: // G3 - CCW ARC
  6007. gcode_G2_G3(codenum == 2);
  6008. break;
  6009. #endif
  6010. // G4 Dwell
  6011. case 4:
  6012. gcode_G4();
  6013. break;
  6014. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6015. // G5
  6016. case 5: // G5 - Cubic B_spline
  6017. gcode_G5();
  6018. break;
  6019. #endif // BEZIER_CURVE_SUPPORT
  6020. #if ENABLED(FWRETRACT)
  6021. case 10: // G10: retract
  6022. case 11: // G11: retract_recover
  6023. gcode_G10_G11(codenum == 10);
  6024. break;
  6025. #endif // FWRETRACT
  6026. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6027. case 12:
  6028. gcode_G12(); // G12: Nozzle Clean
  6029. break;
  6030. #endif // NOZZLE_CLEAN_FEATURE
  6031. #if ENABLED(INCH_MODE_SUPPORT)
  6032. case 20: //G20: Inch Mode
  6033. gcode_G20();
  6034. break;
  6035. case 21: //G21: MM Mode
  6036. gcode_G21();
  6037. break;
  6038. #endif // INCH_MODE_SUPPORT
  6039. #if ENABLED(NOZZLE_PARK_FEATURE)
  6040. case 27: // G27: Nozzle Park
  6041. gcode_G27();
  6042. break;
  6043. #endif // NOZZLE_PARK_FEATURE
  6044. case 28: // G28: Home all axes, one at a time
  6045. gcode_G28();
  6046. break;
  6047. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  6048. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6049. gcode_G29();
  6050. break;
  6051. #endif // AUTO_BED_LEVELING_FEATURE
  6052. #if HAS_BED_PROBE
  6053. case 30: // G30 Single Z probe
  6054. gcode_G30();
  6055. break;
  6056. #if ENABLED(Z_PROBE_SLED)
  6057. case 31: // G31: dock the sled
  6058. gcode_G31();
  6059. break;
  6060. case 32: // G32: undock the sled
  6061. gcode_G32();
  6062. break;
  6063. #endif // Z_PROBE_SLED
  6064. #endif // HAS_BED_PROBE
  6065. case 90: // G90
  6066. relative_mode = false;
  6067. break;
  6068. case 91: // G91
  6069. relative_mode = true;
  6070. break;
  6071. case 92: // G92
  6072. gcode_G92();
  6073. break;
  6074. }
  6075. break;
  6076. case 'M': switch (codenum) {
  6077. #if ENABLED(ULTIPANEL)
  6078. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  6079. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  6080. gcode_M0_M1();
  6081. break;
  6082. #endif // ULTIPANEL
  6083. case 17:
  6084. gcode_M17();
  6085. break;
  6086. #if ENABLED(SDSUPPORT)
  6087. case 20: // M20 - list SD card
  6088. gcode_M20(); break;
  6089. case 21: // M21 - init SD card
  6090. gcode_M21(); break;
  6091. case 22: //M22 - release SD card
  6092. gcode_M22(); break;
  6093. case 23: //M23 - Select file
  6094. gcode_M23(); break;
  6095. case 24: //M24 - Start SD print
  6096. gcode_M24(); break;
  6097. case 25: //M25 - Pause SD print
  6098. gcode_M25(); break;
  6099. case 26: //M26 - Set SD index
  6100. gcode_M26(); break;
  6101. case 27: //M27 - Get SD status
  6102. gcode_M27(); break;
  6103. case 28: //M28 - Start SD write
  6104. gcode_M28(); break;
  6105. case 29: //M29 - Stop SD write
  6106. gcode_M29(); break;
  6107. case 30: //M30 <filename> Delete File
  6108. gcode_M30(); break;
  6109. case 32: //M32 - Select file and start SD print
  6110. gcode_M32(); break;
  6111. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6112. case 33: //M33 - Get the long full path to a file or folder
  6113. gcode_M33(); break;
  6114. #endif // LONG_FILENAME_HOST_SUPPORT
  6115. case 928: //M928 - Start SD write
  6116. gcode_M928(); break;
  6117. #endif //SDSUPPORT
  6118. case 31: //M31 take time since the start of the SD print or an M109 command
  6119. gcode_M31();
  6120. break;
  6121. case 42: //M42 -Change pin status via gcode
  6122. gcode_M42();
  6123. break;
  6124. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6125. case 48: // M48 Z probe repeatability
  6126. gcode_M48();
  6127. break;
  6128. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6129. case 75: // Start print timer
  6130. gcode_M75();
  6131. break;
  6132. case 76: // Pause print timer
  6133. gcode_M76();
  6134. break;
  6135. case 77: // Stop print timer
  6136. gcode_M77();
  6137. break;
  6138. #if ENABLED(PRINTCOUNTER)
  6139. case 78: // Show print statistics
  6140. gcode_M78();
  6141. break;
  6142. #endif
  6143. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6144. case 100:
  6145. gcode_M100();
  6146. break;
  6147. #endif
  6148. case 104: // M104
  6149. gcode_M104();
  6150. break;
  6151. case 110: // M110: Set Current Line Number
  6152. gcode_M110();
  6153. break;
  6154. case 111: // M111: Set debug level
  6155. gcode_M111();
  6156. break;
  6157. #if DISABLED(EMERGENCY_PARSER)
  6158. case 108: // M108: Cancel Waiting
  6159. gcode_M108();
  6160. break;
  6161. case 112: // M112: Emergency Stop
  6162. gcode_M112();
  6163. break;
  6164. case 410: // M410 quickstop - Abort all the planned moves.
  6165. gcode_M410();
  6166. break;
  6167. #endif
  6168. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6169. case 113: // M113: Set Host Keepalive interval
  6170. gcode_M113();
  6171. break;
  6172. #endif
  6173. case 140: // M140: Set bed temp
  6174. gcode_M140();
  6175. break;
  6176. case 105: // M105: Read current temperature
  6177. gcode_M105();
  6178. KEEPALIVE_STATE(NOT_BUSY);
  6179. return; // "ok" already printed
  6180. case 109: // M109: Wait for temperature
  6181. gcode_M109();
  6182. break;
  6183. #if HAS_TEMP_BED
  6184. case 190: // M190: Wait for bed heater to reach target
  6185. gcode_M190();
  6186. break;
  6187. #endif // HAS_TEMP_BED
  6188. #if FAN_COUNT > 0
  6189. case 106: // M106: Fan On
  6190. gcode_M106();
  6191. break;
  6192. case 107: // M107: Fan Off
  6193. gcode_M107();
  6194. break;
  6195. #endif // FAN_COUNT > 0
  6196. #if ENABLED(BARICUDA)
  6197. // PWM for HEATER_1_PIN
  6198. #if HAS_HEATER_1
  6199. case 126: // M126: valve open
  6200. gcode_M126();
  6201. break;
  6202. case 127: // M127: valve closed
  6203. gcode_M127();
  6204. break;
  6205. #endif // HAS_HEATER_1
  6206. // PWM for HEATER_2_PIN
  6207. #if HAS_HEATER_2
  6208. case 128: // M128: valve open
  6209. gcode_M128();
  6210. break;
  6211. case 129: // M129: valve closed
  6212. gcode_M129();
  6213. break;
  6214. #endif // HAS_HEATER_2
  6215. #endif // BARICUDA
  6216. #if HAS_POWER_SWITCH
  6217. case 80: // M80: Turn on Power Supply
  6218. gcode_M80();
  6219. break;
  6220. #endif // HAS_POWER_SWITCH
  6221. case 81: // M81: Turn off Power, including Power Supply, if possible
  6222. gcode_M81();
  6223. break;
  6224. case 82:
  6225. gcode_M82();
  6226. break;
  6227. case 83:
  6228. gcode_M83();
  6229. break;
  6230. case 18: // (for compatibility)
  6231. case 84: // M84
  6232. gcode_M18_M84();
  6233. break;
  6234. case 85: // M85
  6235. gcode_M85();
  6236. break;
  6237. case 92: // M92: Set the steps-per-unit for one or more axes
  6238. gcode_M92();
  6239. break;
  6240. case 115: // M115: Report capabilities
  6241. gcode_M115();
  6242. break;
  6243. case 117: // M117: Set LCD message text, if possible
  6244. gcode_M117();
  6245. break;
  6246. case 114: // M114: Report current position
  6247. gcode_M114();
  6248. break;
  6249. case 120: // M120: Enable endstops
  6250. gcode_M120();
  6251. break;
  6252. case 121: // M121: Disable endstops
  6253. gcode_M121();
  6254. break;
  6255. case 119: // M119: Report endstop states
  6256. gcode_M119();
  6257. break;
  6258. #if ENABLED(ULTIPANEL)
  6259. case 145: // M145: Set material heatup parameters
  6260. gcode_M145();
  6261. break;
  6262. #endif
  6263. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6264. case 149:
  6265. gcode_M149();
  6266. break;
  6267. #endif
  6268. #if ENABLED(BLINKM)
  6269. case 150: // M150
  6270. gcode_M150();
  6271. break;
  6272. #endif //BLINKM
  6273. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6274. case 155:
  6275. gcode_M155();
  6276. break;
  6277. case 156:
  6278. gcode_M156();
  6279. break;
  6280. #endif //EXPERIMENTAL_I2CBUS
  6281. #if ENABLED(MIXING_EXTRUDER)
  6282. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6283. gcode_M163();
  6284. break;
  6285. #if MIXING_VIRTUAL_TOOLS > 1
  6286. case 164: // M164 S<int> save current mix as a virtual extruder
  6287. gcode_M164();
  6288. break;
  6289. #endif
  6290. #if ENABLED(DIRECT_MIXING_IN_G1)
  6291. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6292. gcode_M165();
  6293. break;
  6294. #endif
  6295. #endif
  6296. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6297. gcode_M200();
  6298. break;
  6299. case 201: // M201
  6300. gcode_M201();
  6301. break;
  6302. #if 0 // Not used for Sprinter/grbl gen6
  6303. case 202: // M202
  6304. gcode_M202();
  6305. break;
  6306. #endif
  6307. case 203: // M203 max feedrate units/sec
  6308. gcode_M203();
  6309. break;
  6310. case 204: // M204 acclereration S normal moves T filmanent only moves
  6311. gcode_M204();
  6312. break;
  6313. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6314. gcode_M205();
  6315. break;
  6316. case 206: // M206 additional homing offset
  6317. gcode_M206();
  6318. break;
  6319. #if ENABLED(DELTA)
  6320. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6321. gcode_M665();
  6322. break;
  6323. #endif
  6324. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6325. case 666: // M666 set delta / dual endstop adjustment
  6326. gcode_M666();
  6327. break;
  6328. #endif
  6329. #if ENABLED(FWRETRACT)
  6330. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6331. gcode_M207();
  6332. break;
  6333. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6334. gcode_M208();
  6335. break;
  6336. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6337. gcode_M209();
  6338. break;
  6339. #endif // FWRETRACT
  6340. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6341. gcode_M211();
  6342. break;
  6343. #if HOTENDS > 1
  6344. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6345. gcode_M218();
  6346. break;
  6347. #endif
  6348. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6349. gcode_M220();
  6350. break;
  6351. case 221: // M221 - Set Flow Percentage: S<percent>
  6352. gcode_M221();
  6353. break;
  6354. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6355. gcode_M226();
  6356. break;
  6357. #if HAS_SERVOS
  6358. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6359. gcode_M280();
  6360. break;
  6361. #endif // HAS_SERVOS
  6362. #if HAS_BUZZER
  6363. case 300: // M300 - Play beep tone
  6364. gcode_M300();
  6365. break;
  6366. #endif // HAS_BUZZER
  6367. #if ENABLED(PIDTEMP)
  6368. case 301: // M301
  6369. gcode_M301();
  6370. break;
  6371. #endif // PIDTEMP
  6372. #if ENABLED(PIDTEMPBED)
  6373. case 304: // M304
  6374. gcode_M304();
  6375. break;
  6376. #endif // PIDTEMPBED
  6377. #if defined(CHDK) || HAS_PHOTOGRAPH
  6378. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6379. gcode_M240();
  6380. break;
  6381. #endif // CHDK || PHOTOGRAPH_PIN
  6382. #if HAS_LCD_CONTRAST
  6383. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6384. gcode_M250();
  6385. break;
  6386. #endif // HAS_LCD_CONTRAST
  6387. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6388. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6389. gcode_M302();
  6390. break;
  6391. #endif // PREVENT_COLD_EXTRUSION
  6392. case 303: // M303 PID autotune
  6393. gcode_M303();
  6394. break;
  6395. #if ENABLED(SCARA)
  6396. case 360: // M360 SCARA Theta pos1
  6397. if (gcode_M360()) return;
  6398. break;
  6399. case 361: // M361 SCARA Theta pos2
  6400. if (gcode_M361()) return;
  6401. break;
  6402. case 362: // M362 SCARA Psi pos1
  6403. if (gcode_M362()) return;
  6404. break;
  6405. case 363: // M363 SCARA Psi pos2
  6406. if (gcode_M363()) return;
  6407. break;
  6408. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6409. if (gcode_M364()) return;
  6410. break;
  6411. case 365: // M365 Set SCARA scaling for X Y Z
  6412. gcode_M365();
  6413. break;
  6414. #endif // SCARA
  6415. case 400: // M400 finish all moves
  6416. gcode_M400();
  6417. break;
  6418. #if HAS_BED_PROBE
  6419. case 401:
  6420. gcode_M401();
  6421. break;
  6422. case 402:
  6423. gcode_M402();
  6424. break;
  6425. #endif // HAS_BED_PROBE
  6426. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6427. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6428. gcode_M404();
  6429. break;
  6430. case 405: //M405 Turn on filament sensor for control
  6431. gcode_M405();
  6432. break;
  6433. case 406: //M406 Turn off filament sensor for control
  6434. gcode_M406();
  6435. break;
  6436. case 407: //M407 Display measured filament diameter
  6437. gcode_M407();
  6438. break;
  6439. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6440. #if ENABLED(MESH_BED_LEVELING)
  6441. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6442. gcode_M420();
  6443. break;
  6444. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6445. gcode_M421();
  6446. break;
  6447. #endif
  6448. case 428: // M428 Apply current_position to home_offset
  6449. gcode_M428();
  6450. break;
  6451. case 500: // M500 Store settings in EEPROM
  6452. gcode_M500();
  6453. break;
  6454. case 501: // M501 Read settings from EEPROM
  6455. gcode_M501();
  6456. break;
  6457. case 502: // M502 Revert to default settings
  6458. gcode_M502();
  6459. break;
  6460. case 503: // M503 print settings currently in memory
  6461. gcode_M503();
  6462. break;
  6463. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6464. case 540:
  6465. gcode_M540();
  6466. break;
  6467. #endif
  6468. #if HAS_BED_PROBE
  6469. case 851:
  6470. gcode_M851();
  6471. break;
  6472. #endif // HAS_BED_PROBE
  6473. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6474. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6475. gcode_M600();
  6476. break;
  6477. #endif // FILAMENT_CHANGE_FEATURE
  6478. #if ENABLED(DUAL_X_CARRIAGE)
  6479. case 605:
  6480. gcode_M605();
  6481. break;
  6482. #endif // DUAL_X_CARRIAGE
  6483. #if ENABLED(LIN_ADVANCE)
  6484. case 905: // M905 Set advance factor.
  6485. gcode_M905();
  6486. break;
  6487. #endif
  6488. case 907: // M907 Set digital trimpot motor current using axis codes.
  6489. gcode_M907();
  6490. break;
  6491. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6492. case 908: // M908 Control digital trimpot directly.
  6493. gcode_M908();
  6494. break;
  6495. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6496. case 909: // M909 Print digipot/DAC current value
  6497. gcode_M909();
  6498. break;
  6499. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6500. gcode_M910();
  6501. break;
  6502. #endif
  6503. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6504. #if HAS_MICROSTEPS
  6505. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6506. gcode_M350();
  6507. break;
  6508. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6509. gcode_M351();
  6510. break;
  6511. #endif // HAS_MICROSTEPS
  6512. case 999: // M999: Restart after being Stopped
  6513. gcode_M999();
  6514. break;
  6515. }
  6516. break;
  6517. case 'T':
  6518. gcode_T(codenum);
  6519. break;
  6520. default: code_is_good = false;
  6521. }
  6522. KEEPALIVE_STATE(NOT_BUSY);
  6523. ExitUnknownCommand:
  6524. // Still unknown command? Throw an error
  6525. if (!code_is_good) unknown_command_error();
  6526. ok_to_send();
  6527. }
  6528. void FlushSerialRequestResend() {
  6529. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6530. MYSERIAL.flush();
  6531. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6532. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6533. ok_to_send();
  6534. }
  6535. void ok_to_send() {
  6536. refresh_cmd_timeout();
  6537. if (!send_ok[cmd_queue_index_r]) return;
  6538. SERIAL_PROTOCOLPGM(MSG_OK);
  6539. #if ENABLED(ADVANCED_OK)
  6540. char* p = command_queue[cmd_queue_index_r];
  6541. if (*p == 'N') {
  6542. SERIAL_PROTOCOL(' ');
  6543. SERIAL_ECHO(*p++);
  6544. while (NUMERIC_SIGNED(*p))
  6545. SERIAL_ECHO(*p++);
  6546. }
  6547. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6548. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6549. #endif
  6550. SERIAL_EOL;
  6551. }
  6552. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6553. void clamp_to_software_endstops(float target[XYZ]) {
  6554. #if ENABLED(min_software_endstops)
  6555. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6556. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6557. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6558. #endif
  6559. #if ENABLED(max_software_endstops)
  6560. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6561. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6562. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6563. #endif
  6564. }
  6565. #endif
  6566. #if ENABLED(DELTA)
  6567. void recalc_delta_settings(float radius, float diagonal_rod) {
  6568. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6569. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6570. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6571. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6572. delta_tower3_x = 0.0; // back middle tower
  6573. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6574. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6575. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6576. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6577. }
  6578. void inverse_kinematics(const float in_cartesian[XYZ]) {
  6579. const float cartesian[XYZ] = {
  6580. RAW_X_POSITION(in_cartesian[X_AXIS]),
  6581. RAW_Y_POSITION(in_cartesian[Y_AXIS]),
  6582. RAW_Z_POSITION(in_cartesian[Z_AXIS])
  6583. };
  6584. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6585. - sq(delta_tower1_x - cartesian[X_AXIS])
  6586. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6587. ) + cartesian[Z_AXIS];
  6588. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6589. - sq(delta_tower2_x - cartesian[X_AXIS])
  6590. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6591. ) + cartesian[Z_AXIS];
  6592. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6593. - sq(delta_tower3_x - cartesian[X_AXIS])
  6594. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6595. ) + cartesian[Z_AXIS];
  6596. /**
  6597. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6598. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6599. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6600. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6601. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6602. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6603. */
  6604. }
  6605. float delta_safe_distance_from_top() {
  6606. float cartesian[XYZ] = {
  6607. LOGICAL_X_POSITION(0),
  6608. LOGICAL_Y_POSITION(0),
  6609. LOGICAL_Z_POSITION(0)
  6610. };
  6611. inverse_kinematics(cartesian);
  6612. float distance = delta[TOWER_3];
  6613. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6614. inverse_kinematics(cartesian);
  6615. return abs(distance - delta[TOWER_3]);
  6616. }
  6617. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6618. //As discussed in Wikipedia "Trilateration"
  6619. //we are establishing a new coordinate
  6620. //system in the plane of the three carriage points.
  6621. //This system will have the origin at tower1 and
  6622. //tower2 is on the x axis. tower3 is in the X-Y
  6623. //plane with a Z component of zero. We will define unit
  6624. //vectors in this coordinate system in our original
  6625. //coordinate system. Then when we calculate the
  6626. //Xnew, Ynew and Znew values, we can translate back into
  6627. //the original system by moving along those unit vectors
  6628. //by the corresponding values.
  6629. // https://en.wikipedia.org/wiki/Trilateration
  6630. // Variable names matched to Marlin, c-version
  6631. // and avoiding a vector library
  6632. // by Andreas Hardtung 2016-06-7
  6633. // based on a Java function from
  6634. // "Delta Robot Kinematics by Steve Graves" V3
  6635. // Result is in cartesian_position[].
  6636. //Create a vector in old coordinates along x axis of new coordinate
  6637. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6638. //Get the Magnitude of vector.
  6639. float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
  6640. //Create unit vector by dividing by magnitude.
  6641. float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
  6642. //Now find vector from the origin of the new system to the third point.
  6643. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6644. //Now use dot product to find the component of this vector on the X axis.
  6645. float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
  6646. //Now create a vector along the x axis that represents the x component of p13.
  6647. float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
  6648. //Now subtract the X component away from the original vector leaving only the Y component. We use the
  6649. //variable that will be the unit vector after we scale it.
  6650. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
  6651. //The magnitude of Y component
  6652. float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  6653. //Now make vector a unit vector
  6654. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6655. //The cross product of the unit x and y is the unit z
  6656. //float[] ez = vectorCrossProd(ex, ey);
  6657. float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
  6658. //Now we have the d, i and j values defined in Wikipedia.
  6659. //We can plug them into the equations defined in
  6660. //Wikipedia for Xnew, Ynew and Znew
  6661. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
  6662. float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
  6663. float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
  6664. //Now we can start from the origin in the old coords and
  6665. //add vectors in the old coords that represent the
  6666. //Xnew, Ynew and Znew to find the point in the old system
  6667. cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
  6668. cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
  6669. cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  6670. };
  6671. void forward_kinematics_DELTA(float point[ABC]) {
  6672. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6673. }
  6674. void set_cartesian_from_steppers() {
  6675. forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
  6676. stepper.get_axis_position_mm(B_AXIS),
  6677. stepper.get_axis_position_mm(C_AXIS));
  6678. }
  6679. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6680. // Adjust print surface height by linear interpolation over the bed_level array.
  6681. void adjust_delta(float cartesian[XYZ]) {
  6682. if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
  6683. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6684. float h1 = 0.001 - half, h2 = half - 0.001,
  6685. grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[X_AXIS])),
  6686. grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[Y_AXIS]));
  6687. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6688. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6689. z1 = bed_level[floor_x + half][floor_y + half],
  6690. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6691. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6692. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6693. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6694. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6695. offset = (1 - ratio_x) * left + ratio_x * right;
  6696. delta[X_AXIS] += offset;
  6697. delta[Y_AXIS] += offset;
  6698. delta[Z_AXIS] += offset;
  6699. /**
  6700. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6701. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6702. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6703. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6704. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6705. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6706. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6707. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6708. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6709. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6710. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6711. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6712. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6713. */
  6714. }
  6715. #endif // AUTO_BED_LEVELING_FEATURE
  6716. #endif // DELTA
  6717. void set_current_from_steppers_for_axis(AxisEnum axis) {
  6718. #if ENABLED(DELTA)
  6719. set_cartesian_from_steppers();
  6720. current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
  6721. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  6722. vector_3 pos = planner.adjusted_position();
  6723. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6724. #else
  6725. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6726. #endif
  6727. }
  6728. #if ENABLED(MESH_BED_LEVELING)
  6729. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6730. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6731. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6732. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6733. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6734. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6735. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6736. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6737. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6738. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6739. if (cx1 == cx2 && cy1 == cy2) {
  6740. // Start and end on same mesh square
  6741. line_to_destination(fr_mm_s);
  6742. set_current_to_destination();
  6743. return;
  6744. }
  6745. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6746. float normalized_dist, end[NUM_AXIS];
  6747. // Split at the left/front border of the right/top square
  6748. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6749. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6750. memcpy(end, destination, sizeof(end));
  6751. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6752. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6753. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6754. CBI(x_splits, gcx);
  6755. }
  6756. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6757. memcpy(end, destination, sizeof(end));
  6758. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6759. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6760. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6761. CBI(y_splits, gcy);
  6762. }
  6763. else {
  6764. // Already split on a border
  6765. line_to_destination(fr_mm_s);
  6766. set_current_to_destination();
  6767. return;
  6768. }
  6769. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6770. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6771. // Do the split and look for more borders
  6772. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6773. // Restore destination from stack
  6774. memcpy(destination, end, sizeof(end));
  6775. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6776. }
  6777. #endif // MESH_BED_LEVELING
  6778. #if ENABLED(DELTA) || ENABLED(SCARA)
  6779. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6780. float difference[NUM_AXIS];
  6781. LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
  6782. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6783. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6784. if (cartesian_mm < 0.000001) return false;
  6785. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6786. float seconds = cartesian_mm / _feedrate_mm_s;
  6787. int steps = max(1, int(delta_segments_per_second * seconds));
  6788. float inv_steps = 1.0/steps;
  6789. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6790. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6791. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6792. for (int s = 1; s <= steps; s++) {
  6793. float fraction = float(s) * inv_steps;
  6794. LOOP_XYZE(i)
  6795. target[i] = current_position[i] + difference[i] * fraction;
  6796. inverse_kinematics(target);
  6797. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  6798. if (!bed_leveling_in_progress) adjust_delta(target);
  6799. #endif
  6800. //DEBUG_POS("prepare_kinematic_move_to", target);
  6801. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6802. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6803. }
  6804. return true;
  6805. }
  6806. #endif // DELTA || SCARA
  6807. #if ENABLED(DUAL_X_CARRIAGE)
  6808. inline bool prepare_move_to_destination_dualx() {
  6809. if (active_extruder_parked) {
  6810. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6811. // move duplicate extruder into correct duplication position.
  6812. planner.set_position_mm(
  6813. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6814. current_position[Y_AXIS],
  6815. current_position[Z_AXIS],
  6816. current_position[E_AXIS]
  6817. );
  6818. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6819. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6820. SYNC_PLAN_POSITION_KINEMATIC();
  6821. stepper.synchronize();
  6822. extruder_duplication_enabled = true;
  6823. active_extruder_parked = false;
  6824. }
  6825. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6826. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6827. // This is a travel move (with no extrusion)
  6828. // Skip it, but keep track of the current position
  6829. // (so it can be used as the start of the next non-travel move)
  6830. if (delayed_move_time != 0xFFFFFFFFUL) {
  6831. set_current_to_destination();
  6832. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6833. delayed_move_time = millis();
  6834. return false;
  6835. }
  6836. }
  6837. delayed_move_time = 0;
  6838. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6839. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6840. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6841. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6842. active_extruder_parked = false;
  6843. }
  6844. }
  6845. return true;
  6846. }
  6847. #endif // DUAL_X_CARRIAGE
  6848. #if DISABLED(DELTA) && DISABLED(SCARA)
  6849. inline bool prepare_move_to_destination_cartesian() {
  6850. // Do not use feedrate_percentage for E or Z only moves
  6851. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6852. line_to_destination();
  6853. }
  6854. else {
  6855. #if ENABLED(MESH_BED_LEVELING)
  6856. if (mbl.active()) {
  6857. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6858. return false;
  6859. }
  6860. else
  6861. #endif
  6862. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6863. }
  6864. return true;
  6865. }
  6866. #endif // !DELTA && !SCARA
  6867. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6868. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6869. if (DEBUGGING(DRYRUN)) return;
  6870. float de = dest_e - curr_e;
  6871. if (de) {
  6872. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6873. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6874. SERIAL_ECHO_START;
  6875. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6876. }
  6877. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6878. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6879. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6880. SERIAL_ECHO_START;
  6881. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6882. }
  6883. #endif
  6884. }
  6885. }
  6886. #endif // PREVENT_COLD_EXTRUSION
  6887. /**
  6888. * Prepare a single move and get ready for the next one
  6889. *
  6890. * (This may call planner.buffer_line several times to put
  6891. * smaller moves into the planner for DELTA or SCARA.)
  6892. */
  6893. void prepare_move_to_destination() {
  6894. clamp_to_software_endstops(destination);
  6895. refresh_cmd_timeout();
  6896. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6897. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6898. #endif
  6899. #if ENABLED(DELTA) || ENABLED(SCARA)
  6900. if (!prepare_kinematic_move_to(destination)) return;
  6901. #else
  6902. #if ENABLED(DUAL_X_CARRIAGE)
  6903. if (!prepare_move_to_destination_dualx()) return;
  6904. #endif
  6905. if (!prepare_move_to_destination_cartesian()) return;
  6906. #endif
  6907. set_current_to_destination();
  6908. }
  6909. #if ENABLED(ARC_SUPPORT)
  6910. /**
  6911. * Plan an arc in 2 dimensions
  6912. *
  6913. * The arc is approximated by generating many small linear segments.
  6914. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6915. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6916. * larger segments will tend to be more efficient. Your slicer should have
  6917. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6918. */
  6919. void plan_arc(
  6920. float target[NUM_AXIS], // Destination position
  6921. float* offset, // Center of rotation relative to current_position
  6922. uint8_t clockwise // Clockwise?
  6923. ) {
  6924. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6925. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6926. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6927. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6928. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6929. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6930. r_Y = -offset[Y_AXIS],
  6931. rt_X = target[X_AXIS] - center_X,
  6932. rt_Y = target[Y_AXIS] - center_Y;
  6933. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6934. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6935. if (angular_travel < 0) angular_travel += RADIANS(360);
  6936. if (clockwise) angular_travel -= RADIANS(360);
  6937. // Make a circle if the angular rotation is 0
  6938. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6939. angular_travel += RADIANS(360);
  6940. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6941. if (mm_of_travel < 0.001) return;
  6942. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6943. if (segments == 0) segments = 1;
  6944. float theta_per_segment = angular_travel / segments;
  6945. float linear_per_segment = linear_travel / segments;
  6946. float extruder_per_segment = extruder_travel / segments;
  6947. /**
  6948. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6949. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6950. * r_T = [cos(phi) -sin(phi);
  6951. * sin(phi) cos(phi] * r ;
  6952. *
  6953. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6954. * defined from the circle center to the initial position. Each line segment is formed by successive
  6955. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6956. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6957. * all double numbers are single precision on the Arduino. (True double precision will not have
  6958. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6959. * tool precision in some cases. Therefore, arc path correction is implemented.
  6960. *
  6961. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6962. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6963. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6964. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6965. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6966. * issue for CNC machines with the single precision Arduino calculations.
  6967. *
  6968. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6969. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6970. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6971. * This is important when there are successive arc motions.
  6972. */
  6973. // Vector rotation matrix values
  6974. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6975. float sin_T = theta_per_segment;
  6976. float arc_target[NUM_AXIS];
  6977. float sin_Ti, cos_Ti, r_new_Y;
  6978. uint16_t i;
  6979. int8_t count = 0;
  6980. // Initialize the linear axis
  6981. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6982. // Initialize the extruder axis
  6983. arc_target[E_AXIS] = current_position[E_AXIS];
  6984. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6985. millis_t next_idle_ms = millis() + 200UL;
  6986. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6987. thermalManager.manage_heater();
  6988. millis_t now = millis();
  6989. if (ELAPSED(now, next_idle_ms)) {
  6990. next_idle_ms = now + 200UL;
  6991. idle();
  6992. }
  6993. if (++count < N_ARC_CORRECTION) {
  6994. // Apply vector rotation matrix to previous r_X / 1
  6995. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6996. r_X = r_X * cos_T - r_Y * sin_T;
  6997. r_Y = r_new_Y;
  6998. }
  6999. else {
  7000. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7001. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7002. // To reduce stuttering, the sin and cos could be computed at different times.
  7003. // For now, compute both at the same time.
  7004. cos_Ti = cos(i * theta_per_segment);
  7005. sin_Ti = sin(i * theta_per_segment);
  7006. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7007. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7008. count = 0;
  7009. }
  7010. // Update arc_target location
  7011. arc_target[X_AXIS] = center_X + r_X;
  7012. arc_target[Y_AXIS] = center_Y + r_Y;
  7013. arc_target[Z_AXIS] += linear_per_segment;
  7014. arc_target[E_AXIS] += extruder_per_segment;
  7015. clamp_to_software_endstops(arc_target);
  7016. #if ENABLED(DELTA) || ENABLED(SCARA)
  7017. inverse_kinematics(arc_target);
  7018. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  7019. adjust_delta(arc_target);
  7020. #endif
  7021. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7022. #else
  7023. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  7024. #endif
  7025. }
  7026. // Ensure last segment arrives at target location.
  7027. #if ENABLED(DELTA) || ENABLED(SCARA)
  7028. inverse_kinematics(target);
  7029. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
  7030. adjust_delta(target);
  7031. #endif
  7032. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  7033. #else
  7034. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  7035. #endif
  7036. // As far as the parser is concerned, the position is now == target. In reality the
  7037. // motion control system might still be processing the action and the real tool position
  7038. // in any intermediate location.
  7039. set_current_to_destination();
  7040. }
  7041. #endif
  7042. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7043. void plan_cubic_move(const float offset[4]) {
  7044. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7045. // As far as the parser is concerned, the position is now == target. In reality the
  7046. // motion control system might still be processing the action and the real tool position
  7047. // in any intermediate location.
  7048. set_current_to_destination();
  7049. }
  7050. #endif // BEZIER_CURVE_SUPPORT
  7051. #if HAS_CONTROLLERFAN
  7052. void controllerFan() {
  7053. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7054. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7055. millis_t ms = millis();
  7056. if (ELAPSED(ms, nextMotorCheck)) {
  7057. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7058. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7059. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7060. #if E_STEPPERS > 1
  7061. || E1_ENABLE_READ == E_ENABLE_ON
  7062. #if HAS_X2_ENABLE
  7063. || X2_ENABLE_READ == X_ENABLE_ON
  7064. #endif
  7065. #if E_STEPPERS > 2
  7066. || E2_ENABLE_READ == E_ENABLE_ON
  7067. #if E_STEPPERS > 3
  7068. || E3_ENABLE_READ == E_ENABLE_ON
  7069. #endif
  7070. #endif
  7071. #endif
  7072. ) {
  7073. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7074. }
  7075. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7076. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7077. // allows digital or PWM fan output to be used (see M42 handling)
  7078. digitalWrite(CONTROLLERFAN_PIN, speed);
  7079. analogWrite(CONTROLLERFAN_PIN, speed);
  7080. }
  7081. }
  7082. #endif // HAS_CONTROLLERFAN
  7083. #if ENABLED(SCARA)
  7084. void forward_kinematics_SCARA(float f_scara[ABC]) {
  7085. // Perform forward kinematics, and place results in delta[]
  7086. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  7087. float x_sin, x_cos, y_sin, y_cos;
  7088. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  7089. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  7090. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7091. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  7092. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7093. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  7094. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  7095. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  7096. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  7097. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  7098. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  7099. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  7100. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  7101. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  7102. }
  7103. void inverse_kinematics(const float cartesian[XYZ]) {
  7104. // Inverse kinematics.
  7105. // Perform SCARA IK and place results in delta[].
  7106. // The maths and first version were done by QHARLEY.
  7107. // Integrated, tweaked by Joachim Cerny in June 2014.
  7108. float SCARA_pos[2];
  7109. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  7110. SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  7111. SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  7112. #if (Linkage_1 == Linkage_2)
  7113. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  7114. #else
  7115. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  7116. #endif
  7117. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  7118. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  7119. SCARA_K2 = Linkage_2 * SCARA_S2;
  7120. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  7121. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  7122. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  7123. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  7124. delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
  7125. /**
  7126. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  7127. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  7128. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  7129. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  7130. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  7131. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  7132. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  7133. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  7134. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  7135. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  7136. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  7137. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  7138. SERIAL_EOL;
  7139. */
  7140. }
  7141. #endif // SCARA
  7142. #if ENABLED(TEMP_STAT_LEDS)
  7143. static bool red_led = false;
  7144. static millis_t next_status_led_update_ms = 0;
  7145. void handle_status_leds(void) {
  7146. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7147. next_status_led_update_ms += 500; // Update every 0.5s
  7148. float max_temp = 0.0;
  7149. #if HAS_TEMP_BED
  7150. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7151. #endif
  7152. HOTEND_LOOP() {
  7153. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7154. }
  7155. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7156. if (new_led != red_led) {
  7157. red_led = new_led;
  7158. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7159. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7160. }
  7161. }
  7162. }
  7163. #endif
  7164. void enable_all_steppers() {
  7165. enable_x();
  7166. enable_y();
  7167. enable_z();
  7168. enable_e0();
  7169. enable_e1();
  7170. enable_e2();
  7171. enable_e3();
  7172. }
  7173. void disable_all_steppers() {
  7174. disable_x();
  7175. disable_y();
  7176. disable_z();
  7177. disable_e0();
  7178. disable_e1();
  7179. disable_e2();
  7180. disable_e3();
  7181. }
  7182. /**
  7183. * Standard idle routine keeps the machine alive
  7184. */
  7185. void idle(
  7186. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7187. bool no_stepper_sleep/*=false*/
  7188. #endif
  7189. ) {
  7190. lcd_update();
  7191. host_keepalive();
  7192. manage_inactivity(
  7193. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7194. no_stepper_sleep
  7195. #endif
  7196. );
  7197. thermalManager.manage_heater();
  7198. #if ENABLED(PRINTCOUNTER)
  7199. print_job_timer.tick();
  7200. #endif
  7201. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7202. buzzer.tick();
  7203. #endif
  7204. }
  7205. /**
  7206. * Manage several activities:
  7207. * - Check for Filament Runout
  7208. * - Keep the command buffer full
  7209. * - Check for maximum inactive time between commands
  7210. * - Check for maximum inactive time between stepper commands
  7211. * - Check if pin CHDK needs to go LOW
  7212. * - Check for KILL button held down
  7213. * - Check for HOME button held down
  7214. * - Check if cooling fan needs to be switched on
  7215. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7216. */
  7217. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7218. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7219. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7220. handle_filament_runout();
  7221. #endif
  7222. if (commands_in_queue < BUFSIZE) get_available_commands();
  7223. millis_t ms = millis();
  7224. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7225. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7226. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7227. #if ENABLED(DISABLE_INACTIVE_X)
  7228. disable_x();
  7229. #endif
  7230. #if ENABLED(DISABLE_INACTIVE_Y)
  7231. disable_y();
  7232. #endif
  7233. #if ENABLED(DISABLE_INACTIVE_Z)
  7234. disable_z();
  7235. #endif
  7236. #if ENABLED(DISABLE_INACTIVE_E)
  7237. disable_e0();
  7238. disable_e1();
  7239. disable_e2();
  7240. disable_e3();
  7241. #endif
  7242. }
  7243. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7244. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7245. chdkActive = false;
  7246. WRITE(CHDK, LOW);
  7247. }
  7248. #endif
  7249. #if HAS_KILL
  7250. // Check if the kill button was pressed and wait just in case it was an accidental
  7251. // key kill key press
  7252. // -------------------------------------------------------------------------------
  7253. static int killCount = 0; // make the inactivity button a bit less responsive
  7254. const int KILL_DELAY = 750;
  7255. if (!READ(KILL_PIN))
  7256. killCount++;
  7257. else if (killCount > 0)
  7258. killCount--;
  7259. // Exceeded threshold and we can confirm that it was not accidental
  7260. // KILL the machine
  7261. // ----------------------------------------------------------------
  7262. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7263. #endif
  7264. #if HAS_HOME
  7265. // Check to see if we have to home, use poor man's debouncer
  7266. // ---------------------------------------------------------
  7267. static int homeDebounceCount = 0; // poor man's debouncing count
  7268. const int HOME_DEBOUNCE_DELAY = 2500;
  7269. if (!READ(HOME_PIN)) {
  7270. if (!homeDebounceCount) {
  7271. enqueue_and_echo_commands_P(PSTR("G28"));
  7272. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7273. }
  7274. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7275. homeDebounceCount++;
  7276. else
  7277. homeDebounceCount = 0;
  7278. }
  7279. #endif
  7280. #if HAS_CONTROLLERFAN
  7281. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7282. #endif
  7283. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7284. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7285. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7286. #if ENABLED(SWITCHING_EXTRUDER)
  7287. bool oldstatus = E0_ENABLE_READ;
  7288. enable_e0();
  7289. #else // !SWITCHING_EXTRUDER
  7290. bool oldstatus;
  7291. switch (active_extruder) {
  7292. case 0:
  7293. oldstatus = E0_ENABLE_READ;
  7294. enable_e0();
  7295. break;
  7296. #if E_STEPPERS > 1
  7297. case 1:
  7298. oldstatus = E1_ENABLE_READ;
  7299. enable_e1();
  7300. break;
  7301. #if E_STEPPERS > 2
  7302. case 2:
  7303. oldstatus = E2_ENABLE_READ;
  7304. enable_e2();
  7305. break;
  7306. #if E_STEPPERS > 3
  7307. case 3:
  7308. oldstatus = E3_ENABLE_READ;
  7309. enable_e3();
  7310. break;
  7311. #endif
  7312. #endif
  7313. #endif
  7314. }
  7315. #endif // !SWITCHING_EXTRUDER
  7316. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7317. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7318. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS],
  7319. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS], active_extruder);
  7320. current_position[E_AXIS] = oldepos;
  7321. destination[E_AXIS] = oldedes;
  7322. planner.set_e_position_mm(oldepos);
  7323. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7324. stepper.synchronize();
  7325. #if ENABLED(SWITCHING_EXTRUDER)
  7326. E0_ENABLE_WRITE(oldstatus);
  7327. #else
  7328. switch (active_extruder) {
  7329. case 0:
  7330. E0_ENABLE_WRITE(oldstatus);
  7331. break;
  7332. #if E_STEPPERS > 1
  7333. case 1:
  7334. E1_ENABLE_WRITE(oldstatus);
  7335. break;
  7336. #if E_STEPPERS > 2
  7337. case 2:
  7338. E2_ENABLE_WRITE(oldstatus);
  7339. break;
  7340. #if E_STEPPERS > 3
  7341. case 3:
  7342. E3_ENABLE_WRITE(oldstatus);
  7343. break;
  7344. #endif
  7345. #endif
  7346. #endif
  7347. }
  7348. #endif // !SWITCHING_EXTRUDER
  7349. }
  7350. #endif // EXTRUDER_RUNOUT_PREVENT
  7351. #if ENABLED(DUAL_X_CARRIAGE)
  7352. // handle delayed move timeout
  7353. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7354. // travel moves have been received so enact them
  7355. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7356. set_destination_to_current();
  7357. prepare_move_to_destination();
  7358. }
  7359. #endif
  7360. #if ENABLED(TEMP_STAT_LEDS)
  7361. handle_status_leds();
  7362. #endif
  7363. planner.check_axes_activity();
  7364. }
  7365. void kill(const char* lcd_msg) {
  7366. SERIAL_ERROR_START;
  7367. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7368. #if ENABLED(ULTRA_LCD)
  7369. kill_screen(lcd_msg);
  7370. #else
  7371. UNUSED(lcd_msg);
  7372. #endif
  7373. delay(500); // Wait a short time
  7374. cli(); // Stop interrupts
  7375. thermalManager.disable_all_heaters();
  7376. disable_all_steppers();
  7377. #if HAS_POWER_SWITCH
  7378. pinMode(PS_ON_PIN, INPUT);
  7379. #endif
  7380. suicide();
  7381. while (1) {
  7382. #if ENABLED(USE_WATCHDOG)
  7383. watchdog_reset();
  7384. #endif
  7385. } // Wait for reset
  7386. }
  7387. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7388. void handle_filament_runout() {
  7389. if (!filament_ran_out) {
  7390. filament_ran_out = true;
  7391. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7392. stepper.synchronize();
  7393. }
  7394. }
  7395. #endif // FILAMENT_RUNOUT_SENSOR
  7396. #if ENABLED(FAST_PWM_FAN)
  7397. void setPwmFrequency(uint8_t pin, int val) {
  7398. val &= 0x07;
  7399. switch (digitalPinToTimer(pin)) {
  7400. #if defined(TCCR0A)
  7401. case TIMER0A:
  7402. case TIMER0B:
  7403. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7404. // TCCR0B |= val;
  7405. break;
  7406. #endif
  7407. #if defined(TCCR1A)
  7408. case TIMER1A:
  7409. case TIMER1B:
  7410. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7411. // TCCR1B |= val;
  7412. break;
  7413. #endif
  7414. #if defined(TCCR2)
  7415. case TIMER2:
  7416. case TIMER2:
  7417. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7418. TCCR2 |= val;
  7419. break;
  7420. #endif
  7421. #if defined(TCCR2A)
  7422. case TIMER2A:
  7423. case TIMER2B:
  7424. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7425. TCCR2B |= val;
  7426. break;
  7427. #endif
  7428. #if defined(TCCR3A)
  7429. case TIMER3A:
  7430. case TIMER3B:
  7431. case TIMER3C:
  7432. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7433. TCCR3B |= val;
  7434. break;
  7435. #endif
  7436. #if defined(TCCR4A)
  7437. case TIMER4A:
  7438. case TIMER4B:
  7439. case TIMER4C:
  7440. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7441. TCCR4B |= val;
  7442. break;
  7443. #endif
  7444. #if defined(TCCR5A)
  7445. case TIMER5A:
  7446. case TIMER5B:
  7447. case TIMER5C:
  7448. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7449. TCCR5B |= val;
  7450. break;
  7451. #endif
  7452. }
  7453. }
  7454. #endif // FAST_PWM_FAN
  7455. void stop() {
  7456. thermalManager.disable_all_heaters();
  7457. if (IsRunning()) {
  7458. Running = false;
  7459. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7460. SERIAL_ERROR_START;
  7461. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7462. LCD_MESSAGEPGM(MSG_STOPPED);
  7463. }
  7464. }
  7465. float calculate_volumetric_multiplier(float diameter) {
  7466. if (!volumetric_enabled || diameter == 0) return 1.0;
  7467. float d2 = diameter * 0.5;
  7468. return 1.0 / (M_PI * d2 * d2);
  7469. }
  7470. void calculate_volumetric_multipliers() {
  7471. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7472. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7473. }