My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "Marlin.h"
  23. #include "math.h"
  24. #ifndef UNIFIED_BED_LEVELING_H
  25. #define UNIFIED_BED_LEVELING_H
  26. #if ENABLED(AUTO_BED_LEVELING_UBL)
  27. #define UBL_OK false
  28. #define UBL_ERR true
  29. typedef struct {
  30. int x_index, y_index;
  31. float distance; // Not always used. But when populated, it is the distance
  32. // from the search location
  33. } mesh_index_pair;
  34. typedef struct { double dx, dy, dz; } vector;
  35. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  36. bool axis_unhomed_error(bool, bool, bool);
  37. void dump(char *str, float f);
  38. bool ubl_lcd_clicked();
  39. void probe_entire_mesh(float, float, bool, bool);
  40. void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
  41. void manually_probe_remaining_mesh(float, float, float, float, bool);
  42. vector tilt_mesh_based_on_3pts(float, float, float);
  43. void new_set_bed_level_equation_3pts(float, float, float);
  44. float measure_business_card_thickness(float);
  45. mesh_index_pair find_closest_mesh_point_of_type(MeshPointType, float, float, bool, unsigned int[16]);
  46. void find_mean_mesh_height();
  47. void shift_mesh_height();
  48. bool g29_parameter_parsing();
  49. void g29_what_command();
  50. void g29_eeprom_dump();
  51. void g29_compare_current_mesh_to_stored_mesh();
  52. void fine_tune_mesh(float, float, bool);
  53. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
  54. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  55. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  56. char *ftostr43sign(const float&, char);
  57. void gcode_G26();
  58. void gcode_G28();
  59. void gcode_G29();
  60. extern char conv[9];
  61. void save_ubl_active_state_and_disable();
  62. void restore_ubl_active_state_and_leave();
  63. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  64. #if ENABLED(ULTRA_LCD)
  65. extern char lcd_status_message[];
  66. void lcd_quick_feedback();
  67. #endif
  68. enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
  69. #define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
  70. #define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
  71. extern bool g26_debug_flag;
  72. extern float last_specified_z;
  73. extern float fade_scaling_factor_for_current_height;
  74. extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
  75. extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
  76. extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
  77. class unified_bed_leveling {
  78. public:
  79. struct ubl_state {
  80. bool active = false;
  81. float z_offset = 0.0;
  82. int eeprom_storage_slot = -1,
  83. n_x = UBL_MESH_NUM_X_POINTS,
  84. n_y = UBL_MESH_NUM_Y_POINTS;
  85. float mesh_x_min = UBL_MESH_MIN_X,
  86. mesh_y_min = UBL_MESH_MIN_Y,
  87. mesh_x_max = UBL_MESH_MAX_X,
  88. mesh_y_max = UBL_MESH_MAX_Y,
  89. mesh_x_dist = MESH_X_DIST,
  90. mesh_y_dist = MESH_Y_DIST,
  91. g29_correction_fade_height = 10.0,
  92. g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
  93. // point divide. So, we keep this number in both forms. The first
  94. // is for the user. The second one is the one that is actually used
  95. // again and again and again during the correction calculations.
  96. unsigned char padding[24]; // This is just to allow room to add state variables without
  97. // changing the location of data structures in the EEPROM.
  98. // This is for compatability with future versions to keep
  99. // people from having to regenerate thier mesh data.
  100. //
  101. // If you change the contents of this struct, please adjust
  102. // the padding[] to keep the size the same!
  103. } state, pre_initialized;
  104. unified_bed_leveling();
  105. // ~unified_bed_leveling(); // No destructor because this object never goes away!
  106. void display_map(int);
  107. void reset();
  108. void invalidate();
  109. void store_state();
  110. void load_state();
  111. void store_mesh(int);
  112. void load_mesh(int);
  113. bool sanity_check();
  114. FORCE_INLINE float map_x_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
  115. FORCE_INLINE float map_y_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
  116. void set_z(const int8_t px, const int8_t py, const float z) { z_values[px][py] = z; }
  117. int8_t get_cell_index_x(float x) {
  118. int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  119. return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
  120. } // position. But with this defined this way, it is possible
  121. // to extrapolate off of this point even further out. Probably
  122. // that is OK because something else should be keeping that from
  123. // happening and should not be worried about at this level.
  124. int8_t get_cell_index_y(float y) {
  125. int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  126. return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  127. } // position. But with this defined this way, it is possible
  128. // to extrapolate off of this point even further out. Probably
  129. // that is OK because something else should be keeping that from
  130. // happening and should not be worried about at this level.
  131. int8_t find_closest_x_index(float x) {
  132. int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  133. return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
  134. }
  135. int8_t find_closest_y_index(float y) {
  136. int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  137. return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
  138. }
  139. /**
  140. * z2 --|
  141. * z0 | |
  142. * | | + (z2-z1)
  143. * z1 | | |
  144. * ---+-------------+--------+-- --|
  145. * a1 a0 a2
  146. * |<---delta_a---------->|
  147. *
  148. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  149. * find the expected Z Height at a position between two known Z-Height locations
  150. *
  151. * It is farly expensive with its 4 floating point additions and 2 floating point
  152. * multiplications.
  153. */
  154. inline float calc_z0(float a0, float a1, float z1, float a2, float z2) {
  155. float delta_z = (z2 - z1);
  156. float delta_a = (a0 - a1) / (a2 - a1);
  157. return z1 + delta_a * delta_z;
  158. }
  159. /**
  160. * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
  161. * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
  162. * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
  163. * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
  164. * the X index of the x0 intersection available and we don't want to perform any extra floating
  165. * point operations.
  166. */
  167. inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(float x0, int x1_i, int yi) {
  168. if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
  169. SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
  170. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  171. SERIAL_ECHOPAIR(",yi=", yi);
  172. SERIAL_CHAR(')');
  173. SERIAL_EOL;
  174. return NAN;
  175. }
  176. const float a0ma1diva2ma1 = (x0 - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)),
  177. z1 = z_values[x1_i][yi],
  178. z2 = z_values[x1_i + 1][yi],
  179. dz = (z2 - z1);
  180. return z1 + a0ma1diva2ma1 * dz;
  181. }
  182. //
  183. // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
  184. //
  185. inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(float y0, int xi, int y1_i) {
  186. if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
  187. SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
  188. SERIAL_ECHOPAIR(", x1_i=", xi);
  189. SERIAL_ECHOPAIR(", yi=", y1_i);
  190. SERIAL_CHAR(')');
  191. SERIAL_EOL;
  192. return NAN;
  193. }
  194. const float a0ma1diva2ma1 = (y0 - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
  195. z1 = z_values[xi][y1_i],
  196. z2 = z_values[xi][y1_i + 1],
  197. dz = (z2 - z1);
  198. return z1 + a0ma1diva2ma1 * dz;
  199. }
  200. /**
  201. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  202. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  203. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  204. * on the Y position within the cell.
  205. */
  206. float get_z_correction(float x0, float y0) {
  207. int8_t cx = get_cell_index_x(x0),
  208. cy = get_cell_index_y(y0);
  209. if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
  210. SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
  211. SERIAL_ECHOPAIR(", y0=", y0);
  212. SERIAL_CHAR(')');
  213. SERIAL_EOL;
  214. #if ENABLED(ULTRA_LCD)
  215. strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
  216. lcd_quick_feedback();
  217. #endif
  218. return 0.0; // this used to return state.z_offset
  219. }
  220. float z1 = calc_z0(x0,
  221. map_x_index_to_bed_location(cx), z_values[cx][cy],
  222. map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]);
  223. float z2 = calc_z0(x0,
  224. map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
  225. map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
  226. float z0 = calc_z0(y0,
  227. map_y_index_to_bed_location(cy), z1,
  228. map_y_index_to_bed_location(cy + 1), z2);
  229. #if ENABLED(DEBUG_LEVELING_FEATURE)
  230. if (DEBUGGING(MESH_ADJUST)) {
  231. SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
  232. SERIAL_ECHOPAIR(",", y0);
  233. SERIAL_ECHOPGM(")=");
  234. SERIAL_ECHO_F(z0, 6);
  235. }
  236. #endif
  237. #if ENABLED(DEBUG_LEVELING_FEATURE)
  238. if (DEBUGGING(MESH_ADJUST)) {
  239. SERIAL_ECHOPGM(" >>>---> ");
  240. SERIAL_ECHO_F(z0, 6);
  241. SERIAL_EOL;
  242. }
  243. #endif
  244. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  245. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  246. // calculations. If our correction is NAN, we throw it out
  247. // because part of the Mesh is undefined and we don't have the
  248. // information we need to complete the height correction.
  249. #if ENABLED(DEBUG_LEVELING_FEATURE)
  250. if (DEBUGGING(MESH_ADJUST)) {
  251. SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( ");
  252. SERIAL_ECHO(x0);
  253. SERIAL_ECHOPGM(", ");
  254. SERIAL_ECHO(y0);
  255. SERIAL_ECHOLNPGM(" )");
  256. }
  257. #endif
  258. }
  259. return z0; // there used to be a +state.z_offset on this line
  260. }
  261. /**
  262. * This routine is used to scale the Z correction depending upon the current nozzle height. It is
  263. * optimized for speed. It avoids floating point operations by checking if the requested scaling
  264. * factor is going to be the same as the last time the function calculated a value. If so, it just
  265. * returns it.
  266. *
  267. * If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active
  268. * or if the current Z Height is past the specified 'Fade Height'
  269. */
  270. FORCE_INLINE float fade_scaling_factor_for_z(float current_z) {
  271. #ifndef ENABLE_LEVELING_FADE_HEIGHT // if turned off, just return 0.000 Note that we assume the
  272. return 0.000; // compiler will do 'Dead Code' elimination so there is no need
  273. #endif // for an #else clause here.
  274. if (last_specified_z == current_z)
  275. return fade_scaling_factor_for_current_height;
  276. last_specified_z = current_z;
  277. fade_scaling_factor_for_current_height =
  278. state.active && current_z < state.g29_correction_fade_height
  279. ? 1.0 - (current_z * state.g29_fade_height_multiplier)
  280. : 0.0;
  281. return fade_scaling_factor_for_current_height;
  282. }
  283. };
  284. extern unified_bed_leveling ubl;
  285. extern int ubl_eeprom_start;
  286. #endif // AUTO_BED_LEVELING_UBL
  287. #endif // UNIFIED_BED_LEVELING_H