My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 41KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[4];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. #endif
  66. static bool old_x_min_endstop=false;
  67. static bool old_x_max_endstop=false;
  68. static bool old_y_min_endstop=false;
  69. static bool old_y_max_endstop=false;
  70. static bool old_z_min_endstop=false;
  71. static bool old_z_max_endstop=false;
  72. static bool check_endstops = true;
  73. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  74. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  75. //===========================================================================
  76. //=============================functions ============================
  77. //===========================================================================
  78. #define CHECK_ENDSTOPS if(check_endstops)
  79. // intRes = intIn1 * intIn2 >> 16
  80. // uses:
  81. // r26 to store 0
  82. // r27 to store the byte 1 of the 24 bit result
  83. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  84. asm volatile ( \
  85. "clr r26 \n\t" \
  86. "mul %A1, %B2 \n\t" \
  87. "movw %A0, r0 \n\t" \
  88. "mul %A1, %A2 \n\t" \
  89. "add %A0, r1 \n\t" \
  90. "adc %B0, r26 \n\t" \
  91. "lsr r0 \n\t" \
  92. "adc %A0, r26 \n\t" \
  93. "adc %B0, r26 \n\t" \
  94. "clr r1 \n\t" \
  95. : \
  96. "=&r" (intRes) \
  97. : \
  98. "d" (charIn1), \
  99. "d" (intIn2) \
  100. : \
  101. "r26" \
  102. )
  103. // intRes = longIn1 * longIn2 >> 24
  104. // uses:
  105. // r26 to store 0
  106. // r27 to store the byte 1 of the 48bit result
  107. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  108. asm volatile ( \
  109. "clr r26 \n\t" \
  110. "mul %A1, %B2 \n\t" \
  111. "mov r27, r1 \n\t" \
  112. "mul %B1, %C2 \n\t" \
  113. "movw %A0, r0 \n\t" \
  114. "mul %C1, %C2 \n\t" \
  115. "add %B0, r0 \n\t" \
  116. "mul %C1, %B2 \n\t" \
  117. "add %A0, r0 \n\t" \
  118. "adc %B0, r1 \n\t" \
  119. "mul %A1, %C2 \n\t" \
  120. "add r27, r0 \n\t" \
  121. "adc %A0, r1 \n\t" \
  122. "adc %B0, r26 \n\t" \
  123. "mul %B1, %B2 \n\t" \
  124. "add r27, r0 \n\t" \
  125. "adc %A0, r1 \n\t" \
  126. "adc %B0, r26 \n\t" \
  127. "mul %C1, %A2 \n\t" \
  128. "add r27, r0 \n\t" \
  129. "adc %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "mul %B1, %A2 \n\t" \
  132. "add r27, r1 \n\t" \
  133. "adc %A0, r26 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "lsr r27 \n\t" \
  136. "adc %A0, r26 \n\t" \
  137. "adc %B0, r26 \n\t" \
  138. "clr r1 \n\t" \
  139. : \
  140. "=&r" (intRes) \
  141. : \
  142. "d" (longIn1), \
  143. "d" (longIn2) \
  144. : \
  145. "r26" , "r27" \
  146. )
  147. // Some useful constants
  148. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  149. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  150. void checkHitEndstops()
  151. {
  152. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  153. SERIAL_ECHO_START;
  154. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  155. if(endstop_x_hit) {
  156. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  157. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  158. }
  159. if(endstop_y_hit) {
  160. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  161. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  162. }
  163. if(endstop_z_hit) {
  164. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  165. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  166. }
  167. SERIAL_EOL;
  168. endstop_x_hit=false;
  169. endstop_y_hit=false;
  170. endstop_z_hit=false;
  171. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  172. if (abort_on_endstop_hit)
  173. {
  174. card.sdprinting = false;
  175. card.closefile();
  176. quickStop();
  177. setTargetHotend0(0);
  178. setTargetHotend1(0);
  179. setTargetHotend2(0);
  180. setTargetHotend3(0);
  181. setTargetBed(0);
  182. }
  183. #endif
  184. }
  185. }
  186. void endstops_hit_on_purpose()
  187. {
  188. endstop_x_hit=false;
  189. endstop_y_hit=false;
  190. endstop_z_hit=false;
  191. }
  192. void enable_endstops(bool check)
  193. {
  194. check_endstops = check;
  195. }
  196. // __________________________
  197. // /| |\ _________________ ^
  198. // / | | \ /| |\ |
  199. // / | | \ / | | \ s
  200. // / | | | | | \ p
  201. // / | | | | | \ e
  202. // +-----+------------------------+---+--+---------------+----+ e
  203. // | BLOCK 1 | BLOCK 2 | d
  204. //
  205. // time ----->
  206. //
  207. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  208. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  209. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  210. // The slope of acceleration is calculated with the leib ramp alghorithm.
  211. void st_wake_up() {
  212. // TCNT1 = 0;
  213. ENABLE_STEPPER_DRIVER_INTERRUPT();
  214. }
  215. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  216. unsigned short timer;
  217. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  218. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  219. step_rate = (step_rate >> 2)&0x3fff;
  220. step_loops = 4;
  221. }
  222. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  223. step_rate = (step_rate >> 1)&0x7fff;
  224. step_loops = 2;
  225. }
  226. else {
  227. step_loops = 1;
  228. }
  229. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  230. step_rate -= (F_CPU/500000); // Correct for minimal speed
  231. if(step_rate >= (8*256)){ // higher step rate
  232. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  233. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  234. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  235. MultiU16X8toH16(timer, tmp_step_rate, gain);
  236. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  237. }
  238. else { // lower step rates
  239. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  240. table_address += ((step_rate)>>1) & 0xfffc;
  241. timer = (unsigned short)pgm_read_word_near(table_address);
  242. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  243. }
  244. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  245. return timer;
  246. }
  247. // Initializes the trapezoid generator from the current block. Called whenever a new
  248. // block begins.
  249. FORCE_INLINE void trapezoid_generator_reset() {
  250. #ifdef ADVANCE
  251. advance = current_block->initial_advance;
  252. final_advance = current_block->final_advance;
  253. // Do E steps + advance steps
  254. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  255. old_advance = advance >>8;
  256. #endif
  257. deceleration_time = 0;
  258. // step_rate to timer interval
  259. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  260. // make a note of the number of step loops required at nominal speed
  261. step_loops_nominal = step_loops;
  262. acc_step_rate = current_block->initial_rate;
  263. acceleration_time = calc_timer(acc_step_rate);
  264. OCR1A = acceleration_time;
  265. // SERIAL_ECHO_START;
  266. // SERIAL_ECHOPGM("advance :");
  267. // SERIAL_ECHO(current_block->advance/256.0);
  268. // SERIAL_ECHOPGM("advance rate :");
  269. // SERIAL_ECHO(current_block->advance_rate/256.0);
  270. // SERIAL_ECHOPGM("initial advance :");
  271. // SERIAL_ECHO(current_block->initial_advance/256.0);
  272. // SERIAL_ECHOPGM("final advance :");
  273. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  274. }
  275. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  276. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  277. ISR(TIMER1_COMPA_vect)
  278. {
  279. // If there is no current block, attempt to pop one from the buffer
  280. if (current_block == NULL) {
  281. // Anything in the buffer?
  282. current_block = plan_get_current_block();
  283. if (current_block != NULL) {
  284. current_block->busy = true;
  285. trapezoid_generator_reset();
  286. counter_x = -(current_block->step_event_count >> 1);
  287. counter_y = counter_x;
  288. counter_z = counter_x;
  289. counter_e = counter_x;
  290. step_events_completed = 0;
  291. #ifdef Z_LATE_ENABLE
  292. if(current_block->steps_z > 0) {
  293. enable_z();
  294. OCR1A = 2000; //1ms wait
  295. return;
  296. }
  297. #endif
  298. // #ifdef ADVANCE
  299. // e_steps[current_block->active_extruder] = 0;
  300. // #endif
  301. }
  302. else {
  303. OCR1A=2000; // 1kHz.
  304. }
  305. }
  306. if (current_block != NULL) {
  307. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  308. out_bits = current_block->direction_bits;
  309. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  310. if((out_bits & (1<<X_AXIS))!=0){
  311. #ifdef DUAL_X_CARRIAGE
  312. if (extruder_duplication_enabled){
  313. X_DIR_WRITE(INVERT_X_DIR);
  314. X2_DIR_WRITE(INVERT_X_DIR);
  315. }
  316. else{
  317. if (current_block->active_extruder != 0)
  318. X2_DIR_WRITE(INVERT_X_DIR);
  319. else
  320. X_DIR_WRITE(INVERT_X_DIR);
  321. }
  322. #else
  323. X_DIR_WRITE(INVERT_X_DIR);
  324. #endif
  325. count_direction[X_AXIS]=-1;
  326. }
  327. else{
  328. #ifdef DUAL_X_CARRIAGE
  329. if (extruder_duplication_enabled){
  330. X_DIR_WRITE(!INVERT_X_DIR);
  331. X2_DIR_WRITE( !INVERT_X_DIR);
  332. }
  333. else{
  334. if (current_block->active_extruder != 0)
  335. X2_DIR_WRITE(!INVERT_X_DIR);
  336. else
  337. X_DIR_WRITE(!INVERT_X_DIR);
  338. }
  339. #else
  340. X_DIR_WRITE(!INVERT_X_DIR);
  341. #endif
  342. count_direction[X_AXIS]=1;
  343. }
  344. if((out_bits & (1<<Y_AXIS))!=0){
  345. Y_DIR_WRITE(INVERT_Y_DIR);
  346. #ifdef Y_DUAL_STEPPER_DRIVERS
  347. Y2_DIR_WRITE(!(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  348. #endif
  349. count_direction[Y_AXIS]=-1;
  350. }
  351. else{
  352. Y_DIR_WRITE(!INVERT_Y_DIR);
  353. #ifdef Y_DUAL_STEPPER_DRIVERS
  354. Y2_DIR_WRITE((INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  355. #endif
  356. count_direction[Y_AXIS]=1;
  357. }
  358. if(check_endstops) // check X and Y Endstops
  359. {
  360. #ifndef COREXY
  361. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot)
  362. #else
  363. if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis
  364. if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
  365. #endif
  366. { // -direction
  367. #ifdef DUAL_X_CARRIAGE
  368. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  369. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  370. #endif
  371. {
  372. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  373. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  374. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
  375. {
  376. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  377. endstop_x_hit=true;
  378. step_events_completed = current_block->step_event_count;
  379. }
  380. old_x_min_endstop = x_min_endstop;
  381. #endif
  382. }
  383. }
  384. else
  385. { // +direction
  386. #ifdef DUAL_X_CARRIAGE
  387. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  388. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  389. #endif
  390. {
  391. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  392. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  393. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
  394. {
  395. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  396. endstop_x_hit=true;
  397. step_events_completed = current_block->step_event_count;
  398. }
  399. old_x_max_endstop = x_max_endstop;
  400. #endif
  401. }
  402. }
  403. #ifndef COREXY
  404. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  405. #else
  406. if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis
  407. if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
  408. #endif
  409. { // -direction
  410. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  411. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  412. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
  413. {
  414. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  415. endstop_y_hit=true;
  416. step_events_completed = current_block->step_event_count;
  417. }
  418. old_y_min_endstop = y_min_endstop;
  419. #endif
  420. }
  421. else
  422. { // +direction
  423. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  424. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  425. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
  426. {
  427. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  428. endstop_y_hit=true;
  429. step_events_completed = current_block->step_event_count;
  430. }
  431. old_y_max_endstop = y_max_endstop;
  432. #endif
  433. }
  434. }
  435. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  436. Z_DIR_WRITE(INVERT_Z_DIR);
  437. #ifdef Z_DUAL_STEPPER_DRIVERS
  438. Z2_DIR_WRITE(INVERT_Z_DIR);
  439. #endif
  440. count_direction[Z_AXIS]=-1;
  441. CHECK_ENDSTOPS
  442. {
  443. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  444. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  445. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  446. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  447. endstop_z_hit=true;
  448. step_events_completed = current_block->step_event_count;
  449. }
  450. old_z_min_endstop = z_min_endstop;
  451. #endif
  452. }
  453. }
  454. else { // +direction
  455. Z_DIR_WRITE(!INVERT_Z_DIR);
  456. #ifdef Z_DUAL_STEPPER_DRIVERS
  457. Z2_DIR_WRITE(!INVERT_Z_DIR);
  458. #endif
  459. count_direction[Z_AXIS]=1;
  460. CHECK_ENDSTOPS
  461. {
  462. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  463. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  464. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  465. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  466. endstop_z_hit=true;
  467. step_events_completed = current_block->step_event_count;
  468. }
  469. old_z_max_endstop = z_max_endstop;
  470. #endif
  471. }
  472. }
  473. #ifndef ADVANCE
  474. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  475. REV_E_DIR();
  476. count_direction[E_AXIS]=-1;
  477. }
  478. else { // +direction
  479. NORM_E_DIR();
  480. count_direction[E_AXIS]=1;
  481. }
  482. #endif //!ADVANCE
  483. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  484. #ifndef AT90USB
  485. MSerial.checkRx(); // Check for serial chars.
  486. #endif
  487. #ifdef ADVANCE
  488. counter_e += current_block->steps_e;
  489. if (counter_e > 0) {
  490. counter_e -= current_block->step_event_count;
  491. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  492. e_steps[current_block->active_extruder]--;
  493. }
  494. else {
  495. e_steps[current_block->active_extruder]++;
  496. }
  497. }
  498. #endif //ADVANCE
  499. counter_x += current_block->steps_x;
  500. #ifdef CONFIG_STEPPERS_TOSHIBA
  501. /* The Toshiba stepper controller require much longer pulses.
  502. * So we 'stage' decompose the pulses between high and low
  503. * instead of doing each in turn. The extra tests add enough
  504. * lag to allow it work with without needing NOPs
  505. */
  506. if (counter_x > 0) X_STEP_WRITE(HIGH);
  507. counter_y += current_block->steps_y;
  508. if (counter_y > 0) Y_STEP_WRITE(HIGH);
  509. counter_z += current_block->steps_z;
  510. if (counter_z > 0) Z_STEP_WRITE(HIGH);
  511. #ifndef ADVANCE
  512. counter_e += current_block->steps_e;
  513. if (counter_e > 0) WRITE_E_STEP(HIGH);
  514. #endif //!ADVANCE
  515. if (counter_x > 0) {
  516. counter_x -= current_block->step_event_count;
  517. count_position[X_AXIS] += count_direction[X_AXIS];
  518. X_STEP_WRITE(LOW);
  519. }
  520. if (counter_y > 0) {
  521. counter_y -= current_block->step_event_count;
  522. count_position[Y_AXIS] += count_direction[Y_AXIS];
  523. Y_STEP_WRITE( LOW);
  524. }
  525. if (counter_z > 0) {
  526. counter_z -= current_block->step_event_count;
  527. count_position[Z_AXIS] += count_direction[Z_AXIS];
  528. Z_STEP_WRITE(LOW);
  529. }
  530. #ifndef ADVANCE
  531. if (counter_e > 0) {
  532. counter_e -= current_block->step_event_count;
  533. count_position[E_AXIS] += count_direction[E_AXIS];
  534. WRITE_E_STEP(LOW);
  535. }
  536. #endif //!ADVANCE
  537. #else
  538. if (counter_x > 0) {
  539. #ifdef DUAL_X_CARRIAGE
  540. if (extruder_duplication_enabled){
  541. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  542. X2_STEP_WRITE( !INVERT_X_STEP_PIN);
  543. }
  544. else {
  545. if (current_block->active_extruder != 0)
  546. X2_STEP_WRITE( !INVERT_X_STEP_PIN);
  547. else
  548. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  549. }
  550. #else
  551. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  552. #endif
  553. counter_x -= current_block->step_event_count;
  554. count_position[X_AXIS] += count_direction[X_AXIS];
  555. #ifdef DUAL_X_CARRIAGE
  556. if (extruder_duplication_enabled){
  557. X_STEP_WRITE(INVERT_X_STEP_PIN);
  558. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  559. }
  560. else {
  561. if (current_block->active_extruder != 0)
  562. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  563. else
  564. X_STEP_WRITE(INVERT_X_STEP_PIN);
  565. }
  566. #else
  567. X_STEP_WRITE(INVERT_X_STEP_PIN);
  568. #endif
  569. }
  570. counter_y += current_block->steps_y;
  571. if (counter_y > 0) {
  572. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  573. #ifdef Y_DUAL_STEPPER_DRIVERS
  574. Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
  575. #endif
  576. counter_y -= current_block->step_event_count;
  577. count_position[Y_AXIS] += count_direction[Y_AXIS];
  578. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  579. #ifdef Y_DUAL_STEPPER_DRIVERS
  580. Y2_STEP_WRITE( INVERT_Y_STEP_PIN);
  581. #endif
  582. }
  583. counter_z += current_block->steps_z;
  584. if (counter_z > 0) {
  585. Z_STEP_WRITE( !INVERT_Z_STEP_PIN);
  586. #ifdef Z_DUAL_STEPPER_DRIVERS
  587. Z2_STEP_WRITE(!INVERT_Z_STEP_PIN);
  588. #endif
  589. counter_z -= current_block->step_event_count;
  590. count_position[Z_AXIS] += count_direction[Z_AXIS];
  591. Z_STEP_WRITE( INVERT_Z_STEP_PIN);
  592. #ifdef Z_DUAL_STEPPER_DRIVERS
  593. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  594. #endif
  595. }
  596. #ifndef ADVANCE
  597. counter_e += current_block->steps_e;
  598. if (counter_e > 0) {
  599. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  600. counter_e -= current_block->step_event_count;
  601. count_position[E_AXIS] += count_direction[E_AXIS];
  602. WRITE_E_STEP(INVERT_E_STEP_PIN);
  603. }
  604. #endif //!ADVANCE
  605. #endif // CONFIG_STEPPERS_TOSHIBA
  606. step_events_completed += 1;
  607. if(step_events_completed >= current_block->step_event_count) break;
  608. }
  609. // Calculare new timer value
  610. unsigned short timer;
  611. unsigned short step_rate;
  612. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  613. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  614. acc_step_rate += current_block->initial_rate;
  615. // upper limit
  616. if(acc_step_rate > current_block->nominal_rate)
  617. acc_step_rate = current_block->nominal_rate;
  618. // step_rate to timer interval
  619. timer = calc_timer(acc_step_rate);
  620. OCR1A = timer;
  621. acceleration_time += timer;
  622. #ifdef ADVANCE
  623. for(int8_t i=0; i < step_loops; i++) {
  624. advance += advance_rate;
  625. }
  626. //if(advance > current_block->advance) advance = current_block->advance;
  627. // Do E steps + advance steps
  628. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  629. old_advance = advance >>8;
  630. #endif
  631. }
  632. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  633. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  634. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  635. step_rate = current_block->final_rate;
  636. }
  637. else {
  638. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  639. }
  640. // lower limit
  641. if(step_rate < current_block->final_rate)
  642. step_rate = current_block->final_rate;
  643. // step_rate to timer interval
  644. timer = calc_timer(step_rate);
  645. OCR1A = timer;
  646. deceleration_time += timer;
  647. #ifdef ADVANCE
  648. for(int8_t i=0; i < step_loops; i++) {
  649. advance -= advance_rate;
  650. }
  651. if(advance < final_advance) advance = final_advance;
  652. // Do E steps + advance steps
  653. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  654. old_advance = advance >>8;
  655. #endif //ADVANCE
  656. }
  657. else {
  658. OCR1A = OCR1A_nominal;
  659. // ensure we're running at the correct step rate, even if we just came off an acceleration
  660. step_loops = step_loops_nominal;
  661. }
  662. // If current block is finished, reset pointer
  663. if (step_events_completed >= current_block->step_event_count) {
  664. current_block = NULL;
  665. plan_discard_current_block();
  666. }
  667. }
  668. }
  669. #ifdef ADVANCE
  670. unsigned char old_OCR0A;
  671. // Timer interrupt for E. e_steps is set in the main routine;
  672. // Timer 0 is shared with millies
  673. ISR(TIMER0_COMPA_vect)
  674. {
  675. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  676. OCR0A = old_OCR0A;
  677. // Set E direction (Depends on E direction + advance)
  678. for(unsigned char i=0; i<4;i++) {
  679. if (e_steps[0] != 0) {
  680. E0_STEP_WRITE( INVERT_E_STEP_PIN);
  681. if (e_steps[0] < 0) {
  682. E0_DIR_WRITE(INVERT_E0_DIR);
  683. e_steps[0]++;
  684. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  685. }
  686. else if (e_steps[0] > 0) {
  687. E0_DIR_WRITE(!INVERT_E0_DIR);
  688. e_steps[0]--;
  689. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  690. }
  691. }
  692. #if EXTRUDERS > 1
  693. if (e_steps[1] != 0) {
  694. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  695. if (e_steps[1] < 0) {
  696. E1_DIR_WRITE(INVERT_E1_DIR);
  697. e_steps[1]++;
  698. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  699. }
  700. else if (e_steps[1] > 0) {
  701. E1_DIR_WRITE(!INVERT_E1_DIR);
  702. e_steps[1]--;
  703. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  704. }
  705. }
  706. #endif
  707. #if EXTRUDERS > 2
  708. if (e_steps[2] != 0) {
  709. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  710. if (e_steps[2] < 0) {
  711. E2_DIR_WRITE(INVERT_E2_DIR);
  712. e_steps[2]++;
  713. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  714. }
  715. else if (e_steps[2] > 0) {
  716. E2_DIR_WRITE(!INVERT_E2_DIR);
  717. e_steps[2]--;
  718. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  719. }
  720. }
  721. #endif
  722. #if EXTRUDERS > 3
  723. if (e_steps[3] != 0) {
  724. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  725. if (e_steps[3] < 0) {
  726. E3_DIR_WRITE(INVERT_E3_DIR);
  727. e_steps[3]++;
  728. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  729. }
  730. else if (e_steps[3] > 0) {
  731. E3_DIR_WRITE(!INVERT_E3_DIR);
  732. e_steps[3]--;
  733. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  734. }
  735. }
  736. #endif
  737. }
  738. }
  739. #endif // ADVANCE
  740. void st_init()
  741. {
  742. digipot_init(); //Initialize Digipot Motor Current
  743. microstep_init(); //Initialize Microstepping Pins
  744. // initialise TMC Steppers
  745. #ifdef HAVE_TMCDRIVER
  746. tmc_init();
  747. #endif
  748. // initialise L6470 Steppers
  749. #ifdef HAVE_L6470DRIVER
  750. L6470_init();
  751. #endif
  752. //Initialize Dir Pins
  753. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  754. X_DIR_INIT;
  755. #endif
  756. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  757. X2_DIR_INIT;
  758. #endif
  759. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  760. Y_DIR_INIT;
  761. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  762. Y2_DIR_INIT;
  763. #endif
  764. #endif
  765. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  766. Z_DIR_INIT;
  767. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  768. Z2_DIR_INIT;
  769. #endif
  770. #endif
  771. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  772. E0_DIR_INIT;
  773. #endif
  774. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  775. E1_DIR_INIT;
  776. #endif
  777. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  778. E2_DIR_INIT;
  779. #endif
  780. #if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1)
  781. E3_DIR_INIT;
  782. #endif
  783. //Initialize Enable Pins - steppers default to disabled.
  784. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  785. X_ENABLE_INIT;
  786. if(!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  787. #endif
  788. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  789. X2_ENABLE_INIT;
  790. if(!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  791. #endif
  792. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  793. Y_ENABLE_INIT;
  794. if(!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  795. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  796. Y2_ENABLE_INIT;
  797. if(!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  798. #endif
  799. #endif
  800. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  801. Z_ENABLE_INIT;
  802. if(!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  803. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  804. Z2_ENABLE_INIT;
  805. if(!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  806. #endif
  807. #endif
  808. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  809. E0_ENABLE_INIT;
  810. if(!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  811. #endif
  812. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  813. E1_ENABLE_INIT;
  814. if(!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  815. #endif
  816. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  817. E2_ENABLE_INIT;
  818. if(!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  819. #endif
  820. #if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
  821. E3_ENABLE_INIT;
  822. if(!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  823. #endif
  824. //endstops and pullups
  825. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  826. SET_INPUT(X_MIN_PIN);
  827. #ifdef ENDSTOPPULLUP_XMIN
  828. WRITE(X_MIN_PIN,HIGH);
  829. #endif
  830. #endif
  831. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  832. SET_INPUT(Y_MIN_PIN);
  833. #ifdef ENDSTOPPULLUP_YMIN
  834. WRITE(Y_MIN_PIN,HIGH);
  835. #endif
  836. #endif
  837. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  838. SET_INPUT(Z_MIN_PIN);
  839. #ifdef ENDSTOPPULLUP_ZMIN
  840. WRITE(Z_MIN_PIN,HIGH);
  841. #endif
  842. #endif
  843. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  844. SET_INPUT(X_MAX_PIN);
  845. #ifdef ENDSTOPPULLUP_XMAX
  846. WRITE(X_MAX_PIN,HIGH);
  847. #endif
  848. #endif
  849. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  850. SET_INPUT(Y_MAX_PIN);
  851. #ifdef ENDSTOPPULLUP_YMAX
  852. WRITE(Y_MAX_PIN,HIGH);
  853. #endif
  854. #endif
  855. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  856. SET_INPUT(Z_MAX_PIN);
  857. #ifdef ENDSTOPPULLUP_ZMAX
  858. WRITE(Z_MAX_PIN,HIGH);
  859. #endif
  860. #endif
  861. //Initialize Step Pins
  862. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  863. X_STEP_INIT;
  864. X_STEP_WRITE(INVERT_X_STEP_PIN);
  865. disable_x();
  866. #endif
  867. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  868. X2_STEP_INIT;
  869. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  870. disable_x();
  871. #endif
  872. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  873. Y_STEP_INIT;
  874. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  875. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  876. Y2_STEP_INIT;
  877. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  878. #endif
  879. disable_y();
  880. #endif
  881. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  882. Z_STEP_INIT;
  883. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  884. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  885. Z2_STEP_INIT;
  886. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  887. #endif
  888. disable_z();
  889. #endif
  890. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  891. E0_STEP_INIT;
  892. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  893. disable_e0();
  894. #endif
  895. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  896. E1_STEP_INIT;
  897. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  898. disable_e1();
  899. #endif
  900. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  901. E2_STEP_INIT;
  902. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  903. disable_e2();
  904. #endif
  905. #if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
  906. E3_STEP_INIT;
  907. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  908. disable_e3();
  909. #endif
  910. // waveform generation = 0100 = CTC
  911. TCCR1B &= ~(1<<WGM13);
  912. TCCR1B |= (1<<WGM12);
  913. TCCR1A &= ~(1<<WGM11);
  914. TCCR1A &= ~(1<<WGM10);
  915. // output mode = 00 (disconnected)
  916. TCCR1A &= ~(3<<COM1A0);
  917. TCCR1A &= ~(3<<COM1B0);
  918. // Set the timer pre-scaler
  919. // Generally we use a divider of 8, resulting in a 2MHz timer
  920. // frequency on a 16MHz MCU. If you are going to change this, be
  921. // sure to regenerate speed_lookuptable.h with
  922. // create_speed_lookuptable.py
  923. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  924. OCR1A = 0x4000;
  925. TCNT1 = 0;
  926. ENABLE_STEPPER_DRIVER_INTERRUPT();
  927. #ifdef ADVANCE
  928. #if defined(TCCR0A) && defined(WGM01)
  929. TCCR0A &= ~(1<<WGM01);
  930. TCCR0A &= ~(1<<WGM00);
  931. #endif
  932. e_steps[0] = 0;
  933. e_steps[1] = 0;
  934. e_steps[2] = 0;
  935. e_steps[3] = 0;
  936. TIMSK0 |= (1<<OCIE0A);
  937. #endif //ADVANCE
  938. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  939. sei();
  940. }
  941. // Block until all buffered steps are executed
  942. void st_synchronize()
  943. {
  944. while( blocks_queued()) {
  945. manage_heater();
  946. manage_inactivity();
  947. lcd_update();
  948. }
  949. }
  950. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  951. {
  952. CRITICAL_SECTION_START;
  953. count_position[X_AXIS] = x;
  954. count_position[Y_AXIS] = y;
  955. count_position[Z_AXIS] = z;
  956. count_position[E_AXIS] = e;
  957. CRITICAL_SECTION_END;
  958. }
  959. void st_set_e_position(const long &e)
  960. {
  961. CRITICAL_SECTION_START;
  962. count_position[E_AXIS] = e;
  963. CRITICAL_SECTION_END;
  964. }
  965. long st_get_position(uint8_t axis)
  966. {
  967. long count_pos;
  968. CRITICAL_SECTION_START;
  969. count_pos = count_position[axis];
  970. CRITICAL_SECTION_END;
  971. return count_pos;
  972. }
  973. #ifdef ENABLE_AUTO_BED_LEVELING
  974. float st_get_position_mm(uint8_t axis)
  975. {
  976. float steper_position_in_steps = st_get_position(axis);
  977. return steper_position_in_steps / axis_steps_per_unit[axis];
  978. }
  979. #endif // ENABLE_AUTO_BED_LEVELING
  980. void finishAndDisableSteppers()
  981. {
  982. st_synchronize();
  983. disable_x();
  984. disable_y();
  985. disable_z();
  986. disable_e0();
  987. disable_e1();
  988. disable_e2();
  989. disable_e3();
  990. }
  991. void quickStop()
  992. {
  993. DISABLE_STEPPER_DRIVER_INTERRUPT();
  994. while(blocks_queued())
  995. plan_discard_current_block();
  996. current_block = NULL;
  997. ENABLE_STEPPER_DRIVER_INTERRUPT();
  998. }
  999. #ifdef BABYSTEPPING
  1000. void babystep(const uint8_t axis,const bool direction)
  1001. {
  1002. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1003. //store initial pin states
  1004. switch(axis)
  1005. {
  1006. case X_AXIS:
  1007. {
  1008. enable_x();
  1009. uint8_t old_x_dir_pin= X_DIR_READ; //if dualzstepper, both point to same direction.
  1010. //setup new step
  1011. X_DIR_WRITE((INVERT_X_DIR)^direction);
  1012. #ifdef DUAL_X_CARRIAGE
  1013. X2_DIR_WRITE((INVERT_X_DIR)^direction);
  1014. #endif
  1015. //perform step
  1016. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1017. #ifdef DUAL_X_CARRIAGE
  1018. X2_STEP_WRITE(!INVERT_X_STEP_PIN);
  1019. #endif
  1020. _delay_us(1U); // wait 1 microsecond
  1021. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1022. #ifdef DUAL_X_CARRIAGE
  1023. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  1024. #endif
  1025. //get old pin state back.
  1026. X_DIR_WRITE(old_x_dir_pin);
  1027. #ifdef DUAL_X_CARRIAGE
  1028. X2_DIR_WRITE(old_x_dir_pin);
  1029. #endif
  1030. }
  1031. break;
  1032. case Y_AXIS:
  1033. {
  1034. enable_y();
  1035. uint8_t old_y_dir_pin= Y_DIR_READ; //if dualzstepper, both point to same direction.
  1036. //setup new step
  1037. Y_DIR_WRITE((INVERT_Y_DIR)^direction);
  1038. #ifdef DUAL_Y_CARRIAGE
  1039. Y2_DIR_WRITE((INVERT_Y_DIR)^direction);
  1040. #endif
  1041. //perform step
  1042. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1043. #ifdef DUAL_Y_CARRIAGE
  1044. Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
  1045. #endif
  1046. _delay_us(1U); // wait 1 microsecond
  1047. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1048. #ifdef DUAL_Y_CARRIAGE
  1049. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  1050. #endif
  1051. //get old pin state back.
  1052. Y_DIR_WRITE(old_y_dir_pin);
  1053. #ifdef DUAL_Y_CARRIAGE
  1054. Y2_DIR_WRITE(old_y_dir_pin);
  1055. #endif
  1056. }
  1057. break;
  1058. #ifndef DELTA
  1059. case Z_AXIS:
  1060. {
  1061. enable_z();
  1062. uint8_t old_z_dir_pin= Z_DIR_READ; //if dualzstepper, both point to same direction.
  1063. //setup new step
  1064. Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1065. #ifdef Z_DUAL_STEPPER_DRIVERS
  1066. Z2_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1067. #endif
  1068. //perform step
  1069. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1070. #ifdef Z_DUAL_STEPPER_DRIVERS
  1071. Z2_STEP_WRITE( !INVERT_Z_STEP_PIN);
  1072. #endif
  1073. _delay_us(1U); // wait 1 microsecond
  1074. Z_STEP_WRITE( INVERT_Z_STEP_PIN);
  1075. #ifdef Z_DUAL_STEPPER_DRIVERS
  1076. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  1077. #endif
  1078. //get old pin state back.
  1079. Z_DIR_WRITE(old_z_dir_pin);
  1080. #ifdef Z_DUAL_STEPPER_DRIVERS
  1081. Z2_DIR_WRITE(old_z_dir_pin);
  1082. #endif
  1083. }
  1084. break;
  1085. #else //DELTA
  1086. case Z_AXIS:
  1087. {
  1088. enable_x();
  1089. enable_y();
  1090. enable_z();
  1091. uint8_t old_x_dir_pin= X_DIR_READ;
  1092. uint8_t old_y_dir_pin= Y_DIR_READ;
  1093. uint8_t old_z_dir_pin= Z_DIR_READ;
  1094. //setup new step
  1095. X_DIR_WRITE((INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
  1096. Y_DIR_WRITE((INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
  1097. Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1098. //perform step
  1099. X_STEP_WRITE( !INVERT_X_STEP_PIN);
  1100. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1101. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1102. _delay_us(1U); // wait 1 microsecond
  1103. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1104. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1105. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1106. //get old pin state back.
  1107. X_DIR_WRITE(old_x_dir_pin);
  1108. Y_DIR_WRITE(old_y_dir_pin);
  1109. Z_DIR_WRITE(old_z_dir_pin);
  1110. }
  1111. break;
  1112. #endif
  1113. default: break;
  1114. }
  1115. }
  1116. #endif //BABYSTEPPING
  1117. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1118. {
  1119. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1120. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1121. SPI.transfer(address); // send in the address and value via SPI:
  1122. SPI.transfer(value);
  1123. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1124. //delay(10);
  1125. #endif
  1126. }
  1127. void digipot_init() //Initialize Digipot Motor Current
  1128. {
  1129. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1130. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1131. SPI.begin();
  1132. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1133. for(int i=0;i<=4;i++)
  1134. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1135. digipot_current(i,digipot_motor_current[i]);
  1136. #endif
  1137. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1138. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1139. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1140. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1141. digipot_current(0, motor_current_setting[0]);
  1142. digipot_current(1, motor_current_setting[1]);
  1143. digipot_current(2, motor_current_setting[2]);
  1144. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1145. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1146. #endif
  1147. }
  1148. void digipot_current(uint8_t driver, int current)
  1149. {
  1150. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1151. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1152. digitalPotWrite(digipot_ch[driver], current);
  1153. #endif
  1154. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1155. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1156. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1157. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1158. #endif
  1159. }
  1160. void microstep_init()
  1161. {
  1162. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1163. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1164. pinMode(E1_MS1_PIN,OUTPUT);
  1165. pinMode(E1_MS2_PIN,OUTPUT);
  1166. #endif
  1167. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1168. pinMode(X_MS1_PIN,OUTPUT);
  1169. pinMode(X_MS2_PIN,OUTPUT);
  1170. pinMode(Y_MS1_PIN,OUTPUT);
  1171. pinMode(Y_MS2_PIN,OUTPUT);
  1172. pinMode(Z_MS1_PIN,OUTPUT);
  1173. pinMode(Z_MS2_PIN,OUTPUT);
  1174. pinMode(E0_MS1_PIN,OUTPUT);
  1175. pinMode(E0_MS2_PIN,OUTPUT);
  1176. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1177. #endif
  1178. }
  1179. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1180. {
  1181. if(ms1 > -1) switch(driver)
  1182. {
  1183. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1184. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1185. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1186. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1187. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1188. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1189. #endif
  1190. }
  1191. if(ms2 > -1) switch(driver)
  1192. {
  1193. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1194. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1195. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1196. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1197. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1198. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1199. #endif
  1200. }
  1201. }
  1202. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1203. {
  1204. switch(stepping_mode)
  1205. {
  1206. case 1: microstep_ms(driver,MICROSTEP1); break;
  1207. case 2: microstep_ms(driver,MICROSTEP2); break;
  1208. case 4: microstep_ms(driver,MICROSTEP4); break;
  1209. case 8: microstep_ms(driver,MICROSTEP8); break;
  1210. case 16: microstep_ms(driver,MICROSTEP16); break;
  1211. }
  1212. }
  1213. void microstep_readings()
  1214. {
  1215. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1216. SERIAL_PROTOCOLPGM("X: ");
  1217. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1218. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1219. SERIAL_PROTOCOLPGM("Y: ");
  1220. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1221. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1222. SERIAL_PROTOCOLPGM("Z: ");
  1223. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1224. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1225. SERIAL_PROTOCOLPGM("E0: ");
  1226. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1227. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1228. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1229. SERIAL_PROTOCOLPGM("E1: ");
  1230. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1231. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1232. #endif
  1233. }