My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

Marlin_main.cpp 390KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. void M100_dump_routine(const char * const title, const char *start, const char *end);
  273. #endif
  274. #if ENABLED(SDSUPPORT)
  275. CardReader card;
  276. #endif
  277. #if ENABLED(EXPERIMENTAL_I2CBUS)
  278. TWIBus i2c;
  279. #endif
  280. #if ENABLED(G38_PROBE_TARGET)
  281. bool G38_move = false,
  282. G38_endstop_hit = false;
  283. #endif
  284. #if ENABLED(AUTO_BED_LEVELING_UBL)
  285. #include "ubl.h"
  286. unified_bed_leveling ubl;
  287. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  288. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  289. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  290. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  291. || isnan(ubl.z_values[0][0]))
  292. #endif
  293. bool Running = true;
  294. uint8_t marlin_debug_flags = DEBUG_NONE;
  295. /**
  296. * Cartesian Current Position
  297. * Used to track the logical position as moves are queued.
  298. * Used by 'line_to_current_position' to do a move after changing it.
  299. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  300. */
  301. float current_position[XYZE] = { 0.0 };
  302. /**
  303. * Cartesian Destination
  304. * A temporary position, usually applied to 'current_position'.
  305. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  306. * 'line_to_destination' sets 'current_position' to 'destination'.
  307. */
  308. float destination[XYZE] = { 0.0 };
  309. /**
  310. * axis_homed
  311. * Flags that each linear axis was homed.
  312. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  313. *
  314. * axis_known_position
  315. * Flags that the position is known in each linear axis. Set when homed.
  316. * Cleared whenever a stepper powers off, potentially losing its position.
  317. */
  318. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  319. /**
  320. * GCode line number handling. Hosts may opt to include line numbers when
  321. * sending commands to Marlin, and lines will be checked for sequentiality.
  322. * M110 N<int> sets the current line number.
  323. */
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. /**
  326. * GCode Command Queue
  327. * A simple ring buffer of BUFSIZE command strings.
  328. *
  329. * Commands are copied into this buffer by the command injectors
  330. * (immediate, serial, sd card) and they are processed sequentially by
  331. * the main loop. The process_next_command function parses the next
  332. * command and hands off execution to individual handler functions.
  333. */
  334. uint8_t commands_in_queue = 0; // Count of commands in the queue
  335. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  336. cmd_queue_index_w = 0; // Ring buffer write position
  337. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  338. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  339. #else // This can be collapsed back to the way it was soon.
  340. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  341. #endif
  342. /**
  343. * Current GCode Command
  344. * When a GCode handler is running, these will be set
  345. */
  346. static char *current_command, // The command currently being executed
  347. *current_command_args, // The address where arguments begin
  348. *seen_pointer; // Set by code_seen(), used by the code_value functions
  349. /**
  350. * Next Injected Command pointer. NULL if no commands are being injected.
  351. * Used by Marlin internally to ensure that commands initiated from within
  352. * are enqueued ahead of any pending serial or sd card commands.
  353. */
  354. static const char *injected_commands_P = NULL;
  355. #if ENABLED(INCH_MODE_SUPPORT)
  356. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  357. #endif
  358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  359. TempUnit input_temp_units = TEMPUNIT_C;
  360. #endif
  361. /**
  362. * Feed rates are often configured with mm/m
  363. * but the planner and stepper like mm/s units.
  364. */
  365. float constexpr homing_feedrate_mm_s[] = {
  366. #if ENABLED(DELTA)
  367. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  368. #else
  369. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  370. #endif
  371. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  372. };
  373. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  374. int feedrate_percentage = 100, saved_feedrate_percentage,
  375. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  376. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  377. volumetric_enabled =
  378. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  379. true
  380. #else
  381. false
  382. #endif
  383. ;
  384. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  385. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  386. #if HAS_WORKSPACE_OFFSET
  387. #if HAS_POSITION_SHIFT
  388. // The distance that XYZ has been offset by G92. Reset by G28.
  389. float position_shift[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET
  392. // This offset is added to the configured home position.
  393. // Set by M206, M428, or menu item. Saved to EEPROM.
  394. float home_offset[XYZ] = { 0 };
  395. #endif
  396. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  397. // The above two are combined to save on computes
  398. float workspace_offset[XYZ] = { 0 };
  399. #endif
  400. #endif
  401. // Software Endstops are based on the configured limits.
  402. #if HAS_SOFTWARE_ENDSTOPS
  403. bool soft_endstops_enabled = true;
  404. #endif
  405. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  406. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  407. #if FAN_COUNT > 0
  408. int fanSpeeds[FAN_COUNT] = { 0 };
  409. #endif
  410. // The active extruder (tool). Set with T<extruder> command.
  411. uint8_t active_extruder = 0;
  412. // Relative Mode. Enable with G91, disable with G90.
  413. static bool relative_mode = false;
  414. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  415. volatile bool wait_for_heatup = true;
  416. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  417. #if HAS_RESUME_CONTINUE
  418. volatile bool wait_for_user = false;
  419. #endif
  420. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  421. // Number of characters read in the current line of serial input
  422. static int serial_count = 0;
  423. // Inactivity shutdown
  424. millis_t previous_cmd_ms = 0;
  425. static millis_t max_inactive_time = 0;
  426. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  427. // Print Job Timer
  428. #if ENABLED(PRINTCOUNTER)
  429. PrintCounter print_job_timer = PrintCounter();
  430. #else
  431. Stopwatch print_job_timer = Stopwatch();
  432. #endif
  433. // Buzzer - I2C on the LCD or a BEEPER_PIN
  434. #if ENABLED(LCD_USE_I2C_BUZZER)
  435. #define BUZZ(d,f) lcd_buzz(d, f)
  436. #elif PIN_EXISTS(BEEPER)
  437. Buzzer buzzer;
  438. #define BUZZ(d,f) buzzer.tone(d, f)
  439. #else
  440. #define BUZZ(d,f) NOOP
  441. #endif
  442. static uint8_t target_extruder;
  443. #if HAS_BED_PROBE
  444. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  445. #endif
  446. #if HAS_ABL
  447. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  448. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  449. #elif defined(XY_PROBE_SPEED)
  450. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  451. #else
  452. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  453. #endif
  454. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  455. #if ENABLED(DELTA)
  456. #define ADJUST_DELTA(V) \
  457. if (planner.abl_enabled) { \
  458. const float zadj = bilinear_z_offset(V); \
  459. delta[A_AXIS] += zadj; \
  460. delta[B_AXIS] += zadj; \
  461. delta[C_AXIS] += zadj; \
  462. }
  463. #else
  464. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  465. #endif
  466. #elif IS_KINEMATIC
  467. #define ADJUST_DELTA(V) NOOP
  468. #endif
  469. #if ENABLED(Z_DUAL_ENDSTOPS)
  470. float z_endstop_adj =
  471. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  472. Z_DUAL_ENDSTOPS_ADJUSTMENT
  473. #else
  474. 0
  475. #endif
  476. ;
  477. #endif
  478. // Extruder offsets
  479. #if HOTENDS > 1
  480. float hotend_offset[XYZ][HOTENDS];
  481. #endif
  482. #if HAS_Z_SERVO_ENDSTOP
  483. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  484. #endif
  485. #if ENABLED(BARICUDA)
  486. int baricuda_valve_pressure = 0;
  487. int baricuda_e_to_p_pressure = 0;
  488. #endif
  489. #if ENABLED(FWRETRACT)
  490. bool autoretract_enabled = false;
  491. bool retracted[EXTRUDERS] = { false };
  492. bool retracted_swap[EXTRUDERS] = { false };
  493. float retract_length = RETRACT_LENGTH;
  494. float retract_length_swap = RETRACT_LENGTH_SWAP;
  495. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  496. float retract_zlift = RETRACT_ZLIFT;
  497. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  498. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  499. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  500. #endif // FWRETRACT
  501. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  502. bool powersupply =
  503. #if ENABLED(PS_DEFAULT_OFF)
  504. false
  505. #else
  506. true
  507. #endif
  508. ;
  509. #endif
  510. #if HAS_CASE_LIGHT
  511. bool case_light_on =
  512. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  513. true
  514. #else
  515. false
  516. #endif
  517. ;
  518. #endif
  519. #if ENABLED(DELTA)
  520. float delta[ABC],
  521. endstop_adj[ABC] = { 0 };
  522. // These values are loaded or reset at boot time when setup() calls
  523. // settings.load(), which calls recalc_delta_settings().
  524. float delta_radius,
  525. delta_tower_angle_trim[2],
  526. delta_tower[ABC][2],
  527. delta_diagonal_rod,
  528. delta_calibration_radius,
  529. delta_diagonal_rod_2_tower[ABC],
  530. delta_segments_per_second,
  531. delta_clip_start_height = Z_MAX_POS;
  532. float delta_safe_distance_from_top();
  533. #endif
  534. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  535. int bilinear_grid_spacing[2], bilinear_start[2];
  536. float bilinear_grid_factor[2],
  537. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  538. #endif
  539. #if IS_SCARA
  540. // Float constants for SCARA calculations
  541. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  542. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  543. L2_2 = sq(float(L2));
  544. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  545. delta[ABC];
  546. #endif
  547. float cartes[XYZ] = { 0 };
  548. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  549. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  550. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  551. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  552. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  553. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  554. int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
  555. #endif
  556. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  557. static bool filament_ran_out = false;
  558. #endif
  559. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  560. FilamentChangeMenuResponse filament_change_menu_response;
  561. #endif
  562. #if ENABLED(MIXING_EXTRUDER)
  563. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  564. #if MIXING_VIRTUAL_TOOLS > 1
  565. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  566. #endif
  567. #endif
  568. static bool send_ok[BUFSIZE];
  569. #if HAS_SERVOS
  570. Servo servo[NUM_SERVOS];
  571. #define MOVE_SERVO(I, P) servo[I].move(P)
  572. #if HAS_Z_SERVO_ENDSTOP
  573. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  574. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  575. #endif
  576. #endif
  577. #ifdef CHDK
  578. millis_t chdkHigh = 0;
  579. bool chdkActive = false;
  580. #endif
  581. #ifdef AUTOMATIC_CURRENT_CONTROL
  582. bool auto_current_control = 0;
  583. #endif
  584. #if ENABLED(PID_EXTRUSION_SCALING)
  585. int lpq_len = 20;
  586. #endif
  587. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  588. MarlinBusyState busy_state = NOT_BUSY;
  589. static millis_t next_busy_signal_ms = 0;
  590. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  591. #else
  592. #define host_keepalive() NOOP
  593. #endif
  594. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  595. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  596. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  597. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  598. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  599. typedef void __void_##CONFIG##__
  600. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  601. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  602. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  603. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  604. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  605. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  606. /**
  607. * ***************************************************************************
  608. * ******************************** FUNCTIONS ********************************
  609. * ***************************************************************************
  610. */
  611. void stop();
  612. void get_available_commands();
  613. void process_next_command();
  614. void prepare_move_to_destination();
  615. void get_cartesian_from_steppers();
  616. void set_current_from_steppers_for_axis(const AxisEnum axis);
  617. #if ENABLED(ARC_SUPPORT)
  618. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  619. #endif
  620. #if ENABLED(BEZIER_CURVE_SUPPORT)
  621. void plan_cubic_move(const float offset[4]);
  622. #endif
  623. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  624. static void report_current_position();
  625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  626. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  627. serialprintPGM(prefix);
  628. SERIAL_CHAR('(');
  629. SERIAL_ECHO(x);
  630. SERIAL_ECHOPAIR(", ", y);
  631. SERIAL_ECHOPAIR(", ", z);
  632. SERIAL_CHAR(')');
  633. suffix ? serialprintPGM(suffix) : SERIAL_EOL;
  634. }
  635. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  636. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  637. }
  638. #if HAS_ABL
  639. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  640. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  641. }
  642. #endif
  643. #define DEBUG_POS(SUFFIX,VAR) do { \
  644. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  645. #endif
  646. /**
  647. * sync_plan_position
  648. *
  649. * Set the planner/stepper positions directly from current_position with
  650. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  651. */
  652. inline void sync_plan_position() {
  653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  654. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  655. #endif
  656. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  657. }
  658. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  659. #if IS_KINEMATIC
  660. inline void sync_plan_position_kinematic() {
  661. #if ENABLED(DEBUG_LEVELING_FEATURE)
  662. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  663. #endif
  664. planner.set_position_mm_kinematic(current_position);
  665. }
  666. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  667. #else
  668. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  669. #endif
  670. #if ENABLED(SDSUPPORT)
  671. #include "SdFatUtil.h"
  672. int freeMemory() { return SdFatUtil::FreeRam(); }
  673. #else
  674. extern "C" {
  675. extern char __bss_end;
  676. extern char __heap_start;
  677. extern void* __brkval;
  678. int freeMemory() {
  679. int free_memory;
  680. if ((int)__brkval == 0)
  681. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  682. else
  683. free_memory = ((int)&free_memory) - ((int)__brkval);
  684. return free_memory;
  685. }
  686. }
  687. #endif //!SDSUPPORT
  688. #if ENABLED(DIGIPOT_I2C)
  689. extern void digipot_i2c_set_current(int channel, float current);
  690. extern void digipot_i2c_init();
  691. #endif
  692. /**
  693. * Inject the next "immediate" command, when possible, onto the front of the queue.
  694. * Return true if any immediate commands remain to inject.
  695. */
  696. static bool drain_injected_commands_P() {
  697. if (injected_commands_P != NULL) {
  698. size_t i = 0;
  699. char c, cmd[30];
  700. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  701. cmd[sizeof(cmd) - 1] = '\0';
  702. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  703. cmd[i] = '\0';
  704. if (enqueue_and_echo_command(cmd)) // success?
  705. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  706. }
  707. return (injected_commands_P != NULL); // return whether any more remain
  708. }
  709. /**
  710. * Record one or many commands to run from program memory.
  711. * Aborts the current queue, if any.
  712. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  713. */
  714. void enqueue_and_echo_commands_P(const char* pgcode) {
  715. injected_commands_P = pgcode;
  716. drain_injected_commands_P(); // first command executed asap (when possible)
  717. }
  718. /**
  719. * Clear the Marlin command queue
  720. */
  721. void clear_command_queue() {
  722. cmd_queue_index_r = cmd_queue_index_w;
  723. commands_in_queue = 0;
  724. }
  725. /**
  726. * Once a new command is in the ring buffer, call this to commit it
  727. */
  728. inline void _commit_command(bool say_ok) {
  729. send_ok[cmd_queue_index_w] = say_ok;
  730. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  731. commands_in_queue++;
  732. }
  733. /**
  734. * Copy a command from RAM into the main command buffer.
  735. * Return true if the command was successfully added.
  736. * Return false for a full buffer, or if the 'command' is a comment.
  737. */
  738. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  739. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  740. strcpy(command_queue[cmd_queue_index_w], cmd);
  741. _commit_command(say_ok);
  742. return true;
  743. }
  744. /**
  745. * Enqueue with Serial Echo
  746. */
  747. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  748. if (_enqueuecommand(cmd, say_ok)) {
  749. SERIAL_ECHO_START;
  750. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  751. SERIAL_CHAR('"');
  752. SERIAL_EOL;
  753. return true;
  754. }
  755. return false;
  756. }
  757. void setup_killpin() {
  758. #if HAS_KILL
  759. SET_INPUT_PULLUP(KILL_PIN);
  760. #endif
  761. }
  762. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  763. void setup_filrunoutpin() {
  764. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  765. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  766. #else
  767. SET_INPUT(FIL_RUNOUT_PIN);
  768. #endif
  769. }
  770. #endif
  771. void setup_homepin(void) {
  772. #if HAS_HOME
  773. SET_INPUT_PULLUP(HOME_PIN);
  774. #endif
  775. }
  776. void setup_powerhold() {
  777. #if HAS_SUICIDE
  778. OUT_WRITE(SUICIDE_PIN, HIGH);
  779. #endif
  780. #if HAS_POWER_SWITCH
  781. #if ENABLED(PS_DEFAULT_OFF)
  782. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  783. #else
  784. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  785. #endif
  786. #endif
  787. }
  788. void suicide() {
  789. #if HAS_SUICIDE
  790. OUT_WRITE(SUICIDE_PIN, LOW);
  791. #endif
  792. }
  793. void servo_init() {
  794. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  795. servo[0].attach(SERVO0_PIN);
  796. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  797. #endif
  798. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  799. servo[1].attach(SERVO1_PIN);
  800. servo[1].detach();
  801. #endif
  802. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  803. servo[2].attach(SERVO2_PIN);
  804. servo[2].detach();
  805. #endif
  806. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  807. servo[3].attach(SERVO3_PIN);
  808. servo[3].detach();
  809. #endif
  810. #if HAS_Z_SERVO_ENDSTOP
  811. /**
  812. * Set position of Z Servo Endstop
  813. *
  814. * The servo might be deployed and positioned too low to stow
  815. * when starting up the machine or rebooting the board.
  816. * There's no way to know where the nozzle is positioned until
  817. * homing has been done - no homing with z-probe without init!
  818. *
  819. */
  820. STOW_Z_SERVO();
  821. #endif
  822. }
  823. /**
  824. * Stepper Reset (RigidBoard, et.al.)
  825. */
  826. #if HAS_STEPPER_RESET
  827. void disableStepperDrivers() {
  828. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  829. }
  830. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  831. #endif
  832. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  833. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  834. i2c.receive(bytes);
  835. }
  836. void i2c_on_request() { // just send dummy data for now
  837. i2c.reply("Hello World!\n");
  838. }
  839. #endif
  840. #if HAS_COLOR_LEDS
  841. void set_led_color(
  842. const uint8_t r, const uint8_t g, const uint8_t b
  843. #if ENABLED(RGBW_LED)
  844. , const uint8_t w=0
  845. #endif
  846. ) {
  847. #if ENABLED(BLINKM)
  848. // This variant uses i2c to send the RGB components to the device.
  849. SendColors(r, g, b);
  850. #else
  851. // This variant uses 3 separate pins for the RGB components.
  852. // If the pins can do PWM then their intensity will be set.
  853. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  854. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  855. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  856. analogWrite(RGB_LED_R_PIN, r);
  857. analogWrite(RGB_LED_G_PIN, g);
  858. analogWrite(RGB_LED_B_PIN, b);
  859. #if ENABLED(RGBW_LED)
  860. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  861. analogWrite(RGB_LED_W_PIN, w);
  862. #endif
  863. #endif
  864. }
  865. #endif // HAS_COLOR_LEDS
  866. void gcode_line_error(const char* err, bool doFlush = true) {
  867. SERIAL_ERROR_START;
  868. serialprintPGM(err);
  869. SERIAL_ERRORLN(gcode_LastN);
  870. //Serial.println(gcode_N);
  871. if (doFlush) FlushSerialRequestResend();
  872. serial_count = 0;
  873. }
  874. /**
  875. * Get all commands waiting on the serial port and queue them.
  876. * Exit when the buffer is full or when no more characters are
  877. * left on the serial port.
  878. */
  879. inline void get_serial_commands() {
  880. static char serial_line_buffer[MAX_CMD_SIZE];
  881. static bool serial_comment_mode = false;
  882. // If the command buffer is empty for too long,
  883. // send "wait" to indicate Marlin is still waiting.
  884. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  885. static millis_t last_command_time = 0;
  886. const millis_t ms = millis();
  887. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  888. SERIAL_ECHOLNPGM(MSG_WAIT);
  889. last_command_time = ms;
  890. }
  891. #endif
  892. /**
  893. * Loop while serial characters are incoming and the queue is not full
  894. */
  895. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  896. char serial_char = MYSERIAL.read();
  897. /**
  898. * If the character ends the line
  899. */
  900. if (serial_char == '\n' || serial_char == '\r') {
  901. serial_comment_mode = false; // end of line == end of comment
  902. if (!serial_count) continue; // skip empty lines
  903. serial_line_buffer[serial_count] = 0; // terminate string
  904. serial_count = 0; //reset buffer
  905. char* command = serial_line_buffer;
  906. while (*command == ' ') command++; // skip any leading spaces
  907. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  908. char* apos = strchr(command, '*');
  909. if (npos) {
  910. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  911. if (M110) {
  912. char* n2pos = strchr(command + 4, 'N');
  913. if (n2pos) npos = n2pos;
  914. }
  915. gcode_N = strtol(npos + 1, NULL, 10);
  916. if (gcode_N != gcode_LastN + 1 && !M110) {
  917. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  918. return;
  919. }
  920. if (apos) {
  921. byte checksum = 0, count = 0;
  922. while (command[count] != '*') checksum ^= command[count++];
  923. if (strtol(apos + 1, NULL, 10) != checksum) {
  924. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  925. return;
  926. }
  927. // if no errors, continue parsing
  928. }
  929. else {
  930. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  931. return;
  932. }
  933. gcode_LastN = gcode_N;
  934. // if no errors, continue parsing
  935. }
  936. else if (apos) { // No '*' without 'N'
  937. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  938. return;
  939. }
  940. // Movement commands alert when stopped
  941. if (IsStopped()) {
  942. char* gpos = strchr(command, 'G');
  943. if (gpos) {
  944. const int codenum = strtol(gpos + 1, NULL, 10);
  945. switch (codenum) {
  946. case 0:
  947. case 1:
  948. case 2:
  949. case 3:
  950. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  951. LCD_MESSAGEPGM(MSG_STOPPED);
  952. break;
  953. }
  954. }
  955. }
  956. #if DISABLED(EMERGENCY_PARSER)
  957. // If command was e-stop process now
  958. if (strcmp(command, "M108") == 0) {
  959. wait_for_heatup = false;
  960. #if ENABLED(ULTIPANEL)
  961. wait_for_user = false;
  962. #endif
  963. }
  964. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  965. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  966. #endif
  967. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  968. last_command_time = ms;
  969. #endif
  970. // Add the command to the queue
  971. _enqueuecommand(serial_line_buffer, true);
  972. }
  973. else if (serial_count >= MAX_CMD_SIZE - 1) {
  974. // Keep fetching, but ignore normal characters beyond the max length
  975. // The command will be injected when EOL is reached
  976. }
  977. else if (serial_char == '\\') { // Handle escapes
  978. if (MYSERIAL.available() > 0) {
  979. // if we have one more character, copy it over
  980. serial_char = MYSERIAL.read();
  981. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  982. }
  983. // otherwise do nothing
  984. }
  985. else { // it's not a newline, carriage return or escape char
  986. if (serial_char == ';') serial_comment_mode = true;
  987. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  988. }
  989. } // queue has space, serial has data
  990. }
  991. #if ENABLED(SDSUPPORT)
  992. /**
  993. * Get commands from the SD Card until the command buffer is full
  994. * or until the end of the file is reached. The special character '#'
  995. * can also interrupt buffering.
  996. */
  997. inline void get_sdcard_commands() {
  998. static bool stop_buffering = false,
  999. sd_comment_mode = false;
  1000. if (!card.sdprinting) return;
  1001. /**
  1002. * '#' stops reading from SD to the buffer prematurely, so procedural
  1003. * macro calls are possible. If it occurs, stop_buffering is triggered
  1004. * and the buffer is run dry; this character _can_ occur in serial com
  1005. * due to checksums, however, no checksums are used in SD printing.
  1006. */
  1007. if (commands_in_queue == 0) stop_buffering = false;
  1008. uint16_t sd_count = 0;
  1009. bool card_eof = card.eof();
  1010. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1011. const int16_t n = card.get();
  1012. char sd_char = (char)n;
  1013. card_eof = card.eof();
  1014. if (card_eof || n == -1
  1015. || sd_char == '\n' || sd_char == '\r'
  1016. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1017. ) {
  1018. if (card_eof) {
  1019. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1020. card.printingHasFinished();
  1021. #if ENABLED(PRINTER_EVENT_LEDS)
  1022. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1023. set_led_color(0, 255, 0); // Green
  1024. #if HAS_RESUME_CONTINUE
  1025. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1026. wait_for_user = true;
  1027. while (wait_for_user) idle();
  1028. KEEPALIVE_STATE(IN_HANDLER);
  1029. #else
  1030. safe_delay(1000);
  1031. #endif
  1032. set_led_color(0, 0, 0); // OFF
  1033. #endif
  1034. card.checkautostart(true);
  1035. }
  1036. else if (n == -1) {
  1037. SERIAL_ERROR_START;
  1038. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1039. }
  1040. if (sd_char == '#') stop_buffering = true;
  1041. sd_comment_mode = false; // for new command
  1042. if (!sd_count) continue; // skip empty lines (and comment lines)
  1043. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1044. sd_count = 0; // clear sd line buffer
  1045. _commit_command(false);
  1046. }
  1047. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1048. /**
  1049. * Keep fetching, but ignore normal characters beyond the max length
  1050. * The command will be injected when EOL is reached
  1051. */
  1052. }
  1053. else {
  1054. if (sd_char == ';') sd_comment_mode = true;
  1055. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1056. }
  1057. }
  1058. }
  1059. #endif // SDSUPPORT
  1060. /**
  1061. * Add to the circular command queue the next command from:
  1062. * - The command-injection queue (injected_commands_P)
  1063. * - The active serial input (usually USB)
  1064. * - The SD card file being actively printed
  1065. */
  1066. void get_available_commands() {
  1067. // if any immediate commands remain, don't get other commands yet
  1068. if (drain_injected_commands_P()) return;
  1069. get_serial_commands();
  1070. #if ENABLED(SDSUPPORT)
  1071. get_sdcard_commands();
  1072. #endif
  1073. }
  1074. inline bool code_has_value() {
  1075. int i = 1;
  1076. char c = seen_pointer[i];
  1077. while (c == ' ') c = seen_pointer[++i];
  1078. if (c == '-' || c == '+') c = seen_pointer[++i];
  1079. if (c == '.') c = seen_pointer[++i];
  1080. return NUMERIC(c);
  1081. }
  1082. inline float code_value_float() {
  1083. char* e = strchr(seen_pointer, 'E');
  1084. if (!e) return strtod(seen_pointer + 1, NULL);
  1085. *e = 0;
  1086. float ret = strtod(seen_pointer + 1, NULL);
  1087. *e = 'E';
  1088. return ret;
  1089. }
  1090. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1091. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1092. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1093. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1094. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1095. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1096. #if ENABLED(INCH_MODE_SUPPORT)
  1097. inline void set_input_linear_units(LinearUnit units) {
  1098. switch (units) {
  1099. case LINEARUNIT_INCH:
  1100. linear_unit_factor = 25.4;
  1101. break;
  1102. case LINEARUNIT_MM:
  1103. default:
  1104. linear_unit_factor = 1.0;
  1105. break;
  1106. }
  1107. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1108. }
  1109. inline float axis_unit_factor(const AxisEnum axis) {
  1110. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1111. }
  1112. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1113. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1114. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1115. #else
  1116. #define code_value_linear_units() code_value_float()
  1117. #define code_value_axis_units(A) code_value_float()
  1118. #define code_value_per_axis_unit(A) code_value_float()
  1119. #endif
  1120. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1121. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1122. float code_value_temp_abs() {
  1123. switch (input_temp_units) {
  1124. case TEMPUNIT_C:
  1125. return code_value_float();
  1126. case TEMPUNIT_F:
  1127. return (code_value_float() - 32) * 0.5555555556;
  1128. case TEMPUNIT_K:
  1129. return code_value_float() - 273.15;
  1130. default:
  1131. return code_value_float();
  1132. }
  1133. }
  1134. float code_value_temp_diff() {
  1135. switch (input_temp_units) {
  1136. case TEMPUNIT_C:
  1137. case TEMPUNIT_K:
  1138. return code_value_float();
  1139. case TEMPUNIT_F:
  1140. return code_value_float() * 0.5555555556;
  1141. default:
  1142. return code_value_float();
  1143. }
  1144. }
  1145. #else
  1146. float code_value_temp_abs() { return code_value_float(); }
  1147. float code_value_temp_diff() { return code_value_float(); }
  1148. #endif
  1149. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1150. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1151. bool code_seen(char code) {
  1152. seen_pointer = strchr(current_command_args, code);
  1153. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1154. }
  1155. /**
  1156. * Set target_extruder from the T parameter or the active_extruder
  1157. *
  1158. * Returns TRUE if the target is invalid
  1159. */
  1160. bool get_target_extruder_from_command(int code) {
  1161. if (code_seen('T')) {
  1162. if (code_value_byte() >= EXTRUDERS) {
  1163. SERIAL_ECHO_START;
  1164. SERIAL_CHAR('M');
  1165. SERIAL_ECHO(code);
  1166. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1167. return true;
  1168. }
  1169. target_extruder = code_value_byte();
  1170. }
  1171. else
  1172. target_extruder = active_extruder;
  1173. return false;
  1174. }
  1175. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1176. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1177. #endif
  1178. #if ENABLED(DUAL_X_CARRIAGE)
  1179. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1180. static float x_home_pos(const int extruder) {
  1181. if (extruder == 0)
  1182. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1183. else
  1184. /**
  1185. * In dual carriage mode the extruder offset provides an override of the
  1186. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1187. * This allows soft recalibration of the second extruder home position
  1188. * without firmware reflash (through the M218 command).
  1189. */
  1190. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1191. }
  1192. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1193. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1194. static bool active_extruder_parked = false; // used in mode 1 & 2
  1195. static float raised_parked_position[XYZE]; // used in mode 1
  1196. static millis_t delayed_move_time = 0; // used in mode 1
  1197. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1198. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1199. #endif // DUAL_X_CARRIAGE
  1200. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1201. /**
  1202. * Software endstops can be used to monitor the open end of
  1203. * an axis that has a hardware endstop on the other end. Or
  1204. * they can prevent axes from moving past endstops and grinding.
  1205. *
  1206. * To keep doing their job as the coordinate system changes,
  1207. * the software endstop positions must be refreshed to remain
  1208. * at the same positions relative to the machine.
  1209. */
  1210. void update_software_endstops(const AxisEnum axis) {
  1211. const float offs = 0.0
  1212. #if HAS_HOME_OFFSET
  1213. + home_offset[axis]
  1214. #endif
  1215. #if HAS_POSITION_SHIFT
  1216. + position_shift[axis]
  1217. #endif
  1218. ;
  1219. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1220. workspace_offset[axis] = offs;
  1221. #endif
  1222. #if ENABLED(DUAL_X_CARRIAGE)
  1223. if (axis == X_AXIS) {
  1224. // In Dual X mode hotend_offset[X] is T1's home position
  1225. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1226. if (active_extruder != 0) {
  1227. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1228. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1229. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1230. }
  1231. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1232. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1233. // but not so far to the right that T1 would move past the end
  1234. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1235. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1236. }
  1237. else {
  1238. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1239. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1240. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1241. }
  1242. }
  1243. #else
  1244. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1245. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1246. #endif
  1247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1248. if (DEBUGGING(LEVELING)) {
  1249. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1250. #if HAS_HOME_OFFSET
  1251. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1252. #endif
  1253. #if HAS_POSITION_SHIFT
  1254. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1255. #endif
  1256. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1257. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1258. }
  1259. #endif
  1260. #if ENABLED(DELTA)
  1261. if (axis == Z_AXIS)
  1262. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1263. #endif
  1264. }
  1265. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1266. #if HAS_M206_COMMAND
  1267. /**
  1268. * Change the home offset for an axis, update the current
  1269. * position and the software endstops to retain the same
  1270. * relative distance to the new home.
  1271. *
  1272. * Since this changes the current_position, code should
  1273. * call sync_plan_position soon after this.
  1274. */
  1275. static void set_home_offset(const AxisEnum axis, const float v) {
  1276. current_position[axis] += v - home_offset[axis];
  1277. home_offset[axis] = v;
  1278. update_software_endstops(axis);
  1279. }
  1280. #endif // HAS_M206_COMMAND
  1281. /**
  1282. * Set an axis' current position to its home position (after homing).
  1283. *
  1284. * For Core and Cartesian robots this applies one-to-one when an
  1285. * individual axis has been homed.
  1286. *
  1287. * DELTA should wait until all homing is done before setting the XYZ
  1288. * current_position to home, because homing is a single operation.
  1289. * In the case where the axis positions are already known and previously
  1290. * homed, DELTA could home to X or Y individually by moving either one
  1291. * to the center. However, homing Z always homes XY and Z.
  1292. *
  1293. * SCARA should wait until all XY homing is done before setting the XY
  1294. * current_position to home, because neither X nor Y is at home until
  1295. * both are at home. Z can however be homed individually.
  1296. *
  1297. * Callers must sync the planner position after calling this!
  1298. */
  1299. static void set_axis_is_at_home(AxisEnum axis) {
  1300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1301. if (DEBUGGING(LEVELING)) {
  1302. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1303. SERIAL_CHAR(')');
  1304. SERIAL_EOL;
  1305. }
  1306. #endif
  1307. axis_known_position[axis] = axis_homed[axis] = true;
  1308. #if HAS_POSITION_SHIFT
  1309. position_shift[axis] = 0;
  1310. update_software_endstops(axis);
  1311. #endif
  1312. #if ENABLED(DUAL_X_CARRIAGE)
  1313. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1314. current_position[X_AXIS] = x_home_pos(active_extruder);
  1315. return;
  1316. }
  1317. #endif
  1318. #if ENABLED(MORGAN_SCARA)
  1319. /**
  1320. * Morgan SCARA homes XY at the same time
  1321. */
  1322. if (axis == X_AXIS || axis == Y_AXIS) {
  1323. float homeposition[XYZ];
  1324. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1325. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1326. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1327. /**
  1328. * Get Home position SCARA arm angles using inverse kinematics,
  1329. * and calculate homing offset using forward kinematics
  1330. */
  1331. inverse_kinematics(homeposition);
  1332. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1333. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1334. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1335. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1336. /**
  1337. * SCARA home positions are based on configuration since the actual
  1338. * limits are determined by the inverse kinematic transform.
  1339. */
  1340. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1341. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1342. }
  1343. else
  1344. #endif
  1345. {
  1346. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1347. }
  1348. /**
  1349. * Z Probe Z Homing? Account for the probe's Z offset.
  1350. */
  1351. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1352. if (axis == Z_AXIS) {
  1353. #if HOMING_Z_WITH_PROBE
  1354. current_position[Z_AXIS] -= zprobe_zoffset;
  1355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1356. if (DEBUGGING(LEVELING)) {
  1357. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1358. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1359. }
  1360. #endif
  1361. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1362. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1363. #endif
  1364. }
  1365. #endif
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) {
  1368. #if HAS_HOME_OFFSET
  1369. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1370. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1371. #endif
  1372. DEBUG_POS("", current_position);
  1373. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1374. SERIAL_CHAR(')');
  1375. SERIAL_EOL;
  1376. }
  1377. #endif
  1378. }
  1379. /**
  1380. * Some planner shorthand inline functions
  1381. */
  1382. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1383. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1384. int hbd = homing_bump_divisor[axis];
  1385. if (hbd < 1) {
  1386. hbd = 10;
  1387. SERIAL_ECHO_START;
  1388. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1389. }
  1390. return homing_feedrate_mm_s[axis] / hbd;
  1391. }
  1392. //
  1393. // line_to_current_position
  1394. // Move the planner to the current position from wherever it last moved
  1395. // (or from wherever it has been told it is located).
  1396. //
  1397. inline void line_to_current_position() {
  1398. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1399. }
  1400. //
  1401. // line_to_destination
  1402. // Move the planner, not necessarily synced with current_position
  1403. //
  1404. inline void line_to_destination(float fr_mm_s) {
  1405. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1406. }
  1407. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1408. inline void set_current_to_destination() { COPY(current_position, destination); }
  1409. inline void set_destination_to_current() { COPY(destination, current_position); }
  1410. #if IS_KINEMATIC
  1411. /**
  1412. * Calculate delta, start a line, and set current_position to destination
  1413. */
  1414. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1415. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1416. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1417. #endif
  1418. if ( current_position[X_AXIS] == destination[X_AXIS]
  1419. && current_position[Y_AXIS] == destination[Y_AXIS]
  1420. && current_position[Z_AXIS] == destination[Z_AXIS]
  1421. && current_position[E_AXIS] == destination[E_AXIS]
  1422. ) return;
  1423. refresh_cmd_timeout();
  1424. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1425. set_current_to_destination();
  1426. }
  1427. #endif // IS_KINEMATIC
  1428. /**
  1429. * Plan a move to (X, Y, Z) and set the current_position
  1430. * The final current_position may not be the one that was requested
  1431. */
  1432. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1433. const float old_feedrate_mm_s = feedrate_mm_s;
  1434. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1435. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1436. #endif
  1437. #if ENABLED(DELTA)
  1438. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1439. set_destination_to_current(); // sync destination at the start
  1440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1441. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1442. #endif
  1443. // when in the danger zone
  1444. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1445. if (z > delta_clip_start_height) { // staying in the danger zone
  1446. destination[X_AXIS] = x; // move directly (uninterpolated)
  1447. destination[Y_AXIS] = y;
  1448. destination[Z_AXIS] = z;
  1449. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1450. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1451. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1452. #endif
  1453. return;
  1454. }
  1455. else {
  1456. destination[Z_AXIS] = delta_clip_start_height;
  1457. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1458. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1459. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1460. #endif
  1461. }
  1462. }
  1463. if (z > current_position[Z_AXIS]) { // raising?
  1464. destination[Z_AXIS] = z;
  1465. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1467. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1468. #endif
  1469. }
  1470. destination[X_AXIS] = x;
  1471. destination[Y_AXIS] = y;
  1472. prepare_move_to_destination(); // set_current_to_destination
  1473. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1474. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1475. #endif
  1476. if (z < current_position[Z_AXIS]) { // lowering?
  1477. destination[Z_AXIS] = z;
  1478. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1479. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1480. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1481. #endif
  1482. }
  1483. #elif IS_SCARA
  1484. set_destination_to_current();
  1485. // If Z needs to raise, do it before moving XY
  1486. if (destination[Z_AXIS] < z) {
  1487. destination[Z_AXIS] = z;
  1488. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1489. }
  1490. destination[X_AXIS] = x;
  1491. destination[Y_AXIS] = y;
  1492. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1493. // If Z needs to lower, do it after moving XY
  1494. if (destination[Z_AXIS] > z) {
  1495. destination[Z_AXIS] = z;
  1496. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1497. }
  1498. #else
  1499. // If Z needs to raise, do it before moving XY
  1500. if (current_position[Z_AXIS] < z) {
  1501. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1502. current_position[Z_AXIS] = z;
  1503. line_to_current_position();
  1504. }
  1505. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1506. current_position[X_AXIS] = x;
  1507. current_position[Y_AXIS] = y;
  1508. line_to_current_position();
  1509. // If Z needs to lower, do it after moving XY
  1510. if (current_position[Z_AXIS] > z) {
  1511. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1512. current_position[Z_AXIS] = z;
  1513. line_to_current_position();
  1514. }
  1515. #endif
  1516. stepper.synchronize();
  1517. feedrate_mm_s = old_feedrate_mm_s;
  1518. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1519. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1520. #endif
  1521. }
  1522. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1523. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1524. }
  1525. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1526. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1527. }
  1528. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1529. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1530. }
  1531. //
  1532. // Prepare to do endstop or probe moves
  1533. // with custom feedrates.
  1534. //
  1535. // - Save current feedrates
  1536. // - Reset the rate multiplier
  1537. // - Reset the command timeout
  1538. // - Enable the endstops (for endstop moves)
  1539. //
  1540. static void setup_for_endstop_or_probe_move() {
  1541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1542. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1543. #endif
  1544. saved_feedrate_mm_s = feedrate_mm_s;
  1545. saved_feedrate_percentage = feedrate_percentage;
  1546. feedrate_percentage = 100;
  1547. refresh_cmd_timeout();
  1548. }
  1549. static void clean_up_after_endstop_or_probe_move() {
  1550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1551. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1552. #endif
  1553. feedrate_mm_s = saved_feedrate_mm_s;
  1554. feedrate_percentage = saved_feedrate_percentage;
  1555. refresh_cmd_timeout();
  1556. }
  1557. #if HAS_BED_PROBE
  1558. /**
  1559. * Raise Z to a minimum height to make room for a probe to move
  1560. */
  1561. inline void do_probe_raise(float z_raise) {
  1562. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1563. if (DEBUGGING(LEVELING)) {
  1564. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1565. SERIAL_CHAR(')');
  1566. SERIAL_EOL;
  1567. }
  1568. #endif
  1569. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1570. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1571. #if ENABLED(DELTA)
  1572. z_dest -= home_offset[Z_AXIS];
  1573. #endif
  1574. if (z_dest > current_position[Z_AXIS])
  1575. do_blocking_move_to_z(z_dest);
  1576. }
  1577. #endif //HAS_BED_PROBE
  1578. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1579. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1580. const bool xx = x && !axis_homed[X_AXIS],
  1581. yy = y && !axis_homed[Y_AXIS],
  1582. zz = z && !axis_homed[Z_AXIS];
  1583. if (xx || yy || zz) {
  1584. SERIAL_ECHO_START;
  1585. SERIAL_ECHOPGM(MSG_HOME " ");
  1586. if (xx) SERIAL_ECHOPGM(MSG_X);
  1587. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1588. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1589. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1590. #if ENABLED(ULTRA_LCD)
  1591. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1592. #endif
  1593. return true;
  1594. }
  1595. return false;
  1596. }
  1597. #endif
  1598. #if ENABLED(Z_PROBE_SLED)
  1599. #ifndef SLED_DOCKING_OFFSET
  1600. #define SLED_DOCKING_OFFSET 0
  1601. #endif
  1602. /**
  1603. * Method to dock/undock a sled designed by Charles Bell.
  1604. *
  1605. * stow[in] If false, move to MAX_X and engage the solenoid
  1606. * If true, move to MAX_X and release the solenoid
  1607. */
  1608. static void dock_sled(bool stow) {
  1609. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1610. if (DEBUGGING(LEVELING)) {
  1611. SERIAL_ECHOPAIR("dock_sled(", stow);
  1612. SERIAL_CHAR(')');
  1613. SERIAL_EOL;
  1614. }
  1615. #endif
  1616. // Dock sled a bit closer to ensure proper capturing
  1617. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1618. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1619. WRITE(SOL1_PIN, !stow); // switch solenoid
  1620. #endif
  1621. }
  1622. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1623. void run_deploy_moves_script() {
  1624. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1625. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1626. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1629. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1632. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1635. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1636. #endif
  1637. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1638. #endif
  1639. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1640. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1641. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1644. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1647. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1650. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1651. #endif
  1652. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1653. #endif
  1654. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1655. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1656. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1659. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1662. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1665. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1666. #endif
  1667. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1668. #endif
  1669. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1670. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1671. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1674. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1675. #endif
  1676. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1677. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1680. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1681. #endif
  1682. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1683. #endif
  1684. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1685. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1686. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1687. #endif
  1688. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1689. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1690. #endif
  1691. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1692. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1693. #endif
  1694. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1695. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1696. #endif
  1697. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1698. #endif
  1699. }
  1700. void run_stow_moves_script() {
  1701. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1702. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1703. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1704. #endif
  1705. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1706. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1707. #endif
  1708. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1709. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1710. #endif
  1711. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1712. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1713. #endif
  1714. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1715. #endif
  1716. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1717. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1718. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1719. #endif
  1720. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1721. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1722. #endif
  1723. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1724. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1725. #endif
  1726. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1727. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1728. #endif
  1729. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1730. #endif
  1731. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1732. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1733. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1734. #endif
  1735. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1736. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1737. #endif
  1738. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1739. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1740. #endif
  1741. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1742. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1743. #endif
  1744. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1745. #endif
  1746. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1747. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1748. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1749. #endif
  1750. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1751. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1752. #endif
  1753. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1754. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1755. #endif
  1756. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1757. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1758. #endif
  1759. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1760. #endif
  1761. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1762. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1763. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1764. #endif
  1765. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1766. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1767. #endif
  1768. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1769. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1770. #endif
  1771. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1772. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1773. #endif
  1774. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1775. #endif
  1776. }
  1777. #endif
  1778. #if HAS_BED_PROBE
  1779. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1780. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1781. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1782. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1783. #else
  1784. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1785. #endif
  1786. #endif
  1787. #if ENABLED(BLTOUCH)
  1788. void bltouch_command(int angle) {
  1789. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1790. safe_delay(BLTOUCH_DELAY);
  1791. }
  1792. /**
  1793. * BLTouch probes have a Hall effect sensor. The high currents switching
  1794. * on and off cause a magnetic field that can affect the repeatability of the
  1795. * sensor. So for BLTouch probes, heaters are turned off during the probe,
  1796. * then quickly turned back on after the point is sampled.
  1797. */
  1798. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1799. void set_heaters_for_bltouch(const bool deploy) {
  1800. static bool heaters_were_disabled = false;
  1801. static millis_t next_emi_protection = 0;
  1802. static float temps_at_entry[HOTENDS];
  1803. #if HAS_TEMP_BED
  1804. static float bed_temp_at_entry;
  1805. #endif
  1806. // If called out of order or far apart something is seriously wrong
  1807. if (deploy == heaters_were_disabled
  1808. || (next_emi_protection && ELAPSED(millis(), next_emi_protection)))
  1809. kill(PSTR(MSG_KILLED));
  1810. if (deploy) {
  1811. next_emi_protection = millis() + 20 * 1000UL;
  1812. HOTEND_LOOP() {
  1813. temps_at_entry[e] = thermalManager.degTargetHotend(e);
  1814. thermalManager.setTargetHotend(0, e);
  1815. }
  1816. #if HAS_TEMP_BED
  1817. bed_temp_at_entry = thermalManager.degTargetBed();
  1818. thermalManager.setTargetBed(0);
  1819. #endif
  1820. }
  1821. else {
  1822. next_emi_protection = 0;
  1823. HOTEND_LOOP() thermalManager.setTargetHotend(temps_at_entry[e], e);
  1824. #if HAS_TEMP_BED
  1825. thermalManager.setTargetBed(bed_temp_at_entry);
  1826. #endif
  1827. }
  1828. heaters_were_disabled = deploy;
  1829. }
  1830. #endif // BLTOUCH_HEATERS_OFF
  1831. void set_bltouch_deployed(const bool deploy) {
  1832. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1833. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1834. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1835. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1836. safe_delay(1500); // Wait for internal self-test to complete.
  1837. // (Measured completion time was 0.65 seconds
  1838. // after reset, deploy, and stow sequence)
  1839. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1840. SERIAL_ERROR_START;
  1841. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1842. stop(); // punt!
  1843. }
  1844. }
  1845. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1846. set_heaters_for_bltouch(deploy);
  1847. #endif
  1848. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1850. if (DEBUGGING(LEVELING)) {
  1851. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1852. SERIAL_CHAR(')');
  1853. SERIAL_EOL;
  1854. }
  1855. #endif
  1856. }
  1857. #endif // BLTOUCH
  1858. // returns false for ok and true for failure
  1859. bool set_probe_deployed(bool deploy) {
  1860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1861. if (DEBUGGING(LEVELING)) {
  1862. DEBUG_POS("set_probe_deployed", current_position);
  1863. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1864. }
  1865. #endif
  1866. if (endstops.z_probe_enabled == deploy) return false;
  1867. // Make room for probe
  1868. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1869. // When deploying make sure BLTOUCH is not already triggered
  1870. #if ENABLED(BLTOUCH)
  1871. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1872. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1873. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1874. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1875. safe_delay(1500); // wait for internal self test to complete
  1876. // measured completion time was 0.65 seconds
  1877. // after reset, deploy & stow sequence
  1878. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1879. SERIAL_ERROR_START;
  1880. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1881. stop(); // punt!
  1882. return true;
  1883. }
  1884. }
  1885. #elif ENABLED(Z_PROBE_SLED)
  1886. if (axis_unhomed_error(true, false, false)) {
  1887. SERIAL_ERROR_START;
  1888. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1889. stop();
  1890. return true;
  1891. }
  1892. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1893. if (axis_unhomed_error(true, true, true )) {
  1894. SERIAL_ERROR_START;
  1895. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1896. stop();
  1897. return true;
  1898. }
  1899. #endif
  1900. const float oldXpos = current_position[X_AXIS],
  1901. oldYpos = current_position[Y_AXIS];
  1902. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1903. // If endstop is already false, the Z probe is deployed
  1904. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1905. // Would a goto be less ugly?
  1906. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1907. // for a triggered when stowed manual probe.
  1908. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1909. // otherwise an Allen-Key probe can't be stowed.
  1910. #endif
  1911. #if ENABLED(SOLENOID_PROBE)
  1912. #if HAS_SOLENOID_1
  1913. WRITE(SOL1_PIN, deploy);
  1914. #endif
  1915. #elif ENABLED(Z_PROBE_SLED)
  1916. dock_sled(!deploy);
  1917. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1918. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1919. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1920. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1921. #endif
  1922. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1923. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1924. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1925. if (IsRunning()) {
  1926. SERIAL_ERROR_START;
  1927. SERIAL_ERRORLNPGM("Z-Probe failed");
  1928. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1929. }
  1930. stop();
  1931. return true;
  1932. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1933. #endif
  1934. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1935. endstops.enable_z_probe(deploy);
  1936. return false;
  1937. }
  1938. static void do_probe_move(float z, float fr_mm_m) {
  1939. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1940. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1941. #endif
  1942. // Deploy BLTouch at the start of any probe
  1943. #if ENABLED(BLTOUCH)
  1944. set_bltouch_deployed(true);
  1945. #endif
  1946. // Move down until probe triggered
  1947. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1948. // Retract BLTouch immediately after a probe
  1949. #if ENABLED(BLTOUCH)
  1950. set_bltouch_deployed(false);
  1951. #endif
  1952. // Clear endstop flags
  1953. endstops.hit_on_purpose();
  1954. // Get Z where the steppers were interrupted
  1955. set_current_from_steppers_for_axis(Z_AXIS);
  1956. // Tell the planner where we actually are
  1957. SYNC_PLAN_POSITION_KINEMATIC();
  1958. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1959. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1960. #endif
  1961. }
  1962. // Do a single Z probe and return with current_position[Z_AXIS]
  1963. // at the height where the probe triggered.
  1964. static float run_z_probe() {
  1965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1966. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1967. #endif
  1968. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1969. refresh_cmd_timeout();
  1970. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1971. // Do a first probe at the fast speed
  1972. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1973. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1974. float first_probe_z = current_position[Z_AXIS];
  1975. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1976. #endif
  1977. // move up by the bump distance
  1978. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1979. #else
  1980. // If the nozzle is above the travel height then
  1981. // move down quickly before doing the slow probe
  1982. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1983. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1984. #if ENABLED(DELTA)
  1985. z -= home_offset[Z_AXIS];
  1986. #endif
  1987. if (z < current_position[Z_AXIS])
  1988. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1989. #endif
  1990. // move down slowly to find bed
  1991. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1992. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1993. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1994. #endif
  1995. // Debug: compare probe heights
  1996. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1997. if (DEBUGGING(LEVELING)) {
  1998. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1999. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2000. }
  2001. #endif
  2002. return current_position[Z_AXIS] + zprobe_zoffset;
  2003. }
  2004. /**
  2005. * - Move to the given XY
  2006. * - Deploy the probe, if not already deployed
  2007. * - Probe the bed, get the Z position
  2008. * - Depending on the 'stow' flag
  2009. * - Stow the probe, or
  2010. * - Raise to the BETWEEN height
  2011. * - Return the probed Z position
  2012. */
  2013. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  2014. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2015. if (DEBUGGING(LEVELING)) {
  2016. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  2017. SERIAL_ECHOPAIR(", ", y);
  2018. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2019. SERIAL_ECHOLNPGM("stow)");
  2020. DEBUG_POS("", current_position);
  2021. }
  2022. #endif
  2023. const float old_feedrate_mm_s = feedrate_mm_s;
  2024. #if ENABLED(DELTA)
  2025. if (current_position[Z_AXIS] > delta_clip_start_height)
  2026. do_blocking_move_to_z(delta_clip_start_height);
  2027. #endif
  2028. // Ensure a minimum height before moving the probe
  2029. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2030. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2031. // Move the probe to the given XY
  2032. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2033. if (DEPLOY_PROBE()) return NAN;
  2034. const float measured_z = run_z_probe();
  2035. if (!stow)
  2036. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2037. else
  2038. if (STOW_PROBE()) return NAN;
  2039. if (verbose_level > 2) {
  2040. SERIAL_PROTOCOLPGM("Bed X: ");
  2041. SERIAL_PROTOCOL_F(x, 3);
  2042. SERIAL_PROTOCOLPGM(" Y: ");
  2043. SERIAL_PROTOCOL_F(y, 3);
  2044. SERIAL_PROTOCOLPGM(" Z: ");
  2045. SERIAL_PROTOCOL_F(measured_z, 3);
  2046. SERIAL_EOL;
  2047. }
  2048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2049. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2050. #endif
  2051. feedrate_mm_s = old_feedrate_mm_s;
  2052. return measured_z;
  2053. }
  2054. #endif // HAS_BED_PROBE
  2055. #if HAS_LEVELING
  2056. /**
  2057. * Turn bed leveling on or off, fixing the current
  2058. * position as-needed.
  2059. *
  2060. * Disable: Current position = physical position
  2061. * Enable: Current position = "unleveled" physical position
  2062. */
  2063. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2064. #if ENABLED(MESH_BED_LEVELING)
  2065. if (enable != mbl.active()) {
  2066. if (!enable)
  2067. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2068. mbl.set_active(enable && mbl.has_mesh());
  2069. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2070. }
  2071. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2072. ubl.state.active = enable;
  2073. //set_current_from_steppers_for_axis(Z_AXIS);
  2074. #else
  2075. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2076. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2077. #else
  2078. constexpr bool can_change = true;
  2079. #endif
  2080. if (can_change && enable != planner.abl_enabled) {
  2081. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2082. // Force bilinear_z_offset to re-calculate next time
  2083. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2084. (void)bilinear_z_offset(reset);
  2085. #endif
  2086. planner.abl_enabled = enable;
  2087. if (!enable)
  2088. set_current_from_steppers_for_axis(
  2089. #if ABL_PLANAR
  2090. ALL_AXES
  2091. #else
  2092. Z_AXIS
  2093. #endif
  2094. );
  2095. else
  2096. planner.unapply_leveling(current_position);
  2097. }
  2098. #endif
  2099. }
  2100. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2101. void set_z_fade_height(const float zfh) {
  2102. planner.z_fade_height = zfh;
  2103. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2104. if (
  2105. #if ENABLED(MESH_BED_LEVELING)
  2106. mbl.active()
  2107. #else
  2108. planner.abl_enabled
  2109. #endif
  2110. ) {
  2111. set_current_from_steppers_for_axis(
  2112. #if ABL_PLANAR
  2113. ALL_AXES
  2114. #else
  2115. Z_AXIS
  2116. #endif
  2117. );
  2118. }
  2119. }
  2120. #endif // LEVELING_FADE_HEIGHT
  2121. /**
  2122. * Reset calibration results to zero.
  2123. */
  2124. void reset_bed_level() {
  2125. set_bed_leveling_enabled(false);
  2126. #if ENABLED(MESH_BED_LEVELING)
  2127. if (mbl.has_mesh()) {
  2128. mbl.reset();
  2129. mbl.set_has_mesh(false);
  2130. }
  2131. #else
  2132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2133. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2134. #endif
  2135. #if ABL_PLANAR
  2136. planner.bed_level_matrix.set_to_identity();
  2137. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2138. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2139. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2140. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2141. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2142. z_values[x][y] = NAN;
  2143. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2144. ubl.reset();
  2145. #endif
  2146. #endif
  2147. }
  2148. #endif // HAS_LEVELING
  2149. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2150. /**
  2151. * Enable to produce output in JSON format suitable
  2152. * for SCAD or JavaScript mesh visualizers.
  2153. *
  2154. * Visualize meshes in OpenSCAD using the included script.
  2155. *
  2156. * buildroot/shared/scripts/MarlinMesh.scad
  2157. */
  2158. //#define SCAD_MESH_OUTPUT
  2159. /**
  2160. * Print calibration results for plotting or manual frame adjustment.
  2161. */
  2162. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2163. #ifndef SCAD_MESH_OUTPUT
  2164. for (uint8_t x = 0; x < sx; x++) {
  2165. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2166. SERIAL_PROTOCOLCHAR(' ');
  2167. SERIAL_PROTOCOL((int)x);
  2168. }
  2169. SERIAL_EOL;
  2170. #endif
  2171. #ifdef SCAD_MESH_OUTPUT
  2172. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2173. #endif
  2174. for (uint8_t y = 0; y < sy; y++) {
  2175. #ifdef SCAD_MESH_OUTPUT
  2176. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2177. #else
  2178. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2179. SERIAL_PROTOCOL((int)y);
  2180. #endif
  2181. for (uint8_t x = 0; x < sx; x++) {
  2182. SERIAL_PROTOCOLCHAR(' ');
  2183. const float offset = fn(x, y);
  2184. if (!isnan(offset)) {
  2185. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2186. SERIAL_PROTOCOL_F(offset, precision);
  2187. }
  2188. else {
  2189. #ifdef SCAD_MESH_OUTPUT
  2190. for (uint8_t i = 3; i < precision + 3; i++)
  2191. SERIAL_PROTOCOLCHAR(' ');
  2192. SERIAL_PROTOCOLPGM("NAN");
  2193. #else
  2194. for (uint8_t i = 0; i < precision + 3; i++)
  2195. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2196. #endif
  2197. }
  2198. #ifdef SCAD_MESH_OUTPUT
  2199. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2200. #endif
  2201. }
  2202. #ifdef SCAD_MESH_OUTPUT
  2203. SERIAL_PROTOCOLCHAR(' ');
  2204. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2205. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2206. #endif
  2207. SERIAL_EOL;
  2208. }
  2209. #ifdef SCAD_MESH_OUTPUT
  2210. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2211. #endif
  2212. SERIAL_EOL;
  2213. }
  2214. #endif
  2215. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2216. /**
  2217. * Extrapolate a single point from its neighbors
  2218. */
  2219. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2221. if (DEBUGGING(LEVELING)) {
  2222. SERIAL_ECHOPGM("Extrapolate [");
  2223. if (x < 10) SERIAL_CHAR(' ');
  2224. SERIAL_ECHO((int)x);
  2225. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2226. SERIAL_CHAR(' ');
  2227. if (y < 10) SERIAL_CHAR(' ');
  2228. SERIAL_ECHO((int)y);
  2229. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2230. SERIAL_CHAR(']');
  2231. }
  2232. #endif
  2233. if (!isnan(z_values[x][y])) {
  2234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2235. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2236. #endif
  2237. return; // Don't overwrite good values.
  2238. }
  2239. SERIAL_EOL;
  2240. // Get X neighbors, Y neighbors, and XY neighbors
  2241. float a1 = z_values[x + xdir][y], a2 = z_values[x + xdir * 2][y],
  2242. b1 = z_values[x][y + ydir], b2 = z_values[x][y + ydir * 2],
  2243. c1 = z_values[x + xdir][y + ydir], c2 = z_values[x + xdir * 2][y + ydir * 2];
  2244. // Treat far unprobed points as zero, near as equal to far
  2245. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2246. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2247. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2248. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2249. // Take the average instead of the median
  2250. z_values[x][y] = (a + b + c) / 3.0;
  2251. // Median is robust (ignores outliers).
  2252. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2253. // : ((c < b) ? b : (a < c) ? a : c);
  2254. }
  2255. //Enable this if your SCARA uses 180° of total area
  2256. //#define EXTRAPOLATE_FROM_EDGE
  2257. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2258. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2259. #define HALF_IN_X
  2260. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2261. #define HALF_IN_Y
  2262. #endif
  2263. #endif
  2264. /**
  2265. * Fill in the unprobed points (corners of circular print surface)
  2266. * using linear extrapolation, away from the center.
  2267. */
  2268. static void extrapolate_unprobed_bed_level() {
  2269. #ifdef HALF_IN_X
  2270. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2271. #else
  2272. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2273. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2274. xlen = ctrx1;
  2275. #endif
  2276. #ifdef HALF_IN_Y
  2277. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2278. #else
  2279. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2280. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2281. ylen = ctry1;
  2282. #endif
  2283. for (uint8_t xo = 0; xo <= xlen; xo++)
  2284. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2285. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2286. #ifndef HALF_IN_X
  2287. const uint8_t x1 = ctrx1 - xo;
  2288. #endif
  2289. #ifndef HALF_IN_Y
  2290. const uint8_t y1 = ctry1 - yo;
  2291. #ifndef HALF_IN_X
  2292. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2293. #endif
  2294. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2295. #endif
  2296. #ifndef HALF_IN_X
  2297. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2298. #endif
  2299. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2300. }
  2301. }
  2302. static void print_bilinear_leveling_grid() {
  2303. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2304. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2305. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2306. );
  2307. }
  2308. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2309. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2310. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2311. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2312. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2313. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2314. int bilinear_grid_spacing_virt[2] = { 0 };
  2315. float bilinear_grid_factor_virt[2] = { 0 };
  2316. static void bed_level_virt_print() {
  2317. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2318. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2319. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2320. );
  2321. }
  2322. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2323. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2324. uint8_t ep = 0, ip = 1;
  2325. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2326. if (x) {
  2327. ep = GRID_MAX_POINTS_X - 1;
  2328. ip = GRID_MAX_POINTS_X - 2;
  2329. }
  2330. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2331. return LINEAR_EXTRAPOLATION(
  2332. z_values[ep][y - 1],
  2333. z_values[ip][y - 1]
  2334. );
  2335. else
  2336. return LINEAR_EXTRAPOLATION(
  2337. bed_level_virt_coord(ep + 1, y),
  2338. bed_level_virt_coord(ip + 1, y)
  2339. );
  2340. }
  2341. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2342. if (y) {
  2343. ep = GRID_MAX_POINTS_Y - 1;
  2344. ip = GRID_MAX_POINTS_Y - 2;
  2345. }
  2346. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2347. return LINEAR_EXTRAPOLATION(
  2348. z_values[x - 1][ep],
  2349. z_values[x - 1][ip]
  2350. );
  2351. else
  2352. return LINEAR_EXTRAPOLATION(
  2353. bed_level_virt_coord(x, ep + 1),
  2354. bed_level_virt_coord(x, ip + 1)
  2355. );
  2356. }
  2357. return z_values[x - 1][y - 1];
  2358. }
  2359. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2360. return (
  2361. p[i-1] * -t * sq(1 - t)
  2362. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2363. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2364. - p[i+2] * sq(t) * (1 - t)
  2365. ) * 0.5;
  2366. }
  2367. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2368. float row[4], column[4];
  2369. for (uint8_t i = 0; i < 4; i++) {
  2370. for (uint8_t j = 0; j < 4; j++) {
  2371. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2372. }
  2373. row[i] = bed_level_virt_cmr(column, 1, ty);
  2374. }
  2375. return bed_level_virt_cmr(row, 1, tx);
  2376. }
  2377. void bed_level_virt_interpolate() {
  2378. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2379. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2380. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2381. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2382. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2383. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2384. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2385. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2386. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2387. continue;
  2388. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2389. bed_level_virt_2cmr(
  2390. x + 1,
  2391. y + 1,
  2392. (float)tx / (BILINEAR_SUBDIVISIONS),
  2393. (float)ty / (BILINEAR_SUBDIVISIONS)
  2394. );
  2395. }
  2396. }
  2397. #endif // ABL_BILINEAR_SUBDIVISION
  2398. // Refresh after other values have been updated
  2399. void refresh_bed_level() {
  2400. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2401. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2402. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2403. bed_level_virt_interpolate();
  2404. #endif
  2405. }
  2406. #endif // AUTO_BED_LEVELING_BILINEAR
  2407. /**
  2408. * Home an individual linear axis
  2409. */
  2410. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2412. if (DEBUGGING(LEVELING)) {
  2413. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2414. SERIAL_ECHOPAIR(", ", distance);
  2415. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2416. SERIAL_CHAR(')');
  2417. SERIAL_EOL;
  2418. }
  2419. #endif
  2420. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2421. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2422. if (deploy_bltouch) set_bltouch_deployed(true);
  2423. #endif
  2424. // Tell the planner we're at Z=0
  2425. current_position[axis] = 0;
  2426. #if IS_SCARA
  2427. SYNC_PLAN_POSITION_KINEMATIC();
  2428. current_position[axis] = distance;
  2429. inverse_kinematics(current_position);
  2430. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2431. #else
  2432. sync_plan_position();
  2433. current_position[axis] = distance;
  2434. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2435. #endif
  2436. stepper.synchronize();
  2437. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2438. if (deploy_bltouch) set_bltouch_deployed(false);
  2439. #endif
  2440. endstops.hit_on_purpose();
  2441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2442. if (DEBUGGING(LEVELING)) {
  2443. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2444. SERIAL_CHAR(')');
  2445. SERIAL_EOL;
  2446. }
  2447. #endif
  2448. }
  2449. /**
  2450. * TMC2130 specific sensorless homing using stallGuard2.
  2451. * stallGuard2 only works when in spreadCycle mode.
  2452. * spreadCycle and stealthChop are mutually exclusive.
  2453. */
  2454. #if ENABLED(SENSORLESS_HOMING)
  2455. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2456. #if ENABLED(STEALTHCHOP)
  2457. if (enable) {
  2458. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2459. st.stealthChop(0);
  2460. }
  2461. else {
  2462. st.coolstep_min_speed(0);
  2463. st.stealthChop(1);
  2464. }
  2465. #endif
  2466. st.diag1_stall(enable ? 1 : 0);
  2467. }
  2468. #endif
  2469. /**
  2470. * Home an individual "raw axis" to its endstop.
  2471. * This applies to XYZ on Cartesian and Core robots, and
  2472. * to the individual ABC steppers on DELTA and SCARA.
  2473. *
  2474. * At the end of the procedure the axis is marked as
  2475. * homed and the current position of that axis is updated.
  2476. * Kinematic robots should wait till all axes are homed
  2477. * before updating the current position.
  2478. */
  2479. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2480. static void homeaxis(const AxisEnum axis) {
  2481. #if IS_SCARA
  2482. // Only Z homing (with probe) is permitted
  2483. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2484. #else
  2485. #define CAN_HOME(A) \
  2486. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2487. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2488. #endif
  2489. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2490. if (DEBUGGING(LEVELING)) {
  2491. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2492. SERIAL_CHAR(')');
  2493. SERIAL_EOL;
  2494. }
  2495. #endif
  2496. const int axis_home_dir =
  2497. #if ENABLED(DUAL_X_CARRIAGE)
  2498. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2499. #endif
  2500. home_dir(axis);
  2501. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2502. #if HOMING_Z_WITH_PROBE
  2503. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2504. #endif
  2505. // Set a flag for Z motor locking
  2506. #if ENABLED(Z_DUAL_ENDSTOPS)
  2507. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2508. #endif
  2509. // Disable stealthChop if used. Enable diag1 pin on driver.
  2510. #if ENABLED(SENSORLESS_HOMING)
  2511. #if ENABLED(X_IS_TMC2130)
  2512. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2513. #endif
  2514. #if ENABLED(Y_IS_TMC2130)
  2515. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2516. #endif
  2517. #endif
  2518. // Fast move towards endstop until triggered
  2519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2521. #endif
  2522. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2523. // When homing Z with probe respect probe clearance
  2524. const float bump = axis_home_dir * (
  2525. #if HOMING_Z_WITH_PROBE
  2526. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2527. #endif
  2528. home_bump_mm(axis)
  2529. );
  2530. // If a second homing move is configured...
  2531. if (bump) {
  2532. // Move away from the endstop by the axis HOME_BUMP_MM
  2533. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2534. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2535. #endif
  2536. do_homing_move(axis, -bump);
  2537. // Slow move towards endstop until triggered
  2538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2539. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2540. #endif
  2541. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2542. }
  2543. #if ENABLED(Z_DUAL_ENDSTOPS)
  2544. if (axis == Z_AXIS) {
  2545. float adj = fabs(z_endstop_adj);
  2546. bool lockZ1;
  2547. if (axis_home_dir > 0) {
  2548. adj = -adj;
  2549. lockZ1 = (z_endstop_adj > 0);
  2550. }
  2551. else
  2552. lockZ1 = (z_endstop_adj < 0);
  2553. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2554. // Move to the adjusted endstop height
  2555. do_homing_move(axis, adj);
  2556. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2557. stepper.set_homing_flag(false);
  2558. } // Z_AXIS
  2559. #endif
  2560. #if IS_SCARA
  2561. set_axis_is_at_home(axis);
  2562. SYNC_PLAN_POSITION_KINEMATIC();
  2563. #elif ENABLED(DELTA)
  2564. // Delta has already moved all three towers up in G28
  2565. // so here it re-homes each tower in turn.
  2566. // Delta homing treats the axes as normal linear axes.
  2567. // retrace by the amount specified in endstop_adj
  2568. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2570. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2571. #endif
  2572. do_homing_move(axis, endstop_adj[axis]);
  2573. }
  2574. #else
  2575. // For cartesian/core machines,
  2576. // set the axis to its home position
  2577. set_axis_is_at_home(axis);
  2578. sync_plan_position();
  2579. destination[axis] = current_position[axis];
  2580. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2581. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2582. #endif
  2583. #endif
  2584. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2585. #if ENABLED(SENSORLESS_HOMING)
  2586. #if ENABLED(X_IS_TMC2130)
  2587. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2588. #endif
  2589. #if ENABLED(Y_IS_TMC2130)
  2590. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2591. #endif
  2592. #endif
  2593. // Put away the Z probe
  2594. #if HOMING_Z_WITH_PROBE
  2595. if (axis == Z_AXIS && STOW_PROBE()) return;
  2596. #endif
  2597. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2598. if (DEBUGGING(LEVELING)) {
  2599. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2600. SERIAL_CHAR(')');
  2601. SERIAL_EOL;
  2602. }
  2603. #endif
  2604. } // homeaxis()
  2605. #if ENABLED(FWRETRACT)
  2606. void retract(const bool retracting, const bool swapping = false) {
  2607. static float hop_height;
  2608. if (retracting == retracted[active_extruder]) return;
  2609. const float old_feedrate_mm_s = feedrate_mm_s;
  2610. set_destination_to_current();
  2611. if (retracting) {
  2612. feedrate_mm_s = retract_feedrate_mm_s;
  2613. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2614. sync_plan_position_e();
  2615. prepare_move_to_destination();
  2616. if (retract_zlift > 0.01) {
  2617. hop_height = current_position[Z_AXIS];
  2618. // Pretend current position is lower
  2619. current_position[Z_AXIS] -= retract_zlift;
  2620. SYNC_PLAN_POSITION_KINEMATIC();
  2621. // Raise up to the old current_position
  2622. prepare_move_to_destination();
  2623. }
  2624. }
  2625. else {
  2626. // If the height hasn't been altered, undo the Z hop
  2627. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2628. // Pretend current position is higher. Z will lower on the next move
  2629. current_position[Z_AXIS] += retract_zlift;
  2630. SYNC_PLAN_POSITION_KINEMATIC();
  2631. }
  2632. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2633. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2634. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2635. sync_plan_position_e();
  2636. // Lower Z and recover E
  2637. prepare_move_to_destination();
  2638. }
  2639. feedrate_mm_s = old_feedrate_mm_s;
  2640. retracted[active_extruder] = retracting;
  2641. } // retract()
  2642. #endif // FWRETRACT
  2643. #if ENABLED(MIXING_EXTRUDER)
  2644. void normalize_mix() {
  2645. float mix_total = 0.0;
  2646. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2647. // Scale all values if they don't add up to ~1.0
  2648. if (!NEAR(mix_total, 1.0)) {
  2649. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2650. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2651. }
  2652. }
  2653. #if ENABLED(DIRECT_MIXING_IN_G1)
  2654. // Get mixing parameters from the GCode
  2655. // The total "must" be 1.0 (but it will be normalized)
  2656. // If no mix factors are given, the old mix is preserved
  2657. void gcode_get_mix() {
  2658. const char* mixing_codes = "ABCDHI";
  2659. byte mix_bits = 0;
  2660. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2661. if (code_seen(mixing_codes[i])) {
  2662. SBI(mix_bits, i);
  2663. float v = code_value_float();
  2664. NOLESS(v, 0.0);
  2665. mixing_factor[i] = RECIPROCAL(v);
  2666. }
  2667. }
  2668. // If any mixing factors were included, clear the rest
  2669. // If none were included, preserve the last mix
  2670. if (mix_bits) {
  2671. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2672. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2673. normalize_mix();
  2674. }
  2675. }
  2676. #endif
  2677. #endif
  2678. /**
  2679. * ***************************************************************************
  2680. * ***************************** G-CODE HANDLING *****************************
  2681. * ***************************************************************************
  2682. */
  2683. /**
  2684. * Set XYZE destination and feedrate from the current GCode command
  2685. *
  2686. * - Set destination from included axis codes
  2687. * - Set to current for missing axis codes
  2688. * - Set the feedrate, if included
  2689. */
  2690. void gcode_get_destination() {
  2691. LOOP_XYZE(i) {
  2692. if (code_seen(axis_codes[i]))
  2693. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2694. else
  2695. destination[i] = current_position[i];
  2696. }
  2697. if (code_seen('F') && code_value_linear_units() > 0.0)
  2698. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2699. #if ENABLED(PRINTCOUNTER)
  2700. if (!DEBUGGING(DRYRUN))
  2701. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2702. #endif
  2703. // Get ABCDHI mixing factors
  2704. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2705. gcode_get_mix();
  2706. #endif
  2707. }
  2708. void unknown_command_error() {
  2709. SERIAL_ECHO_START;
  2710. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2711. SERIAL_CHAR('"');
  2712. SERIAL_EOL;
  2713. }
  2714. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2715. /**
  2716. * Output a "busy" message at regular intervals
  2717. * while the machine is not accepting commands.
  2718. */
  2719. void host_keepalive() {
  2720. const millis_t ms = millis();
  2721. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2722. if (PENDING(ms, next_busy_signal_ms)) return;
  2723. switch (busy_state) {
  2724. case IN_HANDLER:
  2725. case IN_PROCESS:
  2726. SERIAL_ECHO_START;
  2727. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2728. break;
  2729. case PAUSED_FOR_USER:
  2730. SERIAL_ECHO_START;
  2731. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2732. break;
  2733. case PAUSED_FOR_INPUT:
  2734. SERIAL_ECHO_START;
  2735. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2736. break;
  2737. default:
  2738. break;
  2739. }
  2740. }
  2741. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2742. }
  2743. #endif //HOST_KEEPALIVE_FEATURE
  2744. bool position_is_reachable(const float target[XYZ]
  2745. #if HAS_BED_PROBE
  2746. , bool by_probe=false
  2747. #endif
  2748. ) {
  2749. float dx = RAW_X_POSITION(target[X_AXIS]),
  2750. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2751. #if HAS_BED_PROBE
  2752. if (by_probe) {
  2753. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2754. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2755. }
  2756. #endif
  2757. #if IS_SCARA
  2758. #if MIDDLE_DEAD_ZONE_R > 0
  2759. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2760. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2761. #else
  2762. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2763. #endif
  2764. #elif ENABLED(DELTA)
  2765. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2766. #else
  2767. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2768. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2769. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2770. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2771. #endif
  2772. }
  2773. /**************************************************
  2774. ***************** GCode Handlers *****************
  2775. **************************************************/
  2776. /**
  2777. * G0, G1: Coordinated movement of X Y Z E axes
  2778. */
  2779. inline void gcode_G0_G1(
  2780. #if IS_SCARA
  2781. bool fast_move=false
  2782. #endif
  2783. ) {
  2784. if (IsRunning()) {
  2785. gcode_get_destination(); // For X Y Z E F
  2786. #if ENABLED(FWRETRACT)
  2787. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2788. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2789. // Is this move an attempt to retract or recover?
  2790. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2791. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2792. sync_plan_position_e(); // AND from the planner
  2793. retract(!retracted[active_extruder]);
  2794. return;
  2795. }
  2796. }
  2797. #endif //FWRETRACT
  2798. #if IS_SCARA
  2799. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2800. #else
  2801. prepare_move_to_destination();
  2802. #endif
  2803. }
  2804. }
  2805. /**
  2806. * G2: Clockwise Arc
  2807. * G3: Counterclockwise Arc
  2808. *
  2809. * This command has two forms: IJ-form and R-form.
  2810. *
  2811. * - I specifies an X offset. J specifies a Y offset.
  2812. * At least one of the IJ parameters is required.
  2813. * X and Y can be omitted to do a complete circle.
  2814. * The given XY is not error-checked. The arc ends
  2815. * based on the angle of the destination.
  2816. * Mixing I or J with R will throw an error.
  2817. *
  2818. * - R specifies the radius. X or Y is required.
  2819. * Omitting both X and Y will throw an error.
  2820. * X or Y must differ from the current XY.
  2821. * Mixing R with I or J will throw an error.
  2822. *
  2823. * Examples:
  2824. *
  2825. * G2 I10 ; CW circle centered at X+10
  2826. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2827. */
  2828. #if ENABLED(ARC_SUPPORT)
  2829. inline void gcode_G2_G3(bool clockwise) {
  2830. if (IsRunning()) {
  2831. #if ENABLED(SF_ARC_FIX)
  2832. const bool relative_mode_backup = relative_mode;
  2833. relative_mode = true;
  2834. #endif
  2835. gcode_get_destination();
  2836. #if ENABLED(SF_ARC_FIX)
  2837. relative_mode = relative_mode_backup;
  2838. #endif
  2839. float arc_offset[2] = { 0.0, 0.0 };
  2840. if (code_seen('R')) {
  2841. const float r = code_value_linear_units(),
  2842. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2843. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2844. if (r && (x2 != x1 || y2 != y1)) {
  2845. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2846. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2847. d = HYPOT(dx, dy), // Linear distance between the points
  2848. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2849. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2850. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2851. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2852. arc_offset[X_AXIS] = cx - x1;
  2853. arc_offset[Y_AXIS] = cy - y1;
  2854. }
  2855. }
  2856. else {
  2857. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2858. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2859. }
  2860. if (arc_offset[0] || arc_offset[1]) {
  2861. // Send an arc to the planner
  2862. plan_arc(destination, arc_offset, clockwise);
  2863. refresh_cmd_timeout();
  2864. }
  2865. else {
  2866. // Bad arguments
  2867. SERIAL_ERROR_START;
  2868. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2869. }
  2870. }
  2871. }
  2872. #endif
  2873. /**
  2874. * G4: Dwell S<seconds> or P<milliseconds>
  2875. */
  2876. inline void gcode_G4() {
  2877. millis_t dwell_ms = 0;
  2878. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2879. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2880. stepper.synchronize();
  2881. refresh_cmd_timeout();
  2882. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2883. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2884. while (PENDING(millis(), dwell_ms)) idle();
  2885. }
  2886. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2887. /**
  2888. * Parameters interpreted according to:
  2889. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2890. * However I, J omission is not supported at this point; all
  2891. * parameters can be omitted and default to zero.
  2892. */
  2893. /**
  2894. * G5: Cubic B-spline
  2895. */
  2896. inline void gcode_G5() {
  2897. if (IsRunning()) {
  2898. gcode_get_destination();
  2899. const float offset[] = {
  2900. code_seen('I') ? code_value_linear_units() : 0.0,
  2901. code_seen('J') ? code_value_linear_units() : 0.0,
  2902. code_seen('P') ? code_value_linear_units() : 0.0,
  2903. code_seen('Q') ? code_value_linear_units() : 0.0
  2904. };
  2905. plan_cubic_move(offset);
  2906. }
  2907. }
  2908. #endif // BEZIER_CURVE_SUPPORT
  2909. #if ENABLED(FWRETRACT)
  2910. /**
  2911. * G10 - Retract filament according to settings of M207
  2912. * G11 - Recover filament according to settings of M208
  2913. */
  2914. inline void gcode_G10_G11(bool doRetract=false) {
  2915. #if EXTRUDERS > 1
  2916. if (doRetract) {
  2917. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2918. }
  2919. #endif
  2920. retract(doRetract
  2921. #if EXTRUDERS > 1
  2922. , retracted_swap[active_extruder]
  2923. #endif
  2924. );
  2925. }
  2926. #endif //FWRETRACT
  2927. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2928. /**
  2929. * G12: Clean the nozzle
  2930. */
  2931. inline void gcode_G12() {
  2932. // Don't allow nozzle cleaning without homing first
  2933. if (axis_unhomed_error(true, true, true)) return;
  2934. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2935. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2936. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2937. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2938. Nozzle::clean(pattern, strokes, radius, objects);
  2939. }
  2940. #endif
  2941. #if ENABLED(INCH_MODE_SUPPORT)
  2942. /**
  2943. * G20: Set input mode to inches
  2944. */
  2945. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2946. /**
  2947. * G21: Set input mode to millimeters
  2948. */
  2949. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2950. #endif
  2951. #if ENABLED(NOZZLE_PARK_FEATURE)
  2952. /**
  2953. * G27: Park the nozzle
  2954. */
  2955. inline void gcode_G27() {
  2956. // Don't allow nozzle parking without homing first
  2957. if (axis_unhomed_error(true, true, true)) return;
  2958. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2959. }
  2960. #endif // NOZZLE_PARK_FEATURE
  2961. #if ENABLED(QUICK_HOME)
  2962. static void quick_home_xy() {
  2963. // Pretend the current position is 0,0
  2964. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2965. sync_plan_position();
  2966. const int x_axis_home_dir =
  2967. #if ENABLED(DUAL_X_CARRIAGE)
  2968. x_home_dir(active_extruder)
  2969. #else
  2970. home_dir(X_AXIS)
  2971. #endif
  2972. ;
  2973. const float mlx = max_length(X_AXIS),
  2974. mly = max_length(Y_AXIS),
  2975. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2976. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2977. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2978. endstops.hit_on_purpose(); // clear endstop hit flags
  2979. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2980. }
  2981. #endif // QUICK_HOME
  2982. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2983. void log_machine_info() {
  2984. SERIAL_ECHOPGM("Machine Type: ");
  2985. #if ENABLED(DELTA)
  2986. SERIAL_ECHOLNPGM("Delta");
  2987. #elif IS_SCARA
  2988. SERIAL_ECHOLNPGM("SCARA");
  2989. #elif IS_CORE
  2990. SERIAL_ECHOLNPGM("Core");
  2991. #else
  2992. SERIAL_ECHOLNPGM("Cartesian");
  2993. #endif
  2994. SERIAL_ECHOPGM("Probe: ");
  2995. #if ENABLED(PROBE_MANUALLY)
  2996. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  2997. #elif ENABLED(FIX_MOUNTED_PROBE)
  2998. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2999. #elif ENABLED(BLTOUCH)
  3000. SERIAL_ECHOLNPGM("BLTOUCH");
  3001. #elif HAS_Z_SERVO_ENDSTOP
  3002. SERIAL_ECHOLNPGM("SERVO PROBE");
  3003. #elif ENABLED(Z_PROBE_SLED)
  3004. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3005. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3006. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3007. #else
  3008. SERIAL_ECHOLNPGM("NONE");
  3009. #endif
  3010. #if HAS_BED_PROBE
  3011. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3012. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3013. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3014. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3015. SERIAL_ECHOPGM(" (Right");
  3016. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3017. SERIAL_ECHOPGM(" (Left");
  3018. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3019. SERIAL_ECHOPGM(" (Middle");
  3020. #else
  3021. SERIAL_ECHOPGM(" (Aligned With");
  3022. #endif
  3023. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3024. SERIAL_ECHOPGM("-Back");
  3025. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3026. SERIAL_ECHOPGM("-Front");
  3027. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3028. SERIAL_ECHOPGM("-Center");
  3029. #endif
  3030. if (zprobe_zoffset < 0)
  3031. SERIAL_ECHOPGM(" & Below");
  3032. else if (zprobe_zoffset > 0)
  3033. SERIAL_ECHOPGM(" & Above");
  3034. else
  3035. SERIAL_ECHOPGM(" & Same Z as");
  3036. SERIAL_ECHOLNPGM(" Nozzle)");
  3037. #endif
  3038. #if HAS_ABL
  3039. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3040. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3041. SERIAL_ECHOPGM("LINEAR");
  3042. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3043. SERIAL_ECHOPGM("BILINEAR");
  3044. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3045. SERIAL_ECHOPGM("3POINT");
  3046. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3047. SERIAL_ECHOPGM("UBL");
  3048. #endif
  3049. if (planner.abl_enabled) {
  3050. SERIAL_ECHOLNPGM(" (enabled)");
  3051. #if ABL_PLANAR
  3052. float diff[XYZ] = {
  3053. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3054. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3055. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3056. };
  3057. SERIAL_ECHOPGM("ABL Adjustment X");
  3058. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3059. SERIAL_ECHO(diff[X_AXIS]);
  3060. SERIAL_ECHOPGM(" Y");
  3061. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3062. SERIAL_ECHO(diff[Y_AXIS]);
  3063. SERIAL_ECHOPGM(" Z");
  3064. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3065. SERIAL_ECHO(diff[Z_AXIS]);
  3066. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3067. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3068. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3069. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3070. #endif
  3071. }
  3072. else
  3073. SERIAL_ECHOLNPGM(" (disabled)");
  3074. SERIAL_EOL;
  3075. #elif ENABLED(MESH_BED_LEVELING)
  3076. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3077. if (mbl.active()) {
  3078. float lz = current_position[Z_AXIS];
  3079. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3080. SERIAL_ECHOLNPGM(" (enabled)");
  3081. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3082. }
  3083. else
  3084. SERIAL_ECHOPGM(" (disabled)");
  3085. SERIAL_EOL;
  3086. #endif // MESH_BED_LEVELING
  3087. }
  3088. #endif // DEBUG_LEVELING_FEATURE
  3089. #if ENABLED(DELTA)
  3090. /**
  3091. * A delta can only safely home all axes at the same time
  3092. * This is like quick_home_xy() but for 3 towers.
  3093. */
  3094. inline void home_delta() {
  3095. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3096. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3097. #endif
  3098. // Init the current position of all carriages to 0,0,0
  3099. ZERO(current_position);
  3100. sync_plan_position();
  3101. // Move all carriages together linearly until an endstop is hit.
  3102. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3103. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3104. line_to_current_position();
  3105. stepper.synchronize();
  3106. endstops.hit_on_purpose(); // clear endstop hit flags
  3107. // At least one carriage has reached the top.
  3108. // Now re-home each carriage separately.
  3109. HOMEAXIS(A);
  3110. HOMEAXIS(B);
  3111. HOMEAXIS(C);
  3112. // Set all carriages to their home positions
  3113. // Do this here all at once for Delta, because
  3114. // XYZ isn't ABC. Applying this per-tower would
  3115. // give the impression that they are the same.
  3116. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3117. SYNC_PLAN_POSITION_KINEMATIC();
  3118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3119. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3120. #endif
  3121. }
  3122. #endif // DELTA
  3123. #if ENABLED(Z_SAFE_HOMING)
  3124. inline void home_z_safely() {
  3125. // Disallow Z homing if X or Y are unknown
  3126. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3127. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3128. SERIAL_ECHO_START;
  3129. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3130. return;
  3131. }
  3132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3133. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3134. #endif
  3135. SYNC_PLAN_POSITION_KINEMATIC();
  3136. /**
  3137. * Move the Z probe (or just the nozzle) to the safe homing point
  3138. */
  3139. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3140. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3141. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3142. if (position_is_reachable(
  3143. destination
  3144. #if HOMING_Z_WITH_PROBE
  3145. , true
  3146. #endif
  3147. )
  3148. ) {
  3149. #if HOMING_Z_WITH_PROBE
  3150. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3151. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3152. #endif
  3153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3154. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3155. #endif
  3156. // This causes the carriage on Dual X to unpark
  3157. #if ENABLED(DUAL_X_CARRIAGE)
  3158. active_extruder_parked = false;
  3159. #endif
  3160. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3161. HOMEAXIS(Z);
  3162. }
  3163. else {
  3164. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3165. SERIAL_ECHO_START;
  3166. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3167. }
  3168. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3169. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3170. #endif
  3171. }
  3172. #endif // Z_SAFE_HOMING
  3173. #if ENABLED(PROBE_MANUALLY)
  3174. bool g29_in_progress = false;
  3175. #else
  3176. constexpr bool g29_in_progress = false;
  3177. #endif
  3178. /**
  3179. * G28: Home all axes according to settings
  3180. *
  3181. * Parameters
  3182. *
  3183. * None Home to all axes with no parameters.
  3184. * With QUICK_HOME enabled XY will home together, then Z.
  3185. *
  3186. * Cartesian parameters
  3187. *
  3188. * X Home to the X endstop
  3189. * Y Home to the Y endstop
  3190. * Z Home to the Z endstop
  3191. *
  3192. */
  3193. inline void gcode_G28() {
  3194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3195. if (DEBUGGING(LEVELING)) {
  3196. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3197. log_machine_info();
  3198. }
  3199. #endif
  3200. // Wait for planner moves to finish!
  3201. stepper.synchronize();
  3202. // Cancel the active G29 session
  3203. #if ENABLED(PROBE_MANUALLY)
  3204. g29_in_progress = false;
  3205. #endif
  3206. // Disable the leveling matrix before homing
  3207. #if HAS_LEVELING
  3208. set_bed_leveling_enabled(false);
  3209. #endif
  3210. // Always home with tool 0 active
  3211. #if HOTENDS > 1
  3212. const uint8_t old_tool_index = active_extruder;
  3213. tool_change(0, 0, true);
  3214. #endif
  3215. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3216. extruder_duplication_enabled = false;
  3217. #endif
  3218. setup_for_endstop_or_probe_move();
  3219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3220. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3221. #endif
  3222. endstops.enable(true); // Enable endstops for next homing move
  3223. #if ENABLED(DELTA)
  3224. home_delta();
  3225. #else // NOT DELTA
  3226. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3227. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3228. set_destination_to_current();
  3229. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3230. if (home_all_axis || homeZ) {
  3231. HOMEAXIS(Z);
  3232. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3233. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3234. #endif
  3235. }
  3236. #else
  3237. if (home_all_axis || homeX || homeY) {
  3238. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3239. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3240. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3241. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3242. if (DEBUGGING(LEVELING))
  3243. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3244. #endif
  3245. do_blocking_move_to_z(destination[Z_AXIS]);
  3246. }
  3247. }
  3248. #endif
  3249. #if ENABLED(QUICK_HOME)
  3250. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3251. #endif
  3252. #if ENABLED(HOME_Y_BEFORE_X)
  3253. // Home Y
  3254. if (home_all_axis || homeY) {
  3255. HOMEAXIS(Y);
  3256. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3257. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3258. #endif
  3259. }
  3260. #endif
  3261. // Home X
  3262. if (home_all_axis || homeX) {
  3263. #if ENABLED(DUAL_X_CARRIAGE)
  3264. // Always home the 2nd (right) extruder first
  3265. active_extruder = 1;
  3266. HOMEAXIS(X);
  3267. // Remember this extruder's position for later tool change
  3268. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3269. // Home the 1st (left) extruder
  3270. active_extruder = 0;
  3271. HOMEAXIS(X);
  3272. // Consider the active extruder to be parked
  3273. COPY(raised_parked_position, current_position);
  3274. delayed_move_time = 0;
  3275. active_extruder_parked = true;
  3276. #else
  3277. HOMEAXIS(X);
  3278. #endif
  3279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3280. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3281. #endif
  3282. }
  3283. #if DISABLED(HOME_Y_BEFORE_X)
  3284. // Home Y
  3285. if (home_all_axis || homeY) {
  3286. HOMEAXIS(Y);
  3287. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3288. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3289. #endif
  3290. }
  3291. #endif
  3292. // Home Z last if homing towards the bed
  3293. #if Z_HOME_DIR < 0
  3294. if (home_all_axis || homeZ) {
  3295. #if ENABLED(Z_SAFE_HOMING)
  3296. home_z_safely();
  3297. #else
  3298. HOMEAXIS(Z);
  3299. #endif
  3300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3301. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3302. #endif
  3303. } // home_all_axis || homeZ
  3304. #endif // Z_HOME_DIR < 0
  3305. SYNC_PLAN_POSITION_KINEMATIC();
  3306. #endif // !DELTA (gcode_G28)
  3307. endstops.not_homing();
  3308. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3309. // move to a height where we can use the full xy-area
  3310. do_blocking_move_to_z(delta_clip_start_height);
  3311. #endif
  3312. clean_up_after_endstop_or_probe_move();
  3313. // Restore the active tool after homing
  3314. #if HOTENDS > 1
  3315. tool_change(old_tool_index, 0, true);
  3316. #endif
  3317. report_current_position();
  3318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3319. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3320. #endif
  3321. } // G28
  3322. void home_all_axes() { gcode_G28(); }
  3323. #if HAS_PROBING_PROCEDURE
  3324. void out_of_range_error(const char* p_edge) {
  3325. SERIAL_PROTOCOLPGM("?Probe ");
  3326. serialprintPGM(p_edge);
  3327. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3328. }
  3329. #endif
  3330. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3331. inline void _manual_goto_xy(const float &x, const float &y) {
  3332. const float old_feedrate_mm_s = feedrate_mm_s;
  3333. #if MANUAL_PROBE_HEIGHT > 0
  3334. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3335. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3336. line_to_current_position();
  3337. #endif
  3338. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3339. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3340. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3341. line_to_current_position();
  3342. #if MANUAL_PROBE_HEIGHT > 0
  3343. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3344. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3345. line_to_current_position();
  3346. #endif
  3347. feedrate_mm_s = old_feedrate_mm_s;
  3348. stepper.synchronize();
  3349. }
  3350. #endif
  3351. #if ENABLED(MESH_BED_LEVELING)
  3352. // Save 130 bytes with non-duplication of PSTR
  3353. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3354. void mbl_mesh_report() {
  3355. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3356. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3357. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3358. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3359. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3360. );
  3361. }
  3362. void mesh_probing_done() {
  3363. mbl.set_has_mesh(true);
  3364. home_all_axes();
  3365. set_bed_leveling_enabled(true);
  3366. #if ENABLED(MESH_G28_REST_ORIGIN)
  3367. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3368. set_destination_to_current();
  3369. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3370. stepper.synchronize();
  3371. #endif
  3372. }
  3373. /**
  3374. * G29: Mesh-based Z probe, probes a grid and produces a
  3375. * mesh to compensate for variable bed height
  3376. *
  3377. * Parameters With MESH_BED_LEVELING:
  3378. *
  3379. * S0 Produce a mesh report
  3380. * S1 Start probing mesh points
  3381. * S2 Probe the next mesh point
  3382. * S3 Xn Yn Zn.nn Manually modify a single point
  3383. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3384. * S5 Reset and disable mesh
  3385. *
  3386. * The S0 report the points as below
  3387. *
  3388. * +----> X-axis 1-n
  3389. * |
  3390. * |
  3391. * v Y-axis 1-n
  3392. *
  3393. */
  3394. inline void gcode_G29() {
  3395. static int mbl_probe_index = -1;
  3396. #if HAS_SOFTWARE_ENDSTOPS
  3397. static bool enable_soft_endstops;
  3398. #endif
  3399. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3400. if (!WITHIN(state, 0, 5)) {
  3401. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3402. return;
  3403. }
  3404. int8_t px, py;
  3405. switch (state) {
  3406. case MeshReport:
  3407. if (mbl.has_mesh()) {
  3408. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3409. mbl_mesh_report();
  3410. }
  3411. else
  3412. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3413. break;
  3414. case MeshStart:
  3415. mbl.reset();
  3416. mbl_probe_index = 0;
  3417. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3418. break;
  3419. case MeshNext:
  3420. if (mbl_probe_index < 0) {
  3421. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3422. return;
  3423. }
  3424. // For each G29 S2...
  3425. if (mbl_probe_index == 0) {
  3426. #if HAS_SOFTWARE_ENDSTOPS
  3427. // For the initial G29 S2 save software endstop state
  3428. enable_soft_endstops = soft_endstops_enabled;
  3429. #endif
  3430. }
  3431. else {
  3432. // For G29 S2 after adjusting Z.
  3433. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3434. #if HAS_SOFTWARE_ENDSTOPS
  3435. soft_endstops_enabled = enable_soft_endstops;
  3436. #endif
  3437. }
  3438. // If there's another point to sample, move there with optional lift.
  3439. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3440. mbl.zigzag(mbl_probe_index, px, py);
  3441. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3442. #if HAS_SOFTWARE_ENDSTOPS
  3443. // Disable software endstops to allow manual adjustment
  3444. // If G29 is not completed, they will not be re-enabled
  3445. soft_endstops_enabled = false;
  3446. #endif
  3447. mbl_probe_index++;
  3448. }
  3449. else {
  3450. // One last "return to the bed" (as originally coded) at completion
  3451. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3452. line_to_current_position();
  3453. stepper.synchronize();
  3454. // After recording the last point, activate home and activate
  3455. mbl_probe_index = -1;
  3456. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3457. BUZZ(100, 659);
  3458. BUZZ(100, 698);
  3459. mesh_probing_done();
  3460. }
  3461. break;
  3462. case MeshSet:
  3463. if (code_seen('X')) {
  3464. px = code_value_int() - 1;
  3465. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3466. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3467. return;
  3468. }
  3469. }
  3470. else {
  3471. SERIAL_CHAR('X'); say_not_entered();
  3472. return;
  3473. }
  3474. if (code_seen('Y')) {
  3475. py = code_value_int() - 1;
  3476. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3477. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3478. return;
  3479. }
  3480. }
  3481. else {
  3482. SERIAL_CHAR('Y'); say_not_entered();
  3483. return;
  3484. }
  3485. if (code_seen('Z')) {
  3486. mbl.z_values[px][py] = code_value_linear_units();
  3487. }
  3488. else {
  3489. SERIAL_CHAR('Z'); say_not_entered();
  3490. return;
  3491. }
  3492. break;
  3493. case MeshSetZOffset:
  3494. if (code_seen('Z')) {
  3495. mbl.z_offset = code_value_linear_units();
  3496. }
  3497. else {
  3498. SERIAL_CHAR('Z'); say_not_entered();
  3499. return;
  3500. }
  3501. break;
  3502. case MeshReset:
  3503. reset_bed_level();
  3504. break;
  3505. } // switch(state)
  3506. report_current_position();
  3507. }
  3508. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3509. #if ABL_GRID
  3510. #if ENABLED(PROBE_Y_FIRST)
  3511. #define PR_OUTER_VAR xCount
  3512. #define PR_OUTER_END abl_grid_points_x
  3513. #define PR_INNER_VAR yCount
  3514. #define PR_INNER_END abl_grid_points_y
  3515. #else
  3516. #define PR_OUTER_VAR yCount
  3517. #define PR_OUTER_END abl_grid_points_y
  3518. #define PR_INNER_VAR xCount
  3519. #define PR_INNER_END abl_grid_points_x
  3520. #endif
  3521. #endif
  3522. /**
  3523. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3524. * Will fail if the printer has not been homed with G28.
  3525. *
  3526. * Enhanced G29 Auto Bed Leveling Probe Routine
  3527. *
  3528. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3529. * or alter the bed level data. Useful to check the topology
  3530. * after a first run of G29.
  3531. *
  3532. * J Jettison current bed leveling data
  3533. *
  3534. * V Set the verbose level (0-4). Example: "G29 V3"
  3535. *
  3536. * Parameters With LINEAR leveling only:
  3537. *
  3538. * P Set the size of the grid that will be probed (P x P points).
  3539. * Example: "G29 P4"
  3540. *
  3541. * X Set the X size of the grid that will be probed (X x Y points).
  3542. * Example: "G29 X7 Y5"
  3543. *
  3544. * Y Set the Y size of the grid that will be probed (X x Y points).
  3545. *
  3546. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3547. * This is useful for manual bed leveling and finding flaws in the bed (to
  3548. * assist with part placement).
  3549. * Not supported by non-linear delta printer bed leveling.
  3550. *
  3551. * Parameters With LINEAR and BILINEAR leveling only:
  3552. *
  3553. * S Set the XY travel speed between probe points (in units/min)
  3554. *
  3555. * F Set the Front limit of the probing grid
  3556. * B Set the Back limit of the probing grid
  3557. * L Set the Left limit of the probing grid
  3558. * R Set the Right limit of the probing grid
  3559. *
  3560. * Parameters with DEBUG_LEVELING_FEATURE only:
  3561. *
  3562. * C Make a totally fake grid with no actual probing.
  3563. * For use in testing when no probing is possible.
  3564. *
  3565. * Parameters with BILINEAR leveling only:
  3566. *
  3567. * Z Supply an additional Z probe offset
  3568. *
  3569. * Extra parameters with PROBE_MANUALLY:
  3570. *
  3571. * To do manual probing simply repeat G29 until the procedure is complete.
  3572. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3573. *
  3574. * Q Query leveling and G29 state
  3575. *
  3576. * A Abort current leveling procedure
  3577. *
  3578. * W Write a mesh point. (Ignored during leveling.)
  3579. * X Required X for mesh point
  3580. * Y Required Y for mesh point
  3581. * Z Required Z for mesh point
  3582. *
  3583. * Without PROBE_MANUALLY:
  3584. *
  3585. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3586. * Include "E" to engage/disengage the Z probe for each sample.
  3587. * There's no extra effect if you have a fixed Z probe.
  3588. *
  3589. */
  3590. inline void gcode_G29() {
  3591. // G29 Q is also available if debugging
  3592. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3593. const bool query = code_seen('Q');
  3594. const uint8_t old_debug_flags = marlin_debug_flags;
  3595. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3596. if (DEBUGGING(LEVELING)) {
  3597. DEBUG_POS(">>> gcode_G29", current_position);
  3598. log_machine_info();
  3599. }
  3600. marlin_debug_flags = old_debug_flags;
  3601. #if DISABLED(PROBE_MANUALLY)
  3602. if (query) return;
  3603. #endif
  3604. #endif
  3605. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3606. const bool faux = code_seen('C') && code_value_bool();
  3607. #else
  3608. bool constexpr faux = false;
  3609. #endif
  3610. // Don't allow auto-leveling without homing first
  3611. if (axis_unhomed_error(true, true, true)) return;
  3612. // Define local vars 'static' for manual probing, 'auto' otherwise
  3613. #if ENABLED(PROBE_MANUALLY)
  3614. #define ABL_VAR static
  3615. #else
  3616. #define ABL_VAR
  3617. #endif
  3618. ABL_VAR int verbose_level;
  3619. ABL_VAR float xProbe, yProbe, measured_z;
  3620. ABL_VAR bool dryrun, abl_should_enable;
  3621. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3622. ABL_VAR int abl_probe_index;
  3623. #endif
  3624. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3625. ABL_VAR bool enable_soft_endstops = true;
  3626. #endif
  3627. #if ABL_GRID
  3628. #if ENABLED(PROBE_MANUALLY)
  3629. ABL_VAR uint8_t PR_OUTER_VAR;
  3630. ABL_VAR int8_t PR_INNER_VAR;
  3631. #endif
  3632. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3633. ABL_VAR float xGridSpacing, yGridSpacing;
  3634. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3635. #if ABL_PLANAR
  3636. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3637. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3638. ABL_VAR bool do_topography_map;
  3639. #else // 3-point
  3640. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3641. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3642. #endif
  3643. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3644. #if ABL_PLANAR
  3645. ABL_VAR int abl2;
  3646. #else // 3-point
  3647. int constexpr abl2 = ABL_GRID_MAX;
  3648. #endif
  3649. #endif
  3650. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3651. ABL_VAR float zoffset;
  3652. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3653. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3654. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3655. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3656. mean;
  3657. #endif
  3658. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3659. // Probe at 3 arbitrary points
  3660. ABL_VAR vector_3 points[3] = {
  3661. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3662. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3663. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3664. };
  3665. #endif // AUTO_BED_LEVELING_3POINT
  3666. /**
  3667. * On the initial G29 fetch command parameters.
  3668. */
  3669. if (!g29_in_progress) {
  3670. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3671. abl_probe_index = 0;
  3672. #endif
  3673. abl_should_enable = planner.abl_enabled;
  3674. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3675. if (code_seen('W')) {
  3676. if (!bilinear_grid_spacing[X_AXIS]) {
  3677. SERIAL_ERROR_START;
  3678. SERIAL_ERRORLNPGM("No bilinear grid");
  3679. return;
  3680. }
  3681. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3682. if (!WITHIN(z, -10, 10)) {
  3683. SERIAL_ERROR_START;
  3684. SERIAL_ERRORLNPGM("Bad Z value");
  3685. return;
  3686. }
  3687. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3688. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3689. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3690. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3691. if (x < 99998 && y < 99998) {
  3692. // Get nearest i / j from x / y
  3693. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3694. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3695. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3696. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3697. }
  3698. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3699. set_bed_leveling_enabled(false);
  3700. z_values[i][j] = z;
  3701. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3702. bed_level_virt_interpolate();
  3703. #endif
  3704. set_bed_leveling_enabled(abl_should_enable);
  3705. }
  3706. return;
  3707. } // code_seen('W')
  3708. #endif
  3709. #if HAS_LEVELING
  3710. // Jettison bed leveling data
  3711. if (code_seen('J')) {
  3712. reset_bed_level();
  3713. return;
  3714. }
  3715. #endif
  3716. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3717. if (!WITHIN(verbose_level, 0, 4)) {
  3718. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3719. return;
  3720. }
  3721. dryrun = code_seen('D') && code_value_bool();
  3722. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3723. do_topography_map = verbose_level > 2 || code_seen('T');
  3724. // X and Y specify points in each direction, overriding the default
  3725. // These values may be saved with the completed mesh
  3726. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3727. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3728. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3729. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3730. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3731. return;
  3732. }
  3733. abl2 = abl_grid_points_x * abl_grid_points_y;
  3734. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3735. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3736. #endif
  3737. #if ABL_GRID
  3738. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3739. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3740. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3741. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3742. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3743. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3744. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3745. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3746. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3747. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3748. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3749. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3750. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3751. if (left_out || right_out || front_out || back_out) {
  3752. if (left_out) {
  3753. out_of_range_error(PSTR("(L)eft"));
  3754. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3755. }
  3756. if (right_out) {
  3757. out_of_range_error(PSTR("(R)ight"));
  3758. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3759. }
  3760. if (front_out) {
  3761. out_of_range_error(PSTR("(F)ront"));
  3762. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3763. }
  3764. if (back_out) {
  3765. out_of_range_error(PSTR("(B)ack"));
  3766. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3767. }
  3768. return;
  3769. }
  3770. // probe at the points of a lattice grid
  3771. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3772. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3773. #endif // ABL_GRID
  3774. if (verbose_level > 0) {
  3775. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3776. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3777. }
  3778. stepper.synchronize();
  3779. // Disable auto bed leveling during G29
  3780. planner.abl_enabled = false;
  3781. if (!dryrun) {
  3782. // Re-orient the current position without leveling
  3783. // based on where the steppers are positioned.
  3784. set_current_from_steppers_for_axis(ALL_AXES);
  3785. // Sync the planner to where the steppers stopped
  3786. SYNC_PLAN_POSITION_KINEMATIC();
  3787. }
  3788. if (!faux) setup_for_endstop_or_probe_move();
  3789. //xProbe = yProbe = measured_z = 0;
  3790. #if HAS_BED_PROBE
  3791. // Deploy the probe. Probe will raise if needed.
  3792. if (DEPLOY_PROBE()) {
  3793. planner.abl_enabled = abl_should_enable;
  3794. return;
  3795. }
  3796. #endif
  3797. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3798. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3799. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3800. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3801. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3802. ) {
  3803. if (dryrun) {
  3804. // Before reset bed level, re-enable to correct the position
  3805. planner.abl_enabled = abl_should_enable;
  3806. }
  3807. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3808. reset_bed_level();
  3809. // Initialize a grid with the given dimensions
  3810. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3811. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3812. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3813. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3814. // Can't re-enable (on error) until the new grid is written
  3815. abl_should_enable = false;
  3816. }
  3817. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3818. mean = 0.0;
  3819. #endif // AUTO_BED_LEVELING_LINEAR
  3820. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3821. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3822. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3823. #endif
  3824. // Probe at 3 arbitrary points
  3825. points[0].z = points[1].z = points[2].z = 0;
  3826. #endif // AUTO_BED_LEVELING_3POINT
  3827. } // !g29_in_progress
  3828. #if ENABLED(PROBE_MANUALLY)
  3829. // Abort current G29 procedure, go back to ABLStart
  3830. if (code_seen('A') && g29_in_progress) {
  3831. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3832. #if HAS_SOFTWARE_ENDSTOPS
  3833. soft_endstops_enabled = enable_soft_endstops;
  3834. #endif
  3835. planner.abl_enabled = abl_should_enable;
  3836. g29_in_progress = false;
  3837. }
  3838. // Query G29 status
  3839. if (code_seen('Q')) {
  3840. if (!g29_in_progress)
  3841. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3842. else {
  3843. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3844. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3845. }
  3846. }
  3847. if (code_seen('A') || code_seen('Q')) return;
  3848. // Fall through to probe the first point
  3849. g29_in_progress = true;
  3850. if (abl_probe_index == 0) {
  3851. // For the initial G29 save software endstop state
  3852. #if HAS_SOFTWARE_ENDSTOPS
  3853. enable_soft_endstops = soft_endstops_enabled;
  3854. #endif
  3855. }
  3856. else {
  3857. // For G29 after adjusting Z.
  3858. // Save the previous Z before going to the next point
  3859. measured_z = current_position[Z_AXIS];
  3860. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3861. mean += measured_z;
  3862. eqnBVector[abl_probe_index] = measured_z;
  3863. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3864. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3865. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3866. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3867. z_values[xCount][yCount] = measured_z + zoffset;
  3868. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3869. points[i].z = measured_z;
  3870. #endif
  3871. }
  3872. //
  3873. // If there's another point to sample, move there with optional lift.
  3874. //
  3875. #if ABL_GRID
  3876. // Find a next point to probe
  3877. // On the first G29 this will be the first probe point
  3878. while (abl_probe_index < abl2) {
  3879. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3880. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3881. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3882. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3883. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3884. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3885. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3886. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3887. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3888. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3889. indexIntoAB[xCount][yCount] = abl_probe_index;
  3890. #endif
  3891. float pos[XYZ] = { xProbe, yProbe, 0 };
  3892. if (position_is_reachable(pos)) break;
  3893. ++abl_probe_index;
  3894. }
  3895. // Is there a next point to move to?
  3896. if (abl_probe_index < abl2) {
  3897. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3898. ++abl_probe_index;
  3899. #if HAS_SOFTWARE_ENDSTOPS
  3900. // Disable software endstops to allow manual adjustment
  3901. // If G29 is not completed, they will not be re-enabled
  3902. soft_endstops_enabled = false;
  3903. #endif
  3904. return;
  3905. }
  3906. else {
  3907. // Then leveling is done!
  3908. // G29 finishing code goes here
  3909. // After recording the last point, activate abl
  3910. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3911. g29_in_progress = false;
  3912. // Re-enable software endstops, if needed
  3913. #if HAS_SOFTWARE_ENDSTOPS
  3914. soft_endstops_enabled = enable_soft_endstops;
  3915. #endif
  3916. }
  3917. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3918. // Probe at 3 arbitrary points
  3919. if (abl_probe_index < 3) {
  3920. xProbe = LOGICAL_X_POSITION(points[i].x);
  3921. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3922. ++abl_probe_index;
  3923. #if HAS_SOFTWARE_ENDSTOPS
  3924. // Disable software endstops to allow manual adjustment
  3925. // If G29 is not completed, they will not be re-enabled
  3926. soft_endstops_enabled = false;
  3927. #endif
  3928. return;
  3929. }
  3930. else {
  3931. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3932. g29_in_progress = false;
  3933. // Re-enable software endstops, if needed
  3934. #if HAS_SOFTWARE_ENDSTOPS
  3935. soft_endstops_enabled = enable_soft_endstops;
  3936. #endif
  3937. if (!dryrun) {
  3938. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3939. if (planeNormal.z < 0) {
  3940. planeNormal.x *= -1;
  3941. planeNormal.y *= -1;
  3942. planeNormal.z *= -1;
  3943. }
  3944. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3945. // Can't re-enable (on error) until the new grid is written
  3946. abl_should_enable = false;
  3947. }
  3948. }
  3949. #endif // AUTO_BED_LEVELING_3POINT
  3950. #else // !PROBE_MANUALLY
  3951. bool stow_probe_after_each = code_seen('E');
  3952. #if ABL_GRID
  3953. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3954. // Outer loop is Y with PROBE_Y_FIRST disabled
  3955. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3956. int8_t inStart, inStop, inInc;
  3957. if (zig) { // away from origin
  3958. inStart = 0;
  3959. inStop = PR_INNER_END;
  3960. inInc = 1;
  3961. }
  3962. else { // towards origin
  3963. inStart = PR_INNER_END - 1;
  3964. inStop = -1;
  3965. inInc = -1;
  3966. }
  3967. zig ^= true; // zag
  3968. // Inner loop is Y with PROBE_Y_FIRST enabled
  3969. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3970. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3971. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3972. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3973. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3974. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3975. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3976. #endif
  3977. #if IS_KINEMATIC
  3978. // Avoid probing outside the round or hexagonal area
  3979. const float pos[XYZ] = { xProbe, yProbe, 0 };
  3980. if (!position_is_reachable(pos, true)) continue;
  3981. #endif
  3982. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3983. if (isnan(measured_z)) {
  3984. planner.abl_enabled = abl_should_enable;
  3985. return;
  3986. }
  3987. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3988. mean += measured_z;
  3989. eqnBVector[abl_probe_index] = measured_z;
  3990. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3991. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3992. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3993. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3994. z_values[xCount][yCount] = measured_z + zoffset;
  3995. #endif
  3996. abl_should_enable = false;
  3997. idle();
  3998. } // inner
  3999. } // outer
  4000. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4001. // Probe at 3 arbitrary points
  4002. for (uint8_t i = 0; i < 3; ++i) {
  4003. // Retain the last probe position
  4004. xProbe = LOGICAL_X_POSITION(points[i].x);
  4005. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4006. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4007. }
  4008. if (isnan(measured_z)) {
  4009. planner.abl_enabled = abl_should_enable;
  4010. return;
  4011. }
  4012. if (!dryrun) {
  4013. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4014. if (planeNormal.z < 0) {
  4015. planeNormal.x *= -1;
  4016. planeNormal.y *= -1;
  4017. planeNormal.z *= -1;
  4018. }
  4019. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4020. // Can't re-enable (on error) until the new grid is written
  4021. abl_should_enable = false;
  4022. }
  4023. #endif // AUTO_BED_LEVELING_3POINT
  4024. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4025. if (STOW_PROBE()) {
  4026. planner.abl_enabled = abl_should_enable;
  4027. return;
  4028. }
  4029. #endif // !PROBE_MANUALLY
  4030. //
  4031. // G29 Finishing Code
  4032. //
  4033. // Unless this is a dry run, auto bed leveling will
  4034. // definitely be enabled after this point
  4035. //
  4036. // Restore state after probing
  4037. if (!faux) clean_up_after_endstop_or_probe_move();
  4038. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4039. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4040. #endif
  4041. // Calculate leveling, print reports, correct the position
  4042. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4043. if (!dryrun) extrapolate_unprobed_bed_level();
  4044. print_bilinear_leveling_grid();
  4045. refresh_bed_level();
  4046. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4047. bed_level_virt_print();
  4048. #endif
  4049. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4050. // For LINEAR leveling calculate matrix, print reports, correct the position
  4051. /**
  4052. * solve the plane equation ax + by + d = z
  4053. * A is the matrix with rows [x y 1] for all the probed points
  4054. * B is the vector of the Z positions
  4055. * the normal vector to the plane is formed by the coefficients of the
  4056. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4057. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4058. */
  4059. float plane_equation_coefficients[3];
  4060. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4061. mean /= abl2;
  4062. if (verbose_level) {
  4063. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4064. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4065. SERIAL_PROTOCOLPGM(" b: ");
  4066. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4067. SERIAL_PROTOCOLPGM(" d: ");
  4068. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4069. SERIAL_EOL;
  4070. if (verbose_level > 2) {
  4071. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4072. SERIAL_PROTOCOL_F(mean, 8);
  4073. SERIAL_EOL;
  4074. }
  4075. }
  4076. // Create the matrix but don't correct the position yet
  4077. if (!dryrun) {
  4078. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4079. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4080. );
  4081. }
  4082. // Show the Topography map if enabled
  4083. if (do_topography_map) {
  4084. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4085. " +--- BACK --+\n"
  4086. " | |\n"
  4087. " L | (+) | R\n"
  4088. " E | | I\n"
  4089. " F | (-) N (+) | G\n"
  4090. " T | | H\n"
  4091. " | (-) | T\n"
  4092. " | |\n"
  4093. " O-- FRONT --+\n"
  4094. " (0,0)");
  4095. float min_diff = 999;
  4096. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4097. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4098. int ind = indexIntoAB[xx][yy];
  4099. float diff = eqnBVector[ind] - mean,
  4100. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4101. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4102. z_tmp = 0;
  4103. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4104. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4105. if (diff >= 0.0)
  4106. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4107. else
  4108. SERIAL_PROTOCOLCHAR(' ');
  4109. SERIAL_PROTOCOL_F(diff, 5);
  4110. } // xx
  4111. SERIAL_EOL;
  4112. } // yy
  4113. SERIAL_EOL;
  4114. if (verbose_level > 3) {
  4115. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4116. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4117. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4118. int ind = indexIntoAB[xx][yy];
  4119. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4120. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4121. z_tmp = 0;
  4122. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4123. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4124. if (diff >= 0.0)
  4125. SERIAL_PROTOCOLPGM(" +");
  4126. // Include + for column alignment
  4127. else
  4128. SERIAL_PROTOCOLCHAR(' ');
  4129. SERIAL_PROTOCOL_F(diff, 5);
  4130. } // xx
  4131. SERIAL_EOL;
  4132. } // yy
  4133. SERIAL_EOL;
  4134. }
  4135. } //do_topography_map
  4136. #endif // AUTO_BED_LEVELING_LINEAR
  4137. #if ABL_PLANAR
  4138. // For LINEAR and 3POINT leveling correct the current position
  4139. if (verbose_level > 0)
  4140. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4141. if (!dryrun) {
  4142. //
  4143. // Correct the current XYZ position based on the tilted plane.
  4144. //
  4145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4146. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4147. #endif
  4148. float converted[XYZ];
  4149. COPY(converted, current_position);
  4150. planner.abl_enabled = true;
  4151. planner.unapply_leveling(converted); // use conversion machinery
  4152. planner.abl_enabled = false;
  4153. // Use the last measured distance to the bed, if possible
  4154. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4155. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4156. ) {
  4157. float simple_z = current_position[Z_AXIS] - measured_z;
  4158. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4159. if (DEBUGGING(LEVELING)) {
  4160. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4161. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4162. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4163. }
  4164. #endif
  4165. converted[Z_AXIS] = simple_z;
  4166. }
  4167. // The rotated XY and corrected Z are now current_position
  4168. COPY(current_position, converted);
  4169. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4170. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4171. #endif
  4172. }
  4173. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4174. if (!dryrun) {
  4175. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4176. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4177. #endif
  4178. // Unapply the offset because it is going to be immediately applied
  4179. // and cause compensation movement in Z
  4180. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4182. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4183. #endif
  4184. }
  4185. #endif // ABL_PLANAR
  4186. #ifdef Z_PROBE_END_SCRIPT
  4187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4188. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4189. #endif
  4190. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4191. stepper.synchronize();
  4192. #endif
  4193. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4194. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4195. #endif
  4196. report_current_position();
  4197. KEEPALIVE_STATE(IN_HANDLER);
  4198. // Auto Bed Leveling is complete! Enable if possible.
  4199. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4200. if (planner.abl_enabled)
  4201. SYNC_PLAN_POSITION_KINEMATIC();
  4202. }
  4203. #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
  4204. #if HAS_BED_PROBE
  4205. /**
  4206. * G30: Do a single Z probe at the current XY
  4207. *
  4208. * Parameters:
  4209. *
  4210. * X Probe X position (default current X)
  4211. * Y Probe Y position (default current Y)
  4212. * S0 Leave the probe deployed
  4213. */
  4214. inline void gcode_G30() {
  4215. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4216. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  4217. pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
  4218. if (!position_is_reachable(pos, true)) return;
  4219. // Disable leveling so the planner won't mess with us
  4220. #if HAS_LEVELING
  4221. set_bed_leveling_enabled(false);
  4222. #endif
  4223. setup_for_endstop_or_probe_move();
  4224. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4225. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4226. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4227. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4228. clean_up_after_endstop_or_probe_move();
  4229. report_current_position();
  4230. }
  4231. #if ENABLED(Z_PROBE_SLED)
  4232. /**
  4233. * G31: Deploy the Z probe
  4234. */
  4235. inline void gcode_G31() { DEPLOY_PROBE(); }
  4236. /**
  4237. * G32: Stow the Z probe
  4238. */
  4239. inline void gcode_G32() { STOW_PROBE(); }
  4240. #endif // Z_PROBE_SLED
  4241. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4242. /**
  4243. * G33 - Delta '1-4-7-point' Auto-Calibration
  4244. * Calibrate height, endstops, delta radius, and tower angles.
  4245. *
  4246. * Parameters:
  4247. *
  4248. * P Number of probe points:
  4249. *
  4250. * P1 Probe center and set height only.
  4251. * P2 Probe center and towers. Set height, endstops, and delta radius.
  4252. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4253. * P4-P7 Probe all positions at different locations and average them.
  4254. *
  4255. * A Abort delta height calibration after 1 probe (only P1)
  4256. *
  4257. * O Use opposite tower points instead of tower points (only P2)
  4258. *
  4259. * T Don't calibrate tower angle corrections (P3-P7)
  4260. *
  4261. * V Verbose level:
  4262. *
  4263. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4264. * V1 Report settings
  4265. * V2 Report settings and probe results
  4266. */
  4267. inline void gcode_G33() {
  4268. const int8_t probe_points = code_seen('P') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS;
  4269. if (!WITHIN(probe_points, 1, 7)) {
  4270. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1 to 7).");
  4271. return;
  4272. }
  4273. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4274. if (!WITHIN(verbose_level, 0, 2)) {
  4275. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-2).");
  4276. return;
  4277. }
  4278. const bool do_height_only = probe_points == 1,
  4279. do_center_and_towers = probe_points == 2,
  4280. do_all_positions = probe_points == 3,
  4281. do_circle_x2 = probe_points == 5,
  4282. do_circle_x3 = probe_points == 6,
  4283. do_circle_x4 = probe_points == 7,
  4284. probe_center_plus_3 = probe_points >= 3,
  4285. point_averaging = probe_points >= 4,
  4286. probe_center_plus_6 = probe_points >= 5;
  4287. const char negating_parameter = do_height_only ? 'A' : do_center_and_towers ? 'O' : 'T';
  4288. int8_t probe_mode = code_seen(negating_parameter) && code_value_bool() ? -probe_points : probe_points;
  4289. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4290. #if HAS_LEVELING
  4291. set_bed_leveling_enabled(false);
  4292. #endif
  4293. home_all_axes();
  4294. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4295. float test_precision,
  4296. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4297. e_old[XYZ] = {
  4298. endstop_adj[A_AXIS],
  4299. endstop_adj[B_AXIS],
  4300. endstop_adj[C_AXIS]
  4301. },
  4302. dr_old = delta_radius,
  4303. zh_old = home_offset[Z_AXIS],
  4304. alpha_old = delta_tower_angle_trim[A_AXIS],
  4305. beta_old = delta_tower_angle_trim[B_AXIS];
  4306. // print settings
  4307. SERIAL_PROTOCOLPGM("Checking... AC");
  4308. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4309. SERIAL_EOL;
  4310. LCD_MESSAGEPGM("Checking... AC");
  4311. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4312. if (!do_height_only) {
  4313. SERIAL_PROTOCOLPGM(" Ex:");
  4314. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4315. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4316. SERIAL_PROTOCOLPGM(" Ey:");
  4317. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4318. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4319. SERIAL_PROTOCOLPGM(" Ez:");
  4320. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4321. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4322. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4323. }
  4324. SERIAL_EOL;
  4325. if (probe_mode > 2) { // negative disables tower angles
  4326. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4327. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4328. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4329. SERIAL_PROTOCOLPGM(" Ty:");
  4330. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4331. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4332. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4333. SERIAL_EOL;
  4334. }
  4335. #if ENABLED(Z_PROBE_SLED)
  4336. DEPLOY_PROBE();
  4337. #endif
  4338. int8_t iterations = 0;
  4339. do {
  4340. float z_at_pt[13] = { 0 },
  4341. S1 = 0.0,
  4342. S2 = 0.0;
  4343. int16_t N = 0;
  4344. test_precision = zero_std_dev;
  4345. iterations++;
  4346. // Probe the points
  4347. if (!do_all_positions && !do_circle_x3) { // probe the center
  4348. setup_for_endstop_or_probe_move();
  4349. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4350. clean_up_after_endstop_or_probe_move();
  4351. }
  4352. if (probe_center_plus_3) { // probe extra center points
  4353. for (int8_t axis = probe_center_plus_6 ? 11 : 9; axis > 0; axis -= probe_center_plus_6 ? 2 : 4) {
  4354. setup_for_endstop_or_probe_move();
  4355. z_at_pt[0] += probe_pt(
  4356. cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
  4357. sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
  4358. clean_up_after_endstop_or_probe_move();
  4359. }
  4360. z_at_pt[0] /= float(do_circle_x2 ? 7 : probe_points);
  4361. }
  4362. if (!do_height_only) { // probe the radius
  4363. bool zig_zag = true;
  4364. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13;
  4365. axis += (do_center_and_towers ? 4 : do_all_positions ? 2 : 1)) {
  4366. float offset_circles = (do_circle_x4 ? (zig_zag ? 1.5 : 1.0) :
  4367. do_circle_x3 ? (zig_zag ? 1.0 : 0.5) :
  4368. do_circle_x2 ? (zig_zag ? 0.5 : 0.0) : 0);
  4369. for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
  4370. setup_for_endstop_or_probe_move();
  4371. z_at_pt[axis] += probe_pt(
  4372. cos(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
  4373. (1 + circles * 0.1 * (zig_zag ? 1 : -1)),
  4374. sin(RADIANS(180 + 30 * axis)) * delta_calibration_radius *
  4375. (1 + circles * 0.1 * (zig_zag ? 1 : -1)), true, 1);
  4376. clean_up_after_endstop_or_probe_move();
  4377. }
  4378. zig_zag = !zig_zag;
  4379. z_at_pt[axis] /= (2 * offset_circles + 1);
  4380. }
  4381. }
  4382. if (point_averaging) // average intermediates to tower and opposites
  4383. for (uint8_t axis = 1; axis <= 11; axis += 2)
  4384. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4385. S1 += z_at_pt[0];
  4386. S2 += sq(z_at_pt[0]);
  4387. N++;
  4388. if (!do_height_only) // std dev from zero plane
  4389. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (do_center_and_towers ? 4 : 2)) {
  4390. S1 += z_at_pt[axis];
  4391. S2 += sq(z_at_pt[axis]);
  4392. N++;
  4393. }
  4394. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4395. // Solve matrices
  4396. if (zero_std_dev < test_precision) {
  4397. COPY(e_old, endstop_adj);
  4398. dr_old = delta_radius;
  4399. zh_old = home_offset[Z_AXIS];
  4400. alpha_old = delta_tower_angle_trim[A_AXIS];
  4401. beta_old = delta_tower_angle_trim[B_AXIS];
  4402. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
  4403. t_alpha = 0.0, t_beta = 0.0;
  4404. const float r_diff = delta_radius - delta_calibration_radius,
  4405. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4406. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4407. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4408. #define ZP(N,I) ((N) * z_at_pt[I])
  4409. #define Z1000(I) ZP(1.00, I)
  4410. #define Z1050(I) ZP(h_factor, I)
  4411. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4412. #define Z0350(I) ZP(h_factor / 3.00, I)
  4413. #define Z0175(I) ZP(h_factor / 6.00, I)
  4414. #define Z2250(I) ZP(r_factor, I)
  4415. #define Z0750(I) ZP(r_factor / 3.00, I)
  4416. #define Z0375(I) ZP(r_factor / 6.00, I)
  4417. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4418. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4419. switch (probe_mode) {
  4420. case -1:
  4421. test_precision = 0.00;
  4422. case 1:
  4423. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4424. break;
  4425. case 2:
  4426. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4427. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4428. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4429. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4430. break;
  4431. case -2:
  4432. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4433. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4434. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4435. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4436. break;
  4437. default:
  4438. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4439. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4440. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4441. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4442. if (probe_mode > 0) { // negative disables tower angles
  4443. t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4444. t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
  4445. }
  4446. break;
  4447. }
  4448. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4449. delta_radius += r_delta;
  4450. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4451. delta_tower_angle_trim[B_AXIS] -= t_beta;
  4452. // adjust delta_height and endstops by the max amount
  4453. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4454. home_offset[Z_AXIS] -= z_temp;
  4455. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4456. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4457. }
  4458. else { // step one back
  4459. COPY(endstop_adj, e_old);
  4460. delta_radius = dr_old;
  4461. home_offset[Z_AXIS] = zh_old;
  4462. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4463. delta_tower_angle_trim[B_AXIS] = beta_old;
  4464. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4465. }
  4466. // print report
  4467. if (verbose_level != 1) {
  4468. SERIAL_PROTOCOLPGM(". c:");
  4469. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4470. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4471. if (probe_mode == 2 || probe_center_plus_3) {
  4472. SERIAL_PROTOCOLPGM(" x:");
  4473. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4474. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4475. SERIAL_PROTOCOLPGM(" y:");
  4476. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4477. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4478. SERIAL_PROTOCOLPGM(" z:");
  4479. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4480. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4481. }
  4482. if (probe_mode != -2) SERIAL_EOL;
  4483. if (probe_mode == -2 || probe_center_plus_3) {
  4484. if (probe_center_plus_3) {
  4485. SERIAL_CHAR('.');
  4486. SERIAL_PROTOCOL_SP(13);
  4487. }
  4488. SERIAL_PROTOCOLPGM(" yz:");
  4489. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4490. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4491. SERIAL_PROTOCOLPGM(" zx:");
  4492. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4493. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4494. SERIAL_PROTOCOLPGM(" xy:");
  4495. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4496. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4497. SERIAL_EOL;
  4498. }
  4499. }
  4500. if (test_precision != 0.0) { // !forced end
  4501. if (zero_std_dev >= test_precision) { // end iterations
  4502. SERIAL_PROTOCOLPGM("Calibration OK");
  4503. SERIAL_PROTOCOL_SP(36);
  4504. SERIAL_PROTOCOLPGM("rolling back.");
  4505. SERIAL_EOL;
  4506. LCD_MESSAGEPGM("Calibration OK");
  4507. }
  4508. else { // !end iterations
  4509. char mess[15] = "No convergence";
  4510. if (iterations < 31)
  4511. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4512. SERIAL_PROTOCOL(mess);
  4513. SERIAL_PROTOCOL_SP(36);
  4514. SERIAL_PROTOCOLPGM("std dev:");
  4515. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4516. SERIAL_EOL;
  4517. lcd_setstatus(mess);
  4518. }
  4519. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4520. if (!do_height_only) {
  4521. SERIAL_PROTOCOLPGM(" Ex:");
  4522. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4523. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4524. SERIAL_PROTOCOLPGM(" Ey:");
  4525. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4526. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4527. SERIAL_PROTOCOLPGM(" Ez:");
  4528. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4529. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4530. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4531. }
  4532. SERIAL_EOL;
  4533. if (probe_mode > 2) { // negative disables tower angles
  4534. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4535. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4536. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4537. SERIAL_PROTOCOLPGM(" Ty:");
  4538. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4539. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4540. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4541. SERIAL_EOL;
  4542. }
  4543. if (zero_std_dev >= test_precision)
  4544. serialprintPGM(save_message);
  4545. SERIAL_EOL;
  4546. }
  4547. else { // forced end
  4548. if (verbose_level == 0) {
  4549. SERIAL_PROTOCOLPGM("End DRY-RUN");
  4550. SERIAL_PROTOCOL_SP(39);
  4551. SERIAL_PROTOCOLPGM("std dev:");
  4552. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4553. SERIAL_EOL;
  4554. }
  4555. else {
  4556. SERIAL_PROTOCOLLNPGM("Calibration OK");
  4557. LCD_MESSAGEPGM("Calibration OK");
  4558. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4559. SERIAL_EOL;
  4560. serialprintPGM(save_message);
  4561. SERIAL_EOL;
  4562. }
  4563. }
  4564. stepper.synchronize();
  4565. home_all_axes();
  4566. } while (zero_std_dev < test_precision && iterations < 31);
  4567. #if ENABLED(Z_PROBE_SLED)
  4568. RETRACT_PROBE();
  4569. #endif
  4570. }
  4571. #endif // DELTA_AUTO_CALIBRATION
  4572. #endif // HAS_BED_PROBE
  4573. #if ENABLED(G38_PROBE_TARGET)
  4574. static bool G38_run_probe() {
  4575. bool G38_pass_fail = false;
  4576. // Get direction of move and retract
  4577. float retract_mm[XYZ];
  4578. LOOP_XYZ(i) {
  4579. float dist = destination[i] - current_position[i];
  4580. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4581. }
  4582. stepper.synchronize(); // wait until the machine is idle
  4583. // Move until destination reached or target hit
  4584. endstops.enable(true);
  4585. G38_move = true;
  4586. G38_endstop_hit = false;
  4587. prepare_move_to_destination();
  4588. stepper.synchronize();
  4589. G38_move = false;
  4590. endstops.hit_on_purpose();
  4591. set_current_from_steppers_for_axis(ALL_AXES);
  4592. SYNC_PLAN_POSITION_KINEMATIC();
  4593. if (G38_endstop_hit) {
  4594. G38_pass_fail = true;
  4595. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4596. // Move away by the retract distance
  4597. set_destination_to_current();
  4598. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4599. endstops.enable(false);
  4600. prepare_move_to_destination();
  4601. stepper.synchronize();
  4602. feedrate_mm_s /= 4;
  4603. // Bump the target more slowly
  4604. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4605. endstops.enable(true);
  4606. G38_move = true;
  4607. prepare_move_to_destination();
  4608. stepper.synchronize();
  4609. G38_move = false;
  4610. set_current_from_steppers_for_axis(ALL_AXES);
  4611. SYNC_PLAN_POSITION_KINEMATIC();
  4612. #endif
  4613. }
  4614. endstops.hit_on_purpose();
  4615. endstops.not_homing();
  4616. return G38_pass_fail;
  4617. }
  4618. /**
  4619. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4620. * G38.3 - probe toward workpiece, stop on contact
  4621. *
  4622. * Like G28 except uses Z min probe for all axes
  4623. */
  4624. inline void gcode_G38(bool is_38_2) {
  4625. // Get X Y Z E F
  4626. gcode_get_destination();
  4627. setup_for_endstop_or_probe_move();
  4628. // If any axis has enough movement, do the move
  4629. LOOP_XYZ(i)
  4630. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4631. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4632. // If G38.2 fails throw an error
  4633. if (!G38_run_probe() && is_38_2) {
  4634. SERIAL_ERROR_START;
  4635. SERIAL_ERRORLNPGM("Failed to reach target");
  4636. }
  4637. break;
  4638. }
  4639. clean_up_after_endstop_or_probe_move();
  4640. }
  4641. #endif // G38_PROBE_TARGET
  4642. /**
  4643. * G92: Set current position to given X Y Z E
  4644. */
  4645. inline void gcode_G92() {
  4646. bool didXYZ = false,
  4647. didE = code_seen('E');
  4648. if (!didE) stepper.synchronize();
  4649. LOOP_XYZE(i) {
  4650. if (code_seen(axis_codes[i])) {
  4651. #if IS_SCARA
  4652. current_position[i] = code_value_axis_units((AxisEnum)i);
  4653. if (i != E_AXIS) didXYZ = true;
  4654. #else
  4655. #if HAS_POSITION_SHIFT
  4656. const float p = current_position[i];
  4657. #endif
  4658. float v = code_value_axis_units((AxisEnum)i);
  4659. current_position[i] = v;
  4660. if (i != E_AXIS) {
  4661. didXYZ = true;
  4662. #if HAS_POSITION_SHIFT
  4663. position_shift[i] += v - p; // Offset the coordinate space
  4664. update_software_endstops((AxisEnum)i);
  4665. #endif
  4666. }
  4667. #endif
  4668. }
  4669. }
  4670. if (didXYZ)
  4671. SYNC_PLAN_POSITION_KINEMATIC();
  4672. else if (didE)
  4673. sync_plan_position_e();
  4674. report_current_position();
  4675. }
  4676. #if HAS_RESUME_CONTINUE
  4677. /**
  4678. * M0: Unconditional stop - Wait for user button press on LCD
  4679. * M1: Conditional stop - Wait for user button press on LCD
  4680. */
  4681. inline void gcode_M0_M1() {
  4682. const char * const args = current_command_args;
  4683. millis_t codenum = 0;
  4684. bool hasP = false, hasS = false;
  4685. if (code_seen('P')) {
  4686. codenum = code_value_millis(); // milliseconds to wait
  4687. hasP = codenum > 0;
  4688. }
  4689. if (code_seen('S')) {
  4690. codenum = code_value_millis_from_seconds(); // seconds to wait
  4691. hasS = codenum > 0;
  4692. }
  4693. #if ENABLED(ULTIPANEL)
  4694. if (!hasP && !hasS && *args != '\0')
  4695. lcd_setstatus(args, true);
  4696. else {
  4697. LCD_MESSAGEPGM(MSG_USERWAIT);
  4698. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4699. dontExpireStatus();
  4700. #endif
  4701. }
  4702. #else
  4703. if (!hasP && !hasS && *args != '\0') {
  4704. SERIAL_ECHO_START;
  4705. SERIAL_ECHOLN(args);
  4706. }
  4707. #endif
  4708. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4709. wait_for_user = true;
  4710. stepper.synchronize();
  4711. refresh_cmd_timeout();
  4712. if (codenum > 0) {
  4713. codenum += previous_cmd_ms; // wait until this time for a click
  4714. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4715. }
  4716. else {
  4717. #if ENABLED(ULTIPANEL)
  4718. if (lcd_detected()) {
  4719. while (wait_for_user) idle();
  4720. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4721. }
  4722. #else
  4723. while (wait_for_user) idle();
  4724. #endif
  4725. }
  4726. wait_for_user = false;
  4727. KEEPALIVE_STATE(IN_HANDLER);
  4728. }
  4729. #endif // HAS_RESUME_CONTINUE
  4730. /**
  4731. * M17: Enable power on all stepper motors
  4732. */
  4733. inline void gcode_M17() {
  4734. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4735. enable_all_steppers();
  4736. }
  4737. #if IS_KINEMATIC
  4738. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4739. #else
  4740. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4741. #endif
  4742. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4743. float resume_position[XYZE];
  4744. bool move_away_flag = false;
  4745. inline void move_back_on_resume() {
  4746. if (!move_away_flag) return;
  4747. move_away_flag = false;
  4748. // Set extruder to saved position
  4749. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4750. planner.set_e_position_mm(current_position[E_AXIS]);
  4751. #if IS_KINEMATIC
  4752. // Move XYZ to starting position
  4753. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4754. #else
  4755. // Move XY to starting position, then Z
  4756. destination[X_AXIS] = resume_position[X_AXIS];
  4757. destination[Y_AXIS] = resume_position[Y_AXIS];
  4758. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4759. destination[Z_AXIS] = resume_position[Z_AXIS];
  4760. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4761. #endif
  4762. stepper.synchronize();
  4763. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4764. filament_ran_out = false;
  4765. #endif
  4766. set_current_to_destination();
  4767. }
  4768. #endif // PARK_HEAD_ON_PAUSE
  4769. #if ENABLED(SDSUPPORT)
  4770. /**
  4771. * M20: List SD card to serial output
  4772. */
  4773. inline void gcode_M20() {
  4774. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4775. card.ls();
  4776. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4777. }
  4778. /**
  4779. * M21: Init SD Card
  4780. */
  4781. inline void gcode_M21() { card.initsd(); }
  4782. /**
  4783. * M22: Release SD Card
  4784. */
  4785. inline void gcode_M22() { card.release(); }
  4786. /**
  4787. * M23: Open a file
  4788. */
  4789. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4790. /**
  4791. * M24: Start or Resume SD Print
  4792. */
  4793. inline void gcode_M24() {
  4794. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4795. move_back_on_resume();
  4796. #endif
  4797. card.startFileprint();
  4798. print_job_timer.start();
  4799. }
  4800. /**
  4801. * M25: Pause SD Print
  4802. */
  4803. inline void gcode_M25() {
  4804. card.pauseSDPrint();
  4805. print_job_timer.pause();
  4806. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4807. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4808. #endif
  4809. }
  4810. /**
  4811. * M26: Set SD Card file index
  4812. */
  4813. inline void gcode_M26() {
  4814. if (card.cardOK && code_seen('S'))
  4815. card.setIndex(code_value_long());
  4816. }
  4817. /**
  4818. * M27: Get SD Card status
  4819. */
  4820. inline void gcode_M27() { card.getStatus(); }
  4821. /**
  4822. * M28: Start SD Write
  4823. */
  4824. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4825. /**
  4826. * M29: Stop SD Write
  4827. * Processed in write to file routine above
  4828. */
  4829. inline void gcode_M29() {
  4830. // card.saving = false;
  4831. }
  4832. /**
  4833. * M30 <filename>: Delete SD Card file
  4834. */
  4835. inline void gcode_M30() {
  4836. if (card.cardOK) {
  4837. card.closefile();
  4838. card.removeFile(current_command_args);
  4839. }
  4840. }
  4841. #endif // SDSUPPORT
  4842. /**
  4843. * M31: Get the time since the start of SD Print (or last M109)
  4844. */
  4845. inline void gcode_M31() {
  4846. char buffer[21];
  4847. duration_t elapsed = print_job_timer.duration();
  4848. elapsed.toString(buffer);
  4849. lcd_setstatus(buffer);
  4850. SERIAL_ECHO_START;
  4851. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4852. #if ENABLED(AUTOTEMP)
  4853. thermalManager.autotempShutdown();
  4854. #endif
  4855. }
  4856. #if ENABLED(SDSUPPORT)
  4857. /**
  4858. * M32: Select file and start SD Print
  4859. */
  4860. inline void gcode_M32() {
  4861. if (card.sdprinting)
  4862. stepper.synchronize();
  4863. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4864. if (!namestartpos)
  4865. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4866. else
  4867. namestartpos++; //to skip the '!'
  4868. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4869. if (card.cardOK) {
  4870. card.openFile(namestartpos, true, call_procedure);
  4871. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4872. card.setIndex(code_value_long());
  4873. card.startFileprint();
  4874. // Procedure calls count as normal print time.
  4875. if (!call_procedure) print_job_timer.start();
  4876. }
  4877. }
  4878. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4879. /**
  4880. * M33: Get the long full path of a file or folder
  4881. *
  4882. * Parameters:
  4883. * <dospath> Case-insensitive DOS-style path to a file or folder
  4884. *
  4885. * Example:
  4886. * M33 miscel~1/armchair/armcha~1.gco
  4887. *
  4888. * Output:
  4889. * /Miscellaneous/Armchair/Armchair.gcode
  4890. */
  4891. inline void gcode_M33() {
  4892. card.printLongPath(current_command_args);
  4893. }
  4894. #endif
  4895. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4896. /**
  4897. * M34: Set SD Card Sorting Options
  4898. */
  4899. inline void gcode_M34() {
  4900. if (code_seen('S')) card.setSortOn(code_value_bool());
  4901. if (code_seen('F')) {
  4902. int v = code_value_long();
  4903. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4904. }
  4905. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4906. }
  4907. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4908. /**
  4909. * M928: Start SD Write
  4910. */
  4911. inline void gcode_M928() {
  4912. card.openLogFile(current_command_args);
  4913. }
  4914. #endif // SDSUPPORT
  4915. /**
  4916. * Sensitive pin test for M42, M226
  4917. */
  4918. static bool pin_is_protected(uint8_t pin) {
  4919. static const int sensitive_pins[] = SENSITIVE_PINS;
  4920. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4921. if (sensitive_pins[i] == pin) return true;
  4922. return false;
  4923. }
  4924. /**
  4925. * M42: Change pin status via GCode
  4926. *
  4927. * P<pin> Pin number (LED if omitted)
  4928. * S<byte> Pin status from 0 - 255
  4929. */
  4930. inline void gcode_M42() {
  4931. if (!code_seen('S')) return;
  4932. int pin_status = code_value_int();
  4933. if (!WITHIN(pin_status, 0, 255)) return;
  4934. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4935. if (pin_number < 0) return;
  4936. if (pin_is_protected(pin_number)) {
  4937. SERIAL_ERROR_START;
  4938. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4939. return;
  4940. }
  4941. pinMode(pin_number, OUTPUT);
  4942. digitalWrite(pin_number, pin_status);
  4943. analogWrite(pin_number, pin_status);
  4944. #if FAN_COUNT > 0
  4945. switch (pin_number) {
  4946. #if HAS_FAN0
  4947. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4948. #endif
  4949. #if HAS_FAN1
  4950. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4951. #endif
  4952. #if HAS_FAN2
  4953. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4954. #endif
  4955. }
  4956. #endif
  4957. }
  4958. #if ENABLED(PINS_DEBUGGING)
  4959. #include "pinsDebug.h"
  4960. inline void toggle_pins() {
  4961. const bool I_flag = code_seen('I') && code_value_bool();
  4962. const int repeat = code_seen('R') ? code_value_int() : 1,
  4963. start = code_seen('S') ? code_value_int() : 0,
  4964. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4965. wait = code_seen('W') ? code_value_int() : 500;
  4966. for (uint8_t pin = start; pin <= end; pin++) {
  4967. if (!I_flag && pin_is_protected(pin)) {
  4968. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4969. SERIAL_ECHOLNPGM(" untouched.");
  4970. }
  4971. else {
  4972. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4973. pinMode(pin, OUTPUT);
  4974. for (int16_t j = 0; j < repeat; j++) {
  4975. digitalWrite(pin, 0);
  4976. safe_delay(wait);
  4977. digitalWrite(pin, 1);
  4978. safe_delay(wait);
  4979. digitalWrite(pin, 0);
  4980. safe_delay(wait);
  4981. }
  4982. }
  4983. SERIAL_CHAR('\n');
  4984. }
  4985. SERIAL_ECHOLNPGM("Done.");
  4986. } // toggle_pins
  4987. inline void servo_probe_test() {
  4988. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  4989. SERIAL_ERROR_START;
  4990. SERIAL_ERRORLNPGM("SERVO not setup");
  4991. #elif !HAS_Z_SERVO_ENDSTOP
  4992. SERIAL_ERROR_START;
  4993. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  4994. #else
  4995. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  4996. SERIAL_PROTOCOLLNPGM("Servo probe test");
  4997. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  4998. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  4999. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5000. bool probe_inverting;
  5001. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5002. #define PROBE_TEST_PIN Z_MIN_PIN
  5003. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5004. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5005. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5006. #if Z_MIN_ENDSTOP_INVERTING
  5007. SERIAL_PROTOCOLLNPGM("true");
  5008. #else
  5009. SERIAL_PROTOCOLLNPGM("false");
  5010. #endif
  5011. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5012. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5013. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5014. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5015. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5016. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5017. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5018. SERIAL_PROTOCOLLNPGM("true");
  5019. #else
  5020. SERIAL_PROTOCOLLNPGM("false");
  5021. #endif
  5022. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5023. #endif
  5024. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5025. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  5026. bool deploy_state;
  5027. bool stow_state;
  5028. for (uint8_t i = 0; i < 4; i++) {
  5029. servo[probe_index].move(z_servo_angle[0]); //deploy
  5030. safe_delay(500);
  5031. deploy_state = digitalRead(PROBE_TEST_PIN);
  5032. servo[probe_index].move(z_servo_angle[1]); //stow
  5033. safe_delay(500);
  5034. stow_state = digitalRead(PROBE_TEST_PIN);
  5035. }
  5036. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5037. refresh_cmd_timeout();
  5038. if (deploy_state != stow_state) {
  5039. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5040. if (deploy_state) {
  5041. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5042. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5043. }
  5044. else {
  5045. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5046. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5047. }
  5048. #if ENABLED(BLTOUCH)
  5049. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5050. #endif
  5051. }
  5052. else { // measure active signal length
  5053. servo[probe_index].move(z_servo_angle[0]); // deploy
  5054. safe_delay(500);
  5055. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5056. uint16_t probe_counter = 0;
  5057. // Allow 30 seconds max for operator to trigger probe
  5058. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5059. safe_delay(2);
  5060. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5061. refresh_cmd_timeout();
  5062. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  5063. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  5064. safe_delay(2);
  5065. if (probe_counter == 50)
  5066. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5067. else if (probe_counter >= 2)
  5068. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5069. else
  5070. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5071. servo[probe_index].move(z_servo_angle[1]); //stow
  5072. } // pulse detected
  5073. } // for loop waiting for trigger
  5074. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5075. } // measure active signal length
  5076. #endif
  5077. } // servo_probe_test
  5078. /**
  5079. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5080. *
  5081. * M43 - report name and state of pin(s)
  5082. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5083. * I Flag to ignore Marlin's pin protection.
  5084. *
  5085. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5086. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5087. * I Flag to ignore Marlin's pin protection.
  5088. *
  5089. * M43 E<bool> - Enable / disable background endstop monitoring
  5090. * - Machine continues to operate
  5091. * - Reports changes to endstops
  5092. * - Toggles LED when an endstop changes
  5093. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5094. *
  5095. * M43 T - Toggle pin(s) and report which pin is being toggled
  5096. * S<pin> - Start Pin number. If not given, will default to 0
  5097. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5098. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5099. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5100. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5101. *
  5102. * M43 S - Servo probe test
  5103. * P<index> - Probe index (optional - defaults to 0
  5104. */
  5105. inline void gcode_M43() {
  5106. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5107. toggle_pins();
  5108. return;
  5109. }
  5110. // Enable or disable endstop monitoring
  5111. if (code_seen('E')) {
  5112. endstop_monitor_flag = code_value_bool();
  5113. SERIAL_PROTOCOLPGM("endstop monitor ");
  5114. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5115. SERIAL_PROTOCOLLNPGM("abled");
  5116. return;
  5117. }
  5118. if (code_seen('S')) {
  5119. servo_probe_test();
  5120. return;
  5121. }
  5122. // Get the range of pins to test or watch
  5123. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5124. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5125. if (first_pin > last_pin) return;
  5126. const bool ignore_protection = code_seen('I') && code_value_bool();
  5127. // Watch until click, M108, or reset
  5128. if (code_seen('W') && code_value_bool()) {
  5129. SERIAL_PROTOCOLLNPGM("Watching pins");
  5130. byte pin_state[last_pin - first_pin + 1];
  5131. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5132. if (pin_is_protected(pin) && !ignore_protection) continue;
  5133. pinMode(pin, INPUT_PULLUP);
  5134. /*
  5135. if (IS_ANALOG(pin))
  5136. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5137. else
  5138. //*/
  5139. pin_state[pin - first_pin] = digitalRead(pin);
  5140. }
  5141. #if HAS_RESUME_CONTINUE
  5142. wait_for_user = true;
  5143. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5144. #endif
  5145. for (;;) {
  5146. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5147. if (pin_is_protected(pin)) continue;
  5148. const byte val =
  5149. /*
  5150. IS_ANALOG(pin)
  5151. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5152. :
  5153. //*/
  5154. digitalRead(pin);
  5155. if (val != pin_state[pin - first_pin]) {
  5156. report_pin_state(pin);
  5157. pin_state[pin - first_pin] = val;
  5158. }
  5159. }
  5160. #if HAS_RESUME_CONTINUE
  5161. if (!wait_for_user) {
  5162. KEEPALIVE_STATE(IN_HANDLER);
  5163. break;
  5164. }
  5165. #endif
  5166. safe_delay(500);
  5167. }
  5168. return;
  5169. }
  5170. // Report current state of selected pin(s)
  5171. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5172. report_pin_state_extended(pin, ignore_protection);
  5173. }
  5174. #endif // PINS_DEBUGGING
  5175. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5176. /**
  5177. * M48: Z probe repeatability measurement function.
  5178. *
  5179. * Usage:
  5180. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5181. * P = Number of sampled points (4-50, default 10)
  5182. * X = Sample X position
  5183. * Y = Sample Y position
  5184. * V = Verbose level (0-4, default=1)
  5185. * E = Engage Z probe for each reading
  5186. * L = Number of legs of movement before probe
  5187. * S = Schizoid (Or Star if you prefer)
  5188. *
  5189. * This function assumes the bed has been homed. Specifically, that a G28 command
  5190. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5191. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5192. * regenerated.
  5193. */
  5194. inline void gcode_M48() {
  5195. if (axis_unhomed_error(true, true, true)) return;
  5196. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5197. if (!WITHIN(verbose_level, 0, 4)) {
  5198. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5199. return;
  5200. }
  5201. if (verbose_level > 0)
  5202. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5203. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5204. if (!WITHIN(n_samples, 4, 50)) {
  5205. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5206. return;
  5207. }
  5208. float X_current = current_position[X_AXIS],
  5209. Y_current = current_position[Y_AXIS];
  5210. bool stow_probe_after_each = code_seen('E');
  5211. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5212. #if DISABLED(DELTA)
  5213. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5214. out_of_range_error(PSTR("X"));
  5215. return;
  5216. }
  5217. #endif
  5218. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5219. #if DISABLED(DELTA)
  5220. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5221. out_of_range_error(PSTR("Y"));
  5222. return;
  5223. }
  5224. #else
  5225. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5226. if (!position_is_reachable(pos, true)) {
  5227. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5228. return;
  5229. }
  5230. #endif
  5231. bool seen_L = code_seen('L');
  5232. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5233. if (n_legs > 15) {
  5234. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5235. return;
  5236. }
  5237. if (n_legs == 1) n_legs = 2;
  5238. bool schizoid_flag = code_seen('S');
  5239. if (schizoid_flag && !seen_L) n_legs = 7;
  5240. /**
  5241. * Now get everything to the specified probe point So we can safely do a
  5242. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5243. * we don't want to use that as a starting point for each probe.
  5244. */
  5245. if (verbose_level > 2)
  5246. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5247. // Disable bed level correction in M48 because we want the raw data when we probe
  5248. #if HAS_LEVELING
  5249. const bool was_enabled =
  5250. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5251. ubl.state.active
  5252. #elif ENABLED(MESH_BED_LEVELING)
  5253. mbl.active()
  5254. #else
  5255. planner.abl_enabled
  5256. #endif
  5257. ;
  5258. set_bed_leveling_enabled(false);
  5259. #endif
  5260. setup_for_endstop_or_probe_move();
  5261. // Move to the first point, deploy, and probe
  5262. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5263. randomSeed(millis());
  5264. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5265. for (uint8_t n = 0; n < n_samples; n++) {
  5266. if (n_legs) {
  5267. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5268. float angle = random(0.0, 360.0),
  5269. radius = random(
  5270. #if ENABLED(DELTA)
  5271. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5272. #else
  5273. 5, X_MAX_LENGTH / 8
  5274. #endif
  5275. );
  5276. if (verbose_level > 3) {
  5277. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5278. SERIAL_ECHOPAIR(" angle: ", angle);
  5279. SERIAL_ECHOPGM(" Direction: ");
  5280. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5281. SERIAL_ECHOLNPGM("Clockwise");
  5282. }
  5283. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5284. double delta_angle;
  5285. if (schizoid_flag)
  5286. // The points of a 5 point star are 72 degrees apart. We need to
  5287. // skip a point and go to the next one on the star.
  5288. delta_angle = dir * 2.0 * 72.0;
  5289. else
  5290. // If we do this line, we are just trying to move further
  5291. // around the circle.
  5292. delta_angle = dir * (float) random(25, 45);
  5293. angle += delta_angle;
  5294. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5295. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5296. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5297. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5298. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5299. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5300. #if DISABLED(DELTA)
  5301. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5302. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5303. #else
  5304. // If we have gone out too far, we can do a simple fix and scale the numbers
  5305. // back in closer to the origin.
  5306. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5307. X_current *= 0.8;
  5308. Y_current *= 0.8;
  5309. if (verbose_level > 3) {
  5310. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5311. SERIAL_ECHOLNPAIR(", ", Y_current);
  5312. }
  5313. }
  5314. #endif
  5315. if (verbose_level > 3) {
  5316. SERIAL_PROTOCOLPGM("Going to:");
  5317. SERIAL_ECHOPAIR(" X", X_current);
  5318. SERIAL_ECHOPAIR(" Y", Y_current);
  5319. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5320. }
  5321. do_blocking_move_to_xy(X_current, Y_current);
  5322. } // n_legs loop
  5323. } // n_legs
  5324. // Probe a single point
  5325. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5326. /**
  5327. * Get the current mean for the data points we have so far
  5328. */
  5329. double sum = 0.0;
  5330. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5331. mean = sum / (n + 1);
  5332. NOMORE(min, sample_set[n]);
  5333. NOLESS(max, sample_set[n]);
  5334. /**
  5335. * Now, use that mean to calculate the standard deviation for the
  5336. * data points we have so far
  5337. */
  5338. sum = 0.0;
  5339. for (uint8_t j = 0; j <= n; j++)
  5340. sum += sq(sample_set[j] - mean);
  5341. sigma = sqrt(sum / (n + 1));
  5342. if (verbose_level > 0) {
  5343. if (verbose_level > 1) {
  5344. SERIAL_PROTOCOL(n + 1);
  5345. SERIAL_PROTOCOLPGM(" of ");
  5346. SERIAL_PROTOCOL((int)n_samples);
  5347. SERIAL_PROTOCOLPGM(": z: ");
  5348. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5349. if (verbose_level > 2) {
  5350. SERIAL_PROTOCOLPGM(" mean: ");
  5351. SERIAL_PROTOCOL_F(mean, 4);
  5352. SERIAL_PROTOCOLPGM(" sigma: ");
  5353. SERIAL_PROTOCOL_F(sigma, 6);
  5354. SERIAL_PROTOCOLPGM(" min: ");
  5355. SERIAL_PROTOCOL_F(min, 3);
  5356. SERIAL_PROTOCOLPGM(" max: ");
  5357. SERIAL_PROTOCOL_F(max, 3);
  5358. SERIAL_PROTOCOLPGM(" range: ");
  5359. SERIAL_PROTOCOL_F(max-min, 3);
  5360. }
  5361. SERIAL_EOL;
  5362. }
  5363. }
  5364. } // End of probe loop
  5365. if (STOW_PROBE()) return;
  5366. SERIAL_PROTOCOLPGM("Finished!");
  5367. SERIAL_EOL;
  5368. if (verbose_level > 0) {
  5369. SERIAL_PROTOCOLPGM("Mean: ");
  5370. SERIAL_PROTOCOL_F(mean, 6);
  5371. SERIAL_PROTOCOLPGM(" Min: ");
  5372. SERIAL_PROTOCOL_F(min, 3);
  5373. SERIAL_PROTOCOLPGM(" Max: ");
  5374. SERIAL_PROTOCOL_F(max, 3);
  5375. SERIAL_PROTOCOLPGM(" Range: ");
  5376. SERIAL_PROTOCOL_F(max-min, 3);
  5377. SERIAL_EOL;
  5378. }
  5379. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5380. SERIAL_PROTOCOL_F(sigma, 6);
  5381. SERIAL_EOL;
  5382. SERIAL_EOL;
  5383. clean_up_after_endstop_or_probe_move();
  5384. // Re-enable bed level correction if it had been on
  5385. #if HAS_LEVELING
  5386. set_bed_leveling_enabled(was_enabled);
  5387. #endif
  5388. report_current_position();
  5389. }
  5390. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5391. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5392. inline void gcode_M49() {
  5393. ubl.g26_debug_flag ^= true;
  5394. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5395. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5396. }
  5397. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5398. /**
  5399. * M75: Start print timer
  5400. */
  5401. inline void gcode_M75() { print_job_timer.start(); }
  5402. /**
  5403. * M76: Pause print timer
  5404. */
  5405. inline void gcode_M76() { print_job_timer.pause(); }
  5406. /**
  5407. * M77: Stop print timer
  5408. */
  5409. inline void gcode_M77() { print_job_timer.stop(); }
  5410. #if ENABLED(PRINTCOUNTER)
  5411. /**
  5412. * M78: Show print statistics
  5413. */
  5414. inline void gcode_M78() {
  5415. // "M78 S78" will reset the statistics
  5416. if (code_seen('S') && code_value_int() == 78)
  5417. print_job_timer.initStats();
  5418. else
  5419. print_job_timer.showStats();
  5420. }
  5421. #endif
  5422. /**
  5423. * M104: Set hot end temperature
  5424. */
  5425. inline void gcode_M104() {
  5426. if (get_target_extruder_from_command(104)) return;
  5427. if (DEBUGGING(DRYRUN)) return;
  5428. #if ENABLED(SINGLENOZZLE)
  5429. if (target_extruder != active_extruder) return;
  5430. #endif
  5431. if (code_seen('S')) {
  5432. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5433. #if ENABLED(DUAL_X_CARRIAGE)
  5434. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5435. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5436. #endif
  5437. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5438. /**
  5439. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5440. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5441. * standby mode, for instance in a dual extruder setup, without affecting
  5442. * the running print timer.
  5443. */
  5444. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5445. print_job_timer.stop();
  5446. LCD_MESSAGEPGM(WELCOME_MSG);
  5447. }
  5448. #endif
  5449. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5450. }
  5451. #if ENABLED(AUTOTEMP)
  5452. planner.autotemp_M104_M109();
  5453. #endif
  5454. }
  5455. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5456. void print_heaterstates() {
  5457. #if HAS_TEMP_HOTEND
  5458. SERIAL_PROTOCOLPGM(" T:");
  5459. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  5460. SERIAL_PROTOCOLPGM(" /");
  5461. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  5462. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5463. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  5464. SERIAL_PROTOCOLCHAR(')');
  5465. #endif
  5466. #endif
  5467. #if HAS_TEMP_BED
  5468. SERIAL_PROTOCOLPGM(" B:");
  5469. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  5470. SERIAL_PROTOCOLPGM(" /");
  5471. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5472. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5473. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5474. SERIAL_PROTOCOLCHAR(')');
  5475. #endif
  5476. #endif
  5477. #if HOTENDS > 1
  5478. HOTEND_LOOP() {
  5479. SERIAL_PROTOCOLPAIR(" T", e);
  5480. SERIAL_PROTOCOLCHAR(':');
  5481. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5482. SERIAL_PROTOCOLPGM(" /");
  5483. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5484. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5485. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5486. SERIAL_PROTOCOLCHAR(')');
  5487. #endif
  5488. }
  5489. #endif
  5490. SERIAL_PROTOCOLPGM(" @:");
  5491. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5492. #if HAS_TEMP_BED
  5493. SERIAL_PROTOCOLPGM(" B@:");
  5494. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5495. #endif
  5496. #if HOTENDS > 1
  5497. HOTEND_LOOP() {
  5498. SERIAL_PROTOCOLPAIR(" @", e);
  5499. SERIAL_PROTOCOLCHAR(':');
  5500. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5501. }
  5502. #endif
  5503. }
  5504. #endif
  5505. /**
  5506. * M105: Read hot end and bed temperature
  5507. */
  5508. inline void gcode_M105() {
  5509. if (get_target_extruder_from_command(105)) return;
  5510. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5511. SERIAL_PROTOCOLPGM(MSG_OK);
  5512. print_heaterstates();
  5513. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5514. SERIAL_ERROR_START;
  5515. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5516. #endif
  5517. SERIAL_EOL;
  5518. }
  5519. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5520. static uint8_t auto_report_temp_interval;
  5521. static millis_t next_temp_report_ms;
  5522. /**
  5523. * M155: Set temperature auto-report interval. M155 S<seconds>
  5524. */
  5525. inline void gcode_M155() {
  5526. if (code_seen('S')) {
  5527. auto_report_temp_interval = code_value_byte();
  5528. NOMORE(auto_report_temp_interval, 60);
  5529. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5530. }
  5531. }
  5532. inline void auto_report_temperatures() {
  5533. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5534. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5535. print_heaterstates();
  5536. SERIAL_EOL;
  5537. }
  5538. }
  5539. #endif // AUTO_REPORT_TEMPERATURES
  5540. #if FAN_COUNT > 0
  5541. /**
  5542. * M106: Set Fan Speed
  5543. *
  5544. * S<int> Speed between 0-255
  5545. * P<index> Fan index, if more than one fan
  5546. */
  5547. inline void gcode_M106() {
  5548. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5549. p = code_seen('P') ? code_value_ushort() : 0;
  5550. NOMORE(s, 255);
  5551. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5552. }
  5553. /**
  5554. * M107: Fan Off
  5555. */
  5556. inline void gcode_M107() {
  5557. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5558. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5559. }
  5560. #endif // FAN_COUNT > 0
  5561. #if DISABLED(EMERGENCY_PARSER)
  5562. /**
  5563. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5564. */
  5565. inline void gcode_M108() { wait_for_heatup = false; }
  5566. /**
  5567. * M112: Emergency Stop
  5568. */
  5569. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5570. /**
  5571. * M410: Quickstop - Abort all planned moves
  5572. *
  5573. * This will stop the carriages mid-move, so most likely they
  5574. * will be out of sync with the stepper position after this.
  5575. */
  5576. inline void gcode_M410() { quickstop_stepper(); }
  5577. #endif
  5578. /**
  5579. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5580. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5581. */
  5582. #ifndef MIN_COOLING_SLOPE_DEG
  5583. #define MIN_COOLING_SLOPE_DEG 1.50
  5584. #endif
  5585. #ifndef MIN_COOLING_SLOPE_TIME
  5586. #define MIN_COOLING_SLOPE_TIME 60
  5587. #endif
  5588. inline void gcode_M109() {
  5589. if (get_target_extruder_from_command(109)) return;
  5590. if (DEBUGGING(DRYRUN)) return;
  5591. #if ENABLED(SINGLENOZZLE)
  5592. if (target_extruder != active_extruder) return;
  5593. #endif
  5594. const bool no_wait_for_cooling = code_seen('S');
  5595. if (no_wait_for_cooling || code_seen('R')) {
  5596. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5597. #if ENABLED(DUAL_X_CARRIAGE)
  5598. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5599. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5600. #endif
  5601. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5602. /**
  5603. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5604. * standby mode, (e.g., in a dual extruder setup) without affecting
  5605. * the running print timer.
  5606. */
  5607. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5608. print_job_timer.stop();
  5609. LCD_MESSAGEPGM(WELCOME_MSG);
  5610. }
  5611. else
  5612. print_job_timer.start();
  5613. #endif
  5614. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5615. }
  5616. else return;
  5617. #if ENABLED(AUTOTEMP)
  5618. planner.autotemp_M104_M109();
  5619. #endif
  5620. #if TEMP_RESIDENCY_TIME > 0
  5621. millis_t residency_start_ms = 0;
  5622. // Loop until the temperature has stabilized
  5623. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5624. #else
  5625. // Loop until the temperature is very close target
  5626. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5627. #endif
  5628. float target_temp = -1.0, old_temp = 9999.0;
  5629. bool wants_to_cool = false;
  5630. wait_for_heatup = true;
  5631. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5632. KEEPALIVE_STATE(NOT_BUSY);
  5633. #if ENABLED(PRINTER_EVENT_LEDS)
  5634. const float start_temp = thermalManager.degHotend(target_extruder);
  5635. uint8_t old_blue = 0;
  5636. #endif
  5637. do {
  5638. // Target temperature might be changed during the loop
  5639. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5640. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5641. target_temp = thermalManager.degTargetHotend(target_extruder);
  5642. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5643. if (no_wait_for_cooling && wants_to_cool) break;
  5644. }
  5645. now = millis();
  5646. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5647. next_temp_ms = now + 1000UL;
  5648. print_heaterstates();
  5649. #if TEMP_RESIDENCY_TIME > 0
  5650. SERIAL_PROTOCOLPGM(" W:");
  5651. if (residency_start_ms) {
  5652. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5653. SERIAL_PROTOCOLLN(rem);
  5654. }
  5655. else {
  5656. SERIAL_PROTOCOLLNPGM("?");
  5657. }
  5658. #else
  5659. SERIAL_EOL;
  5660. #endif
  5661. }
  5662. idle();
  5663. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5664. const float temp = thermalManager.degHotend(target_extruder);
  5665. #if ENABLED(PRINTER_EVENT_LEDS)
  5666. // Gradually change LED strip from violet to red as nozzle heats up
  5667. if (!wants_to_cool) {
  5668. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5669. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5670. }
  5671. #endif
  5672. #if TEMP_RESIDENCY_TIME > 0
  5673. const float temp_diff = fabs(target_temp - temp);
  5674. if (!residency_start_ms) {
  5675. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5676. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5677. }
  5678. else if (temp_diff > TEMP_HYSTERESIS) {
  5679. // Restart the timer whenever the temperature falls outside the hysteresis.
  5680. residency_start_ms = now;
  5681. }
  5682. #endif
  5683. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5684. if (wants_to_cool) {
  5685. // break after MIN_COOLING_SLOPE_TIME seconds
  5686. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5687. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5688. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5689. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5690. old_temp = temp;
  5691. }
  5692. }
  5693. } while (wait_for_heatup && TEMP_CONDITIONS);
  5694. if (wait_for_heatup) {
  5695. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5696. #if ENABLED(PRINTER_EVENT_LEDS)
  5697. #if ENABLED(RGBW_LED)
  5698. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5699. #else
  5700. set_led_color(255, 255, 255); // Set LEDs All On
  5701. #endif
  5702. #endif
  5703. }
  5704. KEEPALIVE_STATE(IN_HANDLER);
  5705. }
  5706. #if HAS_TEMP_BED
  5707. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5708. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5709. #endif
  5710. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5711. #define MIN_COOLING_SLOPE_TIME_BED 60
  5712. #endif
  5713. /**
  5714. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5715. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5716. */
  5717. inline void gcode_M190() {
  5718. if (DEBUGGING(DRYRUN)) return;
  5719. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5720. const bool no_wait_for_cooling = code_seen('S');
  5721. if (no_wait_for_cooling || code_seen('R')) {
  5722. thermalManager.setTargetBed(code_value_temp_abs());
  5723. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5724. if (code_value_temp_abs() > BED_MINTEMP)
  5725. print_job_timer.start();
  5726. #endif
  5727. }
  5728. else return;
  5729. #if TEMP_BED_RESIDENCY_TIME > 0
  5730. millis_t residency_start_ms = 0;
  5731. // Loop until the temperature has stabilized
  5732. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5733. #else
  5734. // Loop until the temperature is very close target
  5735. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5736. #endif
  5737. float target_temp = -1.0, old_temp = 9999.0;
  5738. bool wants_to_cool = false;
  5739. wait_for_heatup = true;
  5740. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5741. KEEPALIVE_STATE(NOT_BUSY);
  5742. target_extruder = active_extruder; // for print_heaterstates
  5743. #if ENABLED(PRINTER_EVENT_LEDS)
  5744. const float start_temp = thermalManager.degBed();
  5745. uint8_t old_red = 255;
  5746. #endif
  5747. do {
  5748. // Target temperature might be changed during the loop
  5749. if (target_temp != thermalManager.degTargetBed()) {
  5750. wants_to_cool = thermalManager.isCoolingBed();
  5751. target_temp = thermalManager.degTargetBed();
  5752. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5753. if (no_wait_for_cooling && wants_to_cool) break;
  5754. }
  5755. now = millis();
  5756. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5757. next_temp_ms = now + 1000UL;
  5758. print_heaterstates();
  5759. #if TEMP_BED_RESIDENCY_TIME > 0
  5760. SERIAL_PROTOCOLPGM(" W:");
  5761. if (residency_start_ms) {
  5762. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5763. SERIAL_PROTOCOLLN(rem);
  5764. }
  5765. else {
  5766. SERIAL_PROTOCOLLNPGM("?");
  5767. }
  5768. #else
  5769. SERIAL_EOL;
  5770. #endif
  5771. }
  5772. idle();
  5773. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5774. const float temp = thermalManager.degBed();
  5775. #if ENABLED(PRINTER_EVENT_LEDS)
  5776. // Gradually change LED strip from blue to violet as bed heats up
  5777. if (!wants_to_cool) {
  5778. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5779. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5780. }
  5781. }
  5782. #endif
  5783. #if TEMP_BED_RESIDENCY_TIME > 0
  5784. const float temp_diff = fabs(target_temp - temp);
  5785. if (!residency_start_ms) {
  5786. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5787. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5788. }
  5789. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5790. // Restart the timer whenever the temperature falls outside the hysteresis.
  5791. residency_start_ms = now;
  5792. }
  5793. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5794. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5795. if (wants_to_cool) {
  5796. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5797. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5798. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5799. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5800. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5801. old_temp = temp;
  5802. }
  5803. }
  5804. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5805. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5806. KEEPALIVE_STATE(IN_HANDLER);
  5807. }
  5808. #endif // HAS_TEMP_BED
  5809. /**
  5810. * M110: Set Current Line Number
  5811. */
  5812. inline void gcode_M110() {
  5813. if (code_seen('N')) gcode_LastN = code_value_long();
  5814. }
  5815. /**
  5816. * M111: Set the debug level
  5817. */
  5818. inline void gcode_M111() {
  5819. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5820. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5821. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5822. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5823. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5824. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5825. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5826. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5827. #endif
  5828. const static char* const debug_strings[] PROGMEM = {
  5829. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5830. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5831. str_debug_32
  5832. #endif
  5833. };
  5834. SERIAL_ECHO_START;
  5835. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5836. if (marlin_debug_flags) {
  5837. uint8_t comma = 0;
  5838. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5839. if (TEST(marlin_debug_flags, i)) {
  5840. if (comma++) SERIAL_CHAR(',');
  5841. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5842. }
  5843. }
  5844. }
  5845. else {
  5846. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5847. }
  5848. SERIAL_EOL;
  5849. }
  5850. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5851. /**
  5852. * M113: Get or set Host Keepalive interval (0 to disable)
  5853. *
  5854. * S<seconds> Optional. Set the keepalive interval.
  5855. */
  5856. inline void gcode_M113() {
  5857. if (code_seen('S')) {
  5858. host_keepalive_interval = code_value_byte();
  5859. NOMORE(host_keepalive_interval, 60);
  5860. }
  5861. else {
  5862. SERIAL_ECHO_START;
  5863. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5864. }
  5865. }
  5866. #endif
  5867. #if ENABLED(BARICUDA)
  5868. #if HAS_HEATER_1
  5869. /**
  5870. * M126: Heater 1 valve open
  5871. */
  5872. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5873. /**
  5874. * M127: Heater 1 valve close
  5875. */
  5876. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5877. #endif
  5878. #if HAS_HEATER_2
  5879. /**
  5880. * M128: Heater 2 valve open
  5881. */
  5882. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5883. /**
  5884. * M129: Heater 2 valve close
  5885. */
  5886. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5887. #endif
  5888. #endif //BARICUDA
  5889. /**
  5890. * M140: Set bed temperature
  5891. */
  5892. inline void gcode_M140() {
  5893. if (DEBUGGING(DRYRUN)) return;
  5894. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5895. }
  5896. #if ENABLED(ULTIPANEL)
  5897. /**
  5898. * M145: Set the heatup state for a material in the LCD menu
  5899. *
  5900. * S<material> (0=PLA, 1=ABS)
  5901. * H<hotend temp>
  5902. * B<bed temp>
  5903. * F<fan speed>
  5904. */
  5905. inline void gcode_M145() {
  5906. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5907. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5908. SERIAL_ERROR_START;
  5909. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5910. }
  5911. else {
  5912. int v;
  5913. if (code_seen('H')) {
  5914. v = code_value_int();
  5915. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5916. }
  5917. if (code_seen('F')) {
  5918. v = code_value_int();
  5919. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5920. }
  5921. #if TEMP_SENSOR_BED != 0
  5922. if (code_seen('B')) {
  5923. v = code_value_int();
  5924. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5925. }
  5926. #endif
  5927. }
  5928. }
  5929. #endif // ULTIPANEL
  5930. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5931. /**
  5932. * M149: Set temperature units
  5933. */
  5934. inline void gcode_M149() {
  5935. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5936. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5937. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5938. }
  5939. #endif
  5940. #if HAS_POWER_SWITCH
  5941. /**
  5942. * M80: Turn on Power Supply
  5943. */
  5944. inline void gcode_M80() {
  5945. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5946. /**
  5947. * If you have a switch on suicide pin, this is useful
  5948. * if you want to start another print with suicide feature after
  5949. * a print without suicide...
  5950. */
  5951. #if HAS_SUICIDE
  5952. OUT_WRITE(SUICIDE_PIN, HIGH);
  5953. #endif
  5954. #if ENABLED(HAVE_TMC2130)
  5955. delay(100);
  5956. tmc2130_init(); // Settings only stick when the driver has power
  5957. #endif
  5958. #if ENABLED(ULTIPANEL)
  5959. powersupply = true;
  5960. LCD_MESSAGEPGM(WELCOME_MSG);
  5961. #endif
  5962. }
  5963. #endif // HAS_POWER_SWITCH
  5964. /**
  5965. * M81: Turn off Power, including Power Supply, if there is one.
  5966. *
  5967. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5968. */
  5969. inline void gcode_M81() {
  5970. thermalManager.disable_all_heaters();
  5971. stepper.finish_and_disable();
  5972. #if FAN_COUNT > 0
  5973. #if FAN_COUNT > 1
  5974. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5975. #else
  5976. fanSpeeds[0] = 0;
  5977. #endif
  5978. #endif
  5979. safe_delay(1000); // Wait 1 second before switching off
  5980. #if HAS_SUICIDE
  5981. stepper.synchronize();
  5982. suicide();
  5983. #elif HAS_POWER_SWITCH
  5984. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5985. #endif
  5986. #if ENABLED(ULTIPANEL)
  5987. #if HAS_POWER_SWITCH
  5988. powersupply = false;
  5989. #endif
  5990. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  5991. #endif
  5992. }
  5993. /**
  5994. * M82: Set E codes absolute (default)
  5995. */
  5996. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  5997. /**
  5998. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  5999. */
  6000. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6001. /**
  6002. * M18, M84: Disable all stepper motors
  6003. */
  6004. inline void gcode_M18_M84() {
  6005. if (code_seen('S')) {
  6006. stepper_inactive_time = code_value_millis_from_seconds();
  6007. }
  6008. else {
  6009. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  6010. if (all_axis) {
  6011. stepper.finish_and_disable();
  6012. }
  6013. else {
  6014. stepper.synchronize();
  6015. if (code_seen('X')) disable_X();
  6016. if (code_seen('Y')) disable_Y();
  6017. if (code_seen('Z')) disable_Z();
  6018. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  6019. if (code_seen('E')) disable_e_steppers();
  6020. #endif
  6021. }
  6022. }
  6023. }
  6024. /**
  6025. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6026. */
  6027. inline void gcode_M85() {
  6028. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  6029. }
  6030. /**
  6031. * Multi-stepper support for M92, M201, M203
  6032. */
  6033. #if ENABLED(DISTINCT_E_FACTORS)
  6034. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6035. #define TARGET_EXTRUDER target_extruder
  6036. #else
  6037. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6038. #define TARGET_EXTRUDER 0
  6039. #endif
  6040. /**
  6041. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6042. * (Follows the same syntax as G92)
  6043. *
  6044. * With multiple extruders use T to specify which one.
  6045. */
  6046. inline void gcode_M92() {
  6047. GET_TARGET_EXTRUDER(92);
  6048. LOOP_XYZE(i) {
  6049. if (code_seen(axis_codes[i])) {
  6050. if (i == E_AXIS) {
  6051. const float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  6052. if (value < 20.0) {
  6053. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6054. planner.max_jerk[E_AXIS] *= factor;
  6055. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6056. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6057. }
  6058. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6059. }
  6060. else {
  6061. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  6062. }
  6063. }
  6064. }
  6065. planner.refresh_positioning();
  6066. }
  6067. /**
  6068. * Output the current position to serial
  6069. */
  6070. static void report_current_position() {
  6071. SERIAL_PROTOCOLPGM("X:");
  6072. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6073. SERIAL_PROTOCOLPGM(" Y:");
  6074. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6075. SERIAL_PROTOCOLPGM(" Z:");
  6076. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6077. SERIAL_PROTOCOLPGM(" E:");
  6078. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6079. stepper.report_positions();
  6080. #if IS_SCARA
  6081. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6082. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6083. SERIAL_EOL;
  6084. #endif
  6085. }
  6086. /**
  6087. * M114: Output current position to serial port
  6088. */
  6089. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6090. /**
  6091. * M115: Capabilities string
  6092. */
  6093. inline void gcode_M115() {
  6094. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6095. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6096. // EEPROM (M500, M501)
  6097. #if ENABLED(EEPROM_SETTINGS)
  6098. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6099. #else
  6100. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6101. #endif
  6102. // AUTOREPORT_TEMP (M155)
  6103. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6104. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6105. #else
  6106. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6107. #endif
  6108. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6109. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6110. // AUTOLEVEL (G29)
  6111. #if HAS_ABL
  6112. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6113. #else
  6114. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6115. #endif
  6116. // Z_PROBE (G30)
  6117. #if HAS_BED_PROBE
  6118. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6119. #else
  6120. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6121. #endif
  6122. // MESH_REPORT (M420 V)
  6123. #if HAS_LEVELING
  6124. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6125. #else
  6126. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6127. #endif
  6128. // SOFTWARE_POWER (G30)
  6129. #if HAS_POWER_SWITCH
  6130. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6131. #else
  6132. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6133. #endif
  6134. // TOGGLE_LIGHTS (M355)
  6135. #if HAS_CASE_LIGHT
  6136. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6137. #else
  6138. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6139. #endif
  6140. // EMERGENCY_PARSER (M108, M112, M410)
  6141. #if ENABLED(EMERGENCY_PARSER)
  6142. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6143. #else
  6144. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6145. #endif
  6146. #endif // EXTENDED_CAPABILITIES_REPORT
  6147. }
  6148. /**
  6149. * M117: Set LCD Status Message
  6150. */
  6151. inline void gcode_M117() {
  6152. lcd_setstatus(current_command_args);
  6153. }
  6154. /**
  6155. * M119: Output endstop states to serial output
  6156. */
  6157. inline void gcode_M119() { endstops.M119(); }
  6158. /**
  6159. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6160. */
  6161. inline void gcode_M120() { endstops.enable_globally(true); }
  6162. /**
  6163. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6164. */
  6165. inline void gcode_M121() { endstops.enable_globally(false); }
  6166. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6167. /**
  6168. * M125: Store current position and move to filament change position.
  6169. * Called on pause (by M25) to prevent material leaking onto the
  6170. * object. On resume (M24) the head will be moved back and the
  6171. * print will resume.
  6172. *
  6173. * If Marlin is compiled without SD Card support, M125 can be
  6174. * used directly to pause the print and move to park position,
  6175. * resuming with a button click or M108.
  6176. *
  6177. * L = override retract length
  6178. * X = override X
  6179. * Y = override Y
  6180. * Z = override Z raise
  6181. */
  6182. inline void gcode_M125() {
  6183. if (move_away_flag) return; // already paused
  6184. const bool job_running = print_job_timer.isRunning();
  6185. // there are blocks after this one, or sd printing
  6186. move_away_flag = job_running || planner.blocks_queued()
  6187. #if ENABLED(SDSUPPORT)
  6188. || card.sdprinting
  6189. #endif
  6190. ;
  6191. if (!move_away_flag) return; // nothing to pause
  6192. // M125 can be used to pause a print too
  6193. #if ENABLED(SDSUPPORT)
  6194. card.pauseSDPrint();
  6195. #endif
  6196. print_job_timer.pause();
  6197. // Save current position
  6198. COPY(resume_position, current_position);
  6199. set_destination_to_current();
  6200. // Initial retract before move to filament change position
  6201. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6202. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6203. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6204. #endif
  6205. ;
  6206. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6207. // Lift Z axis
  6208. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6209. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6210. FILAMENT_CHANGE_Z_ADD
  6211. #else
  6212. 0
  6213. #endif
  6214. ;
  6215. if (z_lift > 0) {
  6216. destination[Z_AXIS] += z_lift;
  6217. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6218. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6219. }
  6220. // Move XY axes to filament change position or given position
  6221. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6222. #ifdef FILAMENT_CHANGE_X_POS
  6223. + FILAMENT_CHANGE_X_POS
  6224. #endif
  6225. ;
  6226. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6227. #ifdef FILAMENT_CHANGE_Y_POS
  6228. + FILAMENT_CHANGE_Y_POS
  6229. #endif
  6230. ;
  6231. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6232. if (active_extruder > 0) {
  6233. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6234. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6235. }
  6236. #endif
  6237. clamp_to_software_endstops(destination);
  6238. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6239. set_current_to_destination();
  6240. stepper.synchronize();
  6241. disable_e_steppers();
  6242. #if DISABLED(SDSUPPORT)
  6243. // Wait for lcd click or M108
  6244. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6245. wait_for_user = true;
  6246. while (wait_for_user) idle();
  6247. KEEPALIVE_STATE(IN_HANDLER);
  6248. // Return to print position and continue
  6249. move_back_on_resume();
  6250. if (job_running) print_job_timer.start();
  6251. move_away_flag = false;
  6252. #endif
  6253. }
  6254. #endif // PARK_HEAD_ON_PAUSE
  6255. #if HAS_COLOR_LEDS
  6256. /**
  6257. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6258. *
  6259. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6260. *
  6261. * Examples:
  6262. *
  6263. * M150 R255 ; Turn LED red
  6264. * M150 R255 U127 ; Turn LED orange (PWM only)
  6265. * M150 ; Turn LED off
  6266. * M150 R U B ; Turn LED white
  6267. * M150 W ; Turn LED white using a white LED
  6268. *
  6269. */
  6270. inline void gcode_M150() {
  6271. set_led_color(
  6272. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6273. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6274. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6275. #if ENABLED(RGBW_LED)
  6276. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6277. #endif
  6278. );
  6279. }
  6280. #endif // BLINKM || RGB_LED
  6281. /**
  6282. * M200: Set filament diameter and set E axis units to cubic units
  6283. *
  6284. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6285. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6286. */
  6287. inline void gcode_M200() {
  6288. if (get_target_extruder_from_command(200)) return;
  6289. if (code_seen('D')) {
  6290. // setting any extruder filament size disables volumetric on the assumption that
  6291. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6292. // for all extruders
  6293. volumetric_enabled = (code_value_linear_units() != 0.0);
  6294. if (volumetric_enabled) {
  6295. filament_size[target_extruder] = code_value_linear_units();
  6296. // make sure all extruders have some sane value for the filament size
  6297. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6298. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6299. }
  6300. }
  6301. calculate_volumetric_multipliers();
  6302. }
  6303. /**
  6304. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6305. *
  6306. * With multiple extruders use T to specify which one.
  6307. */
  6308. inline void gcode_M201() {
  6309. GET_TARGET_EXTRUDER(201);
  6310. LOOP_XYZE(i) {
  6311. if (code_seen(axis_codes[i])) {
  6312. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6313. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6314. }
  6315. }
  6316. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6317. planner.reset_acceleration_rates();
  6318. }
  6319. #if 0 // Not used for Sprinter/grbl gen6
  6320. inline void gcode_M202() {
  6321. LOOP_XYZE(i) {
  6322. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6323. }
  6324. }
  6325. #endif
  6326. /**
  6327. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6328. *
  6329. * With multiple extruders use T to specify which one.
  6330. */
  6331. inline void gcode_M203() {
  6332. GET_TARGET_EXTRUDER(203);
  6333. LOOP_XYZE(i)
  6334. if (code_seen(axis_codes[i])) {
  6335. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6336. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6337. }
  6338. }
  6339. /**
  6340. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6341. *
  6342. * P = Printing moves
  6343. * R = Retract only (no X, Y, Z) moves
  6344. * T = Travel (non printing) moves
  6345. *
  6346. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6347. */
  6348. inline void gcode_M204() {
  6349. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6350. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6351. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6352. }
  6353. if (code_seen('P')) {
  6354. planner.acceleration = code_value_linear_units();
  6355. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6356. }
  6357. if (code_seen('R')) {
  6358. planner.retract_acceleration = code_value_linear_units();
  6359. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6360. }
  6361. if (code_seen('T')) {
  6362. planner.travel_acceleration = code_value_linear_units();
  6363. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6364. }
  6365. }
  6366. /**
  6367. * M205: Set Advanced Settings
  6368. *
  6369. * S = Min Feed Rate (units/s)
  6370. * T = Min Travel Feed Rate (units/s)
  6371. * B = Min Segment Time (µs)
  6372. * X = Max X Jerk (units/sec^2)
  6373. * Y = Max Y Jerk (units/sec^2)
  6374. * Z = Max Z Jerk (units/sec^2)
  6375. * E = Max E Jerk (units/sec^2)
  6376. */
  6377. inline void gcode_M205() {
  6378. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6379. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6380. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6381. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6382. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6383. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6384. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6385. }
  6386. #if HAS_M206_COMMAND
  6387. /**
  6388. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6389. */
  6390. inline void gcode_M206() {
  6391. LOOP_XYZ(i)
  6392. if (code_seen(axis_codes[i]))
  6393. set_home_offset((AxisEnum)i, code_value_linear_units());
  6394. #if ENABLED(MORGAN_SCARA)
  6395. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6396. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6397. #endif
  6398. SYNC_PLAN_POSITION_KINEMATIC();
  6399. report_current_position();
  6400. }
  6401. #endif // HAS_M206_COMMAND
  6402. #if ENABLED(DELTA)
  6403. /**
  6404. * M665: Set delta configurations
  6405. *
  6406. * H = diagonal rod // AC-version
  6407. * L = diagonal rod
  6408. * R = delta radius
  6409. * S = segments per second
  6410. * A = Alpha (Tower 1) diagonal rod trim
  6411. * B = Beta (Tower 2) diagonal rod trim
  6412. * C = Gamma (Tower 3) diagonal rod trim
  6413. */
  6414. inline void gcode_M665() {
  6415. if (code_seen('H')) {
  6416. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6417. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6418. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6419. update_software_endstops(Z_AXIS);
  6420. }
  6421. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6422. if (code_seen('R')) delta_radius = code_value_linear_units();
  6423. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6424. if (code_seen('B')) delta_calibration_radius = code_value_float();
  6425. if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6426. if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6427. if (code_seen('Z')) { // rotate all 3 axis for Z = 0
  6428. delta_tower_angle_trim[A_AXIS] -= code_value_linear_units();
  6429. delta_tower_angle_trim[B_AXIS] -= code_value_linear_units();
  6430. }
  6431. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6432. }
  6433. /**
  6434. * M666: Set delta endstop adjustment
  6435. */
  6436. inline void gcode_M666() {
  6437. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6438. if (DEBUGGING(LEVELING)) {
  6439. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6440. }
  6441. #endif
  6442. LOOP_XYZ(i) {
  6443. if (code_seen(axis_codes[i])) {
  6444. endstop_adj[i] = code_value_linear_units();
  6445. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6446. if (DEBUGGING(LEVELING)) {
  6447. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6448. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6449. }
  6450. #endif
  6451. }
  6452. }
  6453. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6454. if (DEBUGGING(LEVELING)) {
  6455. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6456. }
  6457. #endif
  6458. // normalize endstops so all are <=0; set the residue to delta height
  6459. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  6460. home_offset[Z_AXIS] -= z_temp;
  6461. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  6462. }
  6463. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6464. /**
  6465. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6466. */
  6467. inline void gcode_M666() {
  6468. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6469. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6470. }
  6471. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6472. #if ENABLED(FWRETRACT)
  6473. /**
  6474. * M207: Set firmware retraction values
  6475. *
  6476. * S[+units] retract_length
  6477. * W[+units] retract_length_swap (multi-extruder)
  6478. * F[units/min] retract_feedrate_mm_s
  6479. * Z[units] retract_zlift
  6480. */
  6481. inline void gcode_M207() {
  6482. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6483. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6484. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6485. #if EXTRUDERS > 1
  6486. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6487. #endif
  6488. }
  6489. /**
  6490. * M208: Set firmware un-retraction values
  6491. *
  6492. * S[+units] retract_recover_length (in addition to M207 S*)
  6493. * W[+units] retract_recover_length_swap (multi-extruder)
  6494. * F[units/min] retract_recover_feedrate_mm_s
  6495. */
  6496. inline void gcode_M208() {
  6497. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6498. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6499. #if EXTRUDERS > 1
  6500. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6501. #endif
  6502. }
  6503. /**
  6504. * M209: Enable automatic retract (M209 S1)
  6505. * For slicers that don't support G10/11, reversed extrude-only
  6506. * moves will be classified as retraction.
  6507. */
  6508. inline void gcode_M209() {
  6509. if (code_seen('S')) {
  6510. autoretract_enabled = code_value_bool();
  6511. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6512. }
  6513. }
  6514. #endif // FWRETRACT
  6515. /**
  6516. * M211: Enable, Disable, and/or Report software endstops
  6517. *
  6518. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6519. */
  6520. inline void gcode_M211() {
  6521. SERIAL_ECHO_START;
  6522. #if HAS_SOFTWARE_ENDSTOPS
  6523. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6524. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6525. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6526. #else
  6527. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6528. SERIAL_ECHOPGM(MSG_OFF);
  6529. #endif
  6530. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6531. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6532. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6533. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6534. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6535. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6536. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6537. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6538. }
  6539. #if HOTENDS > 1
  6540. /**
  6541. * M218 - set hotend offset (in linear units)
  6542. *
  6543. * T<tool>
  6544. * X<xoffset>
  6545. * Y<yoffset>
  6546. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6547. */
  6548. inline void gcode_M218() {
  6549. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6550. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6551. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6552. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6553. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6554. #endif
  6555. SERIAL_ECHO_START;
  6556. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6557. HOTEND_LOOP() {
  6558. SERIAL_CHAR(' ');
  6559. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6560. SERIAL_CHAR(',');
  6561. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6562. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6563. SERIAL_CHAR(',');
  6564. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6565. #endif
  6566. }
  6567. SERIAL_EOL;
  6568. }
  6569. #endif // HOTENDS > 1
  6570. /**
  6571. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6572. */
  6573. inline void gcode_M220() {
  6574. if (code_seen('S')) feedrate_percentage = code_value_int();
  6575. }
  6576. /**
  6577. * M221: Set extrusion percentage (M221 T0 S95)
  6578. */
  6579. inline void gcode_M221() {
  6580. if (get_target_extruder_from_command(221)) return;
  6581. if (code_seen('S'))
  6582. flow_percentage[target_extruder] = code_value_int();
  6583. }
  6584. /**
  6585. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6586. */
  6587. inline void gcode_M226() {
  6588. if (code_seen('P')) {
  6589. int pin_number = code_value_int(),
  6590. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6591. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6592. int target = LOW;
  6593. stepper.synchronize();
  6594. pinMode(pin_number, INPUT);
  6595. switch (pin_state) {
  6596. case 1:
  6597. target = HIGH;
  6598. break;
  6599. case 0:
  6600. target = LOW;
  6601. break;
  6602. case -1:
  6603. target = !digitalRead(pin_number);
  6604. break;
  6605. }
  6606. while (digitalRead(pin_number) != target) idle();
  6607. } // pin_state -1 0 1 && pin_number > -1
  6608. } // code_seen('P')
  6609. }
  6610. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6611. /**
  6612. * M260: Send data to a I2C slave device
  6613. *
  6614. * This is a PoC, the formating and arguments for the GCODE will
  6615. * change to be more compatible, the current proposal is:
  6616. *
  6617. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6618. *
  6619. * M260 B<byte-1 value in base 10>
  6620. * M260 B<byte-2 value in base 10>
  6621. * M260 B<byte-3 value in base 10>
  6622. *
  6623. * M260 S1 ; Send the buffered data and reset the buffer
  6624. * M260 R1 ; Reset the buffer without sending data
  6625. *
  6626. */
  6627. inline void gcode_M260() {
  6628. // Set the target address
  6629. if (code_seen('A')) i2c.address(code_value_byte());
  6630. // Add a new byte to the buffer
  6631. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6632. // Flush the buffer to the bus
  6633. if (code_seen('S')) i2c.send();
  6634. // Reset and rewind the buffer
  6635. else if (code_seen('R')) i2c.reset();
  6636. }
  6637. /**
  6638. * M261: Request X bytes from I2C slave device
  6639. *
  6640. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6641. */
  6642. inline void gcode_M261() {
  6643. if (code_seen('A')) i2c.address(code_value_byte());
  6644. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6645. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6646. i2c.relay(bytes);
  6647. }
  6648. else {
  6649. SERIAL_ERROR_START;
  6650. SERIAL_ERRORLN("Bad i2c request");
  6651. }
  6652. }
  6653. #endif // EXPERIMENTAL_I2CBUS
  6654. #if HAS_SERVOS
  6655. /**
  6656. * M280: Get or set servo position. P<index> [S<angle>]
  6657. */
  6658. inline void gcode_M280() {
  6659. if (!code_seen('P')) return;
  6660. int servo_index = code_value_int();
  6661. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6662. if (code_seen('S'))
  6663. MOVE_SERVO(servo_index, code_value_int());
  6664. else {
  6665. SERIAL_ECHO_START;
  6666. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6667. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6668. }
  6669. }
  6670. else {
  6671. SERIAL_ERROR_START;
  6672. SERIAL_ECHOPAIR("Servo ", servo_index);
  6673. SERIAL_ECHOLNPGM(" out of range");
  6674. }
  6675. }
  6676. #endif // HAS_SERVOS
  6677. #if HAS_BUZZER
  6678. /**
  6679. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6680. */
  6681. inline void gcode_M300() {
  6682. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6683. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6684. // Limits the tone duration to 0-5 seconds.
  6685. NOMORE(duration, 5000);
  6686. BUZZ(duration, frequency);
  6687. }
  6688. #endif // HAS_BUZZER
  6689. #if ENABLED(PIDTEMP)
  6690. /**
  6691. * M301: Set PID parameters P I D (and optionally C, L)
  6692. *
  6693. * P[float] Kp term
  6694. * I[float] Ki term (unscaled)
  6695. * D[float] Kd term (unscaled)
  6696. *
  6697. * With PID_EXTRUSION_SCALING:
  6698. *
  6699. * C[float] Kc term
  6700. * L[float] LPQ length
  6701. */
  6702. inline void gcode_M301() {
  6703. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6704. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6705. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6706. if (e < HOTENDS) { // catch bad input value
  6707. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6708. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6709. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6710. #if ENABLED(PID_EXTRUSION_SCALING)
  6711. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6712. if (code_seen('L')) lpq_len = code_value_float();
  6713. NOMORE(lpq_len, LPQ_MAX_LEN);
  6714. #endif
  6715. thermalManager.updatePID();
  6716. SERIAL_ECHO_START;
  6717. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6718. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6719. #endif // PID_PARAMS_PER_HOTEND
  6720. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6721. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6722. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6723. #if ENABLED(PID_EXTRUSION_SCALING)
  6724. //Kc does not have scaling applied above, or in resetting defaults
  6725. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6726. #endif
  6727. SERIAL_EOL;
  6728. }
  6729. else {
  6730. SERIAL_ERROR_START;
  6731. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6732. }
  6733. }
  6734. #endif // PIDTEMP
  6735. #if ENABLED(PIDTEMPBED)
  6736. inline void gcode_M304() {
  6737. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6738. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6739. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6740. thermalManager.updatePID();
  6741. SERIAL_ECHO_START;
  6742. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6743. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6744. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6745. }
  6746. #endif // PIDTEMPBED
  6747. #if defined(CHDK) || HAS_PHOTOGRAPH
  6748. /**
  6749. * M240: Trigger a camera by emulating a Canon RC-1
  6750. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6751. */
  6752. inline void gcode_M240() {
  6753. #ifdef CHDK
  6754. OUT_WRITE(CHDK, HIGH);
  6755. chdkHigh = millis();
  6756. chdkActive = true;
  6757. #elif HAS_PHOTOGRAPH
  6758. const uint8_t NUM_PULSES = 16;
  6759. const float PULSE_LENGTH = 0.01524;
  6760. for (int i = 0; i < NUM_PULSES; i++) {
  6761. WRITE(PHOTOGRAPH_PIN, HIGH);
  6762. _delay_ms(PULSE_LENGTH);
  6763. WRITE(PHOTOGRAPH_PIN, LOW);
  6764. _delay_ms(PULSE_LENGTH);
  6765. }
  6766. delay(7.33);
  6767. for (int i = 0; i < NUM_PULSES; i++) {
  6768. WRITE(PHOTOGRAPH_PIN, HIGH);
  6769. _delay_ms(PULSE_LENGTH);
  6770. WRITE(PHOTOGRAPH_PIN, LOW);
  6771. _delay_ms(PULSE_LENGTH);
  6772. }
  6773. #endif // !CHDK && HAS_PHOTOGRAPH
  6774. }
  6775. #endif // CHDK || PHOTOGRAPH_PIN
  6776. #if HAS_LCD_CONTRAST
  6777. /**
  6778. * M250: Read and optionally set the LCD contrast
  6779. */
  6780. inline void gcode_M250() {
  6781. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6782. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6783. SERIAL_PROTOCOL(lcd_contrast);
  6784. SERIAL_EOL;
  6785. }
  6786. #endif // HAS_LCD_CONTRAST
  6787. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6788. /**
  6789. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6790. *
  6791. * S<temperature> sets the minimum extrude temperature
  6792. * P<bool> enables (1) or disables (0) cold extrusion
  6793. *
  6794. * Examples:
  6795. *
  6796. * M302 ; report current cold extrusion state
  6797. * M302 P0 ; enable cold extrusion checking
  6798. * M302 P1 ; disables cold extrusion checking
  6799. * M302 S0 ; always allow extrusion (disables checking)
  6800. * M302 S170 ; only allow extrusion above 170
  6801. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6802. */
  6803. inline void gcode_M302() {
  6804. bool seen_S = code_seen('S');
  6805. if (seen_S) {
  6806. thermalManager.extrude_min_temp = code_value_temp_abs();
  6807. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6808. }
  6809. if (code_seen('P'))
  6810. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6811. else if (!seen_S) {
  6812. // Report current state
  6813. SERIAL_ECHO_START;
  6814. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6815. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6816. SERIAL_ECHOLNPGM("C)");
  6817. }
  6818. }
  6819. #endif // PREVENT_COLD_EXTRUSION
  6820. /**
  6821. * M303: PID relay autotune
  6822. *
  6823. * S<temperature> sets the target temperature. (default 150C)
  6824. * E<extruder> (-1 for the bed) (default 0)
  6825. * C<cycles>
  6826. * U<bool> with a non-zero value will apply the result to current settings
  6827. */
  6828. inline void gcode_M303() {
  6829. #if HAS_PID_HEATING
  6830. int e = code_seen('E') ? code_value_int() : 0;
  6831. int c = code_seen('C') ? code_value_int() : 5;
  6832. bool u = code_seen('U') && code_value_bool();
  6833. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6834. if (WITHIN(e, 0, HOTENDS - 1))
  6835. target_extruder = e;
  6836. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6837. thermalManager.PID_autotune(temp, e, c, u);
  6838. KEEPALIVE_STATE(IN_HANDLER);
  6839. #else
  6840. SERIAL_ERROR_START;
  6841. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6842. #endif
  6843. }
  6844. #if ENABLED(MORGAN_SCARA)
  6845. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6846. if (IsRunning()) {
  6847. forward_kinematics_SCARA(delta_a, delta_b);
  6848. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6849. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6850. destination[Z_AXIS] = current_position[Z_AXIS];
  6851. prepare_move_to_destination();
  6852. return true;
  6853. }
  6854. return false;
  6855. }
  6856. /**
  6857. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6858. */
  6859. inline bool gcode_M360() {
  6860. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6861. return SCARA_move_to_cal(0, 120);
  6862. }
  6863. /**
  6864. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6865. */
  6866. inline bool gcode_M361() {
  6867. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6868. return SCARA_move_to_cal(90, 130);
  6869. }
  6870. /**
  6871. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6872. */
  6873. inline bool gcode_M362() {
  6874. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6875. return SCARA_move_to_cal(60, 180);
  6876. }
  6877. /**
  6878. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6879. */
  6880. inline bool gcode_M363() {
  6881. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6882. return SCARA_move_to_cal(50, 90);
  6883. }
  6884. /**
  6885. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6886. */
  6887. inline bool gcode_M364() {
  6888. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6889. return SCARA_move_to_cal(45, 135);
  6890. }
  6891. #endif // SCARA
  6892. #if ENABLED(EXT_SOLENOID)
  6893. void enable_solenoid(const uint8_t num) {
  6894. switch (num) {
  6895. case 0:
  6896. OUT_WRITE(SOL0_PIN, HIGH);
  6897. break;
  6898. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6899. case 1:
  6900. OUT_WRITE(SOL1_PIN, HIGH);
  6901. break;
  6902. #endif
  6903. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6904. case 2:
  6905. OUT_WRITE(SOL2_PIN, HIGH);
  6906. break;
  6907. #endif
  6908. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6909. case 3:
  6910. OUT_WRITE(SOL3_PIN, HIGH);
  6911. break;
  6912. #endif
  6913. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6914. case 4:
  6915. OUT_WRITE(SOL4_PIN, HIGH);
  6916. break;
  6917. #endif
  6918. default:
  6919. SERIAL_ECHO_START;
  6920. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6921. break;
  6922. }
  6923. }
  6924. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6925. void disable_all_solenoids() {
  6926. OUT_WRITE(SOL0_PIN, LOW);
  6927. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6928. OUT_WRITE(SOL1_PIN, LOW);
  6929. #endif
  6930. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6931. OUT_WRITE(SOL2_PIN, LOW);
  6932. #endif
  6933. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6934. OUT_WRITE(SOL3_PIN, LOW);
  6935. #endif
  6936. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6937. OUT_WRITE(SOL4_PIN, LOW);
  6938. #endif
  6939. }
  6940. /**
  6941. * M380: Enable solenoid on the active extruder
  6942. */
  6943. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6944. /**
  6945. * M381: Disable all solenoids
  6946. */
  6947. inline void gcode_M381() { disable_all_solenoids(); }
  6948. #endif // EXT_SOLENOID
  6949. /**
  6950. * M400: Finish all moves
  6951. */
  6952. inline void gcode_M400() { stepper.synchronize(); }
  6953. #if HAS_BED_PROBE
  6954. /**
  6955. * M401: Engage Z Servo endstop if available
  6956. */
  6957. inline void gcode_M401() { DEPLOY_PROBE(); }
  6958. /**
  6959. * M402: Retract Z Servo endstop if enabled
  6960. */
  6961. inline void gcode_M402() { STOW_PROBE(); }
  6962. #endif // HAS_BED_PROBE
  6963. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6964. /**
  6965. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6966. */
  6967. inline void gcode_M404() {
  6968. if (code_seen('W')) {
  6969. filament_width_nominal = code_value_linear_units();
  6970. }
  6971. else {
  6972. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6973. SERIAL_PROTOCOLLN(filament_width_nominal);
  6974. }
  6975. }
  6976. /**
  6977. * M405: Turn on filament sensor for control
  6978. */
  6979. inline void gcode_M405() {
  6980. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6981. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6982. if (code_seen('D')) meas_delay_cm = code_value_int();
  6983. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6984. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6985. const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  6986. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6987. measurement_delay[i] = temp_ratio;
  6988. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6989. }
  6990. filament_sensor = true;
  6991. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  6992. //SERIAL_PROTOCOL(filament_width_meas);
  6993. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  6994. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  6995. }
  6996. /**
  6997. * M406: Turn off filament sensor for control
  6998. */
  6999. inline void gcode_M406() { filament_sensor = false; }
  7000. /**
  7001. * M407: Get measured filament diameter on serial output
  7002. */
  7003. inline void gcode_M407() {
  7004. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7005. SERIAL_PROTOCOLLN(filament_width_meas);
  7006. }
  7007. #endif // FILAMENT_WIDTH_SENSOR
  7008. void quickstop_stepper() {
  7009. stepper.quick_stop();
  7010. stepper.synchronize();
  7011. set_current_from_steppers_for_axis(ALL_AXES);
  7012. SYNC_PLAN_POSITION_KINEMATIC();
  7013. }
  7014. #if HAS_LEVELING
  7015. /**
  7016. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7017. *
  7018. * S[bool] Turns leveling on or off
  7019. * Z[height] Sets the Z fade height (0 or none to disable)
  7020. * V[bool] Verbose - Print the leveling grid
  7021. *
  7022. * With AUTO_BED_LEVELING_UBL only:
  7023. *
  7024. * L[index] Load UBL mesh from index (0 is default)
  7025. */
  7026. inline void gcode_M420() {
  7027. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7028. // L to load a mesh from the EEPROM
  7029. if (code_seen('L')) {
  7030. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  7031. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  7032. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  7033. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  7034. return;
  7035. }
  7036. ubl.load_mesh(storage_slot);
  7037. ubl.state.eeprom_storage_slot = storage_slot;
  7038. }
  7039. #endif // AUTO_BED_LEVELING_UBL
  7040. // V to print the matrix or mesh
  7041. if (code_seen('V')) {
  7042. #if ABL_PLANAR
  7043. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  7044. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7045. if (bilinear_grid_spacing[X_AXIS]) {
  7046. print_bilinear_leveling_grid();
  7047. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7048. bed_level_virt_print();
  7049. #endif
  7050. }
  7051. #elif ENABLED(MESH_BED_LEVELING)
  7052. if (mbl.has_mesh()) {
  7053. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7054. mbl_mesh_report();
  7055. }
  7056. #endif
  7057. }
  7058. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7059. // L to load a mesh from the EEPROM
  7060. if (code_seen('L') || code_seen('V')) {
  7061. ubl.display_map(0); // Currently only supports one map type
  7062. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7063. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  7064. }
  7065. #endif
  7066. bool to_enable = false;
  7067. if (code_seen('S')) {
  7068. to_enable = code_value_bool();
  7069. set_bed_leveling_enabled(to_enable);
  7070. }
  7071. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7072. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  7073. #endif
  7074. const bool new_status =
  7075. #if ENABLED(MESH_BED_LEVELING)
  7076. mbl.active()
  7077. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7078. ubl.state.active
  7079. #else
  7080. planner.abl_enabled
  7081. #endif
  7082. ;
  7083. if (to_enable && !new_status) {
  7084. SERIAL_ERROR_START;
  7085. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7086. }
  7087. SERIAL_ECHO_START;
  7088. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7089. }
  7090. #endif
  7091. #if ENABLED(MESH_BED_LEVELING)
  7092. /**
  7093. * M421: Set a single Mesh Bed Leveling Z coordinate
  7094. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  7095. */
  7096. inline void gcode_M421() {
  7097. int8_t px = 0, py = 0;
  7098. float z = 0;
  7099. bool hasX, hasY, hasZ, hasI, hasJ;
  7100. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units());
  7101. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units());
  7102. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7103. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7104. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7105. if (hasX && hasY && hasZ) {
  7106. if (px >= 0 && py >= 0)
  7107. mbl.set_z(px, py, z);
  7108. else {
  7109. SERIAL_ERROR_START;
  7110. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7111. }
  7112. }
  7113. else if (hasI && hasJ && hasZ) {
  7114. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7115. mbl.set_z(px, py, z);
  7116. else {
  7117. SERIAL_ERROR_START;
  7118. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7119. }
  7120. }
  7121. else {
  7122. SERIAL_ERROR_START;
  7123. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7124. }
  7125. }
  7126. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7127. /**
  7128. * M421: Set a single Mesh Bed Leveling Z coordinate
  7129. *
  7130. * M421 I<xindex> J<yindex> Z<linear>
  7131. */
  7132. inline void gcode_M421() {
  7133. int8_t px = 0, py = 0;
  7134. float z = 0;
  7135. bool hasI, hasJ, hasZ;
  7136. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7137. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7138. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7139. if (hasI && hasJ && hasZ) {
  7140. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7141. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7142. ubl.z_values[px][py] = z;
  7143. #else
  7144. z_values[px][py] = z;
  7145. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7146. bed_level_virt_interpolate();
  7147. #endif
  7148. #endif
  7149. }
  7150. else {
  7151. SERIAL_ERROR_START;
  7152. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7153. }
  7154. }
  7155. else {
  7156. SERIAL_ERROR_START;
  7157. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7158. }
  7159. }
  7160. #endif
  7161. #if HAS_M206_COMMAND
  7162. /**
  7163. * M428: Set home_offset based on the distance between the
  7164. * current_position and the nearest "reference point."
  7165. * If an axis is past center its endstop position
  7166. * is the reference-point. Otherwise it uses 0. This allows
  7167. * the Z offset to be set near the bed when using a max endstop.
  7168. *
  7169. * M428 can't be used more than 2cm away from 0 or an endstop.
  7170. *
  7171. * Use M206 to set these values directly.
  7172. */
  7173. inline void gcode_M428() {
  7174. bool err = false;
  7175. LOOP_XYZ(i) {
  7176. if (axis_homed[i]) {
  7177. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7178. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7179. if (WITHIN(diff, -20, 20)) {
  7180. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7181. }
  7182. else {
  7183. SERIAL_ERROR_START;
  7184. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7185. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7186. BUZZ(200, 40);
  7187. err = true;
  7188. break;
  7189. }
  7190. }
  7191. }
  7192. if (!err) {
  7193. SYNC_PLAN_POSITION_KINEMATIC();
  7194. report_current_position();
  7195. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7196. BUZZ(100, 659);
  7197. BUZZ(100, 698);
  7198. }
  7199. }
  7200. #endif // HAS_M206_COMMAND
  7201. /**
  7202. * M500: Store settings in EEPROM
  7203. */
  7204. inline void gcode_M500() {
  7205. (void)settings.save();
  7206. }
  7207. /**
  7208. * M501: Read settings from EEPROM
  7209. */
  7210. inline void gcode_M501() {
  7211. (void)settings.load();
  7212. }
  7213. /**
  7214. * M502: Revert to default settings
  7215. */
  7216. inline void gcode_M502() {
  7217. (void)settings.reset();
  7218. }
  7219. /**
  7220. * M503: print settings currently in memory
  7221. */
  7222. inline void gcode_M503() {
  7223. (void)settings.report(code_seen('S') && !code_value_bool());
  7224. }
  7225. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7226. /**
  7227. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7228. */
  7229. inline void gcode_M540() {
  7230. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7231. }
  7232. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7233. #if HAS_BED_PROBE
  7234. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7235. static float last_zoffset = NAN;
  7236. if (!isnan(last_zoffset)) {
  7237. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  7238. const float diff = zprobe_zoffset - last_zoffset;
  7239. #endif
  7240. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7241. // Correct bilinear grid for new probe offset
  7242. if (diff) {
  7243. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7244. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7245. z_values[x][y] -= diff;
  7246. }
  7247. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7248. bed_level_virt_interpolate();
  7249. #endif
  7250. #endif
  7251. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7252. if (!no_babystep && planner.abl_enabled)
  7253. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7254. #else
  7255. UNUSED(no_babystep);
  7256. #endif
  7257. #if ENABLED(DELTA) // correct the delta_height
  7258. home_offset[Z_AXIS] -= diff;
  7259. #endif
  7260. }
  7261. last_zoffset = zprobe_zoffset;
  7262. }
  7263. inline void gcode_M851() {
  7264. SERIAL_ECHO_START;
  7265. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7266. if (code_seen('Z')) {
  7267. const float value = code_value_linear_units();
  7268. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7269. zprobe_zoffset = value;
  7270. refresh_zprobe_zoffset();
  7271. SERIAL_ECHO(zprobe_zoffset);
  7272. }
  7273. else
  7274. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7275. }
  7276. else
  7277. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7278. SERIAL_EOL;
  7279. }
  7280. #endif // HAS_BED_PROBE
  7281. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7282. void filament_change_beep(const bool init=false) {
  7283. static millis_t next_buzz = 0;
  7284. static uint16_t runout_beep = 0;
  7285. if (init) next_buzz = runout_beep = 0;
  7286. const millis_t ms = millis();
  7287. if (ELAPSED(ms, next_buzz)) {
  7288. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7289. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7290. BUZZ(300, 2000);
  7291. runout_beep++;
  7292. }
  7293. }
  7294. }
  7295. static bool busy_doing_M600 = false;
  7296. /**
  7297. * M600: Pause for filament change
  7298. *
  7299. * E[distance] - Retract the filament this far (negative value)
  7300. * Z[distance] - Move the Z axis by this distance
  7301. * X[position] - Move to this X position, with Y
  7302. * Y[position] - Move to this Y position, with X
  7303. * L[distance] - Retract distance for removal (manual reload)
  7304. *
  7305. * Default values are used for omitted arguments.
  7306. *
  7307. */
  7308. inline void gcode_M600() {
  7309. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7310. SERIAL_ERROR_START;
  7311. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7312. return;
  7313. }
  7314. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7315. // Pause the print job timer
  7316. const bool job_running = print_job_timer.isRunning();
  7317. print_job_timer.pause();
  7318. // Show initial message and wait for synchronize steppers
  7319. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7320. stepper.synchronize();
  7321. // Save current position of all axes
  7322. float lastpos[XYZE];
  7323. COPY(lastpos, current_position);
  7324. set_destination_to_current();
  7325. // Initial retract before move to filament change position
  7326. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7327. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7328. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7329. #endif
  7330. ;
  7331. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7332. // Lift Z axis
  7333. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7334. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7335. FILAMENT_CHANGE_Z_ADD
  7336. #else
  7337. 0
  7338. #endif
  7339. ;
  7340. if (z_lift > 0) {
  7341. destination[Z_AXIS] += z_lift;
  7342. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7343. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7344. }
  7345. // Move XY axes to filament exchange position
  7346. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7347. #ifdef FILAMENT_CHANGE_X_POS
  7348. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7349. #endif
  7350. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7351. #ifdef FILAMENT_CHANGE_Y_POS
  7352. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7353. #endif
  7354. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7355. stepper.synchronize();
  7356. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7357. idle();
  7358. // Unload filament
  7359. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7360. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7361. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7362. #endif
  7363. ;
  7364. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7365. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7366. stepper.synchronize();
  7367. disable_e_steppers();
  7368. safe_delay(100);
  7369. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7370. bool nozzle_timed_out = false;
  7371. float temps[4];
  7372. // Wait for filament insert by user and press button
  7373. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7374. #if HAS_BUZZER
  7375. filament_change_beep(true);
  7376. #endif
  7377. idle();
  7378. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7379. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7380. wait_for_user = true; // LCD click or M108 will clear this
  7381. while (wait_for_user) {
  7382. if (nozzle_timed_out)
  7383. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7384. #if HAS_BUZZER
  7385. filament_change_beep();
  7386. #endif
  7387. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7388. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7389. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7390. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7391. }
  7392. idle(true);
  7393. }
  7394. KEEPALIVE_STATE(IN_HANDLER);
  7395. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7396. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7397. // Show "wait for heating"
  7398. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7399. wait_for_heatup = true;
  7400. while (wait_for_heatup) {
  7401. idle();
  7402. wait_for_heatup = false;
  7403. HOTEND_LOOP() {
  7404. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7405. wait_for_heatup = true;
  7406. break;
  7407. }
  7408. }
  7409. }
  7410. // Show "insert filament"
  7411. if (nozzle_timed_out)
  7412. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7413. #if HAS_BUZZER
  7414. filament_change_beep(true);
  7415. #endif
  7416. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7417. wait_for_user = true; // LCD click or M108 will clear this
  7418. while (wait_for_user && nozzle_timed_out) {
  7419. #if HAS_BUZZER
  7420. filament_change_beep();
  7421. #endif
  7422. idle(true);
  7423. }
  7424. KEEPALIVE_STATE(IN_HANDLER);
  7425. // Show "load" message
  7426. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7427. // Load filament
  7428. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7429. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7430. + FILAMENT_CHANGE_LOAD_LENGTH
  7431. #endif
  7432. ;
  7433. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7434. stepper.synchronize();
  7435. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7436. do {
  7437. // "Wait for filament extrude"
  7438. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7439. // Extrude filament to get into hotend
  7440. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7441. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7442. stepper.synchronize();
  7443. // Show "Extrude More" / "Resume" menu and wait for reply
  7444. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7445. wait_for_user = false;
  7446. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7447. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7448. KEEPALIVE_STATE(IN_HANDLER);
  7449. // Keep looping if "Extrude More" was selected
  7450. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7451. #endif
  7452. // "Wait for print to resume"
  7453. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7454. // Set extruder to saved position
  7455. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7456. planner.set_e_position_mm(current_position[E_AXIS]);
  7457. #if IS_KINEMATIC
  7458. // Move XYZ to starting position
  7459. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7460. #else
  7461. // Move XY to starting position, then Z
  7462. destination[X_AXIS] = lastpos[X_AXIS];
  7463. destination[Y_AXIS] = lastpos[Y_AXIS];
  7464. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7465. destination[Z_AXIS] = lastpos[Z_AXIS];
  7466. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7467. #endif
  7468. stepper.synchronize();
  7469. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7470. filament_ran_out = false;
  7471. #endif
  7472. // Show status screen
  7473. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7474. // Resume the print job timer if it was running
  7475. if (job_running) print_job_timer.start();
  7476. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7477. }
  7478. #endif // FILAMENT_CHANGE_FEATURE
  7479. #if ENABLED(DUAL_X_CARRIAGE)
  7480. /**
  7481. * M605: Set dual x-carriage movement mode
  7482. *
  7483. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7484. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7485. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7486. * units x-offset and an optional differential hotend temperature of
  7487. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7488. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7489. *
  7490. * Note: the X axis should be homed after changing dual x-carriage mode.
  7491. */
  7492. inline void gcode_M605() {
  7493. stepper.synchronize();
  7494. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7495. switch (dual_x_carriage_mode) {
  7496. case DXC_FULL_CONTROL_MODE:
  7497. case DXC_AUTO_PARK_MODE:
  7498. break;
  7499. case DXC_DUPLICATION_MODE:
  7500. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7501. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7502. SERIAL_ECHO_START;
  7503. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7504. SERIAL_CHAR(' ');
  7505. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7506. SERIAL_CHAR(',');
  7507. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7508. SERIAL_CHAR(' ');
  7509. SERIAL_ECHO(duplicate_extruder_x_offset);
  7510. SERIAL_CHAR(',');
  7511. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7512. break;
  7513. default:
  7514. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7515. break;
  7516. }
  7517. active_extruder_parked = false;
  7518. extruder_duplication_enabled = false;
  7519. delayed_move_time = 0;
  7520. }
  7521. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7522. inline void gcode_M605() {
  7523. stepper.synchronize();
  7524. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7525. SERIAL_ECHO_START;
  7526. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7527. }
  7528. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7529. #if ENABLED(LIN_ADVANCE)
  7530. /**
  7531. * M900: Set and/or Get advance K factor and WH/D ratio
  7532. *
  7533. * K<factor> Set advance K factor
  7534. * R<ratio> Set ratio directly (overrides WH/D)
  7535. * W<width> H<height> D<diam> Set ratio from WH/D
  7536. */
  7537. inline void gcode_M900() {
  7538. stepper.synchronize();
  7539. const float newK = code_seen('K') ? code_value_float() : -1;
  7540. if (newK >= 0) planner.extruder_advance_k = newK;
  7541. float newR = code_seen('R') ? code_value_float() : -1;
  7542. if (newR < 0) {
  7543. const float newD = code_seen('D') ? code_value_float() : -1,
  7544. newW = code_seen('W') ? code_value_float() : -1,
  7545. newH = code_seen('H') ? code_value_float() : -1;
  7546. if (newD >= 0 && newW >= 0 && newH >= 0)
  7547. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7548. }
  7549. if (newR >= 0) planner.advance_ed_ratio = newR;
  7550. SERIAL_ECHO_START;
  7551. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  7552. SERIAL_ECHOPGM(" E/D=");
  7553. const float ratio = planner.advance_ed_ratio;
  7554. ratio ? SERIAL_ECHO(ratio) : SERIAL_ECHOPGM("Auto");
  7555. SERIAL_EOL;
  7556. }
  7557. #endif // LIN_ADVANCE
  7558. #if ENABLED(HAVE_TMC2130)
  7559. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7560. SERIAL_CHAR(name);
  7561. SERIAL_ECHOPGM(" axis driver current: ");
  7562. SERIAL_ECHOLN(st.getCurrent());
  7563. }
  7564. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7565. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7566. tmc2130_get_current(st, name);
  7567. }
  7568. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7569. SERIAL_CHAR(name);
  7570. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7571. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7572. SERIAL_EOL;
  7573. }
  7574. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7575. st.clear_otpw();
  7576. SERIAL_CHAR(name);
  7577. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7578. }
  7579. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7580. SERIAL_CHAR(name);
  7581. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7582. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7583. }
  7584. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7585. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7586. tmc2130_get_pwmthrs(st, name, spmm);
  7587. }
  7588. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7589. SERIAL_CHAR(name);
  7590. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7591. SERIAL_ECHOLN(st.sgt());
  7592. }
  7593. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7594. st.sgt(sgt_val);
  7595. tmc2130_get_sgt(st, name);
  7596. }
  7597. /**
  7598. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7599. * Report driver currents when no axis specified
  7600. *
  7601. * S1: Enable automatic current control
  7602. * S0: Disable
  7603. */
  7604. inline void gcode_M906() {
  7605. uint16_t values[XYZE];
  7606. LOOP_XYZE(i)
  7607. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7608. #if ENABLED(X_IS_TMC2130)
  7609. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7610. else tmc2130_get_current(stepperX, 'X');
  7611. #endif
  7612. #if ENABLED(Y_IS_TMC2130)
  7613. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7614. else tmc2130_get_current(stepperY, 'Y');
  7615. #endif
  7616. #if ENABLED(Z_IS_TMC2130)
  7617. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7618. else tmc2130_get_current(stepperZ, 'Z');
  7619. #endif
  7620. #if ENABLED(E0_IS_TMC2130)
  7621. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7622. else tmc2130_get_current(stepperE0, 'E');
  7623. #endif
  7624. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7625. if (code_seen('S')) auto_current_control = code_value_bool();
  7626. #endif
  7627. }
  7628. /**
  7629. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7630. * The flag is held by the library and persist until manually cleared by M912
  7631. */
  7632. inline void gcode_M911() {
  7633. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7634. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7635. #if ENABLED(X_IS_TMC2130)
  7636. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7637. #endif
  7638. #if ENABLED(Y_IS_TMC2130)
  7639. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7640. #endif
  7641. #if ENABLED(Z_IS_TMC2130)
  7642. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7643. #endif
  7644. #if ENABLED(E0_IS_TMC2130)
  7645. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7646. #endif
  7647. }
  7648. /**
  7649. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7650. */
  7651. inline void gcode_M912() {
  7652. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7653. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7654. #if ENABLED(X_IS_TMC2130)
  7655. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7656. #endif
  7657. #if ENABLED(Y_IS_TMC2130)
  7658. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7659. #endif
  7660. #if ENABLED(Z_IS_TMC2130)
  7661. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7662. #endif
  7663. #if ENABLED(E0_IS_TMC2130)
  7664. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7665. #endif
  7666. }
  7667. /**
  7668. * M913: Set HYBRID_THRESHOLD speed.
  7669. */
  7670. #if ENABLED(HYBRID_THRESHOLD)
  7671. inline void gcode_M913() {
  7672. uint16_t values[XYZE];
  7673. LOOP_XYZE(i)
  7674. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7675. #if ENABLED(X_IS_TMC2130)
  7676. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7677. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7678. #endif
  7679. #if ENABLED(Y_IS_TMC2130)
  7680. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7681. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7682. #endif
  7683. #if ENABLED(Z_IS_TMC2130)
  7684. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7685. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7686. #endif
  7687. #if ENABLED(E0_IS_TMC2130)
  7688. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7689. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7690. #endif
  7691. }
  7692. #endif // HYBRID_THRESHOLD
  7693. /**
  7694. * M914: Set SENSORLESS_HOMING sensitivity.
  7695. */
  7696. #if ENABLED(SENSORLESS_HOMING)
  7697. inline void gcode_M914() {
  7698. #if ENABLED(X_IS_TMC2130)
  7699. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7700. else tmc2130_get_sgt(stepperX, 'X');
  7701. #endif
  7702. #if ENABLED(Y_IS_TMC2130)
  7703. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7704. else tmc2130_get_sgt(stepperY, 'Y');
  7705. #endif
  7706. }
  7707. #endif // SENSORLESS_HOMING
  7708. #endif // HAVE_TMC2130
  7709. /**
  7710. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7711. */
  7712. inline void gcode_M907() {
  7713. #if HAS_DIGIPOTSS
  7714. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7715. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7716. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7717. #elif HAS_MOTOR_CURRENT_PWM
  7718. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7719. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7720. #endif
  7721. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7722. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7723. #endif
  7724. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7725. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7726. #endif
  7727. #endif
  7728. #if ENABLED(DIGIPOT_I2C)
  7729. // this one uses actual amps in floating point
  7730. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7731. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7732. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7733. #endif
  7734. #if ENABLED(DAC_STEPPER_CURRENT)
  7735. if (code_seen('S')) {
  7736. const float dac_percent = code_value_float();
  7737. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7738. }
  7739. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7740. #endif
  7741. }
  7742. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7743. /**
  7744. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7745. */
  7746. inline void gcode_M908() {
  7747. #if HAS_DIGIPOTSS
  7748. stepper.digitalPotWrite(
  7749. code_seen('P') ? code_value_int() : 0,
  7750. code_seen('S') ? code_value_int() : 0
  7751. );
  7752. #endif
  7753. #ifdef DAC_STEPPER_CURRENT
  7754. dac_current_raw(
  7755. code_seen('P') ? code_value_byte() : -1,
  7756. code_seen('S') ? code_value_ushort() : 0
  7757. );
  7758. #endif
  7759. }
  7760. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7761. inline void gcode_M909() { dac_print_values(); }
  7762. inline void gcode_M910() { dac_commit_eeprom(); }
  7763. #endif
  7764. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7765. #if HAS_MICROSTEPS
  7766. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7767. inline void gcode_M350() {
  7768. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7769. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7770. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7771. stepper.microstep_readings();
  7772. }
  7773. /**
  7774. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7775. * S# determines MS1 or MS2, X# sets the pin high/low.
  7776. */
  7777. inline void gcode_M351() {
  7778. if (code_seen('S')) switch (code_value_byte()) {
  7779. case 1:
  7780. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7781. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7782. break;
  7783. case 2:
  7784. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7785. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7786. break;
  7787. }
  7788. stepper.microstep_readings();
  7789. }
  7790. #endif // HAS_MICROSTEPS
  7791. #if HAS_CASE_LIGHT
  7792. uint8_t case_light_brightness = 255;
  7793. void update_case_light() {
  7794. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7795. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7796. }
  7797. #endif // HAS_CASE_LIGHT
  7798. /**
  7799. * M355: Turn case lights on/off and set brightness
  7800. *
  7801. * S<bool> Turn case light on or off
  7802. * P<byte> Set case light brightness (PWM pin required)
  7803. */
  7804. inline void gcode_M355() {
  7805. #if HAS_CASE_LIGHT
  7806. if (code_seen('P')) case_light_brightness = code_value_byte();
  7807. if (code_seen('S')) case_light_on = code_value_bool();
  7808. update_case_light();
  7809. SERIAL_ECHO_START;
  7810. SERIAL_ECHOPGM("Case lights ");
  7811. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7812. #else
  7813. SERIAL_ERROR_START;
  7814. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7815. #endif // HAS_CASE_LIGHT
  7816. }
  7817. #if ENABLED(MIXING_EXTRUDER)
  7818. /**
  7819. * M163: Set a single mix factor for a mixing extruder
  7820. * This is called "weight" by some systems.
  7821. *
  7822. * S[index] The channel index to set
  7823. * P[float] The mix value
  7824. *
  7825. */
  7826. inline void gcode_M163() {
  7827. const int mix_index = code_seen('S') ? code_value_int() : 0;
  7828. if (mix_index < MIXING_STEPPERS) {
  7829. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7830. NOLESS(mix_value, 0.0);
  7831. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7832. }
  7833. }
  7834. #if MIXING_VIRTUAL_TOOLS > 1
  7835. /**
  7836. * M164: Store the current mix factors as a virtual tool.
  7837. *
  7838. * S[index] The virtual tool to store
  7839. *
  7840. */
  7841. inline void gcode_M164() {
  7842. const int tool_index = code_seen('S') ? code_value_int() : 0;
  7843. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7844. normalize_mix();
  7845. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7846. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7847. }
  7848. }
  7849. #endif
  7850. #if ENABLED(DIRECT_MIXING_IN_G1)
  7851. /**
  7852. * M165: Set multiple mix factors for a mixing extruder.
  7853. * Factors that are left out will be set to 0.
  7854. * All factors together must add up to 1.0.
  7855. *
  7856. * A[factor] Mix factor for extruder stepper 1
  7857. * B[factor] Mix factor for extruder stepper 2
  7858. * C[factor] Mix factor for extruder stepper 3
  7859. * D[factor] Mix factor for extruder stepper 4
  7860. * H[factor] Mix factor for extruder stepper 5
  7861. * I[factor] Mix factor for extruder stepper 6
  7862. *
  7863. */
  7864. inline void gcode_M165() { gcode_get_mix(); }
  7865. #endif
  7866. #endif // MIXING_EXTRUDER
  7867. /**
  7868. * M999: Restart after being stopped
  7869. *
  7870. * Default behaviour is to flush the serial buffer and request
  7871. * a resend to the host starting on the last N line received.
  7872. *
  7873. * Sending "M999 S1" will resume printing without flushing the
  7874. * existing command buffer.
  7875. *
  7876. */
  7877. inline void gcode_M999() {
  7878. Running = true;
  7879. lcd_reset_alert_level();
  7880. if (code_seen('S') && code_value_bool()) return;
  7881. // gcode_LastN = Stopped_gcode_LastN;
  7882. FlushSerialRequestResend();
  7883. }
  7884. #if ENABLED(SWITCHING_EXTRUDER)
  7885. inline void move_extruder_servo(uint8_t e) {
  7886. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7887. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7888. safe_delay(500);
  7889. }
  7890. #endif
  7891. inline void invalid_extruder_error(const uint8_t &e) {
  7892. SERIAL_ECHO_START;
  7893. SERIAL_CHAR('T');
  7894. SERIAL_ECHO_F(e, DEC);
  7895. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7896. }
  7897. /**
  7898. * Perform a tool-change, which may result in moving the
  7899. * previous tool out of the way and the new tool into place.
  7900. */
  7901. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7902. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7903. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7904. return invalid_extruder_error(tmp_extruder);
  7905. // T0-Tnnn: Switch virtual tool by changing the mix
  7906. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7907. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7908. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7909. #if HOTENDS > 1
  7910. if (tmp_extruder >= EXTRUDERS)
  7911. return invalid_extruder_error(tmp_extruder);
  7912. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7913. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7914. if (tmp_extruder != active_extruder) {
  7915. if (!no_move && axis_unhomed_error(true, true, true)) {
  7916. SERIAL_ECHOLNPGM("No move on toolchange");
  7917. no_move = true;
  7918. }
  7919. // Save current position to destination, for use later
  7920. set_destination_to_current();
  7921. #if ENABLED(DUAL_X_CARRIAGE)
  7922. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7923. if (DEBUGGING(LEVELING)) {
  7924. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7925. switch (dual_x_carriage_mode) {
  7926. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7927. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7928. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7929. }
  7930. }
  7931. #endif
  7932. const float xhome = x_home_pos(active_extruder);
  7933. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7934. && IsRunning()
  7935. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7936. ) {
  7937. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7938. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7939. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7940. #endif
  7941. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7942. if (DEBUGGING(LEVELING)) {
  7943. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7944. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7945. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7946. }
  7947. #endif
  7948. // Park old head: 1) raise 2) move to park position 3) lower
  7949. for (uint8_t i = 0; i < 3; i++)
  7950. planner.buffer_line(
  7951. i == 0 ? current_position[X_AXIS] : xhome,
  7952. current_position[Y_AXIS],
  7953. i == 2 ? current_position[Z_AXIS] : raised_z,
  7954. current_position[E_AXIS],
  7955. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7956. active_extruder
  7957. );
  7958. stepper.synchronize();
  7959. }
  7960. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7961. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7962. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7963. // Activate the new extruder
  7964. active_extruder = tmp_extruder;
  7965. // This function resets the max/min values - the current position may be overwritten below.
  7966. set_axis_is_at_home(X_AXIS);
  7967. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7968. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7969. #endif
  7970. // Only when auto-parking are carriages safe to move
  7971. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7972. switch (dual_x_carriage_mode) {
  7973. case DXC_FULL_CONTROL_MODE:
  7974. // New current position is the position of the activated extruder
  7975. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7976. // Save the inactive extruder's position (from the old current_position)
  7977. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7978. break;
  7979. case DXC_AUTO_PARK_MODE:
  7980. // record raised toolhead position for use by unpark
  7981. COPY(raised_parked_position, current_position);
  7982. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7983. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7984. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7985. #endif
  7986. active_extruder_parked = true;
  7987. delayed_move_time = 0;
  7988. break;
  7989. case DXC_DUPLICATION_MODE:
  7990. // If the new extruder is the left one, set it "parked"
  7991. // This triggers the second extruder to move into the duplication position
  7992. active_extruder_parked = (active_extruder == 0);
  7993. if (active_extruder_parked)
  7994. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7995. else
  7996. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  7997. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7998. extruder_duplication_enabled = false;
  7999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8000. if (DEBUGGING(LEVELING)) {
  8001. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8002. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8003. }
  8004. #endif
  8005. break;
  8006. }
  8007. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8008. if (DEBUGGING(LEVELING)) {
  8009. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8010. DEBUG_POS("New extruder (parked)", current_position);
  8011. }
  8012. #endif
  8013. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8014. #else // !DUAL_X_CARRIAGE
  8015. #if ENABLED(SWITCHING_EXTRUDER)
  8016. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8017. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8018. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8019. // Always raise by some amount (destination copied from current_position earlier)
  8020. current_position[Z_AXIS] += z_raise;
  8021. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8022. stepper.synchronize();
  8023. move_extruder_servo(active_extruder);
  8024. #endif
  8025. /**
  8026. * Set current_position to the position of the new nozzle.
  8027. * Offsets are based on linear distance, so we need to get
  8028. * the resulting position in coordinate space.
  8029. *
  8030. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8031. * - With mesh leveling, update Z for the new position
  8032. * - Otherwise, just use the raw linear distance
  8033. *
  8034. * Software endstops are altered here too. Consider a case where:
  8035. * E0 at X=0 ... E1 at X=10
  8036. * When we switch to E1 now X=10, but E1 can't move left.
  8037. * To express this we apply the change in XY to the software endstops.
  8038. * E1 can move farther right than E0, so the right limit is extended.
  8039. *
  8040. * Note that we don't adjust the Z software endstops. Why not?
  8041. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8042. * because the bed is 1mm lower at the new position. As long as
  8043. * the first nozzle is out of the way, the carriage should be
  8044. * allowed to move 1mm lower. This technically "breaks" the
  8045. * Z software endstop. But this is technically correct (and
  8046. * there is no viable alternative).
  8047. */
  8048. #if ABL_PLANAR
  8049. // Offset extruder, make sure to apply the bed level rotation matrix
  8050. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8051. hotend_offset[Y_AXIS][tmp_extruder],
  8052. 0),
  8053. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8054. hotend_offset[Y_AXIS][active_extruder],
  8055. 0),
  8056. offset_vec = tmp_offset_vec - act_offset_vec;
  8057. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8058. if (DEBUGGING(LEVELING)) {
  8059. tmp_offset_vec.debug("tmp_offset_vec");
  8060. act_offset_vec.debug("act_offset_vec");
  8061. offset_vec.debug("offset_vec (BEFORE)");
  8062. }
  8063. #endif
  8064. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8065. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8066. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  8067. #endif
  8068. // Adjustments to the current position
  8069. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8070. current_position[Z_AXIS] += offset_vec.z;
  8071. #else // !ABL_PLANAR
  8072. const float xydiff[2] = {
  8073. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8074. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8075. };
  8076. #if ENABLED(MESH_BED_LEVELING)
  8077. if (mbl.active()) {
  8078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8079. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8080. #endif
  8081. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8082. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8083. z1 = current_position[Z_AXIS], z2 = z1;
  8084. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8085. planner.apply_leveling(x2, y2, z2);
  8086. current_position[Z_AXIS] += z2 - z1;
  8087. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8088. if (DEBUGGING(LEVELING))
  8089. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8090. #endif
  8091. }
  8092. #endif // MESH_BED_LEVELING
  8093. #endif // !HAS_ABL
  8094. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8095. if (DEBUGGING(LEVELING)) {
  8096. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8097. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8098. SERIAL_ECHOLNPGM(" }");
  8099. }
  8100. #endif
  8101. // The newly-selected extruder XY is actually at...
  8102. current_position[X_AXIS] += xydiff[X_AXIS];
  8103. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8104. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8105. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8106. #if HAS_POSITION_SHIFT
  8107. position_shift[i] += xydiff[i];
  8108. #endif
  8109. update_software_endstops((AxisEnum)i);
  8110. }
  8111. #endif
  8112. // Set the new active extruder
  8113. active_extruder = tmp_extruder;
  8114. #endif // !DUAL_X_CARRIAGE
  8115. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8116. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8117. #endif
  8118. // Tell the planner the new "current position"
  8119. SYNC_PLAN_POSITION_KINEMATIC();
  8120. // Move to the "old position" (move the extruder into place)
  8121. if (!no_move && IsRunning()) {
  8122. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8123. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8124. #endif
  8125. prepare_move_to_destination();
  8126. }
  8127. #if ENABLED(SWITCHING_EXTRUDER)
  8128. // Move back down, if needed. (Including when the new tool is higher.)
  8129. if (z_raise != z_diff) {
  8130. destination[Z_AXIS] += z_diff;
  8131. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8132. prepare_move_to_destination();
  8133. }
  8134. #endif
  8135. } // (tmp_extruder != active_extruder)
  8136. stepper.synchronize();
  8137. #if ENABLED(EXT_SOLENOID)
  8138. disable_all_solenoids();
  8139. enable_solenoid_on_active_extruder();
  8140. #endif // EXT_SOLENOID
  8141. feedrate_mm_s = old_feedrate_mm_s;
  8142. #else // HOTENDS <= 1
  8143. // Set the new active extruder
  8144. active_extruder = tmp_extruder;
  8145. UNUSED(fr_mm_s);
  8146. UNUSED(no_move);
  8147. #endif // HOTENDS <= 1
  8148. SERIAL_ECHO_START;
  8149. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8150. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8151. }
  8152. /**
  8153. * T0-T3: Switch tool, usually switching extruders
  8154. *
  8155. * F[units/min] Set the movement feedrate
  8156. * S1 Don't move the tool in XY after change
  8157. */
  8158. inline void gcode_T(uint8_t tmp_extruder) {
  8159. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8160. if (DEBUGGING(LEVELING)) {
  8161. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8162. SERIAL_CHAR(')');
  8163. SERIAL_EOL;
  8164. DEBUG_POS("BEFORE", current_position);
  8165. }
  8166. #endif
  8167. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8168. tool_change(tmp_extruder);
  8169. #elif HOTENDS > 1
  8170. tool_change(
  8171. tmp_extruder,
  8172. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8173. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8174. );
  8175. #endif
  8176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8177. if (DEBUGGING(LEVELING)) {
  8178. DEBUG_POS("AFTER", current_position);
  8179. SERIAL_ECHOLNPGM("<<< gcode_T");
  8180. }
  8181. #endif
  8182. }
  8183. /**
  8184. * Process a single command and dispatch it to its handler
  8185. * This is called from the main loop()
  8186. */
  8187. void process_next_command() {
  8188. current_command = command_queue[cmd_queue_index_r];
  8189. if (DEBUGGING(ECHO)) {
  8190. SERIAL_ECHO_START;
  8191. SERIAL_ECHOLN(current_command);
  8192. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8193. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8194. M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
  8195. #endif
  8196. }
  8197. // Sanitize the current command:
  8198. // - Skip leading spaces
  8199. // - Bypass N[-0-9][0-9]*[ ]*
  8200. // - Overwrite * with nul to mark the end
  8201. while (*current_command == ' ') ++current_command;
  8202. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8203. current_command += 2; // skip N[-0-9]
  8204. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8205. while (*current_command == ' ') ++current_command; // skip [ ]*
  8206. }
  8207. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8208. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8209. char *cmd_ptr = current_command;
  8210. // Get the command code, which must be G, M, or T
  8211. char command_code = *cmd_ptr++;
  8212. // Skip spaces to get the numeric part
  8213. while (*cmd_ptr == ' ') cmd_ptr++;
  8214. // Allow for decimal point in command
  8215. #if ENABLED(G38_PROBE_TARGET)
  8216. uint8_t subcode = 0;
  8217. #endif
  8218. uint16_t codenum = 0; // define ahead of goto
  8219. // Bail early if there's no code
  8220. bool code_is_good = NUMERIC(*cmd_ptr);
  8221. if (!code_is_good) goto ExitUnknownCommand;
  8222. // Get and skip the code number
  8223. do {
  8224. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8225. cmd_ptr++;
  8226. } while (NUMERIC(*cmd_ptr));
  8227. // Allow for decimal point in command
  8228. #if ENABLED(G38_PROBE_TARGET)
  8229. if (*cmd_ptr == '.') {
  8230. cmd_ptr++;
  8231. while (NUMERIC(*cmd_ptr))
  8232. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8233. }
  8234. #endif
  8235. // Skip all spaces to get to the first argument, or nul
  8236. while (*cmd_ptr == ' ') cmd_ptr++;
  8237. // The command's arguments (if any) start here, for sure!
  8238. current_command_args = cmd_ptr;
  8239. KEEPALIVE_STATE(IN_HANDLER);
  8240. // Handle a known G, M, or T
  8241. switch (command_code) {
  8242. case 'G': switch (codenum) {
  8243. // G0, G1
  8244. case 0:
  8245. case 1:
  8246. #if IS_SCARA
  8247. gcode_G0_G1(codenum == 0);
  8248. #else
  8249. gcode_G0_G1();
  8250. #endif
  8251. break;
  8252. // G2, G3
  8253. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8254. case 2: // G2 - CW ARC
  8255. case 3: // G3 - CCW ARC
  8256. gcode_G2_G3(codenum == 2);
  8257. break;
  8258. #endif
  8259. // G4 Dwell
  8260. case 4:
  8261. gcode_G4();
  8262. break;
  8263. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8264. // G5
  8265. case 5: // G5 - Cubic B_spline
  8266. gcode_G5();
  8267. break;
  8268. #endif // BEZIER_CURVE_SUPPORT
  8269. #if ENABLED(FWRETRACT)
  8270. case 10: // G10: retract
  8271. case 11: // G11: retract_recover
  8272. gcode_G10_G11(codenum == 10);
  8273. break;
  8274. #endif // FWRETRACT
  8275. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8276. case 12:
  8277. gcode_G12(); // G12: Nozzle Clean
  8278. break;
  8279. #endif // NOZZLE_CLEAN_FEATURE
  8280. #if ENABLED(INCH_MODE_SUPPORT)
  8281. case 20: //G20: Inch Mode
  8282. gcode_G20();
  8283. break;
  8284. case 21: //G21: MM Mode
  8285. gcode_G21();
  8286. break;
  8287. #endif // INCH_MODE_SUPPORT
  8288. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8289. case 26: // G26: Mesh Validation Pattern generation
  8290. gcode_G26();
  8291. break;
  8292. #endif // AUTO_BED_LEVELING_UBL
  8293. #if ENABLED(NOZZLE_PARK_FEATURE)
  8294. case 27: // G27: Nozzle Park
  8295. gcode_G27();
  8296. break;
  8297. #endif // NOZZLE_PARK_FEATURE
  8298. case 28: // G28: Home all axes, one at a time
  8299. gcode_G28();
  8300. break;
  8301. #if HAS_LEVELING
  8302. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8303. // or provides access to the UBL System if enabled.
  8304. gcode_G29();
  8305. break;
  8306. #endif // HAS_LEVELING
  8307. #if HAS_BED_PROBE
  8308. case 30: // G30 Single Z probe
  8309. gcode_G30();
  8310. break;
  8311. #if ENABLED(Z_PROBE_SLED)
  8312. case 31: // G31: dock the sled
  8313. gcode_G31();
  8314. break;
  8315. case 32: // G32: undock the sled
  8316. gcode_G32();
  8317. break;
  8318. #endif // Z_PROBE_SLED
  8319. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8320. case 33: // G33: Delta Auto-Calibration
  8321. gcode_G33();
  8322. break;
  8323. #endif // DELTA_AUTO_CALIBRATION
  8324. #endif // HAS_BED_PROBE
  8325. #if ENABLED(G38_PROBE_TARGET)
  8326. case 38: // G38.2 & G38.3
  8327. if (subcode == 2 || subcode == 3)
  8328. gcode_G38(subcode == 2);
  8329. break;
  8330. #endif
  8331. case 90: // G90
  8332. relative_mode = false;
  8333. break;
  8334. case 91: // G91
  8335. relative_mode = true;
  8336. break;
  8337. case 92: // G92
  8338. gcode_G92();
  8339. break;
  8340. }
  8341. break;
  8342. case 'M': switch (codenum) {
  8343. #if HAS_RESUME_CONTINUE
  8344. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8345. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8346. gcode_M0_M1();
  8347. break;
  8348. #endif // ULTIPANEL
  8349. case 17: // M17: Enable all stepper motors
  8350. gcode_M17();
  8351. break;
  8352. #if ENABLED(SDSUPPORT)
  8353. case 20: // M20: list SD card
  8354. gcode_M20(); break;
  8355. case 21: // M21: init SD card
  8356. gcode_M21(); break;
  8357. case 22: // M22: release SD card
  8358. gcode_M22(); break;
  8359. case 23: // M23: Select file
  8360. gcode_M23(); break;
  8361. case 24: // M24: Start SD print
  8362. gcode_M24(); break;
  8363. case 25: // M25: Pause SD print
  8364. gcode_M25(); break;
  8365. case 26: // M26: Set SD index
  8366. gcode_M26(); break;
  8367. case 27: // M27: Get SD status
  8368. gcode_M27(); break;
  8369. case 28: // M28: Start SD write
  8370. gcode_M28(); break;
  8371. case 29: // M29: Stop SD write
  8372. gcode_M29(); break;
  8373. case 30: // M30 <filename> Delete File
  8374. gcode_M30(); break;
  8375. case 32: // M32: Select file and start SD print
  8376. gcode_M32(); break;
  8377. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8378. case 33: // M33: Get the long full path to a file or folder
  8379. gcode_M33(); break;
  8380. #endif
  8381. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8382. case 34: //M34 - Set SD card sorting options
  8383. gcode_M34(); break;
  8384. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8385. case 928: // M928: Start SD write
  8386. gcode_M928(); break;
  8387. #endif //SDSUPPORT
  8388. case 31: // M31: Report time since the start of SD print or last M109
  8389. gcode_M31(); break;
  8390. case 42: // M42: Change pin state
  8391. gcode_M42(); break;
  8392. #if ENABLED(PINS_DEBUGGING)
  8393. case 43: // M43: Read pin state
  8394. gcode_M43(); break;
  8395. #endif
  8396. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8397. case 48: // M48: Z probe repeatability test
  8398. gcode_M48();
  8399. break;
  8400. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8401. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8402. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8403. gcode_M49();
  8404. break;
  8405. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8406. case 75: // M75: Start print timer
  8407. gcode_M75(); break;
  8408. case 76: // M76: Pause print timer
  8409. gcode_M76(); break;
  8410. case 77: // M77: Stop print timer
  8411. gcode_M77(); break;
  8412. #if ENABLED(PRINTCOUNTER)
  8413. case 78: // M78: Show print statistics
  8414. gcode_M78(); break;
  8415. #endif
  8416. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8417. case 100: // M100: Free Memory Report
  8418. gcode_M100();
  8419. break;
  8420. #endif
  8421. case 104: // M104: Set hot end temperature
  8422. gcode_M104();
  8423. break;
  8424. case 110: // M110: Set Current Line Number
  8425. gcode_M110();
  8426. break;
  8427. case 111: // M111: Set debug level
  8428. gcode_M111();
  8429. break;
  8430. #if DISABLED(EMERGENCY_PARSER)
  8431. case 108: // M108: Cancel Waiting
  8432. gcode_M108();
  8433. break;
  8434. case 112: // M112: Emergency Stop
  8435. gcode_M112();
  8436. break;
  8437. case 410: // M410 quickstop - Abort all the planned moves.
  8438. gcode_M410();
  8439. break;
  8440. #endif
  8441. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8442. case 113: // M113: Set Host Keepalive interval
  8443. gcode_M113();
  8444. break;
  8445. #endif
  8446. case 140: // M140: Set bed temperature
  8447. gcode_M140();
  8448. break;
  8449. case 105: // M105: Report current temperature
  8450. gcode_M105();
  8451. KEEPALIVE_STATE(NOT_BUSY);
  8452. return; // "ok" already printed
  8453. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8454. case 155: // M155: Set temperature auto-report interval
  8455. gcode_M155();
  8456. break;
  8457. #endif
  8458. case 109: // M109: Wait for hotend temperature to reach target
  8459. gcode_M109();
  8460. break;
  8461. #if HAS_TEMP_BED
  8462. case 190: // M190: Wait for bed temperature to reach target
  8463. gcode_M190();
  8464. break;
  8465. #endif // HAS_TEMP_BED
  8466. #if FAN_COUNT > 0
  8467. case 106: // M106: Fan On
  8468. gcode_M106();
  8469. break;
  8470. case 107: // M107: Fan Off
  8471. gcode_M107();
  8472. break;
  8473. #endif // FAN_COUNT > 0
  8474. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8475. case 125: // M125: Store current position and move to filament change position
  8476. gcode_M125(); break;
  8477. #endif
  8478. #if ENABLED(BARICUDA)
  8479. // PWM for HEATER_1_PIN
  8480. #if HAS_HEATER_1
  8481. case 126: // M126: valve open
  8482. gcode_M126();
  8483. break;
  8484. case 127: // M127: valve closed
  8485. gcode_M127();
  8486. break;
  8487. #endif // HAS_HEATER_1
  8488. // PWM for HEATER_2_PIN
  8489. #if HAS_HEATER_2
  8490. case 128: // M128: valve open
  8491. gcode_M128();
  8492. break;
  8493. case 129: // M129: valve closed
  8494. gcode_M129();
  8495. break;
  8496. #endif // HAS_HEATER_2
  8497. #endif // BARICUDA
  8498. #if HAS_POWER_SWITCH
  8499. case 80: // M80: Turn on Power Supply
  8500. gcode_M80();
  8501. break;
  8502. #endif // HAS_POWER_SWITCH
  8503. case 81: // M81: Turn off Power, including Power Supply, if possible
  8504. gcode_M81();
  8505. break;
  8506. case 82: // M83: Set E axis normal mode (same as other axes)
  8507. gcode_M82();
  8508. break;
  8509. case 83: // M83: Set E axis relative mode
  8510. gcode_M83();
  8511. break;
  8512. case 18: // M18 => M84
  8513. case 84: // M84: Disable all steppers or set timeout
  8514. gcode_M18_M84();
  8515. break;
  8516. case 85: // M85: Set inactivity stepper shutdown timeout
  8517. gcode_M85();
  8518. break;
  8519. case 92: // M92: Set the steps-per-unit for one or more axes
  8520. gcode_M92();
  8521. break;
  8522. case 114: // M114: Report current position
  8523. gcode_M114();
  8524. break;
  8525. case 115: // M115: Report capabilities
  8526. gcode_M115();
  8527. break;
  8528. case 117: // M117: Set LCD message text, if possible
  8529. gcode_M117();
  8530. break;
  8531. case 119: // M119: Report endstop states
  8532. gcode_M119();
  8533. break;
  8534. case 120: // M120: Enable endstops
  8535. gcode_M120();
  8536. break;
  8537. case 121: // M121: Disable endstops
  8538. gcode_M121();
  8539. break;
  8540. #if ENABLED(ULTIPANEL)
  8541. case 145: // M145: Set material heatup parameters
  8542. gcode_M145();
  8543. break;
  8544. #endif
  8545. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8546. case 149: // M149: Set temperature units
  8547. gcode_M149();
  8548. break;
  8549. #endif
  8550. #if HAS_COLOR_LEDS
  8551. case 150: // M150: Set Status LED Color
  8552. gcode_M150();
  8553. break;
  8554. #endif // BLINKM
  8555. #if ENABLED(MIXING_EXTRUDER)
  8556. case 163: // M163: Set a component weight for mixing extruder
  8557. gcode_M163();
  8558. break;
  8559. #if MIXING_VIRTUAL_TOOLS > 1
  8560. case 164: // M164: Save current mix as a virtual extruder
  8561. gcode_M164();
  8562. break;
  8563. #endif
  8564. #if ENABLED(DIRECT_MIXING_IN_G1)
  8565. case 165: // M165: Set multiple mix weights
  8566. gcode_M165();
  8567. break;
  8568. #endif
  8569. #endif
  8570. case 200: // M200: Set filament diameter, E to cubic units
  8571. gcode_M200();
  8572. break;
  8573. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8574. gcode_M201();
  8575. break;
  8576. #if 0 // Not used for Sprinter/grbl gen6
  8577. case 202: // M202
  8578. gcode_M202();
  8579. break;
  8580. #endif
  8581. case 203: // M203: Set max feedrate (units/sec)
  8582. gcode_M203();
  8583. break;
  8584. case 204: // M204: Set acceleration
  8585. gcode_M204();
  8586. break;
  8587. case 205: //M205: Set advanced settings
  8588. gcode_M205();
  8589. break;
  8590. #if HAS_M206_COMMAND
  8591. case 206: // M206: Set home offsets
  8592. gcode_M206();
  8593. break;
  8594. #endif
  8595. #if ENABLED(DELTA)
  8596. case 665: // M665: Set delta configurations
  8597. gcode_M665();
  8598. break;
  8599. #endif
  8600. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8601. case 666: // M666: Set delta or dual endstop adjustment
  8602. gcode_M666();
  8603. break;
  8604. #endif
  8605. #if ENABLED(FWRETRACT)
  8606. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8607. gcode_M207();
  8608. break;
  8609. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8610. gcode_M208();
  8611. break;
  8612. case 209: // M209: Turn Automatic Retract Detection on/off
  8613. gcode_M209();
  8614. break;
  8615. #endif // FWRETRACT
  8616. case 211: // M211: Enable, Disable, and/or Report software endstops
  8617. gcode_M211();
  8618. break;
  8619. #if HOTENDS > 1
  8620. case 218: // M218: Set a tool offset
  8621. gcode_M218();
  8622. break;
  8623. #endif
  8624. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8625. gcode_M220();
  8626. break;
  8627. case 221: // M221: Set Flow Percentage
  8628. gcode_M221();
  8629. break;
  8630. case 226: // M226: Wait until a pin reaches a state
  8631. gcode_M226();
  8632. break;
  8633. #if HAS_SERVOS
  8634. case 280: // M280: Set servo position absolute
  8635. gcode_M280();
  8636. break;
  8637. #endif // HAS_SERVOS
  8638. #if HAS_BUZZER
  8639. case 300: // M300: Play beep tone
  8640. gcode_M300();
  8641. break;
  8642. #endif // HAS_BUZZER
  8643. #if ENABLED(PIDTEMP)
  8644. case 301: // M301: Set hotend PID parameters
  8645. gcode_M301();
  8646. break;
  8647. #endif // PIDTEMP
  8648. #if ENABLED(PIDTEMPBED)
  8649. case 304: // M304: Set bed PID parameters
  8650. gcode_M304();
  8651. break;
  8652. #endif // PIDTEMPBED
  8653. #if defined(CHDK) || HAS_PHOTOGRAPH
  8654. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8655. gcode_M240();
  8656. break;
  8657. #endif // CHDK || PHOTOGRAPH_PIN
  8658. #if HAS_LCD_CONTRAST
  8659. case 250: // M250: Set LCD contrast
  8660. gcode_M250();
  8661. break;
  8662. #endif // HAS_LCD_CONTRAST
  8663. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8664. case 260: // M260: Send data to an i2c slave
  8665. gcode_M260();
  8666. break;
  8667. case 261: // M261: Request data from an i2c slave
  8668. gcode_M261();
  8669. break;
  8670. #endif // EXPERIMENTAL_I2CBUS
  8671. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8672. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8673. gcode_M302();
  8674. break;
  8675. #endif // PREVENT_COLD_EXTRUSION
  8676. case 303: // M303: PID autotune
  8677. gcode_M303();
  8678. break;
  8679. #if ENABLED(MORGAN_SCARA)
  8680. case 360: // M360: SCARA Theta pos1
  8681. if (gcode_M360()) return;
  8682. break;
  8683. case 361: // M361: SCARA Theta pos2
  8684. if (gcode_M361()) return;
  8685. break;
  8686. case 362: // M362: SCARA Psi pos1
  8687. if (gcode_M362()) return;
  8688. break;
  8689. case 363: // M363: SCARA Psi pos2
  8690. if (gcode_M363()) return;
  8691. break;
  8692. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8693. if (gcode_M364()) return;
  8694. break;
  8695. #endif // SCARA
  8696. case 400: // M400: Finish all moves
  8697. gcode_M400();
  8698. break;
  8699. #if HAS_BED_PROBE
  8700. case 401: // M401: Deploy probe
  8701. gcode_M401();
  8702. break;
  8703. case 402: // M402: Stow probe
  8704. gcode_M402();
  8705. break;
  8706. #endif // HAS_BED_PROBE
  8707. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8708. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8709. gcode_M404();
  8710. break;
  8711. case 405: // M405: Turn on filament sensor for control
  8712. gcode_M405();
  8713. break;
  8714. case 406: // M406: Turn off filament sensor for control
  8715. gcode_M406();
  8716. break;
  8717. case 407: // M407: Display measured filament diameter
  8718. gcode_M407();
  8719. break;
  8720. #endif // FILAMENT_WIDTH_SENSOR
  8721. #if HAS_LEVELING
  8722. case 420: // M420: Enable/Disable Bed Leveling
  8723. gcode_M420();
  8724. break;
  8725. #endif
  8726. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8727. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8728. gcode_M421();
  8729. break;
  8730. #endif
  8731. #if HAS_M206_COMMAND
  8732. case 428: // M428: Apply current_position to home_offset
  8733. gcode_M428();
  8734. break;
  8735. #endif
  8736. case 500: // M500: Store settings in EEPROM
  8737. gcode_M500();
  8738. break;
  8739. case 501: // M501: Read settings from EEPROM
  8740. gcode_M501();
  8741. break;
  8742. case 502: // M502: Revert to default settings
  8743. gcode_M502();
  8744. break;
  8745. case 503: // M503: print settings currently in memory
  8746. gcode_M503();
  8747. break;
  8748. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8749. case 540: // M540: Set abort on endstop hit for SD printing
  8750. gcode_M540();
  8751. break;
  8752. #endif
  8753. #if HAS_BED_PROBE
  8754. case 851: // M851: Set Z Probe Z Offset
  8755. gcode_M851();
  8756. break;
  8757. #endif // HAS_BED_PROBE
  8758. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8759. case 600: // M600: Pause for filament change
  8760. gcode_M600();
  8761. break;
  8762. #endif // FILAMENT_CHANGE_FEATURE
  8763. #if ENABLED(DUAL_X_CARRIAGE)
  8764. case 605: // M605: Set Dual X Carriage movement mode
  8765. gcode_M605();
  8766. break;
  8767. #endif // DUAL_X_CARRIAGE
  8768. #if ENABLED(LIN_ADVANCE)
  8769. case 900: // M900: Set advance K factor.
  8770. gcode_M900();
  8771. break;
  8772. #endif
  8773. #if ENABLED(HAVE_TMC2130)
  8774. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8775. gcode_M906();
  8776. break;
  8777. #endif
  8778. case 907: // M907: Set digital trimpot motor current using axis codes.
  8779. gcode_M907();
  8780. break;
  8781. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8782. case 908: // M908: Control digital trimpot directly.
  8783. gcode_M908();
  8784. break;
  8785. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8786. case 909: // M909: Print digipot/DAC current value
  8787. gcode_M909();
  8788. break;
  8789. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8790. gcode_M910();
  8791. break;
  8792. #endif
  8793. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8794. #if ENABLED(HAVE_TMC2130)
  8795. case 911: // M911: Report TMC2130 prewarn triggered flags
  8796. gcode_M911();
  8797. break;
  8798. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8799. gcode_M912();
  8800. break;
  8801. #if ENABLED(HYBRID_THRESHOLD)
  8802. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8803. gcode_M913();
  8804. break;
  8805. #endif
  8806. #if ENABLED(SENSORLESS_HOMING)
  8807. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8808. gcode_M914();
  8809. break;
  8810. #endif
  8811. #endif
  8812. #if HAS_MICROSTEPS
  8813. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8814. gcode_M350();
  8815. break;
  8816. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8817. gcode_M351();
  8818. break;
  8819. #endif // HAS_MICROSTEPS
  8820. case 355: // M355 Turn case lights on/off
  8821. gcode_M355();
  8822. break;
  8823. case 999: // M999: Restart after being Stopped
  8824. gcode_M999();
  8825. break;
  8826. }
  8827. break;
  8828. case 'T':
  8829. gcode_T(codenum);
  8830. break;
  8831. default: code_is_good = false;
  8832. }
  8833. KEEPALIVE_STATE(NOT_BUSY);
  8834. ExitUnknownCommand:
  8835. // Still unknown command? Throw an error
  8836. if (!code_is_good) unknown_command_error();
  8837. ok_to_send();
  8838. }
  8839. /**
  8840. * Send a "Resend: nnn" message to the host to
  8841. * indicate that a command needs to be re-sent.
  8842. */
  8843. void FlushSerialRequestResend() {
  8844. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8845. MYSERIAL.flush();
  8846. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8847. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8848. ok_to_send();
  8849. }
  8850. /**
  8851. * Send an "ok" message to the host, indicating
  8852. * that a command was successfully processed.
  8853. *
  8854. * If ADVANCED_OK is enabled also include:
  8855. * N<int> Line number of the command, if any
  8856. * P<int> Planner space remaining
  8857. * B<int> Block queue space remaining
  8858. */
  8859. void ok_to_send() {
  8860. refresh_cmd_timeout();
  8861. if (!send_ok[cmd_queue_index_r]) return;
  8862. SERIAL_PROTOCOLPGM(MSG_OK);
  8863. #if ENABLED(ADVANCED_OK)
  8864. char* p = command_queue[cmd_queue_index_r];
  8865. if (*p == 'N') {
  8866. SERIAL_PROTOCOL(' ');
  8867. SERIAL_ECHO(*p++);
  8868. while (NUMERIC_SIGNED(*p))
  8869. SERIAL_ECHO(*p++);
  8870. }
  8871. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8872. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8873. #endif
  8874. SERIAL_EOL;
  8875. }
  8876. #if HAS_SOFTWARE_ENDSTOPS
  8877. /**
  8878. * Constrain the given coordinates to the software endstops.
  8879. */
  8880. void clamp_to_software_endstops(float target[XYZ]) {
  8881. if (!soft_endstops_enabled) return;
  8882. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8883. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8884. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8885. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8886. #endif
  8887. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8888. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8889. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8890. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8891. #endif
  8892. }
  8893. #endif
  8894. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8895. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8896. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8897. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  8898. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8899. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8900. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  8901. #else
  8902. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8903. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  8904. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8905. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8906. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  8907. #endif
  8908. // Get the Z adjustment for non-linear bed leveling
  8909. float bilinear_z_offset(const float logical[XYZ]) {
  8910. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  8911. last_x = -999.999, last_y = -999.999;
  8912. // Whole units for the grid line indices. Constrained within bounds.
  8913. static int8_t gridx, gridy, nextx, nexty,
  8914. last_gridx = -99, last_gridy = -99;
  8915. // XY relative to the probed area
  8916. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  8917. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  8918. if (last_x != x) {
  8919. last_x = x;
  8920. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  8921. const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1);
  8922. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  8923. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  8924. gridx = gx;
  8925. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  8926. }
  8927. if (last_y != y || last_gridx != gridx) {
  8928. if (last_y != y) {
  8929. last_y = y;
  8930. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  8931. const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1);
  8932. ratio_y -= gy;
  8933. NOLESS(ratio_y, 0);
  8934. gridy = gy;
  8935. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8936. }
  8937. if (last_gridx != gridx || last_gridy != gridy) {
  8938. last_gridx = gridx;
  8939. last_gridy = gridy;
  8940. // Z at the box corners
  8941. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  8942. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  8943. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  8944. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  8945. }
  8946. // Bilinear interpolate. Needed since y or gridx has changed.
  8947. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  8948. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  8949. D = R - L;
  8950. }
  8951. const float offset = L + ratio_x * D; // the offset almost always changes
  8952. /*
  8953. static float last_offset = 0;
  8954. if (fabs(last_offset - offset) > 0.2) {
  8955. SERIAL_ECHOPGM("Sudden Shift at ");
  8956. SERIAL_ECHOPAIR("x=", x);
  8957. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8958. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8959. SERIAL_ECHOPAIR(" y=", y);
  8960. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8961. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8962. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8963. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8964. SERIAL_ECHOPAIR(" z1=", z1);
  8965. SERIAL_ECHOPAIR(" z2=", z2);
  8966. SERIAL_ECHOPAIR(" z3=", z3);
  8967. SERIAL_ECHOLNPAIR(" z4=", z4);
  8968. SERIAL_ECHOPAIR(" L=", L);
  8969. SERIAL_ECHOPAIR(" R=", R);
  8970. SERIAL_ECHOLNPAIR(" offset=", offset);
  8971. }
  8972. last_offset = offset;
  8973. //*/
  8974. return offset;
  8975. }
  8976. #endif // AUTO_BED_LEVELING_BILINEAR
  8977. #if ENABLED(DELTA)
  8978. /**
  8979. * Recalculate factors used for delta kinematics whenever
  8980. * settings have been changed (e.g., by M665).
  8981. */
  8982. void recalc_delta_settings(float radius, float diagonal_rod) {
  8983. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  8984. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  8985. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  8986. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  8987. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  8988. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  8989. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  8990. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  8991. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  8992. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  8993. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  8994. }
  8995. #if ENABLED(DELTA_FAST_SQRT)
  8996. /**
  8997. * Fast inverse sqrt from Quake III Arena
  8998. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  8999. */
  9000. float Q_rsqrt(float number) {
  9001. long i;
  9002. float x2, y;
  9003. const float threehalfs = 1.5f;
  9004. x2 = number * 0.5f;
  9005. y = number;
  9006. i = * ( long * ) &y; // evil floating point bit level hacking
  9007. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9008. y = * ( float * ) &i;
  9009. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9010. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9011. return y;
  9012. }
  9013. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9014. #else
  9015. #define _SQRT(n) sqrt(n)
  9016. #endif
  9017. /**
  9018. * Delta Inverse Kinematics
  9019. *
  9020. * Calculate the tower positions for a given logical
  9021. * position, storing the result in the delta[] array.
  9022. *
  9023. * This is an expensive calculation, requiring 3 square
  9024. * roots per segmented linear move, and strains the limits
  9025. * of a Mega2560 with a Graphical Display.
  9026. *
  9027. * Suggested optimizations include:
  9028. *
  9029. * - Disable the home_offset (M206) and/or position_shift (G92)
  9030. * features to remove up to 12 float additions.
  9031. *
  9032. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9033. * (see above)
  9034. */
  9035. // Macro to obtain the Z position of an individual tower
  9036. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9037. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9038. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9039. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9040. ) \
  9041. )
  9042. #define DELTA_RAW_IK() do { \
  9043. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9044. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9045. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9046. } while(0)
  9047. #define DELTA_LOGICAL_IK() do { \
  9048. const float raw[XYZ] = { \
  9049. RAW_X_POSITION(logical[X_AXIS]), \
  9050. RAW_Y_POSITION(logical[Y_AXIS]), \
  9051. RAW_Z_POSITION(logical[Z_AXIS]) \
  9052. }; \
  9053. DELTA_RAW_IK(); \
  9054. } while(0)
  9055. #define DELTA_DEBUG() do { \
  9056. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9057. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9058. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9059. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9060. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9061. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9062. } while(0)
  9063. void inverse_kinematics(const float logical[XYZ]) {
  9064. DELTA_LOGICAL_IK();
  9065. // DELTA_DEBUG();
  9066. }
  9067. /**
  9068. * Calculate the highest Z position where the
  9069. * effector has the full range of XY motion.
  9070. */
  9071. float delta_safe_distance_from_top() {
  9072. float cartesian[XYZ] = {
  9073. LOGICAL_X_POSITION(0),
  9074. LOGICAL_Y_POSITION(0),
  9075. LOGICAL_Z_POSITION(0)
  9076. };
  9077. inverse_kinematics(cartesian);
  9078. float distance = delta[A_AXIS];
  9079. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9080. inverse_kinematics(cartesian);
  9081. return abs(distance - delta[A_AXIS]);
  9082. }
  9083. /**
  9084. * Delta Forward Kinematics
  9085. *
  9086. * See the Wikipedia article "Trilateration"
  9087. * https://en.wikipedia.org/wiki/Trilateration
  9088. *
  9089. * Establish a new coordinate system in the plane of the
  9090. * three carriage points. This system has its origin at
  9091. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9092. * plane with a Z component of zero.
  9093. * We will define unit vectors in this coordinate system
  9094. * in our original coordinate system. Then when we calculate
  9095. * the Xnew, Ynew and Znew values, we can translate back into
  9096. * the original system by moving along those unit vectors
  9097. * by the corresponding values.
  9098. *
  9099. * Variable names matched to Marlin, c-version, and avoid the
  9100. * use of any vector library.
  9101. *
  9102. * by Andreas Hardtung 2016-06-07
  9103. * based on a Java function from "Delta Robot Kinematics V3"
  9104. * by Steve Graves
  9105. *
  9106. * The result is stored in the cartes[] array.
  9107. */
  9108. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9109. // Create a vector in old coordinates along x axis of new coordinate
  9110. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9111. // Get the Magnitude of vector.
  9112. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9113. // Create unit vector by dividing by magnitude.
  9114. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9115. // Get the vector from the origin of the new system to the third point.
  9116. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9117. // Use the dot product to find the component of this vector on the X axis.
  9118. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9119. // Create a vector along the x axis that represents the x component of p13.
  9120. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9121. // Subtract the X component from the original vector leaving only Y. We use the
  9122. // variable that will be the unit vector after we scale it.
  9123. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9124. // The magnitude of Y component
  9125. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9126. // Convert to a unit vector
  9127. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9128. // The cross product of the unit x and y is the unit z
  9129. // float[] ez = vectorCrossProd(ex, ey);
  9130. float ez[3] = {
  9131. ex[1] * ey[2] - ex[2] * ey[1],
  9132. ex[2] * ey[0] - ex[0] * ey[2],
  9133. ex[0] * ey[1] - ex[1] * ey[0]
  9134. };
  9135. // We now have the d, i and j values defined in Wikipedia.
  9136. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9137. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9138. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9139. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9140. // Start from the origin of the old coordinates and add vectors in the
  9141. // old coords that represent the Xnew, Ynew and Znew to find the point
  9142. // in the old system.
  9143. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9144. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9145. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9146. }
  9147. void forward_kinematics_DELTA(float point[ABC]) {
  9148. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9149. }
  9150. #endif // DELTA
  9151. /**
  9152. * Get the stepper positions in the cartes[] array.
  9153. * Forward kinematics are applied for DELTA and SCARA.
  9154. *
  9155. * The result is in the current coordinate space with
  9156. * leveling applied. The coordinates need to be run through
  9157. * unapply_leveling to obtain the "ideal" coordinates
  9158. * suitable for current_position, etc.
  9159. */
  9160. void get_cartesian_from_steppers() {
  9161. #if ENABLED(DELTA)
  9162. forward_kinematics_DELTA(
  9163. stepper.get_axis_position_mm(A_AXIS),
  9164. stepper.get_axis_position_mm(B_AXIS),
  9165. stepper.get_axis_position_mm(C_AXIS)
  9166. );
  9167. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9168. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9169. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9170. #elif IS_SCARA
  9171. forward_kinematics_SCARA(
  9172. stepper.get_axis_position_degrees(A_AXIS),
  9173. stepper.get_axis_position_degrees(B_AXIS)
  9174. );
  9175. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9176. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9177. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9178. #else
  9179. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9180. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9181. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9182. #endif
  9183. }
  9184. /**
  9185. * Set the current_position for an axis based on
  9186. * the stepper positions, removing any leveling that
  9187. * may have been applied.
  9188. */
  9189. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9190. get_cartesian_from_steppers();
  9191. #if PLANNER_LEVELING
  9192. planner.unapply_leveling(cartes);
  9193. #endif
  9194. if (axis == ALL_AXES)
  9195. COPY(current_position, cartes);
  9196. else
  9197. current_position[axis] = cartes[axis];
  9198. }
  9199. #if ENABLED(MESH_BED_LEVELING)
  9200. /**
  9201. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9202. * splitting the move where it crosses mesh borders.
  9203. */
  9204. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9205. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9206. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9207. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9208. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9209. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9210. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9211. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9212. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9213. if (cx1 == cx2 && cy1 == cy2) {
  9214. // Start and end on same mesh square
  9215. line_to_destination(fr_mm_s);
  9216. set_current_to_destination();
  9217. return;
  9218. }
  9219. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9220. float normalized_dist, end[XYZE];
  9221. // Split at the left/front border of the right/top square
  9222. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9223. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9224. COPY(end, destination);
  9225. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9226. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9227. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9228. CBI(x_splits, gcx);
  9229. }
  9230. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9231. COPY(end, destination);
  9232. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9233. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9234. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9235. CBI(y_splits, gcy);
  9236. }
  9237. else {
  9238. // Already split on a border
  9239. line_to_destination(fr_mm_s);
  9240. set_current_to_destination();
  9241. return;
  9242. }
  9243. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9244. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9245. // Do the split and look for more borders
  9246. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9247. // Restore destination from stack
  9248. COPY(destination, end);
  9249. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9250. }
  9251. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9252. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9253. /**
  9254. * Prepare a bilinear-leveled linear move on Cartesian,
  9255. * splitting the move where it crosses grid borders.
  9256. */
  9257. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9258. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9259. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9260. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9261. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9262. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9263. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9264. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9265. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9266. if (cx1 == cx2 && cy1 == cy2) {
  9267. // Start and end on same mesh square
  9268. line_to_destination(fr_mm_s);
  9269. set_current_to_destination();
  9270. return;
  9271. }
  9272. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9273. float normalized_dist, end[XYZE];
  9274. // Split at the left/front border of the right/top square
  9275. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9276. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9277. COPY(end, destination);
  9278. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9279. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9280. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9281. CBI(x_splits, gcx);
  9282. }
  9283. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9284. COPY(end, destination);
  9285. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9286. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9287. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9288. CBI(y_splits, gcy);
  9289. }
  9290. else {
  9291. // Already split on a border
  9292. line_to_destination(fr_mm_s);
  9293. set_current_to_destination();
  9294. return;
  9295. }
  9296. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9297. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9298. // Do the split and look for more borders
  9299. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9300. // Restore destination from stack
  9301. COPY(destination, end);
  9302. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9303. }
  9304. #endif // AUTO_BED_LEVELING_BILINEAR
  9305. #if IS_KINEMATIC
  9306. /**
  9307. * Prepare a linear move in a DELTA or SCARA setup.
  9308. *
  9309. * This calls planner.buffer_line several times, adding
  9310. * small incremental moves for DELTA or SCARA.
  9311. */
  9312. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9313. // Get the top feedrate of the move in the XY plane
  9314. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9315. // If the move is only in Z/E don't split up the move
  9316. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9317. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9318. return false;
  9319. }
  9320. // Get the cartesian distances moved in XYZE
  9321. float difference[XYZE];
  9322. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9323. // Get the linear distance in XYZ
  9324. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9325. // If the move is very short, check the E move distance
  9326. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9327. // No E move either? Game over.
  9328. if (UNEAR_ZERO(cartesian_mm)) return true;
  9329. // Minimum number of seconds to move the given distance
  9330. float seconds = cartesian_mm / _feedrate_mm_s;
  9331. // The number of segments-per-second times the duration
  9332. // gives the number of segments
  9333. uint16_t segments = delta_segments_per_second * seconds;
  9334. // For SCARA minimum segment size is 0.25mm
  9335. #if IS_SCARA
  9336. NOMORE(segments, cartesian_mm * 4);
  9337. #endif
  9338. // At least one segment is required
  9339. NOLESS(segments, 1);
  9340. // The approximate length of each segment
  9341. const float inv_segments = 1.0 / float(segments),
  9342. segment_distance[XYZE] = {
  9343. difference[X_AXIS] * inv_segments,
  9344. difference[Y_AXIS] * inv_segments,
  9345. difference[Z_AXIS] * inv_segments,
  9346. difference[E_AXIS] * inv_segments
  9347. };
  9348. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9349. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9350. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9351. #if IS_SCARA
  9352. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9353. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9354. feed_factor = inv_segment_length * _feedrate_mm_s;
  9355. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9356. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9357. #endif
  9358. // Get the logical current position as starting point
  9359. float logical[XYZE];
  9360. COPY(logical, current_position);
  9361. // Drop one segment so the last move is to the exact target.
  9362. // If there's only 1 segment, loops will be skipped entirely.
  9363. --segments;
  9364. // Calculate and execute the segments
  9365. for (uint16_t s = segments + 1; --s;) {
  9366. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9367. #if ENABLED(DELTA)
  9368. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9369. #else
  9370. inverse_kinematics(logical);
  9371. #endif
  9372. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9373. #if IS_SCARA
  9374. // For SCARA scale the feed rate from mm/s to degrees/s
  9375. // Use ratio between the length of the move and the larger angle change
  9376. const float adiff = abs(delta[A_AXIS] - oldA),
  9377. bdiff = abs(delta[B_AXIS] - oldB);
  9378. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9379. oldA = delta[A_AXIS];
  9380. oldB = delta[B_AXIS];
  9381. #else
  9382. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9383. #endif
  9384. }
  9385. // Since segment_distance is only approximate,
  9386. // the final move must be to the exact destination.
  9387. #if IS_SCARA
  9388. // For SCARA scale the feed rate from mm/s to degrees/s
  9389. // With segments > 1 length is 1 segment, otherwise total length
  9390. inverse_kinematics(ltarget);
  9391. ADJUST_DELTA(logical);
  9392. const float adiff = abs(delta[A_AXIS] - oldA),
  9393. bdiff = abs(delta[B_AXIS] - oldB);
  9394. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9395. #else
  9396. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9397. #endif
  9398. return false;
  9399. }
  9400. #else // !IS_KINEMATIC
  9401. /**
  9402. * Prepare a linear move in a Cartesian setup.
  9403. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9404. *
  9405. * Returns true if the caller didn't update current_position.
  9406. */
  9407. inline bool prepare_move_to_destination_cartesian() {
  9408. // Do not use feedrate_percentage for E or Z only moves
  9409. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9410. line_to_destination();
  9411. }
  9412. else {
  9413. #if ENABLED(MESH_BED_LEVELING)
  9414. if (mbl.active()) {
  9415. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9416. return true;
  9417. }
  9418. else
  9419. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9420. if (ubl.state.active) {
  9421. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9422. return true;
  9423. }
  9424. else
  9425. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9426. if (planner.abl_enabled) {
  9427. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9428. return true;
  9429. }
  9430. else
  9431. #endif
  9432. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9433. }
  9434. return false;
  9435. }
  9436. #endif // !IS_KINEMATIC
  9437. #if ENABLED(DUAL_X_CARRIAGE)
  9438. /**
  9439. * Prepare a linear move in a dual X axis setup
  9440. */
  9441. inline bool prepare_move_to_destination_dualx() {
  9442. if (active_extruder_parked) {
  9443. switch (dual_x_carriage_mode) {
  9444. case DXC_FULL_CONTROL_MODE:
  9445. break;
  9446. case DXC_AUTO_PARK_MODE:
  9447. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9448. // This is a travel move (with no extrusion)
  9449. // Skip it, but keep track of the current position
  9450. // (so it can be used as the start of the next non-travel move)
  9451. if (delayed_move_time != 0xFFFFFFFFUL) {
  9452. set_current_to_destination();
  9453. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9454. delayed_move_time = millis();
  9455. return true;
  9456. }
  9457. }
  9458. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9459. for (uint8_t i = 0; i < 3; i++)
  9460. planner.buffer_line(
  9461. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9462. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9463. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9464. current_position[E_AXIS],
  9465. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9466. active_extruder
  9467. );
  9468. delayed_move_time = 0;
  9469. active_extruder_parked = false;
  9470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9471. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9472. #endif
  9473. break;
  9474. case DXC_DUPLICATION_MODE:
  9475. if (active_extruder == 0) {
  9476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9477. if (DEBUGGING(LEVELING)) {
  9478. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9479. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9480. }
  9481. #endif
  9482. // move duplicate extruder into correct duplication position.
  9483. planner.set_position_mm(
  9484. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9485. current_position[Y_AXIS],
  9486. current_position[Z_AXIS],
  9487. current_position[E_AXIS]
  9488. );
  9489. planner.buffer_line(
  9490. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9491. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9492. planner.max_feedrate_mm_s[X_AXIS], 1
  9493. );
  9494. SYNC_PLAN_POSITION_KINEMATIC();
  9495. stepper.synchronize();
  9496. extruder_duplication_enabled = true;
  9497. active_extruder_parked = false;
  9498. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9499. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9500. #endif
  9501. }
  9502. else {
  9503. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9504. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9505. #endif
  9506. }
  9507. break;
  9508. }
  9509. }
  9510. return false;
  9511. }
  9512. #endif // DUAL_X_CARRIAGE
  9513. /**
  9514. * Prepare a single move and get ready for the next one
  9515. *
  9516. * This may result in several calls to planner.buffer_line to
  9517. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9518. */
  9519. void prepare_move_to_destination() {
  9520. clamp_to_software_endstops(destination);
  9521. refresh_cmd_timeout();
  9522. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9523. if (!DEBUGGING(DRYRUN)) {
  9524. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9525. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9526. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9527. SERIAL_ECHO_START;
  9528. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9529. }
  9530. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9531. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9532. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9533. SERIAL_ECHO_START;
  9534. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9535. }
  9536. #endif
  9537. }
  9538. }
  9539. #endif
  9540. #if IS_KINEMATIC
  9541. if (prepare_kinematic_move_to(destination)) return;
  9542. #else
  9543. #if ENABLED(DUAL_X_CARRIAGE)
  9544. if (prepare_move_to_destination_dualx()) return;
  9545. #endif
  9546. if (prepare_move_to_destination_cartesian()) return;
  9547. #endif
  9548. set_current_to_destination();
  9549. }
  9550. #if ENABLED(ARC_SUPPORT)
  9551. /**
  9552. * Plan an arc in 2 dimensions
  9553. *
  9554. * The arc is approximated by generating many small linear segments.
  9555. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9556. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9557. * larger segments will tend to be more efficient. Your slicer should have
  9558. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9559. */
  9560. void plan_arc(
  9561. float logical[XYZE], // Destination position
  9562. float *offset, // Center of rotation relative to current_position
  9563. uint8_t clockwise // Clockwise?
  9564. ) {
  9565. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9566. r_Y = -offset[Y_AXIS];
  9567. const float radius = HYPOT(r_X, r_Y),
  9568. center_X = current_position[X_AXIS] - r_X,
  9569. center_Y = current_position[Y_AXIS] - r_Y,
  9570. rt_X = logical[X_AXIS] - center_X,
  9571. rt_Y = logical[Y_AXIS] - center_Y,
  9572. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9573. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9574. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9575. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9576. if (angular_travel < 0) angular_travel += RADIANS(360);
  9577. if (clockwise) angular_travel -= RADIANS(360);
  9578. // Make a circle if the angular rotation is 0
  9579. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9580. angular_travel += RADIANS(360);
  9581. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9582. if (mm_of_travel < 0.001) return;
  9583. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9584. if (segments == 0) segments = 1;
  9585. /**
  9586. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9587. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9588. * r_T = [cos(phi) -sin(phi);
  9589. * sin(phi) cos(phi)] * r ;
  9590. *
  9591. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9592. * defined from the circle center to the initial position. Each line segment is formed by successive
  9593. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9594. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9595. * all double numbers are single precision on the Arduino. (True double precision will not have
  9596. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9597. * tool precision in some cases. Therefore, arc path correction is implemented.
  9598. *
  9599. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9600. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9601. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9602. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9603. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9604. * issue for CNC machines with the single precision Arduino calculations.
  9605. *
  9606. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9607. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9608. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9609. * This is important when there are successive arc motions.
  9610. */
  9611. // Vector rotation matrix values
  9612. float arc_target[XYZE];
  9613. const float theta_per_segment = angular_travel / segments,
  9614. linear_per_segment = linear_travel / segments,
  9615. extruder_per_segment = extruder_travel / segments,
  9616. sin_T = theta_per_segment,
  9617. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9618. // Initialize the linear axis
  9619. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9620. // Initialize the extruder axis
  9621. arc_target[E_AXIS] = current_position[E_AXIS];
  9622. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9623. millis_t next_idle_ms = millis() + 200UL;
  9624. int8_t count = 0;
  9625. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9626. thermalManager.manage_heater();
  9627. if (ELAPSED(millis(), next_idle_ms)) {
  9628. next_idle_ms = millis() + 200UL;
  9629. idle();
  9630. }
  9631. if (++count < N_ARC_CORRECTION) {
  9632. // Apply vector rotation matrix to previous r_X / 1
  9633. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9634. r_X = r_X * cos_T - r_Y * sin_T;
  9635. r_Y = r_new_Y;
  9636. }
  9637. else {
  9638. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9639. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9640. // To reduce stuttering, the sin and cos could be computed at different times.
  9641. // For now, compute both at the same time.
  9642. const float cos_Ti = cos(i * theta_per_segment),
  9643. sin_Ti = sin(i * theta_per_segment);
  9644. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9645. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9646. count = 0;
  9647. }
  9648. // Update arc_target location
  9649. arc_target[X_AXIS] = center_X + r_X;
  9650. arc_target[Y_AXIS] = center_Y + r_Y;
  9651. arc_target[Z_AXIS] += linear_per_segment;
  9652. arc_target[E_AXIS] += extruder_per_segment;
  9653. clamp_to_software_endstops(arc_target);
  9654. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9655. }
  9656. // Ensure last segment arrives at target location.
  9657. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9658. // As far as the parser is concerned, the position is now == target. In reality the
  9659. // motion control system might still be processing the action and the real tool position
  9660. // in any intermediate location.
  9661. set_current_to_destination();
  9662. }
  9663. #endif
  9664. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9665. void plan_cubic_move(const float offset[4]) {
  9666. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9667. // As far as the parser is concerned, the position is now == destination. In reality the
  9668. // motion control system might still be processing the action and the real tool position
  9669. // in any intermediate location.
  9670. set_current_to_destination();
  9671. }
  9672. #endif // BEZIER_CURVE_SUPPORT
  9673. #if USE_CONTROLLER_FAN
  9674. void controllerFan() {
  9675. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9676. nextMotorCheck = 0; // Last time the state was checked
  9677. const millis_t ms = millis();
  9678. if (ELAPSED(ms, nextMotorCheck)) {
  9679. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9680. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9681. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9682. #if E_STEPPERS > 1
  9683. || E1_ENABLE_READ == E_ENABLE_ON
  9684. #if HAS_X2_ENABLE
  9685. || X2_ENABLE_READ == X_ENABLE_ON
  9686. #endif
  9687. #if E_STEPPERS > 2
  9688. || E2_ENABLE_READ == E_ENABLE_ON
  9689. #if E_STEPPERS > 3
  9690. || E3_ENABLE_READ == E_ENABLE_ON
  9691. #if E_STEPPERS > 4
  9692. || E4_ENABLE_READ == E_ENABLE_ON
  9693. #endif // E_STEPPERS > 4
  9694. #endif // E_STEPPERS > 3
  9695. #endif // E_STEPPERS > 2
  9696. #endif // E_STEPPERS > 1
  9697. ) {
  9698. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9699. }
  9700. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9701. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9702. // allows digital or PWM fan output to be used (see M42 handling)
  9703. WRITE(CONTROLLER_FAN_PIN, speed);
  9704. analogWrite(CONTROLLER_FAN_PIN, speed);
  9705. }
  9706. }
  9707. #endif // USE_CONTROLLER_FAN
  9708. #if ENABLED(MORGAN_SCARA)
  9709. /**
  9710. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9711. * Maths and first version by QHARLEY.
  9712. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9713. */
  9714. void forward_kinematics_SCARA(const float &a, const float &b) {
  9715. float a_sin = sin(RADIANS(a)) * L1,
  9716. a_cos = cos(RADIANS(a)) * L1,
  9717. b_sin = sin(RADIANS(b)) * L2,
  9718. b_cos = cos(RADIANS(b)) * L2;
  9719. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9720. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9721. /*
  9722. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9723. SERIAL_ECHOPAIR(" b=", b);
  9724. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9725. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9726. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9727. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9728. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9729. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9730. //*/
  9731. }
  9732. /**
  9733. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9734. *
  9735. * See http://forums.reprap.org/read.php?185,283327
  9736. *
  9737. * Maths and first version by QHARLEY.
  9738. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9739. */
  9740. void inverse_kinematics(const float logical[XYZ]) {
  9741. static float C2, S2, SK1, SK2, THETA, PSI;
  9742. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9743. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9744. if (L1 == L2)
  9745. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9746. else
  9747. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9748. S2 = sqrt(sq(C2) - 1);
  9749. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9750. SK1 = L1 + L2 * C2;
  9751. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9752. SK2 = L2 * S2;
  9753. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9754. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9755. // Angle of Arm2
  9756. PSI = atan2(S2, C2);
  9757. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9758. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9759. delta[C_AXIS] = logical[Z_AXIS];
  9760. /*
  9761. DEBUG_POS("SCARA IK", logical);
  9762. DEBUG_POS("SCARA IK", delta);
  9763. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9764. SERIAL_ECHOPAIR(",", sy);
  9765. SERIAL_ECHOPAIR(" C2=", C2);
  9766. SERIAL_ECHOPAIR(" S2=", S2);
  9767. SERIAL_ECHOPAIR(" Theta=", THETA);
  9768. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9769. //*/
  9770. }
  9771. #endif // MORGAN_SCARA
  9772. #if ENABLED(TEMP_STAT_LEDS)
  9773. static bool red_led = false;
  9774. static millis_t next_status_led_update_ms = 0;
  9775. void handle_status_leds(void) {
  9776. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9777. next_status_led_update_ms += 500; // Update every 0.5s
  9778. float max_temp = 0.0;
  9779. #if HAS_TEMP_BED
  9780. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9781. #endif
  9782. HOTEND_LOOP() {
  9783. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9784. }
  9785. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9786. if (new_led != red_led) {
  9787. red_led = new_led;
  9788. #if PIN_EXISTS(STAT_LED_RED)
  9789. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9790. #if PIN_EXISTS(STAT_LED_BLUE)
  9791. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9792. #endif
  9793. #else
  9794. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9795. #endif
  9796. }
  9797. }
  9798. }
  9799. #endif
  9800. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9801. void handle_filament_runout() {
  9802. if (!filament_ran_out) {
  9803. filament_ran_out = true;
  9804. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9805. stepper.synchronize();
  9806. }
  9807. }
  9808. #endif // FILAMENT_RUNOUT_SENSOR
  9809. #if ENABLED(FAST_PWM_FAN)
  9810. void setPwmFrequency(uint8_t pin, int val) {
  9811. val &= 0x07;
  9812. switch (digitalPinToTimer(pin)) {
  9813. #ifdef TCCR0A
  9814. case TIMER0A:
  9815. case TIMER0B:
  9816. //_SET_CS(0, val);
  9817. break;
  9818. #endif
  9819. #ifdef TCCR1A
  9820. case TIMER1A:
  9821. case TIMER1B:
  9822. //_SET_CS(1, val);
  9823. break;
  9824. #endif
  9825. #ifdef TCCR2
  9826. case TIMER2:
  9827. case TIMER2:
  9828. _SET_CS(2, val);
  9829. break;
  9830. #endif
  9831. #ifdef TCCR2A
  9832. case TIMER2A:
  9833. case TIMER2B:
  9834. _SET_CS(2, val);
  9835. break;
  9836. #endif
  9837. #ifdef TCCR3A
  9838. case TIMER3A:
  9839. case TIMER3B:
  9840. case TIMER3C:
  9841. _SET_CS(3, val);
  9842. break;
  9843. #endif
  9844. #ifdef TCCR4A
  9845. case TIMER4A:
  9846. case TIMER4B:
  9847. case TIMER4C:
  9848. _SET_CS(4, val);
  9849. break;
  9850. #endif
  9851. #ifdef TCCR5A
  9852. case TIMER5A:
  9853. case TIMER5B:
  9854. case TIMER5C:
  9855. _SET_CS(5, val);
  9856. break;
  9857. #endif
  9858. }
  9859. }
  9860. #endif // FAST_PWM_FAN
  9861. float calculate_volumetric_multiplier(float diameter) {
  9862. if (!volumetric_enabled || diameter == 0) return 1.0;
  9863. return 1.0 / (M_PI * sq(diameter * 0.5));
  9864. }
  9865. void calculate_volumetric_multipliers() {
  9866. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9867. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9868. }
  9869. void enable_all_steppers() {
  9870. enable_X();
  9871. enable_Y();
  9872. enable_Z();
  9873. enable_E0();
  9874. enable_E1();
  9875. enable_E2();
  9876. enable_E3();
  9877. enable_E4();
  9878. }
  9879. void disable_e_steppers() {
  9880. disable_E0();
  9881. disable_E1();
  9882. disable_E2();
  9883. disable_E3();
  9884. disable_E4();
  9885. }
  9886. void disable_all_steppers() {
  9887. disable_X();
  9888. disable_Y();
  9889. disable_Z();
  9890. disable_e_steppers();
  9891. }
  9892. #if ENABLED(HAVE_TMC2130)
  9893. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9894. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9895. const bool is_otpw = st.checkOT();
  9896. // Report if a warning was triggered
  9897. static bool previous_otpw = false;
  9898. if (is_otpw && !previous_otpw) {
  9899. char timestamp[10];
  9900. duration_t elapsed = print_job_timer.duration();
  9901. const bool has_days = (elapsed.value > 60*60*24L);
  9902. (void)elapsed.toDigital(timestamp, has_days);
  9903. SERIAL_ECHO(timestamp);
  9904. SERIAL_ECHO(": ");
  9905. SERIAL_ECHO(axisID);
  9906. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9907. }
  9908. previous_otpw = is_otpw;
  9909. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9910. // Return if user has not enabled current control start with M906 S1.
  9911. if (!auto_current_control) return;
  9912. /**
  9913. * Decrease current if is_otpw is true.
  9914. * Bail out if driver is disabled.
  9915. * Increase current if OTPW has not been triggered yet.
  9916. */
  9917. uint16_t current = st.getCurrent();
  9918. if (is_otpw) {
  9919. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9920. #if ENABLED(REPORT_CURRENT_CHANGE)
  9921. SERIAL_ECHO(axisID);
  9922. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9923. #endif
  9924. }
  9925. else if (!st.isEnabled())
  9926. return;
  9927. else if (!is_otpw && !st.getOTPW()) {
  9928. current += CURRENT_STEP;
  9929. if (current <= AUTO_ADJUST_MAX) {
  9930. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9931. #if ENABLED(REPORT_CURRENT_CHANGE)
  9932. SERIAL_ECHO(axisID);
  9933. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9934. #endif
  9935. }
  9936. }
  9937. SERIAL_EOL;
  9938. #endif
  9939. }
  9940. void checkOverTemp() {
  9941. static millis_t next_cOT = 0;
  9942. if (ELAPSED(millis(), next_cOT)) {
  9943. next_cOT = millis() + 5000;
  9944. #if ENABLED(X_IS_TMC2130)
  9945. automatic_current_control(stepperX, "X");
  9946. #endif
  9947. #if ENABLED(Y_IS_TMC2130)
  9948. automatic_current_control(stepperY, "Y");
  9949. #endif
  9950. #if ENABLED(Z_IS_TMC2130)
  9951. automatic_current_control(stepperZ, "Z");
  9952. #endif
  9953. #if ENABLED(X2_IS_TMC2130)
  9954. automatic_current_control(stepperX2, "X2");
  9955. #endif
  9956. #if ENABLED(Y2_IS_TMC2130)
  9957. automatic_current_control(stepperY2, "Y2");
  9958. #endif
  9959. #if ENABLED(Z2_IS_TMC2130)
  9960. automatic_current_control(stepperZ2, "Z2");
  9961. #endif
  9962. #if ENABLED(E0_IS_TMC2130)
  9963. automatic_current_control(stepperE0, "E0");
  9964. #endif
  9965. #if ENABLED(E1_IS_TMC2130)
  9966. automatic_current_control(stepperE1, "E1");
  9967. #endif
  9968. #if ENABLED(E2_IS_TMC2130)
  9969. automatic_current_control(stepperE2, "E2");
  9970. #endif
  9971. #if ENABLED(E3_IS_TMC2130)
  9972. automatic_current_control(stepperE3, "E3");
  9973. #endif
  9974. #if ENABLED(E4_IS_TMC2130)
  9975. automatic_current_control(stepperE4, "E4");
  9976. #endif
  9977. #if ENABLED(E4_IS_TMC2130)
  9978. automatic_current_control(stepperE4);
  9979. #endif
  9980. }
  9981. }
  9982. #endif // HAVE_TMC2130
  9983. /**
  9984. * Manage several activities:
  9985. * - Check for Filament Runout
  9986. * - Keep the command buffer full
  9987. * - Check for maximum inactive time between commands
  9988. * - Check for maximum inactive time between stepper commands
  9989. * - Check if pin CHDK needs to go LOW
  9990. * - Check for KILL button held down
  9991. * - Check for HOME button held down
  9992. * - Check if cooling fan needs to be switched on
  9993. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  9994. */
  9995. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  9996. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9997. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  9998. handle_filament_runout();
  9999. #endif
  10000. if (commands_in_queue < BUFSIZE) get_available_commands();
  10001. const millis_t ms = millis();
  10002. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  10003. SERIAL_ERROR_START;
  10004. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  10005. kill(PSTR(MSG_KILLED));
  10006. }
  10007. // Prevent steppers timing-out in the middle of M600
  10008. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  10009. #define M600_TEST !busy_doing_M600
  10010. #else
  10011. #define M600_TEST true
  10012. #endif
  10013. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  10014. && !ignore_stepper_queue && !planner.blocks_queued()) {
  10015. #if ENABLED(DISABLE_INACTIVE_X)
  10016. disable_X();
  10017. #endif
  10018. #if ENABLED(DISABLE_INACTIVE_Y)
  10019. disable_Y();
  10020. #endif
  10021. #if ENABLED(DISABLE_INACTIVE_Z)
  10022. disable_Z();
  10023. #endif
  10024. #if ENABLED(DISABLE_INACTIVE_E)
  10025. disable_e_steppers();
  10026. #endif
  10027. }
  10028. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10029. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10030. chdkActive = false;
  10031. WRITE(CHDK, LOW);
  10032. }
  10033. #endif
  10034. #if HAS_KILL
  10035. // Check if the kill button was pressed and wait just in case it was an accidental
  10036. // key kill key press
  10037. // -------------------------------------------------------------------------------
  10038. static int killCount = 0; // make the inactivity button a bit less responsive
  10039. const int KILL_DELAY = 750;
  10040. if (!READ(KILL_PIN))
  10041. killCount++;
  10042. else if (killCount > 0)
  10043. killCount--;
  10044. // Exceeded threshold and we can confirm that it was not accidental
  10045. // KILL the machine
  10046. // ----------------------------------------------------------------
  10047. if (killCount >= KILL_DELAY) {
  10048. SERIAL_ERROR_START;
  10049. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10050. kill(PSTR(MSG_KILLED));
  10051. }
  10052. #endif
  10053. #if HAS_HOME
  10054. // Check to see if we have to home, use poor man's debouncer
  10055. // ---------------------------------------------------------
  10056. static int homeDebounceCount = 0; // poor man's debouncing count
  10057. const int HOME_DEBOUNCE_DELAY = 2500;
  10058. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10059. if (!homeDebounceCount) {
  10060. enqueue_and_echo_commands_P(PSTR("G28"));
  10061. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10062. }
  10063. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10064. homeDebounceCount++;
  10065. else
  10066. homeDebounceCount = 0;
  10067. }
  10068. #endif
  10069. #if USE_CONTROLLER_FAN
  10070. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10071. #endif
  10072. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10073. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10074. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10075. bool oldstatus;
  10076. #if ENABLED(SWITCHING_EXTRUDER)
  10077. oldstatus = E0_ENABLE_READ;
  10078. enable_E0();
  10079. #else // !SWITCHING_EXTRUDER
  10080. switch (active_extruder) {
  10081. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10082. #if E_STEPPERS > 1
  10083. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10084. #if E_STEPPERS > 2
  10085. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10086. #if E_STEPPERS > 3
  10087. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10088. #if E_STEPPERS > 4
  10089. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10090. #endif // E_STEPPERS > 4
  10091. #endif // E_STEPPERS > 3
  10092. #endif // E_STEPPERS > 2
  10093. #endif // E_STEPPERS > 1
  10094. }
  10095. #endif // !SWITCHING_EXTRUDER
  10096. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10097. const float olde = current_position[E_AXIS];
  10098. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10099. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10100. current_position[E_AXIS] = olde;
  10101. planner.set_e_position_mm(olde);
  10102. stepper.synchronize();
  10103. #if ENABLED(SWITCHING_EXTRUDER)
  10104. E0_ENABLE_WRITE(oldstatus);
  10105. #else
  10106. switch (active_extruder) {
  10107. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10108. #if E_STEPPERS > 1
  10109. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10110. #if E_STEPPERS > 2
  10111. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10112. #if E_STEPPERS > 3
  10113. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10114. #if E_STEPPERS > 4
  10115. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10116. #endif // E_STEPPERS > 4
  10117. #endif // E_STEPPERS > 3
  10118. #endif // E_STEPPERS > 2
  10119. #endif // E_STEPPERS > 1
  10120. }
  10121. #endif // !SWITCHING_EXTRUDER
  10122. }
  10123. #endif // EXTRUDER_RUNOUT_PREVENT
  10124. #if ENABLED(DUAL_X_CARRIAGE)
  10125. // handle delayed move timeout
  10126. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10127. // travel moves have been received so enact them
  10128. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10129. set_destination_to_current();
  10130. prepare_move_to_destination();
  10131. }
  10132. #endif
  10133. #if ENABLED(TEMP_STAT_LEDS)
  10134. handle_status_leds();
  10135. #endif
  10136. #if ENABLED(HAVE_TMC2130)
  10137. checkOverTemp();
  10138. #endif
  10139. planner.check_axes_activity();
  10140. }
  10141. /**
  10142. * Standard idle routine keeps the machine alive
  10143. */
  10144. void idle(
  10145. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10146. bool no_stepper_sleep/*=false*/
  10147. #endif
  10148. ) {
  10149. lcd_update();
  10150. host_keepalive();
  10151. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10152. auto_report_temperatures();
  10153. #endif
  10154. manage_inactivity(
  10155. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10156. no_stepper_sleep
  10157. #endif
  10158. );
  10159. thermalManager.manage_heater();
  10160. #if ENABLED(PRINTCOUNTER)
  10161. print_job_timer.tick();
  10162. #endif
  10163. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10164. buzzer.tick();
  10165. #endif
  10166. }
  10167. /**
  10168. * Kill all activity and lock the machine.
  10169. * After this the machine will need to be reset.
  10170. */
  10171. void kill(const char* lcd_msg) {
  10172. SERIAL_ERROR_START;
  10173. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10174. thermalManager.disable_all_heaters();
  10175. disable_all_steppers();
  10176. #if ENABLED(ULTRA_LCD)
  10177. kill_screen(lcd_msg);
  10178. #else
  10179. UNUSED(lcd_msg);
  10180. #endif
  10181. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10182. cli(); // Stop interrupts
  10183. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10184. thermalManager.disable_all_heaters(); //turn off heaters again
  10185. #if HAS_POWER_SWITCH
  10186. SET_INPUT(PS_ON_PIN);
  10187. #endif
  10188. suicide();
  10189. while (1) {
  10190. #if ENABLED(USE_WATCHDOG)
  10191. watchdog_reset();
  10192. #endif
  10193. } // Wait for reset
  10194. }
  10195. /**
  10196. * Turn off heaters and stop the print in progress
  10197. * After a stop the machine may be resumed with M999
  10198. */
  10199. void stop() {
  10200. thermalManager.disable_all_heaters();
  10201. if (IsRunning()) {
  10202. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10203. SERIAL_ERROR_START;
  10204. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10205. LCD_MESSAGEPGM(MSG_STOPPED);
  10206. safe_delay(350); // allow enough time for messages to get out before stopping
  10207. Running = false;
  10208. }
  10209. }
  10210. /**
  10211. * Marlin entry-point: Set up before the program loop
  10212. * - Set up the kill pin, filament runout, power hold
  10213. * - Start the serial port
  10214. * - Print startup messages and diagnostics
  10215. * - Get EEPROM or default settings
  10216. * - Initialize managers for:
  10217. * • temperature
  10218. * • planner
  10219. * • watchdog
  10220. * • stepper
  10221. * • photo pin
  10222. * • servos
  10223. * • LCD controller
  10224. * • Digipot I2C
  10225. * • Z probe sled
  10226. * • status LEDs
  10227. */
  10228. void setup() {
  10229. #ifdef DISABLE_JTAG
  10230. // Disable JTAG on AT90USB chips to free up pins for IO
  10231. MCUCR = 0x80;
  10232. MCUCR = 0x80;
  10233. #endif
  10234. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10235. setup_filrunoutpin();
  10236. #endif
  10237. setup_killpin();
  10238. setup_powerhold();
  10239. #if HAS_STEPPER_RESET
  10240. disableStepperDrivers();
  10241. #endif
  10242. MYSERIAL.begin(BAUDRATE);
  10243. SERIAL_PROTOCOLLNPGM("start");
  10244. SERIAL_ECHO_START;
  10245. // Check startup - does nothing if bootloader sets MCUSR to 0
  10246. byte mcu = MCUSR;
  10247. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10248. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10249. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10250. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10251. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10252. MCUSR = 0;
  10253. SERIAL_ECHOPGM(MSG_MARLIN);
  10254. SERIAL_CHAR(' ');
  10255. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10256. SERIAL_EOL;
  10257. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10258. SERIAL_ECHO_START;
  10259. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10260. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10261. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10262. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10263. #endif
  10264. SERIAL_ECHO_START;
  10265. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10266. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10267. // Send "ok" after commands by default
  10268. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10269. // Load data from EEPROM if available (or use defaults)
  10270. // This also updates variables in the planner, elsewhere
  10271. (void)settings.load();
  10272. #if HAS_M206_COMMAND
  10273. // Initialize current position based on home_offset
  10274. COPY(current_position, home_offset);
  10275. #else
  10276. ZERO(current_position);
  10277. #endif
  10278. // Vital to init stepper/planner equivalent for current_position
  10279. SYNC_PLAN_POSITION_KINEMATIC();
  10280. thermalManager.init(); // Initialize temperature loop
  10281. #if ENABLED(USE_WATCHDOG)
  10282. watchdog_init();
  10283. #endif
  10284. stepper.init(); // Initialize stepper, this enables interrupts!
  10285. servo_init();
  10286. #if HAS_PHOTOGRAPH
  10287. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10288. #endif
  10289. #if HAS_CASE_LIGHT
  10290. update_case_light();
  10291. #endif
  10292. #if HAS_BED_PROBE
  10293. endstops.enable_z_probe(false);
  10294. #endif
  10295. #if USE_CONTROLLER_FAN
  10296. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  10297. #endif
  10298. #if HAS_STEPPER_RESET
  10299. enableStepperDrivers();
  10300. #endif
  10301. #if ENABLED(DIGIPOT_I2C)
  10302. digipot_i2c_init();
  10303. #endif
  10304. #if ENABLED(DAC_STEPPER_CURRENT)
  10305. dac_init();
  10306. #endif
  10307. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10308. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10309. #endif
  10310. setup_homepin();
  10311. #if PIN_EXISTS(STAT_LED_RED)
  10312. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10313. #endif
  10314. #if PIN_EXISTS(STAT_LED_BLUE)
  10315. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10316. #endif
  10317. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10318. SET_OUTPUT(RGB_LED_R_PIN);
  10319. SET_OUTPUT(RGB_LED_G_PIN);
  10320. SET_OUTPUT(RGB_LED_B_PIN);
  10321. #if ENABLED(RGBW_LED)
  10322. SET_OUTPUT(RGB_LED_W_PIN);
  10323. #endif
  10324. #endif
  10325. lcd_init();
  10326. #if ENABLED(SHOW_BOOTSCREEN)
  10327. #if ENABLED(DOGLCD)
  10328. safe_delay(BOOTSCREEN_TIMEOUT);
  10329. #elif ENABLED(ULTRA_LCD)
  10330. bootscreen();
  10331. #if DISABLED(SDSUPPORT)
  10332. lcd_init();
  10333. #endif
  10334. #endif
  10335. #endif
  10336. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10337. // Initialize mixing to 100% color 1
  10338. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10339. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10340. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10341. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10342. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10343. #endif
  10344. #if ENABLED(BLTOUCH)
  10345. // Make sure any BLTouch error condition is cleared
  10346. bltouch_command(BLTOUCH_RESET);
  10347. set_bltouch_deployed(true);
  10348. set_bltouch_deployed(false);
  10349. #endif
  10350. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10351. i2c.onReceive(i2c_on_receive);
  10352. i2c.onRequest(i2c_on_request);
  10353. #endif
  10354. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10355. setup_endstop_interrupts();
  10356. #endif
  10357. }
  10358. /**
  10359. * The main Marlin program loop
  10360. *
  10361. * - Save or log commands to SD
  10362. * - Process available commands (if not saving)
  10363. * - Call heater manager
  10364. * - Call inactivity manager
  10365. * - Call endstop manager
  10366. * - Call LCD update
  10367. */
  10368. void loop() {
  10369. if (commands_in_queue < BUFSIZE) get_available_commands();
  10370. #if ENABLED(SDSUPPORT)
  10371. card.checkautostart(false);
  10372. #endif
  10373. if (commands_in_queue) {
  10374. #if ENABLED(SDSUPPORT)
  10375. if (card.saving) {
  10376. char* command = command_queue[cmd_queue_index_r];
  10377. if (strstr_P(command, PSTR("M29"))) {
  10378. // M29 closes the file
  10379. card.closefile();
  10380. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10381. ok_to_send();
  10382. }
  10383. else {
  10384. // Write the string from the read buffer to SD
  10385. card.write_command(command);
  10386. if (card.logging)
  10387. process_next_command(); // The card is saving because it's logging
  10388. else
  10389. ok_to_send();
  10390. }
  10391. }
  10392. else
  10393. process_next_command();
  10394. #else
  10395. process_next_command();
  10396. #endif // SDSUPPORT
  10397. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10398. if (commands_in_queue) {
  10399. --commands_in_queue;
  10400. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  10401. }
  10402. }
  10403. endstops.report_state();
  10404. idle();
  10405. }