12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- #include "MarlinConfig.h"
-
- #if ENABLED(AUTO_BED_LEVELING_UBL)
-
- #include "ubl.h"
- #include "Marlin.h"
- #include "hex_print_routines.h"
- #include "configuration_store.h"
- #include "ultralcd.h"
- #include "stepper.h"
- #include "planner.h"
- #include "gcode.h"
-
- #include <math.h>
- #include "least_squares_fit.h"
-
- #define UBL_G29_P31
-
- extern float destination[XYZE], current_position[XYZE];
-
- #if ENABLED(NEWPANEL)
- void lcd_return_to_status();
- void lcd_mesh_edit_setup(float initial);
- float lcd_mesh_edit();
- void lcd_z_offset_edit_setup(float);
- extern void _lcd_ubl_output_map_lcd();
- float lcd_z_offset_edit();
- #endif
-
- extern float meshedit_done;
- extern long babysteps_done;
- extern float probe_pt(const float &lx, const float &ly, const bool, const uint8_t, const bool=true);
- extern bool set_probe_deployed(bool);
- extern void set_bed_leveling_enabled(bool);
- typedef void (*screenFunc_t)();
- extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
-
- #define SIZE_OF_LITTLE_RAISE 1
- #define BIG_RAISE_NOT_NEEDED 0
-
- int unified_bed_leveling::g29_verbose_level,
- unified_bed_leveling::g29_phase_value,
- unified_bed_leveling::g29_repetition_cnt,
- unified_bed_leveling::g29_storage_slot = 0,
- unified_bed_leveling::g29_map_type;
- bool unified_bed_leveling::g29_c_flag,
- unified_bed_leveling::g29_x_flag,
- unified_bed_leveling::g29_y_flag;
- float unified_bed_leveling::g29_x_pos,
- unified_bed_leveling::g29_y_pos,
- unified_bed_leveling::g29_card_thickness = 0.0,
- unified_bed_leveling::g29_constant = 0.0;
-
- #if HAS_BED_PROBE
- int unified_bed_leveling::g29_grid_size;
- #endif
-
- /**
- * G29: Unified Bed Leveling by Roxy
- *
- * Parameters understood by this leveling system:
- *
- * A Activate Activate the Unified Bed Leveling system.
- *
- * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
- * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
- * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
- * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
- * same resistance is felt in the shim. You can omit the numerical value on first invocation
- * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
- * measured thickness by default.
- *
- * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
- * previous measurements.
- *
- * C Constant G29 P2 C specifies a Constant and tells the Manual Probe subsystem to use the current
- * location in its search for the closest unmeasured Mesh Point.
- *
- * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
- *
- * C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
- *
- * D Disable Disable the Unified Bed Leveling system.
- *
- * E Stow_probe Stow the probe after each sampled point.
- *
- * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
- * specified height, no correction is applied and natural printer kenimatics take over. If no
- * number is specified for the command, 10mm is assumed to be reasonable.
- *
- * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
- * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
- *
- * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
- * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
- *
- * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
- * the nozzle location is used. If no 'I' value is given, only the point nearest to the location
- * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
- * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
- * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
- * can move the nozzle around and use this feature to select the center of the area (or cell) to
- * invalidate.
- *
- * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
- * Not specifying a grid size will invoke the 3-Point leveling function.
- *
- * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
- * command literally performs a diff between two Meshes.
- *
- * L Load Load Mesh from the previously activated location in the EEPROM.
- *
- * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
- * for subsequent Load and Store operations.
- *
- * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
- * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
- * each additional Phase that processes it.
- *
- * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
- * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
- * was turned on. Setting the entire Mesh to Zero is a special case that allows
- * a subsequent G or T leveling operation for backward compatibility.
- *
- * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
- * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. On
- * Cartesian printers, points within the X_PROBE_OFFSET_FROM_EXTRUDER and Y_PROBE_OFFSET_FROM_EXTRUDER
- * area cannot be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
- * and DELTA_PRINTABLE_RADIUS do not overlap will not be automatically probed.
- *
- * Unreachable points will be handled in Phase 2 and Phase 3.
- *
- * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
- * to invalidate parts of the Mesh but still use Automatic Probing.
- *
- * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
- * probe position is used.
- *
- * Use 'T' (Topology) to generate a report of mesh generation.
- *
- * P1 will suspend Mesh generation if the controller button is held down. Note that you may need
- * to press and hold the switch for several seconds if moves are underway.
- *
- * P2 Phase 2 Probe unreachable points.
- *
- * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
- * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
- * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
- * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
- *
- * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
- * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
- * with an 'H' parameter more suitable for the area you're manually probing. Note that the command
- * tries to start in a corner of the bed where movement will be predictable. Override the distance
- * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
- * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
- * indicate that the search should be based on the current position.
- *
- * The 'B' parameter for this command is described above. It places the manual probe subsystem into
- * Business Card mode where the thickness of a business card is measured and then used to accurately
- * set the nozzle height in all manual probing for the duration of the command. A Business card can
- * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
- * easier to produce similar amounts of force and get more accurate measurements. Google if you're
- * not sure how to use a shim.
- *
- * The 'T' (Map) parameter helps track Mesh building progress.
- *
- * NOTE: P2 requires an LCD controller!
- *
- * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
- * go down:
- *
- * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
- * and a repeat count can then also be specified with 'R'.
- *
- * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
- * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
- * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
- * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
- * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
- * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
- *
- * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
- * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
- * G42 and M421. See the UBL documentation for further details.
- *
- * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
- * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
- * adhesion.
- *
- * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
- * by the given 'H' offset (or default Z_CLEARANCE_BETWEEN_PROBES), and waits while the controller is
- * used to adjust the nozzle height. On click the displayed height is saved in the mesh.
- *
- * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
- * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
- * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
- *
- * The general form is G29 P4 [R points] [X position] [Y position]
- *
- * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
- * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
- * and on click the height minus the shim thickness will be saved in the mesh.
- *
- * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
- *
- * NOTE: P4 is not available unless you have LCD support enabled!
- *
- * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
- * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
- * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
- * execute a G29 P6 C <mean height>.
- *
- * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
- * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
- * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
- * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
- * 0.000 at the Z Home location.
- *
- * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
- * command is not anticipated to be of much value to the typical user. It is intended
- * for developers to help them verify correct operation of the Unified Bed Leveling System.
- *
- * R # Repeat Repeat this command the specified number of times. If no number is specified the
- * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
- *
- * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
- * current state of the Unified Bed Leveling system in the EEPROM.
- *
- * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
- * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
- * extend to a limit related to the available EEPROM storage.
- *
- * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
- * at a later date. The GCode output can be saved and later replayed by the host software
- * to reconstruct the current mesh on another machine.
- *
- * T Topology Display the Mesh Map Topology.
- * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
- * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
- * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
- * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
- *
- * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
- * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
- * when the entire bed doesn't need to be probed because it will be adjusted.
- *
- * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
- *
- * W What? Display valuable Unified Bed Leveling System data.
- *
- * X # X Location for this command
- *
- * Y # Y Location for this command
- *
- *
- * Release Notes:
- * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
- * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
- * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
- * respectively.)
- *
- * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
- * the Unified Bed Leveling probes points further and further away from the starting location. (The
- * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
- * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
- * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
- * perform a small print and check out your settings quicker. You do not need to populate the
- * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
- * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
- * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
- *
- * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
- * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
- * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
- * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
- * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
- * this is going to be helpful to the users!)
- *
- * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
- * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
- * we now have the functionality and features of all three systems combined.
- */
-
- void unified_bed_leveling::G29() {
-
- if (!settings.calc_num_meshes()) {
- SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
- SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
- return;
- }
-
- if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
-
- // Check for commands that require the printer to be homed
- if (axis_unhomed_error()) {
- const int8_t p_val = parser.intval('P', -1);
- if (p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'))
- home_all_axes();
- }
-
- // Invalidate Mesh Points. This command is a little bit asymmetrical because
- // it directly specifies the repetition count and does not use the 'R' parameter.
- if (parser.seen('I')) {
- uint8_t cnt = 0;
- g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
- if (g29_repetition_cnt >= GRID_MAX_POINTS) {
- set_all_mesh_points_to_value(NAN);
- }
- else {
- while (g29_repetition_cnt--) {
- if (cnt > 20) { cnt = 0; idle(); }
- const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
- if (location.x_index < 0) {
- // No more REACHABLE mesh points to invalidate, so we ASSUME the user
- // meant to invalidate the ENTIRE mesh, which cannot be done with
- // find_closest_mesh_point loop which only returns REACHABLE points.
- set_all_mesh_points_to_value(NAN);
- SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
- break; // No more invalid Mesh Points to populate
- }
- z_values[location.x_index][location.y_index] = NAN;
- cnt++;
- }
- }
- SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
- }
-
- if (parser.seen('Q')) {
- const int test_pattern = parser.has_value() ? parser.value_int() : -99;
- if (!WITHIN(test_pattern, -1, 2)) {
- SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n");
- return;
- }
- SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
- switch (test_pattern) {
- case -1:
- g29_eeprom_dump();
- break;
- case 0:
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
- const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
- p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
- z_values[x][y] += 2.0 * HYPOT(p1, p2);
- }
- }
- break;
- case 1:
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
- z_values[x][x] += 9.999;
- z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
- }
- break;
- case 2:
- // Allow the user to specify the height because 10mm is a little extreme in some cases.
- for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
- for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
- z_values[x][y] += parser.seen('C') ? g29_constant : 9.99;
- break;
- }
- }
-
- #if HAS_BED_PROBE
-
- if (parser.seen('J')) {
- if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
- save_ubl_active_state_and_disable();
- tilt_mesh_based_on_probed_grid(parser.seen('T'));
- restore_ubl_active_state_and_leave();
- }
- else { // grid_size == 0 : A 3-Point leveling has been requested
- float z3, z2, z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level);
- if (!isnan(z1)) {
- z2 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y), false, g29_verbose_level);
- if (!isnan(z2))
- z3 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y), true, g29_verbose_level);
- }
-
- if (isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
- SERIAL_ERROR_START();
- SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
- goto LEAVE;
- }
-
- // Adjust z1, z2, z3 by the Mesh Height at these points. Just because they're non-zero
- // doesn't mean the Mesh is tilted! (Compensate each probe point by what the Mesh says
- // its height is.)
-
- save_ubl_active_state_and_disable();
- z1 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
- z2 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
- z3 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
-
- do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
- tilt_mesh_based_on_3pts(z1, z2, z3);
- restore_ubl_active_state_and_leave();
- }
- }
-
- #endif // HAS_BED_PROBE
-
- if (parser.seen('P')) {
- if (WITHIN(g29_phase_value, 0, 1) && state.storage_slot == -1) {
- state.storage_slot = 0;
- SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
- }
-
- switch (g29_phase_value) {
- case 0:
- //
- // Zero Mesh Data
- //
- reset();
- SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
- break;
-
- #if HAS_BED_PROBE
-
- case 1:
- //
- // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
- //
- if (!parser.seen('C')) {
- invalidate();
- SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
- }
- if (g29_verbose_level > 1) {
- SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL(g29_y_pos);
- SERIAL_PROTOCOLLNPGM(").\n");
- }
- probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
- parser.seen('T'), parser.seen('E'), parser.seen('U'));
- break;
-
- #endif // HAS_BED_PROBE
-
- case 2: {
- #if ENABLED(NEWPANEL)
- //
- // Manually Probe Mesh in areas that can't be reached by the probe
- //
- SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
- do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
- if (!g29_x_flag && !g29_y_flag) {
- /**
- * Use a good default location for the path.
- * The flipped > and < operators in these comparisons is intentional.
- * It should cause the probed points to follow a nice path on Cartesian printers.
- * It may make sense to have Delta printers default to the center of the bed.
- * Until that is decided, this can be forced with the X and Y parameters.
- */
- #if IS_KINEMATIC
- g29_x_pos = X_HOME_POS;
- g29_y_pos = Y_HOME_POS;
- #else // cartesian
- g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_BED_SIZE : 0;
- g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_BED_SIZE : 0;
- #endif
- }
-
- if (parser.seen('C')) {
- g29_x_pos = current_position[X_AXIS];
- g29_y_pos = current_position[Y_AXIS];
- }
-
- if (parser.seen('B')) {
- g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(Z_CLEARANCE_BETWEEN_PROBES);
- if (FABS(g29_card_thickness) > 1.5) {
- SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
- return;
- }
- }
-
- if (!position_is_reachable_xy(g29_x_pos, g29_y_pos)) {
- SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
- return;
- }
-
- const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
- manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
-
- SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
-
- #else
-
- SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
- return;
-
- #endif
- } break;
-
- case 3: {
- /**
- * Populate invalid mesh areas. Proceed with caution.
- * Two choices are available:
- * - Specify a constant with the 'C' parameter.
- * - Allow 'G29 P3' to choose a 'reasonable' constant.
- */
-
- if (g29_c_flag) {
- if (g29_repetition_cnt >= GRID_MAX_POINTS) {
- set_all_mesh_points_to_value(g29_constant);
- }
- else {
- while (g29_repetition_cnt--) { // this only populates reachable mesh points near
- const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
- if (location.x_index < 0) {
- // No more REACHABLE INVALID mesh points to populate, so we ASSUME
- // user meant to populate ALL INVALID mesh points to value
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (isnan(z_values[x][y]))
- z_values[x][y] = g29_constant;
- break; // No more invalid Mesh Points to populate
- }
- z_values[location.x_index][location.y_index] = g29_constant;
- }
- }
- }
- else {
- const float cvf = parser.value_float();
- switch((int)truncf(cvf * 10.0) - 30) { // 3.1 -> 1
- #if ENABLED(UBL_G29_P31)
- case 1: {
-
- // P3.1 use least squares fit to fill missing mesh values
- // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
- // P3.11 10X weighting for nearest grid points versus farthest grid points
- // P3.12 100X distance weighting
- // P3.13 1000X distance weighting, approaches simple average of nearest points
-
- const float weight_power = (cvf - 3.10) * 100.0, // 3.12345 -> 2.345
- weight_factor = weight_power ? POW(10.0, weight_power) : 0;
- smart_fill_wlsf(weight_factor);
- }
- break;
- #endif
- case 0: // P3 or P3.0
- default: // and anything P3.x that's not P3.1
- smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
- break;
- }
- }
- break;
- }
-
- case 4: // Fine Tune (i.e., Edit) the Mesh
- #if ENABLED(NEWPANEL)
- fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
- #else
- SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
- return;
- #endif
- break;
-
- case 5: find_mean_mesh_height(); break;
-
- case 6: shift_mesh_height(); break;
- }
- }
-
- //
- // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
- // good to have the extra information. Soon... we prune this to just a few items
- //
- if (parser.seen('W')) g29_what_command();
-
- //
- // When we are fully debugged, this may go away. But there are some valid
- // use cases for the users. So we can wait and see what to do with it.
- //
-
- if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
- g29_compare_current_mesh_to_stored_mesh();
-
- //
- // Load a Mesh from the EEPROM
- //
-
- if (parser.seen('L')) { // Load Current Mesh Data
- g29_storage_slot = parser.has_value() ? parser.value_int() : state.storage_slot;
-
- int16_t a = settings.calc_num_meshes();
-
- if (!a) {
- SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
- return;
- }
-
- if (!WITHIN(g29_storage_slot, 0, a - 1)) {
- SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
- SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
- return;
- }
-
- settings.load_mesh(g29_storage_slot);
- state.storage_slot = g29_storage_slot;
-
- SERIAL_PROTOCOLLNPGM("Done.");
- }
-
- //
- // Store a Mesh in the EEPROM
- //
-
- if (parser.seen('S')) { // Store (or Save) Current Mesh Data
- g29_storage_slot = parser.has_value() ? parser.value_int() : state.storage_slot;
-
- if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
- SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(z_values[x][y])) {
- SERIAL_ECHOPAIR("M421 I ", x);
- SERIAL_ECHOPAIR(" J ", y);
- SERIAL_ECHOPGM(" Z ");
- SERIAL_ECHO_F(z_values[x][y], 6);
- SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(mesh_index_to_xpos(x)));
- SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(mesh_index_to_ypos(y)));
- SERIAL_EOL();
- }
- return;
- }
-
- int16_t a = settings.calc_num_meshes();
-
- if (!a) {
- SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
- goto LEAVE;
- }
-
- if (!WITHIN(g29_storage_slot, 0, a - 1)) {
- SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
- SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
- goto LEAVE;
- }
-
- settings.store_mesh(g29_storage_slot);
- state.storage_slot = g29_storage_slot;
-
- SERIAL_PROTOCOLLNPGM("Done.");
- }
-
- if (parser.seen('T'))
- display_map(parser.has_value() ? parser.value_int() : 0);
-
- /**
- * This code may not be needed... Prepare for its removal...
- *
- */
- #if 0
- if (parser.seen('Z')) {
- if (parser.has_value())
- state.z_offset = parser.value_float(); // do the simple case. Just lock in the specified value
- else {
- save_ubl_active_state_and_disable();
- //float measured_z = probe_pt(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
-
- has_control_of_lcd_panel = true; // Grab the LCD Hardware
- float measured_z = 1.5;
- do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
- // The user is not going to be locking in a new Z-Offset very often so
- // it won't be that painful to spin the Encoder Wheel for 1.5mm
- lcd_refresh();
- lcd_z_offset_edit_setup(measured_z);
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
-
- do {
- measured_z = lcd_z_offset_edit();
- idle();
- do_blocking_move_to_z(measured_z);
- } while (!ubl_lcd_clicked());
-
- has_control_of_lcd_panel = true; // There is a race condition for the encoder click.
- // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
- // or here. So, until we are done looking for a long encoder press,
- // we need to take control of the panel
-
- KEEPALIVE_STATE(IN_HANDLER);
-
- lcd_return_to_status();
-
- const millis_t nxt = millis() + 1500UL;
- while (ubl_lcd_clicked()) { // debounce and watch for abort
- idle();
- if (ELAPSED(millis(), nxt)) {
- SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- LCD_MESSAGEPGM(MSG_UBL_Z_OFFSET_STOPPED);
- restore_ubl_active_state_and_leave();
- goto LEAVE;
- }
- }
- has_control_of_lcd_panel = false;
- safe_delay(20); // We don't want any switch noise.
-
- state.z_offset = measured_z;
-
- lcd_refresh();
- restore_ubl_active_state_and_leave();
- }
- }
- #endif
-
- LEAVE:
-
- #if ENABLED(NEWPANEL)
- lcd_reset_alert_level();
- LCD_MESSAGEPGM("");
- lcd_quick_feedback();
-
- has_control_of_lcd_panel = false;
- #endif
-
- return;
- }
-
- void unified_bed_leveling::find_mean_mesh_height() {
- float sum = 0.0;
- int n = 0;
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(z_values[x][y])) {
- sum += z_values[x][y];
- n++;
- }
-
- const float mean = sum / n;
-
- //
- // Sum the squares of difference from mean
- //
- float sum_of_diff_squared = 0.0;
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(z_values[x][y]))
- sum_of_diff_squared += sq(z_values[x][y] - mean);
-
- SERIAL_ECHOLNPAIR("# of samples: ", n);
- SERIAL_ECHOPGM("Mean Mesh Height: ");
- SERIAL_ECHO_F(mean, 6);
- SERIAL_EOL();
-
- const float sigma = SQRT(sum_of_diff_squared / (n + 1));
- SERIAL_ECHOPGM("Standard Deviation: ");
- SERIAL_ECHO_F(sigma, 6);
- SERIAL_EOL();
-
- if (g29_c_flag)
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(z_values[x][y]))
- z_values[x][y] -= mean + g29_constant;
- }
-
- void unified_bed_leveling::shift_mesh_height() {
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- if (!isnan(z_values[x][y]))
- z_values[x][y] += g29_constant;
- }
-
- #if HAS_BED_PROBE
- /**
- * Probe all invalidated locations of the mesh that can be reached by the probe.
- * This attempts to fill in locations closest to the nozzle's start location first.
- */
- void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
- mesh_index_pair location;
-
- has_control_of_lcd_panel = true;
- save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
- DEPLOY_PROBE();
-
- uint16_t max_iterations = GRID_MAX_POINTS;
-
- do {
- #if ENABLED(NEWPANEL)
- if (ubl_lcd_clicked()) {
- SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
- lcd_quick_feedback();
- STOW_PROBE();
- while (ubl_lcd_clicked()) idle();
- has_control_of_lcd_panel = false;
- restore_ubl_active_state_and_leave();
- safe_delay(50); // Debounce the Encoder wheel
- return;
- }
- #endif
-
- location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, close_or_far);
-
- if (location.x_index >= 0) { // mesh point found and is reachable by probe
- const float rawx = mesh_index_to_xpos(location.x_index),
- rawy = mesh_index_to_ypos(location.y_index);
-
- const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); // TODO: Needs error handling
- z_values[location.x_index][location.y_index] = measured_z;
- }
-
- if (do_ubl_mesh_map) display_map(g29_map_type);
-
- } while (location.x_index >= 0 && --max_iterations);
-
- STOW_PROBE();
- restore_ubl_active_state_and_leave();
-
- do_blocking_move_to_xy(
- constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
- constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_Y, UBL_MESH_MAX_Y)
- );
- }
-
- void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
- matrix_3x3 rotation;
- vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
- (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
- (z1 - z2) ),
-
- v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
- (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
- (z3 - z2) ),
-
- normal = vector_3::cross(v1, v2);
-
- normal = normal.get_normal();
-
- /**
- * This vector is normal to the tilted plane.
- * However, we don't know its direction. We need it to point up. So if
- * Z is negative, we need to invert the sign of all components of the vector
- */
- if (normal.z < 0.0) {
- normal.x = -normal.x;
- normal.y = -normal.y;
- normal.z = -normal.z;
- }
-
- rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
-
- if (g29_verbose_level > 2) {
- SERIAL_ECHOPGM("bed plane normal = [");
- SERIAL_PROTOCOL_F(normal.x, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(normal.y, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(normal.z, 7);
- SERIAL_ECHOLNPGM("]");
- rotation.debug(PSTR("rotation matrix:"));
- }
-
- //
- // All of 3 of these points should give us the same d constant
- //
-
- float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
- d = t + normal.z * z1;
-
- if (g29_verbose_level>2) {
- SERIAL_ECHOPGM("D constant: ");
- SERIAL_PROTOCOL_F(d, 7);
- SERIAL_ECHOLNPGM(" ");
- }
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("d from 1st point: ");
- SERIAL_ECHO_F(d, 6);
- SERIAL_EOL();
- t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
- d = t + normal.z * z2;
- SERIAL_ECHOPGM("d from 2nd point: ");
- SERIAL_ECHO_F(d, 6);
- SERIAL_EOL();
- t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
- d = t + normal.z * z3;
- SERIAL_ECHOPGM("d from 3rd point: ");
- SERIAL_ECHO_F(d, 6);
- SERIAL_EOL();
- }
- #endif
-
- for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
- for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
- float x_tmp = mesh_index_to_xpos(i),
- y_tmp = mesh_index_to_ypos(j),
- z_tmp = z_values[i][j];
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("before rotation = [");
- SERIAL_PROTOCOL_F(x_tmp, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(y_tmp, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(z_tmp, 7);
- SERIAL_ECHOPGM("] ---> ");
- safe_delay(20);
- }
- #endif
- apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("after rotation = [");
- SERIAL_PROTOCOL_F(x_tmp, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(y_tmp, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(z_tmp, 7);
- SERIAL_ECHOLNPGM("]");
- safe_delay(55);
- }
- #endif
- z_values[i][j] += z_tmp - d;
- }
- }
- }
- #endif // HAS_BED_PROBE
-
- #if ENABLED(NEWPANEL)
- float unified_bed_leveling::measure_point_with_encoder() {
-
- while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
- delay(50); // debounce
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
- idle();
- if (encoder_diff) {
- do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
- encoder_diff = 0;
- }
- }
- KEEPALIVE_STATE(IN_HANDLER);
- return current_position[Z_AXIS];
- }
-
- static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
-
- float unified_bed_leveling::measure_business_card_thickness(float in_height) {
- has_control_of_lcd_panel = true;
- save_ubl_active_state_and_disable(); // Disable bed level correction for probing
-
- do_blocking_move_to_z(in_height);
- do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
- //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
- stepper.synchronize();
-
- SERIAL_PROTOCOLPGM("Place shim under nozzle");
- LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
- lcd_return_to_status();
- echo_and_take_a_measurement();
-
- const float z1 = measure_point_with_encoder();
- do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
- stepper.synchronize();
-
- SERIAL_PROTOCOLPGM("Remove shim");
- LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
- echo_and_take_a_measurement();
-
- const float z2 = measure_point_with_encoder();
-
- do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
-
- const float thickness = abs(z1 - z2);
-
- if (g29_verbose_level > 1) {
- SERIAL_PROTOCOLPGM("Business Card is ");
- SERIAL_PROTOCOL_F(thickness, 4);
- SERIAL_PROTOCOLLNPGM("mm thick.");
- }
-
- in_height = current_position[Z_AXIS]; // do manual probing at lower height
-
- has_control_of_lcd_panel = false;
-
- restore_ubl_active_state_and_leave();
-
- return thickness;
- }
-
- void unified_bed_leveling::manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
-
- has_control_of_lcd_panel = true;
-
- save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
- do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
- do_blocking_move_to_xy(lx, ly);
-
- lcd_return_to_status();
-
- mesh_index_pair location;
- do {
- location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
- // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
- if (location.x_index < 0 && location.y_index < 0) continue;
-
- const float rawx = mesh_index_to_xpos(location.x_index),
- rawy = mesh_index_to_ypos(location.y_index),
- xProbe = LOGICAL_X_POSITION(rawx),
- yProbe = LOGICAL_Y_POSITION(rawy);
-
- if (!position_is_reachable_raw_xy(rawx, rawy)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
-
- do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
-
- LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
-
- do_blocking_move_to_xy(xProbe, yProbe);
- do_blocking_move_to_z(z_clearance);
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- has_control_of_lcd_panel = true;
-
- if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
-
- serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2));
-
- const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
- //const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click
-
- while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
- delay(50); // debounce
- while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
- idle();
- if (encoder_diff) {
- do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step);
- encoder_diff = 0;
- }
- }
-
- // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
- // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
- // should be redone and compressed.
- const millis_t nxt = millis() + 1500L;
- while (ubl_lcd_clicked()) { // debounce and watch for abort
- idle();
- if (ELAPSED(millis(), nxt)) {
- SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
-
- #if ENABLED(NEWPANEL)
- lcd_quick_feedback();
- while (ubl_lcd_clicked()) idle();
- has_control_of_lcd_panel = false;
- #endif
-
- KEEPALIVE_STATE(IN_HANDLER);
- restore_ubl_active_state_and_leave();
- return;
- }
- }
-
- z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
- if (g29_verbose_level > 2) {
- SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
- SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
- SERIAL_EOL();
- }
- } while (location.x_index >= 0 && location.y_index >= 0);
-
- if (do_ubl_mesh_map) display_map(g29_map_type);
-
- restore_ubl_active_state_and_leave();
- KEEPALIVE_STATE(IN_HANDLER);
- do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
- do_blocking_move_to_xy(lx, ly);
- }
- #endif // NEWPANEL
-
- bool unified_bed_leveling::g29_parameter_parsing() {
- bool err_flag = false;
-
- #if ENABLED(NEWPANEL)
- LCD_MESSAGEPGM(MSG_UBL_DOING_G29);
- lcd_quick_feedback();
- #endif
-
- g29_constant = 0.0;
- g29_repetition_cnt = 0;
-
- g29_x_flag = parser.seenval('X');
- g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS];
- g29_y_flag = parser.seenval('Y');
- g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS];
-
- if (parser.seen('R')) {
- g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
- NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
- if (g29_repetition_cnt < 1) {
- SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
- return UBL_ERR;
- }
- }
-
- g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
- if (!WITHIN(g29_verbose_level, 0, 4)) {
- SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
- err_flag = true;
- }
-
- if (parser.seen('P')) {
- const int pv = parser.value_int();
- #if !HAS_BED_PROBE
- if (pv == 1) {
- SERIAL_PROTOCOLLNPGM("G29 P1 requires a probe.\n");
- err_flag = true;
- }
- else
- #endif
- {
- g29_phase_value = pv;
- if (!WITHIN(g29_phase_value, 0, 6)) {
- SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
- err_flag = true;
- }
- }
- }
-
- if (parser.seen('J')) {
- #if HAS_BED_PROBE
- g29_grid_size = parser.has_value() ? parser.value_int() : 0;
- if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
- SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
- err_flag = true;
- }
- #else
- SERIAL_PROTOCOLLNPGM("G29 J action requires a probe.\n");
- err_flag = true;
- #endif
- }
-
- if (g29_x_flag != g29_y_flag) {
- SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
- err_flag = true;
- }
-
- // If X or Y are not valid, use center of the bed values
- if (!WITHIN(RAW_X_POSITION(g29_x_pos), X_MIN_BED, X_MAX_BED)) g29_x_pos = LOGICAL_X_POSITION(X_CENTER);
- if (!WITHIN(RAW_Y_POSITION(g29_y_pos), Y_MIN_BED, Y_MAX_BED)) g29_y_pos = LOGICAL_Y_POSITION(Y_CENTER);
-
- if (err_flag) return UBL_ERR;
-
- /**
- * Activate or deactivate UBL
- * Note: UBL's G29 restores the state set here when done.
- * Leveling is being enabled here with old data, possibly
- * none. Error handling should disable for safety...
- */
- if (parser.seen('A')) {
- if (parser.seen('D')) {
- SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
- return UBL_ERR;
- }
- set_bed_leveling_enabled(true);
- report_state();
- }
- else if (parser.seen('D')) {
- set_bed_leveling_enabled(false);
- report_state();
- }
-
- // Set global 'C' flag and its value
- if ((g29_c_flag = parser.seen('C')))
- g29_constant = parser.value_float();
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- if (parser.seenval('F')) {
- const float fh = parser.value_float();
- if (!WITHIN(fh, 0.0, 100.0)) {
- SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
- return UBL_ERR;
- }
- set_z_fade_height(fh);
- }
- #endif
-
- g29_map_type = parser.intval('T');
- if (!WITHIN(g29_map_type, 0, 2)) {
- SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
- return UBL_ERR;
- }
- return UBL_OK;
- }
-
- static int ubl_state_at_invocation = 0,
- ubl_state_recursion_chk = 0;
-
- void unified_bed_leveling::save_ubl_active_state_and_disable() {
- ubl_state_recursion_chk++;
- if (ubl_state_recursion_chk != 1) {
- SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
-
- #if ENABLED(NEWPANEL)
- LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR);
- lcd_quick_feedback();
- #endif
-
- return;
- }
- ubl_state_at_invocation = state.active;
- set_bed_leveling_enabled(false);
- }
-
- void unified_bed_leveling::restore_ubl_active_state_and_leave() {
- if (--ubl_state_recursion_chk) {
- SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
-
- #if ENABLED(NEWPANEL)
- LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR);
- lcd_quick_feedback();
- #endif
-
- return;
- }
- set_bed_leveling_enabled(ubl_state_at_invocation);
- }
-
- /**
- * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
- * good to have the extra information. Soon... we prune this to just a few items
- */
- void unified_bed_leveling::g29_what_command() {
- report_state();
-
- if (state.storage_slot == -1)
- SERIAL_PROTOCOLPGM("No Mesh Loaded.");
- else {
- SERIAL_PROTOCOLPAIR("Mesh ", state.storage_slot);
- SERIAL_PROTOCOLPGM(" Loaded.");
- }
- SERIAL_EOL();
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- SERIAL_PROTOCOL("planner.z_fade_height : ");
- SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
- SERIAL_EOL();
- #endif
-
- find_mean_mesh_height();
-
- #if HAS_BED_PROBE
- SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
- SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
- SERIAL_EOL();
- #endif
-
- SERIAL_ECHOLNPAIR("UBL_MESH_MIN_X " STRINGIFY(UBL_MESH_MIN_X) "=", UBL_MESH_MIN_X);
- SERIAL_ECHOLNPAIR("UBL_MESH_MIN_Y " STRINGIFY(UBL_MESH_MIN_Y) "=", UBL_MESH_MIN_Y);
- safe_delay(25);
- SERIAL_ECHOLNPAIR("UBL_MESH_MAX_X " STRINGIFY(UBL_MESH_MAX_X) "=", UBL_MESH_MAX_X);
- SERIAL_ECHOLNPAIR("UBL_MESH_MAX_Y " STRINGIFY(UBL_MESH_MAX_Y) "=", UBL_MESH_MAX_Y);
- safe_delay(25);
- SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
- SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
- safe_delay(25);
- SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
- SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
- safe_delay(25);
-
- SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
- for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
- SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
- SERIAL_PROTOCOLPGM(" ");
- safe_delay(25);
- }
- SERIAL_EOL();
-
- SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
- for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
- SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
- SERIAL_PROTOCOLPGM(" ");
- safe_delay(25);
- }
- SERIAL_EOL();
-
- #if HAS_KILL
- SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
- SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
- #endif
- SERIAL_EOL();
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
- SERIAL_EOL();
- SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
- SERIAL_EOL();
- safe_delay(50);
-
- SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.get_start_of_meshes()));
- SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.get_end_of_meshes()));
- safe_delay(50);
-
- SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
- SERIAL_EOL();
- SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
- SERIAL_EOL();
- safe_delay(25);
-
- SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.get_end_of_meshes() - settings.get_start_of_meshes())));
- safe_delay(50);
-
- SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
- SERIAL_PROTOCOLLNPGM(" meshes.\n");
- safe_delay(25);
-
- if (!sanity_check()) {
- echo_name();
- SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
- }
- }
-
- /**
- * When we are fully debugged, the EEPROM dump command will get deleted also. But
- * right now, it is good to have the extra information. Soon... we prune this.
- */
- void unified_bed_leveling::g29_eeprom_dump() {
- unsigned char cccc;
- uint16_t kkkk;
-
- SERIAL_ECHO_START();
- SERIAL_ECHOLNPGM("EEPROM Dump:");
- for (uint16_t i = 0; i < E2END + 1; i += 16) {
- if (!(i & 0x3)) idle();
- print_hex_word(i);
- SERIAL_ECHOPGM(": ");
- for (uint16_t j = 0; j < 16; j++) {
- kkkk = i + j;
- eeprom_read_block(&cccc, (void *)kkkk, 1);
- print_hex_byte(cccc);
- SERIAL_ECHO(' ');
- }
- SERIAL_EOL();
- }
- SERIAL_EOL();
- }
-
- /**
- * When we are fully debugged, this may go away. But there are some valid
- * use cases for the users. So we can wait and see what to do with it.
- */
- void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
- int16_t a = settings.calc_num_meshes();
-
- if (!a) {
- SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
- return;
- }
-
- if (!parser.has_value()) {
- SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
- SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
- return;
- }
-
- g29_storage_slot = parser.value_int();
-
- if (!WITHIN(g29_storage_slot, 0, a - 1)) {
- SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
- SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
- return;
- }
-
- float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
- settings.load_mesh(g29_storage_slot, &tmp_z_values);
-
- SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
- SERIAL_PROTOCOLLNPGM(" from current mesh.");
-
- for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
- for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
- z_values[x][y] -= tmp_z_values[x][y];
- }
-
- mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
- mesh_index_pair out_mesh;
- out_mesh.x_index = out_mesh.y_index = -1;
-
- // Get our reference position. Either the nozzle or probe location.
- const float px = RAW_X_POSITION(lx) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
- py = RAW_Y_POSITION(ly) - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
-
- float best_so_far = far_flag ? -99999.99 : 99999.99;
-
- for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
- for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
-
- if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
- || (type == REAL && !isnan(z_values[i][j]))
- || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
- ) {
- // We only get here if we found a Mesh Point of the specified type
-
- float raw_x = RAW_CURRENT_POSITION(X), raw_y = RAW_CURRENT_POSITION(Y);
- const float mx = mesh_index_to_xpos(i),
- my = mesh_index_to_ypos(j);
-
- // If using the probe as the reference there are some unreachable locations.
- // Also for round beds, there are grid points outside the bed the nozzle can't reach.
- // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
-
- if (probe_as_reference ? !position_is_reachable_by_probe_raw_xy(mx, my) : !position_is_reachable_raw_xy(mx, my))
- continue;
-
- // Reachable. Check if it's the best_so_far location to the nozzle.
- // Add in a weighting factor that considers the current location of the nozzle.
-
- float distance = HYPOT(px - mx, py - my);
-
- /**
- * If doing the far_flag action, we want to be as far as possible
- * from the starting point and from any other probed points. We
- * want the next point spread out and filling in any blank spaces
- * in the mesh. So we add in some of the distance to every probed
- * point we can find.
- */
- if (far_flag) {
- for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
- for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
- if (i != k && j != l && !isnan(z_values[k][l])) {
- //distance += pow((float) abs(i - k) * (MESH_X_DIST), 2) + pow((float) abs(j - l) * (MESH_Y_DIST), 2); // working here
- distance += HYPOT(MESH_X_DIST, MESH_Y_DIST) / log(HYPOT((i - k) * (MESH_X_DIST) + .001, (j - l) * (MESH_Y_DIST)) + .001);
- }
- }
- }
- }
- else
- // factor in the distance from the current location for the normal case
- // so the nozzle isn't running all over the bed.
- distance += HYPOT(raw_x - mx, raw_y - my) * 0.1;
-
- // if far_flag, look for farthest point
- if (far_flag == (distance > best_so_far) && distance != best_so_far) {
- best_so_far = distance; // We found a closer/farther location with
- out_mesh.x_index = i; // the specified type of mesh value.
- out_mesh.y_index = j;
- out_mesh.distance = best_so_far;
- }
- }
- } // for j
- } // for i
-
- return out_mesh;
- }
-
- #if ENABLED(NEWPANEL)
-
- void unified_bed_leveling::fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
- if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
- g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
-
- #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
- const bool is_offset = parser.seen('H');
- const float h_offset = is_offset ? parser.value_linear_units() : Z_CLEARANCE_BETWEEN_PROBES;
- if (is_offset && !WITHIN(h_offset, 0, 10)) {
- SERIAL_PROTOCOLLNPGM("Offset out of bounds. (0 to 10mm)\n");
- return;
- }
- #endif
-
- mesh_index_pair location;
-
- if (!position_is_reachable_xy(lx, ly)) {
- SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
- return;
- }
-
- save_ubl_active_state_and_disable();
-
- LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
-
- do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
- do_blocking_move_to_xy(lx, ly);
-
- uint16_t not_done[16];
- memset(not_done, 0xFF, sizeof(not_done));
- do {
- location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
-
- if (location.x_index < 0) break; // stop when we can't find any more reachable points.
-
- bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
- // different location the next time through the loop
-
- const float rawx = mesh_index_to_xpos(location.x_index),
- rawy = mesh_index_to_ypos(location.y_index);
-
- if (!position_is_reachable_raw_xy(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
- break;
-
- float new_z = z_values[location.x_index][location.y_index];
-
- if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
- new_z = 0.0;
-
- do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to where we are going to edit
- do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
-
- new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
-
- KEEPALIVE_STATE(PAUSED_FOR_USER);
- has_control_of_lcd_panel = true;
-
- if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
-
- lcd_refresh();
-
- lcd_mesh_edit_setup(new_z);
-
- do {
- new_z = lcd_mesh_edit();
- #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
- do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited
- #endif
- idle();
- } while (!ubl_lcd_clicked());
-
- if (!ubl_lcd_map_control) lcd_return_to_status();
-
- // The technique used here generates a race condition for the encoder click.
- // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
- // Let's work on specifying a proper API for the LCD ASAP, OK?
- has_control_of_lcd_panel = true;
-
- // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
- // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
- // should be redone and compressed.
- const millis_t nxt = millis() + 1500UL;
- while (ubl_lcd_clicked()) { // debounce and watch for abort
- idle();
- if (ELAPSED(millis(), nxt)) {
- lcd_return_to_status();
- do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
- LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
-
- while (ubl_lcd_clicked()) idle();
-
- goto FINE_TUNE_EXIT;
- }
- }
-
- safe_delay(20); // We don't want any switch noise.
-
- z_values[location.x_index][location.y_index] = new_z;
-
- lcd_refresh();
-
- } while (location.x_index >= 0 && --g29_repetition_cnt > 0);
-
- FINE_TUNE_EXIT:
-
- has_control_of_lcd_panel = false;
- KEEPALIVE_STATE(IN_HANDLER);
-
- if (do_ubl_mesh_map) display_map(g29_map_type);
- restore_ubl_active_state_and_leave();
- do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
-
- do_blocking_move_to_xy(lx, ly);
-
- LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
- SERIAL_ECHOLNPGM("Done Editing Mesh");
-
- if (ubl_lcd_map_control)
- lcd_goto_screen(_lcd_ubl_output_map_lcd);
- else
- lcd_return_to_status();
- }
-
- #endif // NEWPANEL
-
- /**
- * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
- * If an invalid location is found, use the next two points (if valid) to
- * calculate a 'reasonable' value for the unprobed mesh point.
- */
-
- bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
- const int8_t x1 = x + xdir, x2 = x1 + xdir,
- y1 = y + ydir, y2 = y1 + ydir;
- // A NAN next to a pair of real values?
- if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
- if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
- z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
- else
- z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
- return true;
- }
- return false;
- }
-
- typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
-
- void unified_bed_leveling::smart_fill_mesh() {
- static const smart_fill_info
- info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
- info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
- info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
- info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
- static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
-
- // static const smart_fill_info info[] PROGMEM = {
- // { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false } PROGMEM, // Bottom of the mesh looking up
- // { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false } PROGMEM, // Top of the mesh looking down
- // { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true } PROGMEM, // Left side of the mesh looking right
- // { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true } PROGMEM // Right side of the mesh looking left
- // };
- for (uint8_t i = 0; i < COUNT(info); ++i) {
- const smart_fill_info *f = (smart_fill_info*)pgm_read_word(&info[i]);
- const int8_t sx = pgm_read_word(&f->sx), sy = pgm_read_word(&f->sy),
- ex = pgm_read_word(&f->ex), ey = pgm_read_word(&f->ey);
- if (pgm_read_byte(&f->yfirst)) {
- const int8_t dir = ex > sx ? 1 : -1;
- for (uint8_t y = sy; y != ey; ++y)
- for (uint8_t x = sx; x != ex; x += dir)
- if (smart_fill_one(x, y, dir, 0)) break;
- }
- else {
- const int8_t dir = ey > sy ? 1 : -1;
- for (uint8_t x = sx; x != ex; ++x)
- for (uint8_t y = sy; y != ey; y += dir)
- if (smart_fill_one(x, y, 0, dir)) break;
- }
- }
- }
-
- #if HAS_BED_PROBE
-
- void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
- constexpr int16_t x_min = max(MIN_PROBE_X, UBL_MESH_MIN_X),
- x_max = min(MAX_PROBE_X, UBL_MESH_MAX_X),
- y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
- y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
-
- const float dx = float(x_max - x_min) / (g29_grid_size - 1.0),
- dy = float(y_max - y_min) / (g29_grid_size - 1.0);
-
- struct linear_fit_data lsf_results;
- incremental_LSF_reset(&lsf_results);
-
- bool zig_zag = false;
- for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
- const float x = float(x_min) + ix * dx;
- for (int8_t iy = 0; iy < g29_grid_size; iy++) {
- const float y = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
- float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), parser.seen('E'), g29_verbose_level); // TODO: Needs error handling
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_CHAR('(');
- SERIAL_PROTOCOL_F(x, 7);
- SERIAL_CHAR(',');
- SERIAL_PROTOCOL_F(y, 7);
- SERIAL_ECHOPGM(") logical: ");
- SERIAL_CHAR('(');
- SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(x), 7);
- SERIAL_CHAR(',');
- SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(y), 7);
- SERIAL_ECHOPGM(") measured: ");
- SERIAL_PROTOCOL_F(measured_z, 7);
- SERIAL_ECHOPGM(" correction: ");
- SERIAL_PROTOCOL_F(get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)), 7);
- }
- #endif
-
- measured_z -= get_z_correction(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y)) /* + zprobe_zoffset */ ;
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM(" final >>>---> ");
- SERIAL_PROTOCOL_F(measured_z, 7);
- SERIAL_EOL();
- }
- #endif
-
- incremental_LSF(&lsf_results, x, y, measured_z);
- }
-
- zig_zag ^= true;
- }
-
- if (finish_incremental_LSF(&lsf_results)) {
- SERIAL_ECHOPGM("Could not complete LSF!");
- return;
- }
-
- if (g29_verbose_level > 3) {
- SERIAL_ECHOPGM("LSF Results A=");
- SERIAL_PROTOCOL_F(lsf_results.A, 7);
- SERIAL_ECHOPGM(" B=");
- SERIAL_PROTOCOL_F(lsf_results.B, 7);
- SERIAL_ECHOPGM(" D=");
- SERIAL_PROTOCOL_F(lsf_results.D, 7);
- SERIAL_EOL();
- }
-
- vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
-
- if (g29_verbose_level > 2) {
- SERIAL_ECHOPGM("bed plane normal = [");
- SERIAL_PROTOCOL_F(normal.x, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(normal.y, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(normal.z, 7);
- SERIAL_ECHOLNPGM("]");
- }
-
- matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
-
- for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
- for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
- float x_tmp = mesh_index_to_xpos(i),
- y_tmp = mesh_index_to_ypos(j),
- z_tmp = z_values[i][j];
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("before rotation = [");
- SERIAL_PROTOCOL_F(x_tmp, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(y_tmp, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(z_tmp, 7);
- SERIAL_ECHOPGM("] ---> ");
- safe_delay(20);
- }
- #endif
-
- apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- SERIAL_ECHOPGM("after rotation = [");
- SERIAL_PROTOCOL_F(x_tmp, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(y_tmp, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(z_tmp, 7);
- SERIAL_ECHOLNPGM("]");
- safe_delay(55);
- }
- #endif
-
- z_values[i][j] += z_tmp - lsf_results.D;
- }
- }
-
- #if ENABLED(DEBUG_LEVELING_FEATURE)
- if (DEBUGGING(LEVELING)) {
- rotation.debug(PSTR("rotation matrix:"));
- SERIAL_ECHOPGM("LSF Results A=");
- SERIAL_PROTOCOL_F(lsf_results.A, 7);
- SERIAL_ECHOPGM(" B=");
- SERIAL_PROTOCOL_F(lsf_results.B, 7);
- SERIAL_ECHOPGM(" D=");
- SERIAL_PROTOCOL_F(lsf_results.D, 7);
- SERIAL_EOL();
- safe_delay(55);
-
- SERIAL_ECHOPGM("bed plane normal = [");
- SERIAL_PROTOCOL_F(normal.x, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(normal.y, 7);
- SERIAL_PROTOCOLCHAR(',');
- SERIAL_PROTOCOL_F(normal.z, 7);
- SERIAL_ECHOPGM("]\n");
- SERIAL_EOL();
- }
- #endif
-
- if (do_ubl_mesh_map) display_map(g29_map_type);
- }
-
- #endif // HAS_BED_PROBE
-
- #if ENABLED(UBL_G29_P31)
- void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
-
- // For each undefined mesh point, compute a distance-weighted least squares fit
- // from all the originally populated mesh points, weighted toward the point
- // being extrapolated so that nearby points will have greater influence on
- // the point being extrapolated. Then extrapolate the mesh point from WLSF.
-
- static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
- uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
- struct linear_fit_data lsf_results;
-
- SERIAL_ECHOPGM("Extrapolating mesh...");
-
- const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST);
-
- for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
- for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
- if (!isnan(z_values[jx][jy]))
- SBI(bitmap[jx], jy);
-
- for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
- const float px = mesh_index_to_xpos(ix);
- for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
- const float py = mesh_index_to_ypos(iy);
- if (isnan(z_values[ix][iy])) {
- // undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
- incremental_LSF_reset(&lsf_results);
- for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
- const float rx = mesh_index_to_xpos(jx);
- for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
- if (TEST(bitmap[jx], jy)) {
- const float ry = mesh_index_to_ypos(jy),
- rz = z_values[jx][jy],
- w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py));
- incremental_WLSF(&lsf_results, rx, ry, rz, w);
- }
- }
- }
- if (finish_incremental_LSF(&lsf_results)) {
- SERIAL_ECHOLNPGM("Insufficient data");
- return;
- }
- const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
- z_values[ix][iy] = ez;
- idle(); // housekeeping
- }
- }
- }
-
- SERIAL_ECHOLNPGM("done");
- }
- #endif // UBL_G29_P31
-
- #endif // AUTO_BED_LEVELING_UBL
|