My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

stepper.cpp 40KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A = 0;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::final_estep_rate,
  83. Stepper::current_estep_rate[E_STEPPERS],
  84. Stepper::current_adv_steps[E_STEPPERS];
  85. #else
  86. long Stepper::e_steps[E_STEPPERS],
  87. Stepper::final_advance = 0,
  88. Stepper::old_advance = 0,
  89. Stepper::advance_rate,
  90. Stepper::advance;
  91. #endif
  92. #endif
  93. long Stepper::acceleration_time, Stepper::deceleration_time;
  94. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  95. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  96. #if ENABLED(MIXING_EXTRUDER)
  97. long Stepper::counter_m[MIXING_STEPPERS];
  98. #endif
  99. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  100. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  101. unsigned short Stepper::OCR1A_nominal;
  102. volatile long Stepper::endstops_trigsteps[XYZ];
  103. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  104. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  105. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  106. #elif ENABLED(DUAL_X_CARRIAGE)
  107. #define X_APPLY_DIR(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_DIR_WRITE(v); \
  110. X2_DIR_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  114. }
  115. #define X_APPLY_STEP(v,ALWAYS) \
  116. if (extruder_duplication_enabled || ALWAYS) { \
  117. X_STEP_WRITE(v); \
  118. X2_STEP_WRITE(v); \
  119. } \
  120. else { \
  121. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  122. }
  123. #else
  124. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  125. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  126. #endif
  127. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  128. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  129. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  130. #else
  131. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  132. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  133. #endif
  134. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  135. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  136. #if ENABLED(Z_DUAL_ENDSTOPS)
  137. #define Z_APPLY_STEP(v,Q) \
  138. if (performing_homing) { \
  139. if (Z_HOME_DIR < 0) { \
  140. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  141. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  142. } \
  143. else { \
  144. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  145. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  146. } \
  147. } \
  148. else { \
  149. Z_STEP_WRITE(v); \
  150. Z2_STEP_WRITE(v); \
  151. }
  152. #else
  153. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  154. #endif
  155. #else
  156. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  157. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  158. #endif
  159. #if DISABLED(MIXING_EXTRUDER)
  160. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  161. #endif
  162. // intRes = longIn1 * longIn2 >> 24
  163. // uses:
  164. // r26 to store 0
  165. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  166. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  167. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  168. // B0 A0 are bits 24-39 and are the returned value
  169. // C1 B1 A1 is longIn1
  170. // D2 C2 B2 A2 is longIn2
  171. //
  172. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  173. asm volatile ( \
  174. "clr r26 \n\t" \
  175. "mul %A1, %B2 \n\t" \
  176. "mov r27, r1 \n\t" \
  177. "mul %B1, %C2 \n\t" \
  178. "movw %A0, r0 \n\t" \
  179. "mul %C1, %C2 \n\t" \
  180. "add %B0, r0 \n\t" \
  181. "mul %C1, %B2 \n\t" \
  182. "add %A0, r0 \n\t" \
  183. "adc %B0, r1 \n\t" \
  184. "mul %A1, %C2 \n\t" \
  185. "add r27, r0 \n\t" \
  186. "adc %A0, r1 \n\t" \
  187. "adc %B0, r26 \n\t" \
  188. "mul %B1, %B2 \n\t" \
  189. "add r27, r0 \n\t" \
  190. "adc %A0, r1 \n\t" \
  191. "adc %B0, r26 \n\t" \
  192. "mul %C1, %A2 \n\t" \
  193. "add r27, r0 \n\t" \
  194. "adc %A0, r1 \n\t" \
  195. "adc %B0, r26 \n\t" \
  196. "mul %B1, %A2 \n\t" \
  197. "add r27, r1 \n\t" \
  198. "adc %A0, r26 \n\t" \
  199. "adc %B0, r26 \n\t" \
  200. "lsr r27 \n\t" \
  201. "adc %A0, r26 \n\t" \
  202. "adc %B0, r26 \n\t" \
  203. "mul %D2, %A1 \n\t" \
  204. "add %A0, r0 \n\t" \
  205. "adc %B0, r1 \n\t" \
  206. "mul %D2, %B1 \n\t" \
  207. "add %B0, r0 \n\t" \
  208. "clr r1 \n\t" \
  209. : \
  210. "=&r" (intRes) \
  211. : \
  212. "d" (longIn1), \
  213. "d" (longIn2) \
  214. : \
  215. "r26" , "r27" \
  216. )
  217. // Some useful constants
  218. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  219. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  220. /**
  221. * __________________________
  222. * /| |\ _________________ ^
  223. * / | | \ /| |\ |
  224. * / | | \ / | | \ s
  225. * / | | | | | \ p
  226. * / | | | | | \ e
  227. * +-----+------------------------+---+--+---------------+----+ e
  228. * | BLOCK 1 | BLOCK 2 | d
  229. *
  230. * time ----->
  231. *
  232. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  233. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  234. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  235. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  236. */
  237. void Stepper::wake_up() {
  238. // TCNT1 = 0;
  239. ENABLE_STEPPER_DRIVER_INTERRUPT();
  240. }
  241. /**
  242. * Set the stepper direction of each axis
  243. *
  244. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  245. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  246. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  247. */
  248. void Stepper::set_directions() {
  249. #define SET_STEP_DIR(AXIS) \
  250. if (motor_direction(AXIS ##_AXIS)) { \
  251. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  252. count_direction[AXIS ##_AXIS] = -1; \
  253. } \
  254. else { \
  255. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  256. count_direction[AXIS ##_AXIS] = 1; \
  257. }
  258. #if HAS_X_DIR
  259. SET_STEP_DIR(X); // A
  260. #endif
  261. #if HAS_Y_DIR
  262. SET_STEP_DIR(Y); // B
  263. #endif
  264. #if HAS_Z_DIR
  265. SET_STEP_DIR(Z); // C
  266. #endif
  267. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  268. if (motor_direction(E_AXIS)) {
  269. REV_E_DIR();
  270. count_direction[E_AXIS] = -1;
  271. }
  272. else {
  273. NORM_E_DIR();
  274. count_direction[E_AXIS] = 1;
  275. }
  276. #endif // !ADVANCE && !LIN_ADVANCE
  277. }
  278. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  279. extern volatile uint8_t e_hit;
  280. #endif
  281. /**
  282. * Stepper Driver Interrupt
  283. *
  284. * Directly pulses the stepper motors at high frequency.
  285. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  286. *
  287. * OCR1A Frequency
  288. * 1 2 MHz
  289. * 50 40 KHz
  290. * 100 20 KHz - capped max rate
  291. * 200 10 KHz - nominal max rate
  292. * 2000 1 KHz - sleep rate
  293. * 4000 500 Hz - init rate
  294. */
  295. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  296. void Stepper::isr() {
  297. //Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
  298. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  299. CBI(TIMSK0, OCIE0A); //estepper ISR
  300. #endif
  301. CBI(TIMSK0, OCIE0B); //Temperature ISR
  302. DISABLE_STEPPER_DRIVER_INTERRUPT();
  303. sei();
  304. if (cleaning_buffer_counter) {
  305. current_block = NULL;
  306. planner.discard_current_block();
  307. #ifdef SD_FINISHED_RELEASECOMMAND
  308. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  309. #endif
  310. cleaning_buffer_counter--;
  311. OCR1A = 200; // Run at max speed - 10 KHz
  312. //re-enable ISRs
  313. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  314. SBI(TIMSK0, OCIE0A);
  315. #endif
  316. SBI(TIMSK0, OCIE0B);
  317. ENABLE_STEPPER_DRIVER_INTERRUPT();
  318. return;
  319. }
  320. // If there is no current block, attempt to pop one from the buffer
  321. if (!current_block) {
  322. // Anything in the buffer?
  323. current_block = planner.get_current_block();
  324. if (current_block) {
  325. trapezoid_generator_reset();
  326. // Initialize Bresenham counters to 1/2 the ceiling
  327. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  328. #if ENABLED(MIXING_EXTRUDER)
  329. MIXING_STEPPERS_LOOP(i)
  330. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  331. #endif
  332. step_events_completed = 0;
  333. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  334. e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
  335. // No 'change' can be detected.
  336. #endif
  337. #if ENABLED(Z_LATE_ENABLE)
  338. if (current_block->steps[Z_AXIS] > 0) {
  339. enable_z();
  340. OCR1A = 2000; // Run at slow speed - 1 KHz
  341. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  342. SBI(TIMSK0, OCIE0A);
  343. #endif
  344. SBI(TIMSK0, OCIE0B);
  345. ENABLE_STEPPER_DRIVER_INTERRUPT();
  346. return;
  347. }
  348. #endif
  349. // #if ENABLED(ADVANCE)
  350. // e_steps[TOOL_E_INDEX] = 0;
  351. // #endif
  352. }
  353. else {
  354. OCR1A = 2000; // Run at slow speed - 1 KHz
  355. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  356. SBI(TIMSK0, OCIE0A);
  357. #endif
  358. SBI(TIMSK0, OCIE0B);
  359. ENABLE_STEPPER_DRIVER_INTERRUPT();
  360. return;
  361. }
  362. }
  363. // Update endstops state, if enabled
  364. if ((endstops.enabled
  365. #if HAS_BED_PROBE
  366. || endstops.z_probe_enabled
  367. #endif
  368. )
  369. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  370. && e_hit
  371. #endif
  372. ) {
  373. endstops.update();
  374. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  375. e_hit--;
  376. #endif
  377. }
  378. // Take multiple steps per interrupt (For high speed moves)
  379. bool all_steps_done = false;
  380. for (int8_t i = 0; i < step_loops; i++) {
  381. #if ENABLED(LIN_ADVANCE)
  382. counter_E += current_block->steps[E_AXIS];
  383. if (counter_E > 0) {
  384. counter_E -= current_block->step_event_count;
  385. #if DISABLED(MIXING_EXTRUDER)
  386. // Don't step E here for mixing extruder
  387. count_position[E_AXIS] += count_direction[E_AXIS];
  388. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  389. #endif
  390. }
  391. #if ENABLED(MIXING_EXTRUDER)
  392. // Step mixing steppers proportionally
  393. const bool dir = motor_direction(E_AXIS);
  394. MIXING_STEPPERS_LOOP(j) {
  395. counter_m[j] += current_block->steps[E_AXIS];
  396. if (counter_m[j] > 0) {
  397. counter_m[j] -= current_block->mix_event_count[j];
  398. dir ? --e_steps[j] : ++e_steps[j];
  399. }
  400. }
  401. #endif
  402. #elif ENABLED(ADVANCE)
  403. // Always count the unified E axis
  404. counter_E += current_block->steps[E_AXIS];
  405. if (counter_E > 0) {
  406. counter_E -= current_block->step_event_count;
  407. #if DISABLED(MIXING_EXTRUDER)
  408. // Don't step E here for mixing extruder
  409. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  410. #endif
  411. }
  412. #if ENABLED(MIXING_EXTRUDER)
  413. // Step mixing steppers proportionally
  414. const bool dir = motor_direction(E_AXIS);
  415. MIXING_STEPPERS_LOOP(j) {
  416. counter_m[j] += current_block->steps[E_AXIS];
  417. if (counter_m[j] > 0) {
  418. counter_m[j] -= current_block->mix_event_count[j];
  419. dir ? --e_steps[j] : ++e_steps[j];
  420. }
  421. }
  422. #endif // MIXING_EXTRUDER
  423. #endif // ADVANCE or LIN_ADVANCE
  424. #define _COUNTER(AXIS) counter_## AXIS
  425. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  426. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  427. // Advance the Bresenham counter; start a pulse if the axis needs a step
  428. #define PULSE_START(AXIS) \
  429. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  430. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  431. // Stop an active pulse, reset the Bresenham counter, update the position
  432. #define PULSE_STOP(AXIS) \
  433. if (_COUNTER(AXIS) > 0) { \
  434. _COUNTER(AXIS) -= current_block->step_event_count; \
  435. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  436. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  437. }
  438. #define CYCLES_EATEN_BY_CODE 240
  439. // If a minimum pulse time was specified get the CPU clock
  440. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  441. static uint32_t pulse_start;
  442. pulse_start = TCNT0;
  443. #endif
  444. #if HAS_X_STEP
  445. PULSE_START(X);
  446. #endif
  447. #if HAS_Y_STEP
  448. PULSE_START(Y);
  449. #endif
  450. #if HAS_Z_STEP
  451. PULSE_START(Z);
  452. #endif
  453. // For non-advance use linear interpolation for E also
  454. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  455. #if ENABLED(MIXING_EXTRUDER)
  456. // Keep updating the single E axis
  457. counter_E += current_block->steps[E_AXIS];
  458. // Tick the counters used for this mix
  459. MIXING_STEPPERS_LOOP(j) {
  460. // Step mixing steppers (proportionally)
  461. counter_m[j] += current_block->steps[E_AXIS];
  462. // Step when the counter goes over zero
  463. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  464. }
  465. #else // !MIXING_EXTRUDER
  466. PULSE_START(E);
  467. #endif
  468. #endif // !ADVANCE && !LIN_ADVANCE
  469. // For a minimum pulse time wait before stopping pulses
  470. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  471. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  472. #endif
  473. #if HAS_X_STEP
  474. PULSE_STOP(X);
  475. #endif
  476. #if HAS_Y_STEP
  477. PULSE_STOP(Y);
  478. #endif
  479. #if HAS_Z_STEP
  480. PULSE_STOP(Z);
  481. #endif
  482. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  483. #if ENABLED(MIXING_EXTRUDER)
  484. // Always step the single E axis
  485. if (counter_E > 0) {
  486. counter_E -= current_block->step_event_count;
  487. count_position[E_AXIS] += count_direction[E_AXIS];
  488. }
  489. MIXING_STEPPERS_LOOP(j) {
  490. if (counter_m[j] > 0) {
  491. counter_m[j] -= current_block->mix_event_count[j];
  492. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  493. }
  494. }
  495. #else // !MIXING_EXTRUDER
  496. PULSE_STOP(E);
  497. #endif
  498. #endif // !ADVANCE && !LIN_ADVANCE
  499. if (++step_events_completed >= current_block->step_event_count) {
  500. all_steps_done = true;
  501. break;
  502. }
  503. }
  504. #if ENABLED(LIN_ADVANCE)
  505. if (current_block->use_advance_lead) {
  506. int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
  507. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  508. #if ENABLED(MIXING_EXTRUDER)
  509. // Mixing extruders apply advance lead proportionally
  510. MIXING_STEPPERS_LOOP(j)
  511. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  512. #else
  513. // For most extruders, advance the single E stepper
  514. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  515. #endif
  516. }
  517. #endif
  518. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  519. // If we have esteps to execute, fire the next advance_isr "now"
  520. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  521. #endif
  522. // Calculate new timer value
  523. uint16_t timer, step_rate;
  524. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  525. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  526. acc_step_rate += current_block->initial_rate;
  527. // upper limit
  528. NOMORE(acc_step_rate, current_block->nominal_rate);
  529. // step_rate to timer interval
  530. timer = calc_timer(acc_step_rate);
  531. OCR1A = timer;
  532. acceleration_time += timer;
  533. #if ENABLED(LIN_ADVANCE)
  534. if (current_block->use_advance_lead) {
  535. #if ENABLED(MIXING_EXTRUDER)
  536. MIXING_STEPPERS_LOOP(j)
  537. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  538. #else
  539. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  540. #endif
  541. }
  542. #elif ENABLED(ADVANCE)
  543. advance += advance_rate * step_loops;
  544. //NOLESS(advance, current_block->advance);
  545. long advance_whole = advance >> 8,
  546. advance_factor = advance_whole - old_advance;
  547. // Do E steps + advance steps
  548. #if ENABLED(MIXING_EXTRUDER)
  549. // ...for mixing steppers proportionally
  550. MIXING_STEPPERS_LOOP(j)
  551. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  552. #else
  553. // ...for the active extruder
  554. e_steps[TOOL_E_INDEX] += advance_factor;
  555. #endif
  556. old_advance = advance_whole;
  557. #endif // ADVANCE or LIN_ADVANCE
  558. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  559. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]); //>> 3 is divide by 8. Reason: Timer 1 runs at 16/8=2MHz, Timer 0 at 16/64=0.25MHz. ==> 2/0.25=8.
  560. #endif
  561. }
  562. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  563. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  564. if (step_rate < acc_step_rate) { // Still decelerating?
  565. step_rate = acc_step_rate - step_rate;
  566. NOLESS(step_rate, current_block->final_rate);
  567. }
  568. else
  569. step_rate = current_block->final_rate;
  570. // step_rate to timer interval
  571. timer = calc_timer(step_rate);
  572. OCR1A = timer;
  573. deceleration_time += timer;
  574. #if ENABLED(LIN_ADVANCE)
  575. if (current_block->use_advance_lead) {
  576. #if ENABLED(MIXING_EXTRUDER)
  577. MIXING_STEPPERS_LOOP(j)
  578. current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
  579. #else
  580. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
  581. #endif
  582. }
  583. #elif ENABLED(ADVANCE)
  584. advance -= advance_rate * step_loops;
  585. NOLESS(advance, final_advance);
  586. // Do E steps + advance steps
  587. long advance_whole = advance >> 8,
  588. advance_factor = advance_whole - old_advance;
  589. #if ENABLED(MIXING_EXTRUDER)
  590. MIXING_STEPPERS_LOOP(j)
  591. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  592. #else
  593. e_steps[TOOL_E_INDEX] += advance_factor;
  594. #endif
  595. old_advance = advance_whole;
  596. #endif // ADVANCE or LIN_ADVANCE
  597. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  598. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  599. #endif
  600. }
  601. else {
  602. #if ENABLED(LIN_ADVANCE)
  603. if (current_block->use_advance_lead)
  604. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  605. eISR_Rate = (OCR1A_nominal >> 3) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  606. #endif
  607. OCR1A = OCR1A_nominal;
  608. // ensure we're running at the correct step rate, even if we just came off an acceleration
  609. step_loops = step_loops_nominal;
  610. }
  611. NOLESS(OCR1A, TCNT1 + 16);
  612. // If current block is finished, reset pointer
  613. if (all_steps_done) {
  614. current_block = NULL;
  615. planner.discard_current_block();
  616. }
  617. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  618. SBI(TIMSK0, OCIE0A);
  619. #endif
  620. SBI(TIMSK0, OCIE0B);
  621. ENABLE_STEPPER_DRIVER_INTERRUPT();
  622. }
  623. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  624. // Timer interrupt for E. e_steps is set in the main routine;
  625. // Timer 0 is shared with millies
  626. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  627. void Stepper::advance_isr() {
  628. old_OCR0A += eISR_Rate;
  629. OCR0A = old_OCR0A;
  630. #define SET_E_STEP_DIR(INDEX) \
  631. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  632. #define START_E_PULSE(INDEX) \
  633. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  634. #define STOP_E_PULSE(INDEX) \
  635. if (e_steps[INDEX]) { \
  636. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  637. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  638. }
  639. SET_E_STEP_DIR(0);
  640. #if E_STEPPERS > 1
  641. SET_E_STEP_DIR(1);
  642. #if E_STEPPERS > 2
  643. SET_E_STEP_DIR(2);
  644. #if E_STEPPERS > 3
  645. SET_E_STEP_DIR(3);
  646. #endif
  647. #endif
  648. #endif
  649. #define CYCLES_EATEN_BY_E 60
  650. // Step all E steppers that have steps
  651. for (uint8_t i = 0; i < step_loops; i++) {
  652. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  653. static uint32_t pulse_start;
  654. pulse_start = TCNT0;
  655. #endif
  656. START_E_PULSE(0);
  657. #if E_STEPPERS > 1
  658. START_E_PULSE(1);
  659. #if E_STEPPERS > 2
  660. START_E_PULSE(2);
  661. #if E_STEPPERS > 3
  662. START_E_PULSE(3);
  663. #endif
  664. #endif
  665. #endif
  666. // For a minimum pulse time wait before stopping pulses
  667. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  668. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  669. #endif
  670. STOP_E_PULSE(0);
  671. #if E_STEPPERS > 1
  672. STOP_E_PULSE(1);
  673. #if E_STEPPERS > 2
  674. STOP_E_PULSE(2);
  675. #if E_STEPPERS > 3
  676. STOP_E_PULSE(3);
  677. #endif
  678. #endif
  679. #endif
  680. }
  681. }
  682. #endif // ADVANCE or LIN_ADVANCE
  683. void Stepper::init() {
  684. // Init Digipot Motor Current
  685. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  686. digipot_init();
  687. #endif
  688. // Init Microstepping Pins
  689. #if HAS_MICROSTEPS
  690. microstep_init();
  691. #endif
  692. // Init TMC Steppers
  693. #if ENABLED(HAVE_TMCDRIVER)
  694. tmc_init();
  695. #endif
  696. // Init L6470 Steppers
  697. #if ENABLED(HAVE_L6470DRIVER)
  698. L6470_init();
  699. #endif
  700. // Init Dir Pins
  701. #if HAS_X_DIR
  702. X_DIR_INIT;
  703. #endif
  704. #if HAS_X2_DIR
  705. X2_DIR_INIT;
  706. #endif
  707. #if HAS_Y_DIR
  708. Y_DIR_INIT;
  709. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  710. Y2_DIR_INIT;
  711. #endif
  712. #endif
  713. #if HAS_Z_DIR
  714. Z_DIR_INIT;
  715. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  716. Z2_DIR_INIT;
  717. #endif
  718. #endif
  719. #if HAS_E0_DIR
  720. E0_DIR_INIT;
  721. #endif
  722. #if HAS_E1_DIR
  723. E1_DIR_INIT;
  724. #endif
  725. #if HAS_E2_DIR
  726. E2_DIR_INIT;
  727. #endif
  728. #if HAS_E3_DIR
  729. E3_DIR_INIT;
  730. #endif
  731. // Init Enable Pins - steppers default to disabled.
  732. #if HAS_X_ENABLE
  733. X_ENABLE_INIT;
  734. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  735. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  736. X2_ENABLE_INIT;
  737. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  738. #endif
  739. #endif
  740. #if HAS_Y_ENABLE
  741. Y_ENABLE_INIT;
  742. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  743. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  744. Y2_ENABLE_INIT;
  745. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  746. #endif
  747. #endif
  748. #if HAS_Z_ENABLE
  749. Z_ENABLE_INIT;
  750. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  751. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  752. Z2_ENABLE_INIT;
  753. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  754. #endif
  755. #endif
  756. #if HAS_E0_ENABLE
  757. E0_ENABLE_INIT;
  758. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  759. #endif
  760. #if HAS_E1_ENABLE
  761. E1_ENABLE_INIT;
  762. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  763. #endif
  764. #if HAS_E2_ENABLE
  765. E2_ENABLE_INIT;
  766. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  767. #endif
  768. #if HAS_E3_ENABLE
  769. E3_ENABLE_INIT;
  770. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  771. #endif
  772. // Init endstops and pullups
  773. endstops.init();
  774. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  775. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  776. #define _DISABLE(axis) disable_## axis()
  777. #define AXIS_INIT(axis, AXIS, PIN) \
  778. _STEP_INIT(AXIS); \
  779. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  780. _DISABLE(axis)
  781. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  782. // Init Step Pins
  783. #if HAS_X_STEP
  784. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  785. X2_STEP_INIT;
  786. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  787. #endif
  788. AXIS_INIT(x, X, X);
  789. #endif
  790. #if HAS_Y_STEP
  791. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  792. Y2_STEP_INIT;
  793. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  794. #endif
  795. AXIS_INIT(y, Y, Y);
  796. #endif
  797. #if HAS_Z_STEP
  798. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  799. Z2_STEP_INIT;
  800. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  801. #endif
  802. AXIS_INIT(z, Z, Z);
  803. #endif
  804. #if HAS_E0_STEP
  805. E_AXIS_INIT(0);
  806. #endif
  807. #if HAS_E1_STEP
  808. E_AXIS_INIT(1);
  809. #endif
  810. #if HAS_E2_STEP
  811. E_AXIS_INIT(2);
  812. #endif
  813. #if HAS_E3_STEP
  814. E_AXIS_INIT(3);
  815. #endif
  816. // waveform generation = 0100 = CTC
  817. CBI(TCCR1B, WGM13);
  818. SBI(TCCR1B, WGM12);
  819. CBI(TCCR1A, WGM11);
  820. CBI(TCCR1A, WGM10);
  821. // output mode = 00 (disconnected)
  822. TCCR1A &= ~(3 << COM1A0);
  823. TCCR1A &= ~(3 << COM1B0);
  824. // Set the timer pre-scaler
  825. // Generally we use a divider of 8, resulting in a 2MHz timer
  826. // frequency on a 16MHz MCU. If you are going to change this, be
  827. // sure to regenerate speed_lookuptable.h with
  828. // create_speed_lookuptable.py
  829. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  830. // Init Stepper ISR to 122 Hz for quick starting
  831. OCR1A = 0x4000;
  832. TCNT1 = 0;
  833. ENABLE_STEPPER_DRIVER_INTERRUPT();
  834. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  835. for (int i = 0; i < E_STEPPERS; i++) {
  836. e_steps[i] = 0;
  837. #if ENABLED(LIN_ADVANCE)
  838. current_adv_steps[i] = 0;
  839. #endif
  840. }
  841. #if defined(TCCR0A) && defined(WGM01)
  842. CBI(TCCR0A, WGM01);
  843. CBI(TCCR0A, WGM00);
  844. #endif
  845. SBI(TIMSK0, OCIE0A);
  846. #endif // ADVANCE or LIN_ADVANCE
  847. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  848. sei();
  849. set_directions(); // Init directions to last_direction_bits = 0
  850. }
  851. /**
  852. * Block until all buffered steps are executed
  853. */
  854. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  855. /**
  856. * Set the stepper positions directly in steps
  857. *
  858. * The input is based on the typical per-axis XYZ steps.
  859. * For CORE machines XYZ needs to be translated to ABC.
  860. *
  861. * This allows get_axis_position_mm to correctly
  862. * derive the current XYZ position later on.
  863. */
  864. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  865. synchronize(); // Bad to set stepper counts in the middle of a move
  866. CRITICAL_SECTION_START;
  867. #if ENABLED(COREXY)
  868. // corexy positioning
  869. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  870. count_position[A_AXIS] = a + b;
  871. count_position[B_AXIS] = a - b;
  872. count_position[Z_AXIS] = c;
  873. #elif ENABLED(COREXZ)
  874. // corexz planning
  875. count_position[A_AXIS] = a + c;
  876. count_position[Y_AXIS] = b;
  877. count_position[C_AXIS] = a - c;
  878. #elif ENABLED(COREYZ)
  879. // coreyz planning
  880. count_position[X_AXIS] = a;
  881. count_position[B_AXIS] = b + c;
  882. count_position[C_AXIS] = b - c;
  883. #else
  884. // default non-h-bot planning
  885. count_position[X_AXIS] = a;
  886. count_position[Y_AXIS] = b;
  887. count_position[Z_AXIS] = c;
  888. #endif
  889. count_position[E_AXIS] = e;
  890. CRITICAL_SECTION_END;
  891. }
  892. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  893. CRITICAL_SECTION_START;
  894. count_position[axis] = v;
  895. CRITICAL_SECTION_END;
  896. }
  897. void Stepper::set_e_position(const long &e) {
  898. CRITICAL_SECTION_START;
  899. count_position[E_AXIS] = e;
  900. CRITICAL_SECTION_END;
  901. }
  902. /**
  903. * Get a stepper's position in steps.
  904. */
  905. long Stepper::position(AxisEnum axis) {
  906. CRITICAL_SECTION_START;
  907. long count_pos = count_position[axis];
  908. CRITICAL_SECTION_END;
  909. return count_pos;
  910. }
  911. /**
  912. * Get an axis position according to stepper position(s)
  913. * For CORE machines apply translation from ABC to XYZ.
  914. */
  915. float Stepper::get_axis_position_mm(AxisEnum axis) {
  916. float axis_steps;
  917. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  918. // Requesting one of the "core" axes?
  919. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  920. CRITICAL_SECTION_START;
  921. long pos1 = count_position[CORE_AXIS_1],
  922. pos2 = count_position[CORE_AXIS_2];
  923. CRITICAL_SECTION_END;
  924. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  925. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  926. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  927. }
  928. else
  929. axis_steps = position(axis);
  930. #else
  931. axis_steps = position(axis);
  932. #endif
  933. return axis_steps * planner.steps_to_mm[axis];
  934. }
  935. void Stepper::finish_and_disable() {
  936. synchronize();
  937. disable_all_steppers();
  938. }
  939. void Stepper::quick_stop() {
  940. cleaning_buffer_counter = 5000;
  941. DISABLE_STEPPER_DRIVER_INTERRUPT();
  942. while (planner.blocks_queued()) planner.discard_current_block();
  943. current_block = NULL;
  944. ENABLE_STEPPER_DRIVER_INTERRUPT();
  945. }
  946. void Stepper::endstop_triggered(AxisEnum axis) {
  947. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  948. float axis_pos = count_position[axis];
  949. if (axis == CORE_AXIS_1)
  950. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  951. else if (axis == CORE_AXIS_2)
  952. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  953. endstops_trigsteps[axis] = axis_pos;
  954. #else // !COREXY && !COREXZ && !COREYZ
  955. endstops_trigsteps[axis] = count_position[axis];
  956. #endif // !COREXY && !COREXZ && !COREYZ
  957. kill_current_block();
  958. }
  959. void Stepper::report_positions() {
  960. CRITICAL_SECTION_START;
  961. long xpos = count_position[X_AXIS],
  962. ypos = count_position[Y_AXIS],
  963. zpos = count_position[Z_AXIS];
  964. CRITICAL_SECTION_END;
  965. #if ENABLED(COREXY) || ENABLED(COREXZ) || IS_SCARA
  966. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  967. #else
  968. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  969. #endif
  970. SERIAL_PROTOCOL(xpos);
  971. #if ENABLED(COREXY) || ENABLED(COREYZ) || IS_SCARA
  972. SERIAL_PROTOCOLPGM(" B:");
  973. #else
  974. SERIAL_PROTOCOLPGM(" Y:");
  975. #endif
  976. SERIAL_PROTOCOL(ypos);
  977. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  978. SERIAL_PROTOCOLPGM(" C:");
  979. #else
  980. SERIAL_PROTOCOLPGM(" Z:");
  981. #endif
  982. SERIAL_PROTOCOL(zpos);
  983. SERIAL_EOL;
  984. }
  985. #if ENABLED(BABYSTEPPING)
  986. #define _ENABLE(axis) enable_## axis()
  987. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  988. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  989. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  990. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  991. _ENABLE(axis); \
  992. uint8_t old_pin = _READ_DIR(AXIS); \
  993. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  994. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  995. delayMicroseconds(2); \
  996. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  997. _APPLY_DIR(AXIS, old_pin); \
  998. }
  999. // MUST ONLY BE CALLED BY AN ISR,
  1000. // No other ISR should ever interrupt this!
  1001. void Stepper::babystep(const AxisEnum axis, const bool direction) {
  1002. switch (axis) {
  1003. case X_AXIS:
  1004. BABYSTEP_AXIS(x, X, false);
  1005. break;
  1006. case Y_AXIS:
  1007. BABYSTEP_AXIS(y, Y, false);
  1008. break;
  1009. case Z_AXIS: {
  1010. #if DISABLED(DELTA)
  1011. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1012. #else // DELTA
  1013. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1014. enable_x();
  1015. enable_y();
  1016. enable_z();
  1017. uint8_t old_x_dir_pin = X_DIR_READ,
  1018. old_y_dir_pin = Y_DIR_READ,
  1019. old_z_dir_pin = Z_DIR_READ;
  1020. //setup new step
  1021. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  1022. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  1023. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  1024. //perform step
  1025. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1026. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1027. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1028. delayMicroseconds(2);
  1029. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1030. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1031. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1032. //get old pin state back.
  1033. X_DIR_WRITE(old_x_dir_pin);
  1034. Y_DIR_WRITE(old_y_dir_pin);
  1035. Z_DIR_WRITE(old_z_dir_pin);
  1036. #endif
  1037. } break;
  1038. default: break;
  1039. }
  1040. }
  1041. #endif //BABYSTEPPING
  1042. /**
  1043. * Software-controlled Stepper Motor Current
  1044. */
  1045. #if HAS_DIGIPOTSS
  1046. // From Arduino DigitalPotControl example
  1047. void Stepper::digitalPotWrite(int address, int value) {
  1048. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1049. SPI.transfer(address); // send in the address and value via SPI:
  1050. SPI.transfer(value);
  1051. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1052. //delay(10);
  1053. }
  1054. #endif //HAS_DIGIPOTSS
  1055. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1056. void Stepper::digipot_init() {
  1057. #if HAS_DIGIPOTSS
  1058. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1059. SPI.begin();
  1060. SET_OUTPUT(DIGIPOTSS_PIN);
  1061. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1062. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1063. digipot_current(i, digipot_motor_current[i]);
  1064. }
  1065. #elif HAS_MOTOR_CURRENT_PWM
  1066. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1067. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1068. digipot_current(0, motor_current_setting[0]);
  1069. #endif
  1070. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1071. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1072. digipot_current(1, motor_current_setting[1]);
  1073. #endif
  1074. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1075. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1076. digipot_current(2, motor_current_setting[2]);
  1077. #endif
  1078. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1079. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1080. #endif
  1081. }
  1082. void Stepper::digipot_current(uint8_t driver, int current) {
  1083. #if HAS_DIGIPOTSS
  1084. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1085. digitalPotWrite(digipot_ch[driver], current);
  1086. #elif HAS_MOTOR_CURRENT_PWM
  1087. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1088. switch (driver) {
  1089. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1090. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1091. #endif
  1092. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1093. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1094. #endif
  1095. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1096. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1097. #endif
  1098. }
  1099. #endif
  1100. }
  1101. #endif
  1102. #if HAS_MICROSTEPS
  1103. /**
  1104. * Software-controlled Microstepping
  1105. */
  1106. void Stepper::microstep_init() {
  1107. SET_OUTPUT(X_MS1_PIN);
  1108. SET_OUTPUT(X_MS2_PIN);
  1109. #if HAS_MICROSTEPS_Y
  1110. SET_OUTPUT(Y_MS1_PIN);
  1111. SET_OUTPUT(Y_MS2_PIN);
  1112. #endif
  1113. #if HAS_MICROSTEPS_Z
  1114. SET_OUTPUT(Z_MS1_PIN);
  1115. SET_OUTPUT(Z_MS2_PIN);
  1116. #endif
  1117. #if HAS_MICROSTEPS_E0
  1118. SET_OUTPUT(E0_MS1_PIN);
  1119. SET_OUTPUT(E0_MS2_PIN);
  1120. #endif
  1121. #if HAS_MICROSTEPS_E1
  1122. SET_OUTPUT(E1_MS1_PIN);
  1123. SET_OUTPUT(E1_MS2_PIN);
  1124. #endif
  1125. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1126. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1127. microstep_mode(i, microstep_modes[i]);
  1128. }
  1129. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1130. if (ms1 >= 0) switch (driver) {
  1131. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1132. #if HAS_MICROSTEPS_Y
  1133. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1134. #endif
  1135. #if HAS_MICROSTEPS_Z
  1136. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1137. #endif
  1138. #if HAS_MICROSTEPS_E0
  1139. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1140. #endif
  1141. #if HAS_MICROSTEPS_E1
  1142. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1143. #endif
  1144. }
  1145. if (ms2 >= 0) switch (driver) {
  1146. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1147. #if HAS_MICROSTEPS_Y
  1148. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1149. #endif
  1150. #if HAS_MICROSTEPS_Z
  1151. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1152. #endif
  1153. #if HAS_MICROSTEPS_E0
  1154. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1155. #endif
  1156. #if HAS_MICROSTEPS_E1
  1157. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1158. #endif
  1159. }
  1160. }
  1161. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1162. switch (stepping_mode) {
  1163. case 1: microstep_ms(driver, MICROSTEP1); break;
  1164. case 2: microstep_ms(driver, MICROSTEP2); break;
  1165. case 4: microstep_ms(driver, MICROSTEP4); break;
  1166. case 8: microstep_ms(driver, MICROSTEP8); break;
  1167. case 16: microstep_ms(driver, MICROSTEP16); break;
  1168. }
  1169. }
  1170. void Stepper::microstep_readings() {
  1171. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1172. SERIAL_PROTOCOLPGM("X: ");
  1173. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1174. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1175. #if HAS_MICROSTEPS_Y
  1176. SERIAL_PROTOCOLPGM("Y: ");
  1177. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1178. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1179. #endif
  1180. #if HAS_MICROSTEPS_Z
  1181. SERIAL_PROTOCOLPGM("Z: ");
  1182. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1183. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1184. #endif
  1185. #if HAS_MICROSTEPS_E0
  1186. SERIAL_PROTOCOLPGM("E0: ");
  1187. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1188. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1189. #endif
  1190. #if HAS_MICROSTEPS_E1
  1191. SERIAL_PROTOCOLPGM("E1: ");
  1192. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1193. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1194. #endif
  1195. }
  1196. #endif // HAS_MICROSTEPS