My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

stepper.cpp 20KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "stepper.h"
  19. #include "Configuration.h"
  20. #include "Marlin.h"
  21. #include "planner.h"
  22. #include "pins.h"
  23. #include "fastio.h"
  24. #include "temperature.h"
  25. #include "ultralcd.h"
  26. #include "speed_lookuptable.h"
  27. //===========================================================================
  28. //=============================public variables ============================
  29. //===========================================================================
  30. block_t *current_block; // A pointer to the block currently being traced
  31. //===========================================================================
  32. //=============================private variables ============================
  33. //===========================================================================
  34. //static makes it inpossible to be called from outside of this file by extern.!
  35. // Variables used by The Stepper Driver Interrupt
  36. static unsigned char out_bits; // The next stepping-bits to be output
  37. static long counter_x, // Counter variables for the bresenham line tracer
  38. counter_y,
  39. counter_z,
  40. counter_e;
  41. static unsigned long step_events_completed; // The number of step events executed in the current block
  42. #ifdef ADVANCE
  43. static long advance_rate, advance, final_advance = 0;
  44. static short old_advance = 0;
  45. #endif
  46. static short e_steps;
  47. static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
  48. static long acceleration_time, deceleration_time;
  49. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  50. static unsigned short acc_step_rate; // needed for deccelaration start point
  51. static char step_loops;
  52. volatile long endstops_trigsteps[3]={0,0,0};
  53. volatile long endstops_stepsTotal,endstops_stepsDone;
  54. static volatile bool endstop_x_hit=false;
  55. static volatile bool endstop_y_hit=false;
  56. static volatile bool endstop_z_hit=false;
  57. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  58. volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  59. //===========================================================================
  60. //=============================functions ============================
  61. //===========================================================================
  62. // intRes = intIn1 * intIn2 >> 16
  63. // uses:
  64. // r26 to store 0
  65. // r27 to store the byte 1 of the 24 bit result
  66. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  67. asm volatile ( \
  68. "clr r26 \n\t" \
  69. "mul %A1, %B2 \n\t" \
  70. "movw %A0, r0 \n\t" \
  71. "mul %A1, %A2 \n\t" \
  72. "add %A0, r1 \n\t" \
  73. "adc %B0, r26 \n\t" \
  74. "lsr r0 \n\t" \
  75. "adc %A0, r26 \n\t" \
  76. "adc %B0, r26 \n\t" \
  77. "clr r1 \n\t" \
  78. : \
  79. "=&r" (intRes) \
  80. : \
  81. "d" (charIn1), \
  82. "d" (intIn2) \
  83. : \
  84. "r26" \
  85. )
  86. // intRes = longIn1 * longIn2 >> 24
  87. // uses:
  88. // r26 to store 0
  89. // r27 to store the byte 1 of the 48bit result
  90. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  91. asm volatile ( \
  92. "clr r26 \n\t" \
  93. "mul %A1, %B2 \n\t" \
  94. "mov r27, r1 \n\t" \
  95. "mul %B1, %C2 \n\t" \
  96. "movw %A0, r0 \n\t" \
  97. "mul %C1, %C2 \n\t" \
  98. "add %B0, r0 \n\t" \
  99. "mul %C1, %B2 \n\t" \
  100. "add %A0, r0 \n\t" \
  101. "adc %B0, r1 \n\t" \
  102. "mul %A1, %C2 \n\t" \
  103. "add r27, r0 \n\t" \
  104. "adc %A0, r1 \n\t" \
  105. "adc %B0, r26 \n\t" \
  106. "mul %B1, %B2 \n\t" \
  107. "add r27, r0 \n\t" \
  108. "adc %A0, r1 \n\t" \
  109. "adc %B0, r26 \n\t" \
  110. "mul %C1, %A2 \n\t" \
  111. "add r27, r0 \n\t" \
  112. "adc %A0, r1 \n\t" \
  113. "adc %B0, r26 \n\t" \
  114. "mul %B1, %A2 \n\t" \
  115. "add r27, r1 \n\t" \
  116. "adc %A0, r26 \n\t" \
  117. "adc %B0, r26 \n\t" \
  118. "lsr r27 \n\t" \
  119. "adc %A0, r26 \n\t" \
  120. "adc %B0, r26 \n\t" \
  121. "clr r1 \n\t" \
  122. : \
  123. "=&r" (intRes) \
  124. : \
  125. "d" (longIn1), \
  126. "d" (longIn2) \
  127. : \
  128. "r26" , "r27" \
  129. )
  130. // Some useful constants
  131. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  132. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  133. void checkHitEndstops()
  134. {
  135. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  136. SERIAL_ECHO_START;
  137. SERIAL_ECHOPGM("endstops hit: ");
  138. if(endstop_x_hit) {
  139. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  140. }
  141. if(endstop_y_hit) {
  142. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  143. }
  144. if(endstop_z_hit) {
  145. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  146. }
  147. SERIAL_ECHOLN("");
  148. endstop_x_hit=false;
  149. endstop_y_hit=false;
  150. endstop_z_hit=false;
  151. }
  152. }
  153. void endstops_hit_on_purpose()
  154. {
  155. endstop_x_hit=false;
  156. endstop_y_hit=false;
  157. endstop_z_hit=false;
  158. }
  159. // __________________________
  160. // /| |\ _________________ ^
  161. // / | | \ /| |\ |
  162. // / | | \ / | | \ s
  163. // / | | | | | \ p
  164. // / | | | | | \ e
  165. // +-----+------------------------+---+--+---------------+----+ e
  166. // | BLOCK 1 | BLOCK 2 | d
  167. //
  168. // time ----->
  169. //
  170. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  171. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  172. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  173. // The slope of acceleration is calculated with the leib ramp alghorithm.
  174. void st_wake_up() {
  175. // TCNT1 = 0;
  176. if(busy == false)
  177. ENABLE_STEPPER_DRIVER_INTERRUPT();
  178. }
  179. inline unsigned short calc_timer(unsigned short step_rate) {
  180. unsigned short timer;
  181. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  182. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  183. step_rate = (step_rate >> 2)&0x3fff;
  184. step_loops = 4;
  185. }
  186. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  187. step_rate = (step_rate >> 1)&0x7fff;
  188. step_loops = 2;
  189. }
  190. else {
  191. step_loops = 1;
  192. }
  193. if(step_rate < 32) step_rate = 32;
  194. step_rate -= 32; // Correct for minimal speed
  195. if(step_rate >= (8*256)){ // higher step rate
  196. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  197. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  198. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  199. MultiU16X8toH16(timer, tmp_step_rate, gain);
  200. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  201. }
  202. else { // lower step rates
  203. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  204. table_address += ((step_rate)>>1) & 0xfffc;
  205. timer = (unsigned short)pgm_read_word_near(table_address);
  206. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  207. }
  208. if(timer < 100) { timer = 100; Serial.print("Steprate to high : "); Serial.println(step_rate); }//(20kHz this should never happen)
  209. return timer;
  210. }
  211. // Initializes the trapezoid generator from the current block. Called whenever a new
  212. // block begins.
  213. inline void trapezoid_generator_reset() {
  214. #ifdef ADVANCE
  215. advance = current_block->initial_advance;
  216. final_advance = current_block->final_advance;
  217. #endif
  218. deceleration_time = 0;
  219. // step_rate to timer interval
  220. acc_step_rate = current_block->initial_rate;
  221. acceleration_time = calc_timer(acc_step_rate);
  222. OCR1A = acceleration_time;
  223. }
  224. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  225. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  226. ISR(TIMER1_COMPA_vect)
  227. {
  228. if(busy){
  229. SERIAL_ERROR_START
  230. SERIAL_ERROR(*(unsigned short *)OCR1A);
  231. SERIAL_ERRORLNPGM(" ISR overtaking itself.");
  232. return;
  233. } // The busy-flag is used to avoid reentering this interrupt
  234. busy = true;
  235. sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
  236. // If there is no current block, attempt to pop one from the buffer
  237. if (current_block == NULL) {
  238. // Anything in the buffer?
  239. current_block = plan_get_current_block();
  240. if (current_block != NULL) {
  241. trapezoid_generator_reset();
  242. counter_x = -(current_block->step_event_count >> 1);
  243. counter_y = counter_x;
  244. counter_z = counter_x;
  245. counter_e = counter_x;
  246. step_events_completed = 0;
  247. // #ifdef ADVANCE
  248. e_steps = 0;
  249. // #endif
  250. }
  251. else {
  252. // DISABLE_STEPPER_DRIVER_INTERRUPT();
  253. }
  254. }
  255. if (current_block != NULL) {
  256. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  257. out_bits = current_block->direction_bits;
  258. // Set direction en check limit switches
  259. if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
  260. WRITE(X_DIR_PIN, INVERT_X_DIR);
  261. count_direction[X_AXIS]=-1;
  262. #if X_MIN_PIN > -1
  263. if((READ(X_MIN_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x > 0)) {
  264. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  265. endstop_x_hit=true;
  266. step_events_completed = current_block->step_event_count;
  267. }
  268. #endif
  269. }
  270. else { // +direction
  271. WRITE(X_DIR_PIN,!INVERT_X_DIR);
  272. count_direction[X_AXIS]=1;
  273. #if X_MAX_PIN > -1
  274. if((READ(X_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_x > 0)){
  275. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  276. endstop_x_hit=true;
  277. step_events_completed = current_block->step_event_count;
  278. }
  279. #endif
  280. }
  281. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  282. WRITE(Y_DIR_PIN,INVERT_Y_DIR);
  283. count_direction[Y_AXIS]=-1;
  284. #if Y_MIN_PIN > -1
  285. if((READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y > 0)) {
  286. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  287. endstop_y_hit=true;
  288. step_events_completed = current_block->step_event_count;
  289. }
  290. #endif
  291. }
  292. else { // +direction
  293. WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
  294. count_direction[Y_AXIS]=1;
  295. #if Y_MAX_PIN > -1
  296. if((READ(Y_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_y > 0)){
  297. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  298. endstop_y_hit=true;
  299. step_events_completed = current_block->step_event_count;
  300. }
  301. #endif
  302. }
  303. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  304. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  305. count_direction[Z_AXIS]=-1;
  306. #if Z_MIN_PIN > -1
  307. if((READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z > 0)) {
  308. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  309. endstop_z_hit=true;
  310. step_events_completed = current_block->step_event_count;
  311. }
  312. #endif
  313. }
  314. else { // +direction
  315. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  316. count_direction[Z_AXIS]=1;
  317. #if Z_MAX_PIN > -1
  318. if((READ(Z_MAX_PIN) != ENDSTOPS_INVERTING) && (current_block->steps_z > 0)){
  319. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  320. endstop_z_hit=true;
  321. step_events_completed = current_block->step_event_count;
  322. }
  323. #endif
  324. }
  325. #ifndef ADVANCE
  326. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  327. WRITE(E_DIR_PIN,INVERT_E_DIR);
  328. count_direction[E_AXIS]=-1;
  329. }
  330. else { // +direction
  331. WRITE(E_DIR_PIN,!INVERT_E_DIR);
  332. count_direction[E_AXIS]=-1;
  333. }
  334. #endif //!ADVANCE
  335. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  336. /*
  337. counter_e += current_block->steps_e;
  338. if (counter_e > 0) {
  339. counter_e -= current_block->step_event_count;
  340. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  341. CRITICAL_SECTION_START;
  342. e_steps--;
  343. CRITICAL_SECTION_END;
  344. }
  345. else {
  346. CRITICAL_SECTION_START;
  347. e_steps++;
  348. CRITICAL_SECTION_END;
  349. }
  350. }
  351. */
  352. /*
  353. // Do E steps + advance steps
  354. CRITICAL_SECTION_START;
  355. e_steps += ((advance >> 16) - old_advance);
  356. CRITICAL_SECTION_END;
  357. old_advance = advance >> 16;
  358. */
  359. counter_x += current_block->steps_x;
  360. if (counter_x > 0) {
  361. WRITE(X_STEP_PIN, HIGH);
  362. counter_x -= current_block->step_event_count;
  363. WRITE(X_STEP_PIN, LOW);
  364. count_position[X_AXIS]+=count_direction[X_AXIS];
  365. }
  366. counter_y += current_block->steps_y;
  367. if (counter_y > 0) {
  368. WRITE(Y_STEP_PIN, HIGH);
  369. counter_y -= current_block->step_event_count;
  370. WRITE(Y_STEP_PIN, LOW);
  371. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  372. }
  373. counter_z += current_block->steps_z;
  374. if (counter_z > 0) {
  375. WRITE(Z_STEP_PIN, HIGH);
  376. counter_z -= current_block->step_event_count;
  377. WRITE(Z_STEP_PIN, LOW);
  378. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  379. }
  380. #ifndef ADVANCE
  381. counter_e += current_block->steps_e;
  382. if (counter_e > 0) {
  383. WRITE(E_STEP_PIN, HIGH);
  384. counter_e -= current_block->step_event_count;
  385. WRITE(E_STEP_PIN, LOW);
  386. count_position[E_AXIS]+=count_direction[E_AXIS];
  387. }
  388. #endif //!ADVANCE
  389. step_events_completed += 1;
  390. if(step_events_completed >= current_block->step_event_count) break;
  391. }
  392. // Calculare new timer value
  393. unsigned short timer;
  394. unsigned short step_rate;
  395. if (step_events_completed <= current_block->accelerate_until) {
  396. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  397. acc_step_rate += current_block->initial_rate;
  398. // upper limit
  399. if(acc_step_rate > current_block->nominal_rate)
  400. acc_step_rate = current_block->nominal_rate;
  401. // step_rate to timer interval
  402. timer = calc_timer(acc_step_rate);
  403. #ifdef ADVANCE
  404. advance += advance_rate;
  405. #endif
  406. acceleration_time += timer;
  407. OCR1A = timer;
  408. }
  409. else if (step_events_completed > current_block->decelerate_after) {
  410. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  411. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  412. step_rate = current_block->final_rate;
  413. }
  414. else {
  415. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  416. }
  417. // lower limit
  418. if(step_rate < current_block->final_rate)
  419. step_rate = current_block->final_rate;
  420. // step_rate to timer interval
  421. timer = calc_timer(step_rate);
  422. #ifdef ADVANCE
  423. advance -= advance_rate;
  424. if(advance < final_advance)
  425. advance = final_advance;
  426. #endif //ADVANCE
  427. deceleration_time += timer;
  428. OCR1A = timer;
  429. }
  430. else {
  431. timer = calc_timer(current_block->nominal_rate);
  432. OCR1A = timer;
  433. }
  434. // If current block is finished, reset pointer
  435. if (step_events_completed >= current_block->step_event_count) {
  436. current_block = NULL;
  437. plan_discard_current_block();
  438. }
  439. }
  440. cli(); // disable interrupts
  441. busy=false;
  442. }
  443. #ifdef ADVANCE
  444. unsigned char old_OCR0A;
  445. // Timer interrupt for E. e_steps is set in the main routine;
  446. // Timer 0 is shared with millies
  447. ISR(TIMER0_COMPA_vect)
  448. {
  449. // Critical section needed because Timer 1 interrupt has higher priority.
  450. // The pin set functions are placed on trategic position to comply with the stepper driver timing.
  451. WRITE(E_STEP_PIN, LOW);
  452. // Set E direction (Depends on E direction + advance)
  453. if (e_steps < 0) {
  454. WRITE(E_DIR_PIN,INVERT_E_DIR);
  455. e_steps++;
  456. WRITE(E_STEP_PIN, HIGH);
  457. }
  458. if (e_steps > 0) {
  459. WRITE(E_DIR_PIN,!INVERT_E_DIR);
  460. e_steps--;
  461. WRITE(E_STEP_PIN, HIGH);
  462. }
  463. old_OCR0A += 25; // 10kHz interrupt
  464. OCR0A = old_OCR0A;
  465. }
  466. #endif // ADVANCE
  467. void st_init()
  468. {
  469. //Initialize Dir Pins
  470. #if X_DIR_PIN > -1
  471. SET_OUTPUT(X_DIR_PIN);
  472. #endif
  473. #if Y_DIR_PIN > -1
  474. SET_OUTPUT(Y_DIR_PIN);
  475. #endif
  476. #if Z_DIR_PIN > -1
  477. SET_OUTPUT(Z_DIR_PIN);
  478. #endif
  479. #if E_DIR_PIN > -1
  480. SET_OUTPUT(E_DIR_PIN);
  481. #endif
  482. //Initialize Enable Pins - steppers default to disabled.
  483. #if (X_ENABLE_PIN > -1)
  484. SET_OUTPUT(X_ENABLE_PIN);
  485. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  486. #endif
  487. #if (Y_ENABLE_PIN > -1)
  488. SET_OUTPUT(Y_ENABLE_PIN);
  489. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  490. #endif
  491. #if (Z_ENABLE_PIN > -1)
  492. SET_OUTPUT(Z_ENABLE_PIN);
  493. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  494. #endif
  495. #if (E_ENABLE_PIN > -1)
  496. SET_OUTPUT(E_ENABLE_PIN);
  497. if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
  498. #endif
  499. //endstops and pullups
  500. #ifdef ENDSTOPPULLUPS
  501. #if X_MIN_PIN > -1
  502. SET_INPUT(X_MIN_PIN);
  503. WRITE(X_MIN_PIN,HIGH);
  504. #endif
  505. #if X_MAX_PIN > -1
  506. SET_INPUT(X_MAX_PIN);
  507. WRITE(X_MAX_PIN,HIGH);
  508. #endif
  509. #if Y_MIN_PIN > -1
  510. SET_INPUT(Y_MIN_PIN);
  511. WRITE(Y_MIN_PIN,HIGH);
  512. #endif
  513. #if Y_MAX_PIN > -1
  514. SET_INPUT(Y_MAX_PIN);
  515. WRITE(Y_MAX_PIN,HIGH);
  516. #endif
  517. #if Z_MIN_PIN > -1
  518. SET_INPUT(Z_MIN_PIN);
  519. WRITE(Z_MIN_PIN,HIGH);
  520. #endif
  521. #if Z_MAX_PIN > -1
  522. SET_INPUT(Z_MAX_PIN);
  523. WRITE(Z_MAX_PIN,HIGH);
  524. #endif
  525. #else //ENDSTOPPULLUPS
  526. #if X_MIN_PIN > -1
  527. SET_INPUT(X_MIN_PIN);
  528. #endif
  529. #if X_MAX_PIN > -1
  530. SET_INPUT(X_MAX_PIN);
  531. #endif
  532. #if Y_MIN_PIN > -1
  533. SET_INPUT(Y_MIN_PIN);
  534. #endif
  535. #if Y_MAX_PIN > -1
  536. SET_INPUT(Y_MAX_PIN);
  537. #endif
  538. #if Z_MIN_PIN > -1
  539. SET_INPUT(Z_MIN_PIN);
  540. #endif
  541. #if Z_MAX_PIN > -1
  542. SET_INPUT(Z_MAX_PIN);
  543. #endif
  544. #endif //ENDSTOPPULLUPS
  545. //Initialize Step Pins
  546. #if (X_STEP_PIN > -1)
  547. SET_OUTPUT(X_STEP_PIN);
  548. #endif
  549. #if (Y_STEP_PIN > -1)
  550. SET_OUTPUT(Y_STEP_PIN);
  551. #endif
  552. #if (Z_STEP_PIN > -1)
  553. SET_OUTPUT(Z_STEP_PIN);
  554. #endif
  555. #if (E_STEP_PIN > -1)
  556. SET_OUTPUT(E_STEP_PIN);
  557. #endif
  558. // waveform generation = 0100 = CTC
  559. TCCR1B &= ~(1<<WGM13);
  560. TCCR1B |= (1<<WGM12);
  561. TCCR1A &= ~(1<<WGM11);
  562. TCCR1A &= ~(1<<WGM10);
  563. // output mode = 00 (disconnected)
  564. TCCR1A &= ~(3<<COM1A0);
  565. TCCR1A &= ~(3<<COM1B0);
  566. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
  567. OCR1A = 0x4000;
  568. TCNT1 = 0;
  569. ENABLE_STEPPER_DRIVER_INTERRUPT();
  570. #ifdef ADVANCE
  571. e_steps = 0;
  572. TIMSK0 |= (1<<OCIE0A);
  573. #endif //ADVANCE
  574. sei();
  575. }
  576. // Block until all buffered steps are executed
  577. void st_synchronize()
  578. {
  579. while(plan_get_current_block()) {
  580. manage_heater();
  581. manage_inactivity(1);
  582. LCD_STATUS;
  583. }
  584. }
  585. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  586. {
  587. CRITICAL_SECTION_START;
  588. count_position[X_AXIS] = x;
  589. count_position[Y_AXIS] = y;
  590. count_position[Z_AXIS] = z;
  591. count_position[E_AXIS] = e;
  592. CRITICAL_SECTION_END;
  593. }
  594. long st_get_position(char axis)
  595. {
  596. long count_pos;
  597. CRITICAL_SECTION_START;
  598. count_pos = count_position[axis];
  599. CRITICAL_SECTION_END;
  600. return count_pos;
  601. }