My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

planner.cpp 43KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042
  1. /**
  2. * planner.cpp - Buffer movement commands and manage the acceleration profile plan
  3. * Part of Grbl
  4. *
  5. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  6. *
  7. * Grbl is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * Grbl is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. *
  21. * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
  22. *
  23. *
  24. * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  25. *
  26. * s == speed, a == acceleration, t == time, d == distance
  27. *
  28. * Basic definitions:
  29. * Speed[s_, a_, t_] := s + (a*t)
  30. * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  31. *
  32. * Distance to reach a specific speed with a constant acceleration:
  33. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  34. * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  35. *
  36. * Speed after a given distance of travel with constant acceleration:
  37. * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  38. * m -> Sqrt[2 a d + s^2]
  39. *
  40. * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  41. *
  42. * When to start braking (di) to reach a specified destination speed (s2) after accelerating
  43. * from initial speed s1 without ever stopping at a plateau:
  44. * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  45. * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  46. *
  47. * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  48. *
  49. */
  50. #include "Marlin.h"
  51. #include "planner.h"
  52. #include "stepper.h"
  53. #include "temperature.h"
  54. #include "ultralcd.h"
  55. #include "language.h"
  56. #if ENABLED(MESH_BED_LEVELING)
  57. #include "mesh_bed_leveling.h"
  58. #endif
  59. //===========================================================================
  60. //============================= public variables ============================
  61. //===========================================================================
  62. millis_t minsegmenttime;
  63. float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
  64. float axis_steps_per_unit[NUM_AXIS];
  65. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  66. float minimumfeedrate;
  67. float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  68. float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
  69. float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  70. float max_xy_jerk; // The largest speed change requiring no acceleration
  71. float max_z_jerk;
  72. float max_e_jerk;
  73. float mintravelfeedrate;
  74. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  75. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  76. // Transform required to compensate for bed level
  77. matrix_3x3 plan_bed_level_matrix = {
  78. 1.0, 0.0, 0.0,
  79. 0.0, 1.0, 0.0,
  80. 0.0, 0.0, 1.0
  81. };
  82. #endif // AUTO_BED_LEVELING_FEATURE
  83. #if ENABLED(AUTOTEMP)
  84. float autotemp_max = 250;
  85. float autotemp_min = 210;
  86. float autotemp_factor = 0.1;
  87. bool autotemp_enabled = false;
  88. #endif
  89. //===========================================================================
  90. //============ semi-private variables, used in inline functions =============
  91. //===========================================================================
  92. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  93. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  94. volatile unsigned char block_buffer_tail; // Index of the block to process now
  95. //===========================================================================
  96. //============================ private variables ============================
  97. //===========================================================================
  98. // The current position of the tool in absolute steps
  99. long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode
  100. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  101. static float previous_nominal_speed; // Nominal speed of previous path line segment
  102. unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
  103. #ifdef XY_FREQUENCY_LIMIT
  104. // Used for the frequency limit
  105. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  106. // Old direction bits. Used for speed calculations
  107. static unsigned char old_direction_bits = 0;
  108. // Segment times (in µs). Used for speed calculations
  109. static long axis_segment_time[2][3] = { {MAX_FREQ_TIME+1,0,0}, {MAX_FREQ_TIME+1,0,0} };
  110. #endif
  111. #if ENABLED(FILAMENT_SENSOR)
  112. static char meas_sample; //temporary variable to hold filament measurement sample
  113. #endif
  114. //===========================================================================
  115. //================================ functions ================================
  116. //===========================================================================
  117. // Get the next / previous index of the next block in the ring buffer
  118. // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
  119. FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  120. FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  121. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  122. // given acceleration:
  123. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
  124. if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
  125. return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
  126. }
  127. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  128. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  129. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  130. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  131. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
  132. if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
  133. return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
  134. }
  135. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  136. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  137. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
  138. unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
  139. // Limit minimal step rate (Otherwise the timer will overflow.)
  140. NOLESS(initial_rate, 120);
  141. NOLESS(final_rate, 120);
  142. long acceleration = block->acceleration_st;
  143. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  144. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  145. // Calculate the size of Plateau of Nominal Rate.
  146. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  147. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  148. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  149. // in order to reach the final_rate exactly at the end of this block.
  150. if (plateau_steps < 0) {
  151. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  152. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  153. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  154. plateau_steps = 0;
  155. }
  156. #if ENABLED(ADVANCE)
  157. volatile long initial_advance = block->advance * entry_factor * entry_factor;
  158. volatile long final_advance = block->advance * exit_factor * exit_factor;
  159. #endif // ADVANCE
  160. // block->accelerate_until = accelerate_steps;
  161. // block->decelerate_after = accelerate_steps+plateau_steps;
  162. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  163. if (!block->busy) { // Don't update variables if block is busy.
  164. block->accelerate_until = accelerate_steps;
  165. block->decelerate_after = accelerate_steps+plateau_steps;
  166. block->initial_rate = initial_rate;
  167. block->final_rate = final_rate;
  168. #if ENABLED(ADVANCE)
  169. block->initial_advance = initial_advance;
  170. block->final_advance = final_advance;
  171. #endif
  172. }
  173. CRITICAL_SECTION_END;
  174. }
  175. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  176. // acceleration within the allotted distance.
  177. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  178. return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
  179. }
  180. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  181. // This method will calculate the junction jerk as the euclidean distance between the nominal
  182. // velocities of the respective blocks.
  183. //inline float junction_jerk(block_t *before, block_t *after) {
  184. // return sqrt(
  185. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  186. //}
  187. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  188. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  189. if (!current) return;
  190. UNUSED(previous);
  191. if (next) {
  192. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  193. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  194. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  195. if (current->entry_speed != current->max_entry_speed) {
  196. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  197. // for max allowable speed if block is decelerating and nominal length is false.
  198. if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
  199. current->entry_speed = min(current->max_entry_speed,
  200. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  201. }
  202. else {
  203. current->entry_speed = current->max_entry_speed;
  204. }
  205. current->recalculate_flag = true;
  206. }
  207. } // Skip last block. Already initialized and set for recalculation.
  208. }
  209. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  210. // implements the reverse pass.
  211. void planner_reverse_pass() {
  212. uint8_t block_index = block_buffer_head;
  213. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  214. CRITICAL_SECTION_START;
  215. unsigned char tail = block_buffer_tail;
  216. CRITICAL_SECTION_END
  217. if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
  218. block_index = BLOCK_MOD(block_buffer_head - 3);
  219. block_t *block[3] = { NULL, NULL, NULL };
  220. while (block_index != tail) {
  221. block_index = prev_block_index(block_index);
  222. block[2]= block[1];
  223. block[1]= block[0];
  224. block[0] = &block_buffer[block_index];
  225. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  226. }
  227. }
  228. }
  229. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  230. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  231. if (!previous) return;
  232. UNUSED(next);
  233. // If the previous block is an acceleration block, but it is not long enough to complete the
  234. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  235. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  236. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  237. if (!previous->nominal_length_flag) {
  238. if (previous->entry_speed < current->entry_speed) {
  239. double entry_speed = min(current->entry_speed,
  240. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  241. // Check for junction speed change
  242. if (current->entry_speed != entry_speed) {
  243. current->entry_speed = entry_speed;
  244. current->recalculate_flag = true;
  245. }
  246. }
  247. }
  248. }
  249. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  250. // implements the forward pass.
  251. void planner_forward_pass() {
  252. uint8_t block_index = block_buffer_tail;
  253. block_t *block[3] = { NULL, NULL, NULL };
  254. while (block_index != block_buffer_head) {
  255. block[0] = block[1];
  256. block[1] = block[2];
  257. block[2] = &block_buffer[block_index];
  258. planner_forward_pass_kernel(block[0], block[1], block[2]);
  259. block_index = next_block_index(block_index);
  260. }
  261. planner_forward_pass_kernel(block[1], block[2], NULL);
  262. }
  263. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  264. // entry_factor for each junction. Must be called by planner_recalculate() after
  265. // updating the blocks.
  266. void planner_recalculate_trapezoids() {
  267. int8_t block_index = block_buffer_tail;
  268. block_t *current;
  269. block_t *next = NULL;
  270. while (block_index != block_buffer_head) {
  271. current = next;
  272. next = &block_buffer[block_index];
  273. if (current) {
  274. // Recalculate if current block entry or exit junction speed has changed.
  275. if (current->recalculate_flag || next->recalculate_flag) {
  276. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  277. float nom = current->nominal_speed;
  278. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  279. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  280. }
  281. }
  282. block_index = next_block_index( block_index );
  283. }
  284. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  285. if (next) {
  286. float nom = next->nominal_speed;
  287. calculate_trapezoid_for_block(next, next->entry_speed / nom, MINIMUM_PLANNER_SPEED / nom);
  288. next->recalculate_flag = false;
  289. }
  290. }
  291. // Recalculates the motion plan according to the following algorithm:
  292. //
  293. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  294. // so that:
  295. // a. The junction jerk is within the set limit
  296. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  297. // acceleration.
  298. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  299. // a. The speed increase within one block would require faster acceleration than the one, true
  300. // constant acceleration.
  301. //
  302. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  303. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  304. // the set limit. Finally it will:
  305. //
  306. // 3. Recalculate trapezoids for all blocks.
  307. void planner_recalculate() {
  308. planner_reverse_pass();
  309. planner_forward_pass();
  310. planner_recalculate_trapezoids();
  311. }
  312. void plan_init() {
  313. block_buffer_head = block_buffer_tail = 0;
  314. memset(position, 0, sizeof(position)); // clear position
  315. for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
  316. previous_nominal_speed = 0.0;
  317. }
  318. #if ENABLED(AUTOTEMP)
  319. void getHighESpeed() {
  320. static float oldt = 0;
  321. if (!autotemp_enabled) return;
  322. if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
  323. float high = 0.0;
  324. uint8_t block_index = block_buffer_tail;
  325. while (block_index != block_buffer_head) {
  326. block_t *block = &block_buffer[block_index];
  327. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  328. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  329. if (se > high) high = se;
  330. }
  331. block_index = next_block_index(block_index);
  332. }
  333. float t = autotemp_min + high * autotemp_factor;
  334. t = constrain(t, autotemp_min, autotemp_max);
  335. if (oldt > t) {
  336. t *= (1 - AUTOTEMP_OLDWEIGHT);
  337. t += AUTOTEMP_OLDWEIGHT * oldt;
  338. }
  339. oldt = t;
  340. setTargetHotend0(t);
  341. }
  342. #endif
  343. void check_axes_activity() {
  344. unsigned char axis_active[NUM_AXIS] = { 0 },
  345. tail_fan_speed = fanSpeed;
  346. #if ENABLED(BARICUDA)
  347. unsigned char tail_valve_pressure = ValvePressure,
  348. tail_e_to_p_pressure = EtoPPressure;
  349. #endif
  350. block_t *block;
  351. if (blocks_queued()) {
  352. uint8_t block_index = block_buffer_tail;
  353. tail_fan_speed = block_buffer[block_index].fan_speed;
  354. #if ENABLED(BARICUDA)
  355. block = &block_buffer[block_index];
  356. tail_valve_pressure = block->valve_pressure;
  357. tail_e_to_p_pressure = block->e_to_p_pressure;
  358. #endif
  359. while (block_index != block_buffer_head) {
  360. block = &block_buffer[block_index];
  361. for (int i=0; i<NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
  362. block_index = next_block_index(block_index);
  363. }
  364. }
  365. if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
  366. if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
  367. if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
  368. if (DISABLE_E && !axis_active[E_AXIS]) {
  369. disable_e0();
  370. disable_e1();
  371. disable_e2();
  372. disable_e3();
  373. }
  374. #if HAS_FAN
  375. #ifdef FAN_KICKSTART_TIME
  376. static millis_t fan_kick_end;
  377. if (tail_fan_speed) {
  378. millis_t ms = millis();
  379. if (fan_kick_end == 0) {
  380. // Just starting up fan - run at full power.
  381. fan_kick_end = ms + FAN_KICKSTART_TIME;
  382. tail_fan_speed = 255;
  383. } else if (fan_kick_end > ms)
  384. // Fan still spinning up.
  385. tail_fan_speed = 255;
  386. } else {
  387. fan_kick_end = 0;
  388. }
  389. #endif //FAN_KICKSTART_TIME
  390. #if ENABLED(FAN_MIN_PWM)
  391. #define CALC_FAN_SPEED (tail_fan_speed ? ( FAN_MIN_PWM + (tail_fan_speed * (255 - FAN_MIN_PWM)) / 255 ) : 0)
  392. #else
  393. #define CALC_FAN_SPEED tail_fan_speed
  394. #endif // FAN_MIN_PWM
  395. #if ENABLED(FAN_SOFT_PWM)
  396. fanSpeedSoftPwm = CALC_FAN_SPEED;
  397. #else
  398. analogWrite(FAN_PIN, CALC_FAN_SPEED);
  399. #endif // FAN_SOFT_PWM
  400. #endif // HAS_FAN
  401. #if ENABLED(AUTOTEMP)
  402. getHighESpeed();
  403. #endif
  404. #if ENABLED(BARICUDA)
  405. #if HAS_HEATER_1
  406. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  407. #endif
  408. #if HAS_HEATER_2
  409. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  410. #endif
  411. #endif
  412. }
  413. float junction_deviation = 0.1;
  414. // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
  415. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  416. // calculation the caller must also provide the physical length of the line in millimeters.
  417. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  418. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t extruder)
  419. #else
  420. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t extruder)
  421. #endif // AUTO_BED_LEVELING_FEATURE
  422. {
  423. // Calculate the buffer head after we push this byte
  424. int next_buffer_head = next_block_index(block_buffer_head);
  425. // If the buffer is full: good! That means we are well ahead of the robot.
  426. // Rest here until there is room in the buffer.
  427. while (block_buffer_tail == next_buffer_head) idle();
  428. #if ENABLED(MESH_BED_LEVELING)
  429. if (mbl.active) z += mbl.get_z(x, y);
  430. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  431. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  432. #endif
  433. // The target position of the tool in absolute steps
  434. // Calculate target position in absolute steps
  435. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  436. long target[NUM_AXIS];
  437. target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  438. target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  439. target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
  440. target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  441. float dx = target[X_AXIS] - position[X_AXIS],
  442. dy = target[Y_AXIS] - position[Y_AXIS],
  443. dz = target[Z_AXIS] - position[Z_AXIS];
  444. // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
  445. if (marlin_debug_flags & DEBUG_DRYRUN)
  446. position[E_AXIS] = target[E_AXIS];
  447. float de = target[E_AXIS] - position[E_AXIS];
  448. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  449. if (de) {
  450. if (degHotend(extruder) < extrude_min_temp) {
  451. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  452. de = 0; // no difference
  453. SERIAL_ECHO_START;
  454. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  455. }
  456. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  457. if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
  458. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  459. de = 0; // no difference
  460. SERIAL_ECHO_START;
  461. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  462. }
  463. #endif
  464. }
  465. #endif
  466. // Prepare to set up new block
  467. block_t *block = &block_buffer[block_buffer_head];
  468. // Mark block as not busy (Not executed by the stepper interrupt)
  469. block->busy = false;
  470. // Number of steps for each axis
  471. #if ENABLED(COREXY)
  472. // corexy planning
  473. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  474. block->steps[A_AXIS] = labs(dx + dy);
  475. block->steps[B_AXIS] = labs(dx - dy);
  476. block->steps[Z_AXIS] = labs(dz);
  477. #elif ENABLED(COREXZ)
  478. // corexz planning
  479. block->steps[A_AXIS] = labs(dx + dz);
  480. block->steps[Y_AXIS] = labs(dy);
  481. block->steps[C_AXIS] = labs(dx - dz);
  482. #else
  483. // default non-h-bot planning
  484. block->steps[X_AXIS] = labs(dx);
  485. block->steps[Y_AXIS] = labs(dy);
  486. block->steps[Z_AXIS] = labs(dz);
  487. #endif
  488. block->steps[E_AXIS] = labs(de);
  489. block->steps[E_AXIS] *= volumetric_multiplier[extruder];
  490. block->steps[E_AXIS] *= extruder_multiplier[extruder];
  491. block->steps[E_AXIS] /= 100;
  492. block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
  493. // Bail if this is a zero-length block
  494. if (block->step_event_count <= dropsegments) return;
  495. block->fan_speed = fanSpeed;
  496. #if ENABLED(BARICUDA)
  497. block->valve_pressure = ValvePressure;
  498. block->e_to_p_pressure = EtoPPressure;
  499. #endif
  500. // Compute direction bits for this block
  501. uint8_t db = 0;
  502. #if ENABLED(COREXY)
  503. if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
  504. if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
  505. if (dz < 0) db |= BIT(Z_AXIS);
  506. if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
  507. if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
  508. #elif ENABLED(COREXZ)
  509. if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
  510. if (dy < 0) db |= BIT(Y_AXIS);
  511. if (dz < 0) db |= BIT(Z_HEAD); // ...and Z
  512. if (dx + dz < 0) db |= BIT(A_AXIS); // Motor A direction
  513. if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction
  514. #else
  515. if (dx < 0) db |= BIT(X_AXIS);
  516. if (dy < 0) db |= BIT(Y_AXIS);
  517. if (dz < 0) db |= BIT(Z_AXIS);
  518. #endif
  519. if (de < 0) db |= BIT(E_AXIS);
  520. block->direction_bits = db;
  521. block->active_extruder = extruder;
  522. //enable active axes
  523. #if ENABLED(COREXY)
  524. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  525. enable_x();
  526. enable_y();
  527. }
  528. #if DISABLED(Z_LATE_ENABLE)
  529. if (block->steps[Z_AXIS]) enable_z();
  530. #endif
  531. #elif ENABLED(COREXZ)
  532. if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
  533. enable_x();
  534. enable_z();
  535. }
  536. if (block->steps[Y_AXIS]) enable_y();
  537. #else
  538. if (block->steps[X_AXIS]) enable_x();
  539. if (block->steps[Y_AXIS]) enable_y();
  540. #if DISABLED(Z_LATE_ENABLE)
  541. if (block->steps[Z_AXIS]) enable_z();
  542. #endif
  543. #endif
  544. // Enable extruder(s)
  545. if (block->steps[E_AXIS]) {
  546. if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
  547. for (int i=0; i<EXTRUDERS; i++)
  548. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  549. switch(extruder) {
  550. case 0:
  551. enable_e0();
  552. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
  553. #if EXTRUDERS > 1
  554. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  555. #if EXTRUDERS > 2
  556. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  557. #if EXTRUDERS > 3
  558. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  559. #endif
  560. #endif
  561. #endif
  562. break;
  563. #if EXTRUDERS > 1
  564. case 1:
  565. enable_e1();
  566. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE * 2;
  567. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  568. #if EXTRUDERS > 2
  569. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  570. #if EXTRUDERS > 3
  571. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  572. #endif
  573. #endif
  574. break;
  575. #if EXTRUDERS > 2
  576. case 2:
  577. enable_e2();
  578. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE * 2;
  579. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  580. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  581. #if EXTRUDERS > 3
  582. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  583. #endif
  584. break;
  585. #if EXTRUDERS > 3
  586. case 3:
  587. enable_e3();
  588. g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE * 2;
  589. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  590. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  591. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  592. break;
  593. #endif // EXTRUDERS > 3
  594. #endif // EXTRUDERS > 2
  595. #endif // EXTRUDERS > 1
  596. }
  597. }
  598. else { // enable all
  599. enable_e0();
  600. enable_e1();
  601. enable_e2();
  602. enable_e3();
  603. }
  604. }
  605. if (block->steps[E_AXIS])
  606. NOLESS(feed_rate, minimumfeedrate);
  607. else
  608. NOLESS(feed_rate, mintravelfeedrate);
  609. /**
  610. * This part of the code calculates the total length of the movement.
  611. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  612. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  613. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  614. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  615. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  616. */
  617. #if ENABLED(COREXY)
  618. float delta_mm[6];
  619. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  620. delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
  621. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  622. delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
  623. delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
  624. #elif ENABLED(COREXZ)
  625. float delta_mm[6];
  626. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  627. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  628. delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
  629. delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
  630. delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
  631. #else
  632. float delta_mm[4];
  633. delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
  634. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  635. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  636. #endif
  637. delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
  638. if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
  639. block->millimeters = fabs(delta_mm[E_AXIS]);
  640. }
  641. else {
  642. block->millimeters = sqrt(
  643. #if ENABLED(COREXY)
  644. square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
  645. #elif ENABLED(COREXZ)
  646. square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
  647. #else
  648. square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
  649. #endif
  650. );
  651. }
  652. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  653. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  654. float inverse_second = feed_rate * inverse_millimeters;
  655. int moves_queued = movesplanned();
  656. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  657. #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
  658. bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
  659. #if ENABLED(OLD_SLOWDOWN)
  660. if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
  661. #endif
  662. #if ENABLED(SLOWDOWN)
  663. // segment time im micro seconds
  664. unsigned long segment_time = lround(1000000.0/inverse_second);
  665. if (mq) {
  666. if (segment_time < minsegmenttime) {
  667. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  668. inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
  669. #ifdef XY_FREQUENCY_LIMIT
  670. segment_time = lround(1000000.0 / inverse_second);
  671. #endif
  672. }
  673. }
  674. #endif
  675. #endif
  676. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  677. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  678. #if ENABLED(FILAMENT_SENSOR)
  679. //FMM update ring buffer used for delay with filament measurements
  680. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
  681. const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
  682. delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
  683. while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
  684. while (delay_dist < 0) delay_dist += MMD10;
  685. delay_index1 = delay_dist / 10.0; // calculate index
  686. delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
  687. if (delay_index1 != delay_index2) { // moved index
  688. meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  689. while (delay_index1 != delay_index2) {
  690. // Increment and loop around buffer
  691. if (++delay_index2 >= MMD) delay_index2 -= MMD;
  692. delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
  693. measurement_delay[delay_index2] = meas_sample;
  694. }
  695. }
  696. }
  697. #endif
  698. // Calculate and limit speed in mm/sec for each axis
  699. float current_speed[NUM_AXIS];
  700. float speed_factor = 1.0; //factor <=1 do decrease speed
  701. for (int i = 0; i < NUM_AXIS; i++) {
  702. current_speed[i] = delta_mm[i] * inverse_second;
  703. float cs = fabs(current_speed[i]), mf = max_feedrate[i];
  704. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  705. }
  706. // Max segement time in us.
  707. #ifdef XY_FREQUENCY_LIMIT
  708. #define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT)
  709. // Check and limit the xy direction change frequency
  710. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  711. old_direction_bits = block->direction_bits;
  712. segment_time = lround((float)segment_time / speed_factor);
  713. long xs0 = axis_segment_time[X_AXIS][0],
  714. xs1 = axis_segment_time[X_AXIS][1],
  715. xs2 = axis_segment_time[X_AXIS][2],
  716. ys0 = axis_segment_time[Y_AXIS][0],
  717. ys1 = axis_segment_time[Y_AXIS][1],
  718. ys2 = axis_segment_time[Y_AXIS][2];
  719. if ((direction_change & BIT(X_AXIS)) != 0) {
  720. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  721. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  722. xs0 = 0;
  723. }
  724. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  725. if ((direction_change & BIT(Y_AXIS)) != 0) {
  726. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  727. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  728. ys0 = 0;
  729. }
  730. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  731. long max_x_segment_time = max(xs0, max(xs1, xs2)),
  732. max_y_segment_time = max(ys0, max(ys1, ys2)),
  733. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  734. if (min_xy_segment_time < MAX_FREQ_TIME) {
  735. float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
  736. speed_factor = min(speed_factor, low_sf);
  737. }
  738. #endif // XY_FREQUENCY_LIMIT
  739. // Correct the speed
  740. if (speed_factor < 1.0) {
  741. for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
  742. block->nominal_speed *= speed_factor;
  743. block->nominal_rate *= speed_factor;
  744. }
  745. // Compute and limit the acceleration rate for the trapezoid generator.
  746. float steps_per_mm = block->step_event_count / block->millimeters;
  747. long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  748. if (bsx == 0 && bsy == 0 && bsz == 0) {
  749. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  750. }
  751. else if (bse == 0) {
  752. block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  753. }
  754. else {
  755. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  756. }
  757. // Limit acceleration per axis
  758. unsigned long acc_st = block->acceleration_st,
  759. xsteps = axis_steps_per_sqr_second[X_AXIS],
  760. ysteps = axis_steps_per_sqr_second[Y_AXIS],
  761. zsteps = axis_steps_per_sqr_second[Z_AXIS],
  762. esteps = axis_steps_per_sqr_second[E_AXIS];
  763. if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
  764. if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
  765. if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
  766. if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
  767. block->acceleration_st = acc_st;
  768. block->acceleration = acc_st / steps_per_mm;
  769. block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
  770. #if 0 // Use old jerk for now
  771. // Compute path unit vector
  772. double unit_vec[3];
  773. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  774. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  775. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  776. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  777. // Let a circle be tangent to both previous and current path line segments, where the junction
  778. // deviation is defined as the distance from the junction to the closest edge of the circle,
  779. // colinear with the circle center. The circular segment joining the two paths represents the
  780. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  781. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  782. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  783. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  784. // nonlinearities of both the junction angle and junction velocity.
  785. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  786. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  787. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  788. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  789. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  790. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  791. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  792. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  793. // Skip and use default max junction speed for 0 degree acute junction.
  794. if (cos_theta < 0.95) {
  795. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  796. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  797. if (cos_theta > -0.95) {
  798. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  799. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  800. vmax_junction = min(vmax_junction,
  801. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  802. }
  803. }
  804. }
  805. #endif
  806. // Start with a safe speed
  807. float vmax_junction = max_xy_jerk / 2;
  808. float vmax_junction_factor = 1.0;
  809. float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  810. float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  811. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  812. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  813. vmax_junction = min(vmax_junction, block->nominal_speed);
  814. float safe_speed = vmax_junction;
  815. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  816. float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  817. dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  818. dz = fabs(csz - previous_speed[Z_AXIS]),
  819. de = fabs(cse - previous_speed[E_AXIS]),
  820. jerk = sqrt(dx * dx + dy * dy);
  821. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  822. vmax_junction = block->nominal_speed;
  823. // }
  824. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  825. if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
  826. if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);
  827. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  828. }
  829. block->max_entry_speed = vmax_junction;
  830. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  831. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  832. block->entry_speed = min(vmax_junction, v_allowable);
  833. // Initialize planner efficiency flags
  834. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  835. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  836. // the current block and next block junction speeds are guaranteed to always be at their maximum
  837. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  838. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  839. // the reverse and forward planners, the corresponding block junction speed will always be at the
  840. // the maximum junction speed and may always be ignored for any speed reduction checks.
  841. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  842. block->recalculate_flag = true; // Always calculate trapezoid for new block
  843. // Update previous path unit_vector and nominal speed
  844. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  845. previous_nominal_speed = block->nominal_speed;
  846. #if ENABLED(ADVANCE)
  847. // Calculate advance rate
  848. if (!bse || (!bsx && !bsy && !bsz)) {
  849. block->advance_rate = 0;
  850. block->advance = 0;
  851. }
  852. else {
  853. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  854. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
  855. block->advance = advance;
  856. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  857. }
  858. /*
  859. SERIAL_ECHO_START;
  860. SERIAL_ECHOPGM("advance :");
  861. SERIAL_ECHO(block->advance/256.0);
  862. SERIAL_ECHOPGM("advance rate :");
  863. SERIAL_ECHOLN(block->advance_rate/256.0);
  864. */
  865. #endif // ADVANCE
  866. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  867. // Move buffer head
  868. block_buffer_head = next_buffer_head;
  869. // Update position
  870. for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
  871. planner_recalculate();
  872. st_wake_up();
  873. } // plan_buffer_line()
  874. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
  875. vector_3 plan_get_position() {
  876. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  877. //position.debug("in plan_get position");
  878. //plan_bed_level_matrix.debug("in plan_get_position");
  879. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  880. //inverse.debug("in plan_get inverse");
  881. position.apply_rotation(inverse);
  882. //position.debug("after rotation");
  883. return position;
  884. }
  885. #endif // AUTO_BED_LEVELING_FEATURE && !DELTA
  886. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  887. void plan_set_position(float x, float y, float z, const float &e)
  888. #else
  889. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  890. #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
  891. {
  892. #if ENABLED(MESH_BED_LEVELING)
  893. if (mbl.active) z += mbl.get_z(x, y);
  894. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  895. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  896. #endif
  897. float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]),
  898. ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]),
  899. nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]),
  900. ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  901. st_set_position(nx, ny, nz, ne);
  902. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  903. for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
  904. }
  905. void plan_set_e_position(const float &e) {
  906. position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  907. st_set_e_position(position[E_AXIS]);
  908. }
  909. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  910. void reset_acceleration_rates() {
  911. for (int i = 0; i < NUM_AXIS; i++)
  912. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  913. }