My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 39KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311
  1. /**
  2. * stepper.cpp - stepper motor driver: executes motion plans using stepper motors
  3. * Marlin Firmware
  4. *
  5. * Derived from Grbl
  6. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  7. *
  8. * Grbl is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * Grbl is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  20. */
  21. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  22. and Philipp Tiefenbacher. */
  23. #include "Marlin.h"
  24. #include "stepper.h"
  25. #include "planner.h"
  26. #include "temperature.h"
  27. #include "ultralcd.h"
  28. #include "language.h"
  29. #include "cardreader.h"
  30. #include "speed_lookuptable.h"
  31. #if HAS_DIGIPOTSS
  32. #include <SPI.h>
  33. #endif
  34. //===========================================================================
  35. //============================= public variables ============================
  36. //===========================================================================
  37. block_t *current_block; // A pointer to the block currently being traced
  38. //===========================================================================
  39. //============================= private variables ===========================
  40. //===========================================================================
  41. //static makes it impossible to be called from outside of this file by extern.!
  42. // Variables used by The Stepper Driver Interrupt
  43. static unsigned char out_bits = 0; // The next stepping-bits to be output
  44. static unsigned int cleaning_buffer_counter;
  45. #if ENABLED(Z_DUAL_ENDSTOPS)
  46. static bool performing_homing = false,
  47. locked_z_motor = false,
  48. locked_z2_motor = false;
  49. #endif
  50. // Counter variables for the Bresenham line tracer
  51. static long counter_x, counter_y, counter_z, counter_e;
  52. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  53. #if ENABLED(ADVANCE)
  54. static long advance_rate, advance, final_advance = 0;
  55. static long old_advance = 0;
  56. static long e_steps[4];
  57. #endif
  58. static long acceleration_time, deceleration_time;
  59. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  60. static unsigned short acc_step_rate; // needed for deceleration start point
  61. static char step_loops;
  62. static unsigned short OCR1A_nominal;
  63. static unsigned short step_loops_nominal;
  64. volatile long endstops_trigsteps[3] = { 0 };
  65. volatile long endstops_stepsTotal, endstops_stepsDone;
  66. static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value
  67. #if DISABLED(Z_DUAL_ENDSTOPS)
  68. static byte
  69. #else
  70. static uint16_t
  71. #endif
  72. old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_MIN_PROBE, Z2_MIN, Z2_MAX
  73. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  74. bool abort_on_endstop_hit = false;
  75. #endif
  76. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  77. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  78. #endif
  79. static bool check_endstops = true;
  80. volatile long count_position[NUM_AXIS] = { 0 };
  81. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  82. //===========================================================================
  83. //================================ functions ================================
  84. //===========================================================================
  85. #if ENABLED(DUAL_X_CARRIAGE)
  86. #define X_APPLY_DIR(v,ALWAYS) \
  87. if (extruder_duplication_enabled || ALWAYS) { \
  88. X_DIR_WRITE(v); \
  89. X2_DIR_WRITE(v); \
  90. } \
  91. else { \
  92. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  93. }
  94. #define X_APPLY_STEP(v,ALWAYS) \
  95. if (extruder_duplication_enabled || ALWAYS) { \
  96. X_STEP_WRITE(v); \
  97. X2_STEP_WRITE(v); \
  98. } \
  99. else { \
  100. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  101. }
  102. #else
  103. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  104. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  105. #endif
  106. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  107. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  108. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  109. #else
  110. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  111. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  112. #endif
  113. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  114. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  115. #if ENABLED(Z_DUAL_ENDSTOPS)
  116. #define Z_APPLY_STEP(v,Q) \
  117. if (performing_homing) { \
  118. if (Z_HOME_DIR > 0) {\
  119. if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  120. if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  121. } else {\
  122. if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  123. if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  124. } \
  125. } else { \
  126. Z_STEP_WRITE(v); \
  127. Z2_STEP_WRITE(v); \
  128. }
  129. #else
  130. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  131. #endif
  132. #else
  133. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  134. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  135. #endif
  136. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  137. // intRes = intIn1 * intIn2 >> 16
  138. // uses:
  139. // r26 to store 0
  140. // r27 to store the byte 1 of the 24 bit result
  141. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  142. asm volatile ( \
  143. "clr r26 \n\t" \
  144. "mul %A1, %B2 \n\t" \
  145. "movw %A0, r0 \n\t" \
  146. "mul %A1, %A2 \n\t" \
  147. "add %A0, r1 \n\t" \
  148. "adc %B0, r26 \n\t" \
  149. "lsr r0 \n\t" \
  150. "adc %A0, r26 \n\t" \
  151. "adc %B0, r26 \n\t" \
  152. "clr r1 \n\t" \
  153. : \
  154. "=&r" (intRes) \
  155. : \
  156. "d" (charIn1), \
  157. "d" (intIn2) \
  158. : \
  159. "r26" \
  160. )
  161. // intRes = longIn1 * longIn2 >> 24
  162. // uses:
  163. // r26 to store 0
  164. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  165. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  166. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  167. // B0 A0 are bits 24-39 and are the returned value
  168. // C1 B1 A1 is longIn1
  169. // D2 C2 B2 A2 is longIn2
  170. //
  171. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  172. asm volatile ( \
  173. "clr r26 \n\t" \
  174. "mul %A1, %B2 \n\t" \
  175. "mov r27, r1 \n\t" \
  176. "mul %B1, %C2 \n\t" \
  177. "movw %A0, r0 \n\t" \
  178. "mul %C1, %C2 \n\t" \
  179. "add %B0, r0 \n\t" \
  180. "mul %C1, %B2 \n\t" \
  181. "add %A0, r0 \n\t" \
  182. "adc %B0, r1 \n\t" \
  183. "mul %A1, %C2 \n\t" \
  184. "add r27, r0 \n\t" \
  185. "adc %A0, r1 \n\t" \
  186. "adc %B0, r26 \n\t" \
  187. "mul %B1, %B2 \n\t" \
  188. "add r27, r0 \n\t" \
  189. "adc %A0, r1 \n\t" \
  190. "adc %B0, r26 \n\t" \
  191. "mul %C1, %A2 \n\t" \
  192. "add r27, r0 \n\t" \
  193. "adc %A0, r1 \n\t" \
  194. "adc %B0, r26 \n\t" \
  195. "mul %B1, %A2 \n\t" \
  196. "add r27, r1 \n\t" \
  197. "adc %A0, r26 \n\t" \
  198. "adc %B0, r26 \n\t" \
  199. "lsr r27 \n\t" \
  200. "adc %A0, r26 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %D2, %A1 \n\t" \
  203. "add %A0, r0 \n\t" \
  204. "adc %B0, r1 \n\t" \
  205. "mul %D2, %B1 \n\t" \
  206. "add %B0, r0 \n\t" \
  207. "clr r1 \n\t" \
  208. : \
  209. "=&r" (intRes) \
  210. : \
  211. "d" (longIn1), \
  212. "d" (longIn2) \
  213. : \
  214. "r26" , "r27" \
  215. )
  216. // Some useful constants
  217. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  218. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  219. void endstops_hit_on_purpose() {
  220. endstop_hit_bits = 0;
  221. }
  222. void checkHitEndstops() {
  223. if (endstop_hit_bits) {
  224. SERIAL_ECHO_START;
  225. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  226. if (endstop_hit_bits & BIT(X_MIN)) {
  227. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  228. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  229. }
  230. if (endstop_hit_bits & BIT(Y_MIN)) {
  231. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  232. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  233. }
  234. if (endstop_hit_bits & BIT(Z_MIN)) {
  235. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  236. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  237. }
  238. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  239. if (endstop_hit_bits & BIT(Z_MIN_PROBE)) {
  240. SERIAL_ECHOPAIR(" Z_MIN_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  241. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  242. }
  243. #endif
  244. SERIAL_EOL;
  245. endstops_hit_on_purpose();
  246. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
  247. if (abort_on_endstop_hit) {
  248. card.sdprinting = false;
  249. card.closefile();
  250. quickStop();
  251. disable_all_heaters(); // switch off all heaters.
  252. }
  253. #endif
  254. }
  255. }
  256. void enable_endstops(bool check) { check_endstops = check; }
  257. // Check endstops
  258. inline void update_endstops() {
  259. #if ENABLED(Z_DUAL_ENDSTOPS)
  260. uint16_t
  261. #else
  262. byte
  263. #endif
  264. current_endstop_bits = 0;
  265. #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
  266. #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
  267. #define _AXIS(AXIS) AXIS ##_AXIS
  268. #define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
  269. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
  270. // SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
  271. #define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
  272. // COPY_BIT: copy the value of COPY_BIT to BIT in bits
  273. #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
  274. // TEST_ENDSTOP: test the old and the current status of an endstop
  275. #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
  276. #define UPDATE_ENDSTOP(AXIS,MINMAX) \
  277. SET_ENDSTOP_BIT(AXIS, MINMAX); \
  278. if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
  279. endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
  280. _ENDSTOP_HIT(AXIS); \
  281. step_events_completed = current_block->step_event_count; \
  282. }
  283. #if ENABLED(COREXY)
  284. // Head direction in -X axis for CoreXY bots.
  285. // If DeltaX == -DeltaY, the movement is only in Y axis
  286. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  287. if (TEST(out_bits, X_HEAD))
  288. #elif ENABLED(COREXZ)
  289. // Head direction in -X axis for CoreXZ bots.
  290. // If DeltaX == -DeltaZ, the movement is only in Z axis
  291. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
  292. if (TEST(out_bits, X_HEAD))
  293. #else
  294. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
  295. #endif
  296. { // -direction
  297. #if ENABLED(DUAL_X_CARRIAGE)
  298. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  299. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  300. #endif
  301. {
  302. #if HAS_X_MIN
  303. UPDATE_ENDSTOP(X, MIN);
  304. #endif
  305. }
  306. }
  307. else { // +direction
  308. #if ENABLED(DUAL_X_CARRIAGE)
  309. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  310. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  311. #endif
  312. {
  313. #if HAS_X_MAX
  314. UPDATE_ENDSTOP(X, MAX);
  315. #endif
  316. }
  317. }
  318. #if ENABLED(COREXY) || ENABLED(COREXZ)
  319. }
  320. #endif
  321. #if ENABLED(COREXY)
  322. // Head direction in -Y axis for CoreXY bots.
  323. // If DeltaX == DeltaY, the movement is only in X axis
  324. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  325. if (TEST(out_bits, Y_HEAD))
  326. #else
  327. if (TEST(out_bits, Y_AXIS)) // -direction
  328. #endif
  329. { // -direction
  330. #if HAS_Y_MIN
  331. UPDATE_ENDSTOP(Y, MIN);
  332. #endif
  333. }
  334. else { // +direction
  335. #if HAS_Y_MAX
  336. UPDATE_ENDSTOP(Y, MAX);
  337. #endif
  338. }
  339. #if ENABLED(COREXY)
  340. }
  341. #endif
  342. #if ENABLED(COREXZ)
  343. // Head direction in -Z axis for CoreXZ bots.
  344. // If DeltaX == DeltaZ, the movement is only in X axis
  345. if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
  346. if (TEST(out_bits, Z_HEAD))
  347. #else
  348. if (TEST(out_bits, Z_AXIS))
  349. #endif
  350. { // z -direction
  351. #if HAS_Z_MIN
  352. #if ENABLED(Z_DUAL_ENDSTOPS)
  353. SET_ENDSTOP_BIT(Z, MIN);
  354. #if HAS_Z2_MIN
  355. SET_ENDSTOP_BIT(Z2, MIN);
  356. #else
  357. COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
  358. #endif
  359. byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
  360. if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
  361. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  362. endstop_hit_bits |= BIT(Z_MIN);
  363. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  364. step_events_completed = current_block->step_event_count;
  365. }
  366. #else // !Z_DUAL_ENDSTOPS
  367. UPDATE_ENDSTOP(Z, MIN);
  368. #endif // !Z_DUAL_ENDSTOPS
  369. #endif // Z_MIN_PIN
  370. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  371. UPDATE_ENDSTOP(Z, MIN_PROBE);
  372. if (TEST_ENDSTOP(Z_MIN_PROBE))
  373. {
  374. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  375. endstop_hit_bits |= BIT(Z_MIN_PROBE);
  376. }
  377. #endif
  378. }
  379. else { // z +direction
  380. #if HAS_Z_MAX
  381. #if ENABLED(Z_DUAL_ENDSTOPS)
  382. SET_ENDSTOP_BIT(Z, MAX);
  383. #if HAS_Z2_MAX
  384. SET_ENDSTOP_BIT(Z2, MAX);
  385. #else
  386. COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX);
  387. #endif
  388. byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
  389. if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
  390. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  391. endstop_hit_bits |= BIT(Z_MIN);
  392. if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
  393. step_events_completed = current_block->step_event_count;
  394. }
  395. #else // !Z_DUAL_ENDSTOPS
  396. UPDATE_ENDSTOP(Z, MAX);
  397. #endif // !Z_DUAL_ENDSTOPS
  398. #endif // Z_MAX_PIN
  399. }
  400. #if ENABLED(COREXZ)
  401. }
  402. #endif
  403. old_endstop_bits = current_endstop_bits;
  404. }
  405. // __________________________
  406. // /| |\ _________________ ^
  407. // / | | \ /| |\ |
  408. // / | | \ / | | \ s
  409. // / | | | | | \ p
  410. // / | | | | | \ e
  411. // +-----+------------------------+---+--+---------------+----+ e
  412. // | BLOCK 1 | BLOCK 2 | d
  413. //
  414. // time ----->
  415. //
  416. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  417. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  418. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  419. // The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  420. void st_wake_up() {
  421. // TCNT1 = 0;
  422. ENABLE_STEPPER_DRIVER_INTERRUPT();
  423. }
  424. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  425. unsigned short timer;
  426. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  427. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  428. step_rate = (step_rate >> 2) & 0x3fff;
  429. step_loops = 4;
  430. }
  431. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  432. step_rate = (step_rate >> 1) & 0x7fff;
  433. step_loops = 2;
  434. }
  435. else {
  436. step_loops = 1;
  437. }
  438. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  439. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  440. if (step_rate >= (8 * 256)) { // higher step rate
  441. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  442. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  443. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  444. MultiU16X8toH16(timer, tmp_step_rate, gain);
  445. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  446. }
  447. else { // lower step rates
  448. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  449. table_address += ((step_rate)>>1) & 0xfffc;
  450. timer = (unsigned short)pgm_read_word_near(table_address);
  451. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  452. }
  453. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  454. return timer;
  455. }
  456. /**
  457. * Set the stepper direction of each axis
  458. *
  459. * X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
  460. * X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
  461. */
  462. void set_stepper_direction() {
  463. if (TEST(out_bits, X_AXIS)) { // A_AXIS
  464. X_APPLY_DIR(INVERT_X_DIR, 0);
  465. count_direction[X_AXIS] = -1;
  466. }
  467. else {
  468. X_APPLY_DIR(!INVERT_X_DIR, 0);
  469. count_direction[X_AXIS] = 1;
  470. }
  471. if (TEST(out_bits, Y_AXIS)) { // B_AXIS
  472. Y_APPLY_DIR(INVERT_Y_DIR, 0);
  473. count_direction[Y_AXIS] = -1;
  474. }
  475. else {
  476. Y_APPLY_DIR(!INVERT_Y_DIR, 0);
  477. count_direction[Y_AXIS] = 1;
  478. }
  479. if (TEST(out_bits, Z_AXIS)) { // C_AXIS
  480. Z_APPLY_DIR(INVERT_Z_DIR, 0);
  481. count_direction[Z_AXIS] = -1;
  482. }
  483. else {
  484. Z_APPLY_DIR(!INVERT_Z_DIR, 0);
  485. count_direction[Z_AXIS] = 1;
  486. }
  487. #if DISABLED(ADVANCE)
  488. if (TEST(out_bits, E_AXIS)) {
  489. REV_E_DIR();
  490. count_direction[E_AXIS] = -1;
  491. }
  492. else {
  493. NORM_E_DIR();
  494. count_direction[E_AXIS] = 1;
  495. }
  496. #endif //!ADVANCE
  497. }
  498. // Initializes the trapezoid generator from the current block. Called whenever a new
  499. // block begins.
  500. FORCE_INLINE void trapezoid_generator_reset() {
  501. if (current_block->direction_bits != out_bits) {
  502. out_bits = current_block->direction_bits;
  503. set_stepper_direction();
  504. }
  505. #if ENABLED(ADVANCE)
  506. advance = current_block->initial_advance;
  507. final_advance = current_block->final_advance;
  508. // Do E steps + advance steps
  509. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  510. old_advance = advance >>8;
  511. #endif
  512. deceleration_time = 0;
  513. // step_rate to timer interval
  514. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  515. // make a note of the number of step loops required at nominal speed
  516. step_loops_nominal = step_loops;
  517. acc_step_rate = current_block->initial_rate;
  518. acceleration_time = calc_timer(acc_step_rate);
  519. OCR1A = acceleration_time;
  520. // SERIAL_ECHO_START;
  521. // SERIAL_ECHOPGM("advance :");
  522. // SERIAL_ECHO(current_block->advance/256.0);
  523. // SERIAL_ECHOPGM("advance rate :");
  524. // SERIAL_ECHO(current_block->advance_rate/256.0);
  525. // SERIAL_ECHOPGM("initial advance :");
  526. // SERIAL_ECHO(current_block->initial_advance/256.0);
  527. // SERIAL_ECHOPGM("final advance :");
  528. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  529. }
  530. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  531. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  532. ISR(TIMER1_COMPA_vect) {
  533. if (cleaning_buffer_counter) {
  534. current_block = NULL;
  535. plan_discard_current_block();
  536. #ifdef SD_FINISHED_RELEASECOMMAND
  537. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueuecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  538. #endif
  539. cleaning_buffer_counter--;
  540. OCR1A = 200;
  541. return;
  542. }
  543. // If there is no current block, attempt to pop one from the buffer
  544. if (!current_block) {
  545. // Anything in the buffer?
  546. current_block = plan_get_current_block();
  547. if (current_block) {
  548. current_block->busy = true;
  549. trapezoid_generator_reset();
  550. counter_x = -(current_block->step_event_count >> 1);
  551. counter_y = counter_z = counter_e = counter_x;
  552. step_events_completed = 0;
  553. #if ENABLED(Z_LATE_ENABLE)
  554. if (current_block->steps[Z_AXIS] > 0) {
  555. enable_z();
  556. OCR1A = 2000; //1ms wait
  557. return;
  558. }
  559. #endif
  560. // #if ENABLED(ADVANCE)
  561. // e_steps[current_block->active_extruder] = 0;
  562. // #endif
  563. }
  564. else {
  565. OCR1A = 2000; // 1kHz.
  566. }
  567. }
  568. if (current_block != NULL) {
  569. // Update endstops state, if enabled
  570. if (check_endstops) update_endstops();
  571. // Take multiple steps per interrupt (For high speed moves)
  572. for (int8_t i = 0; i < step_loops; i++) {
  573. #ifndef USBCON
  574. customizedSerial.checkRx(); // Check for serial chars.
  575. #endif
  576. #if ENABLED(ADVANCE)
  577. counter_e += current_block->steps[E_AXIS];
  578. if (counter_e > 0) {
  579. counter_e -= current_block->step_event_count;
  580. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  581. }
  582. #endif //ADVANCE
  583. #define _COUNTER(axis) counter_## axis
  584. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  585. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  586. #define STEP_ADD(axis, AXIS) \
  587. _COUNTER(axis) += current_block->steps[_AXIS(AXIS)]; \
  588. if (_COUNTER(axis) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  589. STEP_ADD(x,X);
  590. STEP_ADD(y,Y);
  591. STEP_ADD(z,Z);
  592. #if DISABLED(ADVANCE)
  593. STEP_ADD(e,E);
  594. #endif
  595. #define STEP_IF_COUNTER(axis, AXIS) \
  596. if (_COUNTER(axis) > 0) { \
  597. _COUNTER(axis) -= current_block->step_event_count; \
  598. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  599. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  600. }
  601. STEP_IF_COUNTER(x, X);
  602. STEP_IF_COUNTER(y, Y);
  603. STEP_IF_COUNTER(z, Z);
  604. #if DISABLED(ADVANCE)
  605. STEP_IF_COUNTER(e, E);
  606. #endif
  607. step_events_completed++;
  608. if (step_events_completed >= current_block->step_event_count) break;
  609. }
  610. // Calculate new timer value
  611. unsigned short timer;
  612. unsigned short step_rate;
  613. if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
  614. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  615. acc_step_rate += current_block->initial_rate;
  616. // upper limit
  617. if (acc_step_rate > current_block->nominal_rate)
  618. acc_step_rate = current_block->nominal_rate;
  619. // step_rate to timer interval
  620. timer = calc_timer(acc_step_rate);
  621. OCR1A = timer;
  622. acceleration_time += timer;
  623. #if ENABLED(ADVANCE)
  624. for(int8_t i=0; i < step_loops; i++) {
  625. advance += advance_rate;
  626. }
  627. //if (advance > current_block->advance) advance = current_block->advance;
  628. // Do E steps + advance steps
  629. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  630. old_advance = advance >>8;
  631. #endif
  632. }
  633. else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
  634. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  635. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  636. step_rate = current_block->final_rate;
  637. }
  638. else {
  639. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  640. }
  641. // lower limit
  642. if (step_rate < current_block->final_rate)
  643. step_rate = current_block->final_rate;
  644. // step_rate to timer interval
  645. timer = calc_timer(step_rate);
  646. OCR1A = timer;
  647. deceleration_time += timer;
  648. #if ENABLED(ADVANCE)
  649. for(int8_t i=0; i < step_loops; i++) {
  650. advance -= advance_rate;
  651. }
  652. if (advance < final_advance) advance = final_advance;
  653. // Do E steps + advance steps
  654. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  655. old_advance = advance >>8;
  656. #endif //ADVANCE
  657. }
  658. else {
  659. OCR1A = OCR1A_nominal;
  660. // ensure we're running at the correct step rate, even if we just came off an acceleration
  661. step_loops = step_loops_nominal;
  662. }
  663. // If current block is finished, reset pointer
  664. if (step_events_completed >= current_block->step_event_count) {
  665. current_block = NULL;
  666. plan_discard_current_block();
  667. }
  668. }
  669. }
  670. #if ENABLED(ADVANCE)
  671. unsigned char old_OCR0A;
  672. // Timer interrupt for E. e_steps is set in the main routine;
  673. // Timer 0 is shared with millies
  674. ISR(TIMER0_COMPA_vect)
  675. {
  676. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  677. OCR0A = old_OCR0A;
  678. // Set E direction (Depends on E direction + advance)
  679. for(unsigned char i=0; i<4;i++) {
  680. if (e_steps[0] != 0) {
  681. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  682. if (e_steps[0] < 0) {
  683. E0_DIR_WRITE(INVERT_E0_DIR);
  684. e_steps[0]++;
  685. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  686. }
  687. else if (e_steps[0] > 0) {
  688. E0_DIR_WRITE(!INVERT_E0_DIR);
  689. e_steps[0]--;
  690. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  691. }
  692. }
  693. #if EXTRUDERS > 1
  694. if (e_steps[1] != 0) {
  695. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  696. if (e_steps[1] < 0) {
  697. E1_DIR_WRITE(INVERT_E1_DIR);
  698. e_steps[1]++;
  699. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  700. }
  701. else if (e_steps[1] > 0) {
  702. E1_DIR_WRITE(!INVERT_E1_DIR);
  703. e_steps[1]--;
  704. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  705. }
  706. }
  707. #endif
  708. #if EXTRUDERS > 2
  709. if (e_steps[2] != 0) {
  710. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  711. if (e_steps[2] < 0) {
  712. E2_DIR_WRITE(INVERT_E2_DIR);
  713. e_steps[2]++;
  714. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  715. }
  716. else if (e_steps[2] > 0) {
  717. E2_DIR_WRITE(!INVERT_E2_DIR);
  718. e_steps[2]--;
  719. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  720. }
  721. }
  722. #endif
  723. #if EXTRUDERS > 3
  724. if (e_steps[3] != 0) {
  725. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  726. if (e_steps[3] < 0) {
  727. E3_DIR_WRITE(INVERT_E3_DIR);
  728. e_steps[3]++;
  729. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  730. }
  731. else if (e_steps[3] > 0) {
  732. E3_DIR_WRITE(!INVERT_E3_DIR);
  733. e_steps[3]--;
  734. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  735. }
  736. }
  737. #endif
  738. }
  739. }
  740. #endif // ADVANCE
  741. void st_init() {
  742. digipot_init(); //Initialize Digipot Motor Current
  743. microstep_init(); //Initialize Microstepping Pins
  744. // initialise TMC Steppers
  745. #if ENABLED(HAVE_TMCDRIVER)
  746. tmc_init();
  747. #endif
  748. // initialise L6470 Steppers
  749. #if ENABLED(HAVE_L6470DRIVER)
  750. L6470_init();
  751. #endif
  752. // Initialize Dir Pins
  753. #if HAS_X_DIR
  754. X_DIR_INIT;
  755. #endif
  756. #if HAS_X2_DIR
  757. X2_DIR_INIT;
  758. #endif
  759. #if HAS_Y_DIR
  760. Y_DIR_INIT;
  761. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  762. Y2_DIR_INIT;
  763. #endif
  764. #endif
  765. #if HAS_Z_DIR
  766. Z_DIR_INIT;
  767. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  768. Z2_DIR_INIT;
  769. #endif
  770. #endif
  771. #if HAS_E0_DIR
  772. E0_DIR_INIT;
  773. #endif
  774. #if HAS_E1_DIR
  775. E1_DIR_INIT;
  776. #endif
  777. #if HAS_E2_DIR
  778. E2_DIR_INIT;
  779. #endif
  780. #if HAS_E3_DIR
  781. E3_DIR_INIT;
  782. #endif
  783. //Initialize Enable Pins - steppers default to disabled.
  784. #if HAS_X_ENABLE
  785. X_ENABLE_INIT;
  786. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  787. #endif
  788. #if HAS_X2_ENABLE
  789. X2_ENABLE_INIT;
  790. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  791. #endif
  792. #if HAS_Y_ENABLE
  793. Y_ENABLE_INIT;
  794. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  795. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  796. Y2_ENABLE_INIT;
  797. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  798. #endif
  799. #endif
  800. #if HAS_Z_ENABLE
  801. Z_ENABLE_INIT;
  802. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  803. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  804. Z2_ENABLE_INIT;
  805. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  806. #endif
  807. #endif
  808. #if HAS_E0_ENABLE
  809. E0_ENABLE_INIT;
  810. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  811. #endif
  812. #if HAS_E1_ENABLE
  813. E1_ENABLE_INIT;
  814. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  815. #endif
  816. #if HAS_E2_ENABLE
  817. E2_ENABLE_INIT;
  818. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  819. #endif
  820. #if HAS_E3_ENABLE
  821. E3_ENABLE_INIT;
  822. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  823. #endif
  824. //endstops and pullups
  825. #if HAS_X_MIN
  826. SET_INPUT(X_MIN_PIN);
  827. #if ENABLED(ENDSTOPPULLUP_XMIN)
  828. WRITE(X_MIN_PIN,HIGH);
  829. #endif
  830. #endif
  831. #if HAS_Y_MIN
  832. SET_INPUT(Y_MIN_PIN);
  833. #if ENABLED(ENDSTOPPULLUP_YMIN)
  834. WRITE(Y_MIN_PIN,HIGH);
  835. #endif
  836. #endif
  837. #if HAS_Z_MIN
  838. SET_INPUT(Z_MIN_PIN);
  839. #if ENABLED(ENDSTOPPULLUP_ZMIN)
  840. WRITE(Z_MIN_PIN,HIGH);
  841. #endif
  842. #endif
  843. #if HAS_X_MAX
  844. SET_INPUT(X_MAX_PIN);
  845. #if ENABLED(ENDSTOPPULLUP_XMAX)
  846. WRITE(X_MAX_PIN,HIGH);
  847. #endif
  848. #endif
  849. #if HAS_Y_MAX
  850. SET_INPUT(Y_MAX_PIN);
  851. #if ENABLED(ENDSTOPPULLUP_YMAX)
  852. WRITE(Y_MAX_PIN,HIGH);
  853. #endif
  854. #endif
  855. #if HAS_Z_MAX
  856. SET_INPUT(Z_MAX_PIN);
  857. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  858. WRITE(Z_MAX_PIN,HIGH);
  859. #endif
  860. #endif
  861. #if HAS_Z2_MAX
  862. SET_INPUT(Z2_MAX_PIN);
  863. #if ENABLED(ENDSTOPPULLUP_ZMAX)
  864. WRITE(Z2_MAX_PIN,HIGH);
  865. #endif
  866. #endif
  867. #if HAS_Z_PROBE && ENABLED(Z_MIN_PROBE_ENDSTOP) // Check for Z_MIN_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  868. SET_INPUT(Z_MIN_PROBE_PIN);
  869. #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
  870. WRITE(Z_MIN_PROBE_PIN,HIGH);
  871. #endif
  872. #endif
  873. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  874. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  875. #define _DISABLE(axis) disable_## axis()
  876. #define AXIS_INIT(axis, AXIS, PIN) \
  877. _STEP_INIT(AXIS); \
  878. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  879. _DISABLE(axis)
  880. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  881. // Initialize Step Pins
  882. #if HAS_X_STEP
  883. AXIS_INIT(x, X, X);
  884. #endif
  885. #if HAS_X2_STEP
  886. AXIS_INIT(x, X2, X);
  887. #endif
  888. #if HAS_Y_STEP
  889. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  890. Y2_STEP_INIT;
  891. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  892. #endif
  893. AXIS_INIT(y, Y, Y);
  894. #endif
  895. #if HAS_Z_STEP
  896. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  897. Z2_STEP_INIT;
  898. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  899. #endif
  900. AXIS_INIT(z, Z, Z);
  901. #endif
  902. #if HAS_E0_STEP
  903. E_AXIS_INIT(0);
  904. #endif
  905. #if HAS_E1_STEP
  906. E_AXIS_INIT(1);
  907. #endif
  908. #if HAS_E2_STEP
  909. E_AXIS_INIT(2);
  910. #endif
  911. #if HAS_E3_STEP
  912. E_AXIS_INIT(3);
  913. #endif
  914. // waveform generation = 0100 = CTC
  915. TCCR1B &= ~BIT(WGM13);
  916. TCCR1B |= BIT(WGM12);
  917. TCCR1A &= ~BIT(WGM11);
  918. TCCR1A &= ~BIT(WGM10);
  919. // output mode = 00 (disconnected)
  920. TCCR1A &= ~(3<<COM1A0);
  921. TCCR1A &= ~(3<<COM1B0);
  922. // Set the timer pre-scaler
  923. // Generally we use a divider of 8, resulting in a 2MHz timer
  924. // frequency on a 16MHz MCU. If you are going to change this, be
  925. // sure to regenerate speed_lookuptable.h with
  926. // create_speed_lookuptable.py
  927. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  928. OCR1A = 0x4000;
  929. TCNT1 = 0;
  930. ENABLE_STEPPER_DRIVER_INTERRUPT();
  931. #if ENABLED(ADVANCE)
  932. #if defined(TCCR0A) && defined(WGM01)
  933. TCCR0A &= ~BIT(WGM01);
  934. TCCR0A &= ~BIT(WGM00);
  935. #endif
  936. e_steps[0] = e_steps[1] = e_steps[2] = e_steps[3] = 0;
  937. TIMSK0 |= BIT(OCIE0A);
  938. #endif //ADVANCE
  939. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  940. sei();
  941. set_stepper_direction(); // Init directions to out_bits = 0
  942. }
  943. /**
  944. * Block until all buffered steps are executed
  945. */
  946. void st_synchronize() { while (blocks_queued()) idle(); }
  947. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  948. CRITICAL_SECTION_START;
  949. count_position[X_AXIS] = x;
  950. count_position[Y_AXIS] = y;
  951. count_position[Z_AXIS] = z;
  952. count_position[E_AXIS] = e;
  953. CRITICAL_SECTION_END;
  954. }
  955. void st_set_e_position(const long &e) {
  956. CRITICAL_SECTION_START;
  957. count_position[E_AXIS] = e;
  958. CRITICAL_SECTION_END;
  959. }
  960. long st_get_position(uint8_t axis) {
  961. long count_pos;
  962. CRITICAL_SECTION_START;
  963. count_pos = count_position[axis];
  964. CRITICAL_SECTION_END;
  965. return count_pos;
  966. }
  967. float st_get_position_mm(AxisEnum axis) { return st_get_position(axis) / axis_steps_per_unit[axis]; }
  968. void finishAndDisableSteppers() {
  969. st_synchronize();
  970. disable_all_steppers();
  971. }
  972. void quickStop() {
  973. cleaning_buffer_counter = 5000;
  974. DISABLE_STEPPER_DRIVER_INTERRUPT();
  975. while (blocks_queued()) plan_discard_current_block();
  976. current_block = NULL;
  977. ENABLE_STEPPER_DRIVER_INTERRUPT();
  978. }
  979. #if ENABLED(BABYSTEPPING)
  980. // MUST ONLY BE CALLED BY AN ISR,
  981. // No other ISR should ever interrupt this!
  982. void babystep(const uint8_t axis, const bool direction) {
  983. #define _ENABLE(axis) enable_## axis()
  984. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  985. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  986. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  987. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  988. _ENABLE(axis); \
  989. uint8_t old_pin = _READ_DIR(AXIS); \
  990. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  991. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  992. delayMicroseconds(2); \
  993. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  994. _APPLY_DIR(AXIS, old_pin); \
  995. }
  996. switch(axis) {
  997. case X_AXIS:
  998. BABYSTEP_AXIS(x, X, false);
  999. break;
  1000. case Y_AXIS:
  1001. BABYSTEP_AXIS(y, Y, false);
  1002. break;
  1003. case Z_AXIS: {
  1004. #if DISABLED(DELTA)
  1005. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1006. #else // DELTA
  1007. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1008. enable_x();
  1009. enable_y();
  1010. enable_z();
  1011. uint8_t old_x_dir_pin = X_DIR_READ,
  1012. old_y_dir_pin = Y_DIR_READ,
  1013. old_z_dir_pin = Z_DIR_READ;
  1014. //setup new step
  1015. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1016. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1017. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1018. //perform step
  1019. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1020. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1021. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1022. delayMicroseconds(2);
  1023. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1024. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1025. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1026. //get old pin state back.
  1027. X_DIR_WRITE(old_x_dir_pin);
  1028. Y_DIR_WRITE(old_y_dir_pin);
  1029. Z_DIR_WRITE(old_z_dir_pin);
  1030. #endif
  1031. } break;
  1032. default: break;
  1033. }
  1034. }
  1035. #endif //BABYSTEPPING
  1036. // From Arduino DigitalPotControl example
  1037. void digitalPotWrite(int address, int value) {
  1038. #if HAS_DIGIPOTSS
  1039. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1040. SPI.transfer(address); // send in the address and value via SPI:
  1041. SPI.transfer(value);
  1042. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1043. //delay(10);
  1044. #else
  1045. UNUSED(address);
  1046. UNUSED(value);
  1047. #endif
  1048. }
  1049. // Initialize Digipot Motor Current
  1050. void digipot_init() {
  1051. #if HAS_DIGIPOTSS
  1052. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1053. SPI.begin();
  1054. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1055. for (int i = 0; i <= 4; i++) {
  1056. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1057. digipot_current(i,digipot_motor_current[i]);
  1058. }
  1059. #endif
  1060. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1061. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1062. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1063. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1064. digipot_current(0, motor_current_setting[0]);
  1065. digipot_current(1, motor_current_setting[1]);
  1066. digipot_current(2, motor_current_setting[2]);
  1067. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1068. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1069. #endif
  1070. }
  1071. void digipot_current(uint8_t driver, int current) {
  1072. #if HAS_DIGIPOTSS
  1073. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1074. digitalPotWrite(digipot_ch[driver], current);
  1075. #elif defined(MOTOR_CURRENT_PWM_XY_PIN)
  1076. switch(driver) {
  1077. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1078. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1079. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1080. }
  1081. #else
  1082. UNUSED(driver);
  1083. UNUSED(current);
  1084. #endif
  1085. }
  1086. void microstep_init() {
  1087. #if HAS_MICROSTEPS_E1
  1088. pinMode(E1_MS1_PIN,OUTPUT);
  1089. pinMode(E1_MS2_PIN,OUTPUT);
  1090. #endif
  1091. #if HAS_MICROSTEPS
  1092. pinMode(X_MS1_PIN,OUTPUT);
  1093. pinMode(X_MS2_PIN,OUTPUT);
  1094. pinMode(Y_MS1_PIN,OUTPUT);
  1095. pinMode(Y_MS2_PIN,OUTPUT);
  1096. pinMode(Z_MS1_PIN,OUTPUT);
  1097. pinMode(Z_MS2_PIN,OUTPUT);
  1098. pinMode(E0_MS1_PIN,OUTPUT);
  1099. pinMode(E0_MS2_PIN,OUTPUT);
  1100. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1101. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1102. microstep_mode(i, microstep_modes[i]);
  1103. #endif
  1104. }
  1105. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1106. if (ms1 >= 0) switch(driver) {
  1107. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1108. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1109. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1110. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1111. #if HAS_MICROSTEPS_E1
  1112. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1113. #endif
  1114. }
  1115. if (ms2 >= 0) switch(driver) {
  1116. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1117. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1118. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1119. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1120. #if PIN_EXISTS(E1_MS2)
  1121. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1122. #endif
  1123. }
  1124. }
  1125. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1126. switch(stepping_mode) {
  1127. case 1: microstep_ms(driver,MICROSTEP1); break;
  1128. case 2: microstep_ms(driver,MICROSTEP2); break;
  1129. case 4: microstep_ms(driver,MICROSTEP4); break;
  1130. case 8: microstep_ms(driver,MICROSTEP8); break;
  1131. case 16: microstep_ms(driver,MICROSTEP16); break;
  1132. }
  1133. }
  1134. void microstep_readings() {
  1135. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1136. SERIAL_PROTOCOLPGM("X: ");
  1137. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1138. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1139. SERIAL_PROTOCOLPGM("Y: ");
  1140. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1141. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1142. SERIAL_PROTOCOLPGM("Z: ");
  1143. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1144. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1145. SERIAL_PROTOCOLPGM("E0: ");
  1146. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1147. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1148. #if HAS_MICROSTEPS_E1
  1149. SERIAL_PROTOCOLPGM("E1: ");
  1150. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1151. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1152. #endif
  1153. }
  1154. #if ENABLED(Z_DUAL_ENDSTOPS)
  1155. void In_Homing_Process(bool state) { performing_homing = state; }
  1156. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1157. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1158. #endif