My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 207KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #ifdef ENABLE_AUTO_BED_LEVELING
  31. #include "vector_3.h"
  32. #ifdef AUTO_BED_LEVELING_GRID
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  37. #ifdef MESH_BED_LEVELING
  38. #include "mesh_bed_leveling.h"
  39. #endif
  40. #include "ultralcd.h"
  41. #include "planner.h"
  42. #include "stepper.h"
  43. #include "temperature.h"
  44. #include "cardreader.h"
  45. #include "watchdog.h"
  46. #include "configuration_store.h"
  47. #include "language.h"
  48. #include "pins_arduino.h"
  49. #include "math.h"
  50. #include "buzzer.h"
  51. #ifdef BLINKM
  52. #include "blinkm.h"
  53. #include "Wire.h"
  54. #endif
  55. #if NUM_SERVOS > 0
  56. #include "servo.h"
  57. #endif
  58. #if HAS_DIGIPOTSS
  59. #include <SPI.h>
  60. #endif
  61. /**
  62. * Look here for descriptions of G-codes:
  63. * - http://linuxcnc.org/handbook/gcode/g-code.html
  64. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  65. *
  66. * Help us document these G-codes online:
  67. * - http://www.marlinfirmware.org/index.php/G-Code
  68. * - http://reprap.org/wiki/G-code
  69. *
  70. * -----------------
  71. * Implemented Codes
  72. * -----------------
  73. *
  74. * "G" Codes
  75. *
  76. * G0 -> G1
  77. * G1 - Coordinated Movement X Y Z E
  78. * G2 - CW ARC
  79. * G3 - CCW ARC
  80. * G4 - Dwell S<seconds> or P<milliseconds>
  81. * G10 - retract filament according to settings of M207
  82. * G11 - retract recover filament according to settings of M208
  83. * G28 - Home one or more axes
  84. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. * G30 - Single Z Probe, probes bed at current XY location.
  86. * G31 - Dock sled (Z_PROBE_SLED only)
  87. * G32 - Undock sled (Z_PROBE_SLED only)
  88. * G90 - Use Absolute Coordinates
  89. * G91 - Use Relative Coordinates
  90. * G92 - Set current position to coordinates given
  91. *
  92. * "M" Codes
  93. *
  94. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. * M1 - Same as M0
  96. * M17 - Enable/Power all stepper motors
  97. * M18 - Disable all stepper motors; same as M84
  98. * M20 - List SD card
  99. * M21 - Init SD card
  100. * M22 - Release SD card
  101. * M23 - Select SD file (M23 filename.g)
  102. * M24 - Start/resume SD print
  103. * M25 - Pause SD print
  104. * M26 - Set SD position in bytes (M26 S12345)
  105. * M27 - Report SD print status
  106. * M28 - Start SD write (M28 filename.g)
  107. * M29 - Stop SD write
  108. * M30 - Delete file from SD (M30 filename.g)
  109. * M31 - Output time since last M109 or SD card start to serial
  110. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. * M33 - Get the longname version of a path
  115. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  116. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  117. * M80 - Turn on Power Supply
  118. * M81 - Turn off Power Supply
  119. * M82 - Set E codes absolute (default)
  120. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  121. * M84 - Disable steppers until next move,
  122. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  123. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  124. * M92 - Set axis_steps_per_unit - same syntax as G92
  125. * M104 - Set extruder target temp
  126. * M105 - Read current temp
  127. * M106 - Fan on
  128. * M107 - Fan off
  129. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  130. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  131. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  132. * M110 - Set the current line number
  133. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  134. * M112 - Emergency stop
  135. * M114 - Output current position to serial port
  136. * M115 - Capabilities string
  137. * M117 - Display a message on the controller screen
  138. * M119 - Output Endstop status to serial port
  139. * M120 - Enable endstop detection
  140. * M121 - Disable endstop detection
  141. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  142. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  143. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  145. * M140 - Set bed target temp
  146. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  147. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  149. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  150. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  151. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  152. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  153. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  154. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  155. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  156. * M206 - Set additional homing offset
  157. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  158. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  159. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  160. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  161. * M220 - Set speed factor override percentage: S<factor in percent>
  162. * M221 - Set extrude factor override percentage: S<factor in percent>
  163. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  164. * M240 - Trigger a camera to take a photograph
  165. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  166. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  167. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  168. * M301 - Set PID parameters P I and D
  169. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  170. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  171. * M304 - Set bed PID parameters P I and D
  172. * M380 - Activate solenoid on active extruder
  173. * M381 - Disable all solenoids
  174. * M400 - Finish all moves
  175. * M401 - Lower z-probe if present
  176. * M402 - Raise z-probe if present
  177. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  178. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  179. * M406 - Turn off Filament Sensor extrusion control
  180. * M407 - Display measured filament diameter
  181. * M410 - Quickstop. Abort all the planned moves
  182. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  183. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  184. * M428 - Set the home_offset logically based on the current_position
  185. * M500 - Store parameters in EEPROM
  186. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  187. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  188. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  189. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  190. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  191. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  192. * M666 - Set delta endstop adjustment
  193. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  194. * M907 - Set digital trimpot motor current using axis codes.
  195. * M908 - Control digital trimpot directly.
  196. * M350 - Set microstepping mode.
  197. * M351 - Toggle MS1 MS2 pins directly.
  198. *
  199. * ************ SCARA Specific - This can change to suit future G-code regulations
  200. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  201. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  202. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  203. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  204. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  205. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  206. * ************* SCARA End ***************
  207. *
  208. * ************ Custom codes - This can change to suit future G-code regulations
  209. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  210. * M928 - Start SD logging (M928 filename.g) - ended by M29
  211. * M999 - Restart after being stopped by error
  212. *
  213. * "T" Codes
  214. *
  215. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  216. *
  217. */
  218. #ifdef SDSUPPORT
  219. CardReader card;
  220. #endif
  221. bool Running = true;
  222. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  223. static float feedrate = 1500.0, saved_feedrate;
  224. float current_position[NUM_AXIS] = { 0.0 };
  225. static float destination[NUM_AXIS] = { 0.0 };
  226. bool axis_known_position[3] = { false };
  227. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  228. static char *current_command, *current_command_args;
  229. static int cmd_queue_index_r = 0;
  230. static int cmd_queue_index_w = 0;
  231. static int commands_in_queue = 0;
  232. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  233. float homing_feedrate[] = HOMING_FEEDRATE;
  234. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  235. int feedrate_multiplier = 100; //100->1 200->2
  236. int saved_feedrate_multiplier;
  237. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  238. bool volumetric_enabled = false;
  239. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  240. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  241. float home_offset[3] = { 0 };
  242. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  243. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  244. uint8_t active_extruder = 0;
  245. int fanSpeed = 0;
  246. bool cancel_heatup = false;
  247. const char errormagic[] PROGMEM = "Error:";
  248. const char echomagic[] PROGMEM = "echo:";
  249. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  250. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  251. static char serial_char;
  252. static int serial_count = 0;
  253. static boolean comment_mode = false;
  254. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  255. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  256. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  257. // Inactivity shutdown
  258. millis_t previous_cmd_ms = 0;
  259. static millis_t max_inactive_time = 0;
  260. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  261. millis_t print_job_start_ms = 0; ///< Print job start time
  262. millis_t print_job_stop_ms = 0; ///< Print job stop time
  263. static uint8_t target_extruder;
  264. bool no_wait_for_cooling = true;
  265. bool target_direction;
  266. #ifdef ENABLE_AUTO_BED_LEVELING
  267. int xy_travel_speed = XY_TRAVEL_SPEED;
  268. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  269. #endif
  270. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  271. float z_endstop_adj = 0;
  272. #endif
  273. // Extruder offsets
  274. #if EXTRUDERS > 1
  275. #ifndef EXTRUDER_OFFSET_X
  276. #define EXTRUDER_OFFSET_X { 0 }
  277. #endif
  278. #ifndef EXTRUDER_OFFSET_Y
  279. #define EXTRUDER_OFFSET_Y { 0 }
  280. #endif
  281. float extruder_offset[][EXTRUDERS] = {
  282. EXTRUDER_OFFSET_X,
  283. EXTRUDER_OFFSET_Y
  284. #ifdef DUAL_X_CARRIAGE
  285. , { 0 } // supports offsets in XYZ plane
  286. #endif
  287. };
  288. #endif
  289. #ifdef SERVO_ENDSTOPS
  290. int servo_endstops[] = SERVO_ENDSTOPS;
  291. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  292. #endif
  293. #ifdef BARICUDA
  294. int ValvePressure = 0;
  295. int EtoPPressure = 0;
  296. #endif
  297. #ifdef FWRETRACT
  298. bool autoretract_enabled = false;
  299. bool retracted[EXTRUDERS] = { false };
  300. bool retracted_swap[EXTRUDERS] = { false };
  301. float retract_length = RETRACT_LENGTH;
  302. float retract_length_swap = RETRACT_LENGTH_SWAP;
  303. float retract_feedrate = RETRACT_FEEDRATE;
  304. float retract_zlift = RETRACT_ZLIFT;
  305. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  306. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  307. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  308. #endif // FWRETRACT
  309. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  310. bool powersupply =
  311. #ifdef PS_DEFAULT_OFF
  312. false
  313. #else
  314. true
  315. #endif
  316. ;
  317. #endif
  318. #ifdef DELTA
  319. float delta[3] = { 0 };
  320. #define SIN_60 0.8660254037844386
  321. #define COS_60 0.5
  322. float endstop_adj[3] = { 0 };
  323. // these are the default values, can be overriden with M665
  324. float delta_radius = DELTA_RADIUS;
  325. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  326. float delta_tower1_y = -COS_60 * delta_radius;
  327. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  328. float delta_tower2_y = -COS_60 * delta_radius;
  329. float delta_tower3_x = 0; // back middle tower
  330. float delta_tower3_y = delta_radius;
  331. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  332. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  333. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  334. #ifdef ENABLE_AUTO_BED_LEVELING
  335. int delta_grid_spacing[2] = { 0, 0 };
  336. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  337. #endif
  338. #else
  339. static bool home_all_axis = true;
  340. #endif
  341. #ifdef SCARA
  342. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  343. static float delta[3] = { 0 };
  344. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  345. #endif
  346. #ifdef FILAMENT_SENSOR
  347. //Variables for Filament Sensor input
  348. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  349. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  350. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  351. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  352. int delay_index1 = 0; //index into ring buffer
  353. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  354. float delay_dist = 0; //delay distance counter
  355. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  356. #endif
  357. #ifdef FILAMENT_RUNOUT_SENSOR
  358. static bool filrunoutEnqueued = false;
  359. #endif
  360. #ifdef SDSUPPORT
  361. static bool fromsd[BUFSIZE];
  362. #endif
  363. #if NUM_SERVOS > 0
  364. Servo servo[NUM_SERVOS];
  365. #endif
  366. #ifdef CHDK
  367. unsigned long chdkHigh = 0;
  368. boolean chdkActive = false;
  369. #endif
  370. //===========================================================================
  371. //================================ Functions ================================
  372. //===========================================================================
  373. void process_next_command();
  374. bool setTargetedHotend(int code);
  375. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  376. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  377. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  378. #ifdef PREVENT_DANGEROUS_EXTRUDE
  379. float extrude_min_temp = EXTRUDE_MINTEMP;
  380. #endif
  381. #ifdef SDSUPPORT
  382. #include "SdFatUtil.h"
  383. int freeMemory() { return SdFatUtil::FreeRam(); }
  384. #else
  385. extern "C" {
  386. extern unsigned int __bss_end;
  387. extern unsigned int __heap_start;
  388. extern void *__brkval;
  389. int freeMemory() {
  390. int free_memory;
  391. if ((int)__brkval == 0)
  392. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  393. else
  394. free_memory = ((int)&free_memory) - ((int)__brkval);
  395. return free_memory;
  396. }
  397. }
  398. #endif //!SDSUPPORT
  399. /**
  400. * Inject the next command from the command queue, when possible
  401. * Return false only if no command was pending
  402. */
  403. static bool drain_queued_commands_P() {
  404. if (!queued_commands_P) return false;
  405. // Get the next 30 chars from the sequence of gcodes to run
  406. char cmd[30];
  407. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  408. cmd[sizeof(cmd) - 1] = '\0';
  409. // Look for the end of line, or the end of sequence
  410. size_t i = 0;
  411. char c;
  412. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  413. cmd[i] = '\0';
  414. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  415. if (c)
  416. queued_commands_P += i + 1; // move to next command
  417. else
  418. queued_commands_P = NULL; // will have no more commands in the sequence
  419. }
  420. return true;
  421. }
  422. /**
  423. * Record one or many commands to run from program memory.
  424. * Aborts the current queue, if any.
  425. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  426. */
  427. void enqueuecommands_P(const char* pgcode) {
  428. queued_commands_P = pgcode;
  429. drain_queued_commands_P(); // first command executed asap (when possible)
  430. }
  431. /**
  432. * Copy a command directly into the main command buffer, from RAM.
  433. *
  434. * This is done in a non-safe way and needs a rework someday.
  435. * Returns false if it doesn't add any command
  436. */
  437. bool enqueuecommand(const char *cmd) {
  438. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  439. // This is dangerous if a mixing of serial and this happens
  440. char *command = command_queue[cmd_queue_index_w];
  441. strcpy(command, cmd);
  442. SERIAL_ECHO_START;
  443. SERIAL_ECHOPGM(MSG_Enqueueing);
  444. SERIAL_ECHO(command);
  445. SERIAL_ECHOLNPGM("\"");
  446. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  447. commands_in_queue++;
  448. return true;
  449. }
  450. void setup_killpin() {
  451. #if HAS_KILL
  452. SET_INPUT(KILL_PIN);
  453. WRITE(KILL_PIN, HIGH);
  454. #endif
  455. }
  456. void setup_filrunoutpin() {
  457. #if HAS_FILRUNOUT
  458. pinMode(FILRUNOUT_PIN, INPUT);
  459. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  460. WRITE(FILRUNOUT_PIN, HIGH);
  461. #endif
  462. #endif
  463. }
  464. // Set home pin
  465. void setup_homepin(void) {
  466. #if HAS_HOME
  467. SET_INPUT(HOME_PIN);
  468. WRITE(HOME_PIN, HIGH);
  469. #endif
  470. }
  471. void setup_photpin() {
  472. #if HAS_PHOTOGRAPH
  473. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  474. #endif
  475. }
  476. void setup_powerhold() {
  477. #if HAS_SUICIDE
  478. OUT_WRITE(SUICIDE_PIN, HIGH);
  479. #endif
  480. #if HAS_POWER_SWITCH
  481. #ifdef PS_DEFAULT_OFF
  482. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  483. #else
  484. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  485. #endif
  486. #endif
  487. }
  488. void suicide() {
  489. #if HAS_SUICIDE
  490. OUT_WRITE(SUICIDE_PIN, LOW);
  491. #endif
  492. }
  493. void servo_init() {
  494. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  495. servo[0].attach(SERVO0_PIN);
  496. #endif
  497. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  498. servo[1].attach(SERVO1_PIN);
  499. #endif
  500. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  501. servo[2].attach(SERVO2_PIN);
  502. #endif
  503. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  504. servo[3].attach(SERVO3_PIN);
  505. #endif
  506. // Set position of Servo Endstops that are defined
  507. #ifdef SERVO_ENDSTOPS
  508. for (int i = 0; i < 3; i++)
  509. if (servo_endstops[i] >= 0)
  510. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  511. #endif
  512. #if SERVO_LEVELING
  513. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  514. servo[servo_endstops[Z_AXIS]].detach();
  515. #endif
  516. }
  517. /**
  518. * Marlin entry-point: Set up before the program loop
  519. * - Set up the kill pin, filament runout, power hold
  520. * - Start the serial port
  521. * - Print startup messages and diagnostics
  522. * - Get EEPROM or default settings
  523. * - Initialize managers for:
  524. * • temperature
  525. * • planner
  526. * • watchdog
  527. * • stepper
  528. * • photo pin
  529. * • servos
  530. * • LCD controller
  531. * • Digipot I2C
  532. * • Z probe sled
  533. * • status LEDs
  534. */
  535. void setup() {
  536. setup_killpin();
  537. setup_filrunoutpin();
  538. setup_powerhold();
  539. MYSERIAL.begin(BAUDRATE);
  540. SERIAL_PROTOCOLLNPGM("start");
  541. SERIAL_ECHO_START;
  542. // Check startup - does nothing if bootloader sets MCUSR to 0
  543. byte mcu = MCUSR;
  544. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  545. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  546. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  547. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  548. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  549. MCUSR = 0;
  550. SERIAL_ECHOPGM(MSG_MARLIN);
  551. SERIAL_ECHOLNPGM(" " BUILD_VERSION);
  552. #ifdef STRING_DISTRIBUTION_DATE
  553. #ifdef STRING_CONFIG_H_AUTHOR
  554. SERIAL_ECHO_START;
  555. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  556. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  557. SERIAL_ECHOPGM(MSG_AUTHOR);
  558. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  559. SERIAL_ECHOPGM("Compiled: ");
  560. SERIAL_ECHOLNPGM(__DATE__);
  561. #endif // STRING_CONFIG_H_AUTHOR
  562. #endif // STRING_DISTRIBUTION_DATE
  563. SERIAL_ECHO_START;
  564. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  565. SERIAL_ECHO(freeMemory());
  566. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  567. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  568. #ifdef SDSUPPORT
  569. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  570. #endif
  571. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  572. Config_RetrieveSettings();
  573. lcd_init();
  574. _delay_ms(1000); // wait 1sec to display the splash screen
  575. tp_init(); // Initialize temperature loop
  576. plan_init(); // Initialize planner;
  577. watchdog_init();
  578. st_init(); // Initialize stepper, this enables interrupts!
  579. setup_photpin();
  580. servo_init();
  581. #if HAS_CONTROLLERFAN
  582. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  583. #endif
  584. #ifdef DIGIPOT_I2C
  585. digipot_i2c_init();
  586. #endif
  587. #ifdef Z_PROBE_SLED
  588. pinMode(SLED_PIN, OUTPUT);
  589. digitalWrite(SLED_PIN, LOW); // turn it off
  590. #endif // Z_PROBE_SLED
  591. setup_homepin();
  592. #ifdef STAT_LED_RED
  593. pinMode(STAT_LED_RED, OUTPUT);
  594. digitalWrite(STAT_LED_RED, LOW); // turn it off
  595. #endif
  596. #ifdef STAT_LED_BLUE
  597. pinMode(STAT_LED_BLUE, OUTPUT);
  598. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  599. #endif
  600. }
  601. /**
  602. * The main Marlin program loop
  603. *
  604. * - Save or log commands to SD
  605. * - Process available commands (if not saving)
  606. * - Call heater manager
  607. * - Call inactivity manager
  608. * - Call endstop manager
  609. * - Call LCD update
  610. */
  611. void loop() {
  612. if (commands_in_queue < BUFSIZE - 1) get_command();
  613. #ifdef SDSUPPORT
  614. card.checkautostart(false);
  615. #endif
  616. if (commands_in_queue) {
  617. #ifdef SDSUPPORT
  618. if (card.saving) {
  619. char *command = command_queue[cmd_queue_index_r];
  620. if (strstr_P(command, PSTR("M29"))) {
  621. // M29 closes the file
  622. card.closefile();
  623. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  624. }
  625. else {
  626. // Write the string from the read buffer to SD
  627. card.write_command(command);
  628. if (card.logging)
  629. process_next_command(); // The card is saving because it's logging
  630. else
  631. SERIAL_PROTOCOLLNPGM(MSG_OK);
  632. }
  633. }
  634. else
  635. process_next_command();
  636. #else
  637. process_next_command();
  638. #endif // SDSUPPORT
  639. commands_in_queue--;
  640. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  641. }
  642. checkHitEndstops();
  643. idle();
  644. }
  645. void gcode_line_error(const char *err, bool doFlush=true) {
  646. SERIAL_ERROR_START;
  647. serialprintPGM(err);
  648. SERIAL_ERRORLN(gcode_LastN);
  649. //Serial.println(gcode_N);
  650. if (doFlush) FlushSerialRequestResend();
  651. serial_count = 0;
  652. }
  653. /**
  654. * Add to the circular command queue the next command from:
  655. * - The command-injection queue (queued_commands_P)
  656. * - The active serial input (usually USB)
  657. * - The SD card file being actively printed
  658. */
  659. void get_command() {
  660. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  661. #ifdef NO_TIMEOUTS
  662. static millis_t last_command_time = 0;
  663. millis_t ms = millis();
  664. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  665. SERIAL_ECHOLNPGM(MSG_WAIT);
  666. last_command_time = ms;
  667. }
  668. #endif
  669. //
  670. // Loop while serial characters are incoming and the queue is not full
  671. //
  672. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  673. #ifdef NO_TIMEOUTS
  674. last_command_time = ms;
  675. #endif
  676. serial_char = MYSERIAL.read();
  677. //
  678. // If the character ends the line, or the line is full...
  679. //
  680. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  681. // end of line == end of comment
  682. comment_mode = false;
  683. if (!serial_count) return; // empty lines just exit
  684. char *command = command_queue[cmd_queue_index_w];
  685. command[serial_count] = 0; // terminate string
  686. // this item in the queue is not from sd
  687. #ifdef SDSUPPORT
  688. fromsd[cmd_queue_index_w] = false;
  689. #endif
  690. char *npos = strchr(command, 'N');
  691. char *apos = strchr(command, '*');
  692. if (npos) {
  693. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  694. if (M110) {
  695. char *n2pos = strchr(command + 4, 'N');
  696. if (n2pos) npos = n2pos;
  697. }
  698. gcode_N = strtol(npos + 1, NULL, 10);
  699. if (gcode_N != gcode_LastN + 1 && !M110) {
  700. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  701. return;
  702. }
  703. if (apos) {
  704. byte checksum = 0, count = 0;
  705. while (command[count] != '*') checksum ^= command[count++];
  706. if (strtol(apos + 1, NULL, 10) != checksum) {
  707. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  708. return;
  709. }
  710. // if no errors, continue parsing
  711. }
  712. else if (npos == command) {
  713. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  714. return;
  715. }
  716. gcode_LastN = gcode_N;
  717. // if no errors, continue parsing
  718. }
  719. else if (apos) { // No '*' without 'N'
  720. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  721. return;
  722. }
  723. // Movement commands alert when stopped
  724. if (IsStopped()) {
  725. char *gpos = strchr(command, 'G');
  726. if (gpos) {
  727. int codenum = strtol(gpos + 1, NULL, 10);
  728. switch (codenum) {
  729. case 0:
  730. case 1:
  731. case 2:
  732. case 3:
  733. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  734. LCD_MESSAGEPGM(MSG_STOPPED);
  735. break;
  736. }
  737. }
  738. }
  739. // If command was e-stop process now
  740. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  741. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  742. commands_in_queue += 1;
  743. serial_count = 0; //clear buffer
  744. }
  745. else if (serial_char == '\\') { // Handle escapes
  746. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  747. // if we have one more character, copy it over
  748. serial_char = MYSERIAL.read();
  749. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  750. }
  751. // otherwise do nothing
  752. }
  753. else { // its not a newline, carriage return or escape char
  754. if (serial_char == ';') comment_mode = true;
  755. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  756. }
  757. }
  758. #ifdef SDSUPPORT
  759. if (!card.sdprinting || serial_count) return;
  760. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  761. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  762. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  763. static bool stop_buffering = false;
  764. if (commands_in_queue == 0) stop_buffering = false;
  765. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  766. int16_t n = card.get();
  767. serial_char = (char)n;
  768. if (serial_char == '\n' || serial_char == '\r' ||
  769. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  770. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  771. ) {
  772. if (card.eof()) {
  773. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  774. print_job_stop_ms = millis();
  775. char time[30];
  776. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  777. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  778. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  779. SERIAL_ECHO_START;
  780. SERIAL_ECHOLN(time);
  781. lcd_setstatus(time, true);
  782. card.printingHasFinished();
  783. card.checkautostart(true);
  784. }
  785. if (serial_char == '#') stop_buffering = true;
  786. if (!serial_count) {
  787. comment_mode = false; //for new command
  788. return; //if empty line
  789. }
  790. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  791. // if (!comment_mode) {
  792. fromsd[cmd_queue_index_w] = true;
  793. commands_in_queue += 1;
  794. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  795. // }
  796. comment_mode = false; //for new command
  797. serial_count = 0; //clear buffer
  798. }
  799. else {
  800. if (serial_char == ';') comment_mode = true;
  801. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  802. }
  803. }
  804. #endif // SDSUPPORT
  805. }
  806. bool code_has_value() {
  807. int i = 1;
  808. char c = seen_pointer[i];
  809. if (c == '-' || c == '+') c = seen_pointer[++i];
  810. if (c == '.') c = seen_pointer[++i];
  811. return (c >= '0' && c <= '9');
  812. }
  813. float code_value() {
  814. float ret;
  815. char *e = strchr(seen_pointer, 'E');
  816. if (e) {
  817. *e = 0;
  818. ret = strtod(seen_pointer+1, NULL);
  819. *e = 'E';
  820. }
  821. else
  822. ret = strtod(seen_pointer+1, NULL);
  823. return ret;
  824. }
  825. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  826. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  827. bool code_seen(char code) {
  828. seen_pointer = strchr(current_command_args, code); // +3 since "G0 " is the shortest prefix
  829. return (seen_pointer != NULL); //Return True if a character was found
  830. }
  831. #define DEFINE_PGM_READ_ANY(type, reader) \
  832. static inline type pgm_read_any(const type *p) \
  833. { return pgm_read_##reader##_near(p); }
  834. DEFINE_PGM_READ_ANY(float, float);
  835. DEFINE_PGM_READ_ANY(signed char, byte);
  836. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  837. static const PROGMEM type array##_P[3] = \
  838. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  839. static inline type array(int axis) \
  840. { return pgm_read_any(&array##_P[axis]); }
  841. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  842. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  843. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  844. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  845. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  846. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  847. #ifdef DUAL_X_CARRIAGE
  848. #define DXC_FULL_CONTROL_MODE 0
  849. #define DXC_AUTO_PARK_MODE 1
  850. #define DXC_DUPLICATION_MODE 2
  851. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  852. static float x_home_pos(int extruder) {
  853. if (extruder == 0)
  854. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  855. else
  856. // In dual carriage mode the extruder offset provides an override of the
  857. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  858. // This allow soft recalibration of the second extruder offset position without firmware reflash
  859. // (through the M218 command).
  860. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  861. }
  862. static int x_home_dir(int extruder) {
  863. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  864. }
  865. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  866. static bool active_extruder_parked = false; // used in mode 1 & 2
  867. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  868. static millis_t delayed_move_time = 0; // used in mode 1
  869. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  870. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  871. bool extruder_duplication_enabled = false; // used in mode 2
  872. #endif //DUAL_X_CARRIAGE
  873. static void axis_is_at_home(AxisEnum axis) {
  874. #ifdef DUAL_X_CARRIAGE
  875. if (axis == X_AXIS) {
  876. if (active_extruder != 0) {
  877. current_position[X_AXIS] = x_home_pos(active_extruder);
  878. min_pos[X_AXIS] = X2_MIN_POS;
  879. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  880. return;
  881. }
  882. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  883. float xoff = home_offset[X_AXIS];
  884. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  885. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  886. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  887. return;
  888. }
  889. }
  890. #endif
  891. #ifdef SCARA
  892. if (axis == X_AXIS || axis == Y_AXIS) {
  893. float homeposition[3];
  894. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  895. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  896. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  897. // Works out real Homeposition angles using inverse kinematics,
  898. // and calculates homing offset using forward kinematics
  899. calculate_delta(homeposition);
  900. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  901. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  902. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  903. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  904. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  905. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  906. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  907. calculate_SCARA_forward_Transform(delta);
  908. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  909. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  910. current_position[axis] = delta[axis];
  911. // SCARA home positions are based on configuration since the actual limits are determined by the
  912. // inverse kinematic transform.
  913. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  914. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  915. }
  916. else
  917. #endif
  918. {
  919. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  920. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  921. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  922. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  923. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  924. #endif
  925. }
  926. }
  927. /**
  928. * Some planner shorthand inline functions
  929. */
  930. inline void set_homing_bump_feedrate(AxisEnum axis) {
  931. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  932. if (homing_bump_divisor[axis] >= 1)
  933. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  934. else {
  935. feedrate = homing_feedrate[axis] / 10;
  936. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  937. }
  938. }
  939. inline void line_to_current_position() {
  940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  941. }
  942. inline void line_to_z(float zPosition) {
  943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  944. }
  945. inline void line_to_destination(float mm_m) {
  946. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  947. }
  948. inline void line_to_destination() {
  949. line_to_destination(feedrate);
  950. }
  951. inline void sync_plan_position() {
  952. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  953. }
  954. #if defined(DELTA) || defined(SCARA)
  955. inline void sync_plan_position_delta() {
  956. calculate_delta(current_position);
  957. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  958. }
  959. #endif
  960. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  961. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  962. static void setup_for_endstop_move() {
  963. saved_feedrate = feedrate;
  964. saved_feedrate_multiplier = feedrate_multiplier;
  965. feedrate_multiplier = 100;
  966. refresh_cmd_timeout();
  967. enable_endstops(true);
  968. }
  969. #ifdef ENABLE_AUTO_BED_LEVELING
  970. #ifdef DELTA
  971. /**
  972. * Calculate delta, start a line, and set current_position to destination
  973. */
  974. void prepare_move_raw() {
  975. refresh_cmd_timeout();
  976. calculate_delta(destination);
  977. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  978. set_current_to_destination();
  979. }
  980. #endif
  981. #ifdef AUTO_BED_LEVELING_GRID
  982. #ifndef DELTA
  983. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  984. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  985. planeNormal.debug("planeNormal");
  986. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  987. //bedLevel.debug("bedLevel");
  988. //plan_bed_level_matrix.debug("bed level before");
  989. //vector_3 uncorrected_position = plan_get_position_mm();
  990. //uncorrected_position.debug("position before");
  991. vector_3 corrected_position = plan_get_position();
  992. //corrected_position.debug("position after");
  993. current_position[X_AXIS] = corrected_position.x;
  994. current_position[Y_AXIS] = corrected_position.y;
  995. current_position[Z_AXIS] = corrected_position.z;
  996. sync_plan_position();
  997. }
  998. #endif // !DELTA
  999. #else // !AUTO_BED_LEVELING_GRID
  1000. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1001. plan_bed_level_matrix.set_to_identity();
  1002. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1003. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1004. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1005. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1006. if (planeNormal.z < 0) {
  1007. planeNormal.x = -planeNormal.x;
  1008. planeNormal.y = -planeNormal.y;
  1009. planeNormal.z = -planeNormal.z;
  1010. }
  1011. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1012. vector_3 corrected_position = plan_get_position();
  1013. current_position[X_AXIS] = corrected_position.x;
  1014. current_position[Y_AXIS] = corrected_position.y;
  1015. current_position[Z_AXIS] = corrected_position.z;
  1016. sync_plan_position();
  1017. }
  1018. #endif // !AUTO_BED_LEVELING_GRID
  1019. static void run_z_probe() {
  1020. #ifdef DELTA
  1021. float start_z = current_position[Z_AXIS];
  1022. long start_steps = st_get_position(Z_AXIS);
  1023. // move down slowly until you find the bed
  1024. feedrate = homing_feedrate[Z_AXIS] / 4;
  1025. destination[Z_AXIS] = -10;
  1026. prepare_move_raw(); // this will also set_current_to_destination
  1027. st_synchronize();
  1028. endstops_hit_on_purpose(); // clear endstop hit flags
  1029. // we have to let the planner know where we are right now as it is not where we said to go.
  1030. long stop_steps = st_get_position(Z_AXIS);
  1031. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1032. current_position[Z_AXIS] = mm;
  1033. sync_plan_position_delta();
  1034. #else // !DELTA
  1035. plan_bed_level_matrix.set_to_identity();
  1036. feedrate = homing_feedrate[Z_AXIS];
  1037. // Move down until the probe (or endstop?) is triggered
  1038. float zPosition = -10;
  1039. line_to_z(zPosition);
  1040. st_synchronize();
  1041. // Tell the planner where we ended up - Get this from the stepper handler
  1042. zPosition = st_get_position_mm(Z_AXIS);
  1043. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1044. // move up the retract distance
  1045. zPosition += home_bump_mm(Z_AXIS);
  1046. line_to_z(zPosition);
  1047. st_synchronize();
  1048. endstops_hit_on_purpose(); // clear endstop hit flags
  1049. // move back down slowly to find bed
  1050. set_homing_bump_feedrate(Z_AXIS);
  1051. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1052. line_to_z(zPosition);
  1053. st_synchronize();
  1054. endstops_hit_on_purpose(); // clear endstop hit flags
  1055. // Get the current stepper position after bumping an endstop
  1056. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1057. sync_plan_position();
  1058. #endif // !DELTA
  1059. }
  1060. /**
  1061. * Plan a move to (X, Y, Z) and set the current_position
  1062. * The final current_position may not be the one that was requested
  1063. */
  1064. static void do_blocking_move_to(float x, float y, float z) {
  1065. float oldFeedRate = feedrate;
  1066. #ifdef DELTA
  1067. feedrate = XY_TRAVEL_SPEED;
  1068. destination[X_AXIS] = x;
  1069. destination[Y_AXIS] = y;
  1070. destination[Z_AXIS] = z;
  1071. prepare_move_raw(); // this will also set_current_to_destination
  1072. st_synchronize();
  1073. #else
  1074. feedrate = homing_feedrate[Z_AXIS];
  1075. current_position[Z_AXIS] = z;
  1076. line_to_current_position();
  1077. st_synchronize();
  1078. feedrate = xy_travel_speed;
  1079. current_position[X_AXIS] = x;
  1080. current_position[Y_AXIS] = y;
  1081. line_to_current_position();
  1082. st_synchronize();
  1083. #endif
  1084. feedrate = oldFeedRate;
  1085. }
  1086. static void clean_up_after_endstop_move() {
  1087. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1088. enable_endstops(false);
  1089. #endif
  1090. feedrate = saved_feedrate;
  1091. feedrate_multiplier = saved_feedrate_multiplier;
  1092. refresh_cmd_timeout();
  1093. }
  1094. static void deploy_z_probe() {
  1095. #ifdef SERVO_ENDSTOPS
  1096. // Engage Z Servo endstop if enabled
  1097. if (servo_endstops[Z_AXIS] >= 0) {
  1098. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1099. #if SERVO_LEVELING
  1100. srv->attach(0);
  1101. #endif
  1102. srv->write(servo_endstop_angles[Z_AXIS * 2]);
  1103. #if SERVO_LEVELING
  1104. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1105. srv->detach();
  1106. #endif
  1107. }
  1108. #elif defined(Z_PROBE_ALLEN_KEY)
  1109. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1110. // If endstop is already false, the probe is deployed
  1111. #ifdef Z_PROBE_ENDSTOP
  1112. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1113. if (z_probe_endstop)
  1114. #else
  1115. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1116. if (z_min_endstop)
  1117. #endif
  1118. {
  1119. // Move to the start position to initiate deployment
  1120. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1121. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1122. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1123. prepare_move_raw(); // this will also set_current_to_destination
  1124. // Move to engage deployment
  1125. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1126. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1127. }
  1128. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1129. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1130. }
  1131. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1132. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1133. }
  1134. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1135. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1136. }
  1137. prepare_move_raw();
  1138. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1139. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1140. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1141. }
  1142. // Move to trigger deployment
  1143. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1144. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1145. }
  1146. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1147. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1148. }
  1149. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1150. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1151. }
  1152. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1153. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1154. }
  1155. prepare_move_raw();
  1156. #endif
  1157. }
  1158. // Partially Home X,Y for safety
  1159. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1160. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1161. prepare_move_raw(); // this will also set_current_to_destination
  1162. st_synchronize();
  1163. #ifdef Z_PROBE_ENDSTOP
  1164. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1165. if (z_probe_endstop)
  1166. #else
  1167. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1168. if (z_min_endstop)
  1169. #endif
  1170. {
  1171. if (IsRunning()) {
  1172. SERIAL_ERROR_START;
  1173. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1174. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1175. }
  1176. Stop();
  1177. }
  1178. #endif // Z_PROBE_ALLEN_KEY
  1179. }
  1180. static void stow_z_probe(bool doRaise=true) {
  1181. #ifdef SERVO_ENDSTOPS
  1182. // Retract Z Servo endstop if enabled
  1183. if (servo_endstops[Z_AXIS] >= 0) {
  1184. #if Z_RAISE_AFTER_PROBING > 0
  1185. if (doRaise) {
  1186. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1187. st_synchronize();
  1188. }
  1189. #endif
  1190. // Change the Z servo angle
  1191. Servo *srv = &servo[servo_endstops[Z_AXIS]];
  1192. #if SERVO_LEVELING
  1193. srv->attach(0);
  1194. #endif
  1195. srv->write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1196. #if SERVO_LEVELING
  1197. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1198. srv->detach();
  1199. #endif
  1200. }
  1201. #elif defined(Z_PROBE_ALLEN_KEY)
  1202. // Move up for safety
  1203. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1204. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1205. prepare_move_raw(); // this will also set_current_to_destination
  1206. // Move to the start position to initiate retraction
  1207. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1208. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1209. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1210. prepare_move_raw();
  1211. // Move the nozzle down to push the probe into retracted position
  1212. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1213. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1214. }
  1215. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1216. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1217. }
  1218. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1219. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1220. }
  1221. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1222. prepare_move_raw();
  1223. // Move up for safety
  1224. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1225. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1226. }
  1227. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1228. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1229. }
  1230. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1231. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1232. }
  1233. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1234. prepare_move_raw();
  1235. // Home XY for safety
  1236. feedrate = homing_feedrate[X_AXIS]/2;
  1237. destination[X_AXIS] = 0;
  1238. destination[Y_AXIS] = 0;
  1239. prepare_move_raw(); // this will also set_current_to_destination
  1240. st_synchronize();
  1241. #ifdef Z_PROBE_ENDSTOP
  1242. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1243. if (!z_probe_endstop)
  1244. #else
  1245. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1246. if (!z_min_endstop)
  1247. #endif
  1248. {
  1249. if (IsRunning()) {
  1250. SERIAL_ERROR_START;
  1251. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1252. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1253. }
  1254. Stop();
  1255. }
  1256. #endif // Z_PROBE_ALLEN_KEY
  1257. }
  1258. enum ProbeAction {
  1259. ProbeStay = 0,
  1260. ProbeDeploy = BIT(0),
  1261. ProbeStow = BIT(1),
  1262. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1263. };
  1264. // Probe bed height at position (x,y), returns the measured z value
  1265. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1266. // Move Z up to the z_before height, then move the probe to the given XY
  1267. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1268. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1269. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1270. if (probe_action & ProbeDeploy) deploy_z_probe();
  1271. #endif
  1272. run_z_probe();
  1273. float measured_z = current_position[Z_AXIS];
  1274. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1275. if (probe_action & ProbeStow) stow_z_probe();
  1276. #endif
  1277. if (verbose_level > 2) {
  1278. SERIAL_PROTOCOLPGM("Bed X: ");
  1279. SERIAL_PROTOCOL_F(x, 3);
  1280. SERIAL_PROTOCOLPGM(" Y: ");
  1281. SERIAL_PROTOCOL_F(y, 3);
  1282. SERIAL_PROTOCOLPGM(" Z: ");
  1283. SERIAL_PROTOCOL_F(measured_z, 3);
  1284. SERIAL_EOL;
  1285. }
  1286. return measured_z;
  1287. }
  1288. #ifdef DELTA
  1289. /**
  1290. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1291. */
  1292. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1293. if (bed_level[x][y] != 0.0) {
  1294. return; // Don't overwrite good values.
  1295. }
  1296. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1297. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1298. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1299. float median = c; // Median is robust (ignores outliers).
  1300. if (a < b) {
  1301. if (b < c) median = b;
  1302. if (c < a) median = a;
  1303. } else { // b <= a
  1304. if (c < b) median = b;
  1305. if (a < c) median = a;
  1306. }
  1307. bed_level[x][y] = median;
  1308. }
  1309. // Fill in the unprobed points (corners of circular print surface)
  1310. // using linear extrapolation, away from the center.
  1311. static void extrapolate_unprobed_bed_level() {
  1312. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1313. for (int y = 0; y <= half; y++) {
  1314. for (int x = 0; x <= half; x++) {
  1315. if (x + y < 3) continue;
  1316. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1317. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1318. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1319. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1320. }
  1321. }
  1322. }
  1323. // Print calibration results for plotting or manual frame adjustment.
  1324. static void print_bed_level() {
  1325. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1326. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1327. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1328. SERIAL_PROTOCOLCHAR(' ');
  1329. }
  1330. SERIAL_EOL;
  1331. }
  1332. }
  1333. // Reset calibration results to zero.
  1334. void reset_bed_level() {
  1335. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1336. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1337. bed_level[x][y] = 0.0;
  1338. }
  1339. }
  1340. }
  1341. #endif // DELTA
  1342. #endif // ENABLE_AUTO_BED_LEVELING
  1343. #ifdef Z_PROBE_SLED
  1344. #ifndef SLED_DOCKING_OFFSET
  1345. #define SLED_DOCKING_OFFSET 0
  1346. #endif
  1347. /**
  1348. * Method to dock/undock a sled designed by Charles Bell.
  1349. *
  1350. * dock[in] If true, move to MAX_X and engage the electromagnet
  1351. * offset[in] The additional distance to move to adjust docking location
  1352. */
  1353. static void dock_sled(bool dock, int offset=0) {
  1354. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1355. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1356. SERIAL_ECHO_START;
  1357. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1358. return;
  1359. }
  1360. if (dock) {
  1361. float oldXpos = current_position[X_AXIS]; // save x position
  1362. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // rise Z
  1363. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1, current_position[Y_AXIS], current_position[Z_AXIS]); // Dock sled a bit closer to ensure proper capturing
  1364. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1365. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1366. } else {
  1367. float oldXpos = current_position[X_AXIS]; // save x position
  1368. float z_loc = current_position[Z_AXIS];
  1369. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1370. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1371. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1372. do_blocking_move_to(oldXpos, current_position[Y_AXIS], current_position[Z_AXIS]); // return to position before docking
  1373. }
  1374. }
  1375. #endif // Z_PROBE_SLED
  1376. /**
  1377. * Home an individual axis
  1378. */
  1379. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1380. static void homeaxis(AxisEnum axis) {
  1381. #define HOMEAXIS_DO(LETTER) \
  1382. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1383. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1384. int axis_home_dir =
  1385. #ifdef DUAL_X_CARRIAGE
  1386. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1387. #endif
  1388. home_dir(axis);
  1389. // Set the axis position as setup for the move
  1390. current_position[axis] = 0;
  1391. sync_plan_position();
  1392. #ifdef Z_PROBE_SLED
  1393. // Get Probe
  1394. if (axis == Z_AXIS) {
  1395. if (axis_home_dir < 0) dock_sled(false);
  1396. }
  1397. #endif
  1398. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1399. // Deploy a probe if there is one, and homing towards the bed
  1400. if (axis == Z_AXIS) {
  1401. if (axis_home_dir < 0) deploy_z_probe();
  1402. }
  1403. #endif
  1404. #ifdef SERVO_ENDSTOPS
  1405. if (axis != Z_AXIS) {
  1406. // Engage Servo endstop if enabled
  1407. if (servo_endstops[axis] > -1)
  1408. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1409. }
  1410. #endif
  1411. // Set a flag for Z motor locking
  1412. #ifdef Z_DUAL_ENDSTOPS
  1413. if (axis == Z_AXIS) In_Homing_Process(true);
  1414. #endif
  1415. // Move towards the endstop until an endstop is triggered
  1416. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1417. feedrate = homing_feedrate[axis];
  1418. line_to_destination();
  1419. st_synchronize();
  1420. // Set the axis position as setup for the move
  1421. current_position[axis] = 0;
  1422. sync_plan_position();
  1423. enable_endstops(false); // Disable endstops while moving away
  1424. // Move away from the endstop by the axis HOME_BUMP_MM
  1425. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1426. line_to_destination();
  1427. st_synchronize();
  1428. enable_endstops(true); // Enable endstops for next homing move
  1429. // Slow down the feedrate for the next move
  1430. set_homing_bump_feedrate(axis);
  1431. // Move slowly towards the endstop until triggered
  1432. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1433. line_to_destination();
  1434. st_synchronize();
  1435. #ifdef Z_DUAL_ENDSTOPS
  1436. if (axis == Z_AXIS) {
  1437. float adj = fabs(z_endstop_adj);
  1438. bool lockZ1;
  1439. if (axis_home_dir > 0) {
  1440. adj = -adj;
  1441. lockZ1 = (z_endstop_adj > 0);
  1442. }
  1443. else
  1444. lockZ1 = (z_endstop_adj < 0);
  1445. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1446. sync_plan_position();
  1447. // Move to the adjusted endstop height
  1448. feedrate = homing_feedrate[axis];
  1449. destination[Z_AXIS] = adj;
  1450. line_to_destination();
  1451. st_synchronize();
  1452. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1453. In_Homing_Process(false);
  1454. } // Z_AXIS
  1455. #endif
  1456. #ifdef DELTA
  1457. // retrace by the amount specified in endstop_adj
  1458. if (endstop_adj[axis] * axis_home_dir < 0) {
  1459. enable_endstops(false); // Disable endstops while moving away
  1460. sync_plan_position();
  1461. destination[axis] = endstop_adj[axis];
  1462. line_to_destination();
  1463. st_synchronize();
  1464. enable_endstops(true); // Enable endstops for next homing move
  1465. }
  1466. #endif
  1467. // Set the axis position to its home position (plus home offsets)
  1468. axis_is_at_home(axis);
  1469. sync_plan_position();
  1470. destination[axis] = current_position[axis];
  1471. feedrate = 0.0;
  1472. endstops_hit_on_purpose(); // clear endstop hit flags
  1473. axis_known_position[axis] = true;
  1474. #ifdef Z_PROBE_SLED
  1475. // bring probe back
  1476. if (axis == Z_AXIS) {
  1477. if (axis_home_dir < 0) dock_sled(true);
  1478. }
  1479. #endif
  1480. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1481. // Deploy a probe if there is one, and homing towards the bed
  1482. if (axis == Z_AXIS) {
  1483. if (axis_home_dir < 0) stow_z_probe();
  1484. }
  1485. else
  1486. #endif
  1487. #ifdef SERVO_ENDSTOPS
  1488. {
  1489. // Retract Servo endstop if enabled
  1490. if (servo_endstops[axis] > -1)
  1491. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1492. }
  1493. #endif
  1494. }
  1495. }
  1496. #ifdef FWRETRACT
  1497. void retract(bool retracting, bool swapping=false) {
  1498. if (retracting == retracted[active_extruder]) return;
  1499. float oldFeedrate = feedrate;
  1500. set_destination_to_current();
  1501. if (retracting) {
  1502. feedrate = retract_feedrate * 60;
  1503. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1504. plan_set_e_position(current_position[E_AXIS]);
  1505. prepare_move();
  1506. if (retract_zlift > 0.01) {
  1507. current_position[Z_AXIS] -= retract_zlift;
  1508. #ifdef DELTA
  1509. sync_plan_position_delta();
  1510. #else
  1511. sync_plan_position();
  1512. #endif
  1513. prepare_move();
  1514. }
  1515. }
  1516. else {
  1517. if (retract_zlift > 0.01) {
  1518. current_position[Z_AXIS] += retract_zlift;
  1519. #ifdef DELTA
  1520. sync_plan_position_delta();
  1521. #else
  1522. sync_plan_position();
  1523. #endif
  1524. //prepare_move();
  1525. }
  1526. feedrate = retract_recover_feedrate * 60;
  1527. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1528. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1529. plan_set_e_position(current_position[E_AXIS]);
  1530. prepare_move();
  1531. }
  1532. feedrate = oldFeedrate;
  1533. retracted[active_extruder] = retracting;
  1534. } // retract()
  1535. #endif // FWRETRACT
  1536. /**
  1537. *
  1538. * G-Code Handler functions
  1539. *
  1540. */
  1541. /**
  1542. * Set XYZE destination and feedrate from the current GCode command
  1543. *
  1544. * - Set destination from included axis codes
  1545. * - Set to current for missing axis codes
  1546. * - Set the feedrate, if included
  1547. */
  1548. void gcode_get_destination() {
  1549. for (int i = 0; i < NUM_AXIS; i++) {
  1550. if (code_seen(axis_codes[i]))
  1551. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1552. else
  1553. destination[i] = current_position[i];
  1554. }
  1555. if (code_seen('F')) {
  1556. float next_feedrate = code_value();
  1557. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1558. }
  1559. }
  1560. void unknown_command_error() {
  1561. SERIAL_ECHO_START;
  1562. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1563. SERIAL_ECHO(current_command);
  1564. SERIAL_ECHOPGM("\"\n");
  1565. }
  1566. /**
  1567. * G0, G1: Coordinated movement of X Y Z E axes
  1568. */
  1569. inline void gcode_G0_G1() {
  1570. if (IsRunning()) {
  1571. gcode_get_destination(); // For X Y Z E F
  1572. #ifdef FWRETRACT
  1573. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1574. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1575. // Is this move an attempt to retract or recover?
  1576. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1577. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1578. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1579. retract(!retracted[active_extruder]);
  1580. return;
  1581. }
  1582. }
  1583. #endif //FWRETRACT
  1584. prepare_move();
  1585. }
  1586. }
  1587. /**
  1588. * Plan an arc in 2 dimensions
  1589. *
  1590. * The arc is approximated by generating many small linear segments.
  1591. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  1592. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  1593. * larger segments will tend to be more efficient. Your slicer should have
  1594. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  1595. */
  1596. void plan_arc(
  1597. float *target, // Destination position
  1598. float *offset, // Center of rotation relative to current_position
  1599. uint8_t clockwise // Clockwise?
  1600. ) {
  1601. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  1602. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  1603. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  1604. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  1605. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  1606. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  1607. r_axis1 = -offset[Y_AXIS],
  1608. rt_axis0 = target[X_AXIS] - center_axis0,
  1609. rt_axis1 = target[Y_AXIS] - center_axis1;
  1610. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  1611. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  1612. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  1613. if (clockwise) { angular_travel -= RADIANS(360); }
  1614. // Make a circle if the angular rotation is 0
  1615. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  1616. angular_travel += RADIANS(360);
  1617. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  1618. if (mm_of_travel < 0.001) { return; }
  1619. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  1620. if (segments == 0) segments = 1;
  1621. float theta_per_segment = angular_travel/segments;
  1622. float linear_per_segment = linear_travel/segments;
  1623. float extruder_per_segment = extruder_travel/segments;
  1624. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  1625. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  1626. r_T = [cos(phi) -sin(phi);
  1627. sin(phi) cos(phi] * r ;
  1628. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  1629. defined from the circle center to the initial position. Each line segment is formed by successive
  1630. vector rotations. This requires only two cos() and sin() computations to form the rotation
  1631. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  1632. all double numbers are single precision on the Arduino. (True double precision will not have
  1633. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  1634. tool precision in some cases. Therefore, arc path correction is implemented.
  1635. Small angle approximation may be used to reduce computation overhead further. This approximation
  1636. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  1637. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  1638. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  1639. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  1640. issue for CNC machines with the single precision Arduino calculations.
  1641. This approximation also allows plan_arc to immediately insert a line segment into the planner
  1642. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  1643. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  1644. This is important when there are successive arc motions.
  1645. */
  1646. // Vector rotation matrix values
  1647. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  1648. float sin_T = theta_per_segment;
  1649. float arc_target[4];
  1650. float sin_Ti;
  1651. float cos_Ti;
  1652. float r_axisi;
  1653. uint16_t i;
  1654. int8_t count = 0;
  1655. // Initialize the linear axis
  1656. arc_target[Z_AXIS] = current_position[Z_AXIS];
  1657. // Initialize the extruder axis
  1658. arc_target[E_AXIS] = current_position[E_AXIS];
  1659. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  1660. for (i = 1; i < segments; i++) { // Increment (segments-1)
  1661. if (count < N_ARC_CORRECTION) {
  1662. // Apply vector rotation matrix to previous r_axis0 / 1
  1663. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  1664. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  1665. r_axis1 = r_axisi;
  1666. count++;
  1667. }
  1668. else {
  1669. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  1670. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  1671. cos_Ti = cos(i*theta_per_segment);
  1672. sin_Ti = sin(i*theta_per_segment);
  1673. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  1674. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  1675. count = 0;
  1676. }
  1677. // Update arc_target location
  1678. arc_target[X_AXIS] = center_axis0 + r_axis0;
  1679. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  1680. arc_target[Z_AXIS] += linear_per_segment;
  1681. arc_target[E_AXIS] += extruder_per_segment;
  1682. clamp_to_software_endstops(arc_target);
  1683. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  1684. }
  1685. // Ensure last segment arrives at target location.
  1686. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  1687. // As far as the parser is concerned, the position is now == target. In reality the
  1688. // motion control system might still be processing the action and the real tool position
  1689. // in any intermediate location.
  1690. set_current_to_destination();
  1691. }
  1692. /**
  1693. * G2: Clockwise Arc
  1694. * G3: Counterclockwise Arc
  1695. */
  1696. inline void gcode_G2_G3(bool clockwise) {
  1697. if (IsRunning()) {
  1698. #ifdef SF_ARC_FIX
  1699. bool relative_mode_backup = relative_mode;
  1700. relative_mode = true;
  1701. #endif
  1702. gcode_get_destination();
  1703. #ifdef SF_ARC_FIX
  1704. relative_mode = relative_mode_backup;
  1705. #endif
  1706. // Center of arc as offset from current_position
  1707. float arc_offset[2] = {
  1708. code_seen('I') ? code_value() : 0,
  1709. code_seen('J') ? code_value() : 0
  1710. };
  1711. // Send an arc to the planner
  1712. plan_arc(destination, arc_offset, clockwise);
  1713. refresh_cmd_timeout();
  1714. }
  1715. }
  1716. /**
  1717. * G4: Dwell S<seconds> or P<milliseconds>
  1718. */
  1719. inline void gcode_G4() {
  1720. millis_t codenum = 0;
  1721. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1722. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1723. st_synchronize();
  1724. refresh_cmd_timeout();
  1725. codenum += previous_cmd_ms; // keep track of when we started waiting
  1726. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1727. while (millis() < codenum) idle();
  1728. }
  1729. #ifdef FWRETRACT
  1730. /**
  1731. * G10 - Retract filament according to settings of M207
  1732. * G11 - Recover filament according to settings of M208
  1733. */
  1734. inline void gcode_G10_G11(bool doRetract=false) {
  1735. #if EXTRUDERS > 1
  1736. if (doRetract) {
  1737. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1738. }
  1739. #endif
  1740. retract(doRetract
  1741. #if EXTRUDERS > 1
  1742. , retracted_swap[active_extruder]
  1743. #endif
  1744. );
  1745. }
  1746. #endif //FWRETRACT
  1747. /**
  1748. * G28: Home all axes according to settings
  1749. *
  1750. * Parameters
  1751. *
  1752. * None Home to all axes with no parameters.
  1753. * With QUICK_HOME enabled XY will home together, then Z.
  1754. *
  1755. * Cartesian parameters
  1756. *
  1757. * X Home to the X endstop
  1758. * Y Home to the Y endstop
  1759. * Z Home to the Z endstop
  1760. *
  1761. */
  1762. inline void gcode_G28() {
  1763. // Wait for planner moves to finish!
  1764. st_synchronize();
  1765. // For auto bed leveling, clear the level matrix
  1766. #ifdef ENABLE_AUTO_BED_LEVELING
  1767. plan_bed_level_matrix.set_to_identity();
  1768. #ifdef DELTA
  1769. reset_bed_level();
  1770. #endif
  1771. #endif
  1772. // For manual bed leveling deactivate the matrix temporarily
  1773. #ifdef MESH_BED_LEVELING
  1774. uint8_t mbl_was_active = mbl.active;
  1775. mbl.active = 0;
  1776. #endif
  1777. setup_for_endstop_move();
  1778. set_destination_to_current();
  1779. feedrate = 0.0;
  1780. #ifdef DELTA
  1781. // A delta can only safely home all axis at the same time
  1782. // all axis have to home at the same time
  1783. // Pretend the current position is 0,0,0
  1784. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1785. sync_plan_position();
  1786. // Move all carriages up together until the first endstop is hit.
  1787. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1788. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1789. line_to_destination();
  1790. st_synchronize();
  1791. endstops_hit_on_purpose(); // clear endstop hit flags
  1792. // Destination reached
  1793. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1794. // take care of back off and rehome now we are all at the top
  1795. HOMEAXIS(X);
  1796. HOMEAXIS(Y);
  1797. HOMEAXIS(Z);
  1798. sync_plan_position_delta();
  1799. #else // NOT DELTA
  1800. bool homeX = code_seen(axis_codes[X_AXIS]),
  1801. homeY = code_seen(axis_codes[Y_AXIS]),
  1802. homeZ = code_seen(axis_codes[Z_AXIS]);
  1803. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1804. if (home_all_axis || homeZ) {
  1805. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1806. HOMEAXIS(Z);
  1807. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1808. // Raise Z before homing any other axes
  1809. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1810. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1811. feedrate = max_feedrate[Z_AXIS] * 60;
  1812. line_to_destination();
  1813. st_synchronize();
  1814. #endif
  1815. } // home_all_axis || homeZ
  1816. #ifdef QUICK_HOME
  1817. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1818. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1819. #ifdef DUAL_X_CARRIAGE
  1820. int x_axis_home_dir = x_home_dir(active_extruder);
  1821. extruder_duplication_enabled = false;
  1822. #else
  1823. int x_axis_home_dir = home_dir(X_AXIS);
  1824. #endif
  1825. sync_plan_position();
  1826. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1827. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1828. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1829. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1830. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1831. line_to_destination();
  1832. st_synchronize();
  1833. axis_is_at_home(X_AXIS);
  1834. axis_is_at_home(Y_AXIS);
  1835. sync_plan_position();
  1836. destination[X_AXIS] = current_position[X_AXIS];
  1837. destination[Y_AXIS] = current_position[Y_AXIS];
  1838. line_to_destination();
  1839. feedrate = 0.0;
  1840. st_synchronize();
  1841. endstops_hit_on_purpose(); // clear endstop hit flags
  1842. current_position[X_AXIS] = destination[X_AXIS];
  1843. current_position[Y_AXIS] = destination[Y_AXIS];
  1844. #ifndef SCARA
  1845. current_position[Z_AXIS] = destination[Z_AXIS];
  1846. #endif
  1847. }
  1848. #endif // QUICK_HOME
  1849. #ifdef HOME_Y_BEFORE_X
  1850. // Home Y
  1851. if (home_all_axis || homeY) HOMEAXIS(Y);
  1852. #endif
  1853. // Home X
  1854. if (home_all_axis || homeX) {
  1855. #ifdef DUAL_X_CARRIAGE
  1856. int tmp_extruder = active_extruder;
  1857. extruder_duplication_enabled = false;
  1858. active_extruder = !active_extruder;
  1859. HOMEAXIS(X);
  1860. inactive_extruder_x_pos = current_position[X_AXIS];
  1861. active_extruder = tmp_extruder;
  1862. HOMEAXIS(X);
  1863. // reset state used by the different modes
  1864. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1865. delayed_move_time = 0;
  1866. active_extruder_parked = true;
  1867. #else
  1868. HOMEAXIS(X);
  1869. #endif
  1870. }
  1871. #ifndef HOME_Y_BEFORE_X
  1872. // Home Y
  1873. if (home_all_axis || homeY) HOMEAXIS(Y);
  1874. #endif
  1875. // Home Z last if homing towards the bed
  1876. #if Z_HOME_DIR < 0
  1877. if (home_all_axis || homeZ) {
  1878. #ifdef Z_SAFE_HOMING
  1879. if (home_all_axis) {
  1880. current_position[Z_AXIS] = 0;
  1881. sync_plan_position();
  1882. //
  1883. // Set the probe (or just the nozzle) destination to the safe homing point
  1884. //
  1885. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1886. // then this may not work as expected.
  1887. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1888. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1889. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1890. feedrate = XY_TRAVEL_SPEED;
  1891. // This could potentially move X, Y, Z all together
  1892. line_to_destination();
  1893. st_synchronize();
  1894. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1895. current_position[X_AXIS] = destination[X_AXIS];
  1896. current_position[Y_AXIS] = destination[Y_AXIS];
  1897. // Home the Z axis
  1898. HOMEAXIS(Z);
  1899. }
  1900. else if (homeZ) { // Don't need to Home Z twice
  1901. // Let's see if X and Y are homed
  1902. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1903. // Make sure the probe is within the physical limits
  1904. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1905. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1906. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1907. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1908. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1909. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1910. // Set the plan current position to X, Y, 0
  1911. current_position[Z_AXIS] = 0;
  1912. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1913. // Set Z destination away from bed and raise the axis
  1914. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1915. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1916. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1917. line_to_destination();
  1918. st_synchronize();
  1919. // Home the Z axis
  1920. HOMEAXIS(Z);
  1921. }
  1922. else {
  1923. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1924. SERIAL_ECHO_START;
  1925. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1926. }
  1927. }
  1928. else {
  1929. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1930. SERIAL_ECHO_START;
  1931. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1932. }
  1933. } // !home_all_axes && homeZ
  1934. #else // !Z_SAFE_HOMING
  1935. HOMEAXIS(Z);
  1936. #endif // !Z_SAFE_HOMING
  1937. } // home_all_axis || homeZ
  1938. #endif // Z_HOME_DIR < 0
  1939. sync_plan_position();
  1940. #endif // else DELTA
  1941. #ifdef SCARA
  1942. sync_plan_position_delta();
  1943. #endif
  1944. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1945. enable_endstops(false);
  1946. #endif
  1947. // For manual leveling move back to 0,0
  1948. #ifdef MESH_BED_LEVELING
  1949. if (mbl_was_active) {
  1950. current_position[X_AXIS] = mbl.get_x(0);
  1951. current_position[Y_AXIS] = mbl.get_y(0);
  1952. set_destination_to_current();
  1953. feedrate = homing_feedrate[X_AXIS];
  1954. line_to_destination();
  1955. st_synchronize();
  1956. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1957. sync_plan_position();
  1958. mbl.active = 1;
  1959. }
  1960. #endif
  1961. feedrate = saved_feedrate;
  1962. feedrate_multiplier = saved_feedrate_multiplier;
  1963. refresh_cmd_timeout();
  1964. endstops_hit_on_purpose(); // clear endstop hit flags
  1965. }
  1966. #ifdef MESH_BED_LEVELING
  1967. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1968. /**
  1969. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1970. * mesh to compensate for variable bed height
  1971. *
  1972. * Parameters With MESH_BED_LEVELING:
  1973. *
  1974. * S0 Produce a mesh report
  1975. * S1 Start probing mesh points
  1976. * S2 Probe the next mesh point
  1977. * S3 Xn Yn Zn.nn Manually modify a single point
  1978. *
  1979. * The S0 report the points as below
  1980. *
  1981. * +----> X-axis
  1982. * |
  1983. * |
  1984. * v Y-axis
  1985. *
  1986. */
  1987. inline void gcode_G29() {
  1988. static int probe_point = -1;
  1989. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1990. if (state < 0 || state > 3) {
  1991. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1992. return;
  1993. }
  1994. int ix, iy;
  1995. float z;
  1996. switch(state) {
  1997. case MeshReport:
  1998. if (mbl.active) {
  1999. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2000. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2001. SERIAL_PROTOCOLCHAR(',');
  2002. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2003. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2004. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2005. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2006. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2007. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2008. SERIAL_PROTOCOLPGM(" ");
  2009. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2010. }
  2011. SERIAL_EOL;
  2012. }
  2013. }
  2014. else
  2015. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2016. break;
  2017. case MeshStart:
  2018. mbl.reset();
  2019. probe_point = 0;
  2020. enqueuecommands_P(PSTR("G28\nG29 S2"));
  2021. break;
  2022. case MeshNext:
  2023. if (probe_point < 0) {
  2024. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2025. return;
  2026. }
  2027. if (probe_point == 0) {
  2028. // Set Z to a positive value before recording the first Z.
  2029. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2030. sync_plan_position();
  2031. }
  2032. else {
  2033. // For others, save the Z of the previous point, then raise Z again.
  2034. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  2035. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  2036. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2037. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2038. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2040. st_synchronize();
  2041. }
  2042. // Is there another point to sample? Move there.
  2043. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  2044. ix = probe_point % MESH_NUM_X_POINTS;
  2045. iy = probe_point / MESH_NUM_X_POINTS;
  2046. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2047. current_position[X_AXIS] = mbl.get_x(ix);
  2048. current_position[Y_AXIS] = mbl.get_y(iy);
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  2050. st_synchronize();
  2051. probe_point++;
  2052. }
  2053. else {
  2054. // After recording the last point, activate the mbl and home
  2055. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2056. probe_point = -1;
  2057. mbl.active = 1;
  2058. enqueuecommands_P(PSTR("G28"));
  2059. }
  2060. break;
  2061. case MeshSet:
  2062. if (code_seen('X') || code_seen('x')) {
  2063. ix = code_value_long()-1;
  2064. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2065. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2066. return;
  2067. }
  2068. } else {
  2069. SERIAL_PROTOCOLPGM("X not entered.\n");
  2070. return;
  2071. }
  2072. if (code_seen('Y') || code_seen('y')) {
  2073. iy = code_value_long()-1;
  2074. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2075. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2076. return;
  2077. }
  2078. } else {
  2079. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2080. return;
  2081. }
  2082. if (code_seen('Z') || code_seen('z')) {
  2083. z = code_value();
  2084. } else {
  2085. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2086. return;
  2087. }
  2088. mbl.z_values[iy][ix] = z;
  2089. } // switch(state)
  2090. }
  2091. #elif defined(ENABLE_AUTO_BED_LEVELING)
  2092. void out_of_range_error(const char *p_edge) {
  2093. SERIAL_PROTOCOLPGM("?Probe ");
  2094. serialprintPGM(p_edge);
  2095. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2096. }
  2097. /**
  2098. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2099. * Will fail if the printer has not been homed with G28.
  2100. *
  2101. * Enhanced G29 Auto Bed Leveling Probe Routine
  2102. *
  2103. * Parameters With AUTO_BED_LEVELING_GRID:
  2104. *
  2105. * P Set the size of the grid that will be probed (P x P points).
  2106. * Not supported by non-linear delta printer bed leveling.
  2107. * Example: "G29 P4"
  2108. *
  2109. * S Set the XY travel speed between probe points (in mm/min)
  2110. *
  2111. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2112. * or clean the rotation Matrix. Useful to check the topology
  2113. * after a first run of G29.
  2114. *
  2115. * V Set the verbose level (0-4). Example: "G29 V3"
  2116. *
  2117. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2118. * This is useful for manual bed leveling and finding flaws in the bed (to
  2119. * assist with part placement).
  2120. * Not supported by non-linear delta printer bed leveling.
  2121. *
  2122. * F Set the Front limit of the probing grid
  2123. * B Set the Back limit of the probing grid
  2124. * L Set the Left limit of the probing grid
  2125. * R Set the Right limit of the probing grid
  2126. *
  2127. * Global Parameters:
  2128. *
  2129. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2130. * Include "E" to engage/disengage the probe for each sample.
  2131. * There's no extra effect if you have a fixed probe.
  2132. * Usage: "G29 E" or "G29 e"
  2133. *
  2134. */
  2135. inline void gcode_G29() {
  2136. // Don't allow auto-leveling without homing first
  2137. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2138. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2139. SERIAL_ECHO_START;
  2140. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2141. return;
  2142. }
  2143. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  2144. if (verbose_level < 0 || verbose_level > 4) {
  2145. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2146. return;
  2147. }
  2148. bool dryrun = code_seen('D') || code_seen('d'),
  2149. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2150. #ifdef AUTO_BED_LEVELING_GRID
  2151. #ifndef DELTA
  2152. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  2153. #endif
  2154. if (verbose_level > 0) {
  2155. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2156. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2157. }
  2158. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2159. #ifndef DELTA
  2160. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2161. if (auto_bed_leveling_grid_points < 2) {
  2162. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2163. return;
  2164. }
  2165. #endif
  2166. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2167. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2168. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2169. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2170. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2171. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2172. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2173. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2174. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2175. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2176. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2177. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2178. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2179. if (left_out || right_out || front_out || back_out) {
  2180. if (left_out) {
  2181. out_of_range_error(PSTR("(L)eft"));
  2182. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2183. }
  2184. if (right_out) {
  2185. out_of_range_error(PSTR("(R)ight"));
  2186. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2187. }
  2188. if (front_out) {
  2189. out_of_range_error(PSTR("(F)ront"));
  2190. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2191. }
  2192. if (back_out) {
  2193. out_of_range_error(PSTR("(B)ack"));
  2194. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2195. }
  2196. return;
  2197. }
  2198. #endif // AUTO_BED_LEVELING_GRID
  2199. #ifdef Z_PROBE_SLED
  2200. dock_sled(false); // engage (un-dock) the probe
  2201. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2202. deploy_z_probe();
  2203. #endif
  2204. st_synchronize();
  2205. if (!dryrun) {
  2206. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2207. plan_bed_level_matrix.set_to_identity();
  2208. #ifdef DELTA
  2209. reset_bed_level();
  2210. #else //!DELTA
  2211. //vector_3 corrected_position = plan_get_position_mm();
  2212. //corrected_position.debug("position before G29");
  2213. vector_3 uncorrected_position = plan_get_position();
  2214. //uncorrected_position.debug("position during G29");
  2215. current_position[X_AXIS] = uncorrected_position.x;
  2216. current_position[Y_AXIS] = uncorrected_position.y;
  2217. current_position[Z_AXIS] = uncorrected_position.z;
  2218. sync_plan_position();
  2219. #endif // !DELTA
  2220. }
  2221. setup_for_endstop_move();
  2222. feedrate = homing_feedrate[Z_AXIS];
  2223. #ifdef AUTO_BED_LEVELING_GRID
  2224. // probe at the points of a lattice grid
  2225. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2226. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2227. #ifdef DELTA
  2228. delta_grid_spacing[0] = xGridSpacing;
  2229. delta_grid_spacing[1] = yGridSpacing;
  2230. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  2231. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2232. #else // !DELTA
  2233. // solve the plane equation ax + by + d = z
  2234. // A is the matrix with rows [x y 1] for all the probed points
  2235. // B is the vector of the Z positions
  2236. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2237. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2238. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2239. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2240. eqnBVector[abl2], // "B" vector of Z points
  2241. mean = 0.0;
  2242. #endif // !DELTA
  2243. int probePointCounter = 0;
  2244. bool zig = true;
  2245. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2246. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2247. int xStart, xStop, xInc;
  2248. if (zig) {
  2249. xStart = 0;
  2250. xStop = auto_bed_leveling_grid_points;
  2251. xInc = 1;
  2252. }
  2253. else {
  2254. xStart = auto_bed_leveling_grid_points - 1;
  2255. xStop = -1;
  2256. xInc = -1;
  2257. }
  2258. #ifndef DELTA
  2259. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2260. // This gets the probe points in more readable order.
  2261. if (!do_topography_map) zig = !zig;
  2262. #else
  2263. zig = !zig;
  2264. #endif
  2265. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2266. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2267. // raise extruder
  2268. float measured_z,
  2269. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2270. #ifdef DELTA
  2271. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2272. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2273. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2274. #endif //DELTA
  2275. ProbeAction act;
  2276. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2277. act = ProbeDeployAndStow;
  2278. else if (yCount == 0 && xCount == xStart)
  2279. act = ProbeDeploy;
  2280. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2281. act = ProbeStow;
  2282. else
  2283. act = ProbeStay;
  2284. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2285. #ifndef DELTA
  2286. mean += measured_z;
  2287. eqnBVector[probePointCounter] = measured_z;
  2288. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2289. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2290. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2291. #else
  2292. bed_level[xCount][yCount] = measured_z + z_offset;
  2293. #endif
  2294. probePointCounter++;
  2295. idle();
  2296. } //xProbe
  2297. } //yProbe
  2298. clean_up_after_endstop_move();
  2299. #ifdef DELTA
  2300. if (!dryrun) extrapolate_unprobed_bed_level();
  2301. print_bed_level();
  2302. #else // !DELTA
  2303. // solve lsq problem
  2304. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2305. mean /= abl2;
  2306. if (verbose_level) {
  2307. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2308. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2309. SERIAL_PROTOCOLPGM(" b: ");
  2310. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2311. SERIAL_PROTOCOLPGM(" d: ");
  2312. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2313. SERIAL_EOL;
  2314. if (verbose_level > 2) {
  2315. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2316. SERIAL_PROTOCOL_F(mean, 8);
  2317. SERIAL_EOL;
  2318. }
  2319. }
  2320. // Show the Topography map if enabled
  2321. if (do_topography_map) {
  2322. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2323. SERIAL_PROTOCOLPGM("+-----------+\n");
  2324. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2325. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2326. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2327. SERIAL_PROTOCOLPGM("+-----------+\n");
  2328. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2329. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2330. int ind = yy * auto_bed_leveling_grid_points + xx;
  2331. float diff = eqnBVector[ind] - mean;
  2332. if (diff >= 0.0)
  2333. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2334. else
  2335. SERIAL_PROTOCOLCHAR(' ');
  2336. SERIAL_PROTOCOL_F(diff, 5);
  2337. } // xx
  2338. SERIAL_EOL;
  2339. } // yy
  2340. SERIAL_EOL;
  2341. } //do_topography_map
  2342. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2343. free(plane_equation_coefficients);
  2344. #endif //!DELTA
  2345. #else // !AUTO_BED_LEVELING_GRID
  2346. // Actions for each probe
  2347. ProbeAction p1, p2, p3;
  2348. if (deploy_probe_for_each_reading)
  2349. p1 = p2 = p3 = ProbeDeployAndStow;
  2350. else
  2351. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2352. // Probe at 3 arbitrary points
  2353. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2354. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2355. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2356. clean_up_after_endstop_move();
  2357. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2358. #endif // !AUTO_BED_LEVELING_GRID
  2359. #ifndef DELTA
  2360. if (verbose_level > 0)
  2361. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2362. if (!dryrun) {
  2363. // Correct the Z height difference from z-probe position and hotend tip position.
  2364. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2365. // When the bed is uneven, this height must be corrected.
  2366. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2367. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2368. z_tmp = current_position[Z_AXIS],
  2369. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2370. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2371. current_position[Z_AXIS] += z_tmp - real_z; // The difference is added to current position and sent to planner.
  2372. sync_plan_position();
  2373. }
  2374. #endif // !DELTA
  2375. #ifdef Z_PROBE_SLED
  2376. dock_sled(true); // dock the probe
  2377. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2378. stow_z_probe();
  2379. #endif
  2380. #ifdef Z_PROBE_END_SCRIPT
  2381. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2382. st_synchronize();
  2383. #endif
  2384. }
  2385. #ifndef Z_PROBE_SLED
  2386. inline void gcode_G30() {
  2387. deploy_z_probe(); // Engage Z Servo endstop if available
  2388. st_synchronize();
  2389. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2390. setup_for_endstop_move();
  2391. feedrate = homing_feedrate[Z_AXIS];
  2392. run_z_probe();
  2393. SERIAL_PROTOCOLPGM("Bed X: ");
  2394. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2395. SERIAL_PROTOCOLPGM(" Y: ");
  2396. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2397. SERIAL_PROTOCOLPGM(" Z: ");
  2398. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2399. SERIAL_EOL;
  2400. clean_up_after_endstop_move();
  2401. stow_z_probe(); // Retract Z Servo endstop if available
  2402. }
  2403. #endif //!Z_PROBE_SLED
  2404. #endif //ENABLE_AUTO_BED_LEVELING
  2405. /**
  2406. * G92: Set current position to given X Y Z E
  2407. */
  2408. inline void gcode_G92() {
  2409. if (!code_seen(axis_codes[E_AXIS]))
  2410. st_synchronize();
  2411. bool didXYZ = false;
  2412. for (int i = 0; i < NUM_AXIS; i++) {
  2413. if (code_seen(axis_codes[i])) {
  2414. float v = current_position[i] = code_value();
  2415. if (i == E_AXIS)
  2416. plan_set_e_position(v);
  2417. else
  2418. didXYZ = true;
  2419. }
  2420. }
  2421. if (didXYZ) {
  2422. #if defined(DELTA) || defined(SCARA)
  2423. sync_plan_position_delta();
  2424. #else
  2425. sync_plan_position();
  2426. #endif
  2427. }
  2428. }
  2429. #ifdef ULTIPANEL
  2430. /**
  2431. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2432. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2433. */
  2434. inline void gcode_M0_M1() {
  2435. char *args = current_command_args;
  2436. millis_t codenum = 0;
  2437. bool hasP = false, hasS = false;
  2438. if (code_seen('P')) {
  2439. codenum = code_value_short(); // milliseconds to wait
  2440. hasP = codenum > 0;
  2441. }
  2442. if (code_seen('S')) {
  2443. codenum = code_value() * 1000; // seconds to wait
  2444. hasS = codenum > 0;
  2445. }
  2446. if (!hasP && !hasS && *args != '\0')
  2447. lcd_setstatus(args, true);
  2448. else {
  2449. LCD_MESSAGEPGM(MSG_USERWAIT);
  2450. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2451. dontExpireStatus();
  2452. #endif
  2453. }
  2454. lcd_ignore_click();
  2455. st_synchronize();
  2456. refresh_cmd_timeout();
  2457. if (codenum > 0) {
  2458. codenum += previous_cmd_ms; // wait until this time for a click
  2459. while (millis() < codenum && !lcd_clicked()) idle();
  2460. lcd_ignore_click(false);
  2461. }
  2462. else {
  2463. if (!lcd_detected()) return;
  2464. while (!lcd_clicked()) idle();
  2465. }
  2466. if (IS_SD_PRINTING)
  2467. LCD_MESSAGEPGM(MSG_RESUMING);
  2468. else
  2469. LCD_MESSAGEPGM(WELCOME_MSG);
  2470. }
  2471. #endif // ULTIPANEL
  2472. /**
  2473. * M17: Enable power on all stepper motors
  2474. */
  2475. inline void gcode_M17() {
  2476. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2477. enable_all_steppers();
  2478. }
  2479. #ifdef SDSUPPORT
  2480. /**
  2481. * M20: List SD card to serial output
  2482. */
  2483. inline void gcode_M20() {
  2484. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2485. card.ls();
  2486. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2487. }
  2488. /**
  2489. * M21: Init SD Card
  2490. */
  2491. inline void gcode_M21() {
  2492. card.initsd();
  2493. }
  2494. /**
  2495. * M22: Release SD Card
  2496. */
  2497. inline void gcode_M22() {
  2498. card.release();
  2499. }
  2500. /**
  2501. * M23: Select a file
  2502. */
  2503. inline void gcode_M23() {
  2504. card.openFile(current_command_args, true);
  2505. }
  2506. /**
  2507. * M24: Start SD Print
  2508. */
  2509. inline void gcode_M24() {
  2510. card.startFileprint();
  2511. print_job_start_ms = millis();
  2512. }
  2513. /**
  2514. * M25: Pause SD Print
  2515. */
  2516. inline void gcode_M25() {
  2517. card.pauseSDPrint();
  2518. }
  2519. /**
  2520. * M26: Set SD Card file index
  2521. */
  2522. inline void gcode_M26() {
  2523. if (card.cardOK && code_seen('S'))
  2524. card.setIndex(code_value_short());
  2525. }
  2526. /**
  2527. * M27: Get SD Card status
  2528. */
  2529. inline void gcode_M27() {
  2530. card.getStatus();
  2531. }
  2532. /**
  2533. * M28: Start SD Write
  2534. */
  2535. inline void gcode_M28() {
  2536. card.openFile(current_command_args, false);
  2537. }
  2538. /**
  2539. * M29: Stop SD Write
  2540. * Processed in write to file routine above
  2541. */
  2542. inline void gcode_M29() {
  2543. // card.saving = false;
  2544. }
  2545. /**
  2546. * M30 <filename>: Delete SD Card file
  2547. */
  2548. inline void gcode_M30() {
  2549. if (card.cardOK) {
  2550. card.closefile();
  2551. card.removeFile(current_command_args);
  2552. }
  2553. }
  2554. #endif
  2555. /**
  2556. * M31: Get the time since the start of SD Print (or last M109)
  2557. */
  2558. inline void gcode_M31() {
  2559. print_job_stop_ms = millis();
  2560. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2561. int min = t / 60, sec = t % 60;
  2562. char time[30];
  2563. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2564. SERIAL_ECHO_START;
  2565. SERIAL_ECHOLN(time);
  2566. lcd_setstatus(time);
  2567. autotempShutdown();
  2568. }
  2569. #ifdef SDSUPPORT
  2570. /**
  2571. * M32: Select file and start SD Print
  2572. */
  2573. inline void gcode_M32() {
  2574. if (card.sdprinting)
  2575. st_synchronize();
  2576. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2577. if (!namestartpos)
  2578. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2579. else
  2580. namestartpos++; //to skip the '!'
  2581. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2582. if (card.cardOK) {
  2583. card.openFile(namestartpos, true, !call_procedure);
  2584. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2585. card.setIndex(code_value_short());
  2586. card.startFileprint();
  2587. if (!call_procedure)
  2588. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2589. }
  2590. }
  2591. #ifdef LONG_FILENAME_HOST_SUPPORT
  2592. /**
  2593. * M33: Get the long full path of a file or folder
  2594. *
  2595. * Parameters:
  2596. * <dospath> Case-insensitive DOS-style path to a file or folder
  2597. *
  2598. * Example:
  2599. * M33 miscel~1/armchair/armcha~1.gco
  2600. *
  2601. * Output:
  2602. * /Miscellaneous/Armchair/Armchair.gcode
  2603. */
  2604. inline void gcode_M33() {
  2605. card.printLongPath(current_command_args);
  2606. }
  2607. #endif
  2608. /**
  2609. * M928: Start SD Write
  2610. */
  2611. inline void gcode_M928() {
  2612. card.openLogFile(current_command_args);
  2613. }
  2614. #endif // SDSUPPORT
  2615. /**
  2616. * M42: Change pin status via GCode
  2617. */
  2618. inline void gcode_M42() {
  2619. if (code_seen('S')) {
  2620. int pin_status = code_value_short(),
  2621. pin_number = LED_PIN;
  2622. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2623. pin_number = code_value_short();
  2624. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2625. if (sensitive_pins[i] == pin_number) {
  2626. pin_number = -1;
  2627. break;
  2628. }
  2629. }
  2630. #if HAS_FAN
  2631. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2632. #endif
  2633. if (pin_number > -1) {
  2634. pinMode(pin_number, OUTPUT);
  2635. digitalWrite(pin_number, pin_status);
  2636. analogWrite(pin_number, pin_status);
  2637. }
  2638. } // code_seen('S')
  2639. }
  2640. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2641. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2642. #ifdef Z_PROBE_ENDSTOP
  2643. #if !HAS_Z_PROBE
  2644. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2645. #endif
  2646. #elif !HAS_Z_MIN
  2647. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2648. #endif
  2649. /**
  2650. * M48: Z-Probe repeatability measurement function.
  2651. *
  2652. * Usage:
  2653. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2654. * P = Number of sampled points (4-50, default 10)
  2655. * X = Sample X position
  2656. * Y = Sample Y position
  2657. * V = Verbose level (0-4, default=1)
  2658. * E = Engage probe for each reading
  2659. * L = Number of legs of movement before probe
  2660. *
  2661. * This function assumes the bed has been homed. Specifically, that a G28 command
  2662. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2663. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2664. * regenerated.
  2665. */
  2666. inline void gcode_M48() {
  2667. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2668. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2669. if (code_seen('V') || code_seen('v')) {
  2670. verbose_level = code_value_short();
  2671. if (verbose_level < 0 || verbose_level > 4 ) {
  2672. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2673. return;
  2674. }
  2675. }
  2676. if (verbose_level > 0)
  2677. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2678. if (code_seen('P') || code_seen('p')) {
  2679. n_samples = code_value_short();
  2680. if (n_samples < 4 || n_samples > 50) {
  2681. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2682. return;
  2683. }
  2684. }
  2685. double X_current = st_get_position_mm(X_AXIS),
  2686. Y_current = st_get_position_mm(Y_AXIS),
  2687. Z_current = st_get_position_mm(Z_AXIS),
  2688. E_current = st_get_position_mm(E_AXIS),
  2689. X_probe_location = X_current, Y_probe_location = Y_current,
  2690. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2691. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2692. if (code_seen('X') || code_seen('x')) {
  2693. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2694. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2695. out_of_range_error(PSTR("X"));
  2696. return;
  2697. }
  2698. }
  2699. if (code_seen('Y') || code_seen('y')) {
  2700. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2701. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2702. out_of_range_error(PSTR("Y"));
  2703. return;
  2704. }
  2705. }
  2706. if (code_seen('L') || code_seen('l')) {
  2707. n_legs = code_value_short();
  2708. if (n_legs == 1) n_legs = 2;
  2709. if (n_legs < 0 || n_legs > 15) {
  2710. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2711. return;
  2712. }
  2713. }
  2714. //
  2715. // Do all the preliminary setup work. First raise the probe.
  2716. //
  2717. st_synchronize();
  2718. plan_bed_level_matrix.set_to_identity();
  2719. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2720. st_synchronize();
  2721. //
  2722. // Now get everything to the specified probe point So we can safely do a probe to
  2723. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2724. // use that as a starting point for each probe.
  2725. //
  2726. if (verbose_level > 2)
  2727. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2728. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2729. E_current,
  2730. homing_feedrate[X_AXIS]/60,
  2731. active_extruder);
  2732. st_synchronize();
  2733. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2734. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2735. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2736. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2737. //
  2738. // OK, do the initial probe to get us close to the bed.
  2739. // Then retrace the right amount and use that in subsequent probes
  2740. //
  2741. deploy_z_probe();
  2742. setup_for_endstop_move();
  2743. run_z_probe();
  2744. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2745. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2746. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2747. E_current,
  2748. homing_feedrate[X_AXIS]/60,
  2749. active_extruder);
  2750. st_synchronize();
  2751. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2752. if (deploy_probe_for_each_reading) stow_z_probe();
  2753. for (uint8_t n=0; n < n_samples; n++) {
  2754. // Make sure we are at the probe location
  2755. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2756. if (n_legs) {
  2757. millis_t ms = millis();
  2758. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2759. theta = RADIANS(ms % 360L);
  2760. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2761. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2762. //SERIAL_ECHOPAIR(" theta: ",theta);
  2763. //SERIAL_ECHOPAIR(" direction: ",dir);
  2764. //SERIAL_EOL;
  2765. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2766. ms = millis();
  2767. theta += RADIANS(dir * (ms % 20L));
  2768. radius += (ms % 10L) - 5L;
  2769. if (radius < 0.0) radius = -radius;
  2770. X_current = X_probe_location + cos(theta) * radius;
  2771. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2772. Y_current = Y_probe_location + sin(theta) * radius;
  2773. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2774. if (verbose_level > 3) {
  2775. SERIAL_ECHOPAIR("x: ", X_current);
  2776. SERIAL_ECHOPAIR("y: ", Y_current);
  2777. SERIAL_EOL;
  2778. }
  2779. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2780. } // n_legs loop
  2781. // Go back to the probe location
  2782. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2783. } // n_legs
  2784. if (deploy_probe_for_each_reading) {
  2785. deploy_z_probe();
  2786. delay(1000);
  2787. }
  2788. setup_for_endstop_move();
  2789. run_z_probe();
  2790. sample_set[n] = current_position[Z_AXIS];
  2791. //
  2792. // Get the current mean for the data points we have so far
  2793. //
  2794. sum = 0.0;
  2795. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2796. mean = sum / (n + 1);
  2797. //
  2798. // Now, use that mean to calculate the standard deviation for the
  2799. // data points we have so far
  2800. //
  2801. sum = 0.0;
  2802. for (uint8_t j = 0; j <= n; j++) {
  2803. float ss = sample_set[j] - mean;
  2804. sum += ss * ss;
  2805. }
  2806. sigma = sqrt(sum / (n + 1));
  2807. if (verbose_level > 1) {
  2808. SERIAL_PROTOCOL(n+1);
  2809. SERIAL_PROTOCOLPGM(" of ");
  2810. SERIAL_PROTOCOL((int)n_samples);
  2811. SERIAL_PROTOCOLPGM(" z: ");
  2812. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2813. if (verbose_level > 2) {
  2814. SERIAL_PROTOCOLPGM(" mean: ");
  2815. SERIAL_PROTOCOL_F(mean,6);
  2816. SERIAL_PROTOCOLPGM(" sigma: ");
  2817. SERIAL_PROTOCOL_F(sigma,6);
  2818. }
  2819. }
  2820. if (verbose_level > 0) SERIAL_EOL;
  2821. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2822. st_synchronize();
  2823. // Stow between
  2824. if (deploy_probe_for_each_reading) {
  2825. stow_z_probe();
  2826. delay(1000);
  2827. }
  2828. }
  2829. // Stow after
  2830. if (!deploy_probe_for_each_reading) {
  2831. stow_z_probe();
  2832. delay(1000);
  2833. }
  2834. clean_up_after_endstop_move();
  2835. if (verbose_level > 0) {
  2836. SERIAL_PROTOCOLPGM("Mean: ");
  2837. SERIAL_PROTOCOL_F(mean, 6);
  2838. SERIAL_EOL;
  2839. }
  2840. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2841. SERIAL_PROTOCOL_F(sigma, 6);
  2842. SERIAL_EOL; SERIAL_EOL;
  2843. }
  2844. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2845. /**
  2846. * M104: Set hot end temperature
  2847. */
  2848. inline void gcode_M104() {
  2849. if (setTargetedHotend(104)) return;
  2850. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2851. if (code_seen('S')) {
  2852. float temp = code_value();
  2853. setTargetHotend(temp, target_extruder);
  2854. #ifdef DUAL_X_CARRIAGE
  2855. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2856. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2857. #endif
  2858. }
  2859. }
  2860. /**
  2861. * M105: Read hot end and bed temperature
  2862. */
  2863. inline void gcode_M105() {
  2864. if (setTargetedHotend(105)) return;
  2865. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2866. SERIAL_PROTOCOLPGM(MSG_OK);
  2867. #if HAS_TEMP_0 || defined(HEATER_0_USES_MAX6675)
  2868. SERIAL_PROTOCOLPGM(" T:");
  2869. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2870. SERIAL_PROTOCOLPGM(" /");
  2871. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2872. #endif
  2873. #if HAS_TEMP_BED
  2874. SERIAL_PROTOCOLPGM(" B:");
  2875. SERIAL_PROTOCOL_F(degBed(), 1);
  2876. SERIAL_PROTOCOLPGM(" /");
  2877. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2878. #endif
  2879. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2880. SERIAL_PROTOCOLPGM(" T");
  2881. SERIAL_PROTOCOL(e);
  2882. SERIAL_PROTOCOLCHAR(':');
  2883. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2884. SERIAL_PROTOCOLPGM(" /");
  2885. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2886. }
  2887. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2888. SERIAL_ERROR_START;
  2889. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2890. #endif
  2891. SERIAL_PROTOCOLPGM(" @:");
  2892. #ifdef EXTRUDER_WATTS
  2893. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2894. SERIAL_PROTOCOLCHAR('W');
  2895. #else
  2896. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2897. #endif
  2898. SERIAL_PROTOCOLPGM(" B@:");
  2899. #ifdef BED_WATTS
  2900. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2901. SERIAL_PROTOCOLCHAR('W');
  2902. #else
  2903. SERIAL_PROTOCOL(getHeaterPower(-1));
  2904. #endif
  2905. #ifdef SHOW_TEMP_ADC_VALUES
  2906. #if HAS_TEMP_BED
  2907. SERIAL_PROTOCOLPGM(" ADC B:");
  2908. SERIAL_PROTOCOL_F(degBed(),1);
  2909. SERIAL_PROTOCOLPGM("C->");
  2910. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2911. #endif
  2912. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2913. SERIAL_PROTOCOLPGM(" T");
  2914. SERIAL_PROTOCOL(cur_extruder);
  2915. SERIAL_PROTOCOLCHAR(':');
  2916. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2917. SERIAL_PROTOCOLPGM("C->");
  2918. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2919. }
  2920. #endif
  2921. SERIAL_EOL;
  2922. }
  2923. #if HAS_FAN
  2924. /**
  2925. * M106: Set Fan Speed
  2926. */
  2927. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2928. /**
  2929. * M107: Fan Off
  2930. */
  2931. inline void gcode_M107() { fanSpeed = 0; }
  2932. #endif // HAS_FAN
  2933. /**
  2934. * M109: Wait for extruder(s) to reach temperature
  2935. */
  2936. inline void gcode_M109() {
  2937. if (setTargetedHotend(109)) return;
  2938. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2939. LCD_MESSAGEPGM(MSG_HEATING);
  2940. no_wait_for_cooling = code_seen('S');
  2941. if (no_wait_for_cooling || code_seen('R')) {
  2942. float temp = code_value();
  2943. setTargetHotend(temp, target_extruder);
  2944. #ifdef DUAL_X_CARRIAGE
  2945. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2946. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2947. #endif
  2948. }
  2949. #ifdef AUTOTEMP
  2950. autotemp_enabled = code_seen('F');
  2951. if (autotemp_enabled) autotemp_factor = code_value();
  2952. if (code_seen('S')) autotemp_min = code_value();
  2953. if (code_seen('B')) autotemp_max = code_value();
  2954. #endif
  2955. millis_t temp_ms = millis();
  2956. /* See if we are heating up or cooling down */
  2957. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2958. cancel_heatup = false;
  2959. #ifdef TEMP_RESIDENCY_TIME
  2960. long residency_start_ms = -1;
  2961. /* continue to loop until we have reached the target temp
  2962. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2963. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2964. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2965. #else
  2966. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2967. #endif //TEMP_RESIDENCY_TIME
  2968. { // while loop
  2969. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2970. SERIAL_PROTOCOLPGM("T:");
  2971. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2972. SERIAL_PROTOCOLPGM(" E:");
  2973. SERIAL_PROTOCOL((int)target_extruder);
  2974. #ifdef TEMP_RESIDENCY_TIME
  2975. SERIAL_PROTOCOLPGM(" W:");
  2976. if (residency_start_ms > -1) {
  2977. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2978. SERIAL_PROTOCOLLN(temp_ms);
  2979. }
  2980. else {
  2981. SERIAL_PROTOCOLLNPGM("?");
  2982. }
  2983. #else
  2984. SERIAL_EOL;
  2985. #endif
  2986. temp_ms = millis();
  2987. }
  2988. idle();
  2989. #ifdef TEMP_RESIDENCY_TIME
  2990. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2991. // or when current temp falls outside the hysteresis after target temp was reached
  2992. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2993. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2994. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2995. {
  2996. residency_start_ms = millis();
  2997. }
  2998. #endif //TEMP_RESIDENCY_TIME
  2999. }
  3000. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3001. refresh_cmd_timeout();
  3002. print_job_start_ms = previous_cmd_ms;
  3003. }
  3004. #if HAS_TEMP_BED
  3005. /**
  3006. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3007. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3008. */
  3009. inline void gcode_M190() {
  3010. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3011. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3012. no_wait_for_cooling = code_seen('S');
  3013. if (no_wait_for_cooling || code_seen('R'))
  3014. setTargetBed(code_value());
  3015. millis_t temp_ms = millis();
  3016. cancel_heatup = false;
  3017. target_direction = isHeatingBed(); // true if heating, false if cooling
  3018. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  3019. millis_t ms = millis();
  3020. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  3021. temp_ms = ms;
  3022. float tt = degHotend(active_extruder);
  3023. SERIAL_PROTOCOLPGM("T:");
  3024. SERIAL_PROTOCOL(tt);
  3025. SERIAL_PROTOCOLPGM(" E:");
  3026. SERIAL_PROTOCOL((int)active_extruder);
  3027. SERIAL_PROTOCOLPGM(" B:");
  3028. SERIAL_PROTOCOL_F(degBed(), 1);
  3029. SERIAL_EOL;
  3030. }
  3031. idle();
  3032. }
  3033. LCD_MESSAGEPGM(MSG_BED_DONE);
  3034. refresh_cmd_timeout();
  3035. }
  3036. #endif // HAS_TEMP_BED
  3037. /**
  3038. * M111: Set the debug level
  3039. */
  3040. inline void gcode_M111() {
  3041. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  3042. SERIAL_ECHO_START;
  3043. if (marlin_debug_flags & DEBUG_ECHO) SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  3044. // FOR MOMENT NOT ACTIVE
  3045. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3046. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3047. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3048. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3049. setTargetBed(0);
  3050. for (int8_t cur_hotend = 0; cur_hotend < EXTRUDERS; ++cur_hotend) {
  3051. setTargetHotend(0, cur_hotend);
  3052. }
  3053. }
  3054. }
  3055. /**
  3056. * M112: Emergency Stop
  3057. */
  3058. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3059. #ifdef BARICUDA
  3060. #if HAS_HEATER_1
  3061. /**
  3062. * M126: Heater 1 valve open
  3063. */
  3064. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3065. /**
  3066. * M127: Heater 1 valve close
  3067. */
  3068. inline void gcode_M127() { ValvePressure = 0; }
  3069. #endif
  3070. #if HAS_HEATER_2
  3071. /**
  3072. * M128: Heater 2 valve open
  3073. */
  3074. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3075. /**
  3076. * M129: Heater 2 valve close
  3077. */
  3078. inline void gcode_M129() { EtoPPressure = 0; }
  3079. #endif
  3080. #endif //BARICUDA
  3081. /**
  3082. * M140: Set bed temperature
  3083. */
  3084. inline void gcode_M140() {
  3085. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3086. if (code_seen('S')) setTargetBed(code_value());
  3087. }
  3088. #ifdef ULTIPANEL
  3089. /**
  3090. * M145: Set the heatup state for a material in the LCD menu
  3091. * S<material> (0=PLA, 1=ABS)
  3092. * H<hotend temp>
  3093. * B<bed temp>
  3094. * F<fan speed>
  3095. */
  3096. inline void gcode_M145() {
  3097. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3098. if (material < 0 || material > 1) {
  3099. SERIAL_ERROR_START;
  3100. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3101. }
  3102. else {
  3103. int v;
  3104. switch (material) {
  3105. case 0:
  3106. if (code_seen('H')) {
  3107. v = code_value_short();
  3108. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3109. }
  3110. if (code_seen('F')) {
  3111. v = code_value_short();
  3112. plaPreheatFanSpeed = constrain(v, 0, 255);
  3113. }
  3114. #if TEMP_SENSOR_BED != 0
  3115. if (code_seen('B')) {
  3116. v = code_value_short();
  3117. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3118. }
  3119. #endif
  3120. break;
  3121. case 1:
  3122. if (code_seen('H')) {
  3123. v = code_value_short();
  3124. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3125. }
  3126. if (code_seen('F')) {
  3127. v = code_value_short();
  3128. absPreheatFanSpeed = constrain(v, 0, 255);
  3129. }
  3130. #if TEMP_SENSOR_BED != 0
  3131. if (code_seen('B')) {
  3132. v = code_value_short();
  3133. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3134. }
  3135. #endif
  3136. break;
  3137. }
  3138. }
  3139. }
  3140. #endif
  3141. #if HAS_POWER_SWITCH
  3142. /**
  3143. * M80: Turn on Power Supply
  3144. */
  3145. inline void gcode_M80() {
  3146. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3147. // If you have a switch on suicide pin, this is useful
  3148. // if you want to start another print with suicide feature after
  3149. // a print without suicide...
  3150. #if HAS_SUICIDE
  3151. OUT_WRITE(SUICIDE_PIN, HIGH);
  3152. #endif
  3153. #ifdef ULTIPANEL
  3154. powersupply = true;
  3155. LCD_MESSAGEPGM(WELCOME_MSG);
  3156. lcd_update();
  3157. #endif
  3158. }
  3159. #endif // HAS_POWER_SWITCH
  3160. /**
  3161. * M81: Turn off Power, including Power Supply, if there is one.
  3162. *
  3163. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3164. */
  3165. inline void gcode_M81() {
  3166. disable_all_heaters();
  3167. st_synchronize();
  3168. disable_e0();
  3169. disable_e1();
  3170. disable_e2();
  3171. disable_e3();
  3172. finishAndDisableSteppers();
  3173. fanSpeed = 0;
  3174. delay(1000); // Wait 1 second before switching off
  3175. #if HAS_SUICIDE
  3176. st_synchronize();
  3177. suicide();
  3178. #elif HAS_POWER_SWITCH
  3179. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3180. #endif
  3181. #ifdef ULTIPANEL
  3182. #if HAS_POWER_SWITCH
  3183. powersupply = false;
  3184. #endif
  3185. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3186. lcd_update();
  3187. #endif
  3188. }
  3189. /**
  3190. * M82: Set E codes absolute (default)
  3191. */
  3192. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3193. /**
  3194. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  3195. */
  3196. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3197. /**
  3198. * M18, M84: Disable all stepper motors
  3199. */
  3200. inline void gcode_M18_M84() {
  3201. if (code_seen('S')) {
  3202. stepper_inactive_time = code_value() * 1000;
  3203. }
  3204. else {
  3205. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3206. if (all_axis) {
  3207. st_synchronize();
  3208. disable_e0();
  3209. disable_e1();
  3210. disable_e2();
  3211. disable_e3();
  3212. finishAndDisableSteppers();
  3213. }
  3214. else {
  3215. st_synchronize();
  3216. if (code_seen('X')) disable_x();
  3217. if (code_seen('Y')) disable_y();
  3218. if (code_seen('Z')) disable_z();
  3219. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3220. if (code_seen('E')) {
  3221. disable_e0();
  3222. disable_e1();
  3223. disable_e2();
  3224. disable_e3();
  3225. }
  3226. #endif
  3227. }
  3228. }
  3229. }
  3230. /**
  3231. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3232. */
  3233. inline void gcode_M85() {
  3234. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3235. }
  3236. /**
  3237. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3238. * (Follows the same syntax as G92)
  3239. */
  3240. inline void gcode_M92() {
  3241. for(int8_t i=0; i < NUM_AXIS; i++) {
  3242. if (code_seen(axis_codes[i])) {
  3243. if (i == E_AXIS) {
  3244. float value = code_value();
  3245. if (value < 20.0) {
  3246. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3247. max_e_jerk *= factor;
  3248. max_feedrate[i] *= factor;
  3249. axis_steps_per_sqr_second[i] *= factor;
  3250. }
  3251. axis_steps_per_unit[i] = value;
  3252. }
  3253. else {
  3254. axis_steps_per_unit[i] = code_value();
  3255. }
  3256. }
  3257. }
  3258. }
  3259. /**
  3260. * M114: Output current position to serial port
  3261. */
  3262. inline void gcode_M114() {
  3263. SERIAL_PROTOCOLPGM("X:");
  3264. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3265. SERIAL_PROTOCOLPGM(" Y:");
  3266. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3267. SERIAL_PROTOCOLPGM(" Z:");
  3268. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3269. SERIAL_PROTOCOLPGM(" E:");
  3270. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3271. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3272. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3273. SERIAL_PROTOCOLPGM(" Y:");
  3274. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3275. SERIAL_PROTOCOLPGM(" Z:");
  3276. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3277. SERIAL_EOL;
  3278. #ifdef SCARA
  3279. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3280. SERIAL_PROTOCOL(delta[X_AXIS]);
  3281. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3282. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3283. SERIAL_EOL;
  3284. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3285. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3286. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3287. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3288. SERIAL_EOL;
  3289. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3290. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3291. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3292. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3293. SERIAL_EOL; SERIAL_EOL;
  3294. #endif
  3295. }
  3296. /**
  3297. * M115: Capabilities string
  3298. */
  3299. inline void gcode_M115() {
  3300. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3301. }
  3302. /**
  3303. * M117: Set LCD Status Message
  3304. */
  3305. inline void gcode_M117() {
  3306. lcd_setstatus(current_command_args);
  3307. }
  3308. /**
  3309. * M119: Output endstop states to serial output
  3310. */
  3311. inline void gcode_M119() {
  3312. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3313. #if HAS_X_MIN
  3314. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3315. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3316. #endif
  3317. #if HAS_X_MAX
  3318. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3319. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3320. #endif
  3321. #if HAS_Y_MIN
  3322. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3323. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3324. #endif
  3325. #if HAS_Y_MAX
  3326. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3327. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3328. #endif
  3329. #if HAS_Z_MIN
  3330. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3331. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3332. #endif
  3333. #if HAS_Z_MAX
  3334. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3335. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3336. #endif
  3337. #if HAS_Z2_MAX
  3338. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3339. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3340. #endif
  3341. #if HAS_Z_PROBE
  3342. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3343. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3344. #endif
  3345. }
  3346. /**
  3347. * M120: Enable endstops
  3348. */
  3349. inline void gcode_M120() { enable_endstops(true); }
  3350. /**
  3351. * M121: Disable endstops
  3352. */
  3353. inline void gcode_M121() { enable_endstops(false); }
  3354. #ifdef BLINKM
  3355. /**
  3356. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3357. */
  3358. inline void gcode_M150() {
  3359. SendColors(
  3360. code_seen('R') ? (byte)code_value_short() : 0,
  3361. code_seen('U') ? (byte)code_value_short() : 0,
  3362. code_seen('B') ? (byte)code_value_short() : 0
  3363. );
  3364. }
  3365. #endif // BLINKM
  3366. /**
  3367. * M200: Set filament diameter and set E axis units to cubic millimeters
  3368. *
  3369. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3370. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3371. */
  3372. inline void gcode_M200() {
  3373. if (setTargetedHotend(200)) return;
  3374. if (code_seen('D')) {
  3375. float diameter = code_value();
  3376. // setting any extruder filament size disables volumetric on the assumption that
  3377. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3378. // for all extruders
  3379. volumetric_enabled = (diameter != 0.0);
  3380. if (volumetric_enabled) {
  3381. filament_size[target_extruder] = diameter;
  3382. // make sure all extruders have some sane value for the filament size
  3383. for (int i=0; i<EXTRUDERS; i++)
  3384. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3385. }
  3386. }
  3387. else {
  3388. //reserved for setting filament diameter via UFID or filament measuring device
  3389. return;
  3390. }
  3391. calculate_volumetric_multipliers();
  3392. }
  3393. /**
  3394. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3395. */
  3396. inline void gcode_M201() {
  3397. for (int8_t i=0; i < NUM_AXIS; i++) {
  3398. if (code_seen(axis_codes[i])) {
  3399. max_acceleration_units_per_sq_second[i] = code_value();
  3400. }
  3401. }
  3402. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3403. reset_acceleration_rates();
  3404. }
  3405. #if 0 // Not used for Sprinter/grbl gen6
  3406. inline void gcode_M202() {
  3407. for(int8_t i=0; i < NUM_AXIS; i++) {
  3408. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3409. }
  3410. }
  3411. #endif
  3412. /**
  3413. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3414. */
  3415. inline void gcode_M203() {
  3416. for (int8_t i=0; i < NUM_AXIS; i++) {
  3417. if (code_seen(axis_codes[i])) {
  3418. max_feedrate[i] = code_value();
  3419. }
  3420. }
  3421. }
  3422. /**
  3423. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3424. *
  3425. * P = Printing moves
  3426. * R = Retract only (no X, Y, Z) moves
  3427. * T = Travel (non printing) moves
  3428. *
  3429. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3430. */
  3431. inline void gcode_M204() {
  3432. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3433. acceleration = code_value();
  3434. travel_acceleration = acceleration;
  3435. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3436. SERIAL_EOL;
  3437. }
  3438. if (code_seen('P')) {
  3439. acceleration = code_value();
  3440. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3441. SERIAL_EOL;
  3442. }
  3443. if (code_seen('R')) {
  3444. retract_acceleration = code_value();
  3445. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3446. SERIAL_EOL;
  3447. }
  3448. if (code_seen('T')) {
  3449. travel_acceleration = code_value();
  3450. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3451. SERIAL_EOL;
  3452. }
  3453. }
  3454. /**
  3455. * M205: Set Advanced Settings
  3456. *
  3457. * S = Min Feed Rate (mm/s)
  3458. * T = Min Travel Feed Rate (mm/s)
  3459. * B = Min Segment Time (µs)
  3460. * X = Max XY Jerk (mm/s/s)
  3461. * Z = Max Z Jerk (mm/s/s)
  3462. * E = Max E Jerk (mm/s/s)
  3463. */
  3464. inline void gcode_M205() {
  3465. if (code_seen('S')) minimumfeedrate = code_value();
  3466. if (code_seen('T')) mintravelfeedrate = code_value();
  3467. if (code_seen('B')) minsegmenttime = code_value();
  3468. if (code_seen('X')) max_xy_jerk = code_value();
  3469. if (code_seen('Z')) max_z_jerk = code_value();
  3470. if (code_seen('E')) max_e_jerk = code_value();
  3471. }
  3472. /**
  3473. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3474. */
  3475. inline void gcode_M206() {
  3476. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3477. if (code_seen(axis_codes[i])) {
  3478. home_offset[i] = code_value();
  3479. }
  3480. }
  3481. #ifdef SCARA
  3482. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3483. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3484. #endif
  3485. }
  3486. #ifdef DELTA
  3487. /**
  3488. * M665: Set delta configurations
  3489. *
  3490. * L = diagonal rod
  3491. * R = delta radius
  3492. * S = segments per second
  3493. */
  3494. inline void gcode_M665() {
  3495. if (code_seen('L')) delta_diagonal_rod = code_value();
  3496. if (code_seen('R')) delta_radius = code_value();
  3497. if (code_seen('S')) delta_segments_per_second = code_value();
  3498. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3499. }
  3500. /**
  3501. * M666: Set delta endstop adjustment
  3502. */
  3503. inline void gcode_M666() {
  3504. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3505. if (code_seen(axis_codes[i])) {
  3506. endstop_adj[i] = code_value();
  3507. }
  3508. }
  3509. }
  3510. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3511. /**
  3512. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3513. */
  3514. inline void gcode_M666() {
  3515. if (code_seen('Z')) z_endstop_adj = code_value();
  3516. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3517. SERIAL_EOL;
  3518. }
  3519. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3520. #ifdef FWRETRACT
  3521. /**
  3522. * M207: Set firmware retraction values
  3523. *
  3524. * S[+mm] retract_length
  3525. * W[+mm] retract_length_swap (multi-extruder)
  3526. * F[mm/min] retract_feedrate
  3527. * Z[mm] retract_zlift
  3528. */
  3529. inline void gcode_M207() {
  3530. if (code_seen('S')) retract_length = code_value();
  3531. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3532. if (code_seen('Z')) retract_zlift = code_value();
  3533. #if EXTRUDERS > 1
  3534. if (code_seen('W')) retract_length_swap = code_value();
  3535. #endif
  3536. }
  3537. /**
  3538. * M208: Set firmware un-retraction values
  3539. *
  3540. * S[+mm] retract_recover_length (in addition to M207 S*)
  3541. * W[+mm] retract_recover_length_swap (multi-extruder)
  3542. * F[mm/min] retract_recover_feedrate
  3543. */
  3544. inline void gcode_M208() {
  3545. if (code_seen('S')) retract_recover_length = code_value();
  3546. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3547. #if EXTRUDERS > 1
  3548. if (code_seen('W')) retract_recover_length_swap = code_value();
  3549. #endif
  3550. }
  3551. /**
  3552. * M209: Enable automatic retract (M209 S1)
  3553. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3554. */
  3555. inline void gcode_M209() {
  3556. if (code_seen('S')) {
  3557. int t = code_value_short();
  3558. switch(t) {
  3559. case 0:
  3560. autoretract_enabled = false;
  3561. break;
  3562. case 1:
  3563. autoretract_enabled = true;
  3564. break;
  3565. default:
  3566. unknown_command_error();
  3567. return;
  3568. }
  3569. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3570. }
  3571. }
  3572. #endif // FWRETRACT
  3573. #if EXTRUDERS > 1
  3574. /**
  3575. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3576. */
  3577. inline void gcode_M218() {
  3578. if (setTargetedHotend(218)) return;
  3579. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3580. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3581. #ifdef DUAL_X_CARRIAGE
  3582. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3583. #endif
  3584. SERIAL_ECHO_START;
  3585. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3586. for (int e = 0; e < EXTRUDERS; e++) {
  3587. SERIAL_CHAR(' ');
  3588. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3589. SERIAL_CHAR(',');
  3590. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3591. #ifdef DUAL_X_CARRIAGE
  3592. SERIAL_CHAR(',');
  3593. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3594. #endif
  3595. }
  3596. SERIAL_EOL;
  3597. }
  3598. #endif // EXTRUDERS > 1
  3599. /**
  3600. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3601. */
  3602. inline void gcode_M220() {
  3603. if (code_seen('S')) feedrate_multiplier = code_value();
  3604. }
  3605. /**
  3606. * M221: Set extrusion percentage (M221 T0 S95)
  3607. */
  3608. inline void gcode_M221() {
  3609. if (code_seen('S')) {
  3610. int sval = code_value();
  3611. if (code_seen('T')) {
  3612. if (setTargetedHotend(221)) return;
  3613. extruder_multiplier[target_extruder] = sval;
  3614. }
  3615. else {
  3616. extruder_multiplier[active_extruder] = sval;
  3617. }
  3618. }
  3619. }
  3620. /**
  3621. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3622. */
  3623. inline void gcode_M226() {
  3624. if (code_seen('P')) {
  3625. int pin_number = code_value();
  3626. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3627. if (pin_state >= -1 && pin_state <= 1) {
  3628. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3629. if (sensitive_pins[i] == pin_number) {
  3630. pin_number = -1;
  3631. break;
  3632. }
  3633. }
  3634. if (pin_number > -1) {
  3635. int target = LOW;
  3636. st_synchronize();
  3637. pinMode(pin_number, INPUT);
  3638. switch(pin_state){
  3639. case 1:
  3640. target = HIGH;
  3641. break;
  3642. case 0:
  3643. target = LOW;
  3644. break;
  3645. case -1:
  3646. target = !digitalRead(pin_number);
  3647. break;
  3648. }
  3649. while (digitalRead(pin_number) != target) idle();
  3650. } // pin_number > -1
  3651. } // pin_state -1 0 1
  3652. } // code_seen('P')
  3653. }
  3654. #if NUM_SERVOS > 0
  3655. /**
  3656. * M280: Get or set servo position. P<index> S<angle>
  3657. */
  3658. inline void gcode_M280() {
  3659. int servo_index = code_seen('P') ? code_value_short() : -1;
  3660. int servo_position = 0;
  3661. if (code_seen('S')) {
  3662. servo_position = code_value_short();
  3663. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  3664. Servo *srv = &servo[servo_index];
  3665. #if SERVO_LEVELING
  3666. srv->attach(0);
  3667. #endif
  3668. srv->write(servo_position);
  3669. #if SERVO_LEVELING
  3670. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3671. srv->detach();
  3672. #endif
  3673. }
  3674. else {
  3675. SERIAL_ECHO_START;
  3676. SERIAL_ECHO("Servo ");
  3677. SERIAL_ECHO(servo_index);
  3678. SERIAL_ECHOLN(" out of range");
  3679. }
  3680. }
  3681. else if (servo_index >= 0) {
  3682. SERIAL_PROTOCOL(MSG_OK);
  3683. SERIAL_PROTOCOL(" Servo ");
  3684. SERIAL_PROTOCOL(servo_index);
  3685. SERIAL_PROTOCOL(": ");
  3686. SERIAL_PROTOCOL(servo[servo_index].read());
  3687. SERIAL_EOL;
  3688. }
  3689. }
  3690. #endif // NUM_SERVOS > 0
  3691. #if HAS_BUZZER
  3692. /**
  3693. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3694. */
  3695. inline void gcode_M300() {
  3696. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3697. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3698. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3699. buzz(beepP, beepS);
  3700. }
  3701. #endif // HAS_BUZZER
  3702. #ifdef PIDTEMP
  3703. /**
  3704. * M301: Set PID parameters P I D (and optionally C)
  3705. */
  3706. inline void gcode_M301() {
  3707. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3708. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3709. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3710. if (e < EXTRUDERS) { // catch bad input value
  3711. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3712. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3713. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3714. #ifdef PID_ADD_EXTRUSION_RATE
  3715. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3716. #endif
  3717. updatePID();
  3718. SERIAL_PROTOCOL(MSG_OK);
  3719. #ifdef PID_PARAMS_PER_EXTRUDER
  3720. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3721. SERIAL_PROTOCOL(e);
  3722. #endif // PID_PARAMS_PER_EXTRUDER
  3723. SERIAL_PROTOCOL(" p:");
  3724. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3725. SERIAL_PROTOCOL(" i:");
  3726. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3727. SERIAL_PROTOCOL(" d:");
  3728. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3729. #ifdef PID_ADD_EXTRUSION_RATE
  3730. SERIAL_PROTOCOL(" c:");
  3731. //Kc does not have scaling applied above, or in resetting defaults
  3732. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3733. #endif
  3734. SERIAL_EOL;
  3735. }
  3736. else {
  3737. SERIAL_ECHO_START;
  3738. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3739. }
  3740. }
  3741. #endif // PIDTEMP
  3742. #ifdef PIDTEMPBED
  3743. inline void gcode_M304() {
  3744. if (code_seen('P')) bedKp = code_value();
  3745. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3746. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3747. updatePID();
  3748. SERIAL_PROTOCOL(MSG_OK);
  3749. SERIAL_PROTOCOL(" p:");
  3750. SERIAL_PROTOCOL(bedKp);
  3751. SERIAL_PROTOCOL(" i:");
  3752. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3753. SERIAL_PROTOCOL(" d:");
  3754. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3755. SERIAL_EOL;
  3756. }
  3757. #endif // PIDTEMPBED
  3758. #if defined(CHDK) || HAS_PHOTOGRAPH
  3759. /**
  3760. * M240: Trigger a camera by emulating a Canon RC-1
  3761. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3762. */
  3763. inline void gcode_M240() {
  3764. #ifdef CHDK
  3765. OUT_WRITE(CHDK, HIGH);
  3766. chdkHigh = millis();
  3767. chdkActive = true;
  3768. #elif HAS_PHOTOGRAPH
  3769. const uint8_t NUM_PULSES = 16;
  3770. const float PULSE_LENGTH = 0.01524;
  3771. for (int i = 0; i < NUM_PULSES; i++) {
  3772. WRITE(PHOTOGRAPH_PIN, HIGH);
  3773. _delay_ms(PULSE_LENGTH);
  3774. WRITE(PHOTOGRAPH_PIN, LOW);
  3775. _delay_ms(PULSE_LENGTH);
  3776. }
  3777. delay(7.33);
  3778. for (int i = 0; i < NUM_PULSES; i++) {
  3779. WRITE(PHOTOGRAPH_PIN, HIGH);
  3780. _delay_ms(PULSE_LENGTH);
  3781. WRITE(PHOTOGRAPH_PIN, LOW);
  3782. _delay_ms(PULSE_LENGTH);
  3783. }
  3784. #endif // !CHDK && HAS_PHOTOGRAPH
  3785. }
  3786. #endif // CHDK || PHOTOGRAPH_PIN
  3787. #ifdef HAS_LCD_CONTRAST
  3788. /**
  3789. * M250: Read and optionally set the LCD contrast
  3790. */
  3791. inline void gcode_M250() {
  3792. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3793. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3794. SERIAL_PROTOCOL(lcd_contrast);
  3795. SERIAL_EOL;
  3796. }
  3797. #endif // HAS_LCD_CONTRAST
  3798. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3799. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3800. /**
  3801. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3802. */
  3803. inline void gcode_M302() {
  3804. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3805. }
  3806. #endif // PREVENT_DANGEROUS_EXTRUDE
  3807. /**
  3808. * M303: PID relay autotune
  3809. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3810. * E<extruder> (-1 for the bed)
  3811. * C<cycles>
  3812. */
  3813. inline void gcode_M303() {
  3814. int e = code_seen('E') ? code_value_short() : 0;
  3815. int c = code_seen('C') ? code_value_short() : 5;
  3816. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3817. PID_autotune(temp, e, c);
  3818. }
  3819. #ifdef SCARA
  3820. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3821. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3822. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3823. if (IsRunning()) {
  3824. //gcode_get_destination(); // For X Y Z E F
  3825. delta[X_AXIS] = delta_x;
  3826. delta[Y_AXIS] = delta_y;
  3827. calculate_SCARA_forward_Transform(delta);
  3828. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3829. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3830. prepare_move();
  3831. //ok_to_send();
  3832. return true;
  3833. }
  3834. return false;
  3835. }
  3836. /**
  3837. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3838. */
  3839. inline bool gcode_M360() {
  3840. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3841. return SCARA_move_to_cal(0, 120);
  3842. }
  3843. /**
  3844. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3845. */
  3846. inline bool gcode_M361() {
  3847. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3848. return SCARA_move_to_cal(90, 130);
  3849. }
  3850. /**
  3851. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3852. */
  3853. inline bool gcode_M362() {
  3854. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3855. return SCARA_move_to_cal(60, 180);
  3856. }
  3857. /**
  3858. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3859. */
  3860. inline bool gcode_M363() {
  3861. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3862. return SCARA_move_to_cal(50, 90);
  3863. }
  3864. /**
  3865. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3866. */
  3867. inline bool gcode_M364() {
  3868. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3869. return SCARA_move_to_cal(45, 135);
  3870. }
  3871. /**
  3872. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3873. */
  3874. inline void gcode_M365() {
  3875. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3876. if (code_seen(axis_codes[i])) {
  3877. axis_scaling[i] = code_value();
  3878. }
  3879. }
  3880. }
  3881. #endif // SCARA
  3882. #ifdef EXT_SOLENOID
  3883. void enable_solenoid(uint8_t num) {
  3884. switch(num) {
  3885. case 0:
  3886. OUT_WRITE(SOL0_PIN, HIGH);
  3887. break;
  3888. #if HAS_SOLENOID_1
  3889. case 1:
  3890. OUT_WRITE(SOL1_PIN, HIGH);
  3891. break;
  3892. #endif
  3893. #if HAS_SOLENOID_2
  3894. case 2:
  3895. OUT_WRITE(SOL2_PIN, HIGH);
  3896. break;
  3897. #endif
  3898. #if HAS_SOLENOID_3
  3899. case 3:
  3900. OUT_WRITE(SOL3_PIN, HIGH);
  3901. break;
  3902. #endif
  3903. default:
  3904. SERIAL_ECHO_START;
  3905. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3906. break;
  3907. }
  3908. }
  3909. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3910. void disable_all_solenoids() {
  3911. OUT_WRITE(SOL0_PIN, LOW);
  3912. OUT_WRITE(SOL1_PIN, LOW);
  3913. OUT_WRITE(SOL2_PIN, LOW);
  3914. OUT_WRITE(SOL3_PIN, LOW);
  3915. }
  3916. /**
  3917. * M380: Enable solenoid on the active extruder
  3918. */
  3919. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3920. /**
  3921. * M381: Disable all solenoids
  3922. */
  3923. inline void gcode_M381() { disable_all_solenoids(); }
  3924. #endif // EXT_SOLENOID
  3925. /**
  3926. * M400: Finish all moves
  3927. */
  3928. inline void gcode_M400() { st_synchronize(); }
  3929. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(Z_PROBE_SLED) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY))
  3930. #ifdef SERVO_ENDSTOPS
  3931. void raise_z_for_servo() {
  3932. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3933. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3934. if (zpos < z_dest)
  3935. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3936. }
  3937. #endif
  3938. /**
  3939. * M401: Engage Z Servo endstop if available
  3940. */
  3941. inline void gcode_M401() {
  3942. #ifdef SERVO_ENDSTOPS
  3943. raise_z_for_servo();
  3944. #endif
  3945. deploy_z_probe();
  3946. }
  3947. /**
  3948. * M402: Retract Z Servo endstop if enabled
  3949. */
  3950. inline void gcode_M402() {
  3951. #ifdef SERVO_ENDSTOPS
  3952. raise_z_for_servo();
  3953. #endif
  3954. stow_z_probe(false);
  3955. }
  3956. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3957. #ifdef FILAMENT_SENSOR
  3958. /**
  3959. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3960. */
  3961. inline void gcode_M404() {
  3962. #if HAS_FILWIDTH
  3963. if (code_seen('W')) {
  3964. filament_width_nominal = code_value();
  3965. }
  3966. else {
  3967. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3968. SERIAL_PROTOCOLLN(filament_width_nominal);
  3969. }
  3970. #endif
  3971. }
  3972. /**
  3973. * M405: Turn on filament sensor for control
  3974. */
  3975. inline void gcode_M405() {
  3976. if (code_seen('D')) meas_delay_cm = code_value();
  3977. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3978. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3979. int temp_ratio = widthFil_to_size_ratio();
  3980. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3981. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3982. delay_index1 = delay_index2 = 0;
  3983. }
  3984. filament_sensor = true;
  3985. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3986. //SERIAL_PROTOCOL(filament_width_meas);
  3987. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3988. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  3989. }
  3990. /**
  3991. * M406: Turn off filament sensor for control
  3992. */
  3993. inline void gcode_M406() { filament_sensor = false; }
  3994. /**
  3995. * M407: Get measured filament diameter on serial output
  3996. */
  3997. inline void gcode_M407() {
  3998. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3999. SERIAL_PROTOCOLLN(filament_width_meas);
  4000. }
  4001. #endif // FILAMENT_SENSOR
  4002. /**
  4003. * M410: Quickstop - Abort all planned moves
  4004. *
  4005. * This will stop the carriages mid-move, so most likely they
  4006. * will be out of sync with the stepper position after this.
  4007. */
  4008. inline void gcode_M410() { quickStop(); }
  4009. #ifdef MESH_BED_LEVELING
  4010. /**
  4011. * M420: Enable/Disable Mesh Bed Leveling
  4012. */
  4013. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4014. /**
  4015. * M421: Set a single Mesh Bed Leveling Z coordinate
  4016. */
  4017. inline void gcode_M421() {
  4018. float x, y, z;
  4019. bool err = false, hasX, hasY, hasZ;
  4020. if ((hasX = code_seen('X'))) x = code_value();
  4021. if ((hasY = code_seen('Y'))) y = code_value();
  4022. if ((hasZ = code_seen('Z'))) z = code_value();
  4023. if (!hasX || !hasY || !hasZ) {
  4024. SERIAL_ERROR_START;
  4025. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4026. err = true;
  4027. }
  4028. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4029. SERIAL_ERROR_START;
  4030. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4031. err = true;
  4032. }
  4033. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4034. }
  4035. #endif
  4036. /**
  4037. * M428: Set home_offset based on the distance between the
  4038. * current_position and the nearest "reference point."
  4039. * If an axis is past center its endstop position
  4040. * is the reference-point. Otherwise it uses 0. This allows
  4041. * the Z offset to be set near the bed when using a max endstop.
  4042. *
  4043. * M428 can't be used more than 2cm away from 0 or an endstop.
  4044. *
  4045. * Use M206 to set these values directly.
  4046. */
  4047. inline void gcode_M428() {
  4048. bool err = false;
  4049. float new_offs[3], new_pos[3];
  4050. memcpy(new_pos, current_position, sizeof(new_pos));
  4051. memcpy(new_offs, home_offset, sizeof(new_offs));
  4052. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4053. if (axis_known_position[i]) {
  4054. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4055. diff = new_pos[i] - base;
  4056. if (diff > -20 && diff < 20) {
  4057. new_offs[i] -= diff;
  4058. new_pos[i] = base;
  4059. }
  4060. else {
  4061. SERIAL_ERROR_START;
  4062. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4063. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4064. #if HAS_BUZZER
  4065. enqueuecommands_P(PSTR("M300 S40 P200"));
  4066. #endif
  4067. err = true;
  4068. break;
  4069. }
  4070. }
  4071. }
  4072. if (!err) {
  4073. memcpy(current_position, new_pos, sizeof(new_pos));
  4074. memcpy(home_offset, new_offs, sizeof(new_offs));
  4075. sync_plan_position();
  4076. LCD_ALERTMESSAGEPGM("Offset applied.");
  4077. #if HAS_BUZZER
  4078. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4079. #endif
  4080. }
  4081. }
  4082. /**
  4083. * M500: Store settings in EEPROM
  4084. */
  4085. inline void gcode_M500() {
  4086. Config_StoreSettings();
  4087. }
  4088. /**
  4089. * M501: Read settings from EEPROM
  4090. */
  4091. inline void gcode_M501() {
  4092. Config_RetrieveSettings();
  4093. }
  4094. /**
  4095. * M502: Revert to default settings
  4096. */
  4097. inline void gcode_M502() {
  4098. Config_ResetDefault();
  4099. }
  4100. /**
  4101. * M503: print settings currently in memory
  4102. */
  4103. inline void gcode_M503() {
  4104. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4105. }
  4106. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4107. /**
  4108. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4109. */
  4110. inline void gcode_M540() {
  4111. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4112. }
  4113. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4114. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4115. inline void gcode_SET_Z_PROBE_OFFSET() {
  4116. float value;
  4117. if (code_seen('Z')) {
  4118. value = code_value();
  4119. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4120. zprobe_zoffset = value;
  4121. SERIAL_ECHO_START;
  4122. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4123. SERIAL_EOL;
  4124. }
  4125. else {
  4126. SERIAL_ECHO_START;
  4127. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4128. SERIAL_ECHOPGM(MSG_Z_MIN);
  4129. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4130. SERIAL_ECHOPGM(MSG_Z_MAX);
  4131. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4132. SERIAL_EOL;
  4133. }
  4134. }
  4135. else {
  4136. SERIAL_ECHO_START;
  4137. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4138. SERIAL_ECHO(zprobe_zoffset);
  4139. SERIAL_EOL;
  4140. }
  4141. }
  4142. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4143. #ifdef FILAMENTCHANGEENABLE
  4144. /**
  4145. * M600: Pause for filament change
  4146. *
  4147. * E[distance] - Retract the filament this far (negative value)
  4148. * Z[distance] - Move the Z axis by this distance
  4149. * X[position] - Move to this X position, with Y
  4150. * Y[position] - Move to this Y position, with X
  4151. * L[distance] - Retract distance for removal (manual reload)
  4152. *
  4153. * Default values are used for omitted arguments.
  4154. *
  4155. */
  4156. inline void gcode_M600() {
  4157. if (degHotend(active_extruder) < extrude_min_temp) {
  4158. SERIAL_ERROR_START;
  4159. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4160. return;
  4161. }
  4162. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4163. for (int i=0; i<NUM_AXIS; i++)
  4164. lastpos[i] = destination[i] = current_position[i];
  4165. #ifdef DELTA
  4166. #define RUNPLAN calculate_delta(destination); \
  4167. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4168. #else
  4169. #define RUNPLAN line_to_destination();
  4170. #endif
  4171. //retract by E
  4172. if (code_seen('E')) destination[E_AXIS] += code_value();
  4173. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4174. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4175. #endif
  4176. RUNPLAN;
  4177. //lift Z
  4178. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4179. #ifdef FILAMENTCHANGE_ZADD
  4180. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4181. #endif
  4182. RUNPLAN;
  4183. //move xy
  4184. if (code_seen('X')) destination[X_AXIS] = code_value();
  4185. #ifdef FILAMENTCHANGE_XPOS
  4186. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4187. #endif
  4188. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4189. #ifdef FILAMENTCHANGE_YPOS
  4190. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4191. #endif
  4192. RUNPLAN;
  4193. if (code_seen('L')) destination[E_AXIS] += code_value();
  4194. #ifdef FILAMENTCHANGE_FINALRETRACT
  4195. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4196. #endif
  4197. RUNPLAN;
  4198. //finish moves
  4199. st_synchronize();
  4200. //disable extruder steppers so filament can be removed
  4201. disable_e0();
  4202. disable_e1();
  4203. disable_e2();
  4204. disable_e3();
  4205. delay(100);
  4206. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4207. millis_t next_tick = 0;
  4208. while (!lcd_clicked()) {
  4209. #ifndef AUTO_FILAMENT_CHANGE
  4210. millis_t ms = millis();
  4211. if (ms >= next_tick) {
  4212. lcd_quick_feedback();
  4213. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4214. }
  4215. manage_heater();
  4216. manage_inactivity(true);
  4217. lcd_update();
  4218. #else
  4219. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4220. plan_buffer_line(target[X_AXIS],target[Y_AXIS],target[Z_MAX_ENDSTOP_INVERTING],current_position[E_AXIS],AUTO_FILAMENT_CHANGE_FEEDRATE/60,active_extruder);
  4221. st_synchronize();
  4222. #endif
  4223. } // while(!lcd_clicked)
  4224. lcd_quick_feedback(); // click sound feedback
  4225. #ifdef AUTO_FILAMENT_CHANGE
  4226. current_position[E_AXIS]= 0;
  4227. st_synchronize();
  4228. #endif
  4229. //return to normal
  4230. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4231. #ifdef FILAMENTCHANGE_FINALRETRACT
  4232. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4233. #endif
  4234. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4235. plan_set_e_position(current_position[E_AXIS]);
  4236. RUNPLAN; //should do nothing
  4237. lcd_reset_alert_level();
  4238. #ifdef DELTA
  4239. // Move XYZ to starting position, then E
  4240. calculate_delta(lastpos);
  4241. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4242. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4243. #else
  4244. // Move XY to starting position, then Z, then E
  4245. destination[X_AXIS] = lastpos[X_AXIS];
  4246. destination[Y_AXIS] = lastpos[Y_AXIS];
  4247. line_to_destination();
  4248. destination[Z_AXIS] = lastpos[Z_AXIS];
  4249. line_to_destination();
  4250. destination[E_AXIS] = lastpos[E_AXIS];
  4251. line_to_destination();
  4252. #endif
  4253. #ifdef FILAMENT_RUNOUT_SENSOR
  4254. filrunoutEnqueued = false;
  4255. #endif
  4256. }
  4257. #endif // FILAMENTCHANGEENABLE
  4258. #ifdef DUAL_X_CARRIAGE
  4259. /**
  4260. * M605: Set dual x-carriage movement mode
  4261. *
  4262. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4263. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4264. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4265. * millimeters x-offset and an optional differential hotend temperature of
  4266. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4267. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4268. *
  4269. * Note: the X axis should be homed after changing dual x-carriage mode.
  4270. */
  4271. inline void gcode_M605() {
  4272. st_synchronize();
  4273. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4274. switch(dual_x_carriage_mode) {
  4275. case DXC_DUPLICATION_MODE:
  4276. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4277. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4278. SERIAL_ECHO_START;
  4279. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4280. SERIAL_CHAR(' ');
  4281. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4282. SERIAL_CHAR(',');
  4283. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4284. SERIAL_CHAR(' ');
  4285. SERIAL_ECHO(duplicate_extruder_x_offset);
  4286. SERIAL_CHAR(',');
  4287. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4288. break;
  4289. case DXC_FULL_CONTROL_MODE:
  4290. case DXC_AUTO_PARK_MODE:
  4291. break;
  4292. default:
  4293. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4294. break;
  4295. }
  4296. active_extruder_parked = false;
  4297. extruder_duplication_enabled = false;
  4298. delayed_move_time = 0;
  4299. }
  4300. #endif // DUAL_X_CARRIAGE
  4301. /**
  4302. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4303. */
  4304. inline void gcode_M907() {
  4305. #if HAS_DIGIPOTSS
  4306. for (int i=0;i<NUM_AXIS;i++)
  4307. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4308. if (code_seen('B')) digipot_current(4, code_value());
  4309. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4310. #endif
  4311. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4312. if (code_seen('X')) digipot_current(0, code_value());
  4313. #endif
  4314. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4315. if (code_seen('Z')) digipot_current(1, code_value());
  4316. #endif
  4317. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4318. if (code_seen('E')) digipot_current(2, code_value());
  4319. #endif
  4320. #ifdef DIGIPOT_I2C
  4321. // this one uses actual amps in floating point
  4322. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4323. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4324. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4325. #endif
  4326. }
  4327. #if HAS_DIGIPOTSS
  4328. /**
  4329. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4330. */
  4331. inline void gcode_M908() {
  4332. digitalPotWrite(
  4333. code_seen('P') ? code_value() : 0,
  4334. code_seen('S') ? code_value() : 0
  4335. );
  4336. }
  4337. #endif // HAS_DIGIPOTSS
  4338. #if HAS_MICROSTEPS
  4339. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4340. inline void gcode_M350() {
  4341. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4342. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4343. if(code_seen('B')) microstep_mode(4,code_value());
  4344. microstep_readings();
  4345. }
  4346. /**
  4347. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4348. * S# determines MS1 or MS2, X# sets the pin high/low.
  4349. */
  4350. inline void gcode_M351() {
  4351. if (code_seen('S')) switch(code_value_short()) {
  4352. case 1:
  4353. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4354. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4355. break;
  4356. case 2:
  4357. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4358. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4359. break;
  4360. }
  4361. microstep_readings();
  4362. }
  4363. #endif // HAS_MICROSTEPS
  4364. /**
  4365. * M999: Restart after being stopped
  4366. */
  4367. inline void gcode_M999() {
  4368. Running = true;
  4369. lcd_reset_alert_level();
  4370. gcode_LastN = Stopped_gcode_LastN;
  4371. FlushSerialRequestResend();
  4372. }
  4373. /**
  4374. * T0-T3: Switch tool, usually switching extruders
  4375. *
  4376. * F[mm/min] Set the movement feedrate
  4377. */
  4378. inline void gcode_T(uint8_t tmp_extruder) {
  4379. if (tmp_extruder >= EXTRUDERS) {
  4380. SERIAL_ECHO_START;
  4381. SERIAL_CHAR('T');
  4382. SERIAL_ECHO(tmp_extruder);
  4383. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4384. }
  4385. else {
  4386. target_extruder = tmp_extruder;
  4387. #if EXTRUDERS > 1
  4388. bool make_move = false;
  4389. #endif
  4390. if (code_seen('F')) {
  4391. #if EXTRUDERS > 1
  4392. make_move = true;
  4393. #endif
  4394. float next_feedrate = code_value();
  4395. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4396. }
  4397. #if EXTRUDERS > 1
  4398. if (tmp_extruder != active_extruder) {
  4399. // Save current position to return to after applying extruder offset
  4400. set_destination_to_current();
  4401. #ifdef DUAL_X_CARRIAGE
  4402. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4403. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4404. // Park old head: 1) raise 2) move to park position 3) lower
  4405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4406. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4407. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4408. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4409. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4410. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4411. st_synchronize();
  4412. }
  4413. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4414. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4415. extruder_offset[Y_AXIS][active_extruder] +
  4416. extruder_offset[Y_AXIS][tmp_extruder];
  4417. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4418. extruder_offset[Z_AXIS][active_extruder] +
  4419. extruder_offset[Z_AXIS][tmp_extruder];
  4420. active_extruder = tmp_extruder;
  4421. // This function resets the max/min values - the current position may be overwritten below.
  4422. axis_is_at_home(X_AXIS);
  4423. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4424. current_position[X_AXIS] = inactive_extruder_x_pos;
  4425. inactive_extruder_x_pos = destination[X_AXIS];
  4426. }
  4427. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4428. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4429. if (active_extruder == 0 || active_extruder_parked)
  4430. current_position[X_AXIS] = inactive_extruder_x_pos;
  4431. else
  4432. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4433. inactive_extruder_x_pos = destination[X_AXIS];
  4434. extruder_duplication_enabled = false;
  4435. }
  4436. else {
  4437. // record raised toolhead position for use by unpark
  4438. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4439. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4440. active_extruder_parked = true;
  4441. delayed_move_time = 0;
  4442. }
  4443. #else // !DUAL_X_CARRIAGE
  4444. // Offset extruder (only by XY)
  4445. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4446. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4447. // Set the new active extruder and position
  4448. active_extruder = tmp_extruder;
  4449. #endif // !DUAL_X_CARRIAGE
  4450. #ifdef DELTA
  4451. sync_plan_position_delta();
  4452. #else
  4453. sync_plan_position();
  4454. #endif
  4455. // Move to the old position if 'F' was in the parameters
  4456. if (make_move && IsRunning()) prepare_move();
  4457. }
  4458. #ifdef EXT_SOLENOID
  4459. st_synchronize();
  4460. disable_all_solenoids();
  4461. enable_solenoid_on_active_extruder();
  4462. #endif // EXT_SOLENOID
  4463. #endif // EXTRUDERS > 1
  4464. SERIAL_ECHO_START;
  4465. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4466. SERIAL_PROTOCOLLN((int)active_extruder);
  4467. }
  4468. }
  4469. /**
  4470. * Process a single command and dispatch it to its handler
  4471. * This is called from the main loop()
  4472. */
  4473. void process_next_command() {
  4474. current_command = command_queue[cmd_queue_index_r];
  4475. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4476. SERIAL_ECHO_START;
  4477. SERIAL_ECHOLN(current_command);
  4478. }
  4479. // Sanitize the current command:
  4480. // - Skip leading spaces
  4481. // - Bypass N[0-9][0-9]*[ ]*
  4482. // - Overwrite * with nul to mark the end
  4483. while (*current_command == ' ') ++current_command;
  4484. if (*current_command == 'N' && current_command[1] >= '0' && current_command[1] <= '9') {
  4485. current_command += 2; // skip N[0-9]
  4486. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4487. while (*current_command == ' ') ++current_command; // skip [ ]*
  4488. }
  4489. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4490. if (starpos) *starpos = '\0';
  4491. // Get the command code, which must be G, M, or T
  4492. char command_code = *current_command;
  4493. // The code must have a numeric value
  4494. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4495. int codenum; // define ahead of goto
  4496. // Bail early if there's no code
  4497. if (!code_is_good) goto ExitUnknownCommand;
  4498. // Args pointer optimizes code_seen, especially those taking XYZEF
  4499. // This wastes a little cpu on commands that expect no arguments.
  4500. current_command_args = current_command;
  4501. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4502. while (*current_command_args == ' ') ++current_command_args;
  4503. // Interpret the code int
  4504. seen_pointer = current_command;
  4505. codenum = code_value_short();
  4506. // Handle a known G, M, or T
  4507. switch(command_code) {
  4508. case 'G': switch (codenum) {
  4509. // G0, G1
  4510. case 0:
  4511. case 1:
  4512. gcode_G0_G1();
  4513. break;
  4514. // G2, G3
  4515. #ifndef SCARA
  4516. case 2: // G2 - CW ARC
  4517. case 3: // G3 - CCW ARC
  4518. gcode_G2_G3(codenum == 2);
  4519. break;
  4520. #endif
  4521. // G4 Dwell
  4522. case 4:
  4523. gcode_G4();
  4524. break;
  4525. #ifdef FWRETRACT
  4526. case 10: // G10: retract
  4527. case 11: // G11: retract_recover
  4528. gcode_G10_G11(codenum == 10);
  4529. break;
  4530. #endif //FWRETRACT
  4531. case 28: // G28: Home all axes, one at a time
  4532. gcode_G28();
  4533. break;
  4534. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4535. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4536. gcode_G29();
  4537. break;
  4538. #endif
  4539. #ifdef ENABLE_AUTO_BED_LEVELING
  4540. #ifndef Z_PROBE_SLED
  4541. case 30: // G30 Single Z Probe
  4542. gcode_G30();
  4543. break;
  4544. #else // Z_PROBE_SLED
  4545. case 31: // G31: dock the sled
  4546. case 32: // G32: undock the sled
  4547. dock_sled(codenum == 31);
  4548. break;
  4549. #endif // Z_PROBE_SLED
  4550. #endif // ENABLE_AUTO_BED_LEVELING
  4551. case 90: // G90
  4552. relative_mode = false;
  4553. break;
  4554. case 91: // G91
  4555. relative_mode = true;
  4556. break;
  4557. case 92: // G92
  4558. gcode_G92();
  4559. break;
  4560. }
  4561. break;
  4562. case 'M': switch (codenum) {
  4563. #ifdef ULTIPANEL
  4564. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4565. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4566. gcode_M0_M1();
  4567. break;
  4568. #endif // ULTIPANEL
  4569. case 17:
  4570. gcode_M17();
  4571. break;
  4572. #ifdef SDSUPPORT
  4573. case 20: // M20 - list SD card
  4574. gcode_M20(); break;
  4575. case 21: // M21 - init SD card
  4576. gcode_M21(); break;
  4577. case 22: //M22 - release SD card
  4578. gcode_M22(); break;
  4579. case 23: //M23 - Select file
  4580. gcode_M23(); break;
  4581. case 24: //M24 - Start SD print
  4582. gcode_M24(); break;
  4583. case 25: //M25 - Pause SD print
  4584. gcode_M25(); break;
  4585. case 26: //M26 - Set SD index
  4586. gcode_M26(); break;
  4587. case 27: //M27 - Get SD status
  4588. gcode_M27(); break;
  4589. case 28: //M28 - Start SD write
  4590. gcode_M28(); break;
  4591. case 29: //M29 - Stop SD write
  4592. gcode_M29(); break;
  4593. case 30: //M30 <filename> Delete File
  4594. gcode_M30(); break;
  4595. case 32: //M32 - Select file and start SD print
  4596. gcode_M32(); break;
  4597. #ifdef LONG_FILENAME_HOST_SUPPORT
  4598. case 33: //M33 - Get the long full path to a file or folder
  4599. gcode_M33(); break;
  4600. #endif // LONG_FILENAME_HOST_SUPPORT
  4601. case 928: //M928 - Start SD write
  4602. gcode_M928(); break;
  4603. #endif //SDSUPPORT
  4604. case 31: //M31 take time since the start of the SD print or an M109 command
  4605. gcode_M31();
  4606. break;
  4607. case 42: //M42 -Change pin status via gcode
  4608. gcode_M42();
  4609. break;
  4610. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4611. case 48: // M48 Z-Probe repeatability
  4612. gcode_M48();
  4613. break;
  4614. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4615. case 104: // M104
  4616. gcode_M104();
  4617. break;
  4618. case 111: // M111: Set debug level
  4619. gcode_M111();
  4620. break;
  4621. case 112: // M112: Emergency Stop
  4622. gcode_M112();
  4623. break;
  4624. case 140: // M140: Set bed temp
  4625. gcode_M140();
  4626. break;
  4627. case 105: // M105: Read current temperature
  4628. gcode_M105();
  4629. return; // "ok" already printed
  4630. case 109: // M109: Wait for temperature
  4631. gcode_M109();
  4632. break;
  4633. #if HAS_TEMP_BED
  4634. case 190: // M190: Wait for bed heater to reach target
  4635. gcode_M190();
  4636. break;
  4637. #endif // HAS_TEMP_BED
  4638. #if HAS_FAN
  4639. case 106: // M106: Fan On
  4640. gcode_M106();
  4641. break;
  4642. case 107: // M107: Fan Off
  4643. gcode_M107();
  4644. break;
  4645. #endif // HAS_FAN
  4646. #ifdef BARICUDA
  4647. // PWM for HEATER_1_PIN
  4648. #if HAS_HEATER_1
  4649. case 126: // M126: valve open
  4650. gcode_M126();
  4651. break;
  4652. case 127: // M127: valve closed
  4653. gcode_M127();
  4654. break;
  4655. #endif // HAS_HEATER_1
  4656. // PWM for HEATER_2_PIN
  4657. #if HAS_HEATER_2
  4658. case 128: // M128: valve open
  4659. gcode_M128();
  4660. break;
  4661. case 129: // M129: valve closed
  4662. gcode_M129();
  4663. break;
  4664. #endif // HAS_HEATER_2
  4665. #endif // BARICUDA
  4666. #if HAS_POWER_SWITCH
  4667. case 80: // M80: Turn on Power Supply
  4668. gcode_M80();
  4669. break;
  4670. #endif // HAS_POWER_SWITCH
  4671. case 81: // M81: Turn off Power, including Power Supply, if possible
  4672. gcode_M81();
  4673. break;
  4674. case 82:
  4675. gcode_M82();
  4676. break;
  4677. case 83:
  4678. gcode_M83();
  4679. break;
  4680. case 18: // (for compatibility)
  4681. case 84: // M84
  4682. gcode_M18_M84();
  4683. break;
  4684. case 85: // M85
  4685. gcode_M85();
  4686. break;
  4687. case 92: // M92: Set the steps-per-unit for one or more axes
  4688. gcode_M92();
  4689. break;
  4690. case 115: // M115: Report capabilities
  4691. gcode_M115();
  4692. break;
  4693. case 117: // M117: Set LCD message text, if possible
  4694. gcode_M117();
  4695. break;
  4696. case 114: // M114: Report current position
  4697. gcode_M114();
  4698. break;
  4699. case 120: // M120: Enable endstops
  4700. gcode_M120();
  4701. break;
  4702. case 121: // M121: Disable endstops
  4703. gcode_M121();
  4704. break;
  4705. case 119: // M119: Report endstop states
  4706. gcode_M119();
  4707. break;
  4708. #ifdef ULTIPANEL
  4709. case 145: // M145: Set material heatup parameters
  4710. gcode_M145();
  4711. break;
  4712. #endif
  4713. #ifdef BLINKM
  4714. case 150: // M150
  4715. gcode_M150();
  4716. break;
  4717. #endif //BLINKM
  4718. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4719. gcode_M200();
  4720. break;
  4721. case 201: // M201
  4722. gcode_M201();
  4723. break;
  4724. #if 0 // Not used for Sprinter/grbl gen6
  4725. case 202: // M202
  4726. gcode_M202();
  4727. break;
  4728. #endif
  4729. case 203: // M203 max feedrate mm/sec
  4730. gcode_M203();
  4731. break;
  4732. case 204: // M204 acclereration S normal moves T filmanent only moves
  4733. gcode_M204();
  4734. break;
  4735. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4736. gcode_M205();
  4737. break;
  4738. case 206: // M206 additional homing offset
  4739. gcode_M206();
  4740. break;
  4741. #ifdef DELTA
  4742. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4743. gcode_M665();
  4744. break;
  4745. #endif
  4746. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4747. case 666: // M666 set delta / dual endstop adjustment
  4748. gcode_M666();
  4749. break;
  4750. #endif
  4751. #ifdef FWRETRACT
  4752. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4753. gcode_M207();
  4754. break;
  4755. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4756. gcode_M208();
  4757. break;
  4758. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4759. gcode_M209();
  4760. break;
  4761. #endif // FWRETRACT
  4762. #if EXTRUDERS > 1
  4763. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4764. gcode_M218();
  4765. break;
  4766. #endif
  4767. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4768. gcode_M220();
  4769. break;
  4770. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4771. gcode_M221();
  4772. break;
  4773. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4774. gcode_M226();
  4775. break;
  4776. #if NUM_SERVOS > 0
  4777. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4778. gcode_M280();
  4779. break;
  4780. #endif // NUM_SERVOS > 0
  4781. #if HAS_BUZZER
  4782. case 300: // M300 - Play beep tone
  4783. gcode_M300();
  4784. break;
  4785. #endif // HAS_BUZZER
  4786. #ifdef PIDTEMP
  4787. case 301: // M301
  4788. gcode_M301();
  4789. break;
  4790. #endif // PIDTEMP
  4791. #ifdef PIDTEMPBED
  4792. case 304: // M304
  4793. gcode_M304();
  4794. break;
  4795. #endif // PIDTEMPBED
  4796. #if defined(CHDK) || HAS_PHOTOGRAPH
  4797. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4798. gcode_M240();
  4799. break;
  4800. #endif // CHDK || PHOTOGRAPH_PIN
  4801. #ifdef HAS_LCD_CONTRAST
  4802. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4803. gcode_M250();
  4804. break;
  4805. #endif // HAS_LCD_CONTRAST
  4806. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4807. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4808. gcode_M302();
  4809. break;
  4810. #endif // PREVENT_DANGEROUS_EXTRUDE
  4811. case 303: // M303 PID autotune
  4812. gcode_M303();
  4813. break;
  4814. #ifdef SCARA
  4815. case 360: // M360 SCARA Theta pos1
  4816. if (gcode_M360()) return;
  4817. break;
  4818. case 361: // M361 SCARA Theta pos2
  4819. if (gcode_M361()) return;
  4820. break;
  4821. case 362: // M362 SCARA Psi pos1
  4822. if (gcode_M362()) return;
  4823. break;
  4824. case 363: // M363 SCARA Psi pos2
  4825. if (gcode_M363()) return;
  4826. break;
  4827. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4828. if (gcode_M364()) return;
  4829. break;
  4830. case 365: // M365 Set SCARA scaling for X Y Z
  4831. gcode_M365();
  4832. break;
  4833. #endif // SCARA
  4834. case 400: // M400 finish all moves
  4835. gcode_M400();
  4836. break;
  4837. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && !defined(Z_PROBE_SLED)
  4838. case 401:
  4839. gcode_M401();
  4840. break;
  4841. case 402:
  4842. gcode_M402();
  4843. break;
  4844. #endif // ENABLE_AUTO_BED_LEVELING && (SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4845. #ifdef FILAMENT_SENSOR
  4846. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4847. gcode_M404();
  4848. break;
  4849. case 405: //M405 Turn on filament sensor for control
  4850. gcode_M405();
  4851. break;
  4852. case 406: //M406 Turn off filament sensor for control
  4853. gcode_M406();
  4854. break;
  4855. case 407: //M407 Display measured filament diameter
  4856. gcode_M407();
  4857. break;
  4858. #endif // FILAMENT_SENSOR
  4859. case 410: // M410 quickstop - Abort all the planned moves.
  4860. gcode_M410();
  4861. break;
  4862. #ifdef MESH_BED_LEVELING
  4863. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4864. gcode_M420();
  4865. break;
  4866. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4867. gcode_M421();
  4868. break;
  4869. #endif
  4870. case 428: // M428 Apply current_position to home_offset
  4871. gcode_M428();
  4872. break;
  4873. case 500: // M500 Store settings in EEPROM
  4874. gcode_M500();
  4875. break;
  4876. case 501: // M501 Read settings from EEPROM
  4877. gcode_M501();
  4878. break;
  4879. case 502: // M502 Revert to default settings
  4880. gcode_M502();
  4881. break;
  4882. case 503: // M503 print settings currently in memory
  4883. gcode_M503();
  4884. break;
  4885. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4886. case 540:
  4887. gcode_M540();
  4888. break;
  4889. #endif
  4890. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4891. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4892. gcode_SET_Z_PROBE_OFFSET();
  4893. break;
  4894. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4895. #ifdef FILAMENTCHANGEENABLE
  4896. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4897. gcode_M600();
  4898. break;
  4899. #endif // FILAMENTCHANGEENABLE
  4900. #ifdef DUAL_X_CARRIAGE
  4901. case 605:
  4902. gcode_M605();
  4903. break;
  4904. #endif // DUAL_X_CARRIAGE
  4905. case 907: // M907 Set digital trimpot motor current using axis codes.
  4906. gcode_M907();
  4907. break;
  4908. #if HAS_DIGIPOTSS
  4909. case 908: // M908 Control digital trimpot directly.
  4910. gcode_M908();
  4911. break;
  4912. #endif // HAS_DIGIPOTSS
  4913. #if HAS_MICROSTEPS
  4914. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4915. gcode_M350();
  4916. break;
  4917. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4918. gcode_M351();
  4919. break;
  4920. #endif // HAS_MICROSTEPS
  4921. case 999: // M999: Restart after being Stopped
  4922. gcode_M999();
  4923. break;
  4924. }
  4925. break;
  4926. case 'T':
  4927. gcode_T(codenum);
  4928. break;
  4929. default: code_is_good = false;
  4930. }
  4931. ExitUnknownCommand:
  4932. // Still unknown command? Throw an error
  4933. if (!code_is_good) unknown_command_error();
  4934. ok_to_send();
  4935. }
  4936. void FlushSerialRequestResend() {
  4937. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4938. MYSERIAL.flush();
  4939. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4940. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4941. ok_to_send();
  4942. }
  4943. void ok_to_send() {
  4944. refresh_cmd_timeout();
  4945. #ifdef SDSUPPORT
  4946. if (fromsd[cmd_queue_index_r]) return;
  4947. #endif
  4948. SERIAL_PROTOCOLPGM(MSG_OK);
  4949. #ifdef ADVANCED_OK
  4950. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4951. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4952. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4953. #endif
  4954. SERIAL_EOL;
  4955. }
  4956. void clamp_to_software_endstops(float target[3]) {
  4957. if (min_software_endstops) {
  4958. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4959. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4960. float negative_z_offset = 0;
  4961. #ifdef ENABLE_AUTO_BED_LEVELING
  4962. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4963. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4964. #endif
  4965. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4966. }
  4967. if (max_software_endstops) {
  4968. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4969. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4970. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4971. }
  4972. }
  4973. #ifdef DELTA
  4974. void recalc_delta_settings(float radius, float diagonal_rod) {
  4975. delta_tower1_x = -SIN_60 * radius; // front left tower
  4976. delta_tower1_y = -COS_60 * radius;
  4977. delta_tower2_x = SIN_60 * radius; // front right tower
  4978. delta_tower2_y = -COS_60 * radius;
  4979. delta_tower3_x = 0.0; // back middle tower
  4980. delta_tower3_y = radius;
  4981. delta_diagonal_rod_2 = sq(diagonal_rod);
  4982. }
  4983. void calculate_delta(float cartesian[3]) {
  4984. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4985. - sq(delta_tower1_x-cartesian[X_AXIS])
  4986. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4987. ) + cartesian[Z_AXIS];
  4988. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4989. - sq(delta_tower2_x-cartesian[X_AXIS])
  4990. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4991. ) + cartesian[Z_AXIS];
  4992. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4993. - sq(delta_tower3_x-cartesian[X_AXIS])
  4994. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4995. ) + cartesian[Z_AXIS];
  4996. /*
  4997. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4998. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4999. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5000. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5001. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5002. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5003. */
  5004. }
  5005. #ifdef ENABLE_AUTO_BED_LEVELING
  5006. // Adjust print surface height by linear interpolation over the bed_level array.
  5007. void adjust_delta(float cartesian[3]) {
  5008. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5009. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5010. float h1 = 0.001 - half, h2 = half - 0.001,
  5011. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5012. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5013. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5014. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5015. z1 = bed_level[floor_x + half][floor_y + half],
  5016. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5017. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5018. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5019. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5020. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5021. offset = (1 - ratio_x) * left + ratio_x * right;
  5022. delta[X_AXIS] += offset;
  5023. delta[Y_AXIS] += offset;
  5024. delta[Z_AXIS] += offset;
  5025. /*
  5026. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5027. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5028. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5029. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5030. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5031. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5032. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5033. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5034. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5035. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5036. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5037. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5038. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5039. */
  5040. }
  5041. #endif // ENABLE_AUTO_BED_LEVELING
  5042. #endif // DELTA
  5043. #ifdef MESH_BED_LEVELING
  5044. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5045. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  5046. {
  5047. if (!mbl.active) {
  5048. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5049. set_current_to_destination();
  5050. return;
  5051. }
  5052. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5053. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5054. int ix = mbl.select_x_index(x);
  5055. int iy = mbl.select_y_index(y);
  5056. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5057. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5058. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5059. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5060. if (pix == ix && piy == iy) {
  5061. // Start and end on same mesh square
  5062. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5063. set_current_to_destination();
  5064. return;
  5065. }
  5066. float nx, ny, ne, normalized_dist;
  5067. if (ix > pix && (x_splits) & BIT(ix)) {
  5068. nx = mbl.get_x(ix);
  5069. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5070. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5071. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5072. x_splits ^= BIT(ix);
  5073. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5074. nx = mbl.get_x(pix);
  5075. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5076. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5077. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5078. x_splits ^= BIT(pix);
  5079. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5080. ny = mbl.get_y(iy);
  5081. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5082. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5083. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5084. y_splits ^= BIT(iy);
  5085. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5086. ny = mbl.get_y(piy);
  5087. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5088. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5089. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5090. y_splits ^= BIT(piy);
  5091. } else {
  5092. // Already split on a border
  5093. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5094. set_current_to_destination();
  5095. return;
  5096. }
  5097. // Do the split and look for more borders
  5098. destination[X_AXIS] = nx;
  5099. destination[Y_AXIS] = ny;
  5100. destination[E_AXIS] = ne;
  5101. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5102. destination[X_AXIS] = x;
  5103. destination[Y_AXIS] = y;
  5104. destination[E_AXIS] = e;
  5105. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5106. }
  5107. #endif // MESH_BED_LEVELING
  5108. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5109. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5110. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5111. float de = dest_e - curr_e;
  5112. if (de) {
  5113. if (degHotend(active_extruder) < extrude_min_temp) {
  5114. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5115. SERIAL_ECHO_START;
  5116. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5117. }
  5118. #ifdef PREVENT_LENGTHY_EXTRUDE
  5119. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5120. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5121. SERIAL_ECHO_START;
  5122. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5123. }
  5124. #endif
  5125. }
  5126. }
  5127. #endif // PREVENT_DANGEROUS_EXTRUDE
  5128. #if defined(DELTA) || defined(SCARA)
  5129. inline bool prepare_move_delta() {
  5130. float difference[NUM_AXIS];
  5131. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  5132. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5133. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5134. if (cartesian_mm < 0.000001) return false;
  5135. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5136. int steps = max(1, int(delta_segments_per_second * seconds));
  5137. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5138. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5139. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5140. for (int s = 1; s <= steps; s++) {
  5141. float fraction = float(s) / float(steps);
  5142. for (int8_t i = 0; i < NUM_AXIS; i++)
  5143. destination[i] = current_position[i] + difference[i] * fraction;
  5144. calculate_delta(destination);
  5145. #ifdef ENABLE_AUTO_BED_LEVELING
  5146. adjust_delta(destination);
  5147. #endif
  5148. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  5149. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  5150. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  5151. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5152. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5153. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5154. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5155. }
  5156. return true;
  5157. }
  5158. #endif // DELTA || SCARA
  5159. #ifdef SCARA
  5160. inline bool prepare_move_scara() { return prepare_move_delta(); }
  5161. #endif
  5162. #ifdef DUAL_X_CARRIAGE
  5163. inline bool prepare_move_dual_x_carriage() {
  5164. if (active_extruder_parked) {
  5165. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5166. // move duplicate extruder into correct duplication position.
  5167. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5168. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5169. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5170. sync_plan_position();
  5171. st_synchronize();
  5172. extruder_duplication_enabled = true;
  5173. active_extruder_parked = false;
  5174. }
  5175. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5176. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5177. // This is a travel move (with no extrusion)
  5178. // Skip it, but keep track of the current position
  5179. // (so it can be used as the start of the next non-travel move)
  5180. if (delayed_move_time != 0xFFFFFFFFUL) {
  5181. set_current_to_destination();
  5182. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5183. delayed_move_time = millis();
  5184. return false;
  5185. }
  5186. }
  5187. delayed_move_time = 0;
  5188. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5189. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5192. active_extruder_parked = false;
  5193. }
  5194. }
  5195. return true;
  5196. }
  5197. #endif // DUAL_X_CARRIAGE
  5198. #if !defined(DELTA) && !defined(SCARA)
  5199. inline bool prepare_move_cartesian() {
  5200. // Do not use feedrate_multiplier for E or Z only moves
  5201. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5202. line_to_destination();
  5203. }
  5204. else {
  5205. #ifdef MESH_BED_LEVELING
  5206. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5207. return false;
  5208. #else
  5209. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5210. #endif
  5211. }
  5212. return true;
  5213. }
  5214. #endif // !DELTA && !SCARA
  5215. /**
  5216. * Prepare a single move and get ready for the next one
  5217. */
  5218. void prepare_move() {
  5219. clamp_to_software_endstops(destination);
  5220. refresh_cmd_timeout();
  5221. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5222. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5223. #endif
  5224. #ifdef SCARA
  5225. if (!prepare_move_scara()) return;
  5226. #elif defined(DELTA)
  5227. if (!prepare_move_delta()) return;
  5228. #endif
  5229. #ifdef DUAL_X_CARRIAGE
  5230. if (!prepare_move_dual_x_carriage()) return;
  5231. #endif
  5232. #if !defined(DELTA) && !defined(SCARA)
  5233. if (!prepare_move_cartesian()) return;
  5234. #endif
  5235. set_current_to_destination();
  5236. }
  5237. #if HAS_CONTROLLERFAN
  5238. void controllerFan() {
  5239. static millis_t lastMotor = 0; // Last time a motor was turned on
  5240. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5241. millis_t ms = millis();
  5242. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5243. lastMotorCheck = ms;
  5244. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5245. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5246. #if EXTRUDERS > 1
  5247. || E1_ENABLE_READ == E_ENABLE_ON
  5248. #if HAS_X2_ENABLE
  5249. || X2_ENABLE_READ == X_ENABLE_ON
  5250. #endif
  5251. #if EXTRUDERS > 2
  5252. || E2_ENABLE_READ == E_ENABLE_ON
  5253. #if EXTRUDERS > 3
  5254. || E3_ENABLE_READ == E_ENABLE_ON
  5255. #endif
  5256. #endif
  5257. #endif
  5258. ) {
  5259. lastMotor = ms; //... set time to NOW so the fan will turn on
  5260. }
  5261. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5262. // allows digital or PWM fan output to be used (see M42 handling)
  5263. digitalWrite(CONTROLLERFAN_PIN, speed);
  5264. analogWrite(CONTROLLERFAN_PIN, speed);
  5265. }
  5266. }
  5267. #endif // HAS_CONTROLLERFAN
  5268. #ifdef SCARA
  5269. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5270. // Perform forward kinematics, and place results in delta[3]
  5271. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5272. float x_sin, x_cos, y_sin, y_cos;
  5273. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5274. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5275. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5276. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5277. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5278. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5279. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5280. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5281. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5282. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5283. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5284. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5285. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5286. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5287. }
  5288. void calculate_delta(float cartesian[3]){
  5289. //reverse kinematics.
  5290. // Perform reversed kinematics, and place results in delta[3]
  5291. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5292. float SCARA_pos[2];
  5293. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5294. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5295. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5296. #if (Linkage_1 == Linkage_2)
  5297. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5298. #else
  5299. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5300. #endif
  5301. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5302. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5303. SCARA_K2 = Linkage_2 * SCARA_S2;
  5304. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5305. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5306. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5307. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5308. delta[Z_AXIS] = cartesian[Z_AXIS];
  5309. /*
  5310. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5311. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5312. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5313. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5314. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5315. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5316. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5317. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5318. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5319. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5320. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5321. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5322. SERIAL_EOL;
  5323. */
  5324. }
  5325. #endif // SCARA
  5326. #ifdef TEMP_STAT_LEDS
  5327. static bool red_led = false;
  5328. static millis_t next_status_led_update_ms = 0;
  5329. void handle_status_leds(void) {
  5330. float max_temp = 0.0;
  5331. if (millis() > next_status_led_update_ms) {
  5332. next_status_led_update_ms += 500; // Update every 0.5s
  5333. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5334. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5335. #if HAS_TEMP_BED
  5336. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5337. #endif
  5338. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5339. if (new_led != red_led) {
  5340. red_led = new_led;
  5341. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5342. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5343. }
  5344. }
  5345. }
  5346. #endif
  5347. void enable_all_steppers() {
  5348. enable_x();
  5349. enable_y();
  5350. enable_z();
  5351. enable_e0();
  5352. enable_e1();
  5353. enable_e2();
  5354. enable_e3();
  5355. }
  5356. void disable_all_steppers() {
  5357. disable_x();
  5358. disable_y();
  5359. disable_z();
  5360. disable_e0();
  5361. disable_e1();
  5362. disable_e2();
  5363. disable_e3();
  5364. }
  5365. /**
  5366. * Standard idle routine keeps the machine alive
  5367. */
  5368. void idle() {
  5369. manage_heater();
  5370. manage_inactivity();
  5371. lcd_update();
  5372. }
  5373. /**
  5374. * Manage several activities:
  5375. * - Check for Filament Runout
  5376. * - Keep the command buffer full
  5377. * - Check for maximum inactive time between commands
  5378. * - Check for maximum inactive time between stepper commands
  5379. * - Check if pin CHDK needs to go LOW
  5380. * - Check for KILL button held down
  5381. * - Check for HOME button held down
  5382. * - Check if cooling fan needs to be switched on
  5383. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5384. */
  5385. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5386. #if HAS_FILRUNOUT
  5387. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5388. filrunout();
  5389. #endif
  5390. if (commands_in_queue < BUFSIZE - 1) get_command();
  5391. millis_t ms = millis();
  5392. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5393. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5394. && !ignore_stepper_queue && !blocks_queued()) {
  5395. #if DISABLE_X == true
  5396. disable_x();
  5397. #endif
  5398. #if DISABLE_Y == true
  5399. disable_y();
  5400. #endif
  5401. #if DISABLE_Z == true
  5402. disable_z();
  5403. #endif
  5404. #if DISABLE_E == true
  5405. disable_e0();
  5406. disable_e1();
  5407. disable_e2();
  5408. disable_e3();
  5409. #endif
  5410. }
  5411. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5412. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5413. chdkActive = false;
  5414. WRITE(CHDK, LOW);
  5415. }
  5416. #endif
  5417. #if HAS_KILL
  5418. // Check if the kill button was pressed and wait just in case it was an accidental
  5419. // key kill key press
  5420. // -------------------------------------------------------------------------------
  5421. static int killCount = 0; // make the inactivity button a bit less responsive
  5422. const int KILL_DELAY = 750;
  5423. if (!READ(KILL_PIN))
  5424. killCount++;
  5425. else if (killCount > 0)
  5426. killCount--;
  5427. // Exceeded threshold and we can confirm that it was not accidental
  5428. // KILL the machine
  5429. // ----------------------------------------------------------------
  5430. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5431. #endif
  5432. #if HAS_HOME
  5433. // Check to see if we have to home, use poor man's debouncer
  5434. // ---------------------------------------------------------
  5435. static int homeDebounceCount = 0; // poor man's debouncing count
  5436. const int HOME_DEBOUNCE_DELAY = 750;
  5437. if (!READ(HOME_PIN)) {
  5438. if (!homeDebounceCount) {
  5439. enqueuecommands_P(PSTR("G28"));
  5440. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5441. }
  5442. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5443. homeDebounceCount++;
  5444. else
  5445. homeDebounceCount = 0;
  5446. }
  5447. #endif
  5448. #if HAS_CONTROLLERFAN
  5449. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5450. #endif
  5451. #ifdef EXTRUDER_RUNOUT_PREVENT
  5452. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5453. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5454. bool oldstatus;
  5455. switch(active_extruder) {
  5456. case 0:
  5457. oldstatus = E0_ENABLE_READ;
  5458. enable_e0();
  5459. break;
  5460. #if EXTRUDERS > 1
  5461. case 1:
  5462. oldstatus = E1_ENABLE_READ;
  5463. enable_e1();
  5464. break;
  5465. #if EXTRUDERS > 2
  5466. case 2:
  5467. oldstatus = E2_ENABLE_READ;
  5468. enable_e2();
  5469. break;
  5470. #if EXTRUDERS > 3
  5471. case 3:
  5472. oldstatus = E3_ENABLE_READ;
  5473. enable_e3();
  5474. break;
  5475. #endif
  5476. #endif
  5477. #endif
  5478. }
  5479. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5480. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5481. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5482. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5483. current_position[E_AXIS] = oldepos;
  5484. destination[E_AXIS] = oldedes;
  5485. plan_set_e_position(oldepos);
  5486. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5487. st_synchronize();
  5488. switch(active_extruder) {
  5489. case 0:
  5490. E0_ENABLE_WRITE(oldstatus);
  5491. break;
  5492. #if EXTRUDERS > 1
  5493. case 1:
  5494. E1_ENABLE_WRITE(oldstatus);
  5495. break;
  5496. #if EXTRUDERS > 2
  5497. case 2:
  5498. E2_ENABLE_WRITE(oldstatus);
  5499. break;
  5500. #if EXTRUDERS > 3
  5501. case 3:
  5502. E3_ENABLE_WRITE(oldstatus);
  5503. break;
  5504. #endif
  5505. #endif
  5506. #endif
  5507. }
  5508. }
  5509. #endif
  5510. #ifdef DUAL_X_CARRIAGE
  5511. // handle delayed move timeout
  5512. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5513. // travel moves have been received so enact them
  5514. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5515. set_destination_to_current();
  5516. prepare_move();
  5517. }
  5518. #endif
  5519. #ifdef TEMP_STAT_LEDS
  5520. handle_status_leds();
  5521. #endif
  5522. check_axes_activity();
  5523. }
  5524. void kill(const char *lcd_msg) {
  5525. #ifdef ULTRA_LCD
  5526. lcd_setalertstatuspgm(lcd_msg);
  5527. #endif
  5528. cli(); // Stop interrupts
  5529. disable_all_heaters();
  5530. disable_all_steppers();
  5531. #if HAS_POWER_SWITCH
  5532. pinMode(PS_ON_PIN, INPUT);
  5533. #endif
  5534. SERIAL_ERROR_START;
  5535. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5536. // FMC small patch to update the LCD before ending
  5537. sei(); // enable interrupts
  5538. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5539. cli(); // disable interrupts
  5540. suicide();
  5541. while(1) { /* Intentionally left empty */ } // Wait for reset
  5542. }
  5543. #ifdef FILAMENT_RUNOUT_SENSOR
  5544. void filrunout() {
  5545. if (!filrunoutEnqueued) {
  5546. filrunoutEnqueued = true;
  5547. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5548. st_synchronize();
  5549. }
  5550. }
  5551. #endif // FILAMENT_RUNOUT_SENSOR
  5552. #ifdef FAST_PWM_FAN
  5553. void setPwmFrequency(uint8_t pin, int val) {
  5554. val &= 0x07;
  5555. switch (digitalPinToTimer(pin)) {
  5556. #if defined(TCCR0A)
  5557. case TIMER0A:
  5558. case TIMER0B:
  5559. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5560. // TCCR0B |= val;
  5561. break;
  5562. #endif
  5563. #if defined(TCCR1A)
  5564. case TIMER1A:
  5565. case TIMER1B:
  5566. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5567. // TCCR1B |= val;
  5568. break;
  5569. #endif
  5570. #if defined(TCCR2)
  5571. case TIMER2:
  5572. case TIMER2:
  5573. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5574. TCCR2 |= val;
  5575. break;
  5576. #endif
  5577. #if defined(TCCR2A)
  5578. case TIMER2A:
  5579. case TIMER2B:
  5580. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5581. TCCR2B |= val;
  5582. break;
  5583. #endif
  5584. #if defined(TCCR3A)
  5585. case TIMER3A:
  5586. case TIMER3B:
  5587. case TIMER3C:
  5588. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5589. TCCR3B |= val;
  5590. break;
  5591. #endif
  5592. #if defined(TCCR4A)
  5593. case TIMER4A:
  5594. case TIMER4B:
  5595. case TIMER4C:
  5596. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5597. TCCR4B |= val;
  5598. break;
  5599. #endif
  5600. #if defined(TCCR5A)
  5601. case TIMER5A:
  5602. case TIMER5B:
  5603. case TIMER5C:
  5604. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5605. TCCR5B |= val;
  5606. break;
  5607. #endif
  5608. }
  5609. }
  5610. #endif // FAST_PWM_FAN
  5611. void Stop() {
  5612. disable_all_heaters();
  5613. if (IsRunning()) {
  5614. Running = false;
  5615. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5616. SERIAL_ERROR_START;
  5617. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5618. LCD_MESSAGEPGM(MSG_STOPPED);
  5619. }
  5620. }
  5621. /**
  5622. * Set target_extruder from the T parameter or the active_extruder
  5623. *
  5624. * Returns TRUE if the target is invalid
  5625. */
  5626. bool setTargetedHotend(int code) {
  5627. target_extruder = active_extruder;
  5628. if (code_seen('T')) {
  5629. target_extruder = code_value_short();
  5630. if (target_extruder >= EXTRUDERS) {
  5631. SERIAL_ECHO_START;
  5632. SERIAL_CHAR('M');
  5633. SERIAL_ECHO(code);
  5634. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5635. SERIAL_ECHOLN(target_extruder);
  5636. return true;
  5637. }
  5638. }
  5639. return false;
  5640. }
  5641. float calculate_volumetric_multiplier(float diameter) {
  5642. if (!volumetric_enabled || diameter == 0) return 1.0;
  5643. float d2 = diameter * 0.5;
  5644. return 1.0 / (M_PI * d2 * d2);
  5645. }
  5646. void calculate_volumetric_multipliers() {
  5647. for (int i=0; i<EXTRUDERS; i++)
  5648. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5649. }