My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M80 - Turn on Power Supply
  129. * M81 - Turn off Power Supply
  130. * M82 - Set E codes absolute (default)
  131. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. * M84 - Disable steppers until next move,
  133. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. * M92 - Set axis_steps_per_unit - same syntax as G92
  136. * M104 - Set extruder target temp
  137. * M105 - Read current temp
  138. * M106 - Fan on
  139. * M107 - Fan off
  140. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. * M110 - Set the current line number
  144. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  145. * M112 - Emergency stop
  146. * M114 - Output current position to serial port
  147. * M115 - Capabilities string
  148. * M117 - Display a message on the controller screen
  149. * M119 - Output Endstop status to serial port
  150. * M120 - Enable endstop detection
  151. * M121 - Disable endstop detection
  152. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  153. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  154. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. * M140 - Set bed target temp
  157. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  158. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  159. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  160. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  161. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  162. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  163. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  164. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  165. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  166. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  167. * M206 - Set additional homing offset
  168. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  169. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  170. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  171. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  172. * M220 - Set speed factor override percentage: S<factor in percent>
  173. * M221 - Set extrude factor override percentage: S<factor in percent>
  174. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  175. * M240 - Trigger a camera to take a photograph
  176. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  177. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  178. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  179. * M301 - Set PID parameters P I and D
  180. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  181. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  182. * M304 - Set bed PID parameters P I and D
  183. * M380 - Activate solenoid on active extruder
  184. * M381 - Disable all solenoids
  185. * M400 - Finish all moves
  186. * M401 - Lower Z probe if present
  187. * M402 - Raise Z probe if present
  188. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  189. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  190. * M406 - Turn off Filament Sensor extrusion control
  191. * M407 - Display measured filament diameter
  192. * M410 - Quickstop. Abort all the planned moves
  193. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  194. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  195. * M428 - Set the home_offset logically based on the current_position
  196. * M500 - Store parameters in EEPROM
  197. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  198. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  199. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  200. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  201. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  202. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  203. * M666 - Set delta endstop adjustment
  204. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  205. * M907 - Set digital trimpot motor current using axis codes.
  206. * M908 - Control digital trimpot directly.
  207. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  208. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  209. * M350 - Set microstepping mode.
  210. * M351 - Toggle MS1 MS2 pins directly.
  211. *
  212. * ************ SCARA Specific - This can change to suit future G-code regulations
  213. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  214. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  215. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  216. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  217. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  218. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  219. * ************* SCARA End ***************
  220. *
  221. * ************ Custom codes - This can change to suit future G-code regulations
  222. * M100 - Watch Free Memory (For Debugging Only)
  223. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  224. * M928 - Start SD logging (M928 filename.g) - ended by M29
  225. * M999 - Restart after being stopped by error
  226. *
  227. * "T" Codes
  228. *
  229. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  230. *
  231. */
  232. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  233. void gcode_M100();
  234. #endif
  235. #if ENABLED(SDSUPPORT)
  236. CardReader card;
  237. #endif
  238. #if ENABLED(EXPERIMENTAL_I2CBUS)
  239. TWIBus i2c;
  240. #endif
  241. bool Running = true;
  242. uint8_t marlin_debug_flags = DEBUG_NONE;
  243. static float feedrate = 1500.0, saved_feedrate;
  244. float current_position[NUM_AXIS] = { 0.0 };
  245. static float destination[NUM_AXIS] = { 0.0 };
  246. bool axis_known_position[3] = { false };
  247. bool axis_homed[3] = { false };
  248. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  249. static char* current_command, *current_command_args;
  250. static int cmd_queue_index_r = 0;
  251. static int cmd_queue_index_w = 0;
  252. static int commands_in_queue = 0;
  253. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  254. const float homing_feedrate[] = HOMING_FEEDRATE;
  255. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  256. int feedrate_multiplier = 100; //100->1 200->2
  257. int saved_feedrate_multiplier;
  258. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  259. bool volumetric_enabled = false;
  260. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  261. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  262. float home_offset[3] = { 0 };
  263. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  264. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  265. #if FAN_COUNT > 0
  266. int fanSpeeds[FAN_COUNT] = { 0 };
  267. #endif
  268. uint8_t active_extruder = 0;
  269. bool cancel_heatup = false;
  270. const char errormagic[] PROGMEM = "Error:";
  271. const char echomagic[] PROGMEM = "echo:";
  272. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  273. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  274. static int serial_count = 0;
  275. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  276. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  277. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  278. // Inactivity shutdown
  279. millis_t previous_cmd_ms = 0;
  280. static millis_t max_inactive_time = 0;
  281. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000L;
  282. Stopwatch print_job_timer = Stopwatch();
  283. static uint8_t target_extruder;
  284. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  285. int xy_travel_speed = XY_TRAVEL_SPEED;
  286. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  287. #endif
  288. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  289. float z_endstop_adj = 0;
  290. #endif
  291. // Extruder offsets
  292. #if EXTRUDERS > 1
  293. #ifndef EXTRUDER_OFFSET_X
  294. #define EXTRUDER_OFFSET_X { 0 }
  295. #endif
  296. #ifndef EXTRUDER_OFFSET_Y
  297. #define EXTRUDER_OFFSET_Y { 0 }
  298. #endif
  299. float extruder_offset[][EXTRUDERS] = {
  300. EXTRUDER_OFFSET_X,
  301. EXTRUDER_OFFSET_Y
  302. #if ENABLED(DUAL_X_CARRIAGE)
  303. , { 0 } // supports offsets in XYZ plane
  304. #endif
  305. };
  306. #endif
  307. #if HAS_SERVO_ENDSTOPS
  308. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  309. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  310. #endif
  311. #if ENABLED(BARICUDA)
  312. int ValvePressure = 0;
  313. int EtoPPressure = 0;
  314. #endif
  315. #if ENABLED(FWRETRACT)
  316. bool autoretract_enabled = false;
  317. bool retracted[EXTRUDERS] = { false };
  318. bool retracted_swap[EXTRUDERS] = { false };
  319. float retract_length = RETRACT_LENGTH;
  320. float retract_length_swap = RETRACT_LENGTH_SWAP;
  321. float retract_feedrate = RETRACT_FEEDRATE;
  322. float retract_zlift = RETRACT_ZLIFT;
  323. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  324. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  325. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  326. #endif // FWRETRACT
  327. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  328. bool powersupply =
  329. #if ENABLED(PS_DEFAULT_OFF)
  330. false
  331. #else
  332. true
  333. #endif
  334. ;
  335. #endif
  336. #if ENABLED(DELTA)
  337. #define TOWER_1 X_AXIS
  338. #define TOWER_2 Y_AXIS
  339. #define TOWER_3 Z_AXIS
  340. float delta[3] = { 0 };
  341. #define SIN_60 0.8660254037844386
  342. #define COS_60 0.5
  343. float endstop_adj[3] = { 0 };
  344. // these are the default values, can be overriden with M665
  345. float delta_radius = DELTA_RADIUS;
  346. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  347. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  348. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  349. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  350. float delta_tower3_x = 0; // back middle tower
  351. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  352. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  353. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  354. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  355. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  356. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  357. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  358. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  359. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  360. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  361. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  362. int delta_grid_spacing[2] = { 0, 0 };
  363. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  364. #endif
  365. #else
  366. static bool home_all_axis = true;
  367. #endif
  368. #if ENABLED(SCARA)
  369. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  370. static float delta[3] = { 0 };
  371. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  372. #endif
  373. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  374. //Variables for Filament Sensor input
  375. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  376. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  377. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  378. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  379. int filwidth_delay_index1 = 0; //index into ring buffer
  380. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  381. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  382. #endif
  383. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  384. static bool filrunoutEnqueued = false;
  385. #endif
  386. static bool send_ok[BUFSIZE];
  387. #if HAS_SERVOS
  388. Servo servo[NUM_SERVOS];
  389. #endif
  390. #ifdef CHDK
  391. unsigned long chdkHigh = 0;
  392. boolean chdkActive = false;
  393. #endif
  394. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  395. int lpq_len = 20;
  396. #endif
  397. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  398. // States for managing Marlin and host communication
  399. // Marlin sends messages if blocked or busy
  400. enum MarlinBusyState {
  401. NOT_BUSY, // Not in a handler
  402. IN_HANDLER, // Processing a GCode
  403. IN_PROCESS, // Known to be blocking command input (as in G29)
  404. PAUSED_FOR_USER, // Blocking pending any input
  405. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  406. };
  407. static MarlinBusyState busy_state = NOT_BUSY;
  408. static millis_t next_busy_signal_ms = -1;
  409. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  410. #else
  411. #define host_keepalive() ;
  412. #define KEEPALIVE_STATE(n) ;
  413. #endif // HOST_KEEPALIVE_FEATURE
  414. /**
  415. * ***************************************************************************
  416. * ******************************** FUNCTIONS ********************************
  417. * ***************************************************************************
  418. */
  419. void get_available_commands();
  420. void process_next_command();
  421. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  422. bool setTargetedHotend(int code);
  423. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  424. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  425. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  426. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void gcode_M114();
  429. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  430. float extrude_min_temp = EXTRUDE_MINTEMP;
  431. #endif
  432. #if ENABLED(HAS_Z_MIN_PROBE)
  433. extern volatile bool z_probe_is_active;
  434. #endif
  435. #if ENABLED(SDSUPPORT)
  436. #include "SdFatUtil.h"
  437. int freeMemory() { return SdFatUtil::FreeRam(); }
  438. #else
  439. extern "C" {
  440. extern unsigned int __bss_end;
  441. extern unsigned int __heap_start;
  442. extern void* __brkval;
  443. int freeMemory() {
  444. int free_memory;
  445. if ((int)__brkval == 0)
  446. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  447. else
  448. free_memory = ((int)&free_memory) - ((int)__brkval);
  449. return free_memory;
  450. }
  451. }
  452. #endif //!SDSUPPORT
  453. /**
  454. * Inject the next "immediate" command, when possible.
  455. * Return true if any immediate commands remain to inject.
  456. */
  457. static bool drain_queued_commands_P() {
  458. if (queued_commands_P != NULL) {
  459. size_t i = 0;
  460. char c, cmd[30];
  461. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  462. cmd[sizeof(cmd) - 1] = '\0';
  463. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  464. cmd[i] = '\0';
  465. if (enqueue_and_echo_command(cmd)) { // success?
  466. if (c) // newline char?
  467. queued_commands_P += i + 1; // advance to the next command
  468. else
  469. queued_commands_P = NULL; // nul char? no more commands
  470. }
  471. }
  472. return (queued_commands_P != NULL); // return whether any more remain
  473. }
  474. /**
  475. * Record one or many commands to run from program memory.
  476. * Aborts the current queue, if any.
  477. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  478. */
  479. void enqueue_and_echo_commands_P(const char* pgcode) {
  480. queued_commands_P = pgcode;
  481. drain_queued_commands_P(); // first command executed asap (when possible)
  482. }
  483. /**
  484. * Once a new command is in the ring buffer, call this to commit it
  485. */
  486. inline void _commit_command(bool say_ok) {
  487. send_ok[cmd_queue_index_w] = say_ok;
  488. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  489. commands_in_queue++;
  490. }
  491. /**
  492. * Copy a command directly into the main command buffer, from RAM.
  493. * Returns true if successfully adds the command
  494. */
  495. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  496. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  497. strcpy(command_queue[cmd_queue_index_w], cmd);
  498. _commit_command(say_ok);
  499. return true;
  500. }
  501. void enqueue_and_echo_command_now(const char* cmd) {
  502. while (!enqueue_and_echo_command(cmd)) idle();
  503. }
  504. /**
  505. * Enqueue with Serial Echo
  506. */
  507. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  508. if (_enqueuecommand(cmd, say_ok)) {
  509. SERIAL_ECHO_START;
  510. SERIAL_ECHOPGM(MSG_Enqueueing);
  511. SERIAL_ECHO(cmd);
  512. SERIAL_ECHOLNPGM("\"");
  513. return true;
  514. }
  515. return false;
  516. }
  517. void setup_killpin() {
  518. #if HAS_KILL
  519. SET_INPUT(KILL_PIN);
  520. WRITE(KILL_PIN, HIGH);
  521. #endif
  522. }
  523. void setup_filrunoutpin() {
  524. #if HAS_FILRUNOUT
  525. pinMode(FILRUNOUT_PIN, INPUT);
  526. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  527. WRITE(FILRUNOUT_PIN, HIGH);
  528. #endif
  529. #endif
  530. }
  531. // Set home pin
  532. void setup_homepin(void) {
  533. #if HAS_HOME
  534. SET_INPUT(HOME_PIN);
  535. WRITE(HOME_PIN, HIGH);
  536. #endif
  537. }
  538. void setup_photpin() {
  539. #if HAS_PHOTOGRAPH
  540. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  541. #endif
  542. }
  543. void setup_powerhold() {
  544. #if HAS_SUICIDE
  545. OUT_WRITE(SUICIDE_PIN, HIGH);
  546. #endif
  547. #if HAS_POWER_SWITCH
  548. #if ENABLED(PS_DEFAULT_OFF)
  549. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  550. #else
  551. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  552. #endif
  553. #endif
  554. }
  555. void suicide() {
  556. #if HAS_SUICIDE
  557. OUT_WRITE(SUICIDE_PIN, LOW);
  558. #endif
  559. }
  560. void servo_init() {
  561. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  562. servo[0].attach(SERVO0_PIN);
  563. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  564. #endif
  565. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  566. servo[1].attach(SERVO1_PIN);
  567. servo[1].detach();
  568. #endif
  569. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  570. servo[2].attach(SERVO2_PIN);
  571. servo[2].detach();
  572. #endif
  573. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  574. servo[3].attach(SERVO3_PIN);
  575. servo[3].detach();
  576. #endif
  577. #if HAS_SERVO_ENDSTOPS
  578. z_probe_is_active = false;
  579. /**
  580. * Set position of all defined Servo Endstops
  581. *
  582. * ** UNSAFE! - NEEDS UPDATE! **
  583. *
  584. * The servo might be deployed and positioned too low to stow
  585. * when starting up the machine or rebooting the board.
  586. * There's no way to know where the nozzle is positioned until
  587. * homing has been done - no homing with z-probe without init!
  588. *
  589. */
  590. for (int i = 0; i < 3; i++)
  591. if (servo_endstop_id[i] >= 0)
  592. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  593. #endif // HAS_SERVO_ENDSTOPS
  594. }
  595. /**
  596. * Stepper Reset (RigidBoard, et.al.)
  597. */
  598. #if HAS_STEPPER_RESET
  599. void disableStepperDrivers() {
  600. pinMode(STEPPER_RESET_PIN, OUTPUT);
  601. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  602. }
  603. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  604. #endif
  605. /**
  606. * Marlin entry-point: Set up before the program loop
  607. * - Set up the kill pin, filament runout, power hold
  608. * - Start the serial port
  609. * - Print startup messages and diagnostics
  610. * - Get EEPROM or default settings
  611. * - Initialize managers for:
  612. * • temperature
  613. * • planner
  614. * • watchdog
  615. * • stepper
  616. * • photo pin
  617. * • servos
  618. * • LCD controller
  619. * • Digipot I2C
  620. * • Z probe sled
  621. * • status LEDs
  622. */
  623. void setup() {
  624. #ifdef DISABLE_JTAG
  625. // Disable JTAG on AT90USB chips to free up pins for IO
  626. MCUCR = 0x80;
  627. MCUCR = 0x80;
  628. #endif
  629. setup_killpin();
  630. setup_filrunoutpin();
  631. setup_powerhold();
  632. #if HAS_STEPPER_RESET
  633. disableStepperDrivers();
  634. #endif
  635. MYSERIAL.begin(BAUDRATE);
  636. SERIAL_PROTOCOLLNPGM("start");
  637. SERIAL_ECHO_START;
  638. // Check startup - does nothing if bootloader sets MCUSR to 0
  639. byte mcu = MCUSR;
  640. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  641. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  642. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  643. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  644. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  645. MCUSR = 0;
  646. SERIAL_ECHOPGM(MSG_MARLIN);
  647. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  648. #ifdef STRING_DISTRIBUTION_DATE
  649. #ifdef STRING_CONFIG_H_AUTHOR
  650. SERIAL_ECHO_START;
  651. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  652. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  653. SERIAL_ECHOPGM(MSG_AUTHOR);
  654. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  655. SERIAL_ECHOPGM("Compiled: ");
  656. SERIAL_ECHOLNPGM(__DATE__);
  657. #endif // STRING_CONFIG_H_AUTHOR
  658. #endif // STRING_DISTRIBUTION_DATE
  659. SERIAL_ECHO_START;
  660. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  661. SERIAL_ECHO(freeMemory());
  662. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  663. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  664. // Send "ok" after commands by default
  665. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  666. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  667. Config_RetrieveSettings();
  668. lcd_init();
  669. tp_init(); // Initialize temperature loop
  670. plan_init(); // Initialize planner;
  671. #if ENABLED(USE_WATCHDOG)
  672. watchdog_init();
  673. #endif
  674. st_init(); // Initialize stepper, this enables interrupts!
  675. setup_photpin();
  676. servo_init();
  677. #if HAS_CONTROLLERFAN
  678. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  679. #endif
  680. #if HAS_STEPPER_RESET
  681. enableStepperDrivers();
  682. #endif
  683. #if ENABLED(DIGIPOT_I2C)
  684. digipot_i2c_init();
  685. #endif
  686. #if ENABLED(Z_PROBE_SLED)
  687. pinMode(SLED_PIN, OUTPUT);
  688. digitalWrite(SLED_PIN, LOW); // turn it off
  689. #endif // Z_PROBE_SLED
  690. setup_homepin();
  691. #ifdef STAT_LED_RED
  692. pinMode(STAT_LED_RED, OUTPUT);
  693. digitalWrite(STAT_LED_RED, LOW); // turn it off
  694. #endif
  695. #ifdef STAT_LED_BLUE
  696. pinMode(STAT_LED_BLUE, OUTPUT);
  697. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  698. #endif
  699. }
  700. /**
  701. * The main Marlin program loop
  702. *
  703. * - Save or log commands to SD
  704. * - Process available commands (if not saving)
  705. * - Call heater manager
  706. * - Call inactivity manager
  707. * - Call endstop manager
  708. * - Call LCD update
  709. */
  710. void loop() {
  711. if (commands_in_queue < BUFSIZE) get_available_commands();
  712. #if ENABLED(SDSUPPORT)
  713. card.checkautostart(false);
  714. #endif
  715. if (commands_in_queue) {
  716. #if ENABLED(SDSUPPORT)
  717. if (card.saving) {
  718. char* command = command_queue[cmd_queue_index_r];
  719. if (strstr_P(command, PSTR("M29"))) {
  720. // M29 closes the file
  721. card.closefile();
  722. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  723. ok_to_send();
  724. }
  725. else {
  726. // Write the string from the read buffer to SD
  727. card.write_command(command);
  728. if (card.logging)
  729. process_next_command(); // The card is saving because it's logging
  730. else
  731. ok_to_send();
  732. }
  733. }
  734. else
  735. process_next_command();
  736. #else
  737. process_next_command();
  738. #endif // SDSUPPORT
  739. commands_in_queue--;
  740. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  741. }
  742. checkHitEndstops();
  743. idle();
  744. }
  745. void gcode_line_error(const char* err, bool doFlush = true) {
  746. SERIAL_ERROR_START;
  747. serialprintPGM(err);
  748. SERIAL_ERRORLN(gcode_LastN);
  749. //Serial.println(gcode_N);
  750. if (doFlush) FlushSerialRequestResend();
  751. serial_count = 0;
  752. }
  753. inline void get_serial_commands() {
  754. static char serial_line_buffer[MAX_CMD_SIZE];
  755. static boolean serial_comment_mode = false;
  756. // If the command buffer is empty for too long,
  757. // send "wait" to indicate Marlin is still waiting.
  758. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  759. static millis_t last_command_time = 0;
  760. millis_t ms = millis();
  761. if (commands_in_queue == 0 && !MYSERIAL.available() && ms > last_command_time + NO_TIMEOUTS) {
  762. SERIAL_ECHOLNPGM(MSG_WAIT);
  763. last_command_time = ms;
  764. }
  765. #endif
  766. /**
  767. * Loop while serial characters are incoming and the queue is not full
  768. */
  769. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  770. char serial_char = MYSERIAL.read();
  771. /**
  772. * If the character ends the line
  773. */
  774. if (serial_char == '\n' || serial_char == '\r') {
  775. serial_comment_mode = false; // end of line == end of comment
  776. if (!serial_count) continue; // skip empty lines
  777. serial_line_buffer[serial_count] = 0; // terminate string
  778. serial_count = 0; //reset buffer
  779. char* command = serial_line_buffer;
  780. while (*command == ' ') command++; // skip any leading spaces
  781. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  782. char* apos = strchr(command, '*');
  783. if (npos) {
  784. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  785. if (M110) {
  786. char* n2pos = strchr(command + 4, 'N');
  787. if (n2pos) npos = n2pos;
  788. }
  789. gcode_N = strtol(npos + 1, NULL, 10);
  790. if (gcode_N != gcode_LastN + 1 && !M110) {
  791. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  792. return;
  793. }
  794. if (apos) {
  795. byte checksum = 0, count = 0;
  796. while (command[count] != '*') checksum ^= command[count++];
  797. if (strtol(apos + 1, NULL, 10) != checksum) {
  798. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  799. return;
  800. }
  801. // if no errors, continue parsing
  802. }
  803. else {
  804. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  805. return;
  806. }
  807. gcode_LastN = gcode_N;
  808. // if no errors, continue parsing
  809. }
  810. else if (apos) { // No '*' without 'N'
  811. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  812. return;
  813. }
  814. // Movement commands alert when stopped
  815. if (IsStopped()) {
  816. char* gpos = strchr(command, 'G');
  817. if (gpos) {
  818. int codenum = strtol(gpos + 1, NULL, 10);
  819. switch (codenum) {
  820. case 0:
  821. case 1:
  822. case 2:
  823. case 3:
  824. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  825. LCD_MESSAGEPGM(MSG_STOPPED);
  826. break;
  827. }
  828. }
  829. }
  830. // If command was e-stop process now
  831. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  832. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  833. last_command_time = ms;
  834. #endif
  835. // Add the command to the queue
  836. _enqueuecommand(serial_line_buffer, true);
  837. }
  838. else if (serial_count >= MAX_CMD_SIZE - 1) {
  839. // Keep fetching, but ignore normal characters beyond the max length
  840. // The command will be injected when EOL is reached
  841. }
  842. else if (serial_char == '\\') { // Handle escapes
  843. if (MYSERIAL.available() > 0) {
  844. // if we have one more character, copy it over
  845. serial_char = MYSERIAL.read();
  846. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  847. }
  848. // otherwise do nothing
  849. }
  850. else { // it's not a newline, carriage return or escape char
  851. if (serial_char == ';') serial_comment_mode = true;
  852. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  853. }
  854. } // queue has space, serial has data
  855. }
  856. #if ENABLED(SDSUPPORT)
  857. inline void get_sdcard_commands() {
  858. static bool stop_buffering = false,
  859. sd_comment_mode = false;
  860. if (!card.sdprinting) return;
  861. /**
  862. * '#' stops reading from SD to the buffer prematurely, so procedural
  863. * macro calls are possible. If it occurs, stop_buffering is triggered
  864. * and the buffer is run dry; this character _can_ occur in serial com
  865. * due to checksums, however, no checksums are used in SD printing.
  866. */
  867. if (commands_in_queue == 0) stop_buffering = false;
  868. uint16_t sd_count = 0;
  869. bool card_eof = card.eof();
  870. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  871. int16_t n = card.get();
  872. char sd_char = (char)n;
  873. card_eof = card.eof();
  874. if (card_eof || n == -1
  875. || sd_char == '\n' || sd_char == '\r'
  876. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  877. ) {
  878. if (card_eof) {
  879. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  880. print_job_timer.stop();
  881. char time[30];
  882. millis_t t = print_job_timer.duration();
  883. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  884. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  885. SERIAL_ECHO_START;
  886. SERIAL_ECHOLN(time);
  887. lcd_setstatus(time, true);
  888. card.printingHasFinished();
  889. card.checkautostart(true);
  890. }
  891. if (sd_char == '#') stop_buffering = true;
  892. sd_comment_mode = false; //for new command
  893. if (!sd_count) continue; //skip empty lines
  894. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  895. sd_count = 0; //clear buffer
  896. _commit_command(false);
  897. }
  898. else if (sd_count >= MAX_CMD_SIZE - 1) {
  899. /**
  900. * Keep fetching, but ignore normal characters beyond the max length
  901. * The command will be injected when EOL is reached
  902. */
  903. }
  904. else {
  905. if (sd_char == ';') sd_comment_mode = true;
  906. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  907. }
  908. }
  909. }
  910. #endif // SDSUPPORT
  911. /**
  912. * Add to the circular command queue the next command from:
  913. * - The command-injection queue (queued_commands_P)
  914. * - The active serial input (usually USB)
  915. * - The SD card file being actively printed
  916. */
  917. void get_available_commands() {
  918. // if any immediate commands remain, don't get other commands yet
  919. if (drain_queued_commands_P()) return;
  920. get_serial_commands();
  921. #if ENABLED(SDSUPPORT)
  922. get_sdcard_commands();
  923. #endif
  924. }
  925. bool code_has_value() {
  926. int i = 1;
  927. char c = seen_pointer[i];
  928. while (c == ' ') c = seen_pointer[++i];
  929. if (c == '-' || c == '+') c = seen_pointer[++i];
  930. if (c == '.') c = seen_pointer[++i];
  931. return NUMERIC(c);
  932. }
  933. float code_value() {
  934. float ret;
  935. char* e = strchr(seen_pointer, 'E');
  936. if (e) {
  937. *e = 0;
  938. ret = strtod(seen_pointer + 1, NULL);
  939. *e = 'E';
  940. }
  941. else
  942. ret = strtod(seen_pointer + 1, NULL);
  943. return ret;
  944. }
  945. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  946. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  947. bool code_seen(char code) {
  948. seen_pointer = strchr(current_command_args, code);
  949. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  950. }
  951. #define DEFINE_PGM_READ_ANY(type, reader) \
  952. static inline type pgm_read_any(const type *p) \
  953. { return pgm_read_##reader##_near(p); }
  954. DEFINE_PGM_READ_ANY(float, float);
  955. DEFINE_PGM_READ_ANY(signed char, byte);
  956. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  957. static const PROGMEM type array##_P[3] = \
  958. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  959. static inline type array(int axis) \
  960. { return pgm_read_any(&array##_P[axis]); }
  961. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  962. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  963. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  964. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  965. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  966. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  967. #if ENABLED(DUAL_X_CARRIAGE)
  968. #define DXC_FULL_CONTROL_MODE 0
  969. #define DXC_AUTO_PARK_MODE 1
  970. #define DXC_DUPLICATION_MODE 2
  971. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  972. static float x_home_pos(int extruder) {
  973. if (extruder == 0)
  974. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  975. else
  976. /**
  977. * In dual carriage mode the extruder offset provides an override of the
  978. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  979. * This allow soft recalibration of the second extruder offset position
  980. * without firmware reflash (through the M218 command).
  981. */
  982. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  983. }
  984. static int x_home_dir(int extruder) {
  985. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  986. }
  987. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  988. static bool active_extruder_parked = false; // used in mode 1 & 2
  989. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  990. static millis_t delayed_move_time = 0; // used in mode 1
  991. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  992. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  993. bool extruder_duplication_enabled = false; // used in mode 2
  994. #endif //DUAL_X_CARRIAGE
  995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  996. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  997. SERIAL_ECHO(prefix);
  998. SERIAL_ECHOPAIR(": (", x);
  999. SERIAL_ECHOPAIR(", ", y);
  1000. SERIAL_ECHOPAIR(", ", z);
  1001. SERIAL_ECHOLNPGM(")");
  1002. }
  1003. void print_xyz(const char* prefix, const float xyz[]) {
  1004. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  1005. }
  1006. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  1007. #endif
  1008. static void set_axis_is_at_home(AxisEnum axis) {
  1009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1010. if (DEBUGGING(LEVELING)) {
  1011. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1012. SERIAL_ECHOLNPGM(") >>>");
  1013. }
  1014. #endif
  1015. #if ENABLED(DUAL_X_CARRIAGE)
  1016. if (axis == X_AXIS) {
  1017. if (active_extruder != 0) {
  1018. current_position[X_AXIS] = x_home_pos(active_extruder);
  1019. min_pos[X_AXIS] = X2_MIN_POS;
  1020. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1021. return;
  1022. }
  1023. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1024. float xoff = home_offset[X_AXIS];
  1025. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1026. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1027. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1028. return;
  1029. }
  1030. }
  1031. #endif
  1032. #if ENABLED(SCARA)
  1033. if (axis == X_AXIS || axis == Y_AXIS) {
  1034. float homeposition[3];
  1035. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1036. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1037. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1038. /**
  1039. * Works out real Homeposition angles using inverse kinematics,
  1040. * and calculates homing offset using forward kinematics
  1041. */
  1042. calculate_delta(homeposition);
  1043. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1044. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1045. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1046. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1047. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1048. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1049. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1050. calculate_SCARA_forward_Transform(delta);
  1051. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1052. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1053. current_position[axis] = delta[axis];
  1054. /**
  1055. * SCARA home positions are based on configuration since the actual
  1056. * limits are determined by the inverse kinematic transform.
  1057. */
  1058. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1059. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1060. }
  1061. else
  1062. #endif
  1063. {
  1064. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1065. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1066. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1067. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1068. if (axis == Z_AXIS) {
  1069. current_position[Z_AXIS] -= zprobe_zoffset;
  1070. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1071. if (DEBUGGING(LEVELING)) {
  1072. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1073. SERIAL_EOL;
  1074. }
  1075. #endif
  1076. }
  1077. #endif
  1078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1079. if (DEBUGGING(LEVELING)) {
  1080. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1081. DEBUG_POS("", current_position);
  1082. }
  1083. #endif
  1084. }
  1085. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1086. if (DEBUGGING(LEVELING)) {
  1087. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1088. SERIAL_ECHOLNPGM(")");
  1089. }
  1090. #endif
  1091. }
  1092. /**
  1093. * Some planner shorthand inline functions
  1094. */
  1095. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1096. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1097. int hbd = homing_bump_divisor[axis];
  1098. if (hbd < 1) {
  1099. hbd = 10;
  1100. SERIAL_ECHO_START;
  1101. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1102. }
  1103. feedrate = homing_feedrate[axis] / hbd;
  1104. }
  1105. inline void line_to_current_position() {
  1106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1107. }
  1108. inline void line_to_z(float zPosition) {
  1109. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1110. }
  1111. inline void line_to_destination(float mm_m) {
  1112. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1113. }
  1114. inline void line_to_destination() {
  1115. line_to_destination(feedrate);
  1116. }
  1117. inline void sync_plan_position() {
  1118. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1119. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1120. #endif
  1121. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1122. }
  1123. #if ENABLED(DELTA) || ENABLED(SCARA)
  1124. inline void sync_plan_position_delta() {
  1125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1126. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  1127. #endif
  1128. calculate_delta(current_position);
  1129. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1130. }
  1131. #endif
  1132. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1133. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1134. static void setup_for_endstop_move() {
  1135. saved_feedrate = feedrate;
  1136. saved_feedrate_multiplier = feedrate_multiplier;
  1137. feedrate_multiplier = 100;
  1138. refresh_cmd_timeout();
  1139. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1140. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1141. #endif
  1142. enable_endstops(true);
  1143. }
  1144. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1145. #if ENABLED(DELTA)
  1146. /**
  1147. * Calculate delta, start a line, and set current_position to destination
  1148. */
  1149. void prepare_move_raw() {
  1150. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1151. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1152. #endif
  1153. refresh_cmd_timeout();
  1154. calculate_delta(destination);
  1155. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1156. set_current_to_destination();
  1157. }
  1158. #endif
  1159. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1160. #if DISABLED(DELTA)
  1161. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1163. if (DEBUGGING(LEVELING)) DEBUG_POS("BEFORE set_bed_level_equation_lsq", current_position);
  1164. #endif
  1165. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1166. // planeNormal.debug("planeNormal");
  1167. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1168. //bedLevel.debug("bedLevel");
  1169. //plan_bed_level_matrix.debug("bed level before");
  1170. //vector_3 uncorrected_position = plan_get_position();
  1171. //uncorrected_position.debug("position before");
  1172. vector_3 corrected_position = plan_get_position();
  1173. //corrected_position.debug("position after");
  1174. current_position[X_AXIS] = corrected_position.x;
  1175. current_position[Y_AXIS] = corrected_position.y;
  1176. current_position[Z_AXIS] = corrected_position.z;
  1177. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1178. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER set_bed_level_equation_lsq", current_position);
  1179. #endif
  1180. sync_plan_position();
  1181. }
  1182. #endif // !DELTA
  1183. #else // !AUTO_BED_LEVELING_GRID
  1184. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1185. plan_bed_level_matrix.set_to_identity();
  1186. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1187. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1188. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1189. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1190. if (planeNormal.z < 0) {
  1191. planeNormal.x = -planeNormal.x;
  1192. planeNormal.y = -planeNormal.y;
  1193. planeNormal.z = -planeNormal.z;
  1194. }
  1195. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1196. vector_3 corrected_position = plan_get_position();
  1197. current_position[X_AXIS] = corrected_position.x;
  1198. current_position[Y_AXIS] = corrected_position.y;
  1199. current_position[Z_AXIS] = corrected_position.z;
  1200. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1201. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position);
  1202. #endif
  1203. sync_plan_position();
  1204. }
  1205. #endif // !AUTO_BED_LEVELING_GRID
  1206. static void run_z_probe() {
  1207. /**
  1208. * To prevent stepper_inactive_time from running out and
  1209. * EXTRUDER_RUNOUT_PREVENT from extruding
  1210. */
  1211. refresh_cmd_timeout();
  1212. #if ENABLED(DELTA)
  1213. float start_z = current_position[Z_AXIS];
  1214. long start_steps = st_get_position(Z_AXIS);
  1215. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1216. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1217. #endif
  1218. // move down slowly until you find the bed
  1219. feedrate = homing_feedrate[Z_AXIS] / 4;
  1220. destination[Z_AXIS] = -10;
  1221. prepare_move_raw(); // this will also set_current_to_destination
  1222. st_synchronize();
  1223. endstops_hit_on_purpose(); // clear endstop hit flags
  1224. /**
  1225. * We have to let the planner know where we are right now as it
  1226. * is not where we said to go.
  1227. */
  1228. long stop_steps = st_get_position(Z_AXIS);
  1229. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1230. current_position[Z_AXIS] = mm;
  1231. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1232. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1233. #endif
  1234. sync_plan_position_delta();
  1235. #else // !DELTA
  1236. plan_bed_level_matrix.set_to_identity();
  1237. feedrate = homing_feedrate[Z_AXIS];
  1238. // Move down until the Z probe (or endstop?) is triggered
  1239. float zPosition = -(Z_MAX_LENGTH + 10);
  1240. line_to_z(zPosition);
  1241. st_synchronize();
  1242. // Tell the planner where we ended up - Get this from the stepper handler
  1243. zPosition = st_get_axis_position_mm(Z_AXIS);
  1244. plan_set_position(
  1245. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1246. current_position[E_AXIS]
  1247. );
  1248. // move up the retract distance
  1249. zPosition += home_bump_mm(Z_AXIS);
  1250. line_to_z(zPosition);
  1251. st_synchronize();
  1252. endstops_hit_on_purpose(); // clear endstop hit flags
  1253. // move back down slowly to find bed
  1254. set_homing_bump_feedrate(Z_AXIS);
  1255. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1256. line_to_z(zPosition);
  1257. st_synchronize();
  1258. endstops_hit_on_purpose(); // clear endstop hit flags
  1259. // Get the current stepper position after bumping an endstop
  1260. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1261. sync_plan_position();
  1262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1263. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1264. #endif
  1265. #endif // !DELTA
  1266. }
  1267. /**
  1268. * Plan a move to (X, Y, Z) and set the current_position
  1269. * The final current_position may not be the one that was requested
  1270. */
  1271. static void do_blocking_move_to(float x, float y, float z) {
  1272. float oldFeedRate = feedrate;
  1273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1274. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1275. #endif
  1276. #if ENABLED(DELTA)
  1277. feedrate = XY_TRAVEL_SPEED;
  1278. destination[X_AXIS] = x;
  1279. destination[Y_AXIS] = y;
  1280. destination[Z_AXIS] = z;
  1281. prepare_move_raw(); // this will also set_current_to_destination
  1282. st_synchronize();
  1283. #else
  1284. feedrate = homing_feedrate[Z_AXIS];
  1285. current_position[Z_AXIS] = z;
  1286. line_to_current_position();
  1287. st_synchronize();
  1288. feedrate = xy_travel_speed;
  1289. current_position[X_AXIS] = x;
  1290. current_position[Y_AXIS] = y;
  1291. line_to_current_position();
  1292. st_synchronize();
  1293. #endif
  1294. feedrate = oldFeedRate;
  1295. }
  1296. inline void do_blocking_move_to_xy(float x, float y) {
  1297. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1298. }
  1299. inline void do_blocking_move_to_x(float x) {
  1300. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1301. }
  1302. inline void do_blocking_move_to_z(float z) {
  1303. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1304. }
  1305. inline void raise_z_after_probing() {
  1306. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1307. }
  1308. static void clean_up_after_endstop_move() {
  1309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1310. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1311. #endif
  1312. endstops_not_homing();
  1313. feedrate = saved_feedrate;
  1314. feedrate_multiplier = saved_feedrate_multiplier;
  1315. refresh_cmd_timeout();
  1316. }
  1317. #if ENABLED(HAS_Z_MIN_PROBE)
  1318. static void deploy_z_probe() {
  1319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1320. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1321. #endif
  1322. if (z_probe_is_active) return;
  1323. #if HAS_SERVO_ENDSTOPS
  1324. // Engage Z Servo endstop if enabled
  1325. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1326. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1327. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1328. // If endstop is already false, the Z probe is deployed
  1329. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1330. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1331. if (z_probe_endstop)
  1332. #else
  1333. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1334. if (z_min_endstop)
  1335. #endif
  1336. {
  1337. // Move to the start position to initiate deployment
  1338. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1339. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1340. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1341. prepare_move_raw(); // this will also set_current_to_destination
  1342. // Move to engage deployment
  1343. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1344. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1345. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1346. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1347. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1348. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1349. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1350. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1351. prepare_move_raw();
  1352. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1353. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1354. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1355. // Move to trigger deployment
  1356. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1357. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1358. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1359. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1360. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1361. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1362. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1363. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1364. prepare_move_raw();
  1365. #endif
  1366. }
  1367. // Partially Home X,Y for safety
  1368. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1369. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1370. prepare_move_raw(); // this will also set_current_to_destination
  1371. st_synchronize();
  1372. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1373. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1374. if (z_probe_endstop)
  1375. #else
  1376. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1377. if (z_min_endstop)
  1378. #endif
  1379. {
  1380. if (IsRunning()) {
  1381. SERIAL_ERROR_START;
  1382. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1383. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1384. }
  1385. Stop();
  1386. }
  1387. #endif // Z_PROBE_ALLEN_KEY
  1388. #if ENABLED(FIX_MOUNTED_PROBE)
  1389. // Noting to be done. Just set z_probe_is_active
  1390. #endif
  1391. z_probe_is_active = true;
  1392. }
  1393. static void stow_z_probe(bool doRaise = true) {
  1394. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1395. UNUSED(doRaise);
  1396. #endif
  1397. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1398. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1399. #endif
  1400. if (!z_probe_is_active) return;
  1401. #if HAS_SERVO_ENDSTOPS
  1402. // Retract Z Servo endstop if enabled
  1403. if (servo_endstop_id[Z_AXIS] >= 0) {
  1404. #if Z_RAISE_AFTER_PROBING > 0
  1405. if (doRaise) {
  1406. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1407. if (DEBUGGING(LEVELING)) {
  1408. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1409. SERIAL_EOL;
  1410. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1411. SERIAL_EOL;
  1412. }
  1413. #endif
  1414. raise_z_after_probing(); // this also updates current_position
  1415. st_synchronize();
  1416. }
  1417. #endif
  1418. // Change the Z servo angle
  1419. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1420. }
  1421. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1422. // Move up for safety
  1423. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1424. #if Z_RAISE_AFTER_PROBING > 0
  1425. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1426. prepare_move_raw(); // this will also set_current_to_destination
  1427. #endif
  1428. // Move to the start position to initiate retraction
  1429. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1430. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1431. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1432. prepare_move_raw();
  1433. // Move the nozzle down to push the Z probe into retracted position
  1434. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1435. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1436. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1437. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1438. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1439. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1440. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1441. prepare_move_raw();
  1442. // Move up for safety
  1443. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1444. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1445. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1446. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1447. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1448. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1449. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1450. prepare_move_raw();
  1451. // Home XY for safety
  1452. feedrate = homing_feedrate[X_AXIS] / 2;
  1453. destination[X_AXIS] = 0;
  1454. destination[Y_AXIS] = 0;
  1455. prepare_move_raw(); // this will also set_current_to_destination
  1456. st_synchronize();
  1457. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1458. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1459. if (!z_probe_endstop)
  1460. #else
  1461. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1462. if (!z_min_endstop)
  1463. #endif
  1464. {
  1465. if (IsRunning()) {
  1466. SERIAL_ERROR_START;
  1467. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1468. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1469. }
  1470. Stop();
  1471. }
  1472. #endif // Z_PROBE_ALLEN_KEY
  1473. #if ENABLED(FIX_MOUNTED_PROBE)
  1474. // Noting to be done. Just set z_probe_is_active
  1475. #endif
  1476. z_probe_is_active = false;
  1477. }
  1478. #endif // HAS_Z_MIN_PROBE
  1479. enum ProbeAction {
  1480. ProbeStay = 0,
  1481. ProbeDeploy = _BV(0),
  1482. ProbeStow = _BV(1),
  1483. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1484. };
  1485. // Probe bed height at position (x,y), returns the measured z value
  1486. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1488. if (DEBUGGING(LEVELING)) {
  1489. SERIAL_ECHOLNPGM("probe_pt >>>");
  1490. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1491. SERIAL_EOL;
  1492. DEBUG_POS("", current_position);
  1493. }
  1494. #endif
  1495. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1496. if (DEBUGGING(LEVELING)) {
  1497. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1498. SERIAL_EOL;
  1499. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1500. SERIAL_EOL;
  1501. }
  1502. #endif
  1503. // Move Z up to the z_before height, then move the Z probe to the given XY
  1504. do_blocking_move_to_z(z_before); // this also updates current_position
  1505. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1506. if (DEBUGGING(LEVELING)) {
  1507. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1508. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1509. SERIAL_EOL;
  1510. }
  1511. #endif
  1512. // this also updates current_position
  1513. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1514. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1515. if (probe_action & ProbeDeploy) {
  1516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1517. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1518. #endif
  1519. deploy_z_probe();
  1520. }
  1521. #endif
  1522. run_z_probe();
  1523. float measured_z = current_position[Z_AXIS];
  1524. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1525. if (probe_action & ProbeStow) {
  1526. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1527. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1528. #endif
  1529. stow_z_probe();
  1530. }
  1531. #endif
  1532. if (verbose_level > 2) {
  1533. SERIAL_PROTOCOLPGM("Bed X: ");
  1534. SERIAL_PROTOCOL_F(x, 3);
  1535. SERIAL_PROTOCOLPGM(" Y: ");
  1536. SERIAL_PROTOCOL_F(y, 3);
  1537. SERIAL_PROTOCOLPGM(" Z: ");
  1538. SERIAL_PROTOCOL_F(measured_z, 3);
  1539. SERIAL_EOL;
  1540. }
  1541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1542. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1543. #endif
  1544. return measured_z;
  1545. }
  1546. #if ENABLED(DELTA)
  1547. /**
  1548. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1549. */
  1550. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1551. if (bed_level[x][y] != 0.0) {
  1552. return; // Don't overwrite good values.
  1553. }
  1554. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1555. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1556. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1557. float median = c; // Median is robust (ignores outliers).
  1558. if (a < b) {
  1559. if (b < c) median = b;
  1560. if (c < a) median = a;
  1561. }
  1562. else { // b <= a
  1563. if (c < b) median = b;
  1564. if (a < c) median = a;
  1565. }
  1566. bed_level[x][y] = median;
  1567. }
  1568. /**
  1569. * Fill in the unprobed points (corners of circular print surface)
  1570. * using linear extrapolation, away from the center.
  1571. */
  1572. static void extrapolate_unprobed_bed_level() {
  1573. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1574. for (int y = 0; y <= half; y++) {
  1575. for (int x = 0; x <= half; x++) {
  1576. if (x + y < 3) continue;
  1577. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1578. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1579. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1580. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1581. }
  1582. }
  1583. }
  1584. /**
  1585. * Print calibration results for plotting or manual frame adjustment.
  1586. */
  1587. static void print_bed_level() {
  1588. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1589. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1590. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1591. SERIAL_PROTOCOLCHAR(' ');
  1592. }
  1593. SERIAL_EOL;
  1594. }
  1595. }
  1596. /**
  1597. * Reset calibration results to zero.
  1598. */
  1599. void reset_bed_level() {
  1600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1601. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1602. #endif
  1603. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1604. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1605. bed_level[x][y] = 0.0;
  1606. }
  1607. }
  1608. }
  1609. #endif // DELTA
  1610. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1611. void raise_z_for_servo() {
  1612. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1613. /**
  1614. * The zprobe_zoffset is negative any switch below the nozzle, so
  1615. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1616. */
  1617. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1618. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1619. }
  1620. #endif
  1621. #endif // AUTO_BED_LEVELING_FEATURE
  1622. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1623. static void axis_unhomed_error() {
  1624. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1625. SERIAL_ECHO_START;
  1626. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1627. }
  1628. #endif
  1629. #if ENABLED(Z_PROBE_SLED)
  1630. #ifndef SLED_DOCKING_OFFSET
  1631. #define SLED_DOCKING_OFFSET 0
  1632. #endif
  1633. /**
  1634. * Method to dock/undock a sled designed by Charles Bell.
  1635. *
  1636. * dock[in] If true, move to MAX_X and engage the electromagnet
  1637. * offset[in] The additional distance to move to adjust docking location
  1638. */
  1639. static void dock_sled(bool dock, int offset = 0) {
  1640. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1641. if (DEBUGGING(LEVELING)) {
  1642. SERIAL_ECHOPAIR("dock_sled(", dock);
  1643. SERIAL_ECHOLNPGM(")");
  1644. }
  1645. #endif
  1646. if (z_probe_is_active == dock) return;
  1647. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1648. axis_unhomed_error();
  1649. return;
  1650. }
  1651. float oldXpos = current_position[X_AXIS]; // save x position
  1652. if (dock) {
  1653. #if Z_RAISE_AFTER_PROBING > 0
  1654. raise_z_after_probing(); // raise Z
  1655. #endif
  1656. // Dock sled a bit closer to ensure proper capturing
  1657. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1658. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1659. }
  1660. else {
  1661. float z_loc = current_position[Z_AXIS];
  1662. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1663. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1664. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1665. }
  1666. do_blocking_move_to_x(oldXpos); // return to position before docking
  1667. z_probe_is_active = dock;
  1668. }
  1669. #endif // Z_PROBE_SLED
  1670. /**
  1671. * Home an individual axis
  1672. */
  1673. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1674. static void homeaxis(AxisEnum axis) {
  1675. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1676. if (DEBUGGING(LEVELING)) {
  1677. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1678. SERIAL_ECHOLNPGM(")");
  1679. }
  1680. #endif
  1681. #define HOMEAXIS_DO(LETTER) \
  1682. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1683. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1684. int axis_home_dir =
  1685. #if ENABLED(DUAL_X_CARRIAGE)
  1686. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1687. #endif
  1688. home_dir(axis);
  1689. // Set the axis position as setup for the move
  1690. current_position[axis] = 0;
  1691. sync_plan_position();
  1692. #if ENABLED(Z_PROBE_SLED)
  1693. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1694. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1695. #define _Z_DEPLOY (dock_sled(false))
  1696. #define _Z_STOW (dock_sled(true))
  1697. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1698. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1699. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1700. #define _Z_DEPLOY (deploy_z_probe())
  1701. #define _Z_STOW (stow_z_probe())
  1702. #elif HAS_SERVO_ENDSTOPS
  1703. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1704. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1705. #endif
  1706. if (axis == Z_AXIS) {
  1707. // If there's a Z probe that needs deployment...
  1708. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1709. // ...and homing Z towards the bed? Deploy it.
  1710. if (axis_home_dir < 0) _Z_DEPLOY;
  1711. #endif
  1712. }
  1713. #if HAS_SERVO_ENDSTOPS
  1714. // Engage an X or Y Servo endstop if enabled
  1715. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1716. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1717. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1718. }
  1719. #endif
  1720. // Set a flag for Z motor locking
  1721. #if ENABLED(Z_DUAL_ENDSTOPS)
  1722. if (axis == Z_AXIS) In_Homing_Process(true);
  1723. #endif
  1724. // Move towards the endstop until an endstop is triggered
  1725. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1726. feedrate = homing_feedrate[axis];
  1727. line_to_destination();
  1728. st_synchronize();
  1729. // Set the axis position as setup for the move
  1730. current_position[axis] = 0;
  1731. sync_plan_position();
  1732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1733. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1734. #endif
  1735. enable_endstops(false); // Disable endstops while moving away
  1736. // Move away from the endstop by the axis HOME_BUMP_MM
  1737. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1738. line_to_destination();
  1739. st_synchronize();
  1740. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1741. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1742. #endif
  1743. enable_endstops(true); // Enable endstops for next homing move
  1744. // Slow down the feedrate for the next move
  1745. set_homing_bump_feedrate(axis);
  1746. // Move slowly towards the endstop until triggered
  1747. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1748. line_to_destination();
  1749. st_synchronize();
  1750. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1751. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1752. #endif
  1753. #if ENABLED(Z_DUAL_ENDSTOPS)
  1754. if (axis == Z_AXIS) {
  1755. float adj = fabs(z_endstop_adj);
  1756. bool lockZ1;
  1757. if (axis_home_dir > 0) {
  1758. adj = -adj;
  1759. lockZ1 = (z_endstop_adj > 0);
  1760. }
  1761. else
  1762. lockZ1 = (z_endstop_adj < 0);
  1763. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1764. sync_plan_position();
  1765. // Move to the adjusted endstop height
  1766. feedrate = homing_feedrate[axis];
  1767. destination[Z_AXIS] = adj;
  1768. line_to_destination();
  1769. st_synchronize();
  1770. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1771. In_Homing_Process(false);
  1772. } // Z_AXIS
  1773. #endif
  1774. #if ENABLED(DELTA)
  1775. // retrace by the amount specified in endstop_adj
  1776. if (endstop_adj[axis] * axis_home_dir < 0) {
  1777. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1778. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1779. #endif
  1780. enable_endstops(false); // Disable endstops while moving away
  1781. sync_plan_position();
  1782. destination[axis] = endstop_adj[axis];
  1783. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1784. if (DEBUGGING(LEVELING)) {
  1785. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1786. DEBUG_POS("", destination);
  1787. }
  1788. #endif
  1789. line_to_destination();
  1790. st_synchronize();
  1791. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1792. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1793. #endif
  1794. enable_endstops(true); // Enable endstops for next homing move
  1795. }
  1796. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1797. else {
  1798. if (DEBUGGING(LEVELING)) {
  1799. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1800. SERIAL_EOL;
  1801. }
  1802. }
  1803. #endif
  1804. #endif
  1805. // Set the axis position to its home position (plus home offsets)
  1806. set_axis_is_at_home(axis);
  1807. sync_plan_position();
  1808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1809. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1810. #endif
  1811. destination[axis] = current_position[axis];
  1812. feedrate = 0.0;
  1813. endstops_hit_on_purpose(); // clear endstop hit flags
  1814. axis_known_position[axis] = true;
  1815. axis_homed[axis] = true;
  1816. // Put away the Z probe
  1817. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1818. if (axis == Z_AXIS && axis_home_dir < 0) {
  1819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1820. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1821. #endif
  1822. _Z_STOW;
  1823. }
  1824. #endif
  1825. // Retract Servo endstop if enabled
  1826. #if HAS_SERVO_ENDSTOPS
  1827. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1829. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1830. #endif
  1831. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1832. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1833. }
  1834. #endif
  1835. }
  1836. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1837. if (DEBUGGING(LEVELING)) {
  1838. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1839. SERIAL_ECHOLNPGM(")");
  1840. }
  1841. #endif
  1842. }
  1843. #if ENABLED(FWRETRACT)
  1844. void retract(bool retracting, bool swapping = false) {
  1845. if (retracting == retracted[active_extruder]) return;
  1846. float oldFeedrate = feedrate;
  1847. set_destination_to_current();
  1848. if (retracting) {
  1849. feedrate = retract_feedrate * 60;
  1850. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1851. plan_set_e_position(current_position[E_AXIS]);
  1852. prepare_move();
  1853. if (retract_zlift > 0.01) {
  1854. current_position[Z_AXIS] -= retract_zlift;
  1855. #if ENABLED(DELTA)
  1856. sync_plan_position_delta();
  1857. #else
  1858. sync_plan_position();
  1859. #endif
  1860. prepare_move();
  1861. }
  1862. }
  1863. else {
  1864. if (retract_zlift > 0.01) {
  1865. current_position[Z_AXIS] += retract_zlift;
  1866. #if ENABLED(DELTA)
  1867. sync_plan_position_delta();
  1868. #else
  1869. sync_plan_position();
  1870. #endif
  1871. //prepare_move();
  1872. }
  1873. feedrate = retract_recover_feedrate * 60;
  1874. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1875. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1876. plan_set_e_position(current_position[E_AXIS]);
  1877. prepare_move();
  1878. }
  1879. feedrate = oldFeedrate;
  1880. retracted[active_extruder] = retracting;
  1881. } // retract()
  1882. #endif // FWRETRACT
  1883. /**
  1884. * ***************************************************************************
  1885. * ***************************** G-CODE HANDLING *****************************
  1886. * ***************************************************************************
  1887. */
  1888. /**
  1889. * Set XYZE destination and feedrate from the current GCode command
  1890. *
  1891. * - Set destination from included axis codes
  1892. * - Set to current for missing axis codes
  1893. * - Set the feedrate, if included
  1894. */
  1895. void gcode_get_destination() {
  1896. for (int i = 0; i < NUM_AXIS; i++) {
  1897. if (code_seen(axis_codes[i]))
  1898. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1899. else
  1900. destination[i] = current_position[i];
  1901. }
  1902. if (code_seen('F')) {
  1903. float next_feedrate = code_value();
  1904. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1905. }
  1906. }
  1907. void unknown_command_error() {
  1908. SERIAL_ECHO_START;
  1909. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1910. SERIAL_ECHO(current_command);
  1911. SERIAL_ECHOPGM("\"\n");
  1912. }
  1913. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1914. /**
  1915. * Output a "busy" message at regular intervals
  1916. * while the machine is not accepting commands.
  1917. */
  1918. void host_keepalive() {
  1919. millis_t ms = millis();
  1920. if (busy_state != NOT_BUSY) {
  1921. if (ms < next_busy_signal_ms) return;
  1922. switch (busy_state) {
  1923. case IN_HANDLER:
  1924. case IN_PROCESS:
  1925. SERIAL_ECHO_START;
  1926. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1927. break;
  1928. case PAUSED_FOR_USER:
  1929. SERIAL_ECHO_START;
  1930. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1931. break;
  1932. case PAUSED_FOR_INPUT:
  1933. SERIAL_ECHO_START;
  1934. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1935. break;
  1936. default:
  1937. break;
  1938. }
  1939. }
  1940. next_busy_signal_ms = ms + 10000UL; // "busy: ..." message every 10s
  1941. }
  1942. #endif //HOST_KEEPALIVE_FEATURE
  1943. /**
  1944. * G0, G1: Coordinated movement of X Y Z E axes
  1945. */
  1946. inline void gcode_G0_G1() {
  1947. if (IsRunning()) {
  1948. gcode_get_destination(); // For X Y Z E F
  1949. #if ENABLED(FWRETRACT)
  1950. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1951. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1952. // Is this move an attempt to retract or recover?
  1953. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1954. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1955. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1956. retract(!retracted[active_extruder]);
  1957. return;
  1958. }
  1959. }
  1960. #endif //FWRETRACT
  1961. prepare_move();
  1962. }
  1963. }
  1964. /**
  1965. * G2: Clockwise Arc
  1966. * G3: Counterclockwise Arc
  1967. */
  1968. inline void gcode_G2_G3(bool clockwise) {
  1969. if (IsRunning()) {
  1970. #if ENABLED(SF_ARC_FIX)
  1971. bool relative_mode_backup = relative_mode;
  1972. relative_mode = true;
  1973. #endif
  1974. gcode_get_destination();
  1975. #if ENABLED(SF_ARC_FIX)
  1976. relative_mode = relative_mode_backup;
  1977. #endif
  1978. // Center of arc as offset from current_position
  1979. float arc_offset[2] = {
  1980. code_seen('I') ? code_value() : 0,
  1981. code_seen('J') ? code_value() : 0
  1982. };
  1983. // Send an arc to the planner
  1984. plan_arc(destination, arc_offset, clockwise);
  1985. refresh_cmd_timeout();
  1986. }
  1987. }
  1988. /**
  1989. * G4: Dwell S<seconds> or P<milliseconds>
  1990. */
  1991. inline void gcode_G4() {
  1992. millis_t codenum = 0;
  1993. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1994. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1995. st_synchronize();
  1996. refresh_cmd_timeout();
  1997. codenum += previous_cmd_ms; // keep track of when we started waiting
  1998. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1999. while (millis() < codenum) idle();
  2000. }
  2001. #if ENABLED(FWRETRACT)
  2002. /**
  2003. * G10 - Retract filament according to settings of M207
  2004. * G11 - Recover filament according to settings of M208
  2005. */
  2006. inline void gcode_G10_G11(bool doRetract=false) {
  2007. #if EXTRUDERS > 1
  2008. if (doRetract) {
  2009. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2010. }
  2011. #endif
  2012. retract(doRetract
  2013. #if EXTRUDERS > 1
  2014. , retracted_swap[active_extruder]
  2015. #endif
  2016. );
  2017. }
  2018. #endif //FWRETRACT
  2019. /**
  2020. * G28: Home all axes according to settings
  2021. *
  2022. * Parameters
  2023. *
  2024. * None Home to all axes with no parameters.
  2025. * With QUICK_HOME enabled XY will home together, then Z.
  2026. *
  2027. * Cartesian parameters
  2028. *
  2029. * X Home to the X endstop
  2030. * Y Home to the Y endstop
  2031. * Z Home to the Z endstop
  2032. *
  2033. */
  2034. inline void gcode_G28() {
  2035. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2036. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2037. #endif
  2038. // Wait for planner moves to finish!
  2039. st_synchronize();
  2040. // For auto bed leveling, clear the level matrix
  2041. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2042. plan_bed_level_matrix.set_to_identity();
  2043. #if ENABLED(DELTA)
  2044. reset_bed_level();
  2045. #endif
  2046. #endif
  2047. /**
  2048. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2049. * on again when homing all axis
  2050. */
  2051. #if ENABLED(MESH_BED_LEVELING)
  2052. uint8_t mbl_was_active = mbl.active;
  2053. mbl.active = 0;
  2054. #endif
  2055. setup_for_endstop_move();
  2056. /**
  2057. * Directly after a reset this is all 0. Later we get a hint if we have
  2058. * to raise z or not.
  2059. */
  2060. set_destination_to_current();
  2061. feedrate = 0.0;
  2062. #if ENABLED(DELTA)
  2063. /**
  2064. * A delta can only safely home all axis at the same time
  2065. * all axis have to home at the same time
  2066. */
  2067. // Pretend the current position is 0,0,0
  2068. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2069. sync_plan_position();
  2070. // Move all carriages up together until the first endstop is hit.
  2071. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2072. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2073. line_to_destination();
  2074. st_synchronize();
  2075. endstops_hit_on_purpose(); // clear endstop hit flags
  2076. // Destination reached
  2077. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2078. // take care of back off and rehome now we are all at the top
  2079. HOMEAXIS(X);
  2080. HOMEAXIS(Y);
  2081. HOMEAXIS(Z);
  2082. sync_plan_position_delta();
  2083. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2084. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2085. #endif
  2086. #else // NOT DELTA
  2087. bool homeX = code_seen(axis_codes[X_AXIS]),
  2088. homeY = code_seen(axis_codes[Y_AXIS]),
  2089. homeZ = code_seen(axis_codes[Z_AXIS]);
  2090. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2091. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2092. if (home_all_axis || homeZ) {
  2093. HOMEAXIS(Z);
  2094. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2095. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2096. #endif
  2097. }
  2098. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2099. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2100. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2101. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2102. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2103. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2104. if (DEBUGGING(LEVELING)) {
  2105. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2106. SERIAL_EOL;
  2107. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2108. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2109. }
  2110. #endif
  2111. line_to_destination();
  2112. st_synchronize();
  2113. /**
  2114. * Update the current Z position even if it currently not real from
  2115. * Z-home otherwise each call to line_to_destination() will want to
  2116. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2117. */
  2118. current_position[Z_AXIS] = destination[Z_AXIS];
  2119. }
  2120. #endif
  2121. #if ENABLED(QUICK_HOME)
  2122. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2123. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2124. #if ENABLED(DUAL_X_CARRIAGE)
  2125. int x_axis_home_dir = x_home_dir(active_extruder);
  2126. extruder_duplication_enabled = false;
  2127. #else
  2128. int x_axis_home_dir = home_dir(X_AXIS);
  2129. #endif
  2130. sync_plan_position();
  2131. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2132. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2133. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2134. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2135. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2136. line_to_destination();
  2137. st_synchronize();
  2138. set_axis_is_at_home(X_AXIS);
  2139. set_axis_is_at_home(Y_AXIS);
  2140. sync_plan_position();
  2141. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2142. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2143. #endif
  2144. destination[X_AXIS] = current_position[X_AXIS];
  2145. destination[Y_AXIS] = current_position[Y_AXIS];
  2146. line_to_destination();
  2147. feedrate = 0.0;
  2148. st_synchronize();
  2149. endstops_hit_on_purpose(); // clear endstop hit flags
  2150. current_position[X_AXIS] = destination[X_AXIS];
  2151. current_position[Y_AXIS] = destination[Y_AXIS];
  2152. #if DISABLED(SCARA)
  2153. current_position[Z_AXIS] = destination[Z_AXIS];
  2154. #endif
  2155. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2156. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2157. #endif
  2158. }
  2159. #endif // QUICK_HOME
  2160. #if ENABLED(HOME_Y_BEFORE_X)
  2161. // Home Y
  2162. if (home_all_axis || homeY) HOMEAXIS(Y);
  2163. #endif
  2164. // Home X
  2165. if (home_all_axis || homeX) {
  2166. #if ENABLED(DUAL_X_CARRIAGE)
  2167. int tmp_extruder = active_extruder;
  2168. extruder_duplication_enabled = false;
  2169. active_extruder = !active_extruder;
  2170. HOMEAXIS(X);
  2171. inactive_extruder_x_pos = current_position[X_AXIS];
  2172. active_extruder = tmp_extruder;
  2173. HOMEAXIS(X);
  2174. // reset state used by the different modes
  2175. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2176. delayed_move_time = 0;
  2177. active_extruder_parked = true;
  2178. #else
  2179. HOMEAXIS(X);
  2180. #endif
  2181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2182. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2183. #endif
  2184. }
  2185. #if DISABLED(HOME_Y_BEFORE_X)
  2186. // Home Y
  2187. if (home_all_axis || homeY) {
  2188. HOMEAXIS(Y);
  2189. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2190. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2191. #endif
  2192. }
  2193. #endif
  2194. // Home Z last if homing towards the bed
  2195. #if Z_HOME_DIR < 0
  2196. if (home_all_axis || homeZ) {
  2197. #if ENABLED(Z_SAFE_HOMING)
  2198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2199. if (DEBUGGING(LEVELING)) {
  2200. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2201. }
  2202. #endif
  2203. if (home_all_axis) {
  2204. /**
  2205. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2206. * No need to move Z any more as this height should already be safe
  2207. * enough to reach Z_SAFE_HOMING XY positions.
  2208. * Just make sure the planner is in sync.
  2209. */
  2210. sync_plan_position();
  2211. /**
  2212. * Set the Z probe (or just the nozzle) destination to the safe
  2213. * homing point
  2214. */
  2215. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2216. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2217. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2218. feedrate = XY_TRAVEL_SPEED;
  2219. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2220. if (DEBUGGING(LEVELING)) {
  2221. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2222. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2223. }
  2224. #endif
  2225. // Move in the XY plane
  2226. line_to_destination();
  2227. st_synchronize();
  2228. /**
  2229. * Update the current positions for XY, Z is still at least at
  2230. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2231. */
  2232. current_position[X_AXIS] = destination[X_AXIS];
  2233. current_position[Y_AXIS] = destination[Y_AXIS];
  2234. // Home the Z axis
  2235. HOMEAXIS(Z);
  2236. }
  2237. else if (homeZ) { // Don't need to Home Z twice
  2238. // Let's see if X and Y are homed
  2239. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2240. /**
  2241. * Make sure the Z probe is within the physical limits
  2242. * NOTE: This doesn't necessarily ensure the Z probe is also
  2243. * within the bed!
  2244. */
  2245. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2246. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2247. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2248. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2249. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2250. // Home the Z axis
  2251. HOMEAXIS(Z);
  2252. }
  2253. else {
  2254. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2255. SERIAL_ECHO_START;
  2256. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2257. }
  2258. }
  2259. else {
  2260. axis_unhomed_error();
  2261. }
  2262. } // !home_all_axes && homeZ
  2263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2264. if (DEBUGGING(LEVELING)) {
  2265. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2266. }
  2267. #endif
  2268. #else // !Z_SAFE_HOMING
  2269. HOMEAXIS(Z);
  2270. #endif // !Z_SAFE_HOMING
  2271. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2272. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2273. #endif
  2274. } // home_all_axis || homeZ
  2275. #endif // Z_HOME_DIR < 0
  2276. sync_plan_position();
  2277. #endif // else DELTA
  2278. #if ENABLED(SCARA)
  2279. sync_plan_position_delta();
  2280. #endif
  2281. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2282. enable_endstops(false);
  2283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2284. if (DEBUGGING(LEVELING)) {
  2285. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2286. }
  2287. #endif
  2288. #endif
  2289. // For mesh leveling move back to Z=0
  2290. #if ENABLED(MESH_BED_LEVELING)
  2291. if (mbl_was_active && home_all_axis) {
  2292. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2293. sync_plan_position();
  2294. mbl.active = 1;
  2295. current_position[Z_AXIS] = 0.0;
  2296. set_destination_to_current();
  2297. feedrate = homing_feedrate[Z_AXIS];
  2298. line_to_destination();
  2299. st_synchronize();
  2300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2301. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2302. #endif
  2303. }
  2304. #endif
  2305. feedrate = saved_feedrate;
  2306. feedrate_multiplier = saved_feedrate_multiplier;
  2307. refresh_cmd_timeout();
  2308. endstops_hit_on_purpose(); // clear endstop hit flags
  2309. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2310. if (DEBUGGING(LEVELING)) {
  2311. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2312. }
  2313. #endif
  2314. gcode_M114(); // Send end position to RepetierHost
  2315. }
  2316. #if ENABLED(MESH_BED_LEVELING)
  2317. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2318. /**
  2319. * G29: Mesh-based Z probe, probes a grid and produces a
  2320. * mesh to compensate for variable bed height
  2321. *
  2322. * Parameters With MESH_BED_LEVELING:
  2323. *
  2324. * S0 Produce a mesh report
  2325. * S1 Start probing mesh points
  2326. * S2 Probe the next mesh point
  2327. * S3 Xn Yn Zn.nn Manually modify a single point
  2328. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2329. *
  2330. * The S0 report the points as below
  2331. *
  2332. * +----> X-axis 1-n
  2333. * |
  2334. * |
  2335. * v Y-axis 1-n
  2336. *
  2337. */
  2338. inline void gcode_G29() {
  2339. static int probe_point = -1;
  2340. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2341. if (state < 0 || state > 4) {
  2342. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2343. return;
  2344. }
  2345. int ix, iy;
  2346. float z;
  2347. switch (state) {
  2348. case MeshReport:
  2349. if (mbl.active) {
  2350. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2351. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2352. SERIAL_PROTOCOLCHAR(',');
  2353. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2354. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2355. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2356. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2357. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2358. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2359. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2360. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2361. SERIAL_PROTOCOLPGM(" ");
  2362. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2363. }
  2364. SERIAL_EOL;
  2365. }
  2366. }
  2367. else
  2368. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2369. break;
  2370. case MeshStart:
  2371. mbl.reset();
  2372. probe_point = 0;
  2373. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2374. break;
  2375. case MeshNext:
  2376. if (probe_point < 0) {
  2377. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2378. return;
  2379. }
  2380. if (probe_point == 0) {
  2381. // Set Z to a positive value before recording the first Z.
  2382. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2383. sync_plan_position();
  2384. }
  2385. else {
  2386. // For others, save the Z of the previous point, then raise Z again.
  2387. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2388. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2389. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2390. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2391. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2393. st_synchronize();
  2394. }
  2395. // Is there another point to sample? Move there.
  2396. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2397. ix = probe_point % (MESH_NUM_X_POINTS);
  2398. iy = probe_point / (MESH_NUM_X_POINTS);
  2399. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2400. current_position[X_AXIS] = mbl.get_x(ix);
  2401. current_position[Y_AXIS] = mbl.get_y(iy);
  2402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2403. st_synchronize();
  2404. probe_point++;
  2405. }
  2406. else {
  2407. // After recording the last point, activate the mbl and home
  2408. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2409. probe_point = -1;
  2410. mbl.active = 1;
  2411. enqueue_and_echo_commands_P(PSTR("G28"));
  2412. }
  2413. break;
  2414. case MeshSet:
  2415. if (code_seen('X')) {
  2416. ix = code_value_long() - 1;
  2417. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2418. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2419. return;
  2420. }
  2421. }
  2422. else {
  2423. SERIAL_PROTOCOLPGM("X not entered.\n");
  2424. return;
  2425. }
  2426. if (code_seen('Y')) {
  2427. iy = code_value_long() - 1;
  2428. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2429. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2430. return;
  2431. }
  2432. }
  2433. else {
  2434. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2435. return;
  2436. }
  2437. if (code_seen('Z')) {
  2438. z = code_value();
  2439. }
  2440. else {
  2441. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2442. return;
  2443. }
  2444. mbl.z_values[iy][ix] = z;
  2445. break;
  2446. case MeshSetZOffset:
  2447. if (code_seen('Z')) {
  2448. z = code_value();
  2449. }
  2450. else {
  2451. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2452. return;
  2453. }
  2454. mbl.z_offset = z;
  2455. } // switch(state)
  2456. }
  2457. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2458. void out_of_range_error(const char* p_edge) {
  2459. SERIAL_PROTOCOLPGM("?Probe ");
  2460. serialprintPGM(p_edge);
  2461. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2462. }
  2463. /**
  2464. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2465. * Will fail if the printer has not been homed with G28.
  2466. *
  2467. * Enhanced G29 Auto Bed Leveling Probe Routine
  2468. *
  2469. * Parameters With AUTO_BED_LEVELING_GRID:
  2470. *
  2471. * P Set the size of the grid that will be probed (P x P points).
  2472. * Not supported by non-linear delta printer bed leveling.
  2473. * Example: "G29 P4"
  2474. *
  2475. * S Set the XY travel speed between probe points (in mm/min)
  2476. *
  2477. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2478. * or clean the rotation Matrix. Useful to check the topology
  2479. * after a first run of G29.
  2480. *
  2481. * V Set the verbose level (0-4). Example: "G29 V3"
  2482. *
  2483. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2484. * This is useful for manual bed leveling and finding flaws in the bed (to
  2485. * assist with part placement).
  2486. * Not supported by non-linear delta printer bed leveling.
  2487. *
  2488. * F Set the Front limit of the probing grid
  2489. * B Set the Back limit of the probing grid
  2490. * L Set the Left limit of the probing grid
  2491. * R Set the Right limit of the probing grid
  2492. *
  2493. * Global Parameters:
  2494. *
  2495. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2496. * Include "E" to engage/disengage the Z probe for each sample.
  2497. * There's no extra effect if you have a fixed Z probe.
  2498. * Usage: "G29 E" or "G29 e"
  2499. *
  2500. */
  2501. inline void gcode_G29() {
  2502. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2503. if (DEBUGGING(LEVELING)) {
  2504. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2505. DEBUG_POS("", current_position);
  2506. }
  2507. #endif
  2508. // Don't allow auto-leveling without homing first
  2509. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2510. axis_unhomed_error();
  2511. return;
  2512. }
  2513. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2514. if (verbose_level < 0 || verbose_level > 4) {
  2515. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2516. return;
  2517. }
  2518. bool dryrun = code_seen('D'),
  2519. deploy_probe_for_each_reading = code_seen('E');
  2520. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2521. #if DISABLED(DELTA)
  2522. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2523. #endif
  2524. if (verbose_level > 0) {
  2525. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2526. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2527. }
  2528. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2529. #if DISABLED(DELTA)
  2530. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2531. if (auto_bed_leveling_grid_points < 2) {
  2532. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2533. return;
  2534. }
  2535. #endif
  2536. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2537. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2538. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2539. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2540. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2541. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2542. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2543. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2544. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2545. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2546. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2547. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2548. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2549. if (left_out || right_out || front_out || back_out) {
  2550. if (left_out) {
  2551. out_of_range_error(PSTR("(L)eft"));
  2552. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2553. }
  2554. if (right_out) {
  2555. out_of_range_error(PSTR("(R)ight"));
  2556. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2557. }
  2558. if (front_out) {
  2559. out_of_range_error(PSTR("(F)ront"));
  2560. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2561. }
  2562. if (back_out) {
  2563. out_of_range_error(PSTR("(B)ack"));
  2564. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2565. }
  2566. return;
  2567. }
  2568. #endif // AUTO_BED_LEVELING_GRID
  2569. if (!dryrun) {
  2570. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2571. plan_bed_level_matrix.set_to_identity();
  2572. #if ENABLED(DELTA)
  2573. reset_bed_level();
  2574. #else //!DELTA
  2575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2576. if (DEBUGGING(LEVELING)) DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2577. #endif
  2578. //vector_3 corrected_position = plan_get_position();
  2579. //corrected_position.debug("position before G29");
  2580. vector_3 uncorrected_position = plan_get_position();
  2581. //uncorrected_position.debug("position during G29");
  2582. current_position[X_AXIS] = uncorrected_position.x;
  2583. current_position[Y_AXIS] = uncorrected_position.y;
  2584. current_position[Z_AXIS] = uncorrected_position.z;
  2585. sync_plan_position();
  2586. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2587. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", current_position);
  2588. #endif
  2589. #endif // !DELTA
  2590. }
  2591. #if ENABLED(Z_PROBE_SLED)
  2592. dock_sled(false); // engage (un-dock) the Z probe
  2593. #elif ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING)
  2594. deploy_z_probe();
  2595. #endif
  2596. st_synchronize();
  2597. setup_for_endstop_move();
  2598. feedrate = homing_feedrate[Z_AXIS];
  2599. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2600. // probe at the points of a lattice grid
  2601. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2602. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2603. #if ENABLED(DELTA)
  2604. delta_grid_spacing[0] = xGridSpacing;
  2605. delta_grid_spacing[1] = yGridSpacing;
  2606. float z_offset = zprobe_zoffset;
  2607. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2608. #else // !DELTA
  2609. /**
  2610. * solve the plane equation ax + by + d = z
  2611. * A is the matrix with rows [x y 1] for all the probed points
  2612. * B is the vector of the Z positions
  2613. * the normal vector to the plane is formed by the coefficients of the
  2614. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2615. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2616. */
  2617. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2618. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2619. eqnBVector[abl2], // "B" vector of Z points
  2620. mean = 0.0;
  2621. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2622. #endif // !DELTA
  2623. int probePointCounter = 0;
  2624. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2625. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2626. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2627. int xStart, xStop, xInc;
  2628. if (zig) {
  2629. xStart = 0;
  2630. xStop = auto_bed_leveling_grid_points;
  2631. xInc = 1;
  2632. }
  2633. else {
  2634. xStart = auto_bed_leveling_grid_points - 1;
  2635. xStop = -1;
  2636. xInc = -1;
  2637. }
  2638. zig = !zig;
  2639. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2640. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2641. // raise extruder
  2642. float measured_z,
  2643. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2644. if (probePointCounter) {
  2645. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2646. if (DEBUGGING(LEVELING)) {
  2647. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2648. SERIAL_EOL;
  2649. }
  2650. #endif
  2651. }
  2652. else {
  2653. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2654. if (DEBUGGING(LEVELING)) {
  2655. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING);
  2656. SERIAL_EOL;
  2657. }
  2658. #endif
  2659. }
  2660. #if ENABLED(DELTA)
  2661. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2662. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2663. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2664. #endif //DELTA
  2665. ProbeAction act;
  2666. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2667. act = ProbeDeployAndStow;
  2668. else if (yCount == 0 && xCount == xStart)
  2669. act = ProbeDeploy;
  2670. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2671. act = ProbeStow;
  2672. else
  2673. act = ProbeStay;
  2674. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2675. #if DISABLED(DELTA)
  2676. mean += measured_z;
  2677. eqnBVector[probePointCounter] = measured_z;
  2678. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2679. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2680. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2681. indexIntoAB[xCount][yCount] = probePointCounter;
  2682. #else
  2683. bed_level[xCount][yCount] = measured_z + z_offset;
  2684. #endif
  2685. probePointCounter++;
  2686. idle();
  2687. } //xProbe
  2688. } //yProbe
  2689. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2690. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2691. #endif
  2692. clean_up_after_endstop_move();
  2693. #if ENABLED(DELTA)
  2694. if (!dryrun) extrapolate_unprobed_bed_level();
  2695. print_bed_level();
  2696. #else // !DELTA
  2697. // solve lsq problem
  2698. double plane_equation_coefficients[3];
  2699. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2700. mean /= abl2;
  2701. if (verbose_level) {
  2702. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2703. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2704. SERIAL_PROTOCOLPGM(" b: ");
  2705. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2706. SERIAL_PROTOCOLPGM(" d: ");
  2707. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2708. SERIAL_EOL;
  2709. if (verbose_level > 2) {
  2710. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2711. SERIAL_PROTOCOL_F(mean, 8);
  2712. SERIAL_EOL;
  2713. }
  2714. }
  2715. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2716. // Show the Topography map if enabled
  2717. if (do_topography_map) {
  2718. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2719. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2720. SERIAL_PROTOCOLPGM(" | |\n");
  2721. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2722. SERIAL_PROTOCOLPGM(" E | | I\n");
  2723. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2724. SERIAL_PROTOCOLPGM(" T | | H\n");
  2725. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2726. SERIAL_PROTOCOLPGM(" | |\n");
  2727. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2728. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2729. float min_diff = 999;
  2730. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2731. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2732. int ind = indexIntoAB[xx][yy];
  2733. float diff = eqnBVector[ind] - mean;
  2734. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2735. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2736. z_tmp = 0;
  2737. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2738. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2739. if (diff >= 0.0)
  2740. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2741. else
  2742. SERIAL_PROTOCOLCHAR(' ');
  2743. SERIAL_PROTOCOL_F(diff, 5);
  2744. } // xx
  2745. SERIAL_EOL;
  2746. } // yy
  2747. SERIAL_EOL;
  2748. if (verbose_level > 3) {
  2749. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2750. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2751. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2752. int ind = indexIntoAB[xx][yy];
  2753. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2754. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2755. z_tmp = 0;
  2756. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2757. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2758. if (diff >= 0.0)
  2759. SERIAL_PROTOCOLPGM(" +");
  2760. // Include + for column alignment
  2761. else
  2762. SERIAL_PROTOCOLCHAR(' ');
  2763. SERIAL_PROTOCOL_F(diff, 5);
  2764. } // xx
  2765. SERIAL_EOL;
  2766. } // yy
  2767. SERIAL_EOL;
  2768. }
  2769. } //do_topography_map
  2770. #endif //!DELTA
  2771. #else // !AUTO_BED_LEVELING_GRID
  2772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2773. if (DEBUGGING(LEVELING)) {
  2774. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2775. }
  2776. #endif
  2777. // Actions for each probe
  2778. ProbeAction p1, p2, p3;
  2779. if (deploy_probe_for_each_reading)
  2780. p1 = p2 = p3 = ProbeDeployAndStow;
  2781. else
  2782. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2783. // Probe at 3 arbitrary points
  2784. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2785. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2786. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2787. clean_up_after_endstop_move();
  2788. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2789. #endif // !AUTO_BED_LEVELING_GRID
  2790. #if ENABLED(DELTA)
  2791. // Allen Key Probe for Delta
  2792. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2793. stow_z_probe();
  2794. #elif Z_RAISE_AFTER_PROBING > 0
  2795. raise_z_after_probing(); // ???
  2796. #endif
  2797. #else // !DELTA
  2798. if (verbose_level > 0)
  2799. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2800. if (!dryrun) {
  2801. /**
  2802. * Correct the Z height difference from Z probe position and nozzle tip position.
  2803. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2804. * from the nozzle. When the bed is uneven, this height must be corrected.
  2805. */
  2806. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2807. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2808. z_tmp = current_position[Z_AXIS],
  2809. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2810. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2811. if (DEBUGGING(LEVELING)) {
  2812. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2813. SERIAL_EOL;
  2814. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2815. SERIAL_EOL;
  2816. }
  2817. #endif
  2818. // Apply the correction sending the Z probe offset
  2819. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2820. /*
  2821. * Get the current Z position and send it to the planner.
  2822. *
  2823. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2824. * (most recent plan_set_position/sync_plan_position)
  2825. *
  2826. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2827. * (set by default, M851, EEPROM, or Menu)
  2828. *
  2829. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2830. * after the last probe
  2831. *
  2832. * >> Should home_offset[Z_AXIS] be included?
  2833. *
  2834. *
  2835. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2836. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2837. * not actually "homing" Z... then perhaps it should not be included
  2838. * here. The purpose of home_offset[] is to adjust for inaccurate
  2839. * endstops, not for reasonably accurate probes. If it were added
  2840. * here, it could be seen as a compensating factor for the Z probe.
  2841. */
  2842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2843. if (DEBUGGING(LEVELING)) {
  2844. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2845. SERIAL_EOL;
  2846. }
  2847. #endif
  2848. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2849. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2850. + Z_RAISE_AFTER_PROBING
  2851. #endif
  2852. ;
  2853. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2854. sync_plan_position();
  2855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2856. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2857. #endif
  2858. }
  2859. // Sled assembly for Cartesian bots
  2860. #if ENABLED(Z_PROBE_SLED)
  2861. dock_sled(true); // dock the sled
  2862. #elif Z_RAISE_AFTER_PROBING > 0
  2863. // Raise Z axis for non-delta and non servo based probes
  2864. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2865. raise_z_after_probing();
  2866. #endif
  2867. #endif
  2868. #endif // !DELTA
  2869. #ifdef Z_PROBE_END_SCRIPT
  2870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2871. if (DEBUGGING(LEVELING)) {
  2872. SERIAL_ECHO("Z Probe End Script: ");
  2873. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2874. }
  2875. #endif
  2876. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2877. #if ENABLED(HAS_Z_MIN_PROBE)
  2878. z_probe_is_active = false;
  2879. #endif
  2880. st_synchronize();
  2881. #endif
  2882. KEEPALIVE_STATE(IN_HANDLER);
  2883. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2884. if (DEBUGGING(LEVELING)) {
  2885. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2886. }
  2887. #endif
  2888. gcode_M114(); // Send end position to RepetierHost
  2889. }
  2890. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2891. /**
  2892. * G30: Do a single Z probe at the current XY
  2893. */
  2894. inline void gcode_G30() {
  2895. #if HAS_SERVO_ENDSTOPS
  2896. raise_z_for_servo();
  2897. #endif
  2898. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2899. st_synchronize();
  2900. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2901. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2902. feedrate = homing_feedrate[Z_AXIS];
  2903. run_z_probe();
  2904. SERIAL_PROTOCOLPGM("Bed X: ");
  2905. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2906. SERIAL_PROTOCOLPGM(" Y: ");
  2907. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2908. SERIAL_PROTOCOLPGM(" Z: ");
  2909. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2910. SERIAL_EOL;
  2911. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2912. #if HAS_SERVO_ENDSTOPS
  2913. raise_z_for_servo();
  2914. #endif
  2915. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2916. gcode_M114(); // Send end position to RepetierHost
  2917. }
  2918. #endif //!Z_PROBE_SLED
  2919. #endif //AUTO_BED_LEVELING_FEATURE
  2920. /**
  2921. * G92: Set current position to given X Y Z E
  2922. */
  2923. inline void gcode_G92() {
  2924. if (!code_seen(axis_codes[E_AXIS]))
  2925. st_synchronize();
  2926. bool didXYZ = false;
  2927. for (int i = 0; i < NUM_AXIS; i++) {
  2928. if (code_seen(axis_codes[i])) {
  2929. float v = current_position[i] = code_value();
  2930. if (i == E_AXIS)
  2931. plan_set_e_position(v);
  2932. else
  2933. didXYZ = true;
  2934. }
  2935. }
  2936. if (didXYZ) {
  2937. #if ENABLED(DELTA) || ENABLED(SCARA)
  2938. sync_plan_position_delta();
  2939. #else
  2940. sync_plan_position();
  2941. #endif
  2942. }
  2943. }
  2944. #if ENABLED(ULTIPANEL)
  2945. /**
  2946. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2947. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2948. */
  2949. inline void gcode_M0_M1() {
  2950. char* args = current_command_args;
  2951. uint8_t test_value = 12;
  2952. SERIAL_ECHOPAIR("TEST", test_value);
  2953. millis_t codenum = 0;
  2954. bool hasP = false, hasS = false;
  2955. if (code_seen('P')) {
  2956. codenum = code_value_short(); // milliseconds to wait
  2957. hasP = codenum > 0;
  2958. }
  2959. if (code_seen('S')) {
  2960. codenum = code_value() * 1000; // seconds to wait
  2961. hasS = codenum > 0;
  2962. }
  2963. if (!hasP && !hasS && *args != '\0')
  2964. lcd_setstatus(args, true);
  2965. else {
  2966. LCD_MESSAGEPGM(MSG_USERWAIT);
  2967. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2968. dontExpireStatus();
  2969. #endif
  2970. }
  2971. lcd_ignore_click();
  2972. st_synchronize();
  2973. refresh_cmd_timeout();
  2974. if (codenum > 0) {
  2975. codenum += previous_cmd_ms; // wait until this time for a click
  2976. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2977. while (millis() < codenum && !lcd_clicked()) idle();
  2978. KEEPALIVE_STATE(IN_HANDLER);
  2979. lcd_ignore_click(false);
  2980. }
  2981. else {
  2982. if (!lcd_detected()) return;
  2983. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2984. while (!lcd_clicked()) idle();
  2985. KEEPALIVE_STATE(IN_HANDLER);
  2986. }
  2987. if (IS_SD_PRINTING)
  2988. LCD_MESSAGEPGM(MSG_RESUMING);
  2989. else
  2990. LCD_MESSAGEPGM(WELCOME_MSG);
  2991. }
  2992. #endif // ULTIPANEL
  2993. /**
  2994. * M17: Enable power on all stepper motors
  2995. */
  2996. inline void gcode_M17() {
  2997. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2998. enable_all_steppers();
  2999. }
  3000. #if ENABLED(SDSUPPORT)
  3001. /**
  3002. * M20: List SD card to serial output
  3003. */
  3004. inline void gcode_M20() {
  3005. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3006. card.ls();
  3007. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3008. }
  3009. /**
  3010. * M21: Init SD Card
  3011. */
  3012. inline void gcode_M21() {
  3013. card.initsd();
  3014. }
  3015. /**
  3016. * M22: Release SD Card
  3017. */
  3018. inline void gcode_M22() {
  3019. card.release();
  3020. }
  3021. /**
  3022. * M23: Open a file
  3023. */
  3024. inline void gcode_M23() {
  3025. card.openFile(current_command_args, true);
  3026. }
  3027. /**
  3028. * M24: Start SD Print
  3029. */
  3030. inline void gcode_M24() {
  3031. card.startFileprint();
  3032. print_job_timer.start();
  3033. }
  3034. /**
  3035. * M25: Pause SD Print
  3036. */
  3037. inline void gcode_M25() {
  3038. card.pauseSDPrint();
  3039. }
  3040. /**
  3041. * M26: Set SD Card file index
  3042. */
  3043. inline void gcode_M26() {
  3044. if (card.cardOK && code_seen('S'))
  3045. card.setIndex(code_value_short());
  3046. }
  3047. /**
  3048. * M27: Get SD Card status
  3049. */
  3050. inline void gcode_M27() {
  3051. card.getStatus();
  3052. }
  3053. /**
  3054. * M28: Start SD Write
  3055. */
  3056. inline void gcode_M28() {
  3057. card.openFile(current_command_args, false);
  3058. }
  3059. /**
  3060. * M29: Stop SD Write
  3061. * Processed in write to file routine above
  3062. */
  3063. inline void gcode_M29() {
  3064. // card.saving = false;
  3065. }
  3066. /**
  3067. * M30 <filename>: Delete SD Card file
  3068. */
  3069. inline void gcode_M30() {
  3070. if (card.cardOK) {
  3071. card.closefile();
  3072. card.removeFile(current_command_args);
  3073. }
  3074. }
  3075. #endif //SDSUPPORT
  3076. /**
  3077. * M31: Get the time since the start of SD Print (or last M109)
  3078. */
  3079. inline void gcode_M31() {
  3080. millis_t t = print_job_timer.duration();
  3081. int min = t / 60, sec = t % 60;
  3082. char time[30];
  3083. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3084. SERIAL_ECHO_START;
  3085. SERIAL_ECHOLN(time);
  3086. lcd_setstatus(time);
  3087. autotempShutdown();
  3088. }
  3089. #if ENABLED(SDSUPPORT)
  3090. /**
  3091. * M32: Select file and start SD Print
  3092. */
  3093. inline void gcode_M32() {
  3094. if (card.sdprinting)
  3095. st_synchronize();
  3096. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3097. if (!namestartpos)
  3098. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3099. else
  3100. namestartpos++; //to skip the '!'
  3101. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3102. if (card.cardOK) {
  3103. card.openFile(namestartpos, true, call_procedure);
  3104. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3105. card.setIndex(code_value_short());
  3106. card.startFileprint();
  3107. // Procedure calls count as normal print time.
  3108. if (!call_procedure) print_job_timer.start();
  3109. }
  3110. }
  3111. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3112. /**
  3113. * M33: Get the long full path of a file or folder
  3114. *
  3115. * Parameters:
  3116. * <dospath> Case-insensitive DOS-style path to a file or folder
  3117. *
  3118. * Example:
  3119. * M33 miscel~1/armchair/armcha~1.gco
  3120. *
  3121. * Output:
  3122. * /Miscellaneous/Armchair/Armchair.gcode
  3123. */
  3124. inline void gcode_M33() {
  3125. card.printLongPath(current_command_args);
  3126. }
  3127. #endif
  3128. /**
  3129. * M928: Start SD Write
  3130. */
  3131. inline void gcode_M928() {
  3132. card.openLogFile(current_command_args);
  3133. }
  3134. #endif // SDSUPPORT
  3135. /**
  3136. * M42: Change pin status via GCode
  3137. *
  3138. * P<pin> Pin number (LED if omitted)
  3139. * S<byte> Pin status from 0 - 255
  3140. */
  3141. inline void gcode_M42() {
  3142. if (code_seen('S')) {
  3143. int pin_status = code_value_short();
  3144. if (pin_status < 0 || pin_status > 255) return;
  3145. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3146. if (pin_number < 0) return;
  3147. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3148. if (pin_number == sensitive_pins[i]) return;
  3149. pinMode(pin_number, OUTPUT);
  3150. digitalWrite(pin_number, pin_status);
  3151. analogWrite(pin_number, pin_status);
  3152. #if FAN_COUNT > 0
  3153. switch (pin_number) {
  3154. #if HAS_FAN0
  3155. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3156. #endif
  3157. #if HAS_FAN1
  3158. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3159. #endif
  3160. #if HAS_FAN2
  3161. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3162. #endif
  3163. }
  3164. #endif
  3165. } // code_seen('S')
  3166. }
  3167. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3168. /**
  3169. * This is redundant since the SanityCheck.h already checks for a valid
  3170. * Z_MIN_PROBE_PIN, but here for clarity.
  3171. */
  3172. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3173. #if !HAS_Z_PROBE
  3174. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3175. #endif
  3176. #elif !HAS_Z_MIN
  3177. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3178. #endif
  3179. /**
  3180. * M48: Z probe repeatability measurement function.
  3181. *
  3182. * Usage:
  3183. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3184. * P = Number of sampled points (4-50, default 10)
  3185. * X = Sample X position
  3186. * Y = Sample Y position
  3187. * V = Verbose level (0-4, default=1)
  3188. * E = Engage Z probe for each reading
  3189. * L = Number of legs of movement before probe
  3190. * S = Schizoid (Or Star if you prefer)
  3191. *
  3192. * This function assumes the bed has been homed. Specifically, that a G28 command
  3193. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3194. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3195. * regenerated.
  3196. */
  3197. inline void gcode_M48() {
  3198. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3199. axis_unhomed_error();
  3200. return;
  3201. }
  3202. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3203. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3204. if (code_seen('V')) {
  3205. verbose_level = code_value_short();
  3206. if (verbose_level < 0 || verbose_level > 4) {
  3207. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3208. return;
  3209. }
  3210. }
  3211. if (verbose_level > 0)
  3212. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3213. if (code_seen('P')) {
  3214. n_samples = code_value_short();
  3215. if (n_samples < 4 || n_samples > 50) {
  3216. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3217. return;
  3218. }
  3219. }
  3220. float X_current = current_position[X_AXIS],
  3221. Y_current = current_position[Y_AXIS],
  3222. Z_current = current_position[Z_AXIS],
  3223. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3224. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3225. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3226. bool deploy_probe_for_each_reading = code_seen('E');
  3227. if (code_seen('X')) {
  3228. X_probe_location = code_value();
  3229. #if DISABLED(DELTA)
  3230. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3231. out_of_range_error(PSTR("X"));
  3232. return;
  3233. }
  3234. #endif
  3235. }
  3236. if (code_seen('Y')) {
  3237. Y_probe_location = code_value();
  3238. #if DISABLED(DELTA)
  3239. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3240. out_of_range_error(PSTR("Y"));
  3241. return;
  3242. }
  3243. #endif
  3244. }
  3245. #if ENABLED(DELTA)
  3246. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3247. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3248. return;
  3249. }
  3250. #endif
  3251. bool seen_L = code_seen('L');
  3252. if (seen_L) {
  3253. n_legs = code_value_short();
  3254. if (n_legs < 0 || n_legs > 15) {
  3255. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3256. return;
  3257. }
  3258. if (n_legs == 1) n_legs = 2;
  3259. }
  3260. if (code_seen('S')) {
  3261. schizoid_flag++;
  3262. if (!seen_L) n_legs = 7;
  3263. }
  3264. /**
  3265. * Now get everything to the specified probe point So we can safely do a
  3266. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3267. * we don't want to use that as a starting point for each probe.
  3268. */
  3269. if (verbose_level > 2)
  3270. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3271. #if ENABLED(DELTA)
  3272. // we don't do bed level correction in M48 because we want the raw data when we probe
  3273. reset_bed_level();
  3274. #else
  3275. // we don't do bed level correction in M48 because we want the raw data when we probe
  3276. plan_bed_level_matrix.set_to_identity();
  3277. #endif
  3278. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3279. do_blocking_move_to_z(Z_start_location);
  3280. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3281. /**
  3282. * OK, do the initial probe to get us close to the bed.
  3283. * Then retrace the right amount and use that in subsequent probes
  3284. */
  3285. setup_for_endstop_move();
  3286. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3287. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3288. verbose_level);
  3289. raise_z_after_probing();
  3290. for (uint8_t n = 0; n < n_samples; n++) {
  3291. randomSeed(millis());
  3292. delay(500);
  3293. if (n_legs) {
  3294. float radius, angle = random(0.0, 360.0);
  3295. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3296. radius = random(
  3297. #if ENABLED(DELTA)
  3298. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3299. #else
  3300. 5, X_MAX_LENGTH / 8
  3301. #endif
  3302. );
  3303. if (verbose_level > 3) {
  3304. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3305. SERIAL_ECHOPAIR(" angle: ", angle);
  3306. delay(100);
  3307. if (dir > 0)
  3308. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3309. else
  3310. SERIAL_ECHO(" Direction: Clockwise \n");
  3311. delay(100);
  3312. }
  3313. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3314. double delta_angle;
  3315. if (schizoid_flag)
  3316. // The points of a 5 point star are 72 degrees apart. We need to
  3317. // skip a point and go to the next one on the star.
  3318. delta_angle = dir * 2.0 * 72.0;
  3319. else
  3320. // If we do this line, we are just trying to move further
  3321. // around the circle.
  3322. delta_angle = dir * (float) random(25, 45);
  3323. angle += delta_angle;
  3324. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3325. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3326. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3327. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3328. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3329. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3330. #if DISABLED(DELTA)
  3331. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3332. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3333. #else
  3334. // If we have gone out too far, we can do a simple fix and scale the numbers
  3335. // back in closer to the origin.
  3336. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3337. X_current /= 1.25;
  3338. Y_current /= 1.25;
  3339. if (verbose_level > 3) {
  3340. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3341. SERIAL_ECHOPAIR(", ", Y_current);
  3342. SERIAL_EOL;
  3343. delay(50);
  3344. }
  3345. }
  3346. #endif
  3347. if (verbose_level > 3) {
  3348. SERIAL_PROTOCOL("Going to:");
  3349. SERIAL_ECHOPAIR("x: ", X_current);
  3350. SERIAL_ECHOPAIR("y: ", Y_current);
  3351. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3352. SERIAL_EOL;
  3353. delay(55);
  3354. }
  3355. do_blocking_move_to_xy(X_current, Y_current);
  3356. } // n_legs loop
  3357. } // n_legs
  3358. /**
  3359. * We don't really have to do this move, but if we don't we can see a
  3360. * funny shift in the Z Height because the user might not have the
  3361. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3362. * height. This gets us back to the probe location at the same height that
  3363. * we have been running around the circle at.
  3364. */
  3365. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3366. if (deploy_probe_for_each_reading)
  3367. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3368. else {
  3369. if (n == n_samples - 1)
  3370. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3371. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3372. }
  3373. /**
  3374. * Get the current mean for the data points we have so far
  3375. */
  3376. sum = 0.0;
  3377. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3378. mean = sum / (n + 1);
  3379. /**
  3380. * Now, use that mean to calculate the standard deviation for the
  3381. * data points we have so far
  3382. */
  3383. sum = 0.0;
  3384. for (uint8_t j = 0; j <= n; j++) {
  3385. float ss = sample_set[j] - mean;
  3386. sum += ss * ss;
  3387. }
  3388. sigma = sqrt(sum / (n + 1));
  3389. if (verbose_level > 1) {
  3390. SERIAL_PROTOCOL(n + 1);
  3391. SERIAL_PROTOCOLPGM(" of ");
  3392. SERIAL_PROTOCOL((int)n_samples);
  3393. SERIAL_PROTOCOLPGM(" z: ");
  3394. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3395. delay(50);
  3396. if (verbose_level > 2) {
  3397. SERIAL_PROTOCOLPGM(" mean: ");
  3398. SERIAL_PROTOCOL_F(mean, 6);
  3399. SERIAL_PROTOCOLPGM(" sigma: ");
  3400. SERIAL_PROTOCOL_F(sigma, 6);
  3401. }
  3402. }
  3403. if (verbose_level > 0) SERIAL_EOL;
  3404. delay(50);
  3405. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3406. } // End of probe loop code
  3407. // raise_z_after_probing();
  3408. if (verbose_level > 0) {
  3409. SERIAL_PROTOCOLPGM("Mean: ");
  3410. SERIAL_PROTOCOL_F(mean, 6);
  3411. SERIAL_EOL;
  3412. delay(25);
  3413. }
  3414. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3415. SERIAL_PROTOCOL_F(sigma, 6);
  3416. SERIAL_EOL; SERIAL_EOL;
  3417. delay(25);
  3418. clean_up_after_endstop_move();
  3419. gcode_M114(); // Send end position to RepetierHost
  3420. }
  3421. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3422. /**
  3423. * M75: Start print timer
  3424. */
  3425. inline void gcode_M75() {
  3426. print_job_timer.start();
  3427. }
  3428. /**
  3429. * M76: Pause print timer
  3430. */
  3431. inline void gcode_M76() {
  3432. print_job_timer.pause();
  3433. }
  3434. /**
  3435. * M77: Stop print timer
  3436. */
  3437. inline void gcode_M77() {
  3438. print_job_timer.stop();
  3439. }
  3440. /**
  3441. * M104: Set hot end temperature
  3442. */
  3443. inline void gcode_M104() {
  3444. if (setTargetedHotend(104)) return;
  3445. if (DEBUGGING(DRYRUN)) return;
  3446. if (code_seen('S')) {
  3447. float temp = code_value();
  3448. setTargetHotend(temp, target_extruder);
  3449. #if ENABLED(DUAL_X_CARRIAGE)
  3450. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3451. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3452. #endif
  3453. /**
  3454. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3455. * stand by mode, for instance in a dual extruder setup, without affecting
  3456. * the running print timer.
  3457. */
  3458. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3459. print_job_timer.stop();
  3460. LCD_MESSAGEPGM(WELCOME_MSG);
  3461. }
  3462. /**
  3463. * We do not check if the timer is already running because this check will
  3464. * be done for us inside the Stopwatch::start() method thus a running timer
  3465. * will not restart.
  3466. */
  3467. else print_job_timer.start();
  3468. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3469. }
  3470. }
  3471. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3472. void print_heaterstates() {
  3473. #if HAS_TEMP_HOTEND
  3474. SERIAL_PROTOCOLPGM(" T:");
  3475. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3476. SERIAL_PROTOCOLPGM(" /");
  3477. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3478. #endif
  3479. #if HAS_TEMP_BED
  3480. SERIAL_PROTOCOLPGM(" B:");
  3481. SERIAL_PROTOCOL_F(degBed(), 1);
  3482. SERIAL_PROTOCOLPGM(" /");
  3483. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3484. #endif
  3485. #if EXTRUDERS > 1
  3486. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3487. SERIAL_PROTOCOLPGM(" T");
  3488. SERIAL_PROTOCOL(e);
  3489. SERIAL_PROTOCOLCHAR(':');
  3490. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3491. SERIAL_PROTOCOLPGM(" /");
  3492. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3493. }
  3494. #endif
  3495. #if HAS_TEMP_BED
  3496. SERIAL_PROTOCOLPGM(" B@:");
  3497. #ifdef BED_WATTS
  3498. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3499. SERIAL_PROTOCOLCHAR('W');
  3500. #else
  3501. SERIAL_PROTOCOL(getHeaterPower(-1));
  3502. #endif
  3503. #endif
  3504. SERIAL_PROTOCOLPGM(" @:");
  3505. #ifdef EXTRUDER_WATTS
  3506. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3507. SERIAL_PROTOCOLCHAR('W');
  3508. #else
  3509. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3510. #endif
  3511. #if EXTRUDERS > 1
  3512. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3513. SERIAL_PROTOCOLPGM(" @");
  3514. SERIAL_PROTOCOL(e);
  3515. SERIAL_PROTOCOLCHAR(':');
  3516. #ifdef EXTRUDER_WATTS
  3517. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3518. SERIAL_PROTOCOLCHAR('W');
  3519. #else
  3520. SERIAL_PROTOCOL(getHeaterPower(e));
  3521. #endif
  3522. }
  3523. #endif
  3524. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3525. #if HAS_TEMP_BED
  3526. SERIAL_PROTOCOLPGM(" ADC B:");
  3527. SERIAL_PROTOCOL_F(degBed(), 1);
  3528. SERIAL_PROTOCOLPGM("C->");
  3529. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3530. #endif
  3531. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3532. SERIAL_PROTOCOLPGM(" T");
  3533. SERIAL_PROTOCOL(cur_extruder);
  3534. SERIAL_PROTOCOLCHAR(':');
  3535. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3536. SERIAL_PROTOCOLPGM("C->");
  3537. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3538. }
  3539. #endif
  3540. }
  3541. #endif
  3542. /**
  3543. * M105: Read hot end and bed temperature
  3544. */
  3545. inline void gcode_M105() {
  3546. if (setTargetedHotend(105)) return;
  3547. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3548. SERIAL_PROTOCOLPGM(MSG_OK);
  3549. print_heaterstates();
  3550. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3551. SERIAL_ERROR_START;
  3552. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3553. #endif
  3554. SERIAL_EOL;
  3555. }
  3556. #if FAN_COUNT > 0
  3557. /**
  3558. * M106: Set Fan Speed
  3559. *
  3560. * S<int> Speed between 0-255
  3561. * P<index> Fan index, if more than one fan
  3562. */
  3563. inline void gcode_M106() {
  3564. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3565. p = code_seen('P') ? code_value_short() : 0;
  3566. NOMORE(s, 255);
  3567. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3568. }
  3569. /**
  3570. * M107: Fan Off
  3571. */
  3572. inline void gcode_M107() {
  3573. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3574. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3575. }
  3576. #endif // FAN_COUNT > 0
  3577. /**
  3578. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3579. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3580. */
  3581. inline void gcode_M109() {
  3582. bool no_wait_for_cooling = true;
  3583. if (setTargetedHotend(109)) return;
  3584. if (DEBUGGING(DRYRUN)) return;
  3585. no_wait_for_cooling = code_seen('S');
  3586. if (no_wait_for_cooling || code_seen('R')) {
  3587. float temp = code_value();
  3588. setTargetHotend(temp, target_extruder);
  3589. #if ENABLED(DUAL_X_CARRIAGE)
  3590. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3591. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3592. #endif
  3593. /**
  3594. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3595. * stand by mode, for instance in a dual extruder setup, without affecting
  3596. * the running print timer.
  3597. */
  3598. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3599. print_job_timer.stop();
  3600. LCD_MESSAGEPGM(WELCOME_MSG);
  3601. }
  3602. /**
  3603. * We do not check if the timer is already running because this check will
  3604. * be done for us inside the Stopwatch::start() method thus a running timer
  3605. * will not restart.
  3606. */
  3607. else print_job_timer.start();
  3608. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3609. }
  3610. #if ENABLED(AUTOTEMP)
  3611. autotemp_enabled = code_seen('F');
  3612. if (autotemp_enabled) autotemp_factor = code_value();
  3613. if (code_seen('S')) autotemp_min = code_value();
  3614. if (code_seen('B')) autotemp_max = code_value();
  3615. #endif
  3616. // Exit if the temperature is above target and not waiting for cooling
  3617. if (no_wait_for_cooling && !isHeatingHotend(target_extruder)) return;
  3618. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3619. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3620. if (degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3621. #ifdef TEMP_RESIDENCY_TIME
  3622. long residency_start_ms = -1;
  3623. // Loop until the temperature has stabilized
  3624. #define TEMP_CONDITIONS (residency_start_ms < 0 || now < residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)
  3625. #else
  3626. // Loop until the temperature is very close target
  3627. #define TEMP_CONDITIONS (isHeatingHotend(target_extruder))
  3628. #endif //TEMP_RESIDENCY_TIME
  3629. cancel_heatup = false;
  3630. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3631. while (!cancel_heatup && TEMP_CONDITIONS) {
  3632. now = millis();
  3633. if (now > next_temp_ms) { //Print temp & remaining time every 1s while waiting
  3634. next_temp_ms = now + 1000UL;
  3635. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3636. print_heaterstates();
  3637. #endif
  3638. #ifdef TEMP_RESIDENCY_TIME
  3639. SERIAL_PROTOCOLPGM(" W:");
  3640. if (residency_start_ms >= 0) {
  3641. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3642. SERIAL_PROTOCOLLN(rem);
  3643. }
  3644. else {
  3645. SERIAL_PROTOCOLLNPGM("?");
  3646. }
  3647. #else
  3648. SERIAL_EOL;
  3649. #endif
  3650. }
  3651. idle();
  3652. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3653. #ifdef TEMP_RESIDENCY_TIME
  3654. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3655. // Restart the timer whenever the temperature falls outside the hysteresis.
  3656. if (labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > ((residency_start_ms < 0) ? TEMP_WINDOW : TEMP_HYSTERESIS))
  3657. residency_start_ms = millis();
  3658. #endif //TEMP_RESIDENCY_TIME
  3659. } // while(!cancel_heatup && TEMP_CONDITIONS)
  3660. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3661. }
  3662. #if HAS_TEMP_BED
  3663. /**
  3664. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3665. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3666. */
  3667. inline void gcode_M190() {
  3668. if (DEBUGGING(DRYRUN)) return;
  3669. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3670. bool no_wait_for_cooling = code_seen('S');
  3671. if (no_wait_for_cooling || code_seen('R'))
  3672. setTargetBed(code_value());
  3673. // Exit if the temperature is above target and not waiting for cooling
  3674. if (no_wait_for_cooling && !isHeatingBed()) return;
  3675. cancel_heatup = false;
  3676. millis_t now = millis(), next_temp_ms = now + 1000UL;
  3677. while (!cancel_heatup && isHeatingBed()) {
  3678. millis_t now = millis();
  3679. if (now > next_temp_ms) { //Print Temp Reading every 1 second while heating up.
  3680. next_temp_ms = now + 1000UL;
  3681. print_heaterstates();
  3682. SERIAL_EOL;
  3683. }
  3684. idle();
  3685. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3686. }
  3687. LCD_MESSAGEPGM(MSG_BED_DONE);
  3688. }
  3689. #endif // HAS_TEMP_BED
  3690. /**
  3691. * M110: Set Current Line Number
  3692. */
  3693. inline void gcode_M110() {
  3694. if (code_seen('N')) gcode_N = code_value_long();
  3695. }
  3696. /**
  3697. * M111: Set the debug level
  3698. */
  3699. inline void gcode_M111() {
  3700. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3701. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3702. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3703. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3704. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3705. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3706. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3707. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3708. #endif
  3709. const static char* const debug_strings[] PROGMEM = {
  3710. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3711. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3712. str_debug_32
  3713. #endif
  3714. };
  3715. SERIAL_ECHO_START;
  3716. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3717. if (marlin_debug_flags) {
  3718. uint8_t comma = 0;
  3719. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3720. if (TEST(marlin_debug_flags, i)) {
  3721. if (comma++) SERIAL_CHAR(',');
  3722. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3723. }
  3724. }
  3725. }
  3726. else {
  3727. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3728. }
  3729. SERIAL_EOL;
  3730. }
  3731. /**
  3732. * M112: Emergency Stop
  3733. */
  3734. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3735. #if ENABLED(BARICUDA)
  3736. #if HAS_HEATER_1
  3737. /**
  3738. * M126: Heater 1 valve open
  3739. */
  3740. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3741. /**
  3742. * M127: Heater 1 valve close
  3743. */
  3744. inline void gcode_M127() { ValvePressure = 0; }
  3745. #endif
  3746. #if HAS_HEATER_2
  3747. /**
  3748. * M128: Heater 2 valve open
  3749. */
  3750. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3751. /**
  3752. * M129: Heater 2 valve close
  3753. */
  3754. inline void gcode_M129() { EtoPPressure = 0; }
  3755. #endif
  3756. #endif //BARICUDA
  3757. /**
  3758. * M140: Set bed temperature
  3759. */
  3760. inline void gcode_M140() {
  3761. if (DEBUGGING(DRYRUN)) return;
  3762. if (code_seen('S')) setTargetBed(code_value());
  3763. }
  3764. #if ENABLED(ULTIPANEL)
  3765. /**
  3766. * M145: Set the heatup state for a material in the LCD menu
  3767. * S<material> (0=PLA, 1=ABS)
  3768. * H<hotend temp>
  3769. * B<bed temp>
  3770. * F<fan speed>
  3771. */
  3772. inline void gcode_M145() {
  3773. int8_t material = code_seen('S') ? code_value_short() : 0;
  3774. if (material < 0 || material > 1) {
  3775. SERIAL_ERROR_START;
  3776. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3777. }
  3778. else {
  3779. int v;
  3780. switch (material) {
  3781. case 0:
  3782. if (code_seen('H')) {
  3783. v = code_value_short();
  3784. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3785. }
  3786. if (code_seen('F')) {
  3787. v = code_value_short();
  3788. plaPreheatFanSpeed = constrain(v, 0, 255);
  3789. }
  3790. #if TEMP_SENSOR_BED != 0
  3791. if (code_seen('B')) {
  3792. v = code_value_short();
  3793. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3794. }
  3795. #endif
  3796. break;
  3797. case 1:
  3798. if (code_seen('H')) {
  3799. v = code_value_short();
  3800. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3801. }
  3802. if (code_seen('F')) {
  3803. v = code_value_short();
  3804. absPreheatFanSpeed = constrain(v, 0, 255);
  3805. }
  3806. #if TEMP_SENSOR_BED != 0
  3807. if (code_seen('B')) {
  3808. v = code_value_short();
  3809. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3810. }
  3811. #endif
  3812. break;
  3813. }
  3814. }
  3815. }
  3816. #endif
  3817. #if HAS_POWER_SWITCH
  3818. /**
  3819. * M80: Turn on Power Supply
  3820. */
  3821. inline void gcode_M80() {
  3822. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3823. /**
  3824. * If you have a switch on suicide pin, this is useful
  3825. * if you want to start another print with suicide feature after
  3826. * a print without suicide...
  3827. */
  3828. #if HAS_SUICIDE
  3829. OUT_WRITE(SUICIDE_PIN, HIGH);
  3830. #endif
  3831. #if ENABLED(ULTIPANEL)
  3832. powersupply = true;
  3833. LCD_MESSAGEPGM(WELCOME_MSG);
  3834. lcd_update();
  3835. #endif
  3836. }
  3837. #endif // HAS_POWER_SWITCH
  3838. /**
  3839. * M81: Turn off Power, including Power Supply, if there is one.
  3840. *
  3841. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3842. */
  3843. inline void gcode_M81() {
  3844. disable_all_heaters();
  3845. finishAndDisableSteppers();
  3846. #if FAN_COUNT > 0
  3847. #if FAN_COUNT > 1
  3848. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3849. #else
  3850. fanSpeeds[0] = 0;
  3851. #endif
  3852. #endif
  3853. delay(1000); // Wait 1 second before switching off
  3854. #if HAS_SUICIDE
  3855. st_synchronize();
  3856. suicide();
  3857. #elif HAS_POWER_SWITCH
  3858. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3859. #endif
  3860. #if ENABLED(ULTIPANEL)
  3861. #if HAS_POWER_SWITCH
  3862. powersupply = false;
  3863. #endif
  3864. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3865. lcd_update();
  3866. #endif
  3867. }
  3868. /**
  3869. * M82: Set E codes absolute (default)
  3870. */
  3871. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3872. /**
  3873. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3874. */
  3875. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3876. /**
  3877. * M18, M84: Disable all stepper motors
  3878. */
  3879. inline void gcode_M18_M84() {
  3880. if (code_seen('S')) {
  3881. stepper_inactive_time = code_value() * 1000;
  3882. }
  3883. else {
  3884. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3885. if (all_axis) {
  3886. finishAndDisableSteppers();
  3887. }
  3888. else {
  3889. st_synchronize();
  3890. if (code_seen('X')) disable_x();
  3891. if (code_seen('Y')) disable_y();
  3892. if (code_seen('Z')) disable_z();
  3893. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3894. if (code_seen('E')) {
  3895. disable_e0();
  3896. disable_e1();
  3897. disable_e2();
  3898. disable_e3();
  3899. }
  3900. #endif
  3901. }
  3902. }
  3903. }
  3904. /**
  3905. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3906. */
  3907. inline void gcode_M85() {
  3908. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3909. }
  3910. /**
  3911. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3912. * (Follows the same syntax as G92)
  3913. */
  3914. inline void gcode_M92() {
  3915. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3916. if (code_seen(axis_codes[i])) {
  3917. if (i == E_AXIS) {
  3918. float value = code_value();
  3919. if (value < 20.0) {
  3920. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3921. max_e_jerk *= factor;
  3922. max_feedrate[i] *= factor;
  3923. axis_steps_per_sqr_second[i] *= factor;
  3924. }
  3925. axis_steps_per_unit[i] = value;
  3926. }
  3927. else {
  3928. axis_steps_per_unit[i] = code_value();
  3929. }
  3930. }
  3931. }
  3932. }
  3933. /**
  3934. * M114: Output current position to serial port
  3935. */
  3936. inline void gcode_M114() {
  3937. SERIAL_PROTOCOLPGM("X:");
  3938. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3939. SERIAL_PROTOCOLPGM(" Y:");
  3940. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3941. SERIAL_PROTOCOLPGM(" Z:");
  3942. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3943. SERIAL_PROTOCOLPGM(" E:");
  3944. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3945. CRITICAL_SECTION_START;
  3946. extern volatile long count_position[NUM_AXIS];
  3947. long xpos = count_position[X_AXIS],
  3948. ypos = count_position[Y_AXIS],
  3949. zpos = count_position[Z_AXIS];
  3950. CRITICAL_SECTION_END;
  3951. #if ENABLED(COREXY) || ENABLED(COREXZ)
  3952. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  3953. #else
  3954. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3955. #endif
  3956. SERIAL_PROTOCOL(xpos);
  3957. #if ENABLED(COREXY)
  3958. SERIAL_PROTOCOLPGM(" B:");
  3959. #else
  3960. SERIAL_PROTOCOLPGM(" Y:");
  3961. #endif
  3962. SERIAL_PROTOCOL(ypos);
  3963. #if ENABLED(COREXZ)
  3964. SERIAL_PROTOCOLPGM(" C:");
  3965. #else
  3966. SERIAL_PROTOCOLPGM(" Z:");
  3967. #endif
  3968. SERIAL_PROTOCOL(zpos);
  3969. SERIAL_EOL;
  3970. #if ENABLED(SCARA)
  3971. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3972. SERIAL_PROTOCOL(delta[X_AXIS]);
  3973. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3974. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3975. SERIAL_EOL;
  3976. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3977. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  3978. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3979. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  3980. SERIAL_EOL;
  3981. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3982. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  3983. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3984. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  3985. SERIAL_EOL; SERIAL_EOL;
  3986. #endif
  3987. }
  3988. /**
  3989. * M115: Capabilities string
  3990. */
  3991. inline void gcode_M115() {
  3992. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3993. }
  3994. /**
  3995. * M117: Set LCD Status Message
  3996. */
  3997. inline void gcode_M117() {
  3998. lcd_setstatus(current_command_args);
  3999. }
  4000. /**
  4001. * M119: Output endstop states to serial output
  4002. */
  4003. inline void gcode_M119() {
  4004. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4005. #if HAS_X_MIN
  4006. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4007. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4008. #endif
  4009. #if HAS_X_MAX
  4010. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4011. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4012. #endif
  4013. #if HAS_Y_MIN
  4014. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4015. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4016. #endif
  4017. #if HAS_Y_MAX
  4018. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4019. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4020. #endif
  4021. #if HAS_Z_MIN
  4022. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4023. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4024. #endif
  4025. #if HAS_Z_MAX
  4026. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4027. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4028. #endif
  4029. #if HAS_Z2_MAX
  4030. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4031. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4032. #endif
  4033. #if HAS_Z_PROBE
  4034. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4035. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4036. #endif
  4037. }
  4038. /**
  4039. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4040. */
  4041. inline void gcode_M120() { enable_endstops_globally(true); }
  4042. /**
  4043. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4044. */
  4045. inline void gcode_M121() { enable_endstops_globally(false); }
  4046. #if ENABLED(BLINKM)
  4047. /**
  4048. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4049. */
  4050. inline void gcode_M150() {
  4051. SendColors(
  4052. code_seen('R') ? (byte)code_value_short() : 0,
  4053. code_seen('U') ? (byte)code_value_short() : 0,
  4054. code_seen('B') ? (byte)code_value_short() : 0
  4055. );
  4056. }
  4057. #endif // BLINKM
  4058. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4059. /**
  4060. * M155: Send data to a I2C slave device
  4061. *
  4062. * This is a PoC, the formating and arguments for the GCODE will
  4063. * change to be more compatible, the current proposal is:
  4064. *
  4065. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4066. *
  4067. * M155 B<byte-1 value in base 10>
  4068. * M155 B<byte-2 value in base 10>
  4069. * M155 B<byte-3 value in base 10>
  4070. *
  4071. * M155 S1 ; Send the buffered data and reset the buffer
  4072. * M155 R1 ; Reset the buffer without sending data
  4073. *
  4074. */
  4075. inline void gcode_M155() {
  4076. // Set the target address
  4077. if (code_seen('A'))
  4078. i2c.address((uint8_t) code_value_short());
  4079. // Add a new byte to the buffer
  4080. else if (code_seen('B'))
  4081. i2c.addbyte((int) code_value_short());
  4082. // Flush the buffer to the bus
  4083. else if (code_seen('S')) i2c.send();
  4084. // Reset and rewind the buffer
  4085. else if (code_seen('R')) i2c.reset();
  4086. }
  4087. /**
  4088. * M156: Request X bytes from I2C slave device
  4089. *
  4090. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4091. */
  4092. inline void gcode_M156() {
  4093. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4094. int bytes = code_seen('B') ? code_value_short() : 0;
  4095. if (addr && bytes) {
  4096. i2c.address(addr);
  4097. i2c.reqbytes(bytes);
  4098. }
  4099. }
  4100. #endif //EXPERIMENTAL_I2CBUS
  4101. /**
  4102. * M200: Set filament diameter and set E axis units to cubic millimeters
  4103. *
  4104. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4105. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4106. */
  4107. inline void gcode_M200() {
  4108. if (setTargetedHotend(200)) return;
  4109. if (code_seen('D')) {
  4110. float diameter = code_value();
  4111. // setting any extruder filament size disables volumetric on the assumption that
  4112. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4113. // for all extruders
  4114. volumetric_enabled = (diameter != 0.0);
  4115. if (volumetric_enabled) {
  4116. filament_size[target_extruder] = diameter;
  4117. // make sure all extruders have some sane value for the filament size
  4118. for (int i = 0; i < EXTRUDERS; i++)
  4119. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4120. }
  4121. }
  4122. else {
  4123. //reserved for setting filament diameter via UFID or filament measuring device
  4124. return;
  4125. }
  4126. calculate_volumetric_multipliers();
  4127. }
  4128. /**
  4129. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4130. */
  4131. inline void gcode_M201() {
  4132. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4133. if (code_seen(axis_codes[i])) {
  4134. max_acceleration_units_per_sq_second[i] = code_value();
  4135. }
  4136. }
  4137. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4138. reset_acceleration_rates();
  4139. }
  4140. #if 0 // Not used for Sprinter/grbl gen6
  4141. inline void gcode_M202() {
  4142. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4143. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4144. }
  4145. }
  4146. #endif
  4147. /**
  4148. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4149. */
  4150. inline void gcode_M203() {
  4151. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4152. if (code_seen(axis_codes[i])) {
  4153. max_feedrate[i] = code_value();
  4154. }
  4155. }
  4156. }
  4157. /**
  4158. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4159. *
  4160. * P = Printing moves
  4161. * R = Retract only (no X, Y, Z) moves
  4162. * T = Travel (non printing) moves
  4163. *
  4164. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4165. */
  4166. inline void gcode_M204() {
  4167. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4168. travel_acceleration = acceleration = code_value();
  4169. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4170. SERIAL_EOL;
  4171. }
  4172. if (code_seen('P')) {
  4173. acceleration = code_value();
  4174. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4175. SERIAL_EOL;
  4176. }
  4177. if (code_seen('R')) {
  4178. retract_acceleration = code_value();
  4179. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4180. SERIAL_EOL;
  4181. }
  4182. if (code_seen('T')) {
  4183. travel_acceleration = code_value();
  4184. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4185. SERIAL_EOL;
  4186. }
  4187. }
  4188. /**
  4189. * M205: Set Advanced Settings
  4190. *
  4191. * S = Min Feed Rate (mm/s)
  4192. * T = Min Travel Feed Rate (mm/s)
  4193. * B = Min Segment Time (µs)
  4194. * X = Max XY Jerk (mm/s/s)
  4195. * Z = Max Z Jerk (mm/s/s)
  4196. * E = Max E Jerk (mm/s/s)
  4197. */
  4198. inline void gcode_M205() {
  4199. if (code_seen('S')) minimumfeedrate = code_value();
  4200. if (code_seen('T')) mintravelfeedrate = code_value();
  4201. if (code_seen('B')) minsegmenttime = code_value();
  4202. if (code_seen('X')) max_xy_jerk = code_value();
  4203. if (code_seen('Z')) max_z_jerk = code_value();
  4204. if (code_seen('E')) max_e_jerk = code_value();
  4205. }
  4206. /**
  4207. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4208. */
  4209. inline void gcode_M206() {
  4210. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4211. if (code_seen(axis_codes[i])) {
  4212. home_offset[i] = code_value();
  4213. }
  4214. }
  4215. #if ENABLED(SCARA)
  4216. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  4217. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  4218. #endif
  4219. }
  4220. #if ENABLED(DELTA)
  4221. /**
  4222. * M665: Set delta configurations
  4223. *
  4224. * L = diagonal rod
  4225. * R = delta radius
  4226. * S = segments per second
  4227. * A = Alpha (Tower 1) diagonal rod trim
  4228. * B = Beta (Tower 2) diagonal rod trim
  4229. * C = Gamma (Tower 3) diagonal rod trim
  4230. */
  4231. inline void gcode_M665() {
  4232. if (code_seen('L')) delta_diagonal_rod = code_value();
  4233. if (code_seen('R')) delta_radius = code_value();
  4234. if (code_seen('S')) delta_segments_per_second = code_value();
  4235. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4236. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4237. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4238. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4239. }
  4240. /**
  4241. * M666: Set delta endstop adjustment
  4242. */
  4243. inline void gcode_M666() {
  4244. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4245. if (DEBUGGING(LEVELING)) {
  4246. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4247. }
  4248. #endif
  4249. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4250. if (code_seen(axis_codes[i])) {
  4251. endstop_adj[i] = code_value();
  4252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4253. if (DEBUGGING(LEVELING)) {
  4254. SERIAL_ECHOPGM("endstop_adj[");
  4255. SERIAL_ECHO(axis_codes[i]);
  4256. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4257. SERIAL_EOL;
  4258. }
  4259. #endif
  4260. }
  4261. }
  4262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4263. if (DEBUGGING(LEVELING)) {
  4264. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4265. }
  4266. #endif
  4267. }
  4268. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4269. /**
  4270. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4271. */
  4272. inline void gcode_M666() {
  4273. if (code_seen('Z')) z_endstop_adj = code_value();
  4274. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4275. SERIAL_EOL;
  4276. }
  4277. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4278. #if ENABLED(FWRETRACT)
  4279. /**
  4280. * M207: Set firmware retraction values
  4281. *
  4282. * S[+mm] retract_length
  4283. * W[+mm] retract_length_swap (multi-extruder)
  4284. * F[mm/min] retract_feedrate
  4285. * Z[mm] retract_zlift
  4286. */
  4287. inline void gcode_M207() {
  4288. if (code_seen('S')) retract_length = code_value();
  4289. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4290. if (code_seen('Z')) retract_zlift = code_value();
  4291. #if EXTRUDERS > 1
  4292. if (code_seen('W')) retract_length_swap = code_value();
  4293. #endif
  4294. }
  4295. /**
  4296. * M208: Set firmware un-retraction values
  4297. *
  4298. * S[+mm] retract_recover_length (in addition to M207 S*)
  4299. * W[+mm] retract_recover_length_swap (multi-extruder)
  4300. * F[mm/min] retract_recover_feedrate
  4301. */
  4302. inline void gcode_M208() {
  4303. if (code_seen('S')) retract_recover_length = code_value();
  4304. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4305. #if EXTRUDERS > 1
  4306. if (code_seen('W')) retract_recover_length_swap = code_value();
  4307. #endif
  4308. }
  4309. /**
  4310. * M209: Enable automatic retract (M209 S1)
  4311. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4312. */
  4313. inline void gcode_M209() {
  4314. if (code_seen('S')) {
  4315. int t = code_value_short();
  4316. switch (t) {
  4317. case 0:
  4318. autoretract_enabled = false;
  4319. break;
  4320. case 1:
  4321. autoretract_enabled = true;
  4322. break;
  4323. default:
  4324. unknown_command_error();
  4325. return;
  4326. }
  4327. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4328. }
  4329. }
  4330. #endif // FWRETRACT
  4331. #if EXTRUDERS > 1
  4332. /**
  4333. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4334. */
  4335. inline void gcode_M218() {
  4336. if (setTargetedHotend(218)) return;
  4337. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4338. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4339. #if ENABLED(DUAL_X_CARRIAGE)
  4340. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4341. #endif
  4342. SERIAL_ECHO_START;
  4343. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4344. for (int e = 0; e < EXTRUDERS; e++) {
  4345. SERIAL_CHAR(' ');
  4346. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4347. SERIAL_CHAR(',');
  4348. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4349. #if ENABLED(DUAL_X_CARRIAGE)
  4350. SERIAL_CHAR(',');
  4351. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4352. #endif
  4353. }
  4354. SERIAL_EOL;
  4355. }
  4356. #endif // EXTRUDERS > 1
  4357. /**
  4358. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4359. */
  4360. inline void gcode_M220() {
  4361. if (code_seen('S')) feedrate_multiplier = code_value();
  4362. }
  4363. /**
  4364. * M221: Set extrusion percentage (M221 T0 S95)
  4365. */
  4366. inline void gcode_M221() {
  4367. if (code_seen('S')) {
  4368. int sval = code_value();
  4369. if (setTargetedHotend(221)) return;
  4370. extruder_multiplier[target_extruder] = sval;
  4371. }
  4372. }
  4373. /**
  4374. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4375. */
  4376. inline void gcode_M226() {
  4377. if (code_seen('P')) {
  4378. int pin_number = code_value();
  4379. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4380. if (pin_state >= -1 && pin_state <= 1) {
  4381. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4382. if (sensitive_pins[i] == pin_number) {
  4383. pin_number = -1;
  4384. break;
  4385. }
  4386. }
  4387. if (pin_number > -1) {
  4388. int target = LOW;
  4389. st_synchronize();
  4390. pinMode(pin_number, INPUT);
  4391. switch (pin_state) {
  4392. case 1:
  4393. target = HIGH;
  4394. break;
  4395. case 0:
  4396. target = LOW;
  4397. break;
  4398. case -1:
  4399. target = !digitalRead(pin_number);
  4400. break;
  4401. }
  4402. while (digitalRead(pin_number) != target) idle();
  4403. } // pin_number > -1
  4404. } // pin_state -1 0 1
  4405. } // code_seen('P')
  4406. }
  4407. #if HAS_SERVOS
  4408. /**
  4409. * M280: Get or set servo position. P<index> S<angle>
  4410. */
  4411. inline void gcode_M280() {
  4412. int servo_index = code_seen('P') ? code_value_short() : -1;
  4413. int servo_position = 0;
  4414. if (code_seen('S')) {
  4415. servo_position = code_value_short();
  4416. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4417. servo[servo_index].move(servo_position);
  4418. else {
  4419. SERIAL_ERROR_START;
  4420. SERIAL_ERROR("Servo ");
  4421. SERIAL_ERROR(servo_index);
  4422. SERIAL_ERRORLN(" out of range");
  4423. }
  4424. }
  4425. else if (servo_index >= 0) {
  4426. SERIAL_ECHO_START;
  4427. SERIAL_ECHO(" Servo ");
  4428. SERIAL_ECHO(servo_index);
  4429. SERIAL_ECHO(": ");
  4430. SERIAL_ECHOLN(servo[servo_index].read());
  4431. }
  4432. }
  4433. #endif // HAS_SERVOS
  4434. #if HAS_BUZZER
  4435. /**
  4436. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4437. */
  4438. inline void gcode_M300() {
  4439. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4440. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4441. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4442. buzz(beepP, beepS);
  4443. }
  4444. #endif // HAS_BUZZER
  4445. #if ENABLED(PIDTEMP)
  4446. /**
  4447. * M301: Set PID parameters P I D (and optionally C, L)
  4448. *
  4449. * P[float] Kp term
  4450. * I[float] Ki term (unscaled)
  4451. * D[float] Kd term (unscaled)
  4452. *
  4453. * With PID_ADD_EXTRUSION_RATE:
  4454. *
  4455. * C[float] Kc term
  4456. * L[float] LPQ length
  4457. */
  4458. inline void gcode_M301() {
  4459. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4460. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4461. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4462. if (e < EXTRUDERS) { // catch bad input value
  4463. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4464. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4465. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4466. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4467. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4468. if (code_seen('L')) lpq_len = code_value();
  4469. NOMORE(lpq_len, LPQ_MAX_LEN);
  4470. #endif
  4471. updatePID();
  4472. SERIAL_ECHO_START;
  4473. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4474. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4475. SERIAL_ECHO(e);
  4476. #endif // PID_PARAMS_PER_EXTRUDER
  4477. SERIAL_ECHO(" p:");
  4478. SERIAL_ECHO(PID_PARAM(Kp, e));
  4479. SERIAL_ECHO(" i:");
  4480. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4481. SERIAL_ECHO(" d:");
  4482. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4483. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4484. SERIAL_ECHO(" c:");
  4485. //Kc does not have scaling applied above, or in resetting defaults
  4486. SERIAL_ECHO(PID_PARAM(Kc, e));
  4487. #endif
  4488. SERIAL_EOL;
  4489. }
  4490. else {
  4491. SERIAL_ERROR_START;
  4492. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4493. }
  4494. }
  4495. #endif // PIDTEMP
  4496. #if ENABLED(PIDTEMPBED)
  4497. inline void gcode_M304() {
  4498. if (code_seen('P')) bedKp = code_value();
  4499. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4500. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4501. updatePID();
  4502. SERIAL_ECHO_START;
  4503. SERIAL_ECHO(" p:");
  4504. SERIAL_ECHO(bedKp);
  4505. SERIAL_ECHO(" i:");
  4506. SERIAL_ECHO(unscalePID_i(bedKi));
  4507. SERIAL_ECHO(" d:");
  4508. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4509. }
  4510. #endif // PIDTEMPBED
  4511. #if defined(CHDK) || HAS_PHOTOGRAPH
  4512. /**
  4513. * M240: Trigger a camera by emulating a Canon RC-1
  4514. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4515. */
  4516. inline void gcode_M240() {
  4517. #ifdef CHDK
  4518. OUT_WRITE(CHDK, HIGH);
  4519. chdkHigh = millis();
  4520. chdkActive = true;
  4521. #elif HAS_PHOTOGRAPH
  4522. const uint8_t NUM_PULSES = 16;
  4523. const float PULSE_LENGTH = 0.01524;
  4524. for (int i = 0; i < NUM_PULSES; i++) {
  4525. WRITE(PHOTOGRAPH_PIN, HIGH);
  4526. _delay_ms(PULSE_LENGTH);
  4527. WRITE(PHOTOGRAPH_PIN, LOW);
  4528. _delay_ms(PULSE_LENGTH);
  4529. }
  4530. delay(7.33);
  4531. for (int i = 0; i < NUM_PULSES; i++) {
  4532. WRITE(PHOTOGRAPH_PIN, HIGH);
  4533. _delay_ms(PULSE_LENGTH);
  4534. WRITE(PHOTOGRAPH_PIN, LOW);
  4535. _delay_ms(PULSE_LENGTH);
  4536. }
  4537. #endif // !CHDK && HAS_PHOTOGRAPH
  4538. }
  4539. #endif // CHDK || PHOTOGRAPH_PIN
  4540. #if ENABLED(HAS_LCD_CONTRAST)
  4541. /**
  4542. * M250: Read and optionally set the LCD contrast
  4543. */
  4544. inline void gcode_M250() {
  4545. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4546. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4547. SERIAL_PROTOCOL(lcd_contrast);
  4548. SERIAL_EOL;
  4549. }
  4550. #endif // HAS_LCD_CONTRAST
  4551. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4552. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4553. /**
  4554. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4555. */
  4556. inline void gcode_M302() {
  4557. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4558. }
  4559. #endif // PREVENT_DANGEROUS_EXTRUDE
  4560. /**
  4561. * M303: PID relay autotune
  4562. *
  4563. * S<temperature> sets the target temperature. (default 150C)
  4564. * E<extruder> (-1 for the bed) (default 0)
  4565. * C<cycles>
  4566. * U<bool> with a non-zero value will apply the result to current settings
  4567. */
  4568. inline void gcode_M303() {
  4569. int e = code_seen('E') ? code_value_short() : 0;
  4570. int c = code_seen('C') ? code_value_short() : 5;
  4571. bool u = code_seen('U') && code_value_short() != 0;
  4572. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4573. if (e >= 0 && e < EXTRUDERS)
  4574. target_extruder = e;
  4575. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4576. PID_autotune(temp, e, c, u);
  4577. KEEPALIVE_STATE(IN_HANDLER);
  4578. }
  4579. #if ENABLED(SCARA)
  4580. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4581. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4582. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4583. if (IsRunning()) {
  4584. //gcode_get_destination(); // For X Y Z E F
  4585. delta[X_AXIS] = delta_x;
  4586. delta[Y_AXIS] = delta_y;
  4587. calculate_SCARA_forward_Transform(delta);
  4588. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4589. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4590. prepare_move();
  4591. //ok_to_send();
  4592. return true;
  4593. }
  4594. return false;
  4595. }
  4596. /**
  4597. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4598. */
  4599. inline bool gcode_M360() {
  4600. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4601. return SCARA_move_to_cal(0, 120);
  4602. }
  4603. /**
  4604. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4605. */
  4606. inline bool gcode_M361() {
  4607. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4608. return SCARA_move_to_cal(90, 130);
  4609. }
  4610. /**
  4611. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4612. */
  4613. inline bool gcode_M362() {
  4614. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4615. return SCARA_move_to_cal(60, 180);
  4616. }
  4617. /**
  4618. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4619. */
  4620. inline bool gcode_M363() {
  4621. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4622. return SCARA_move_to_cal(50, 90);
  4623. }
  4624. /**
  4625. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4626. */
  4627. inline bool gcode_M364() {
  4628. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4629. return SCARA_move_to_cal(45, 135);
  4630. }
  4631. /**
  4632. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4633. */
  4634. inline void gcode_M365() {
  4635. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4636. if (code_seen(axis_codes[i])) {
  4637. axis_scaling[i] = code_value();
  4638. }
  4639. }
  4640. }
  4641. #endif // SCARA
  4642. #if ENABLED(EXT_SOLENOID)
  4643. void enable_solenoid(uint8_t num) {
  4644. switch (num) {
  4645. case 0:
  4646. OUT_WRITE(SOL0_PIN, HIGH);
  4647. break;
  4648. #if HAS_SOLENOID_1
  4649. case 1:
  4650. OUT_WRITE(SOL1_PIN, HIGH);
  4651. break;
  4652. #endif
  4653. #if HAS_SOLENOID_2
  4654. case 2:
  4655. OUT_WRITE(SOL2_PIN, HIGH);
  4656. break;
  4657. #endif
  4658. #if HAS_SOLENOID_3
  4659. case 3:
  4660. OUT_WRITE(SOL3_PIN, HIGH);
  4661. break;
  4662. #endif
  4663. default:
  4664. SERIAL_ECHO_START;
  4665. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4666. break;
  4667. }
  4668. }
  4669. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4670. void disable_all_solenoids() {
  4671. OUT_WRITE(SOL0_PIN, LOW);
  4672. OUT_WRITE(SOL1_PIN, LOW);
  4673. OUT_WRITE(SOL2_PIN, LOW);
  4674. OUT_WRITE(SOL3_PIN, LOW);
  4675. }
  4676. /**
  4677. * M380: Enable solenoid on the active extruder
  4678. */
  4679. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4680. /**
  4681. * M381: Disable all solenoids
  4682. */
  4683. inline void gcode_M381() { disable_all_solenoids(); }
  4684. #endif // EXT_SOLENOID
  4685. /**
  4686. * M400: Finish all moves
  4687. */
  4688. inline void gcode_M400() { st_synchronize(); }
  4689. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4690. /**
  4691. * M401: Engage Z Servo endstop if available
  4692. */
  4693. inline void gcode_M401() {
  4694. #if HAS_SERVO_ENDSTOPS
  4695. raise_z_for_servo();
  4696. #endif
  4697. deploy_z_probe();
  4698. }
  4699. /**
  4700. * M402: Retract Z Servo endstop if enabled
  4701. */
  4702. inline void gcode_M402() {
  4703. #if HAS_SERVO_ENDSTOPS
  4704. raise_z_for_servo();
  4705. #endif
  4706. stow_z_probe(false);
  4707. }
  4708. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4709. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4710. /**
  4711. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4712. */
  4713. inline void gcode_M404() {
  4714. if (code_seen('W')) {
  4715. filament_width_nominal = code_value();
  4716. }
  4717. else {
  4718. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4719. SERIAL_PROTOCOLLN(filament_width_nominal);
  4720. }
  4721. }
  4722. /**
  4723. * M405: Turn on filament sensor for control
  4724. */
  4725. inline void gcode_M405() {
  4726. if (code_seen('D')) meas_delay_cm = code_value();
  4727. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4728. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4729. int temp_ratio = widthFil_to_size_ratio();
  4730. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4731. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4732. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4733. }
  4734. filament_sensor = true;
  4735. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4736. //SERIAL_PROTOCOL(filament_width_meas);
  4737. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4738. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4739. }
  4740. /**
  4741. * M406: Turn off filament sensor for control
  4742. */
  4743. inline void gcode_M406() { filament_sensor = false; }
  4744. /**
  4745. * M407: Get measured filament diameter on serial output
  4746. */
  4747. inline void gcode_M407() {
  4748. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4749. SERIAL_PROTOCOLLN(filament_width_meas);
  4750. }
  4751. #endif // FILAMENT_WIDTH_SENSOR
  4752. /**
  4753. * M410: Quickstop - Abort all planned moves
  4754. *
  4755. * This will stop the carriages mid-move, so most likely they
  4756. * will be out of sync with the stepper position after this.
  4757. */
  4758. inline void gcode_M410() { quickStop(); }
  4759. #if ENABLED(MESH_BED_LEVELING)
  4760. /**
  4761. * M420: Enable/Disable Mesh Bed Leveling
  4762. */
  4763. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4764. /**
  4765. * M421: Set a single Mesh Bed Leveling Z coordinate
  4766. */
  4767. inline void gcode_M421() {
  4768. float x = 0, y = 0, z = 0;
  4769. bool err = false, hasX, hasY, hasZ;
  4770. if ((hasX = code_seen('X'))) x = code_value();
  4771. if ((hasY = code_seen('Y'))) y = code_value();
  4772. if ((hasZ = code_seen('Z'))) z = code_value();
  4773. if (!hasX || !hasY || !hasZ) {
  4774. SERIAL_ERROR_START;
  4775. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4776. err = true;
  4777. }
  4778. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4779. SERIAL_ERROR_START;
  4780. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4781. err = true;
  4782. }
  4783. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4784. }
  4785. #endif
  4786. /**
  4787. * M428: Set home_offset based on the distance between the
  4788. * current_position and the nearest "reference point."
  4789. * If an axis is past center its endstop position
  4790. * is the reference-point. Otherwise it uses 0. This allows
  4791. * the Z offset to be set near the bed when using a max endstop.
  4792. *
  4793. * M428 can't be used more than 2cm away from 0 or an endstop.
  4794. *
  4795. * Use M206 to set these values directly.
  4796. */
  4797. inline void gcode_M428() {
  4798. bool err = false;
  4799. float new_offs[3], new_pos[3];
  4800. memcpy(new_pos, current_position, sizeof(new_pos));
  4801. memcpy(new_offs, home_offset, sizeof(new_offs));
  4802. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4803. if (axis_homed[i]) {
  4804. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4805. diff = new_pos[i] - base;
  4806. if (diff > -20 && diff < 20) {
  4807. new_offs[i] -= diff;
  4808. new_pos[i] = base;
  4809. }
  4810. else {
  4811. SERIAL_ERROR_START;
  4812. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4813. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4814. #if HAS_BUZZER
  4815. buzz(200, 40);
  4816. #endif
  4817. err = true;
  4818. break;
  4819. }
  4820. }
  4821. }
  4822. if (!err) {
  4823. memcpy(current_position, new_pos, sizeof(new_pos));
  4824. memcpy(home_offset, new_offs, sizeof(new_offs));
  4825. sync_plan_position();
  4826. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4827. #if HAS_BUZZER
  4828. buzz(200, 659);
  4829. buzz(200, 698);
  4830. #endif
  4831. }
  4832. }
  4833. /**
  4834. * M500: Store settings in EEPROM
  4835. */
  4836. inline void gcode_M500() {
  4837. Config_StoreSettings();
  4838. }
  4839. /**
  4840. * M501: Read settings from EEPROM
  4841. */
  4842. inline void gcode_M501() {
  4843. Config_RetrieveSettings();
  4844. }
  4845. /**
  4846. * M502: Revert to default settings
  4847. */
  4848. inline void gcode_M502() {
  4849. Config_ResetDefault();
  4850. }
  4851. /**
  4852. * M503: print settings currently in memory
  4853. */
  4854. inline void gcode_M503() {
  4855. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4856. }
  4857. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4858. /**
  4859. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4860. */
  4861. inline void gcode_M540() {
  4862. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4863. }
  4864. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4865. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4866. inline void gcode_SET_Z_PROBE_OFFSET() {
  4867. SERIAL_ECHO_START;
  4868. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4869. SERIAL_CHAR(' ');
  4870. if (code_seen('Z')) {
  4871. float value = code_value();
  4872. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4873. zprobe_zoffset = value;
  4874. SERIAL_ECHO(zprobe_zoffset);
  4875. }
  4876. else {
  4877. SERIAL_ECHOPGM(MSG_Z_MIN);
  4878. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4879. SERIAL_ECHOPGM(MSG_Z_MAX);
  4880. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4881. }
  4882. }
  4883. else {
  4884. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4885. }
  4886. SERIAL_EOL;
  4887. }
  4888. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4889. #if ENABLED(FILAMENTCHANGEENABLE)
  4890. /**
  4891. * M600: Pause for filament change
  4892. *
  4893. * E[distance] - Retract the filament this far (negative value)
  4894. * Z[distance] - Move the Z axis by this distance
  4895. * X[position] - Move to this X position, with Y
  4896. * Y[position] - Move to this Y position, with X
  4897. * L[distance] - Retract distance for removal (manual reload)
  4898. *
  4899. * Default values are used for omitted arguments.
  4900. *
  4901. */
  4902. inline void gcode_M600() {
  4903. if (degHotend(active_extruder) < extrude_min_temp) {
  4904. SERIAL_ERROR_START;
  4905. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4906. return;
  4907. }
  4908. float lastpos[NUM_AXIS];
  4909. #if ENABLED(DELTA)
  4910. float fr60 = feedrate / 60;
  4911. #endif
  4912. for (int i = 0; i < NUM_AXIS; i++)
  4913. lastpos[i] = destination[i] = current_position[i];
  4914. #if ENABLED(DELTA)
  4915. #define RUNPLAN calculate_delta(destination); \
  4916. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4917. #else
  4918. #define RUNPLAN line_to_destination();
  4919. #endif
  4920. //retract by E
  4921. if (code_seen('E')) destination[E_AXIS] += code_value();
  4922. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4923. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4924. #endif
  4925. RUNPLAN;
  4926. //lift Z
  4927. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4928. #ifdef FILAMENTCHANGE_ZADD
  4929. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4930. #endif
  4931. RUNPLAN;
  4932. //move xy
  4933. if (code_seen('X')) destination[X_AXIS] = code_value();
  4934. #ifdef FILAMENTCHANGE_XPOS
  4935. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4936. #endif
  4937. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4938. #ifdef FILAMENTCHANGE_YPOS
  4939. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4940. #endif
  4941. RUNPLAN;
  4942. if (code_seen('L')) destination[E_AXIS] += code_value();
  4943. #ifdef FILAMENTCHANGE_FINALRETRACT
  4944. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4945. #endif
  4946. RUNPLAN;
  4947. //finish moves
  4948. st_synchronize();
  4949. //disable extruder steppers so filament can be removed
  4950. disable_e0();
  4951. disable_e1();
  4952. disable_e2();
  4953. disable_e3();
  4954. delay(100);
  4955. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4956. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4957. millis_t next_tick = 0;
  4958. #endif
  4959. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4960. while (!lcd_clicked()) {
  4961. #if DISABLED(AUTO_FILAMENT_CHANGE)
  4962. millis_t ms = millis();
  4963. if (ms >= next_tick) {
  4964. lcd_quick_feedback();
  4965. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4966. }
  4967. idle(true);
  4968. #else
  4969. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4970. destination[E_AXIS] = current_position[E_AXIS];
  4971. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4972. st_synchronize();
  4973. #endif
  4974. } // while(!lcd_clicked)
  4975. KEEPALIVE_STATE(IN_HANDLER);
  4976. lcd_quick_feedback(); // click sound feedback
  4977. #if ENABLED(AUTO_FILAMENT_CHANGE)
  4978. current_position[E_AXIS] = 0;
  4979. st_synchronize();
  4980. #endif
  4981. //return to normal
  4982. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4983. #ifdef FILAMENTCHANGE_FINALRETRACT
  4984. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4985. #endif
  4986. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4987. plan_set_e_position(current_position[E_AXIS]);
  4988. RUNPLAN; //should do nothing
  4989. lcd_reset_alert_level();
  4990. #if ENABLED(DELTA)
  4991. // Move XYZ to starting position, then E
  4992. calculate_delta(lastpos);
  4993. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4994. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4995. #else
  4996. // Move XY to starting position, then Z, then E
  4997. destination[X_AXIS] = lastpos[X_AXIS];
  4998. destination[Y_AXIS] = lastpos[Y_AXIS];
  4999. line_to_destination();
  5000. destination[Z_AXIS] = lastpos[Z_AXIS];
  5001. line_to_destination();
  5002. destination[E_AXIS] = lastpos[E_AXIS];
  5003. line_to_destination();
  5004. #endif
  5005. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5006. filrunoutEnqueued = false;
  5007. #endif
  5008. }
  5009. #endif // FILAMENTCHANGEENABLE
  5010. #if ENABLED(DUAL_X_CARRIAGE)
  5011. /**
  5012. * M605: Set dual x-carriage movement mode
  5013. *
  5014. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5015. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5016. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5017. * millimeters x-offset and an optional differential hotend temperature of
  5018. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5019. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5020. *
  5021. * Note: the X axis should be homed after changing dual x-carriage mode.
  5022. */
  5023. inline void gcode_M605() {
  5024. st_synchronize();
  5025. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5026. switch (dual_x_carriage_mode) {
  5027. case DXC_DUPLICATION_MODE:
  5028. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5029. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5030. SERIAL_ECHO_START;
  5031. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5032. SERIAL_CHAR(' ');
  5033. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5034. SERIAL_CHAR(',');
  5035. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5036. SERIAL_CHAR(' ');
  5037. SERIAL_ECHO(duplicate_extruder_x_offset);
  5038. SERIAL_CHAR(',');
  5039. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5040. break;
  5041. case DXC_FULL_CONTROL_MODE:
  5042. case DXC_AUTO_PARK_MODE:
  5043. break;
  5044. default:
  5045. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5046. break;
  5047. }
  5048. active_extruder_parked = false;
  5049. extruder_duplication_enabled = false;
  5050. delayed_move_time = 0;
  5051. }
  5052. #endif // DUAL_X_CARRIAGE
  5053. /**
  5054. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5055. */
  5056. inline void gcode_M907() {
  5057. #if HAS_DIGIPOTSS
  5058. for (int i = 0; i < NUM_AXIS; i++)
  5059. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5060. if (code_seen('B')) digipot_current(4, code_value());
  5061. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5062. #endif
  5063. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5064. if (code_seen('X')) digipot_current(0, code_value());
  5065. #endif
  5066. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5067. if (code_seen('Z')) digipot_current(1, code_value());
  5068. #endif
  5069. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5070. if (code_seen('E')) digipot_current(2, code_value());
  5071. #endif
  5072. #if ENABLED(DIGIPOT_I2C)
  5073. // this one uses actual amps in floating point
  5074. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5075. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5076. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5077. #endif
  5078. #if ENABLED(DAC_STEPPER_CURRENT)
  5079. if (code_seen('S')) {
  5080. float dac_percent = code_value();
  5081. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5082. }
  5083. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5084. #endif
  5085. }
  5086. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5087. /**
  5088. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5089. */
  5090. inline void gcode_M908() {
  5091. #if HAS_DIGIPOTSS
  5092. digitalPotWrite(
  5093. code_seen('P') ? code_value() : 0,
  5094. code_seen('S') ? code_value() : 0
  5095. );
  5096. #endif
  5097. #ifdef DAC_STEPPER_CURRENT
  5098. dac_current_raw(
  5099. code_seen('P') ? code_value_long() : -1,
  5100. code_seen('S') ? code_value_short() : 0
  5101. );
  5102. #endif
  5103. }
  5104. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5105. inline void gcode_M909() { dac_print_values(); }
  5106. inline void gcode_M910() { dac_commit_eeprom(); }
  5107. #endif
  5108. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5109. #if HAS_MICROSTEPS
  5110. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5111. inline void gcode_M350() {
  5112. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5113. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5114. if (code_seen('B')) microstep_mode(4, code_value());
  5115. microstep_readings();
  5116. }
  5117. /**
  5118. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5119. * S# determines MS1 or MS2, X# sets the pin high/low.
  5120. */
  5121. inline void gcode_M351() {
  5122. if (code_seen('S')) switch (code_value_short()) {
  5123. case 1:
  5124. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5125. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5126. break;
  5127. case 2:
  5128. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5129. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5130. break;
  5131. }
  5132. microstep_readings();
  5133. }
  5134. #endif // HAS_MICROSTEPS
  5135. /**
  5136. * M999: Restart after being stopped
  5137. */
  5138. inline void gcode_M999() {
  5139. Running = true;
  5140. lcd_reset_alert_level();
  5141. // gcode_LastN = Stopped_gcode_LastN;
  5142. FlushSerialRequestResend();
  5143. }
  5144. /**
  5145. * T0-T3: Switch tool, usually switching extruders
  5146. *
  5147. * F[mm/min] Set the movement feedrate
  5148. */
  5149. inline void gcode_T(uint8_t tmp_extruder) {
  5150. if (tmp_extruder >= EXTRUDERS) {
  5151. SERIAL_ECHO_START;
  5152. SERIAL_CHAR('T');
  5153. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5154. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5155. }
  5156. else {
  5157. target_extruder = tmp_extruder;
  5158. #if EXTRUDERS > 1
  5159. bool make_move = false;
  5160. #endif
  5161. if (code_seen('F')) {
  5162. #if EXTRUDERS > 1
  5163. make_move = true;
  5164. #endif
  5165. float next_feedrate = code_value();
  5166. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5167. }
  5168. #if EXTRUDERS > 1
  5169. if (tmp_extruder != active_extruder) {
  5170. // Save current position to return to after applying extruder offset
  5171. set_destination_to_current();
  5172. #if ENABLED(DUAL_X_CARRIAGE)
  5173. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5174. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5175. // Park old head: 1) raise 2) move to park position 3) lower
  5176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5177. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5178. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5179. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5180. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5181. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5182. st_synchronize();
  5183. }
  5184. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5185. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5186. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5187. active_extruder = tmp_extruder;
  5188. // This function resets the max/min values - the current position may be overwritten below.
  5189. set_axis_is_at_home(X_AXIS);
  5190. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5191. current_position[X_AXIS] = inactive_extruder_x_pos;
  5192. inactive_extruder_x_pos = destination[X_AXIS];
  5193. }
  5194. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5195. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5196. if (active_extruder == 0 || active_extruder_parked)
  5197. current_position[X_AXIS] = inactive_extruder_x_pos;
  5198. else
  5199. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5200. inactive_extruder_x_pos = destination[X_AXIS];
  5201. extruder_duplication_enabled = false;
  5202. }
  5203. else {
  5204. // record raised toolhead position for use by unpark
  5205. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5206. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5207. active_extruder_parked = true;
  5208. delayed_move_time = 0;
  5209. }
  5210. #else // !DUAL_X_CARRIAGE
  5211. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5212. // Offset extruder, make sure to apply the bed level rotation matrix
  5213. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5214. extruder_offset[Y_AXIS][tmp_extruder],
  5215. extruder_offset[Z_AXIS][tmp_extruder]),
  5216. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5217. extruder_offset[Y_AXIS][active_extruder],
  5218. extruder_offset[Z_AXIS][active_extruder]),
  5219. offset_vec = tmp_offset_vec - act_offset_vec;
  5220. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5221. current_position[X_AXIS] += offset_vec.x;
  5222. current_position[Y_AXIS] += offset_vec.y;
  5223. current_position[Z_AXIS] += offset_vec.z;
  5224. #else // !AUTO_BED_LEVELING_FEATURE
  5225. // Offset extruder (only by XY)
  5226. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5227. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5228. #endif // !AUTO_BED_LEVELING_FEATURE
  5229. // Set the new active extruder and position
  5230. active_extruder = tmp_extruder;
  5231. #endif // !DUAL_X_CARRIAGE
  5232. #if ENABLED(DELTA)
  5233. sync_plan_position_delta();
  5234. #else
  5235. sync_plan_position();
  5236. #endif
  5237. // Move to the old position if 'F' was in the parameters
  5238. if (make_move && IsRunning()) prepare_move();
  5239. }
  5240. #if ENABLED(EXT_SOLENOID)
  5241. st_synchronize();
  5242. disable_all_solenoids();
  5243. enable_solenoid_on_active_extruder();
  5244. #endif // EXT_SOLENOID
  5245. #endif // EXTRUDERS > 1
  5246. SERIAL_ECHO_START;
  5247. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5248. SERIAL_PROTOCOLLN((int)active_extruder);
  5249. }
  5250. }
  5251. /**
  5252. * Process a single command and dispatch it to its handler
  5253. * This is called from the main loop()
  5254. */
  5255. void process_next_command() {
  5256. current_command = command_queue[cmd_queue_index_r];
  5257. if (DEBUGGING(ECHO)) {
  5258. SERIAL_ECHO_START;
  5259. SERIAL_ECHOLN(current_command);
  5260. }
  5261. // Sanitize the current command:
  5262. // - Skip leading spaces
  5263. // - Bypass N[-0-9][0-9]*[ ]*
  5264. // - Overwrite * with nul to mark the end
  5265. while (*current_command == ' ') ++current_command;
  5266. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5267. current_command += 2; // skip N[-0-9]
  5268. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5269. while (*current_command == ' ') ++current_command; // skip [ ]*
  5270. }
  5271. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5272. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5273. char *cmd_ptr = current_command;
  5274. // Get the command code, which must be G, M, or T
  5275. char command_code = *cmd_ptr++;
  5276. // Skip spaces to get the numeric part
  5277. while (*cmd_ptr == ' ') cmd_ptr++;
  5278. uint16_t codenum = 0; // define ahead of goto
  5279. // Bail early if there's no code
  5280. bool code_is_good = NUMERIC(*cmd_ptr);
  5281. if (!code_is_good) goto ExitUnknownCommand;
  5282. // Get and skip the code number
  5283. do {
  5284. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5285. cmd_ptr++;
  5286. } while (NUMERIC(*cmd_ptr));
  5287. // Skip all spaces to get to the first argument, or nul
  5288. while (*cmd_ptr == ' ') cmd_ptr++;
  5289. // The command's arguments (if any) start here, for sure!
  5290. current_command_args = cmd_ptr;
  5291. KEEPALIVE_STATE(IN_HANDLER);
  5292. // Handle a known G, M, or T
  5293. switch (command_code) {
  5294. case 'G': switch (codenum) {
  5295. // G0, G1
  5296. case 0:
  5297. case 1:
  5298. gcode_G0_G1();
  5299. break;
  5300. // G2, G3
  5301. #if DISABLED(SCARA)
  5302. case 2: // G2 - CW ARC
  5303. case 3: // G3 - CCW ARC
  5304. gcode_G2_G3(codenum == 2);
  5305. break;
  5306. #endif
  5307. // G4 Dwell
  5308. case 4:
  5309. gcode_G4();
  5310. break;
  5311. #if ENABLED(FWRETRACT)
  5312. case 10: // G10: retract
  5313. case 11: // G11: retract_recover
  5314. gcode_G10_G11(codenum == 10);
  5315. break;
  5316. #endif //FWRETRACT
  5317. case 28: // G28: Home all axes, one at a time
  5318. gcode_G28();
  5319. break;
  5320. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5321. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5322. gcode_G29();
  5323. break;
  5324. #endif
  5325. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5326. #if DISABLED(Z_PROBE_SLED)
  5327. case 30: // G30 Single Z probe
  5328. gcode_G30();
  5329. break;
  5330. #else // Z_PROBE_SLED
  5331. case 31: // G31: dock the sled
  5332. case 32: // G32: undock the sled
  5333. dock_sled(codenum == 31);
  5334. break;
  5335. #endif // Z_PROBE_SLED
  5336. #endif // AUTO_BED_LEVELING_FEATURE
  5337. case 90: // G90
  5338. relative_mode = false;
  5339. break;
  5340. case 91: // G91
  5341. relative_mode = true;
  5342. break;
  5343. case 92: // G92
  5344. gcode_G92();
  5345. break;
  5346. }
  5347. break;
  5348. case 'M': switch (codenum) {
  5349. #if ENABLED(ULTIPANEL)
  5350. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5351. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5352. gcode_M0_M1();
  5353. break;
  5354. #endif // ULTIPANEL
  5355. case 17:
  5356. gcode_M17();
  5357. break;
  5358. #if ENABLED(SDSUPPORT)
  5359. case 20: // M20 - list SD card
  5360. gcode_M20(); break;
  5361. case 21: // M21 - init SD card
  5362. gcode_M21(); break;
  5363. case 22: //M22 - release SD card
  5364. gcode_M22(); break;
  5365. case 23: //M23 - Select file
  5366. gcode_M23(); break;
  5367. case 24: //M24 - Start SD print
  5368. gcode_M24(); break;
  5369. case 25: //M25 - Pause SD print
  5370. gcode_M25(); break;
  5371. case 26: //M26 - Set SD index
  5372. gcode_M26(); break;
  5373. case 27: //M27 - Get SD status
  5374. gcode_M27(); break;
  5375. case 28: //M28 - Start SD write
  5376. gcode_M28(); break;
  5377. case 29: //M29 - Stop SD write
  5378. gcode_M29(); break;
  5379. case 30: //M30 <filename> Delete File
  5380. gcode_M30(); break;
  5381. case 32: //M32 - Select file and start SD print
  5382. gcode_M32(); break;
  5383. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5384. case 33: //M33 - Get the long full path to a file or folder
  5385. gcode_M33(); break;
  5386. #endif // LONG_FILENAME_HOST_SUPPORT
  5387. case 928: //M928 - Start SD write
  5388. gcode_M928(); break;
  5389. #endif //SDSUPPORT
  5390. case 31: //M31 take time since the start of the SD print or an M109 command
  5391. gcode_M31();
  5392. break;
  5393. case 42: //M42 -Change pin status via gcode
  5394. gcode_M42();
  5395. break;
  5396. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5397. case 48: // M48 Z probe repeatability
  5398. gcode_M48();
  5399. break;
  5400. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5401. case 75: // Start print timer
  5402. gcode_M75();
  5403. break;
  5404. case 76: // Pause print timer
  5405. gcode_M76();
  5406. break;
  5407. case 77: // Stop print timer
  5408. gcode_M77();
  5409. break;
  5410. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5411. case 100:
  5412. gcode_M100();
  5413. break;
  5414. #endif
  5415. case 104: // M104
  5416. gcode_M104();
  5417. break;
  5418. case 110: // M110: Set Current Line Number
  5419. gcode_M110();
  5420. break;
  5421. case 111: // M111: Set debug level
  5422. gcode_M111();
  5423. break;
  5424. case 112: // M112: Emergency Stop
  5425. gcode_M112();
  5426. break;
  5427. case 140: // M140: Set bed temp
  5428. gcode_M140();
  5429. break;
  5430. case 105: // M105: Read current temperature
  5431. gcode_M105();
  5432. KEEPALIVE_STATE(NOT_BUSY);
  5433. return; // "ok" already printed
  5434. case 109: // M109: Wait for temperature
  5435. gcode_M109();
  5436. break;
  5437. #if HAS_TEMP_BED
  5438. case 190: // M190: Wait for bed heater to reach target
  5439. gcode_M190();
  5440. break;
  5441. #endif // HAS_TEMP_BED
  5442. #if FAN_COUNT > 0
  5443. case 106: // M106: Fan On
  5444. gcode_M106();
  5445. break;
  5446. case 107: // M107: Fan Off
  5447. gcode_M107();
  5448. break;
  5449. #endif // FAN_COUNT > 0
  5450. #if ENABLED(BARICUDA)
  5451. // PWM for HEATER_1_PIN
  5452. #if HAS_HEATER_1
  5453. case 126: // M126: valve open
  5454. gcode_M126();
  5455. break;
  5456. case 127: // M127: valve closed
  5457. gcode_M127();
  5458. break;
  5459. #endif // HAS_HEATER_1
  5460. // PWM for HEATER_2_PIN
  5461. #if HAS_HEATER_2
  5462. case 128: // M128: valve open
  5463. gcode_M128();
  5464. break;
  5465. case 129: // M129: valve closed
  5466. gcode_M129();
  5467. break;
  5468. #endif // HAS_HEATER_2
  5469. #endif // BARICUDA
  5470. #if HAS_POWER_SWITCH
  5471. case 80: // M80: Turn on Power Supply
  5472. gcode_M80();
  5473. break;
  5474. #endif // HAS_POWER_SWITCH
  5475. case 81: // M81: Turn off Power, including Power Supply, if possible
  5476. gcode_M81();
  5477. break;
  5478. case 82:
  5479. gcode_M82();
  5480. break;
  5481. case 83:
  5482. gcode_M83();
  5483. break;
  5484. case 18: // (for compatibility)
  5485. case 84: // M84
  5486. gcode_M18_M84();
  5487. break;
  5488. case 85: // M85
  5489. gcode_M85();
  5490. break;
  5491. case 92: // M92: Set the steps-per-unit for one or more axes
  5492. gcode_M92();
  5493. break;
  5494. case 115: // M115: Report capabilities
  5495. gcode_M115();
  5496. break;
  5497. case 117: // M117: Set LCD message text, if possible
  5498. gcode_M117();
  5499. break;
  5500. case 114: // M114: Report current position
  5501. gcode_M114();
  5502. break;
  5503. case 120: // M120: Enable endstops
  5504. gcode_M120();
  5505. break;
  5506. case 121: // M121: Disable endstops
  5507. gcode_M121();
  5508. break;
  5509. case 119: // M119: Report endstop states
  5510. gcode_M119();
  5511. break;
  5512. #if ENABLED(ULTIPANEL)
  5513. case 145: // M145: Set material heatup parameters
  5514. gcode_M145();
  5515. break;
  5516. #endif
  5517. #if ENABLED(BLINKM)
  5518. case 150: // M150
  5519. gcode_M150();
  5520. break;
  5521. #endif //BLINKM
  5522. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5523. case 155:
  5524. gcode_M155();
  5525. break;
  5526. case 156:
  5527. gcode_M156();
  5528. break;
  5529. #endif //EXPERIMENTAL_I2CBUS
  5530. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5531. gcode_M200();
  5532. break;
  5533. case 201: // M201
  5534. gcode_M201();
  5535. break;
  5536. #if 0 // Not used for Sprinter/grbl gen6
  5537. case 202: // M202
  5538. gcode_M202();
  5539. break;
  5540. #endif
  5541. case 203: // M203 max feedrate mm/sec
  5542. gcode_M203();
  5543. break;
  5544. case 204: // M204 acclereration S normal moves T filmanent only moves
  5545. gcode_M204();
  5546. break;
  5547. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5548. gcode_M205();
  5549. break;
  5550. case 206: // M206 additional homing offset
  5551. gcode_M206();
  5552. break;
  5553. #if ENABLED(DELTA)
  5554. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5555. gcode_M665();
  5556. break;
  5557. #endif
  5558. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5559. case 666: // M666 set delta / dual endstop adjustment
  5560. gcode_M666();
  5561. break;
  5562. #endif
  5563. #if ENABLED(FWRETRACT)
  5564. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5565. gcode_M207();
  5566. break;
  5567. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5568. gcode_M208();
  5569. break;
  5570. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5571. gcode_M209();
  5572. break;
  5573. #endif // FWRETRACT
  5574. #if EXTRUDERS > 1
  5575. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5576. gcode_M218();
  5577. break;
  5578. #endif
  5579. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5580. gcode_M220();
  5581. break;
  5582. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5583. gcode_M221();
  5584. break;
  5585. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5586. gcode_M226();
  5587. break;
  5588. #if HAS_SERVOS
  5589. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5590. gcode_M280();
  5591. break;
  5592. #endif // HAS_SERVOS
  5593. #if HAS_BUZZER
  5594. case 300: // M300 - Play beep tone
  5595. gcode_M300();
  5596. break;
  5597. #endif // HAS_BUZZER
  5598. #if ENABLED(PIDTEMP)
  5599. case 301: // M301
  5600. gcode_M301();
  5601. break;
  5602. #endif // PIDTEMP
  5603. #if ENABLED(PIDTEMPBED)
  5604. case 304: // M304
  5605. gcode_M304();
  5606. break;
  5607. #endif // PIDTEMPBED
  5608. #if defined(CHDK) || HAS_PHOTOGRAPH
  5609. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5610. gcode_M240();
  5611. break;
  5612. #endif // CHDK || PHOTOGRAPH_PIN
  5613. #if ENABLED(HAS_LCD_CONTRAST)
  5614. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5615. gcode_M250();
  5616. break;
  5617. #endif // HAS_LCD_CONTRAST
  5618. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5619. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5620. gcode_M302();
  5621. break;
  5622. #endif // PREVENT_DANGEROUS_EXTRUDE
  5623. case 303: // M303 PID autotune
  5624. gcode_M303();
  5625. break;
  5626. #if ENABLED(SCARA)
  5627. case 360: // M360 SCARA Theta pos1
  5628. if (gcode_M360()) return;
  5629. break;
  5630. case 361: // M361 SCARA Theta pos2
  5631. if (gcode_M361()) return;
  5632. break;
  5633. case 362: // M362 SCARA Psi pos1
  5634. if (gcode_M362()) return;
  5635. break;
  5636. case 363: // M363 SCARA Psi pos2
  5637. if (gcode_M363()) return;
  5638. break;
  5639. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5640. if (gcode_M364()) return;
  5641. break;
  5642. case 365: // M365 Set SCARA scaling for X Y Z
  5643. gcode_M365();
  5644. break;
  5645. #endif // SCARA
  5646. case 400: // M400 finish all moves
  5647. gcode_M400();
  5648. break;
  5649. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5650. case 401:
  5651. gcode_M401();
  5652. break;
  5653. case 402:
  5654. gcode_M402();
  5655. break;
  5656. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5657. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5658. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5659. gcode_M404();
  5660. break;
  5661. case 405: //M405 Turn on filament sensor for control
  5662. gcode_M405();
  5663. break;
  5664. case 406: //M406 Turn off filament sensor for control
  5665. gcode_M406();
  5666. break;
  5667. case 407: //M407 Display measured filament diameter
  5668. gcode_M407();
  5669. break;
  5670. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5671. case 410: // M410 quickstop - Abort all the planned moves.
  5672. gcode_M410();
  5673. break;
  5674. #if ENABLED(MESH_BED_LEVELING)
  5675. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5676. gcode_M420();
  5677. break;
  5678. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5679. gcode_M421();
  5680. break;
  5681. #endif
  5682. case 428: // M428 Apply current_position to home_offset
  5683. gcode_M428();
  5684. break;
  5685. case 500: // M500 Store settings in EEPROM
  5686. gcode_M500();
  5687. break;
  5688. case 501: // M501 Read settings from EEPROM
  5689. gcode_M501();
  5690. break;
  5691. case 502: // M502 Revert to default settings
  5692. gcode_M502();
  5693. break;
  5694. case 503: // M503 print settings currently in memory
  5695. gcode_M503();
  5696. break;
  5697. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5698. case 540:
  5699. gcode_M540();
  5700. break;
  5701. #endif
  5702. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5703. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5704. gcode_SET_Z_PROBE_OFFSET();
  5705. break;
  5706. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5707. #if ENABLED(FILAMENTCHANGEENABLE)
  5708. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5709. gcode_M600();
  5710. break;
  5711. #endif // FILAMENTCHANGEENABLE
  5712. #if ENABLED(DUAL_X_CARRIAGE)
  5713. case 605:
  5714. gcode_M605();
  5715. break;
  5716. #endif // DUAL_X_CARRIAGE
  5717. case 907: // M907 Set digital trimpot motor current using axis codes.
  5718. gcode_M907();
  5719. break;
  5720. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5721. case 908: // M908 Control digital trimpot directly.
  5722. gcode_M908();
  5723. break;
  5724. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5725. case 909: // M909 Print digipot/DAC current value
  5726. gcode_M909();
  5727. break;
  5728. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5729. gcode_M910();
  5730. break;
  5731. #endif
  5732. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5733. #if HAS_MICROSTEPS
  5734. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5735. gcode_M350();
  5736. break;
  5737. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5738. gcode_M351();
  5739. break;
  5740. #endif // HAS_MICROSTEPS
  5741. case 999: // M999: Restart after being Stopped
  5742. gcode_M999();
  5743. break;
  5744. }
  5745. break;
  5746. case 'T':
  5747. gcode_T(codenum);
  5748. break;
  5749. default: code_is_good = false;
  5750. }
  5751. KEEPALIVE_STATE(NOT_BUSY);
  5752. ExitUnknownCommand:
  5753. // Still unknown command? Throw an error
  5754. if (!code_is_good) unknown_command_error();
  5755. ok_to_send();
  5756. }
  5757. void FlushSerialRequestResend() {
  5758. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5759. MYSERIAL.flush();
  5760. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5761. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5762. ok_to_send();
  5763. }
  5764. void ok_to_send() {
  5765. refresh_cmd_timeout();
  5766. if (!send_ok[cmd_queue_index_r]) return;
  5767. SERIAL_PROTOCOLPGM(MSG_OK);
  5768. #if ENABLED(ADVANCED_OK)
  5769. char* p = command_queue[cmd_queue_index_r];
  5770. if (*p == 'N') {
  5771. SERIAL_PROTOCOL(' ');
  5772. SERIAL_ECHO(*p++);
  5773. while (NUMERIC_SIGNED(*p))
  5774. SERIAL_ECHO(*p++);
  5775. }
  5776. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5777. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5778. #endif
  5779. SERIAL_EOL;
  5780. }
  5781. void clamp_to_software_endstops(float target[3]) {
  5782. if (min_software_endstops) {
  5783. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5784. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5785. float negative_z_offset = 0;
  5786. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5787. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5788. if (home_offset[Z_AXIS] < 0) {
  5789. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5790. if (DEBUGGING(LEVELING)) {
  5791. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5792. SERIAL_EOL;
  5793. }
  5794. #endif
  5795. negative_z_offset += home_offset[Z_AXIS];
  5796. }
  5797. #endif
  5798. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5799. }
  5800. if (max_software_endstops) {
  5801. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5802. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5803. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5804. }
  5805. }
  5806. #if ENABLED(DELTA)
  5807. void recalc_delta_settings(float radius, float diagonal_rod) {
  5808. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5809. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5810. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5811. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5812. delta_tower3_x = 0.0; // back middle tower
  5813. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5814. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5815. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5816. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5817. }
  5818. void calculate_delta(float cartesian[3]) {
  5819. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5820. - sq(delta_tower1_x - cartesian[X_AXIS])
  5821. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5822. ) + cartesian[Z_AXIS];
  5823. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5824. - sq(delta_tower2_x - cartesian[X_AXIS])
  5825. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5826. ) + cartesian[Z_AXIS];
  5827. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5828. - sq(delta_tower3_x - cartesian[X_AXIS])
  5829. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5830. ) + cartesian[Z_AXIS];
  5831. /**
  5832. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5833. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5834. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5835. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5836. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5837. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5838. */
  5839. }
  5840. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5841. // Adjust print surface height by linear interpolation over the bed_level array.
  5842. void adjust_delta(float cartesian[3]) {
  5843. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5844. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5845. float h1 = 0.001 - half, h2 = half - 0.001,
  5846. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5847. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5848. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5849. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5850. z1 = bed_level[floor_x + half][floor_y + half],
  5851. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5852. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5853. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5854. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5855. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5856. offset = (1 - ratio_x) * left + ratio_x * right;
  5857. delta[X_AXIS] += offset;
  5858. delta[Y_AXIS] += offset;
  5859. delta[Z_AXIS] += offset;
  5860. /**
  5861. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5862. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5863. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5864. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5865. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5866. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5867. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5868. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5869. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5870. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5871. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5872. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5873. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5874. */
  5875. }
  5876. #endif // AUTO_BED_LEVELING_FEATURE
  5877. #endif // DELTA
  5878. #if ENABLED(MESH_BED_LEVELING)
  5879. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5880. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5881. if (!mbl.active) {
  5882. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5883. set_current_to_destination();
  5884. return;
  5885. }
  5886. int pix = mbl.select_x_index(current_position[X_AXIS]);
  5887. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  5888. int ix = mbl.select_x_index(x);
  5889. int iy = mbl.select_y_index(y);
  5890. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5891. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5892. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5893. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5894. if (pix == ix && piy == iy) {
  5895. // Start and end on same mesh square
  5896. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5897. set_current_to_destination();
  5898. return;
  5899. }
  5900. float nx, ny, nz, ne, normalized_dist;
  5901. if (ix > pix && TEST(x_splits, ix)) {
  5902. nx = mbl.get_x(ix);
  5903. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5904. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5905. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5906. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5907. CBI(x_splits, ix);
  5908. }
  5909. else if (ix < pix && TEST(x_splits, pix)) {
  5910. nx = mbl.get_x(pix);
  5911. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5912. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5913. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5914. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5915. CBI(x_splits, pix);
  5916. }
  5917. else if (iy > piy && TEST(y_splits, iy)) {
  5918. ny = mbl.get_y(iy);
  5919. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5920. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5921. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5922. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5923. CBI(y_splits, iy);
  5924. }
  5925. else if (iy < piy && TEST(y_splits, piy)) {
  5926. ny = mbl.get_y(piy);
  5927. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  5928. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5929. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  5930. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5931. CBI(y_splits, piy);
  5932. }
  5933. else {
  5934. // Already split on a border
  5935. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5936. set_current_to_destination();
  5937. return;
  5938. }
  5939. // Do the split and look for more borders
  5940. destination[X_AXIS] = nx;
  5941. destination[Y_AXIS] = ny;
  5942. destination[Z_AXIS] = nz;
  5943. destination[E_AXIS] = ne;
  5944. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  5945. destination[X_AXIS] = x;
  5946. destination[Y_AXIS] = y;
  5947. destination[Z_AXIS] = z;
  5948. destination[E_AXIS] = e;
  5949. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5950. }
  5951. #endif // MESH_BED_LEVELING
  5952. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5953. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  5954. if (DEBUGGING(DRYRUN)) return;
  5955. float de = dest_e - curr_e;
  5956. if (de) {
  5957. if (degHotend(active_extruder) < extrude_min_temp) {
  5958. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5959. SERIAL_ECHO_START;
  5960. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5961. }
  5962. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5963. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5964. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5965. SERIAL_ECHO_START;
  5966. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5967. }
  5968. #endif
  5969. }
  5970. }
  5971. #endif // PREVENT_DANGEROUS_EXTRUDE
  5972. #if ENABLED(DELTA) || ENABLED(SCARA)
  5973. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5974. float difference[NUM_AXIS];
  5975. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5976. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5977. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5978. if (cartesian_mm < 0.000001) return false;
  5979. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5980. int steps = max(1, int(delta_segments_per_second * seconds));
  5981. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5982. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5983. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5984. for (int s = 1; s <= steps; s++) {
  5985. float fraction = float(s) / float(steps);
  5986. for (int8_t i = 0; i < NUM_AXIS; i++)
  5987. target[i] = current_position[i] + difference[i] * fraction;
  5988. calculate_delta(target);
  5989. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5990. adjust_delta(target);
  5991. #endif
  5992. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5993. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5994. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5995. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5996. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5997. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5998. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  5999. }
  6000. return true;
  6001. }
  6002. #endif // DELTA || SCARA
  6003. #if ENABLED(SCARA)
  6004. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6005. #endif
  6006. #if ENABLED(DUAL_X_CARRIAGE)
  6007. inline bool prepare_move_dual_x_carriage() {
  6008. if (active_extruder_parked) {
  6009. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6010. // move duplicate extruder into correct duplication position.
  6011. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6012. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6013. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6014. sync_plan_position();
  6015. st_synchronize();
  6016. extruder_duplication_enabled = true;
  6017. active_extruder_parked = false;
  6018. }
  6019. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6020. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6021. // This is a travel move (with no extrusion)
  6022. // Skip it, but keep track of the current position
  6023. // (so it can be used as the start of the next non-travel move)
  6024. if (delayed_move_time != 0xFFFFFFFFUL) {
  6025. set_current_to_destination();
  6026. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6027. delayed_move_time = millis();
  6028. return false;
  6029. }
  6030. }
  6031. delayed_move_time = 0;
  6032. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6033. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6036. active_extruder_parked = false;
  6037. }
  6038. }
  6039. return true;
  6040. }
  6041. #endif // DUAL_X_CARRIAGE
  6042. #if DISABLED(DELTA) && DISABLED(SCARA)
  6043. inline bool prepare_move_cartesian() {
  6044. // Do not use feedrate_multiplier for E or Z only moves
  6045. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6046. line_to_destination();
  6047. }
  6048. else {
  6049. #if ENABLED(MESH_BED_LEVELING)
  6050. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6051. return false;
  6052. #else
  6053. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6054. #endif
  6055. }
  6056. return true;
  6057. }
  6058. #endif // !DELTA && !SCARA
  6059. /**
  6060. * Prepare a single move and get ready for the next one
  6061. *
  6062. * (This may call plan_buffer_line several times to put
  6063. * smaller moves into the planner for DELTA or SCARA.)
  6064. */
  6065. void prepare_move() {
  6066. clamp_to_software_endstops(destination);
  6067. refresh_cmd_timeout();
  6068. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6069. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6070. #endif
  6071. #if ENABLED(SCARA)
  6072. if (!prepare_move_scara(destination)) return;
  6073. #elif ENABLED(DELTA)
  6074. if (!prepare_move_delta(destination)) return;
  6075. #endif
  6076. #if ENABLED(DUAL_X_CARRIAGE)
  6077. if (!prepare_move_dual_x_carriage()) return;
  6078. #endif
  6079. #if DISABLED(DELTA) && DISABLED(SCARA)
  6080. if (!prepare_move_cartesian()) return;
  6081. #endif
  6082. set_current_to_destination();
  6083. }
  6084. /**
  6085. * Plan an arc in 2 dimensions
  6086. *
  6087. * The arc is approximated by generating many small linear segments.
  6088. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6089. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6090. * larger segments will tend to be more efficient. Your slicer should have
  6091. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6092. */
  6093. void plan_arc(
  6094. float target[NUM_AXIS], // Destination position
  6095. float* offset, // Center of rotation relative to current_position
  6096. uint8_t clockwise // Clockwise?
  6097. ) {
  6098. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6099. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  6100. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  6101. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6102. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6103. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  6104. r_axis1 = -offset[Y_AXIS],
  6105. rt_axis0 = target[X_AXIS] - center_axis0,
  6106. rt_axis1 = target[Y_AXIS] - center_axis1;
  6107. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6108. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  6109. if (angular_travel < 0) angular_travel += RADIANS(360);
  6110. if (clockwise) angular_travel -= RADIANS(360);
  6111. // Make a circle if the angular rotation is 0
  6112. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  6113. angular_travel += RADIANS(360);
  6114. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6115. if (mm_of_travel < 0.001) return;
  6116. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6117. if (segments == 0) segments = 1;
  6118. float theta_per_segment = angular_travel / segments;
  6119. float linear_per_segment = linear_travel / segments;
  6120. float extruder_per_segment = extruder_travel / segments;
  6121. /**
  6122. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6123. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6124. * r_T = [cos(phi) -sin(phi);
  6125. * sin(phi) cos(phi] * r ;
  6126. *
  6127. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6128. * defined from the circle center to the initial position. Each line segment is formed by successive
  6129. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6130. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6131. * all double numbers are single precision on the Arduino. (True double precision will not have
  6132. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6133. * tool precision in some cases. Therefore, arc path correction is implemented.
  6134. *
  6135. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6136. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6137. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6138. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6139. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6140. * issue for CNC machines with the single precision Arduino calculations.
  6141. *
  6142. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6143. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6144. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6145. * This is important when there are successive arc motions.
  6146. */
  6147. // Vector rotation matrix values
  6148. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6149. float sin_T = theta_per_segment;
  6150. float arc_target[NUM_AXIS];
  6151. float sin_Ti;
  6152. float cos_Ti;
  6153. float r_axisi;
  6154. uint16_t i;
  6155. int8_t count = 0;
  6156. // Initialize the linear axis
  6157. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6158. // Initialize the extruder axis
  6159. arc_target[E_AXIS] = current_position[E_AXIS];
  6160. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6161. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6162. if (count < N_ARC_CORRECTION) {
  6163. // Apply vector rotation matrix to previous r_axis0 / 1
  6164. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6165. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6166. r_axis1 = r_axisi;
  6167. count++;
  6168. }
  6169. else {
  6170. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6171. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6172. cos_Ti = cos(i * theta_per_segment);
  6173. sin_Ti = sin(i * theta_per_segment);
  6174. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6175. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6176. count = 0;
  6177. }
  6178. // Update arc_target location
  6179. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6180. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6181. arc_target[Z_AXIS] += linear_per_segment;
  6182. arc_target[E_AXIS] += extruder_per_segment;
  6183. clamp_to_software_endstops(arc_target);
  6184. #if ENABLED(DELTA) || ENABLED(SCARA)
  6185. calculate_delta(arc_target);
  6186. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6187. adjust_delta(arc_target);
  6188. #endif
  6189. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6190. #else
  6191. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6192. #endif
  6193. }
  6194. // Ensure last segment arrives at target location.
  6195. #if ENABLED(DELTA) || ENABLED(SCARA)
  6196. calculate_delta(target);
  6197. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6198. adjust_delta(target);
  6199. #endif
  6200. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6201. #else
  6202. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6203. #endif
  6204. // As far as the parser is concerned, the position is now == target. In reality the
  6205. // motion control system might still be processing the action and the real tool position
  6206. // in any intermediate location.
  6207. set_current_to_destination();
  6208. }
  6209. #if HAS_CONTROLLERFAN
  6210. void controllerFan() {
  6211. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6212. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6213. millis_t ms = millis();
  6214. if (ms >= nextMotorCheck) {
  6215. nextMotorCheck = ms + 2500; // Not a time critical function, so only check every 2.5s
  6216. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6217. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6218. #if EXTRUDERS > 1
  6219. || E1_ENABLE_READ == E_ENABLE_ON
  6220. #if HAS_X2_ENABLE
  6221. || X2_ENABLE_READ == X_ENABLE_ON
  6222. #endif
  6223. #if EXTRUDERS > 2
  6224. || E2_ENABLE_READ == E_ENABLE_ON
  6225. #if EXTRUDERS > 3
  6226. || E3_ENABLE_READ == E_ENABLE_ON
  6227. #endif
  6228. #endif
  6229. #endif
  6230. ) {
  6231. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6232. }
  6233. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6234. uint8_t speed = (lastMotorOn == 0 || ms >= lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL) ? 0 : CONTROLLERFAN_SPEED;
  6235. // allows digital or PWM fan output to be used (see M42 handling)
  6236. digitalWrite(CONTROLLERFAN_PIN, speed);
  6237. analogWrite(CONTROLLERFAN_PIN, speed);
  6238. }
  6239. }
  6240. #endif // HAS_CONTROLLERFAN
  6241. #if ENABLED(SCARA)
  6242. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6243. // Perform forward kinematics, and place results in delta[3]
  6244. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6245. float x_sin, x_cos, y_sin, y_cos;
  6246. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6247. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6248. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6249. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6250. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6251. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6252. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6253. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6254. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6255. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6256. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6257. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6258. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6259. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6260. }
  6261. void calculate_delta(float cartesian[3]) {
  6262. //reverse kinematics.
  6263. // Perform reversed kinematics, and place results in delta[3]
  6264. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6265. float SCARA_pos[2];
  6266. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6267. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6268. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6269. #if (Linkage_1 == Linkage_2)
  6270. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6271. #else
  6272. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6273. #endif
  6274. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6275. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6276. SCARA_K2 = Linkage_2 * SCARA_S2;
  6277. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6278. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6279. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6280. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6281. delta[Z_AXIS] = cartesian[Z_AXIS];
  6282. /**
  6283. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6284. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6285. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6286. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6287. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6288. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6289. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6290. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6291. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6292. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6293. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6294. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6295. SERIAL_EOL;
  6296. */
  6297. }
  6298. #endif // SCARA
  6299. #if ENABLED(TEMP_STAT_LEDS)
  6300. static bool red_led = false;
  6301. static millis_t next_status_led_update_ms = 0;
  6302. void handle_status_leds(void) {
  6303. float max_temp = 0.0;
  6304. if (millis() > next_status_led_update_ms) {
  6305. next_status_led_update_ms += 500; // Update every 0.5s
  6306. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6307. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6308. #if HAS_TEMP_BED
  6309. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6310. #endif
  6311. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6312. if (new_led != red_led) {
  6313. red_led = new_led;
  6314. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6315. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6316. }
  6317. }
  6318. }
  6319. #endif
  6320. void enable_all_steppers() {
  6321. enable_x();
  6322. enable_y();
  6323. enable_z();
  6324. enable_e0();
  6325. enable_e1();
  6326. enable_e2();
  6327. enable_e3();
  6328. }
  6329. void disable_all_steppers() {
  6330. disable_x();
  6331. disable_y();
  6332. disable_z();
  6333. disable_e0();
  6334. disable_e1();
  6335. disable_e2();
  6336. disable_e3();
  6337. }
  6338. /**
  6339. * Standard idle routine keeps the machine alive
  6340. */
  6341. void idle(
  6342. #if ENABLED(FILAMENTCHANGEENABLE)
  6343. bool no_stepper_sleep/*=false*/
  6344. #endif
  6345. ) {
  6346. manage_heater();
  6347. manage_inactivity(
  6348. #if ENABLED(FILAMENTCHANGEENABLE)
  6349. no_stepper_sleep
  6350. #endif
  6351. );
  6352. host_keepalive();
  6353. lcd_update();
  6354. }
  6355. /**
  6356. * Manage several activities:
  6357. * - Check for Filament Runout
  6358. * - Keep the command buffer full
  6359. * - Check for maximum inactive time between commands
  6360. * - Check for maximum inactive time between stepper commands
  6361. * - Check if pin CHDK needs to go LOW
  6362. * - Check for KILL button held down
  6363. * - Check for HOME button held down
  6364. * - Check if cooling fan needs to be switched on
  6365. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6366. */
  6367. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6368. #if HAS_FILRUNOUT
  6369. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6370. filrunout();
  6371. #endif
  6372. if (commands_in_queue < BUFSIZE) get_available_commands();
  6373. millis_t ms = millis();
  6374. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  6375. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  6376. && !ignore_stepper_queue && !blocks_queued()) {
  6377. #if ENABLED(DISABLE_INACTIVE_X)
  6378. disable_x();
  6379. #endif
  6380. #if ENABLED(DISABLE_INACTIVE_Y)
  6381. disable_y();
  6382. #endif
  6383. #if ENABLED(DISABLE_INACTIVE_Z)
  6384. disable_z();
  6385. #endif
  6386. #if ENABLED(DISABLE_INACTIVE_E)
  6387. disable_e0();
  6388. disable_e1();
  6389. disable_e2();
  6390. disable_e3();
  6391. #endif
  6392. }
  6393. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6394. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  6395. chdkActive = false;
  6396. WRITE(CHDK, LOW);
  6397. }
  6398. #endif
  6399. #if HAS_KILL
  6400. // Check if the kill button was pressed and wait just in case it was an accidental
  6401. // key kill key press
  6402. // -------------------------------------------------------------------------------
  6403. static int killCount = 0; // make the inactivity button a bit less responsive
  6404. const int KILL_DELAY = 750;
  6405. if (!READ(KILL_PIN))
  6406. killCount++;
  6407. else if (killCount > 0)
  6408. killCount--;
  6409. // Exceeded threshold and we can confirm that it was not accidental
  6410. // KILL the machine
  6411. // ----------------------------------------------------------------
  6412. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6413. #endif
  6414. #if HAS_HOME
  6415. // Check to see if we have to home, use poor man's debouncer
  6416. // ---------------------------------------------------------
  6417. static int homeDebounceCount = 0; // poor man's debouncing count
  6418. const int HOME_DEBOUNCE_DELAY = 2500;
  6419. if (!READ(HOME_PIN)) {
  6420. if (!homeDebounceCount) {
  6421. enqueue_and_echo_commands_P(PSTR("G28"));
  6422. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6423. }
  6424. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6425. homeDebounceCount++;
  6426. else
  6427. homeDebounceCount = 0;
  6428. }
  6429. #endif
  6430. #if HAS_CONTROLLERFAN
  6431. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6432. #endif
  6433. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6434. if (ms > previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000)
  6435. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6436. bool oldstatus;
  6437. switch (active_extruder) {
  6438. case 0:
  6439. oldstatus = E0_ENABLE_READ;
  6440. enable_e0();
  6441. break;
  6442. #if EXTRUDERS > 1
  6443. case 1:
  6444. oldstatus = E1_ENABLE_READ;
  6445. enable_e1();
  6446. break;
  6447. #if EXTRUDERS > 2
  6448. case 2:
  6449. oldstatus = E2_ENABLE_READ;
  6450. enable_e2();
  6451. break;
  6452. #if EXTRUDERS > 3
  6453. case 3:
  6454. oldstatus = E3_ENABLE_READ;
  6455. enable_e3();
  6456. break;
  6457. #endif
  6458. #endif
  6459. #endif
  6460. }
  6461. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6462. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6463. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6464. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6465. current_position[E_AXIS] = oldepos;
  6466. destination[E_AXIS] = oldedes;
  6467. plan_set_e_position(oldepos);
  6468. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6469. st_synchronize();
  6470. switch (active_extruder) {
  6471. case 0:
  6472. E0_ENABLE_WRITE(oldstatus);
  6473. break;
  6474. #if EXTRUDERS > 1
  6475. case 1:
  6476. E1_ENABLE_WRITE(oldstatus);
  6477. break;
  6478. #if EXTRUDERS > 2
  6479. case 2:
  6480. E2_ENABLE_WRITE(oldstatus);
  6481. break;
  6482. #if EXTRUDERS > 3
  6483. case 3:
  6484. E3_ENABLE_WRITE(oldstatus);
  6485. break;
  6486. #endif
  6487. #endif
  6488. #endif
  6489. }
  6490. }
  6491. #endif
  6492. #if ENABLED(DUAL_X_CARRIAGE)
  6493. // handle delayed move timeout
  6494. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  6495. // travel moves have been received so enact them
  6496. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6497. set_destination_to_current();
  6498. prepare_move();
  6499. }
  6500. #endif
  6501. #if ENABLED(TEMP_STAT_LEDS)
  6502. handle_status_leds();
  6503. #endif
  6504. check_axes_activity();
  6505. }
  6506. void kill(const char* lcd_msg) {
  6507. #if ENABLED(ULTRA_LCD)
  6508. lcd_setalertstatuspgm(lcd_msg);
  6509. #else
  6510. UNUSED(lcd_msg);
  6511. #endif
  6512. cli(); // Stop interrupts
  6513. disable_all_heaters();
  6514. disable_all_steppers();
  6515. #if HAS_POWER_SWITCH
  6516. pinMode(PS_ON_PIN, INPUT);
  6517. #endif
  6518. SERIAL_ERROR_START;
  6519. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6520. // FMC small patch to update the LCD before ending
  6521. sei(); // enable interrupts
  6522. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6523. cli(); // disable interrupts
  6524. suicide();
  6525. while (1) {
  6526. #if ENABLED(USE_WATCHDOG)
  6527. watchdog_reset();
  6528. #endif
  6529. } // Wait for reset
  6530. }
  6531. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6532. void filrunout() {
  6533. if (!filrunoutEnqueued) {
  6534. filrunoutEnqueued = true;
  6535. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6536. st_synchronize();
  6537. }
  6538. }
  6539. #endif // FILAMENT_RUNOUT_SENSOR
  6540. #if ENABLED(FAST_PWM_FAN)
  6541. void setPwmFrequency(uint8_t pin, int val) {
  6542. val &= 0x07;
  6543. switch (digitalPinToTimer(pin)) {
  6544. #if defined(TCCR0A)
  6545. case TIMER0A:
  6546. case TIMER0B:
  6547. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6548. // TCCR0B |= val;
  6549. break;
  6550. #endif
  6551. #if defined(TCCR1A)
  6552. case TIMER1A:
  6553. case TIMER1B:
  6554. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6555. // TCCR1B |= val;
  6556. break;
  6557. #endif
  6558. #if defined(TCCR2)
  6559. case TIMER2:
  6560. case TIMER2:
  6561. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6562. TCCR2 |= val;
  6563. break;
  6564. #endif
  6565. #if defined(TCCR2A)
  6566. case TIMER2A:
  6567. case TIMER2B:
  6568. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6569. TCCR2B |= val;
  6570. break;
  6571. #endif
  6572. #if defined(TCCR3A)
  6573. case TIMER3A:
  6574. case TIMER3B:
  6575. case TIMER3C:
  6576. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6577. TCCR3B |= val;
  6578. break;
  6579. #endif
  6580. #if defined(TCCR4A)
  6581. case TIMER4A:
  6582. case TIMER4B:
  6583. case TIMER4C:
  6584. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6585. TCCR4B |= val;
  6586. break;
  6587. #endif
  6588. #if defined(TCCR5A)
  6589. case TIMER5A:
  6590. case TIMER5B:
  6591. case TIMER5C:
  6592. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6593. TCCR5B |= val;
  6594. break;
  6595. #endif
  6596. }
  6597. }
  6598. #endif // FAST_PWM_FAN
  6599. void Stop() {
  6600. disable_all_heaters();
  6601. if (IsRunning()) {
  6602. Running = false;
  6603. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6604. SERIAL_ERROR_START;
  6605. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6606. LCD_MESSAGEPGM(MSG_STOPPED);
  6607. }
  6608. }
  6609. /**
  6610. * Set target_extruder from the T parameter or the active_extruder
  6611. *
  6612. * Returns TRUE if the target is invalid
  6613. */
  6614. bool setTargetedHotend(int code) {
  6615. target_extruder = active_extruder;
  6616. if (code_seen('T')) {
  6617. target_extruder = code_value_short();
  6618. if (target_extruder >= EXTRUDERS) {
  6619. SERIAL_ECHO_START;
  6620. SERIAL_CHAR('M');
  6621. SERIAL_ECHO(code);
  6622. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6623. SERIAL_ECHOLN((int)target_extruder);
  6624. return true;
  6625. }
  6626. }
  6627. return false;
  6628. }
  6629. float calculate_volumetric_multiplier(float diameter) {
  6630. if (!volumetric_enabled || diameter == 0) return 1.0;
  6631. float d2 = diameter * 0.5;
  6632. return 1.0 / (M_PI * d2 * d2);
  6633. }
  6634. void calculate_volumetric_multipliers() {
  6635. for (int i = 0; i < EXTRUDERS; i++)
  6636. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6637. }