My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * stepper.cpp - A singleton object to execute motion plans using stepper motors
  24. * Marlin Firmware
  25. *
  26. * Derived from Grbl
  27. * Copyright (c) 2009-2011 Simen Svale Skogsrud
  28. *
  29. * Grbl is free software: you can redistribute it and/or modify
  30. * it under the terms of the GNU General Public License as published by
  31. * the Free Software Foundation, either version 3 of the License, or
  32. * (at your option) any later version.
  33. *
  34. * Grbl is distributed in the hope that it will be useful,
  35. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  36. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  37. * GNU General Public License for more details.
  38. *
  39. * You should have received a copy of the GNU General Public License
  40. * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  41. */
  42. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  43. and Philipp Tiefenbacher. */
  44. #include "Marlin.h"
  45. #include "stepper.h"
  46. #include "endstops.h"
  47. #include "planner.h"
  48. #include "temperature.h"
  49. #include "ultralcd.h"
  50. #include "language.h"
  51. #include "cardreader.h"
  52. #include "speed_lookuptable.h"
  53. #if HAS_DIGIPOTSS
  54. #include <SPI.h>
  55. #endif
  56. Stepper stepper; // Singleton
  57. // public:
  58. block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
  59. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  60. bool Stepper::abort_on_endstop_hit = false;
  61. #endif
  62. #if ENABLED(Z_DUAL_ENDSTOPS)
  63. bool Stepper::performing_homing = false;
  64. #endif
  65. // private:
  66. unsigned char Stepper::last_direction_bits = 0; // The next stepping-bits to be output
  67. unsigned int Stepper::cleaning_buffer_counter = 0;
  68. #if ENABLED(Z_DUAL_ENDSTOPS)
  69. bool Stepper::locked_z_motor = false;
  70. bool Stepper::locked_z2_motor = false;
  71. #endif
  72. long Stepper::counter_X = 0,
  73. Stepper::counter_Y = 0,
  74. Stepper::counter_Z = 0,
  75. Stepper::counter_E = 0;
  76. volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
  77. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  78. unsigned char Stepper::old_OCR0A = 0;
  79. volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
  80. #if ENABLED(LIN_ADVANCE)
  81. volatile int Stepper::e_steps[E_STEPPERS];
  82. int Stepper::extruder_advance_k = LIN_ADVANCE_K,
  83. Stepper::final_estep_rate,
  84. Stepper::current_estep_rate[E_STEPPERS],
  85. Stepper::current_adv_steps[E_STEPPERS];
  86. #else
  87. long Stepper::e_steps[E_STEPPERS],
  88. Stepper::final_advance = 0,
  89. Stepper::old_advance = 0,
  90. Stepper::advance_rate,
  91. Stepper::advance;
  92. #endif
  93. #endif
  94. long Stepper::acceleration_time, Stepper::deceleration_time;
  95. volatile long Stepper::count_position[NUM_AXIS] = { 0 };
  96. volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  97. #if ENABLED(MIXING_EXTRUDER)
  98. long Stepper::counter_m[MIXING_STEPPERS];
  99. #endif
  100. unsigned short Stepper::acc_step_rate; // needed for deceleration start point
  101. uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
  102. unsigned short Stepper::OCR1A_nominal;
  103. volatile long Stepper::endstops_trigsteps[XYZ];
  104. #if ENABLED(X_DUAL_STEPPER_DRIVERS)
  105. #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
  106. #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
  107. #elif ENABLED(DUAL_X_CARRIAGE)
  108. #define X_APPLY_DIR(v,ALWAYS) \
  109. if (extruder_duplication_enabled || ALWAYS) { \
  110. X_DIR_WRITE(v); \
  111. X2_DIR_WRITE(v); \
  112. } \
  113. else { \
  114. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  115. }
  116. #define X_APPLY_STEP(v,ALWAYS) \
  117. if (extruder_duplication_enabled || ALWAYS) { \
  118. X_STEP_WRITE(v); \
  119. X2_STEP_WRITE(v); \
  120. } \
  121. else { \
  122. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  123. }
  124. #else
  125. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  126. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  127. #endif
  128. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  129. #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
  130. #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
  131. #else
  132. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  133. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  134. #endif
  135. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  136. #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
  137. #if ENABLED(Z_DUAL_ENDSTOPS)
  138. #define Z_APPLY_STEP(v,Q) \
  139. if (performing_homing) { \
  140. if (Z_HOME_DIR > 0) {\
  141. if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  142. if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  143. } \
  144. else { \
  145. if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  146. if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  147. } \
  148. } \
  149. else { \
  150. Z_STEP_WRITE(v); \
  151. Z2_STEP_WRITE(v); \
  152. }
  153. #else
  154. #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
  155. #endif
  156. #else
  157. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  158. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  159. #endif
  160. #if DISABLED(MIXING_EXTRUDER)
  161. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  162. #endif
  163. // intRes = longIn1 * longIn2 >> 24
  164. // uses:
  165. // r26 to store 0
  166. // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
  167. // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
  168. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
  169. // B0 A0 are bits 24-39 and are the returned value
  170. // C1 B1 A1 is longIn1
  171. // D2 C2 B2 A2 is longIn2
  172. //
  173. #define MultiU24X32toH16(intRes, longIn1, longIn2) \
  174. asm volatile ( \
  175. "clr r26 \n\t" \
  176. "mul %A1, %B2 \n\t" \
  177. "mov r27, r1 \n\t" \
  178. "mul %B1, %C2 \n\t" \
  179. "movw %A0, r0 \n\t" \
  180. "mul %C1, %C2 \n\t" \
  181. "add %B0, r0 \n\t" \
  182. "mul %C1, %B2 \n\t" \
  183. "add %A0, r0 \n\t" \
  184. "adc %B0, r1 \n\t" \
  185. "mul %A1, %C2 \n\t" \
  186. "add r27, r0 \n\t" \
  187. "adc %A0, r1 \n\t" \
  188. "adc %B0, r26 \n\t" \
  189. "mul %B1, %B2 \n\t" \
  190. "add r27, r0 \n\t" \
  191. "adc %A0, r1 \n\t" \
  192. "adc %B0, r26 \n\t" \
  193. "mul %C1, %A2 \n\t" \
  194. "add r27, r0 \n\t" \
  195. "adc %A0, r1 \n\t" \
  196. "adc %B0, r26 \n\t" \
  197. "mul %B1, %A2 \n\t" \
  198. "add r27, r1 \n\t" \
  199. "adc %A0, r26 \n\t" \
  200. "adc %B0, r26 \n\t" \
  201. "lsr r27 \n\t" \
  202. "adc %A0, r26 \n\t" \
  203. "adc %B0, r26 \n\t" \
  204. "mul %D2, %A1 \n\t" \
  205. "add %A0, r0 \n\t" \
  206. "adc %B0, r1 \n\t" \
  207. "mul %D2, %B1 \n\t" \
  208. "add %B0, r0 \n\t" \
  209. "clr r1 \n\t" \
  210. : \
  211. "=&r" (intRes) \
  212. : \
  213. "d" (longIn1), \
  214. "d" (longIn2) \
  215. : \
  216. "r26" , "r27" \
  217. )
  218. // Some useful constants
  219. #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
  220. #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
  221. /**
  222. * __________________________
  223. * /| |\ _________________ ^
  224. * / | | \ /| |\ |
  225. * / | | \ / | | \ s
  226. * / | | | | | \ p
  227. * / | | | | | \ e
  228. * +-----+------------------------+---+--+---------------+----+ e
  229. * | BLOCK 1 | BLOCK 2 | d
  230. *
  231. * time ----->
  232. *
  233. * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  234. * first block->accelerate_until step_events_completed, then keeps going at constant speed until
  235. * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  236. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
  237. */
  238. void Stepper::wake_up() {
  239. // TCNT1 = 0;
  240. ENABLE_STEPPER_DRIVER_INTERRUPT();
  241. }
  242. /**
  243. * Set the stepper direction of each axis
  244. *
  245. * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
  246. * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
  247. * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
  248. */
  249. void Stepper::set_directions() {
  250. #define SET_STEP_DIR(AXIS) \
  251. if (motor_direction(AXIS ##_AXIS)) { \
  252. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
  253. count_direction[AXIS ##_AXIS] = -1; \
  254. } \
  255. else { \
  256. AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
  257. count_direction[AXIS ##_AXIS] = 1; \
  258. }
  259. #if HAS_X_DIR
  260. SET_STEP_DIR(X); // A
  261. #endif
  262. #if HAS_Y_DIR
  263. SET_STEP_DIR(Y); // B
  264. #endif
  265. #if HAS_Z_DIR
  266. SET_STEP_DIR(Z); // C
  267. #endif
  268. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  269. if (motor_direction(E_AXIS)) {
  270. REV_E_DIR();
  271. count_direction[E_AXIS] = -1;
  272. }
  273. else {
  274. NORM_E_DIR();
  275. count_direction[E_AXIS] = 1;
  276. }
  277. #endif // !ADVANCE && !LIN_ADVANCE
  278. }
  279. /**
  280. * Stepper Driver Interrupt
  281. *
  282. * Directly pulses the stepper motors at high frequency.
  283. * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
  284. *
  285. * OCR1A Frequency
  286. * 1 2 MHz
  287. * 50 40 KHz
  288. * 100 20 KHz - capped max rate
  289. * 200 10 KHz - nominal max rate
  290. * 2000 1 KHz - sleep rate
  291. * 4000 500 Hz - init rate
  292. */
  293. ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
  294. void Stepper::isr() {
  295. if (cleaning_buffer_counter) {
  296. current_block = NULL;
  297. planner.discard_current_block();
  298. #ifdef SD_FINISHED_RELEASECOMMAND
  299. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  300. #endif
  301. cleaning_buffer_counter--;
  302. OCR1A = 200; // Run at max speed - 10 KHz
  303. return;
  304. }
  305. // If there is no current block, attempt to pop one from the buffer
  306. if (!current_block) {
  307. // Anything in the buffer?
  308. current_block = planner.get_current_block();
  309. if (current_block) {
  310. current_block->busy = true;
  311. trapezoid_generator_reset();
  312. // Initialize Bresenham counters to 1/2 the ceiling
  313. counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
  314. #if ENABLED(MIXING_EXTRUDER)
  315. MIXING_STEPPERS_LOOP(i)
  316. counter_m[i] = -(current_block->mix_event_count[i] >> 1);
  317. #endif
  318. step_events_completed = 0;
  319. #if ENABLED(Z_LATE_ENABLE)
  320. if (current_block->steps[Z_AXIS] > 0) {
  321. enable_z();
  322. OCR1A = 2000; // Run at slow speed - 1 KHz
  323. return;
  324. }
  325. #endif
  326. // #if ENABLED(ADVANCE)
  327. // e_steps[TOOL_E_INDEX] = 0;
  328. // #endif
  329. }
  330. else {
  331. OCR1A = 2000; // Run at slow speed - 1 KHz
  332. return;
  333. }
  334. }
  335. // Update endstops state, if enabled
  336. if (endstops.enabled
  337. #if HAS_BED_PROBE
  338. || endstops.z_probe_enabled
  339. #endif
  340. ) endstops.update();
  341. // Take multiple steps per interrupt (For high speed moves)
  342. bool all_steps_done = false;
  343. for (int8_t i = 0; i < step_loops; i++) {
  344. #ifndef USBCON
  345. customizedSerial.checkRx(); // Check for serial chars.
  346. #endif
  347. #if ENABLED(LIN_ADVANCE)
  348. counter_E += current_block->steps[E_AXIS];
  349. if (counter_E > 0) {
  350. counter_E -= current_block->step_event_count;
  351. #if DISABLED(MIXING_EXTRUDER)
  352. // Don't step E here for mixing extruder
  353. count_position[E_AXIS] += count_direction[E_AXIS];
  354. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  355. #endif
  356. }
  357. #if ENABLED(MIXING_EXTRUDER)
  358. // Step mixing steppers proportionally
  359. const bool dir = motor_direction(E_AXIS);
  360. MIXING_STEPPERS_LOOP(j) {
  361. counter_m[j] += current_block->steps[E_AXIS];
  362. if (counter_m[j] > 0) {
  363. counter_m[j] -= current_block->mix_event_count[j];
  364. dir ? --e_steps[j] : ++e_steps[j];
  365. }
  366. }
  367. #endif
  368. #elif ENABLED(ADVANCE)
  369. // Always count the unified E axis
  370. counter_E += current_block->steps[E_AXIS];
  371. if (counter_E > 0) {
  372. counter_E -= current_block->step_event_count;
  373. #if DISABLED(MIXING_EXTRUDER)
  374. // Don't step E here for mixing extruder
  375. motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
  376. #endif
  377. }
  378. #if ENABLED(MIXING_EXTRUDER)
  379. // Step mixing steppers proportionally
  380. const bool dir = motor_direction(E_AXIS);
  381. MIXING_STEPPERS_LOOP(j) {
  382. counter_m[j] += current_block->steps[E_AXIS];
  383. if (counter_m[j] > 0) {
  384. counter_m[j] -= current_block->mix_event_count[j];
  385. dir ? --e_steps[j] : ++e_steps[j];
  386. }
  387. }
  388. #endif // MIXING_EXTRUDER
  389. #endif // ADVANCE or LIN_ADVANCE
  390. #define _COUNTER(AXIS) counter_## AXIS
  391. #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
  392. #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
  393. // Advance the Bresenham counter; start a pulse if the axis needs a step
  394. #define PULSE_START(AXIS) \
  395. _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
  396. if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
  397. // Stop an active pulse, reset the Bresenham counter, update the position
  398. #define PULSE_STOP(AXIS) \
  399. if (_COUNTER(AXIS) > 0) { \
  400. _COUNTER(AXIS) -= current_block->step_event_count; \
  401. count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
  402. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
  403. }
  404. #define CYCLES_EATEN_BY_CODE 240
  405. // If a minimum pulse time was specified get the CPU clock
  406. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  407. static uint32_t pulse_start;
  408. pulse_start = TCNT0;
  409. #endif
  410. #if HAS_X_STEP
  411. PULSE_START(X);
  412. #endif
  413. #if HAS_Y_STEP
  414. PULSE_START(Y);
  415. #endif
  416. #if HAS_Z_STEP
  417. PULSE_START(Z);
  418. #endif
  419. // For non-advance use linear interpolation for E also
  420. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  421. #if ENABLED(MIXING_EXTRUDER)
  422. // Keep updating the single E axis
  423. counter_E += current_block->steps[E_AXIS];
  424. // Tick the counters used for this mix
  425. MIXING_STEPPERS_LOOP(j) {
  426. // Step mixing steppers (proportionally)
  427. counter_m[j] += current_block->steps[E_AXIS];
  428. // Step when the counter goes over zero
  429. if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
  430. }
  431. #else // !MIXING_EXTRUDER
  432. PULSE_START(E);
  433. #endif
  434. #endif // !ADVANCE && !LIN_ADVANCE
  435. // For a minimum pulse time wait before stopping pulses
  436. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_CODE
  437. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_CODE) { /* nada */ }
  438. #endif
  439. #if HAS_X_STEP
  440. PULSE_STOP(X);
  441. #endif
  442. #if HAS_Y_STEP
  443. PULSE_STOP(Y);
  444. #endif
  445. #if HAS_Z_STEP
  446. PULSE_STOP(Z);
  447. #endif
  448. #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
  449. #if ENABLED(MIXING_EXTRUDER)
  450. // Always step the single E axis
  451. if (counter_E > 0) {
  452. counter_E -= current_block->step_event_count;
  453. count_position[E_AXIS] += count_direction[E_AXIS];
  454. }
  455. MIXING_STEPPERS_LOOP(j) {
  456. if (counter_m[j] > 0) {
  457. counter_m[j] -= current_block->mix_event_count[j];
  458. En_STEP_WRITE(j, INVERT_E_STEP_PIN);
  459. }
  460. }
  461. #else // !MIXING_EXTRUDER
  462. PULSE_STOP(E);
  463. #endif
  464. #endif // !ADVANCE && !LIN_ADVANCE
  465. if (++step_events_completed >= current_block->step_event_count) {
  466. all_steps_done = true;
  467. break;
  468. }
  469. }
  470. #if ENABLED(LIN_ADVANCE)
  471. if (current_block->use_advance_lead) {
  472. int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
  473. current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
  474. #if ENABLED(MIXING_EXTRUDER)
  475. // Mixing extruders apply advance lead proportionally
  476. MIXING_STEPPERS_LOOP(j)
  477. e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
  478. #else
  479. // For most extruders, advance the single E stepper
  480. e_steps[TOOL_E_INDEX] += delta_adv_steps;
  481. #endif
  482. }
  483. #endif
  484. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  485. // If we have esteps to execute, fire the next advance_isr "now"
  486. if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
  487. #endif
  488. // Calculate new timer value
  489. uint16_t timer, step_rate;
  490. if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
  491. MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  492. acc_step_rate += current_block->initial_rate;
  493. // upper limit
  494. NOMORE(acc_step_rate, current_block->nominal_rate);
  495. // step_rate to timer interval
  496. timer = calc_timer(acc_step_rate);
  497. OCR1A = timer;
  498. acceleration_time += timer;
  499. #if ENABLED(LIN_ADVANCE)
  500. if (current_block->use_advance_lead) {
  501. #if ENABLED(MIXING_EXTRUDER)
  502. MIXING_STEPPERS_LOOP(j)
  503. current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  504. #else
  505. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
  506. #endif
  507. }
  508. #elif ENABLED(ADVANCE)
  509. advance += advance_rate * step_loops;
  510. //NOLESS(advance, current_block->advance);
  511. long advance_whole = advance >> 8,
  512. advance_factor = advance_whole - old_advance;
  513. // Do E steps + advance steps
  514. #if ENABLED(MIXING_EXTRUDER)
  515. // ...for mixing steppers proportionally
  516. MIXING_STEPPERS_LOOP(j)
  517. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  518. #else
  519. // ...for the active extruder
  520. e_steps[TOOL_E_INDEX] += advance_factor;
  521. #endif
  522. old_advance = advance_whole;
  523. #endif // ADVANCE or LIN_ADVANCE
  524. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  525. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]); //>> 3 is divide by 8. Reason: Timer 1 runs at 16/8=2MHz, Timer 0 at 16/64=0.25MHz. ==> 2/0.25=8.
  526. #endif
  527. }
  528. else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
  529. MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  530. if (step_rate < acc_step_rate) { // Still decelerating?
  531. step_rate = acc_step_rate - step_rate;
  532. NOLESS(step_rate, current_block->final_rate);
  533. }
  534. else
  535. step_rate = current_block->final_rate;
  536. // step_rate to timer interval
  537. timer = calc_timer(step_rate);
  538. OCR1A = timer;
  539. deceleration_time += timer;
  540. #if ENABLED(LIN_ADVANCE)
  541. if (current_block->use_advance_lead) {
  542. #if ENABLED(MIXING_EXTRUDER)
  543. MIXING_STEPPERS_LOOP(j)
  544. current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
  545. #else
  546. current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
  547. #endif
  548. }
  549. #elif ENABLED(ADVANCE)
  550. advance -= advance_rate * step_loops;
  551. NOLESS(advance, final_advance);
  552. // Do E steps + advance steps
  553. long advance_whole = advance >> 8,
  554. advance_factor = advance_whole - old_advance;
  555. #if ENABLED(MIXING_EXTRUDER)
  556. MIXING_STEPPERS_LOOP(j)
  557. e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
  558. #else
  559. e_steps[TOOL_E_INDEX] += advance_factor;
  560. #endif
  561. old_advance = advance_whole;
  562. #endif // ADVANCE or LIN_ADVANCE
  563. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  564. eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]);
  565. #endif
  566. }
  567. else {
  568. #if ENABLED(LIN_ADVANCE)
  569. if (current_block->use_advance_lead)
  570. current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
  571. eISR_Rate = (OCR1A_nominal >> 3) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
  572. #endif
  573. OCR1A = OCR1A_nominal;
  574. // ensure we're running at the correct step rate, even if we just came off an acceleration
  575. step_loops = step_loops_nominal;
  576. }
  577. NOLESS(OCR1A, TCNT1 + 16);
  578. // If current block is finished, reset pointer
  579. if (all_steps_done) {
  580. current_block = NULL;
  581. planner.discard_current_block();
  582. }
  583. }
  584. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  585. // Timer interrupt for E. e_steps is set in the main routine;
  586. // Timer 0 is shared with millies
  587. ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
  588. void Stepper::advance_isr() {
  589. old_OCR0A += eISR_Rate;
  590. OCR0A = old_OCR0A;
  591. #define SET_E_STEP_DIR(INDEX) \
  592. if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
  593. #define START_E_PULSE(INDEX) \
  594. if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
  595. #define STOP_E_PULSE(INDEX) \
  596. if (e_steps[INDEX]) { \
  597. e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
  598. E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
  599. }
  600. SET_E_STEP_DIR(0);
  601. #if E_STEPPERS > 1
  602. SET_E_STEP_DIR(1);
  603. #if E_STEPPERS > 2
  604. SET_E_STEP_DIR(2);
  605. #if E_STEPPERS > 3
  606. SET_E_STEP_DIR(3);
  607. #endif
  608. #endif
  609. #endif
  610. #define CYCLES_EATEN_BY_E 60
  611. // Step all E steppers that have steps
  612. for (uint8_t i = 0; i < step_loops; i++) {
  613. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  614. static uint32_t pulse_start;
  615. pulse_start = TCNT0;
  616. #endif
  617. START_E_PULSE(0);
  618. #if E_STEPPERS > 1
  619. START_E_PULSE(1);
  620. #if E_STEPPERS > 2
  621. START_E_PULSE(2);
  622. #if E_STEPPERS > 3
  623. START_E_PULSE(3);
  624. #endif
  625. #endif
  626. #endif
  627. // For a minimum pulse time wait before stopping pulses
  628. #if STEP_PULSE_CYCLES > CYCLES_EATEN_BY_E
  629. while ((uint32_t)(TCNT0 - pulse_start) < STEP_PULSE_CYCLES - CYCLES_EATEN_BY_E) { /* nada */ }
  630. #endif
  631. STOP_E_PULSE(0);
  632. #if E_STEPPERS > 1
  633. STOP_E_PULSE(1);
  634. #if E_STEPPERS > 2
  635. STOP_E_PULSE(2);
  636. #if E_STEPPERS > 3
  637. STOP_E_PULSE(3);
  638. #endif
  639. #endif
  640. #endif
  641. }
  642. }
  643. #endif // ADVANCE or LIN_ADVANCE
  644. void Stepper::init() {
  645. // Init Digipot Motor Current
  646. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  647. digipot_init();
  648. #endif
  649. // Init Microstepping Pins
  650. #if HAS_MICROSTEPS
  651. microstep_init();
  652. #endif
  653. // Init TMC Steppers
  654. #if ENABLED(HAVE_TMCDRIVER)
  655. tmc_init();
  656. #endif
  657. // Init L6470 Steppers
  658. #if ENABLED(HAVE_L6470DRIVER)
  659. L6470_init();
  660. #endif
  661. // Init Dir Pins
  662. #if HAS_X_DIR
  663. X_DIR_INIT;
  664. #endif
  665. #if HAS_X2_DIR
  666. X2_DIR_INIT;
  667. #endif
  668. #if HAS_Y_DIR
  669. Y_DIR_INIT;
  670. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  671. Y2_DIR_INIT;
  672. #endif
  673. #endif
  674. #if HAS_Z_DIR
  675. Z_DIR_INIT;
  676. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  677. Z2_DIR_INIT;
  678. #endif
  679. #endif
  680. #if HAS_E0_DIR
  681. E0_DIR_INIT;
  682. #endif
  683. #if HAS_E1_DIR
  684. E1_DIR_INIT;
  685. #endif
  686. #if HAS_E2_DIR
  687. E2_DIR_INIT;
  688. #endif
  689. #if HAS_E3_DIR
  690. E3_DIR_INIT;
  691. #endif
  692. // Init Enable Pins - steppers default to disabled.
  693. #if HAS_X_ENABLE
  694. X_ENABLE_INIT;
  695. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  696. #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
  697. X2_ENABLE_INIT;
  698. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  699. #endif
  700. #endif
  701. #if HAS_Y_ENABLE
  702. Y_ENABLE_INIT;
  703. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  704. #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  705. Y2_ENABLE_INIT;
  706. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  707. #endif
  708. #endif
  709. #if HAS_Z_ENABLE
  710. Z_ENABLE_INIT;
  711. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  712. #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  713. Z2_ENABLE_INIT;
  714. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  715. #endif
  716. #endif
  717. #if HAS_E0_ENABLE
  718. E0_ENABLE_INIT;
  719. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  720. #endif
  721. #if HAS_E1_ENABLE
  722. E1_ENABLE_INIT;
  723. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  724. #endif
  725. #if HAS_E2_ENABLE
  726. E2_ENABLE_INIT;
  727. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  728. #endif
  729. #if HAS_E3_ENABLE
  730. E3_ENABLE_INIT;
  731. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  732. #endif
  733. // Init endstops and pullups
  734. endstops.init();
  735. #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
  736. #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
  737. #define _DISABLE(axis) disable_## axis()
  738. #define AXIS_INIT(axis, AXIS, PIN) \
  739. _STEP_INIT(AXIS); \
  740. _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
  741. _DISABLE(axis)
  742. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  743. // Init Step Pins
  744. #if HAS_X_STEP
  745. #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
  746. X2_STEP_INIT;
  747. X2_STEP_WRITE(INVERT_X_STEP_PIN);
  748. #endif
  749. AXIS_INIT(x, X, X);
  750. #endif
  751. #if HAS_Y_STEP
  752. #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
  753. Y2_STEP_INIT;
  754. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  755. #endif
  756. AXIS_INIT(y, Y, Y);
  757. #endif
  758. #if HAS_Z_STEP
  759. #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
  760. Z2_STEP_INIT;
  761. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  762. #endif
  763. AXIS_INIT(z, Z, Z);
  764. #endif
  765. #if HAS_E0_STEP
  766. E_AXIS_INIT(0);
  767. #endif
  768. #if HAS_E1_STEP
  769. E_AXIS_INIT(1);
  770. #endif
  771. #if HAS_E2_STEP
  772. E_AXIS_INIT(2);
  773. #endif
  774. #if HAS_E3_STEP
  775. E_AXIS_INIT(3);
  776. #endif
  777. // waveform generation = 0100 = CTC
  778. CBI(TCCR1B, WGM13);
  779. SBI(TCCR1B, WGM12);
  780. CBI(TCCR1A, WGM11);
  781. CBI(TCCR1A, WGM10);
  782. // output mode = 00 (disconnected)
  783. TCCR1A &= ~(3 << COM1A0);
  784. TCCR1A &= ~(3 << COM1B0);
  785. // Set the timer pre-scaler
  786. // Generally we use a divider of 8, resulting in a 2MHz timer
  787. // frequency on a 16MHz MCU. If you are going to change this, be
  788. // sure to regenerate speed_lookuptable.h with
  789. // create_speed_lookuptable.py
  790. TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
  791. // Init Stepper ISR to 122 Hz for quick starting
  792. OCR1A = 0x4000;
  793. TCNT1 = 0;
  794. ENABLE_STEPPER_DRIVER_INTERRUPT();
  795. #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
  796. for (int i = 0; i < E_STEPPERS; i++) {
  797. e_steps[i] = 0;
  798. #if ENABLED(LIN_ADVANCE)
  799. current_adv_steps[i] = 0;
  800. #endif
  801. }
  802. #if defined(TCCR0A) && defined(WGM01)
  803. CBI(TCCR0A, WGM01);
  804. CBI(TCCR0A, WGM00);
  805. #endif
  806. SBI(TIMSK0, OCIE0A);
  807. #endif // ADVANCE or LIN_ADVANCE
  808. endstops.enable(true); // Start with endstops active. After homing they can be disabled
  809. sei();
  810. set_directions(); // Init directions to last_direction_bits = 0
  811. }
  812. /**
  813. * Block until all buffered steps are executed
  814. */
  815. void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
  816. /**
  817. * Set the stepper positions directly in steps
  818. *
  819. * The input is based on the typical per-axis XYZ steps.
  820. * For CORE machines XYZ needs to be translated to ABC.
  821. *
  822. * This allows get_axis_position_mm to correctly
  823. * derive the current XYZ position later on.
  824. */
  825. void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
  826. synchronize(); // Bad to set stepper counts in the middle of a move
  827. CRITICAL_SECTION_START;
  828. #if ENABLED(COREXY)
  829. // corexy positioning
  830. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  831. count_position[A_AXIS] = a + b;
  832. count_position[B_AXIS] = a - b;
  833. count_position[Z_AXIS] = c;
  834. #elif ENABLED(COREXZ)
  835. // corexz planning
  836. count_position[A_AXIS] = a + c;
  837. count_position[Y_AXIS] = b;
  838. count_position[C_AXIS] = a - c;
  839. #elif ENABLED(COREYZ)
  840. // coreyz planning
  841. count_position[X_AXIS] = a;
  842. count_position[B_AXIS] = y + c;
  843. count_position[C_AXIS] = y - c;
  844. #else
  845. // default non-h-bot planning
  846. count_position[X_AXIS] = a;
  847. count_position[Y_AXIS] = b;
  848. count_position[Z_AXIS] = c;
  849. #endif
  850. count_position[E_AXIS] = e;
  851. CRITICAL_SECTION_END;
  852. }
  853. void Stepper::set_position(const AxisEnum &axis, const long &v) {
  854. CRITICAL_SECTION_START;
  855. count_position[axis] = v;
  856. CRITICAL_SECTION_END;
  857. }
  858. void Stepper::set_e_position(const long &e) {
  859. CRITICAL_SECTION_START;
  860. count_position[E_AXIS] = e;
  861. CRITICAL_SECTION_END;
  862. }
  863. /**
  864. * Get a stepper's position in steps.
  865. */
  866. long Stepper::position(AxisEnum axis) {
  867. CRITICAL_SECTION_START;
  868. long count_pos = count_position[axis];
  869. CRITICAL_SECTION_END;
  870. return count_pos;
  871. }
  872. /**
  873. * Get an axis position according to stepper position(s)
  874. * For CORE machines apply translation from ABC to XYZ.
  875. */
  876. float Stepper::get_axis_position_mm(AxisEnum axis) {
  877. float axis_steps;
  878. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  879. // Requesting one of the "core" axes?
  880. if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
  881. CRITICAL_SECTION_START;
  882. long pos1 = count_position[CORE_AXIS_1],
  883. pos2 = count_position[CORE_AXIS_2];
  884. CRITICAL_SECTION_END;
  885. // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
  886. // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
  887. axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
  888. }
  889. else
  890. axis_steps = position(axis);
  891. #else
  892. axis_steps = position(axis);
  893. #endif
  894. return axis_steps * planner.steps_to_mm[axis];
  895. }
  896. void Stepper::finish_and_disable() {
  897. synchronize();
  898. disable_all_steppers();
  899. }
  900. void Stepper::quick_stop() {
  901. cleaning_buffer_counter = 5000;
  902. DISABLE_STEPPER_DRIVER_INTERRUPT();
  903. while (planner.blocks_queued()) planner.discard_current_block();
  904. current_block = NULL;
  905. ENABLE_STEPPER_DRIVER_INTERRUPT();
  906. }
  907. void Stepper::endstop_triggered(AxisEnum axis) {
  908. #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  909. float axis_pos = count_position[axis];
  910. if (axis == CORE_AXIS_1)
  911. axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
  912. else if (axis == CORE_AXIS_2)
  913. axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
  914. endstops_trigsteps[axis] = axis_pos;
  915. #else // !COREXY && !COREXZ && !COREYZ
  916. endstops_trigsteps[axis] = count_position[axis];
  917. #endif // !COREXY && !COREXZ && !COREYZ
  918. kill_current_block();
  919. }
  920. void Stepper::report_positions() {
  921. CRITICAL_SECTION_START;
  922. long xpos = count_position[X_AXIS],
  923. ypos = count_position[Y_AXIS],
  924. zpos = count_position[Z_AXIS];
  925. CRITICAL_SECTION_END;
  926. #if ENABLED(COREXY) || ENABLED(COREXZ) || IS_SCARA
  927. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  928. #else
  929. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  930. #endif
  931. SERIAL_PROTOCOL(xpos);
  932. #if ENABLED(COREXY) || ENABLED(COREYZ) || IS_SCARA
  933. SERIAL_PROTOCOLPGM(" B:");
  934. #else
  935. SERIAL_PROTOCOLPGM(" Y:");
  936. #endif
  937. SERIAL_PROTOCOL(ypos);
  938. #if ENABLED(COREXZ) || ENABLED(COREYZ)
  939. SERIAL_PROTOCOLPGM(" C:");
  940. #else
  941. SERIAL_PROTOCOLPGM(" Z:");
  942. #endif
  943. SERIAL_PROTOCOL(zpos);
  944. SERIAL_EOL;
  945. }
  946. #if ENABLED(BABYSTEPPING)
  947. // MUST ONLY BE CALLED BY AN ISR,
  948. // No other ISR should ever interrupt this!
  949. void Stepper::babystep(const uint8_t axis, const bool direction) {
  950. #define _ENABLE(axis) enable_## axis()
  951. #define _READ_DIR(AXIS) AXIS ##_DIR_READ
  952. #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
  953. #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
  954. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  955. _ENABLE(axis); \
  956. uint8_t old_pin = _READ_DIR(AXIS); \
  957. _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
  958. _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
  959. delayMicroseconds(2); \
  960. _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
  961. _APPLY_DIR(AXIS, old_pin); \
  962. }
  963. switch (axis) {
  964. case X_AXIS:
  965. BABYSTEP_AXIS(x, X, false);
  966. break;
  967. case Y_AXIS:
  968. BABYSTEP_AXIS(y, Y, false);
  969. break;
  970. case Z_AXIS: {
  971. #if DISABLED(DELTA)
  972. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  973. #else // DELTA
  974. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  975. enable_x();
  976. enable_y();
  977. enable_z();
  978. uint8_t old_x_dir_pin = X_DIR_READ,
  979. old_y_dir_pin = Y_DIR_READ,
  980. old_z_dir_pin = Z_DIR_READ;
  981. //setup new step
  982. X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
  983. Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
  984. Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
  985. //perform step
  986. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  987. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  988. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  989. delayMicroseconds(2);
  990. X_STEP_WRITE(INVERT_X_STEP_PIN);
  991. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  992. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  993. //get old pin state back.
  994. X_DIR_WRITE(old_x_dir_pin);
  995. Y_DIR_WRITE(old_y_dir_pin);
  996. Z_DIR_WRITE(old_z_dir_pin);
  997. #endif
  998. } break;
  999. default: break;
  1000. }
  1001. }
  1002. #endif //BABYSTEPPING
  1003. /**
  1004. * Software-controlled Stepper Motor Current
  1005. */
  1006. #if HAS_DIGIPOTSS
  1007. // From Arduino DigitalPotControl example
  1008. void Stepper::digitalPotWrite(int address, int value) {
  1009. WRITE(DIGIPOTSS_PIN, LOW); // take the SS pin low to select the chip
  1010. SPI.transfer(address); // send in the address and value via SPI:
  1011. SPI.transfer(value);
  1012. WRITE(DIGIPOTSS_PIN, HIGH); // take the SS pin high to de-select the chip:
  1013. //delay(10);
  1014. }
  1015. #endif //HAS_DIGIPOTSS
  1016. #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
  1017. void Stepper::digipot_init() {
  1018. #if HAS_DIGIPOTSS
  1019. static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1020. SPI.begin();
  1021. SET_OUTPUT(DIGIPOTSS_PIN);
  1022. for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
  1023. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1024. digipot_current(i, digipot_motor_current[i]);
  1025. }
  1026. #elif HAS_MOTOR_CURRENT_PWM
  1027. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1028. SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
  1029. digipot_current(0, motor_current_setting[0]);
  1030. #endif
  1031. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1032. SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
  1033. digipot_current(1, motor_current_setting[1]);
  1034. #endif
  1035. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1036. SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
  1037. digipot_current(2, motor_current_setting[2]);
  1038. #endif
  1039. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1040. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1041. #endif
  1042. }
  1043. void Stepper::digipot_current(uint8_t driver, int current) {
  1044. #if HAS_DIGIPOTSS
  1045. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1046. digitalPotWrite(digipot_ch[driver], current);
  1047. #elif HAS_MOTOR_CURRENT_PWM
  1048. #define _WRITE_CURRENT_PWM(P) analogWrite(P, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
  1049. switch (driver) {
  1050. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  1051. case 0: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_XY_PIN); break;
  1052. #endif
  1053. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  1054. case 1: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_Z_PIN); break;
  1055. #endif
  1056. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  1057. case 2: _WRITE_CURRENT_PWM(MOTOR_CURRENT_PWM_E_PIN); break;
  1058. #endif
  1059. }
  1060. #endif
  1061. }
  1062. #endif
  1063. #if HAS_MICROSTEPS
  1064. /**
  1065. * Software-controlled Microstepping
  1066. */
  1067. void Stepper::microstep_init() {
  1068. SET_OUTPUT(X_MS1_PIN);
  1069. SET_OUTPUT(X_MS2_PIN);
  1070. #if HAS_MICROSTEPS_Y
  1071. SET_OUTPUT(Y_MS1_PIN);
  1072. SET_OUTPUT(Y_MS2_PIN);
  1073. #endif
  1074. #if HAS_MICROSTEPS_Z
  1075. SET_OUTPUT(Z_MS1_PIN);
  1076. SET_OUTPUT(Z_MS2_PIN);
  1077. #endif
  1078. #if HAS_MICROSTEPS_E0
  1079. SET_OUTPUT(E0_MS1_PIN);
  1080. SET_OUTPUT(E0_MS2_PIN);
  1081. #endif
  1082. #if HAS_MICROSTEPS_E1
  1083. SET_OUTPUT(E1_MS1_PIN);
  1084. SET_OUTPUT(E1_MS2_PIN);
  1085. #endif
  1086. static const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1087. for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
  1088. microstep_mode(i, microstep_modes[i]);
  1089. }
  1090. void Stepper::microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1091. if (ms1 >= 0) switch (driver) {
  1092. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1093. #if HAS_MICROSTEPS_Y
  1094. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1095. #endif
  1096. #if HAS_MICROSTEPS_Z
  1097. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1098. #endif
  1099. #if HAS_MICROSTEPS_E0
  1100. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1101. #endif
  1102. #if HAS_MICROSTEPS_E1
  1103. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1104. #endif
  1105. }
  1106. if (ms2 >= 0) switch (driver) {
  1107. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1108. #if HAS_MICROSTEPS_Y
  1109. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1110. #endif
  1111. #if HAS_MICROSTEPS_Z
  1112. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1113. #endif
  1114. #if HAS_MICROSTEPS_E0
  1115. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1116. #endif
  1117. #if HAS_MICROSTEPS_E1
  1118. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1119. #endif
  1120. }
  1121. }
  1122. void Stepper::microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1123. switch (stepping_mode) {
  1124. case 1: microstep_ms(driver, MICROSTEP1); break;
  1125. case 2: microstep_ms(driver, MICROSTEP2); break;
  1126. case 4: microstep_ms(driver, MICROSTEP4); break;
  1127. case 8: microstep_ms(driver, MICROSTEP8); break;
  1128. case 16: microstep_ms(driver, MICROSTEP16); break;
  1129. }
  1130. }
  1131. void Stepper::microstep_readings() {
  1132. SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
  1133. SERIAL_PROTOCOLPGM("X: ");
  1134. SERIAL_PROTOCOL(READ(X_MS1_PIN));
  1135. SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
  1136. #if HAS_MICROSTEPS_Y
  1137. SERIAL_PROTOCOLPGM("Y: ");
  1138. SERIAL_PROTOCOL(READ(Y_MS1_PIN));
  1139. SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
  1140. #endif
  1141. #if HAS_MICROSTEPS_Z
  1142. SERIAL_PROTOCOLPGM("Z: ");
  1143. SERIAL_PROTOCOL(READ(Z_MS1_PIN));
  1144. SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
  1145. #endif
  1146. #if HAS_MICROSTEPS_E0
  1147. SERIAL_PROTOCOLPGM("E0: ");
  1148. SERIAL_PROTOCOL(READ(E0_MS1_PIN));
  1149. SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
  1150. #endif
  1151. #if HAS_MICROSTEPS_E1
  1152. SERIAL_PROTOCOLPGM("E1: ");
  1153. SERIAL_PROTOCOL(READ(E1_MS1_PIN));
  1154. SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
  1155. #endif
  1156. }
  1157. #endif // HAS_MICROSTEPS
  1158. #if ENABLED(LIN_ADVANCE)
  1159. void Stepper::advance_M905(const float &k) {
  1160. if (k >= 0) extruder_advance_k = k;
  1161. SERIAL_ECHO_START;
  1162. SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
  1163. SERIAL_EOL;
  1164. }
  1165. #endif // LIN_ADVANCE