My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_G29.cpp 73KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "ubl.h"
  25. #include "Marlin.h"
  26. #include "hex_print_routines.h"
  27. #include "configuration_store.h"
  28. #include "ultralcd.h"
  29. #include "stepper.h"
  30. #include "planner.h"
  31. #include "gcode.h"
  32. #include <math.h>
  33. #include "least_squares_fit.h"
  34. #define UBL_G29_P31
  35. extern float destination[XYZE], current_position[XYZE];
  36. #if ENABLED(NEWPANEL)
  37. void lcd_return_to_status();
  38. void lcd_mesh_edit_setup(float initial);
  39. float lcd_mesh_edit();
  40. void lcd_z_offset_edit_setup(float);
  41. extern void _lcd_ubl_output_map_lcd();
  42. float lcd_z_offset_edit();
  43. #endif
  44. extern float meshedit_done;
  45. extern long babysteps_done;
  46. extern float probe_pt(const float &rx, const float &ry, const bool, const uint8_t, const bool=true);
  47. extern bool set_probe_deployed(bool);
  48. extern void set_bed_leveling_enabled(bool);
  49. typedef void (*screenFunc_t)();
  50. extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
  51. #define SIZE_OF_LITTLE_RAISE 1
  52. #define BIG_RAISE_NOT_NEEDED 0
  53. int unified_bed_leveling::g29_verbose_level,
  54. unified_bed_leveling::g29_phase_value,
  55. unified_bed_leveling::g29_repetition_cnt,
  56. unified_bed_leveling::g29_storage_slot = 0,
  57. unified_bed_leveling::g29_map_type;
  58. bool unified_bed_leveling::g29_c_flag,
  59. unified_bed_leveling::g29_x_flag,
  60. unified_bed_leveling::g29_y_flag;
  61. float unified_bed_leveling::g29_x_pos,
  62. unified_bed_leveling::g29_y_pos,
  63. unified_bed_leveling::g29_card_thickness = 0.0,
  64. unified_bed_leveling::g29_constant = 0.0;
  65. #if HAS_BED_PROBE
  66. int unified_bed_leveling::g29_grid_size;
  67. #endif
  68. /**
  69. * G29: Unified Bed Leveling by Roxy
  70. *
  71. * Parameters understood by this leveling system:
  72. *
  73. * A Activate Activate the Unified Bed Leveling system.
  74. *
  75. * B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
  76. * Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
  77. * In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
  78. * grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
  79. * same resistance is felt in the shim. You can omit the numerical value on first invocation
  80. * of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
  81. * measured thickness by default.
  82. *
  83. * C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
  84. * previous measurements.
  85. *
  86. * C Constant G29 P2 C specifies a Constant and tells the Manual Probe subsystem to use the current
  87. * location in its search for the closest unmeasured Mesh Point.
  88. *
  89. * G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
  90. *
  91. * C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
  92. *
  93. * D Disable Disable the Unified Bed Leveling system.
  94. *
  95. * E Stow_probe Stow the probe after each sampled point.
  96. *
  97. * F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
  98. * specified height, no correction is applied and natural printer kenimatics take over. If no
  99. * number is specified for the command, 10mm is assumed to be reasonable.
  100. *
  101. * H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
  102. * If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
  103. *
  104. * H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
  105. * If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
  106. *
  107. * I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
  108. * the nozzle location is used. If no 'I' value is given, only the point nearest to the location
  109. * is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
  110. * portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
  111. * an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
  112. * can move the nozzle around and use this feature to select the center of the area (or cell) to
  113. * invalidate.
  114. *
  115. * J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
  116. * Not specifying a grid size will invoke the 3-Point leveling function.
  117. *
  118. * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
  119. * command literally performs a diff between two Meshes.
  120. *
  121. * L Load Load Mesh from the previously activated location in the EEPROM.
  122. *
  123. * L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
  124. * for subsequent Load and Store operations.
  125. *
  126. * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
  127. * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
  128. * each additional Phase that processes it.
  129. *
  130. * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
  131. * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
  132. * was turned on. Setting the entire Mesh to Zero is a special case that allows
  133. * a subsequent G or T leveling operation for backward compatibility.
  134. *
  135. * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
  136. * the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. On
  137. * Cartesian printers, points within the X_PROBE_OFFSET_FROM_EXTRUDER and Y_PROBE_OFFSET_FROM_EXTRUDER
  138. * area cannot be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
  139. * and DELTA_PRINTABLE_RADIUS do not overlap will not be automatically probed.
  140. *
  141. * Unreachable points will be handled in Phase 2 and Phase 3.
  142. *
  143. * Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
  144. * to invalidate parts of the Mesh but still use Automatic Probing.
  145. *
  146. * The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
  147. * probe position is used.
  148. *
  149. * Use 'T' (Topology) to generate a report of mesh generation.
  150. *
  151. * P1 will suspend Mesh generation if the controller button is held down. Note that you may need
  152. * to press and hold the switch for several seconds if moves are underway.
  153. *
  154. * P2 Phase 2 Probe unreachable points.
  155. *
  156. * Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
  157. * Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
  158. * nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
  159. * (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
  160. *
  161. * The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
  162. * controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
  163. * with an 'H' parameter more suitable for the area you're manually probing. Note that the command
  164. * tries to start in a corner of the bed where movement will be predictable. Override the distance
  165. * calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
  166. * the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
  167. * indicate that the search should be based on the current position.
  168. *
  169. * The 'B' parameter for this command is described above. It places the manual probe subsystem into
  170. * Business Card mode where the thickness of a business card is measured and then used to accurately
  171. * set the nozzle height in all manual probing for the duration of the command. A Business card can
  172. * be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
  173. * easier to produce similar amounts of force and get more accurate measurements. Google if you're
  174. * not sure how to use a shim.
  175. *
  176. * The 'T' (Map) parameter helps track Mesh building progress.
  177. *
  178. * NOTE: P2 requires an LCD controller!
  179. *
  180. * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
  181. * go down:
  182. *
  183. * - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
  184. * and a repeat count can then also be specified with 'R'.
  185. *
  186. * - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
  187. * invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
  188. * upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
  189. * replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
  190. * and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
  191. * Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
  192. *
  193. * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
  194. * an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
  195. * G42 and M421. See the UBL documentation for further details.
  196. *
  197. * Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
  198. * of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
  199. * adhesion.
  200. *
  201. * P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
  202. * by the given 'H' offset (or default Z_CLEARANCE_BETWEEN_PROBES), and waits while the controller is
  203. * used to adjust the nozzle height. On click the displayed height is saved in the mesh.
  204. *
  205. * Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
  206. * the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
  207. * terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
  208. *
  209. * The general form is G29 P4 [R points] [X position] [Y position]
  210. *
  211. * The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
  212. * command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
  213. * and on click the height minus the shim thickness will be saved in the mesh.
  214. *
  215. * !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
  216. *
  217. * NOTE: P4 is not available unless you have LCD support enabled!
  218. *
  219. * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
  220. * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
  221. * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
  222. * execute a G29 P6 C <mean height>.
  223. *
  224. * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
  225. * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
  226. * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
  227. * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
  228. * 0.000 at the Z Home location.
  229. *
  230. * Q Test Load specified Test Pattern to assist in checking correct operation of system. This
  231. * command is not anticipated to be of much value to the typical user. It is intended
  232. * for developers to help them verify correct operation of the Unified Bed Leveling System.
  233. *
  234. * R # Repeat Repeat this command the specified number of times. If no number is specified the
  235. * command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
  236. *
  237. * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
  238. * current state of the Unified Bed Leveling system in the EEPROM.
  239. *
  240. * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
  241. * for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
  242. * extend to a limit related to the available EEPROM storage.
  243. *
  244. * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into the system
  245. * at a later date. The GCode output can be saved and later replayed by the host software
  246. * to reconstruct the current mesh on another machine.
  247. *
  248. * T Topology Display the Mesh Map Topology.
  249. * 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
  250. * This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
  251. * This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
  252. * is suitable to paste into a spreadsheet for a 3D graph of the mesh.
  253. *
  254. * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
  255. * Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
  256. * when the entire bed doesn't need to be probed because it will be adjusted.
  257. *
  258. * V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
  259. *
  260. * W What? Display valuable Unified Bed Leveling System data.
  261. *
  262. * X # X Location for this command
  263. *
  264. * Y # Y Location for this command
  265. *
  266. *
  267. * Release Notes:
  268. * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
  269. * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage
  270. * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G
  271. * respectively.)
  272. *
  273. * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
  274. * the Unified Bed Leveling probes points further and further away from the starting location. (The
  275. * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
  276. * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
  277. * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
  278. * perform a small print and check out your settings quicker. You do not need to populate the
  279. * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
  280. * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
  281. * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
  282. *
  283. * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
  284. * to get this Mesh data correct for a user's printer. We do not want this data destroyed as
  285. * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
  286. * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
  287. * other data stored in the EEPROM. (For sure the developers are going to complain about this, but
  288. * this is going to be helpful to the users!)
  289. *
  290. * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
  291. * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
  292. * we now have the functionality and features of all three systems combined.
  293. */
  294. void unified_bed_leveling::G29() {
  295. if (!settings.calc_num_meshes()) {
  296. SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
  297. SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
  298. return;
  299. }
  300. if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
  301. // Check for commands that require the printer to be homed
  302. if (axis_unhomed_error()) {
  303. const int8_t p_val = parser.intval('P', -1);
  304. if (p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J'))
  305. home_all_axes();
  306. }
  307. // Invalidate Mesh Points. This command is a little bit asymmetrical because
  308. // it directly specifies the repetition count and does not use the 'R' parameter.
  309. if (parser.seen('I')) {
  310. uint8_t cnt = 0;
  311. g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
  312. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  313. set_all_mesh_points_to_value(NAN);
  314. }
  315. else {
  316. while (g29_repetition_cnt--) {
  317. if (cnt > 20) { cnt = 0; idle(); }
  318. const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
  319. if (location.x_index < 0) {
  320. // No more REACHABLE mesh points to invalidate, so we ASSUME the user
  321. // meant to invalidate the ENTIRE mesh, which cannot be done with
  322. // find_closest_mesh_point loop which only returns REACHABLE points.
  323. set_all_mesh_points_to_value(NAN);
  324. SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
  325. break; // No more invalid Mesh Points to populate
  326. }
  327. z_values[location.x_index][location.y_index] = NAN;
  328. cnt++;
  329. }
  330. }
  331. SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
  332. }
  333. if (parser.seen('Q')) {
  334. const int test_pattern = parser.has_value() ? parser.value_int() : -99;
  335. if (!WITHIN(test_pattern, -1, 2)) {
  336. SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n");
  337. return;
  338. }
  339. SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
  340. switch (test_pattern) {
  341. case -1:
  342. g29_eeprom_dump();
  343. break;
  344. case 0:
  345. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
  346. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
  347. const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
  348. p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
  349. z_values[x][y] += 2.0 * HYPOT(p1, p2);
  350. }
  351. }
  352. break;
  353. case 1:
  354. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
  355. z_values[x][x] += 9.999;
  356. z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
  357. }
  358. break;
  359. case 2:
  360. // Allow the user to specify the height because 10mm is a little extreme in some cases.
  361. for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
  362. for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
  363. z_values[x][y] += parser.seen('C') ? g29_constant : 9.99;
  364. break;
  365. }
  366. }
  367. #if HAS_BED_PROBE
  368. if (parser.seen('J')) {
  369. if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
  370. save_ubl_active_state_and_disable();
  371. tilt_mesh_based_on_probed_grid(parser.seen('T'));
  372. restore_ubl_active_state_and_leave();
  373. }
  374. else { // grid_size == 0 : A 3-Point leveling has been requested
  375. float z3, z2, z1 = probe_pt(UBL_PROBE_PT_1_X, UBL_PROBE_PT_1_Y, false, g29_verbose_level);
  376. if (!isnan(z1)) {
  377. z2 = probe_pt(UBL_PROBE_PT_2_X, UBL_PROBE_PT_2_Y, false, g29_verbose_level);
  378. if (!isnan(z2))
  379. z3 = probe_pt(UBL_PROBE_PT_3_X, UBL_PROBE_PT_3_Y, true, g29_verbose_level);
  380. }
  381. if (isnan(z1) || isnan(z2) || isnan(z3)) { // probe_pt will return NAN if unreachable
  382. SERIAL_ERROR_START();
  383. SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
  384. goto LEAVE;
  385. }
  386. // Adjust z1, z2, z3 by the Mesh Height at these points. Just because they're non-zero
  387. // doesn't mean the Mesh is tilted! (Compensate each probe point by what the Mesh says
  388. // its height is.)
  389. save_ubl_active_state_and_disable();
  390. z1 -= get_z_correction(UBL_PROBE_PT_1_X, UBL_PROBE_PT_1_Y) /* + zprobe_zoffset */ ;
  391. z2 -= get_z_correction(UBL_PROBE_PT_2_X, UBL_PROBE_PT_2_Y) /* + zprobe_zoffset */ ;
  392. z3 -= get_z_correction(UBL_PROBE_PT_3_X, UBL_PROBE_PT_3_Y) /* + zprobe_zoffset */ ;
  393. do_blocking_move_to_xy(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y)));
  394. tilt_mesh_based_on_3pts(z1, z2, z3);
  395. restore_ubl_active_state_and_leave();
  396. }
  397. }
  398. #endif // HAS_BED_PROBE
  399. if (parser.seen('P')) {
  400. if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) {
  401. storage_slot = 0;
  402. SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
  403. }
  404. switch (g29_phase_value) {
  405. case 0:
  406. //
  407. // Zero Mesh Data
  408. //
  409. reset();
  410. SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
  411. break;
  412. #if HAS_BED_PROBE
  413. case 1:
  414. //
  415. // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
  416. //
  417. if (!parser.seen('C')) {
  418. invalidate();
  419. SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
  420. }
  421. if (g29_verbose_level > 1) {
  422. SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
  423. SERIAL_PROTOCOLCHAR(',');
  424. SERIAL_PROTOCOL(g29_y_pos);
  425. SERIAL_PROTOCOLLNPGM(").\n");
  426. }
  427. probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
  428. parser.seen('T'), parser.seen('E'), parser.seen('U'));
  429. break;
  430. #endif // HAS_BED_PROBE
  431. case 2: {
  432. #if ENABLED(NEWPANEL)
  433. //
  434. // Manually Probe Mesh in areas that can't be reached by the probe
  435. //
  436. SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
  437. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  438. if (!g29_x_flag && !g29_y_flag) {
  439. /**
  440. * Use a good default location for the path.
  441. * The flipped > and < operators in these comparisons is intentional.
  442. * It should cause the probed points to follow a nice path on Cartesian printers.
  443. * It may make sense to have Delta printers default to the center of the bed.
  444. * Until that is decided, this can be forced with the X and Y parameters.
  445. */
  446. #if IS_KINEMATIC
  447. g29_x_pos = X_HOME_POS;
  448. g29_y_pos = Y_HOME_POS;
  449. #else // cartesian
  450. g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_BED_SIZE : 0;
  451. g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_BED_SIZE : 0;
  452. #endif
  453. }
  454. if (parser.seen('C')) {
  455. g29_x_pos = current_position[X_AXIS];
  456. g29_y_pos = current_position[Y_AXIS];
  457. }
  458. if (parser.seen('B')) {
  459. g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(Z_CLEARANCE_BETWEEN_PROBES);
  460. if (FABS(g29_card_thickness) > 1.5) {
  461. SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
  462. return;
  463. }
  464. }
  465. if (!position_is_reachable(g29_x_pos, g29_y_pos)) {
  466. SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
  467. return;
  468. }
  469. const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
  470. manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
  471. SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
  472. #else
  473. SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
  474. return;
  475. #endif
  476. } break;
  477. case 3: {
  478. /**
  479. * Populate invalid mesh areas. Proceed with caution.
  480. * Two choices are available:
  481. * - Specify a constant with the 'C' parameter.
  482. * - Allow 'G29 P3' to choose a 'reasonable' constant.
  483. */
  484. if (g29_c_flag) {
  485. if (g29_repetition_cnt >= GRID_MAX_POINTS) {
  486. set_all_mesh_points_to_value(g29_constant);
  487. }
  488. else {
  489. while (g29_repetition_cnt--) { // this only populates reachable mesh points near
  490. const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
  491. if (location.x_index < 0) {
  492. // No more REACHABLE INVALID mesh points to populate, so we ASSUME
  493. // user meant to populate ALL INVALID mesh points to value
  494. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  495. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  496. if (isnan(z_values[x][y]))
  497. z_values[x][y] = g29_constant;
  498. break; // No more invalid Mesh Points to populate
  499. }
  500. z_values[location.x_index][location.y_index] = g29_constant;
  501. }
  502. }
  503. }
  504. else {
  505. const float cvf = parser.value_float();
  506. switch((int)truncf(cvf * 10.0) - 30) { // 3.1 -> 1
  507. #if ENABLED(UBL_G29_P31)
  508. case 1: {
  509. // P3.1 use least squares fit to fill missing mesh values
  510. // P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
  511. // P3.11 10X weighting for nearest grid points versus farthest grid points
  512. // P3.12 100X distance weighting
  513. // P3.13 1000X distance weighting, approaches simple average of nearest points
  514. const float weight_power = (cvf - 3.10) * 100.0, // 3.12345 -> 2.345
  515. weight_factor = weight_power ? POW(10.0, weight_power) : 0;
  516. smart_fill_wlsf(weight_factor);
  517. }
  518. break;
  519. #endif
  520. case 0: // P3 or P3.0
  521. default: // and anything P3.x that's not P3.1
  522. smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
  523. break;
  524. }
  525. }
  526. break;
  527. }
  528. case 4: // Fine Tune (i.e., Edit) the Mesh
  529. #if ENABLED(NEWPANEL)
  530. fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
  531. #else
  532. SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
  533. return;
  534. #endif
  535. break;
  536. case 5: find_mean_mesh_height(); break;
  537. case 6: shift_mesh_height(); break;
  538. }
  539. }
  540. //
  541. // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  542. // good to have the extra information. Soon... we prune this to just a few items
  543. //
  544. if (parser.seen('W')) g29_what_command();
  545. //
  546. // When we are fully debugged, this may go away. But there are some valid
  547. // use cases for the users. So we can wait and see what to do with it.
  548. //
  549. if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
  550. g29_compare_current_mesh_to_stored_mesh();
  551. //
  552. // Load a Mesh from the EEPROM
  553. //
  554. if (parser.seen('L')) { // Load Current Mesh Data
  555. g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
  556. int16_t a = settings.calc_num_meshes();
  557. if (!a) {
  558. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  559. return;
  560. }
  561. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  562. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  563. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  564. return;
  565. }
  566. settings.load_mesh(g29_storage_slot);
  567. storage_slot = g29_storage_slot;
  568. SERIAL_PROTOCOLLNPGM("Done.");
  569. }
  570. //
  571. // Store a Mesh in the EEPROM
  572. //
  573. if (parser.seen('S')) { // Store (or Save) Current Mesh Data
  574. g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
  575. if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
  576. SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
  577. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  578. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  579. if (!isnan(z_values[x][y])) {
  580. SERIAL_ECHOPAIR("M421 I ", x);
  581. SERIAL_ECHOPAIR(" J ", y);
  582. SERIAL_ECHOPGM(" Z ");
  583. SERIAL_ECHO_F(z_values[x][y], 6);
  584. SERIAL_ECHOPAIR(" ; X ", mesh_index_to_xpos(x));
  585. SERIAL_ECHOPAIR(", Y ", mesh_index_to_ypos(y));
  586. SERIAL_EOL();
  587. }
  588. return;
  589. }
  590. int16_t a = settings.calc_num_meshes();
  591. if (!a) {
  592. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  593. goto LEAVE;
  594. }
  595. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  596. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  597. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  598. goto LEAVE;
  599. }
  600. settings.store_mesh(g29_storage_slot);
  601. storage_slot = g29_storage_slot;
  602. SERIAL_PROTOCOLLNPGM("Done.");
  603. }
  604. if (parser.seen('T'))
  605. display_map(g29_map_type);
  606. LEAVE:
  607. #if ENABLED(NEWPANEL)
  608. lcd_reset_alert_level();
  609. LCD_MESSAGEPGM("");
  610. lcd_quick_feedback();
  611. has_control_of_lcd_panel = false;
  612. #endif
  613. return;
  614. }
  615. void unified_bed_leveling::find_mean_mesh_height() {
  616. float sum = 0.0;
  617. int n = 0;
  618. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  619. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  620. if (!isnan(z_values[x][y])) {
  621. sum += z_values[x][y];
  622. n++;
  623. }
  624. const float mean = sum / n;
  625. //
  626. // Sum the squares of difference from mean
  627. //
  628. float sum_of_diff_squared = 0.0;
  629. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  630. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  631. if (!isnan(z_values[x][y]))
  632. sum_of_diff_squared += sq(z_values[x][y] - mean);
  633. SERIAL_ECHOLNPAIR("# of samples: ", n);
  634. SERIAL_ECHOPGM("Mean Mesh Height: ");
  635. SERIAL_ECHO_F(mean, 6);
  636. SERIAL_EOL();
  637. const float sigma = SQRT(sum_of_diff_squared / (n + 1));
  638. SERIAL_ECHOPGM("Standard Deviation: ");
  639. SERIAL_ECHO_F(sigma, 6);
  640. SERIAL_EOL();
  641. if (g29_c_flag)
  642. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  643. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  644. if (!isnan(z_values[x][y]))
  645. z_values[x][y] -= mean + g29_constant;
  646. }
  647. void unified_bed_leveling::shift_mesh_height() {
  648. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  649. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  650. if (!isnan(z_values[x][y]))
  651. z_values[x][y] += g29_constant;
  652. }
  653. #if HAS_BED_PROBE
  654. /**
  655. * Probe all invalidated locations of the mesh that can be reached by the probe.
  656. * This attempts to fill in locations closest to the nozzle's start location first.
  657. */
  658. void unified_bed_leveling::probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
  659. mesh_index_pair location;
  660. has_control_of_lcd_panel = true;
  661. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  662. DEPLOY_PROBE();
  663. uint16_t max_iterations = GRID_MAX_POINTS;
  664. do {
  665. if (do_ubl_mesh_map) display_map(g29_map_type);
  666. #if ENABLED(NEWPANEL)
  667. if (ubl_lcd_clicked()) {
  668. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
  669. lcd_quick_feedback();
  670. STOW_PROBE();
  671. while (ubl_lcd_clicked()) idle();
  672. has_control_of_lcd_panel = false;
  673. restore_ubl_active_state_and_leave();
  674. safe_delay(50); // Debounce the Encoder wheel
  675. return;
  676. }
  677. #endif
  678. if (close_or_far)
  679. location = find_furthest_invalid_mesh_point();
  680. else
  681. location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_PROBE_AS_REFERENCE, NULL);
  682. if (location.x_index >= 0) { // mesh point found and is reachable by probe
  683. const float rawx = mesh_index_to_xpos(location.x_index),
  684. rawy = mesh_index_to_ypos(location.y_index);
  685. const float measured_z = probe_pt(rawx, rawy, stow_probe, g29_verbose_level); // TODO: Needs error handling
  686. z_values[location.x_index][location.y_index] = measured_z;
  687. }
  688. } while (location.x_index >= 0 && --max_iterations);
  689. STOW_PROBE();
  690. restore_ubl_active_state_and_leave();
  691. do_blocking_move_to_xy(
  692. constrain(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_X, MESH_MAX_X),
  693. constrain(ry - (Y_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_Y, MESH_MAX_Y)
  694. );
  695. }
  696. void unified_bed_leveling::tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
  697. matrix_3x3 rotation;
  698. vector_3 v1 = vector_3( (UBL_PROBE_PT_1_X - UBL_PROBE_PT_2_X),
  699. (UBL_PROBE_PT_1_Y - UBL_PROBE_PT_2_Y),
  700. (z1 - z2) ),
  701. v2 = vector_3( (UBL_PROBE_PT_3_X - UBL_PROBE_PT_2_X),
  702. (UBL_PROBE_PT_3_Y - UBL_PROBE_PT_2_Y),
  703. (z3 - z2) ),
  704. normal = vector_3::cross(v1, v2);
  705. normal = normal.get_normal();
  706. /**
  707. * This vector is normal to the tilted plane.
  708. * However, we don't know its direction. We need it to point up. So if
  709. * Z is negative, we need to invert the sign of all components of the vector
  710. */
  711. if (normal.z < 0.0) {
  712. normal.x = -normal.x;
  713. normal.y = -normal.y;
  714. normal.z = -normal.z;
  715. }
  716. rotation = matrix_3x3::create_look_at(vector_3(normal.x, normal.y, 1));
  717. if (g29_verbose_level > 2) {
  718. SERIAL_ECHOPGM("bed plane normal = [");
  719. SERIAL_PROTOCOL_F(normal.x, 7);
  720. SERIAL_PROTOCOLCHAR(',');
  721. SERIAL_PROTOCOL_F(normal.y, 7);
  722. SERIAL_PROTOCOLCHAR(',');
  723. SERIAL_PROTOCOL_F(normal.z, 7);
  724. SERIAL_ECHOLNPGM("]");
  725. rotation.debug(PSTR("rotation matrix:"));
  726. }
  727. //
  728. // All of 3 of these points should give us the same d constant
  729. //
  730. float t = normal.x * (UBL_PROBE_PT_1_X) + normal.y * (UBL_PROBE_PT_1_Y),
  731. d = t + normal.z * z1;
  732. if (g29_verbose_level>2) {
  733. SERIAL_ECHOPGM("D constant: ");
  734. SERIAL_PROTOCOL_F(d, 7);
  735. SERIAL_ECHOLNPGM(" ");
  736. }
  737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  738. if (DEBUGGING(LEVELING)) {
  739. SERIAL_ECHOPGM("d from 1st point: ");
  740. SERIAL_ECHO_F(d, 6);
  741. SERIAL_EOL();
  742. t = normal.x * (UBL_PROBE_PT_2_X) + normal.y * (UBL_PROBE_PT_2_Y);
  743. d = t + normal.z * z2;
  744. SERIAL_ECHOPGM("d from 2nd point: ");
  745. SERIAL_ECHO_F(d, 6);
  746. SERIAL_EOL();
  747. t = normal.x * (UBL_PROBE_PT_3_X) + normal.y * (UBL_PROBE_PT_3_Y);
  748. d = t + normal.z * z3;
  749. SERIAL_ECHOPGM("d from 3rd point: ");
  750. SERIAL_ECHO_F(d, 6);
  751. SERIAL_EOL();
  752. }
  753. #endif
  754. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  755. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  756. float x_tmp = mesh_index_to_xpos(i),
  757. y_tmp = mesh_index_to_ypos(j),
  758. z_tmp = z_values[i][j];
  759. #if ENABLED(DEBUG_LEVELING_FEATURE)
  760. if (DEBUGGING(LEVELING)) {
  761. SERIAL_ECHOPGM("before rotation = [");
  762. SERIAL_PROTOCOL_F(x_tmp, 7);
  763. SERIAL_PROTOCOLCHAR(',');
  764. SERIAL_PROTOCOL_F(y_tmp, 7);
  765. SERIAL_PROTOCOLCHAR(',');
  766. SERIAL_PROTOCOL_F(z_tmp, 7);
  767. SERIAL_ECHOPGM("] ---> ");
  768. safe_delay(20);
  769. }
  770. #endif
  771. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  773. if (DEBUGGING(LEVELING)) {
  774. SERIAL_ECHOPGM("after rotation = [");
  775. SERIAL_PROTOCOL_F(x_tmp, 7);
  776. SERIAL_PROTOCOLCHAR(',');
  777. SERIAL_PROTOCOL_F(y_tmp, 7);
  778. SERIAL_PROTOCOLCHAR(',');
  779. SERIAL_PROTOCOL_F(z_tmp, 7);
  780. SERIAL_ECHOLNPGM("]");
  781. safe_delay(55);
  782. }
  783. #endif
  784. z_values[i][j] += z_tmp - d;
  785. }
  786. }
  787. }
  788. #endif // HAS_BED_PROBE
  789. #if ENABLED(NEWPANEL)
  790. float unified_bed_leveling::measure_point_with_encoder() {
  791. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  792. delay(50); // debounce
  793. KEEPALIVE_STATE(PAUSED_FOR_USER);
  794. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  795. idle();
  796. if (encoder_diff) {
  797. do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
  798. encoder_diff = 0;
  799. }
  800. }
  801. KEEPALIVE_STATE(IN_HANDLER);
  802. return current_position[Z_AXIS];
  803. }
  804. static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
  805. float unified_bed_leveling::measure_business_card_thickness(float in_height) {
  806. has_control_of_lcd_panel = true;
  807. save_ubl_active_state_and_disable(); // Disable bed level correction for probing
  808. do_blocking_move_to(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y)), in_height);
  809. //, min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) / 2.0);
  810. stepper.synchronize();
  811. SERIAL_PROTOCOLPGM("Place shim under nozzle");
  812. LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
  813. lcd_return_to_status();
  814. echo_and_take_a_measurement();
  815. const float z1 = measure_point_with_encoder();
  816. do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
  817. stepper.synchronize();
  818. SERIAL_PROTOCOLPGM("Remove shim");
  819. LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
  820. echo_and_take_a_measurement();
  821. const float z2 = measure_point_with_encoder();
  822. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
  823. const float thickness = abs(z1 - z2);
  824. if (g29_verbose_level > 1) {
  825. SERIAL_PROTOCOLPGM("Business Card is ");
  826. SERIAL_PROTOCOL_F(thickness, 4);
  827. SERIAL_PROTOCOLLNPGM("mm thick.");
  828. }
  829. in_height = current_position[Z_AXIS]; // do manual probing at lower height
  830. has_control_of_lcd_panel = false;
  831. restore_ubl_active_state_and_leave();
  832. return thickness;
  833. }
  834. void unified_bed_leveling::manually_probe_remaining_mesh(const float &rx, const float &ry, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
  835. has_control_of_lcd_panel = true;
  836. save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
  837. do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES);
  838. lcd_return_to_status();
  839. mesh_index_pair location;
  840. do {
  841. location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_NOZZLE_AS_REFERENCE, NULL);
  842. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
  843. if (location.x_index < 0 && location.y_index < 0) continue;
  844. const float xProbe = mesh_index_to_xpos(location.x_index),
  845. yProbe = mesh_index_to_ypos(location.y_index);
  846. if (!position_is_reachable(xProbe, yProbe)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
  847. LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
  848. do_blocking_move_to(xProbe, yProbe, Z_CLEARANCE_BETWEEN_PROBES);
  849. do_blocking_move_to_z(z_clearance);
  850. KEEPALIVE_STATE(PAUSED_FOR_USER);
  851. has_control_of_lcd_panel = true;
  852. if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
  853. serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2));
  854. const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
  855. //const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click
  856. while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
  857. delay(50); // debounce
  858. while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
  859. idle();
  860. if (encoder_diff) {
  861. do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step);
  862. encoder_diff = 0;
  863. }
  864. }
  865. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  866. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  867. // should be redone and compressed.
  868. const millis_t nxt = millis() + 1500L;
  869. while (ubl_lcd_clicked()) { // debounce and watch for abort
  870. idle();
  871. if (ELAPSED(millis(), nxt)) {
  872. SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
  873. do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
  874. #if ENABLED(NEWPANEL)
  875. lcd_quick_feedback();
  876. while (ubl_lcd_clicked()) idle();
  877. has_control_of_lcd_panel = false;
  878. #endif
  879. KEEPALIVE_STATE(IN_HANDLER);
  880. restore_ubl_active_state_and_leave();
  881. return;
  882. }
  883. }
  884. z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
  885. if (g29_verbose_level > 2) {
  886. SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
  887. SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
  888. SERIAL_EOL();
  889. }
  890. } while (location.x_index >= 0 && location.y_index >= 0);
  891. if (do_ubl_mesh_map) display_map(g29_map_type);
  892. restore_ubl_active_state_and_leave();
  893. KEEPALIVE_STATE(IN_HANDLER);
  894. do_blocking_move_to(rx, ry, Z_CLEARANCE_DEPLOY_PROBE);
  895. }
  896. #endif // NEWPANEL
  897. bool unified_bed_leveling::g29_parameter_parsing() {
  898. bool err_flag = false;
  899. #if ENABLED(NEWPANEL)
  900. LCD_MESSAGEPGM(MSG_UBL_DOING_G29);
  901. lcd_quick_feedback();
  902. #endif
  903. g29_constant = 0.0;
  904. g29_repetition_cnt = 0;
  905. g29_x_flag = parser.seenval('X');
  906. g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS];
  907. g29_y_flag = parser.seenval('Y');
  908. g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS];
  909. if (parser.seen('R')) {
  910. g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
  911. NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
  912. if (g29_repetition_cnt < 1) {
  913. SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
  914. return UBL_ERR;
  915. }
  916. }
  917. g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
  918. if (!WITHIN(g29_verbose_level, 0, 4)) {
  919. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
  920. err_flag = true;
  921. }
  922. if (parser.seen('P')) {
  923. const int pv = parser.value_int();
  924. #if !HAS_BED_PROBE
  925. if (pv == 1) {
  926. SERIAL_PROTOCOLLNPGM("G29 P1 requires a probe.\n");
  927. err_flag = true;
  928. }
  929. else
  930. #endif
  931. {
  932. g29_phase_value = pv;
  933. if (!WITHIN(g29_phase_value, 0, 6)) {
  934. SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
  935. err_flag = true;
  936. }
  937. }
  938. }
  939. if (parser.seen('J')) {
  940. #if HAS_BED_PROBE
  941. g29_grid_size = parser.has_value() ? parser.value_int() : 0;
  942. if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
  943. SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
  944. err_flag = true;
  945. }
  946. #else
  947. SERIAL_PROTOCOLLNPGM("G29 J action requires a probe.\n");
  948. err_flag = true;
  949. #endif
  950. }
  951. if (g29_x_flag != g29_y_flag) {
  952. SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
  953. err_flag = true;
  954. }
  955. // If X or Y are not valid, use center of the bed values
  956. if (!WITHIN(g29_x_pos, X_MIN_BED, X_MAX_BED)) g29_x_pos = X_CENTER;
  957. if (!WITHIN(g29_y_pos, Y_MIN_BED, Y_MAX_BED)) g29_y_pos = Y_CENTER;
  958. if (err_flag) return UBL_ERR;
  959. /**
  960. * Activate or deactivate UBL
  961. * Note: UBL's G29 restores the state set here when done.
  962. * Leveling is being enabled here with old data, possibly
  963. * none. Error handling should disable for safety...
  964. */
  965. if (parser.seen('A')) {
  966. if (parser.seen('D')) {
  967. SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
  968. return UBL_ERR;
  969. }
  970. set_bed_leveling_enabled(true);
  971. report_state();
  972. }
  973. else if (parser.seen('D')) {
  974. set_bed_leveling_enabled(false);
  975. report_state();
  976. }
  977. // Set global 'C' flag and its value
  978. if ((g29_c_flag = parser.seen('C')))
  979. g29_constant = parser.value_float();
  980. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  981. if (parser.seenval('F')) {
  982. const float fh = parser.value_float();
  983. if (!WITHIN(fh, 0.0, 100.0)) {
  984. SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
  985. return UBL_ERR;
  986. }
  987. set_z_fade_height(fh);
  988. }
  989. #endif
  990. g29_map_type = parser.intval('T');
  991. if (!WITHIN(g29_map_type, 0, 2)) {
  992. SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
  993. return UBL_ERR;
  994. }
  995. return UBL_OK;
  996. }
  997. static int ubl_state_at_invocation = 0,
  998. ubl_state_recursion_chk = 0;
  999. void unified_bed_leveling::save_ubl_active_state_and_disable() {
  1000. ubl_state_recursion_chk++;
  1001. if (ubl_state_recursion_chk != 1) {
  1002. SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
  1003. #if ENABLED(NEWPANEL)
  1004. LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR);
  1005. lcd_quick_feedback();
  1006. #endif
  1007. return;
  1008. }
  1009. ubl_state_at_invocation = planner.leveling_active;
  1010. set_bed_leveling_enabled(false);
  1011. }
  1012. void unified_bed_leveling::restore_ubl_active_state_and_leave() {
  1013. if (--ubl_state_recursion_chk) {
  1014. SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
  1015. #if ENABLED(NEWPANEL)
  1016. LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR);
  1017. lcd_quick_feedback();
  1018. #endif
  1019. return;
  1020. }
  1021. set_bed_leveling_enabled(ubl_state_at_invocation);
  1022. }
  1023. /**
  1024. * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
  1025. * good to have the extra information. Soon... we prune this to just a few items
  1026. */
  1027. void unified_bed_leveling::g29_what_command() {
  1028. report_state();
  1029. if (storage_slot == -1)
  1030. SERIAL_PROTOCOLPGM("No Mesh Loaded.");
  1031. else {
  1032. SERIAL_PROTOCOLPAIR("Mesh ", storage_slot);
  1033. SERIAL_PROTOCOLPGM(" Loaded.");
  1034. }
  1035. SERIAL_EOL();
  1036. safe_delay(50);
  1037. SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
  1038. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1039. SERIAL_PROTOCOL("planner.z_fade_height : ");
  1040. SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
  1041. SERIAL_EOL();
  1042. #endif
  1043. find_mean_mesh_height();
  1044. #if HAS_BED_PROBE
  1045. SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
  1046. SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
  1047. SERIAL_EOL();
  1048. #endif
  1049. SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X);
  1050. SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y);
  1051. safe_delay(25);
  1052. SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X);
  1053. SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y);
  1054. safe_delay(25);
  1055. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
  1056. SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
  1057. safe_delay(25);
  1058. SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
  1059. SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
  1060. safe_delay(25);
  1061. SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
  1062. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1063. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
  1064. SERIAL_PROTOCOLPGM(" ");
  1065. safe_delay(25);
  1066. }
  1067. SERIAL_EOL();
  1068. SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
  1069. for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
  1070. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
  1071. SERIAL_PROTOCOLPGM(" ");
  1072. safe_delay(25);
  1073. }
  1074. SERIAL_EOL();
  1075. #if HAS_KILL
  1076. SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
  1077. SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
  1078. #endif
  1079. SERIAL_EOL();
  1080. safe_delay(50);
  1081. SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
  1082. SERIAL_EOL();
  1083. SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
  1084. SERIAL_EOL();
  1085. safe_delay(50);
  1086. SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.get_start_of_meshes()));
  1087. SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.get_end_of_meshes()));
  1088. safe_delay(50);
  1089. SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
  1090. SERIAL_EOL();
  1091. SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
  1092. SERIAL_EOL();
  1093. safe_delay(25);
  1094. SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.get_end_of_meshes() - settings.get_start_of_meshes())));
  1095. safe_delay(50);
  1096. SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
  1097. SERIAL_PROTOCOLLNPGM(" meshes.\n");
  1098. safe_delay(25);
  1099. if (!sanity_check()) {
  1100. echo_name();
  1101. SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
  1102. }
  1103. }
  1104. /**
  1105. * When we are fully debugged, the EEPROM dump command will get deleted also. But
  1106. * right now, it is good to have the extra information. Soon... we prune this.
  1107. */
  1108. void unified_bed_leveling::g29_eeprom_dump() {
  1109. unsigned char cccc;
  1110. unsigned int kkkk; // Needs to be of unspecfied size to compile clean on all platforms
  1111. SERIAL_ECHO_START();
  1112. SERIAL_ECHOLNPGM("EEPROM Dump:");
  1113. for (uint16_t i = 0; i < E2END + 1; i += 16) {
  1114. if (!(i & 0x3)) idle();
  1115. print_hex_word(i);
  1116. SERIAL_ECHOPGM(": ");
  1117. for (uint16_t j = 0; j < 16; j++) {
  1118. kkkk = i + j;
  1119. eeprom_read_block(&cccc, (const void *) kkkk, sizeof(unsigned char));
  1120. print_hex_byte(cccc);
  1121. SERIAL_ECHO(' ');
  1122. }
  1123. SERIAL_EOL();
  1124. }
  1125. SERIAL_EOL();
  1126. }
  1127. /**
  1128. * When we are fully debugged, this may go away. But there are some valid
  1129. * use cases for the users. So we can wait and see what to do with it.
  1130. */
  1131. void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
  1132. int16_t a = settings.calc_num_meshes();
  1133. if (!a) {
  1134. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  1135. return;
  1136. }
  1137. if (!parser.has_value()) {
  1138. SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
  1139. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1140. return;
  1141. }
  1142. g29_storage_slot = parser.value_int();
  1143. if (!WITHIN(g29_storage_slot, 0, a - 1)) {
  1144. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  1145. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  1146. return;
  1147. }
  1148. float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  1149. settings.load_mesh(g29_storage_slot, &tmp_z_values);
  1150. SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
  1151. SERIAL_PROTOCOLLNPGM(" from current mesh.");
  1152. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  1153. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  1154. z_values[x][y] -= tmp_z_values[x][y];
  1155. }
  1156. mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() {
  1157. bool found_a_NAN = false;
  1158. bool found_a_real = false;
  1159. mesh_index_pair out_mesh;
  1160. out_mesh.x_index = out_mesh.y_index = -1;
  1161. out_mesh.distance = -99999.99;
  1162. for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1163. for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1164. if ( isnan(z_values[i][j])) { // Check to see if this location holds an invalid mesh point
  1165. const float mx = mesh_index_to_xpos(i),
  1166. my = mesh_index_to_ypos(j);
  1167. if ( !position_is_reachable_by_probe(mx, my)) // make sure the probe can get to the mesh point
  1168. continue;
  1169. found_a_NAN = true;
  1170. int8_t closest_x=-1, closest_y=-1;
  1171. float d1, d2 = 99999.9;
  1172. for (int8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
  1173. for (int8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
  1174. if (!isnan(z_values[k][l])) {
  1175. found_a_real = true;
  1176. // Add in a random weighting factor that scrambles the probing of the
  1177. // last half of the mesh (when every unprobed mesh point is one index
  1178. // from a probed location).
  1179. d1 = HYPOT(i - k, j - l) + (1.0 / ((millis() % 47) + 13));
  1180. if (d1 < d2) { // found a closer distance from invalid mesh point at (i,j) to defined mesh point at (k,l)
  1181. d2 = d1; // found a closer location with
  1182. closest_x = i; // an assigned mesh point value
  1183. closest_y = j;
  1184. }
  1185. }
  1186. }
  1187. }
  1188. //
  1189. // at this point d2 should have the closest defined mesh point to invalid mesh point (i,j)
  1190. //
  1191. if (found_a_real && (closest_x >= 0) && (d2 > out_mesh.distance)) {
  1192. out_mesh.distance = d2; // found an invalid location with a greater distance
  1193. out_mesh.x_index = closest_x; // to a defined mesh point
  1194. out_mesh.y_index = closest_y;
  1195. }
  1196. }
  1197. } // for j
  1198. } // for i
  1199. if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
  1200. out_mesh.x_index = GRID_MAX_POINTS_X / 2;
  1201. out_mesh.y_index = GRID_MAX_POINTS_Y / 2;
  1202. out_mesh.distance = 1.0;
  1203. }
  1204. return out_mesh;
  1205. }
  1206. mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &rx, const float &ry, const bool probe_as_reference, uint16_t bits[16]) {
  1207. mesh_index_pair out_mesh;
  1208. out_mesh.x_index = out_mesh.y_index = -1;
  1209. out_mesh.distance = -99999.9;
  1210. // Get our reference position. Either the nozzle or probe location.
  1211. const float px = rx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
  1212. py = ry - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
  1213. float best_so_far = 99999.99;
  1214. for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1215. for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1216. if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
  1217. || (type == REAL && !isnan(z_values[i][j]))
  1218. || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
  1219. ) {
  1220. // We only get here if we found a Mesh Point of the specified type
  1221. const float mx = mesh_index_to_xpos(i),
  1222. my = mesh_index_to_ypos(j);
  1223. // If using the probe as the reference there are some unreachable locations.
  1224. // Also for round beds, there are grid points outside the bed the nozzle can't reach.
  1225. // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
  1226. if (probe_as_reference ? !position_is_reachable_by_probe(mx, my) : !position_is_reachable(mx, my))
  1227. continue;
  1228. // Reachable. Check if it's the best_so_far location to the nozzle.
  1229. float distance = HYPOT(px - mx, py - my);
  1230. // factor in the distance from the current location for the normal case
  1231. // so the nozzle isn't running all over the bed.
  1232. distance += HYPOT(current_position[X_AXIS] - mx, current_position[Y_AXIS] - my) * 0.1;
  1233. if (distance < best_so_far) {
  1234. best_so_far = distance; // We found a closer location with
  1235. out_mesh.x_index = i; // the specified type of mesh value.
  1236. out_mesh.y_index = j;
  1237. out_mesh.distance = best_so_far;
  1238. }
  1239. }
  1240. } // for j
  1241. } // for i
  1242. return out_mesh;
  1243. }
  1244. #if ENABLED(NEWPANEL)
  1245. void unified_bed_leveling::fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) {
  1246. if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
  1247. g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
  1248. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1249. const bool is_offset = parser.seen('H');
  1250. const float h_offset = is_offset ? parser.value_linear_units() : Z_CLEARANCE_BETWEEN_PROBES;
  1251. if (is_offset && !WITHIN(h_offset, 0, 10)) {
  1252. SERIAL_PROTOCOLLNPGM("Offset out of bounds. (0 to 10mm)\n");
  1253. return;
  1254. }
  1255. #endif
  1256. mesh_index_pair location;
  1257. if (!position_is_reachable(rx, ry)) {
  1258. SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
  1259. return;
  1260. }
  1261. save_ubl_active_state_and_disable();
  1262. LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
  1263. do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES);
  1264. uint16_t not_done[16];
  1265. memset(not_done, 0xFF, sizeof(not_done));
  1266. do {
  1267. location = find_closest_mesh_point_of_type(SET_IN_BITMAP, rx, ry, USE_NOZZLE_AS_REFERENCE, not_done);
  1268. if (location.x_index < 0) break; // stop when we can't find any more reachable points.
  1269. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
  1270. // different location the next time through the loop
  1271. const float rawx = mesh_index_to_xpos(location.x_index),
  1272. rawy = mesh_index_to_ypos(location.y_index);
  1273. if (!position_is_reachable(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
  1274. break;
  1275. float new_z = z_values[location.x_index][location.y_index];
  1276. if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
  1277. new_z = 0.0;
  1278. do_blocking_move_to(rawx, rawy, Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to the edit point
  1279. new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
  1280. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1281. has_control_of_lcd_panel = true;
  1282. if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
  1283. lcd_refresh();
  1284. lcd_mesh_edit_setup(new_z);
  1285. do {
  1286. new_z = lcd_mesh_edit();
  1287. #if ENABLED(UBL_MESH_EDIT_MOVES_Z)
  1288. do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited
  1289. #endif
  1290. idle();
  1291. } while (!ubl_lcd_clicked());
  1292. if (!ubl_lcd_map_control) lcd_return_to_status();
  1293. // The technique used here generates a race condition for the encoder click.
  1294. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
  1295. // Let's work on specifying a proper API for the LCD ASAP, OK?
  1296. has_control_of_lcd_panel = true;
  1297. // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
  1298. // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
  1299. // should be redone and compressed.
  1300. const millis_t nxt = millis() + 1500UL;
  1301. while (ubl_lcd_clicked()) { // debounce and watch for abort
  1302. idle();
  1303. if (ELAPSED(millis(), nxt)) {
  1304. lcd_return_to_status();
  1305. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  1306. LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
  1307. while (ubl_lcd_clicked()) idle();
  1308. goto FINE_TUNE_EXIT;
  1309. }
  1310. }
  1311. safe_delay(20); // We don't want any switch noise.
  1312. z_values[location.x_index][location.y_index] = new_z;
  1313. lcd_refresh();
  1314. } while (location.x_index >= 0 && --g29_repetition_cnt > 0);
  1315. FINE_TUNE_EXIT:
  1316. has_control_of_lcd_panel = false;
  1317. KEEPALIVE_STATE(IN_HANDLER);
  1318. if (do_ubl_mesh_map) display_map(g29_map_type);
  1319. restore_ubl_active_state_and_leave();
  1320. do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES);
  1321. LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
  1322. SERIAL_ECHOLNPGM("Done Editing Mesh");
  1323. if (ubl_lcd_map_control)
  1324. lcd_goto_screen(_lcd_ubl_output_map_lcd);
  1325. else
  1326. lcd_return_to_status();
  1327. }
  1328. #endif // NEWPANEL
  1329. /**
  1330. * 'Smart Fill': Scan from the outward edges of the mesh towards the center.
  1331. * If an invalid location is found, use the next two points (if valid) to
  1332. * calculate a 'reasonable' value for the unprobed mesh point.
  1333. */
  1334. bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  1335. const int8_t x1 = x + xdir, x2 = x1 + xdir,
  1336. y1 = y + ydir, y2 = y1 + ydir;
  1337. // A NAN next to a pair of real values?
  1338. if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
  1339. if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
  1340. z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
  1341. else
  1342. z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
  1343. return true;
  1344. }
  1345. return false;
  1346. }
  1347. typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
  1348. void unified_bed_leveling::smart_fill_mesh() {
  1349. static const smart_fill_info
  1350. info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
  1351. info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
  1352. info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
  1353. info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
  1354. static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
  1355. for (uint8_t i = 0; i < COUNT(info); ++i) {
  1356. const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
  1357. const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy),
  1358. ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey);
  1359. if (pgm_read_byte(&f->yfirst)) {
  1360. const int8_t dir = ex > sx ? 1 : -1;
  1361. for (uint8_t y = sy; y != ey; ++y)
  1362. for (uint8_t x = sx; x != ex; x += dir)
  1363. if (smart_fill_one(x, y, dir, 0)) break;
  1364. }
  1365. else {
  1366. const int8_t dir = ey > sy ? 1 : -1;
  1367. for (uint8_t x = sx; x != ex; ++x)
  1368. for (uint8_t y = sy; y != ey; y += dir)
  1369. if (smart_fill_one(x, y, 0, dir)) break;
  1370. }
  1371. }
  1372. }
  1373. #if HAS_BED_PROBE
  1374. void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map) {
  1375. constexpr int16_t x_min = max(MIN_PROBE_X, MESH_MIN_X),
  1376. x_max = min(MAX_PROBE_X, MESH_MAX_X),
  1377. y_min = max(MIN_PROBE_Y, MESH_MIN_Y),
  1378. y_max = min(MAX_PROBE_Y, MESH_MAX_Y);
  1379. const float dx = float(x_max - x_min) / (g29_grid_size - 1.0),
  1380. dy = float(y_max - y_min) / (g29_grid_size - 1.0);
  1381. struct linear_fit_data lsf_results;
  1382. incremental_LSF_reset(&lsf_results);
  1383. bool zig_zag = false;
  1384. for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
  1385. const float rx = float(x_min) + ix * dx;
  1386. for (int8_t iy = 0; iy < g29_grid_size; iy++) {
  1387. const float ry = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
  1388. float measured_z = probe_pt(rx, ry, parser.seen('E'), g29_verbose_level); // TODO: Needs error handling
  1389. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1390. if (DEBUGGING(LEVELING)) {
  1391. SERIAL_CHAR('(');
  1392. SERIAL_PROTOCOL_F(rx, 7);
  1393. SERIAL_CHAR(',');
  1394. SERIAL_PROTOCOL_F(ry, 7);
  1395. SERIAL_ECHOPGM(") logical: ");
  1396. SERIAL_CHAR('(');
  1397. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 7);
  1398. SERIAL_CHAR(',');
  1399. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 7);
  1400. SERIAL_ECHOPGM(") measured: ");
  1401. SERIAL_PROTOCOL_F(measured_z, 7);
  1402. SERIAL_ECHOPGM(" correction: ");
  1403. SERIAL_PROTOCOL_F(get_z_correction(rx, ry), 7);
  1404. }
  1405. #endif
  1406. measured_z -= get_z_correction(rx, ry) /* + zprobe_zoffset */ ;
  1407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1408. if (DEBUGGING(LEVELING)) {
  1409. SERIAL_ECHOPGM(" final >>>---> ");
  1410. SERIAL_PROTOCOL_F(measured_z, 7);
  1411. SERIAL_EOL();
  1412. }
  1413. #endif
  1414. incremental_LSF(&lsf_results, rx, ry, measured_z);
  1415. }
  1416. zig_zag ^= true;
  1417. }
  1418. if (finish_incremental_LSF(&lsf_results)) {
  1419. SERIAL_ECHOPGM("Could not complete LSF!");
  1420. return;
  1421. }
  1422. if (g29_verbose_level > 3) {
  1423. SERIAL_ECHOPGM("LSF Results A=");
  1424. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1425. SERIAL_ECHOPGM(" B=");
  1426. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1427. SERIAL_ECHOPGM(" D=");
  1428. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1429. SERIAL_EOL();
  1430. }
  1431. vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1.0000).get_normal();
  1432. if (g29_verbose_level > 2) {
  1433. SERIAL_ECHOPGM("bed plane normal = [");
  1434. SERIAL_PROTOCOL_F(normal.x, 7);
  1435. SERIAL_PROTOCOLCHAR(',');
  1436. SERIAL_PROTOCOL_F(normal.y, 7);
  1437. SERIAL_PROTOCOLCHAR(',');
  1438. SERIAL_PROTOCOL_F(normal.z, 7);
  1439. SERIAL_ECHOLNPGM("]");
  1440. }
  1441. matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
  1442. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  1443. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  1444. float x_tmp = mesh_index_to_xpos(i),
  1445. y_tmp = mesh_index_to_ypos(j),
  1446. z_tmp = z_values[i][j];
  1447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1448. if (DEBUGGING(LEVELING)) {
  1449. SERIAL_ECHOPGM("before rotation = [");
  1450. SERIAL_PROTOCOL_F(x_tmp, 7);
  1451. SERIAL_PROTOCOLCHAR(',');
  1452. SERIAL_PROTOCOL_F(y_tmp, 7);
  1453. SERIAL_PROTOCOLCHAR(',');
  1454. SERIAL_PROTOCOL_F(z_tmp, 7);
  1455. SERIAL_ECHOPGM("] ---> ");
  1456. safe_delay(20);
  1457. }
  1458. #endif
  1459. apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
  1460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1461. if (DEBUGGING(LEVELING)) {
  1462. SERIAL_ECHOPGM("after rotation = [");
  1463. SERIAL_PROTOCOL_F(x_tmp, 7);
  1464. SERIAL_PROTOCOLCHAR(',');
  1465. SERIAL_PROTOCOL_F(y_tmp, 7);
  1466. SERIAL_PROTOCOLCHAR(',');
  1467. SERIAL_PROTOCOL_F(z_tmp, 7);
  1468. SERIAL_ECHOLNPGM("]");
  1469. safe_delay(55);
  1470. }
  1471. #endif
  1472. z_values[i][j] += z_tmp - lsf_results.D;
  1473. }
  1474. }
  1475. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1476. if (DEBUGGING(LEVELING)) {
  1477. rotation.debug(PSTR("rotation matrix:"));
  1478. SERIAL_ECHOPGM("LSF Results A=");
  1479. SERIAL_PROTOCOL_F(lsf_results.A, 7);
  1480. SERIAL_ECHOPGM(" B=");
  1481. SERIAL_PROTOCOL_F(lsf_results.B, 7);
  1482. SERIAL_ECHOPGM(" D=");
  1483. SERIAL_PROTOCOL_F(lsf_results.D, 7);
  1484. SERIAL_EOL();
  1485. safe_delay(55);
  1486. SERIAL_ECHOPGM("bed plane normal = [");
  1487. SERIAL_PROTOCOL_F(normal.x, 7);
  1488. SERIAL_PROTOCOLCHAR(',');
  1489. SERIAL_PROTOCOL_F(normal.y, 7);
  1490. SERIAL_PROTOCOLCHAR(',');
  1491. SERIAL_PROTOCOL_F(normal.z, 7);
  1492. SERIAL_ECHOPGM("]\n");
  1493. SERIAL_EOL();
  1494. }
  1495. #endif
  1496. if (do_ubl_mesh_map) display_map(g29_map_type);
  1497. }
  1498. #endif // HAS_BED_PROBE
  1499. #if ENABLED(UBL_G29_P31)
  1500. void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
  1501. // For each undefined mesh point, compute a distance-weighted least squares fit
  1502. // from all the originally populated mesh points, weighted toward the point
  1503. // being extrapolated so that nearby points will have greater influence on
  1504. // the point being extrapolated. Then extrapolate the mesh point from WLSF.
  1505. static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
  1506. uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
  1507. struct linear_fit_data lsf_results;
  1508. SERIAL_ECHOPGM("Extrapolating mesh...");
  1509. const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST);
  1510. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
  1511. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
  1512. if (!isnan(z_values[jx][jy]))
  1513. SBI(bitmap[jx], jy);
  1514. for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
  1515. const float px = mesh_index_to_xpos(ix);
  1516. for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
  1517. const float py = mesh_index_to_ypos(iy);
  1518. if (isnan(z_values[ix][iy])) {
  1519. // undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
  1520. incremental_LSF_reset(&lsf_results);
  1521. for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
  1522. const float rx = mesh_index_to_xpos(jx);
  1523. for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
  1524. if (TEST(bitmap[jx], jy)) {
  1525. const float ry = mesh_index_to_ypos(jy),
  1526. rz = z_values[jx][jy],
  1527. w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py));
  1528. incremental_WLSF(&lsf_results, rx, ry, rz, w);
  1529. }
  1530. }
  1531. }
  1532. if (finish_incremental_LSF(&lsf_results)) {
  1533. SERIAL_ECHOLNPGM("Insufficient data");
  1534. return;
  1535. }
  1536. const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
  1537. z_values[ix][iy] = ez;
  1538. idle(); // housekeeping
  1539. }
  1540. }
  1541. }
  1542. SERIAL_ECHOLNPGM("done");
  1543. }
  1544. #endif // UBL_G29_P31
  1545. #endif // AUTO_BED_LEVELING_UBL