My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

Marlin_main.cpp 391KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207
  53. * G11 - Retract recover filament according to settings of M208
  54. * G12 - Clean tool
  55. * G20 - Set input units to inches
  56. * G21 - Set input units to millimeters
  57. * G28 - Home one or more axes
  58. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  59. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  60. * G31 - Dock sled (Z_PROBE_SLED only)
  61. * G32 - Undock sled (Z_PROBE_SLED only)
  62. * G33 - Delta '1-4-7-point' auto calibration : "G33 V<verbose> P<points> <A> <O> <T>" (Requires DELTA)
  63. * G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
  64. * G90 - Use Absolute Coordinates
  65. * G91 - Use Relative Coordinates
  66. * G92 - Set current position to coordinates given
  67. *
  68. * "M" Codes
  69. *
  70. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. * M1 - Same as M0
  72. * M17 - Enable/Power all stepper motors
  73. * M18 - Disable all stepper motors; same as M84
  74. * M20 - List SD card. (Requires SDSUPPORT)
  75. * M21 - Init SD card. (Requires SDSUPPORT)
  76. * M22 - Release SD card. (Requires SDSUPPORT)
  77. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  78. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  79. * M25 - Pause SD print. (Requires SDSUPPORT)
  80. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  81. * M27 - Report SD print status. (Requires SDSUPPORT)
  82. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  83. * M29 - Stop SD write. (Requires SDSUPPORT)
  84. * M30 - Delete file from SD: "M30 /path/file.gco"
  85. * M31 - Report time since last M109 or SD card start to serial.
  86. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  87. * Use P to run other files as sub-programs: "M32 P !filename#"
  88. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  89. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  90. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  91. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  92. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  93. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  94. * M75 - Start the print job timer.
  95. * M76 - Pause the print job timer.
  96. * M77 - Stop the print job timer.
  97. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  98. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  99. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  100. * M82 - Set E codes absolute (default).
  101. * M83 - Set E codes relative while in Absolute (G90) mode.
  102. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  103. * duration after which steppers should turn off. S0 disables the timeout.
  104. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  105. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  106. * M104 - Set extruder target temp.
  107. * M105 - Report current temperatures.
  108. * M106 - Fan on.
  109. * M107 - Fan off.
  110. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  111. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  112. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  113. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  114. * M110 - Set the current line number. (Used by host printing)
  115. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  116. * M112 - Emergency stop.
  117. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  118. * M114 - Report current position.
  119. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  120. * M117 - Display a message on the controller screen. (Requires an LCD)
  121. * M119 - Report endstops status.
  122. * M120 - Enable endstops detection.
  123. * M121 - Disable endstops detection.
  124. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  125. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  126. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  127. * M128 - EtoP Open. (Requires BARICUDA)
  128. * M129 - EtoP Closed. (Requires BARICUDA)
  129. * M140 - Set bed target temp. S<temp>
  130. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  131. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  132. * M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM or RGB_LED)
  133. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  134. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  135. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  136. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  137. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  138. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  139. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  140. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  141. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  142. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  143. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  144. * M205 - Set advanced settings. Current units apply:
  145. S<print> T<travel> minimum speeds
  146. B<minimum segment time>
  147. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  148. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  149. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  150. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  151. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  152. Every normal extrude-only move will be classified as retract depending on the direction.
  153. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  154. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  155. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  156. * M221 - Set Flow Percentage: "M221 S<percent>"
  157. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  158. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  159. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  160. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  161. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  162. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  163. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  164. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  165. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  166. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  167. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  168. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  169. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  170. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  171. * M400 - Finish all moves.
  172. * M401 - Lower Z probe. (Requires a probe)
  173. * M402 - Raise Z probe. (Requires a probe)
  174. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  175. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  176. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  177. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  178. * M410 - Quickstop. Abort all planned moves.
  179. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  180. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  181. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  182. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  183. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  184. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  185. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  186. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  187. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  188. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  189. * M666 - Set delta endstop adjustment. (Requires DELTA)
  190. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  191. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  192. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  193. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  194. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  195. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  196. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  197. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  198. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  199. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  200. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  201. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  202. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  203. *
  204. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  205. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  206. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  207. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  208. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  209. *
  210. * ************ Custom codes - This can change to suit future G-code regulations
  211. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  212. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  213. * M999 - Restart after being stopped by error
  214. *
  215. * "T" Codes
  216. *
  217. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  218. *
  219. */
  220. #include "Marlin.h"
  221. #include "ultralcd.h"
  222. #include "planner.h"
  223. #include "stepper.h"
  224. #include "endstops.h"
  225. #include "temperature.h"
  226. #include "cardreader.h"
  227. #include "configuration_store.h"
  228. #include "language.h"
  229. #include "pins_arduino.h"
  230. #include "math.h"
  231. #include "nozzle.h"
  232. #include "duration_t.h"
  233. #include "types.h"
  234. #if HAS_ABL
  235. #include "vector_3.h"
  236. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  237. #include "qr_solve.h"
  238. #endif
  239. #elif ENABLED(MESH_BED_LEVELING)
  240. #include "mesh_bed_leveling.h"
  241. #endif
  242. #if ENABLED(BEZIER_CURVE_SUPPORT)
  243. #include "planner_bezier.h"
  244. #endif
  245. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  246. #include "buzzer.h"
  247. #endif
  248. #if ENABLED(USE_WATCHDOG)
  249. #include "watchdog.h"
  250. #endif
  251. #if ENABLED(BLINKM)
  252. #include "blinkm.h"
  253. #include "Wire.h"
  254. #endif
  255. #if HAS_SERVOS
  256. #include "servo.h"
  257. #endif
  258. #if HAS_DIGIPOTSS
  259. #include <SPI.h>
  260. #endif
  261. #if ENABLED(DAC_STEPPER_CURRENT)
  262. #include "stepper_dac.h"
  263. #endif
  264. #if ENABLED(EXPERIMENTAL_I2CBUS)
  265. #include "twibus.h"
  266. #endif
  267. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  268. #include "endstop_interrupts.h"
  269. #endif
  270. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  271. void gcode_M100();
  272. void M100_dump_routine(const char * const title, const char *start, const char *end);
  273. #endif
  274. #if ENABLED(SDSUPPORT)
  275. CardReader card;
  276. #endif
  277. #if ENABLED(EXPERIMENTAL_I2CBUS)
  278. TWIBus i2c;
  279. #endif
  280. #if ENABLED(G38_PROBE_TARGET)
  281. bool G38_move = false,
  282. G38_endstop_hit = false;
  283. #endif
  284. #if ENABLED(AUTO_BED_LEVELING_UBL)
  285. #include "ubl.h"
  286. unified_bed_leveling ubl;
  287. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  288. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  289. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  290. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  291. || isnan(ubl.z_values[0][0]))
  292. #endif
  293. bool Running = true;
  294. uint8_t marlin_debug_flags = DEBUG_NONE;
  295. /**
  296. * Cartesian Current Position
  297. * Used to track the logical position as moves are queued.
  298. * Used by 'line_to_current_position' to do a move after changing it.
  299. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  300. */
  301. float current_position[XYZE] = { 0.0 };
  302. /**
  303. * Cartesian Destination
  304. * A temporary position, usually applied to 'current_position'.
  305. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  306. * 'line_to_destination' sets 'current_position' to 'destination'.
  307. */
  308. float destination[XYZE] = { 0.0 };
  309. /**
  310. * axis_homed
  311. * Flags that each linear axis was homed.
  312. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  313. *
  314. * axis_known_position
  315. * Flags that the position is known in each linear axis. Set when homed.
  316. * Cleared whenever a stepper powers off, potentially losing its position.
  317. */
  318. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  319. /**
  320. * GCode line number handling. Hosts may opt to include line numbers when
  321. * sending commands to Marlin, and lines will be checked for sequentiality.
  322. * M110 N<int> sets the current line number.
  323. */
  324. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  325. /**
  326. * GCode Command Queue
  327. * A simple ring buffer of BUFSIZE command strings.
  328. *
  329. * Commands are copied into this buffer by the command injectors
  330. * (immediate, serial, sd card) and they are processed sequentially by
  331. * the main loop. The process_next_command function parses the next
  332. * command and hands off execution to individual handler functions.
  333. */
  334. uint8_t commands_in_queue = 0; // Count of commands in the queue
  335. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  336. cmd_queue_index_w = 0; // Ring buffer write position
  337. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  338. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  339. #else // This can be collapsed back to the way it was soon.
  340. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  341. #endif
  342. /**
  343. * Current GCode Command
  344. * When a GCode handler is running, these will be set
  345. */
  346. static char *current_command, // The command currently being executed
  347. *current_command_args, // The address where arguments begin
  348. *seen_pointer; // Set by code_seen(), used by the code_value functions
  349. /**
  350. * Next Injected Command pointer. NULL if no commands are being injected.
  351. * Used by Marlin internally to ensure that commands initiated from within
  352. * are enqueued ahead of any pending serial or sd card commands.
  353. */
  354. static const char *injected_commands_P = NULL;
  355. #if ENABLED(INCH_MODE_SUPPORT)
  356. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  357. #endif
  358. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  359. TempUnit input_temp_units = TEMPUNIT_C;
  360. #endif
  361. /**
  362. * Feed rates are often configured with mm/m
  363. * but the planner and stepper like mm/s units.
  364. */
  365. float constexpr homing_feedrate_mm_s[] = {
  366. #if ENABLED(DELTA)
  367. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  368. #else
  369. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  370. #endif
  371. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  372. };
  373. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  374. int feedrate_percentage = 100, saved_feedrate_percentage,
  375. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  376. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  377. volumetric_enabled =
  378. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  379. true
  380. #else
  381. false
  382. #endif
  383. ;
  384. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  385. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  386. #if HAS_WORKSPACE_OFFSET
  387. #if HAS_POSITION_SHIFT
  388. // The distance that XYZ has been offset by G92. Reset by G28.
  389. float position_shift[XYZ] = { 0 };
  390. #endif
  391. #if HAS_HOME_OFFSET
  392. // This offset is added to the configured home position.
  393. // Set by M206, M428, or menu item. Saved to EEPROM.
  394. float home_offset[XYZ] = { 0 };
  395. #endif
  396. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  397. // The above two are combined to save on computes
  398. float workspace_offset[XYZ] = { 0 };
  399. #endif
  400. #endif
  401. // Software Endstops are based on the configured limits.
  402. #if HAS_SOFTWARE_ENDSTOPS
  403. bool soft_endstops_enabled = true;
  404. #endif
  405. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  406. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  407. #if FAN_COUNT > 0
  408. int fanSpeeds[FAN_COUNT] = { 0 };
  409. #endif
  410. // The active extruder (tool). Set with T<extruder> command.
  411. uint8_t active_extruder = 0;
  412. // Relative Mode. Enable with G91, disable with G90.
  413. static bool relative_mode = false;
  414. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  415. volatile bool wait_for_heatup = true;
  416. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  417. #if HAS_RESUME_CONTINUE
  418. volatile bool wait_for_user = false;
  419. #endif
  420. const char axis_codes[XYZE] = {'X', 'Y', 'Z', 'E'};
  421. // Number of characters read in the current line of serial input
  422. static int serial_count = 0;
  423. // Inactivity shutdown
  424. millis_t previous_cmd_ms = 0;
  425. static millis_t max_inactive_time = 0;
  426. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  427. // Print Job Timer
  428. #if ENABLED(PRINTCOUNTER)
  429. PrintCounter print_job_timer = PrintCounter();
  430. #else
  431. Stopwatch print_job_timer = Stopwatch();
  432. #endif
  433. // Buzzer - I2C on the LCD or a BEEPER_PIN
  434. #if ENABLED(LCD_USE_I2C_BUZZER)
  435. #define BUZZ(d,f) lcd_buzz(d, f)
  436. #elif PIN_EXISTS(BEEPER)
  437. Buzzer buzzer;
  438. #define BUZZ(d,f) buzzer.tone(d, f)
  439. #else
  440. #define BUZZ(d,f) NOOP
  441. #endif
  442. static uint8_t target_extruder;
  443. #if HAS_BED_PROBE
  444. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  445. #endif
  446. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  447. #if HAS_ABL
  448. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  449. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  450. #elif defined(XY_PROBE_SPEED)
  451. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  452. #else
  453. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  454. #endif
  455. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  456. #if ENABLED(DELTA)
  457. #define ADJUST_DELTA(V) \
  458. if (planner.abl_enabled) { \
  459. const float zadj = bilinear_z_offset(V); \
  460. delta[A_AXIS] += zadj; \
  461. delta[B_AXIS] += zadj; \
  462. delta[C_AXIS] += zadj; \
  463. }
  464. #else
  465. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  466. #endif
  467. #elif IS_KINEMATIC
  468. #define ADJUST_DELTA(V) NOOP
  469. #endif
  470. #if ENABLED(Z_DUAL_ENDSTOPS)
  471. float z_endstop_adj =
  472. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  473. Z_DUAL_ENDSTOPS_ADJUSTMENT
  474. #else
  475. 0
  476. #endif
  477. ;
  478. #endif
  479. // Extruder offsets
  480. #if HOTENDS > 1
  481. float hotend_offset[XYZ][HOTENDS];
  482. #endif
  483. #if HAS_Z_SERVO_ENDSTOP
  484. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  485. #endif
  486. #if ENABLED(BARICUDA)
  487. int baricuda_valve_pressure = 0;
  488. int baricuda_e_to_p_pressure = 0;
  489. #endif
  490. #if ENABLED(FWRETRACT)
  491. bool autoretract_enabled = false;
  492. bool retracted[EXTRUDERS] = { false };
  493. bool retracted_swap[EXTRUDERS] = { false };
  494. float retract_length = RETRACT_LENGTH;
  495. float retract_length_swap = RETRACT_LENGTH_SWAP;
  496. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  497. float retract_zlift = RETRACT_ZLIFT;
  498. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  499. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  500. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  501. #endif // FWRETRACT
  502. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  503. bool powersupply =
  504. #if ENABLED(PS_DEFAULT_OFF)
  505. false
  506. #else
  507. true
  508. #endif
  509. ;
  510. #endif
  511. #if HAS_CASE_LIGHT
  512. bool case_light_on =
  513. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  514. true
  515. #else
  516. false
  517. #endif
  518. ;
  519. #endif
  520. #if ENABLED(DELTA)
  521. float delta[ABC],
  522. endstop_adj[ABC] = { 0 };
  523. // These values are loaded or reset at boot time when setup() calls
  524. // settings.load(), which calls recalc_delta_settings().
  525. float delta_radius,
  526. delta_tower_angle_trim[2],
  527. delta_tower[ABC][2],
  528. delta_diagonal_rod,
  529. delta_calibration_radius,
  530. delta_diagonal_rod_2_tower[ABC],
  531. delta_segments_per_second,
  532. delta_clip_start_height = Z_MAX_POS;
  533. float delta_safe_distance_from_top();
  534. #endif
  535. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  536. int bilinear_grid_spacing[2], bilinear_start[2];
  537. float bilinear_grid_factor[2],
  538. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  539. #endif
  540. #if IS_SCARA
  541. // Float constants for SCARA calculations
  542. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  543. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  544. L2_2 = sq(float(L2));
  545. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  546. delta[ABC];
  547. #endif
  548. float cartes[XYZ] = { 0 };
  549. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  550. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  551. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  552. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  553. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  554. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  555. int meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
  556. #endif
  557. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  558. static bool filament_ran_out = false;
  559. #endif
  560. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  561. FilamentChangeMenuResponse filament_change_menu_response;
  562. #endif
  563. #if ENABLED(MIXING_EXTRUDER)
  564. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  565. #if MIXING_VIRTUAL_TOOLS > 1
  566. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  567. #endif
  568. #endif
  569. static bool send_ok[BUFSIZE];
  570. #if HAS_SERVOS
  571. Servo servo[NUM_SERVOS];
  572. #define MOVE_SERVO(I, P) servo[I].move(P)
  573. #if HAS_Z_SERVO_ENDSTOP
  574. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  575. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  576. #endif
  577. #endif
  578. #ifdef CHDK
  579. millis_t chdkHigh = 0;
  580. bool chdkActive = false;
  581. #endif
  582. #ifdef AUTOMATIC_CURRENT_CONTROL
  583. bool auto_current_control = 0;
  584. #endif
  585. #if ENABLED(PID_EXTRUSION_SCALING)
  586. int lpq_len = 20;
  587. #endif
  588. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  589. MarlinBusyState busy_state = NOT_BUSY;
  590. static millis_t next_busy_signal_ms = 0;
  591. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  592. #else
  593. #define host_keepalive() NOOP
  594. #endif
  595. static inline float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  596. static inline signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  597. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  598. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  599. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  600. typedef void __void_##CONFIG##__
  601. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  602. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  603. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  604. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  605. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  606. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  607. /**
  608. * ***************************************************************************
  609. * ******************************** FUNCTIONS ********************************
  610. * ***************************************************************************
  611. */
  612. void stop();
  613. void get_available_commands();
  614. void process_next_command();
  615. void prepare_move_to_destination();
  616. void get_cartesian_from_steppers();
  617. void set_current_from_steppers_for_axis(const AxisEnum axis);
  618. #if ENABLED(ARC_SUPPORT)
  619. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  620. #endif
  621. #if ENABLED(BEZIER_CURVE_SUPPORT)
  622. void plan_cubic_move(const float offset[4]);
  623. #endif
  624. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  625. static void report_current_position();
  626. #if ENABLED(DEBUG_LEVELING_FEATURE)
  627. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  628. serialprintPGM(prefix);
  629. SERIAL_CHAR('(');
  630. SERIAL_ECHO(x);
  631. SERIAL_ECHOPAIR(", ", y);
  632. SERIAL_ECHOPAIR(", ", z);
  633. SERIAL_CHAR(')');
  634. suffix ? serialprintPGM(suffix) : SERIAL_EOL;
  635. }
  636. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  637. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  638. }
  639. #if HAS_ABL
  640. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  641. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  642. }
  643. #endif
  644. #define DEBUG_POS(SUFFIX,VAR) do { \
  645. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  646. #endif
  647. /**
  648. * sync_plan_position
  649. *
  650. * Set the planner/stepper positions directly from current_position with
  651. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  652. */
  653. inline void sync_plan_position() {
  654. #if ENABLED(DEBUG_LEVELING_FEATURE)
  655. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  656. #endif
  657. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  658. }
  659. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  660. #if IS_KINEMATIC
  661. inline void sync_plan_position_kinematic() {
  662. #if ENABLED(DEBUG_LEVELING_FEATURE)
  663. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  664. #endif
  665. planner.set_position_mm_kinematic(current_position);
  666. }
  667. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  668. #else
  669. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  670. #endif
  671. #if ENABLED(SDSUPPORT)
  672. #include "SdFatUtil.h"
  673. int freeMemory() { return SdFatUtil::FreeRam(); }
  674. #else
  675. extern "C" {
  676. extern char __bss_end;
  677. extern char __heap_start;
  678. extern void* __brkval;
  679. int freeMemory() {
  680. int free_memory;
  681. if ((int)__brkval == 0)
  682. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  683. else
  684. free_memory = ((int)&free_memory) - ((int)__brkval);
  685. return free_memory;
  686. }
  687. }
  688. #endif //!SDSUPPORT
  689. #if ENABLED(DIGIPOT_I2C)
  690. extern void digipot_i2c_set_current(int channel, float current);
  691. extern void digipot_i2c_init();
  692. #endif
  693. /**
  694. * Inject the next "immediate" command, when possible, onto the front of the queue.
  695. * Return true if any immediate commands remain to inject.
  696. */
  697. static bool drain_injected_commands_P() {
  698. if (injected_commands_P != NULL) {
  699. size_t i = 0;
  700. char c, cmd[30];
  701. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  702. cmd[sizeof(cmd) - 1] = '\0';
  703. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  704. cmd[i] = '\0';
  705. if (enqueue_and_echo_command(cmd)) // success?
  706. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  707. }
  708. return (injected_commands_P != NULL); // return whether any more remain
  709. }
  710. /**
  711. * Record one or many commands to run from program memory.
  712. * Aborts the current queue, if any.
  713. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  714. */
  715. void enqueue_and_echo_commands_P(const char* pgcode) {
  716. injected_commands_P = pgcode;
  717. drain_injected_commands_P(); // first command executed asap (when possible)
  718. }
  719. /**
  720. * Clear the Marlin command queue
  721. */
  722. void clear_command_queue() {
  723. cmd_queue_index_r = cmd_queue_index_w;
  724. commands_in_queue = 0;
  725. }
  726. /**
  727. * Once a new command is in the ring buffer, call this to commit it
  728. */
  729. inline void _commit_command(bool say_ok) {
  730. send_ok[cmd_queue_index_w] = say_ok;
  731. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  732. commands_in_queue++;
  733. }
  734. /**
  735. * Copy a command from RAM into the main command buffer.
  736. * Return true if the command was successfully added.
  737. * Return false for a full buffer, or if the 'command' is a comment.
  738. */
  739. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  740. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  741. strcpy(command_queue[cmd_queue_index_w], cmd);
  742. _commit_command(say_ok);
  743. return true;
  744. }
  745. /**
  746. * Enqueue with Serial Echo
  747. */
  748. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  749. if (_enqueuecommand(cmd, say_ok)) {
  750. SERIAL_ECHO_START;
  751. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  752. SERIAL_CHAR('"');
  753. SERIAL_EOL;
  754. return true;
  755. }
  756. return false;
  757. }
  758. void setup_killpin() {
  759. #if HAS_KILL
  760. SET_INPUT_PULLUP(KILL_PIN);
  761. #endif
  762. }
  763. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  764. void setup_filrunoutpin() {
  765. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  766. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  767. #else
  768. SET_INPUT(FIL_RUNOUT_PIN);
  769. #endif
  770. }
  771. #endif
  772. void setup_homepin(void) {
  773. #if HAS_HOME
  774. SET_INPUT_PULLUP(HOME_PIN);
  775. #endif
  776. }
  777. void setup_powerhold() {
  778. #if HAS_SUICIDE
  779. OUT_WRITE(SUICIDE_PIN, HIGH);
  780. #endif
  781. #if HAS_POWER_SWITCH
  782. #if ENABLED(PS_DEFAULT_OFF)
  783. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  784. #else
  785. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  786. #endif
  787. #endif
  788. }
  789. void suicide() {
  790. #if HAS_SUICIDE
  791. OUT_WRITE(SUICIDE_PIN, LOW);
  792. #endif
  793. }
  794. void servo_init() {
  795. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  796. servo[0].attach(SERVO0_PIN);
  797. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  798. #endif
  799. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  800. servo[1].attach(SERVO1_PIN);
  801. servo[1].detach();
  802. #endif
  803. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  804. servo[2].attach(SERVO2_PIN);
  805. servo[2].detach();
  806. #endif
  807. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  808. servo[3].attach(SERVO3_PIN);
  809. servo[3].detach();
  810. #endif
  811. #if HAS_Z_SERVO_ENDSTOP
  812. /**
  813. * Set position of Z Servo Endstop
  814. *
  815. * The servo might be deployed and positioned too low to stow
  816. * when starting up the machine or rebooting the board.
  817. * There's no way to know where the nozzle is positioned until
  818. * homing has been done - no homing with z-probe without init!
  819. *
  820. */
  821. STOW_Z_SERVO();
  822. #endif
  823. }
  824. /**
  825. * Stepper Reset (RigidBoard, et.al.)
  826. */
  827. #if HAS_STEPPER_RESET
  828. void disableStepperDrivers() {
  829. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  830. }
  831. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  832. #endif
  833. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  834. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  835. i2c.receive(bytes);
  836. }
  837. void i2c_on_request() { // just send dummy data for now
  838. i2c.reply("Hello World!\n");
  839. }
  840. #endif
  841. #if HAS_COLOR_LEDS
  842. void set_led_color(
  843. const uint8_t r, const uint8_t g, const uint8_t b
  844. #if ENABLED(RGBW_LED)
  845. , const uint8_t w=0
  846. #endif
  847. ) {
  848. #if ENABLED(BLINKM)
  849. // This variant uses i2c to send the RGB components to the device.
  850. SendColors(r, g, b);
  851. #else
  852. // This variant uses 3 separate pins for the RGB components.
  853. // If the pins can do PWM then their intensity will be set.
  854. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  855. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  856. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  857. analogWrite(RGB_LED_R_PIN, r);
  858. analogWrite(RGB_LED_G_PIN, g);
  859. analogWrite(RGB_LED_B_PIN, b);
  860. #if ENABLED(RGBW_LED)
  861. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  862. analogWrite(RGB_LED_W_PIN, w);
  863. #endif
  864. #endif
  865. }
  866. #endif // HAS_COLOR_LEDS
  867. void gcode_line_error(const char* err, bool doFlush = true) {
  868. SERIAL_ERROR_START;
  869. serialprintPGM(err);
  870. SERIAL_ERRORLN(gcode_LastN);
  871. //Serial.println(gcode_N);
  872. if (doFlush) FlushSerialRequestResend();
  873. serial_count = 0;
  874. }
  875. /**
  876. * Get all commands waiting on the serial port and queue them.
  877. * Exit when the buffer is full or when no more characters are
  878. * left on the serial port.
  879. */
  880. inline void get_serial_commands() {
  881. static char serial_line_buffer[MAX_CMD_SIZE];
  882. static bool serial_comment_mode = false;
  883. // If the command buffer is empty for too long,
  884. // send "wait" to indicate Marlin is still waiting.
  885. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  886. static millis_t last_command_time = 0;
  887. const millis_t ms = millis();
  888. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  889. SERIAL_ECHOLNPGM(MSG_WAIT);
  890. last_command_time = ms;
  891. }
  892. #endif
  893. /**
  894. * Loop while serial characters are incoming and the queue is not full
  895. */
  896. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  897. char serial_char = MYSERIAL.read();
  898. /**
  899. * If the character ends the line
  900. */
  901. if (serial_char == '\n' || serial_char == '\r') {
  902. serial_comment_mode = false; // end of line == end of comment
  903. if (!serial_count) continue; // skip empty lines
  904. serial_line_buffer[serial_count] = 0; // terminate string
  905. serial_count = 0; //reset buffer
  906. char* command = serial_line_buffer;
  907. while (*command == ' ') command++; // skip any leading spaces
  908. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  909. char* apos = strchr(command, '*');
  910. if (npos) {
  911. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  912. if (M110) {
  913. char* n2pos = strchr(command + 4, 'N');
  914. if (n2pos) npos = n2pos;
  915. }
  916. gcode_N = strtol(npos + 1, NULL, 10);
  917. if (gcode_N != gcode_LastN + 1 && !M110) {
  918. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  919. return;
  920. }
  921. if (apos) {
  922. byte checksum = 0, count = 0;
  923. while (command[count] != '*') checksum ^= command[count++];
  924. if (strtol(apos + 1, NULL, 10) != checksum) {
  925. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  926. return;
  927. }
  928. // if no errors, continue parsing
  929. }
  930. else {
  931. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  932. return;
  933. }
  934. gcode_LastN = gcode_N;
  935. // if no errors, continue parsing
  936. }
  937. else if (apos) { // No '*' without 'N'
  938. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  939. return;
  940. }
  941. // Movement commands alert when stopped
  942. if (IsStopped()) {
  943. char* gpos = strchr(command, 'G');
  944. if (gpos) {
  945. const int codenum = strtol(gpos + 1, NULL, 10);
  946. switch (codenum) {
  947. case 0:
  948. case 1:
  949. case 2:
  950. case 3:
  951. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  952. LCD_MESSAGEPGM(MSG_STOPPED);
  953. break;
  954. }
  955. }
  956. }
  957. #if DISABLED(EMERGENCY_PARSER)
  958. // If command was e-stop process now
  959. if (strcmp(command, "M108") == 0) {
  960. wait_for_heatup = false;
  961. #if ENABLED(ULTIPANEL)
  962. wait_for_user = false;
  963. #endif
  964. }
  965. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  966. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  967. #endif
  968. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  969. last_command_time = ms;
  970. #endif
  971. // Add the command to the queue
  972. _enqueuecommand(serial_line_buffer, true);
  973. }
  974. else if (serial_count >= MAX_CMD_SIZE - 1) {
  975. // Keep fetching, but ignore normal characters beyond the max length
  976. // The command will be injected when EOL is reached
  977. }
  978. else if (serial_char == '\\') { // Handle escapes
  979. if (MYSERIAL.available() > 0) {
  980. // if we have one more character, copy it over
  981. serial_char = MYSERIAL.read();
  982. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  983. }
  984. // otherwise do nothing
  985. }
  986. else { // it's not a newline, carriage return or escape char
  987. if (serial_char == ';') serial_comment_mode = true;
  988. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  989. }
  990. } // queue has space, serial has data
  991. }
  992. #if ENABLED(SDSUPPORT)
  993. /**
  994. * Get commands from the SD Card until the command buffer is full
  995. * or until the end of the file is reached. The special character '#'
  996. * can also interrupt buffering.
  997. */
  998. inline void get_sdcard_commands() {
  999. static bool stop_buffering = false,
  1000. sd_comment_mode = false;
  1001. if (!card.sdprinting) return;
  1002. /**
  1003. * '#' stops reading from SD to the buffer prematurely, so procedural
  1004. * macro calls are possible. If it occurs, stop_buffering is triggered
  1005. * and the buffer is run dry; this character _can_ occur in serial com
  1006. * due to checksums, however, no checksums are used in SD printing.
  1007. */
  1008. if (commands_in_queue == 0) stop_buffering = false;
  1009. uint16_t sd_count = 0;
  1010. bool card_eof = card.eof();
  1011. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1012. const int16_t n = card.get();
  1013. char sd_char = (char)n;
  1014. card_eof = card.eof();
  1015. if (card_eof || n == -1
  1016. || sd_char == '\n' || sd_char == '\r'
  1017. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1018. ) {
  1019. if (card_eof) {
  1020. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1021. card.printingHasFinished();
  1022. #if ENABLED(PRINTER_EVENT_LEDS)
  1023. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1024. set_led_color(0, 255, 0); // Green
  1025. #if HAS_RESUME_CONTINUE
  1026. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1027. wait_for_user = true;
  1028. while (wait_for_user) idle();
  1029. KEEPALIVE_STATE(IN_HANDLER);
  1030. #else
  1031. safe_delay(1000);
  1032. #endif
  1033. set_led_color(0, 0, 0); // OFF
  1034. #endif
  1035. card.checkautostart(true);
  1036. }
  1037. else if (n == -1) {
  1038. SERIAL_ERROR_START;
  1039. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1040. }
  1041. if (sd_char == '#') stop_buffering = true;
  1042. sd_comment_mode = false; // for new command
  1043. if (!sd_count) continue; // skip empty lines (and comment lines)
  1044. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1045. sd_count = 0; // clear sd line buffer
  1046. _commit_command(false);
  1047. }
  1048. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1049. /**
  1050. * Keep fetching, but ignore normal characters beyond the max length
  1051. * The command will be injected when EOL is reached
  1052. */
  1053. }
  1054. else {
  1055. if (sd_char == ';') sd_comment_mode = true;
  1056. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1057. }
  1058. }
  1059. }
  1060. #endif // SDSUPPORT
  1061. /**
  1062. * Add to the circular command queue the next command from:
  1063. * - The command-injection queue (injected_commands_P)
  1064. * - The active serial input (usually USB)
  1065. * - The SD card file being actively printed
  1066. */
  1067. void get_available_commands() {
  1068. // if any immediate commands remain, don't get other commands yet
  1069. if (drain_injected_commands_P()) return;
  1070. get_serial_commands();
  1071. #if ENABLED(SDSUPPORT)
  1072. get_sdcard_commands();
  1073. #endif
  1074. }
  1075. inline bool code_has_value() {
  1076. int i = 1;
  1077. char c = seen_pointer[i];
  1078. while (c == ' ') c = seen_pointer[++i];
  1079. if (c == '-' || c == '+') c = seen_pointer[++i];
  1080. if (c == '.') c = seen_pointer[++i];
  1081. return NUMERIC(c);
  1082. }
  1083. inline float code_value_float() {
  1084. char* e = strchr(seen_pointer, 'E');
  1085. if (!e) return strtod(seen_pointer + 1, NULL);
  1086. *e = 0;
  1087. float ret = strtod(seen_pointer + 1, NULL);
  1088. *e = 'E';
  1089. return ret;
  1090. }
  1091. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1092. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1093. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1094. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1095. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1096. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1097. #if ENABLED(INCH_MODE_SUPPORT)
  1098. inline void set_input_linear_units(LinearUnit units) {
  1099. switch (units) {
  1100. case LINEARUNIT_INCH:
  1101. linear_unit_factor = 25.4;
  1102. break;
  1103. case LINEARUNIT_MM:
  1104. default:
  1105. linear_unit_factor = 1.0;
  1106. break;
  1107. }
  1108. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1109. }
  1110. inline float axis_unit_factor(const AxisEnum axis) {
  1111. return (axis >= E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1112. }
  1113. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1114. inline float code_value_axis_units(const AxisEnum axis) { return code_value_float() * axis_unit_factor(axis); }
  1115. inline float code_value_per_axis_unit(const AxisEnum axis) { return code_value_float() / axis_unit_factor(axis); }
  1116. #else
  1117. #define code_value_linear_units() code_value_float()
  1118. #define code_value_axis_units(A) code_value_float()
  1119. #define code_value_per_axis_unit(A) code_value_float()
  1120. #endif
  1121. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1122. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1123. float code_value_temp_abs() {
  1124. switch (input_temp_units) {
  1125. case TEMPUNIT_C:
  1126. return code_value_float();
  1127. case TEMPUNIT_F:
  1128. return (code_value_float() - 32) * 0.5555555556;
  1129. case TEMPUNIT_K:
  1130. return code_value_float() - 273.15;
  1131. default:
  1132. return code_value_float();
  1133. }
  1134. }
  1135. float code_value_temp_diff() {
  1136. switch (input_temp_units) {
  1137. case TEMPUNIT_C:
  1138. case TEMPUNIT_K:
  1139. return code_value_float();
  1140. case TEMPUNIT_F:
  1141. return code_value_float() * 0.5555555556;
  1142. default:
  1143. return code_value_float();
  1144. }
  1145. }
  1146. #else
  1147. float code_value_temp_abs() { return code_value_float(); }
  1148. float code_value_temp_diff() { return code_value_float(); }
  1149. #endif
  1150. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1151. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1152. bool code_seen(char code) {
  1153. seen_pointer = strchr(current_command_args, code);
  1154. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1155. }
  1156. /**
  1157. * Set target_extruder from the T parameter or the active_extruder
  1158. *
  1159. * Returns TRUE if the target is invalid
  1160. */
  1161. bool get_target_extruder_from_command(int code) {
  1162. if (code_seen('T')) {
  1163. if (code_value_byte() >= EXTRUDERS) {
  1164. SERIAL_ECHO_START;
  1165. SERIAL_CHAR('M');
  1166. SERIAL_ECHO(code);
  1167. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1168. return true;
  1169. }
  1170. target_extruder = code_value_byte();
  1171. }
  1172. else
  1173. target_extruder = active_extruder;
  1174. return false;
  1175. }
  1176. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1177. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1178. #endif
  1179. #if ENABLED(DUAL_X_CARRIAGE)
  1180. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1181. static float x_home_pos(const int extruder) {
  1182. if (extruder == 0)
  1183. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1184. else
  1185. /**
  1186. * In dual carriage mode the extruder offset provides an override of the
  1187. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1188. * This allows soft recalibration of the second extruder home position
  1189. * without firmware reflash (through the M218 command).
  1190. */
  1191. return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
  1192. }
  1193. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1194. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1195. static bool active_extruder_parked = false; // used in mode 1 & 2
  1196. static float raised_parked_position[XYZE]; // used in mode 1
  1197. static millis_t delayed_move_time = 0; // used in mode 1
  1198. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1199. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1200. #endif // DUAL_X_CARRIAGE
  1201. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1202. /**
  1203. * Software endstops can be used to monitor the open end of
  1204. * an axis that has a hardware endstop on the other end. Or
  1205. * they can prevent axes from moving past endstops and grinding.
  1206. *
  1207. * To keep doing their job as the coordinate system changes,
  1208. * the software endstop positions must be refreshed to remain
  1209. * at the same positions relative to the machine.
  1210. */
  1211. void update_software_endstops(const AxisEnum axis) {
  1212. const float offs = 0.0
  1213. #if HAS_HOME_OFFSET
  1214. + home_offset[axis]
  1215. #endif
  1216. #if HAS_POSITION_SHIFT
  1217. + position_shift[axis]
  1218. #endif
  1219. ;
  1220. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1221. workspace_offset[axis] = offs;
  1222. #endif
  1223. #if ENABLED(DUAL_X_CARRIAGE)
  1224. if (axis == X_AXIS) {
  1225. // In Dual X mode hotend_offset[X] is T1's home position
  1226. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1227. if (active_extruder != 0) {
  1228. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1229. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1230. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1231. }
  1232. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1233. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1234. // but not so far to the right that T1 would move past the end
  1235. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1236. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1237. }
  1238. else {
  1239. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1240. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1241. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1242. }
  1243. }
  1244. #else
  1245. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1246. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1247. #endif
  1248. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1249. if (DEBUGGING(LEVELING)) {
  1250. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1251. #if HAS_HOME_OFFSET
  1252. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1253. #endif
  1254. #if HAS_POSITION_SHIFT
  1255. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1256. #endif
  1257. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1258. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1259. }
  1260. #endif
  1261. #if ENABLED(DELTA)
  1262. if (axis == Z_AXIS)
  1263. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1264. #endif
  1265. }
  1266. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1267. #if HAS_M206_COMMAND
  1268. /**
  1269. * Change the home offset for an axis, update the current
  1270. * position and the software endstops to retain the same
  1271. * relative distance to the new home.
  1272. *
  1273. * Since this changes the current_position, code should
  1274. * call sync_plan_position soon after this.
  1275. */
  1276. static void set_home_offset(const AxisEnum axis, const float v) {
  1277. current_position[axis] += v - home_offset[axis];
  1278. home_offset[axis] = v;
  1279. update_software_endstops(axis);
  1280. }
  1281. #endif // HAS_M206_COMMAND
  1282. /**
  1283. * Set an axis' current position to its home position (after homing).
  1284. *
  1285. * For Core and Cartesian robots this applies one-to-one when an
  1286. * individual axis has been homed.
  1287. *
  1288. * DELTA should wait until all homing is done before setting the XYZ
  1289. * current_position to home, because homing is a single operation.
  1290. * In the case where the axis positions are already known and previously
  1291. * homed, DELTA could home to X or Y individually by moving either one
  1292. * to the center. However, homing Z always homes XY and Z.
  1293. *
  1294. * SCARA should wait until all XY homing is done before setting the XY
  1295. * current_position to home, because neither X nor Y is at home until
  1296. * both are at home. Z can however be homed individually.
  1297. *
  1298. * Callers must sync the planner position after calling this!
  1299. */
  1300. static void set_axis_is_at_home(AxisEnum axis) {
  1301. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1302. if (DEBUGGING(LEVELING)) {
  1303. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1304. SERIAL_CHAR(')');
  1305. SERIAL_EOL;
  1306. }
  1307. #endif
  1308. axis_known_position[axis] = axis_homed[axis] = true;
  1309. #if HAS_POSITION_SHIFT
  1310. position_shift[axis] = 0;
  1311. update_software_endstops(axis);
  1312. #endif
  1313. #if ENABLED(DUAL_X_CARRIAGE)
  1314. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1315. current_position[X_AXIS] = x_home_pos(active_extruder);
  1316. return;
  1317. }
  1318. #endif
  1319. #if ENABLED(MORGAN_SCARA)
  1320. /**
  1321. * Morgan SCARA homes XY at the same time
  1322. */
  1323. if (axis == X_AXIS || axis == Y_AXIS) {
  1324. float homeposition[XYZ];
  1325. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1326. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1327. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1328. /**
  1329. * Get Home position SCARA arm angles using inverse kinematics,
  1330. * and calculate homing offset using forward kinematics
  1331. */
  1332. inverse_kinematics(homeposition);
  1333. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1334. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1335. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1336. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1337. /**
  1338. * SCARA home positions are based on configuration since the actual
  1339. * limits are determined by the inverse kinematic transform.
  1340. */
  1341. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1342. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1343. }
  1344. else
  1345. #endif
  1346. {
  1347. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1348. }
  1349. /**
  1350. * Z Probe Z Homing? Account for the probe's Z offset.
  1351. */
  1352. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1353. if (axis == Z_AXIS) {
  1354. #if HOMING_Z_WITH_PROBE
  1355. current_position[Z_AXIS] -= zprobe_zoffset;
  1356. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1357. if (DEBUGGING(LEVELING)) {
  1358. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1359. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1360. }
  1361. #endif
  1362. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1363. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1364. #endif
  1365. }
  1366. #endif
  1367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1368. if (DEBUGGING(LEVELING)) {
  1369. #if HAS_HOME_OFFSET
  1370. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1371. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1372. #endif
  1373. DEBUG_POS("", current_position);
  1374. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1375. SERIAL_CHAR(')');
  1376. SERIAL_EOL;
  1377. }
  1378. #endif
  1379. }
  1380. /**
  1381. * Some planner shorthand inline functions
  1382. */
  1383. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1384. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1385. int hbd = homing_bump_divisor[axis];
  1386. if (hbd < 1) {
  1387. hbd = 10;
  1388. SERIAL_ECHO_START;
  1389. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1390. }
  1391. return homing_feedrate_mm_s[axis] / hbd;
  1392. }
  1393. //
  1394. // line_to_current_position
  1395. // Move the planner to the current position from wherever it last moved
  1396. // (or from wherever it has been told it is located).
  1397. //
  1398. inline void line_to_current_position() {
  1399. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1400. }
  1401. //
  1402. // line_to_destination
  1403. // Move the planner, not necessarily synced with current_position
  1404. //
  1405. inline void line_to_destination(float fr_mm_s) {
  1406. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1407. }
  1408. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1409. inline void set_current_to_destination() { COPY(current_position, destination); }
  1410. inline void set_destination_to_current() { COPY(destination, current_position); }
  1411. #if IS_KINEMATIC
  1412. /**
  1413. * Calculate delta, start a line, and set current_position to destination
  1414. */
  1415. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1417. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1418. #endif
  1419. if ( current_position[X_AXIS] == destination[X_AXIS]
  1420. && current_position[Y_AXIS] == destination[Y_AXIS]
  1421. && current_position[Z_AXIS] == destination[Z_AXIS]
  1422. && current_position[E_AXIS] == destination[E_AXIS]
  1423. ) return;
  1424. refresh_cmd_timeout();
  1425. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1426. set_current_to_destination();
  1427. }
  1428. #endif // IS_KINEMATIC
  1429. /**
  1430. * Plan a move to (X, Y, Z) and set the current_position
  1431. * The final current_position may not be the one that was requested
  1432. */
  1433. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1434. const float old_feedrate_mm_s = feedrate_mm_s;
  1435. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1436. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1437. #endif
  1438. #if ENABLED(DELTA)
  1439. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1440. set_destination_to_current(); // sync destination at the start
  1441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1442. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1443. #endif
  1444. // when in the danger zone
  1445. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1446. if (z > delta_clip_start_height) { // staying in the danger zone
  1447. destination[X_AXIS] = x; // move directly (uninterpolated)
  1448. destination[Y_AXIS] = y;
  1449. destination[Z_AXIS] = z;
  1450. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1452. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1453. #endif
  1454. return;
  1455. }
  1456. else {
  1457. destination[Z_AXIS] = delta_clip_start_height;
  1458. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1459. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1460. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1461. #endif
  1462. }
  1463. }
  1464. if (z > current_position[Z_AXIS]) { // raising?
  1465. destination[Z_AXIS] = z;
  1466. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1468. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1469. #endif
  1470. }
  1471. destination[X_AXIS] = x;
  1472. destination[Y_AXIS] = y;
  1473. prepare_move_to_destination(); // set_current_to_destination
  1474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1475. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1476. #endif
  1477. if (z < current_position[Z_AXIS]) { // lowering?
  1478. destination[Z_AXIS] = z;
  1479. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1481. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1482. #endif
  1483. }
  1484. #elif IS_SCARA
  1485. set_destination_to_current();
  1486. // If Z needs to raise, do it before moving XY
  1487. if (destination[Z_AXIS] < z) {
  1488. destination[Z_AXIS] = z;
  1489. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1490. }
  1491. destination[X_AXIS] = x;
  1492. destination[Y_AXIS] = y;
  1493. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1494. // If Z needs to lower, do it after moving XY
  1495. if (destination[Z_AXIS] > z) {
  1496. destination[Z_AXIS] = z;
  1497. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1498. }
  1499. #else
  1500. // If Z needs to raise, do it before moving XY
  1501. if (current_position[Z_AXIS] < z) {
  1502. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1503. current_position[Z_AXIS] = z;
  1504. line_to_current_position();
  1505. }
  1506. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1507. current_position[X_AXIS] = x;
  1508. current_position[Y_AXIS] = y;
  1509. line_to_current_position();
  1510. // If Z needs to lower, do it after moving XY
  1511. if (current_position[Z_AXIS] > z) {
  1512. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1513. current_position[Z_AXIS] = z;
  1514. line_to_current_position();
  1515. }
  1516. #endif
  1517. stepper.synchronize();
  1518. feedrate_mm_s = old_feedrate_mm_s;
  1519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1520. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1521. #endif
  1522. }
  1523. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1524. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1525. }
  1526. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1527. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1528. }
  1529. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1530. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1531. }
  1532. //
  1533. // Prepare to do endstop or probe moves
  1534. // with custom feedrates.
  1535. //
  1536. // - Save current feedrates
  1537. // - Reset the rate multiplier
  1538. // - Reset the command timeout
  1539. // - Enable the endstops (for endstop moves)
  1540. //
  1541. static void setup_for_endstop_or_probe_move() {
  1542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1543. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1544. #endif
  1545. saved_feedrate_mm_s = feedrate_mm_s;
  1546. saved_feedrate_percentage = feedrate_percentage;
  1547. feedrate_percentage = 100;
  1548. refresh_cmd_timeout();
  1549. }
  1550. static void clean_up_after_endstop_or_probe_move() {
  1551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1552. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1553. #endif
  1554. feedrate_mm_s = saved_feedrate_mm_s;
  1555. feedrate_percentage = saved_feedrate_percentage;
  1556. refresh_cmd_timeout();
  1557. }
  1558. #if HAS_BED_PROBE
  1559. /**
  1560. * Raise Z to a minimum height to make room for a probe to move
  1561. */
  1562. inline void do_probe_raise(float z_raise) {
  1563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1564. if (DEBUGGING(LEVELING)) {
  1565. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1566. SERIAL_CHAR(')');
  1567. SERIAL_EOL;
  1568. }
  1569. #endif
  1570. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1571. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1572. #if ENABLED(DELTA)
  1573. z_dest -= home_offset[Z_AXIS];
  1574. #endif
  1575. if (z_dest > current_position[Z_AXIS])
  1576. do_blocking_move_to_z(z_dest);
  1577. }
  1578. #endif //HAS_BED_PROBE
  1579. #if HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) || ENABLED(DELTA_AUTO_CALIBRATION)
  1580. bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1581. const bool xx = x && !axis_homed[X_AXIS],
  1582. yy = y && !axis_homed[Y_AXIS],
  1583. zz = z && !axis_homed[Z_AXIS];
  1584. if (xx || yy || zz) {
  1585. SERIAL_ECHO_START;
  1586. SERIAL_ECHOPGM(MSG_HOME " ");
  1587. if (xx) SERIAL_ECHOPGM(MSG_X);
  1588. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1589. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1590. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1591. #if ENABLED(ULTRA_LCD)
  1592. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1593. #endif
  1594. return true;
  1595. }
  1596. return false;
  1597. }
  1598. #endif
  1599. #if ENABLED(Z_PROBE_SLED)
  1600. #ifndef SLED_DOCKING_OFFSET
  1601. #define SLED_DOCKING_OFFSET 0
  1602. #endif
  1603. /**
  1604. * Method to dock/undock a sled designed by Charles Bell.
  1605. *
  1606. * stow[in] If false, move to MAX_X and engage the solenoid
  1607. * If true, move to MAX_X and release the solenoid
  1608. */
  1609. static void dock_sled(bool stow) {
  1610. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1611. if (DEBUGGING(LEVELING)) {
  1612. SERIAL_ECHOPAIR("dock_sled(", stow);
  1613. SERIAL_CHAR(')');
  1614. SERIAL_EOL;
  1615. }
  1616. #endif
  1617. // Dock sled a bit closer to ensure proper capturing
  1618. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1619. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1620. WRITE(SOL1_PIN, !stow); // switch solenoid
  1621. #endif
  1622. }
  1623. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1624. void run_deploy_moves_script() {
  1625. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1626. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1627. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1628. #endif
  1629. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1630. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1631. #endif
  1632. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1633. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1634. #endif
  1635. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1636. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1637. #endif
  1638. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1639. #endif
  1640. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1641. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1642. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1643. #endif
  1644. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1645. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1646. #endif
  1647. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1648. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1649. #endif
  1650. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1651. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1652. #endif
  1653. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1654. #endif
  1655. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1656. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1657. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1658. #endif
  1659. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1660. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1661. #endif
  1662. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1663. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1664. #endif
  1665. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1666. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1667. #endif
  1668. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1669. #endif
  1670. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1671. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1672. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1673. #endif
  1674. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1675. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1676. #endif
  1677. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1678. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1679. #endif
  1680. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1681. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1682. #endif
  1683. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1684. #endif
  1685. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1686. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1687. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1688. #endif
  1689. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1690. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1691. #endif
  1692. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1693. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1694. #endif
  1695. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1696. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1697. #endif
  1698. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1699. #endif
  1700. }
  1701. void run_stow_moves_script() {
  1702. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1703. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1704. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1705. #endif
  1706. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1707. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1708. #endif
  1709. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1710. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1711. #endif
  1712. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1713. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1714. #endif
  1715. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1716. #endif
  1717. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1718. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1719. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1720. #endif
  1721. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1722. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1723. #endif
  1724. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1725. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1726. #endif
  1727. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1728. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1729. #endif
  1730. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1731. #endif
  1732. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1733. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1734. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1735. #endif
  1736. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1737. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1738. #endif
  1739. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1740. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1741. #endif
  1742. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1743. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1744. #endif
  1745. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1746. #endif
  1747. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1749. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1750. #endif
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1752. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1753. #endif
  1754. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1755. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1756. #endif
  1757. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1758. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1759. #endif
  1760. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1761. #endif
  1762. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1763. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1764. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1765. #endif
  1766. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1767. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1768. #endif
  1769. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1770. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1771. #endif
  1772. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1773. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1774. #endif
  1775. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1776. #endif
  1777. }
  1778. #endif
  1779. #if HAS_BED_PROBE
  1780. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1781. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1782. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1783. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1784. #else
  1785. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1786. #endif
  1787. #endif
  1788. #if ENABLED(BLTOUCH)
  1789. void bltouch_command(int angle) {
  1790. servo[Z_ENDSTOP_SERVO_NR].move(angle); // Give the BL-Touch the command and wait
  1791. safe_delay(BLTOUCH_DELAY);
  1792. }
  1793. /**
  1794. * BLTouch probes have a Hall effect sensor. The high currents switching
  1795. * on and off cause a magnetic field that can affect the repeatability of the
  1796. * sensor. So for BLTouch probes, heaters are turned off during the probe,
  1797. * then quickly turned back on after the point is sampled.
  1798. */
  1799. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1800. void set_heaters_for_bltouch(const bool deploy) {
  1801. static int8_t heaters_were_disabled = 0;
  1802. static millis_t next_emi_protection;
  1803. static float temps_at_entry[HOTENDS];
  1804. #if HAS_TEMP_BED
  1805. static float bed_temp_at_entry;
  1806. #endif
  1807. // If called out of order or far apart something is seriously wrong
  1808. if (deploy == heaters_were_disabled
  1809. || (next_emi_protection && ELAPSED(millis(), next_emi_protection)))
  1810. kill(PSTR(MSG_KILLED));
  1811. if (deploy) {
  1812. next_emi_protection = millis() + 20 * 1000UL;
  1813. HOTEND_LOOP() {
  1814. temps_at_entry[e] = thermalManager.degTargetHotend(e);
  1815. thermalManager.setTargetHotend(0, e);
  1816. }
  1817. #if HAS_TEMP_BED
  1818. bed_temp_at_entry = thermalManager.degTargetBed();
  1819. thermalManager.setTargetBed(0);
  1820. #endif
  1821. }
  1822. else {
  1823. next_emi_protection = 0;
  1824. HOTEND_LOOP() thermalManager.setTargetHotend(temps_at_entry[e], e);
  1825. #if HAS_TEMP_BED
  1826. thermalManager.setTargetBed(bed_temp_at_entry);
  1827. #endif
  1828. }
  1829. }
  1830. #endif // BLTOUCH_HEATERS_OFF
  1831. void set_bltouch_deployed(const bool deploy) {
  1832. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1833. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1834. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1835. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1836. safe_delay(1500); // Wait for internal self-test to complete.
  1837. // (Measured completion time was 0.65 seconds
  1838. // after reset, deploy, and stow sequence)
  1839. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1840. SERIAL_ERROR_START;
  1841. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1842. stop(); // punt!
  1843. }
  1844. }
  1845. #if ENABLED(BLTOUCH_HEATERS_OFF)
  1846. set_heaters_for_bltouch(deploy);
  1847. #endif
  1848. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1849. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1850. if (DEBUGGING(LEVELING)) {
  1851. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1852. SERIAL_CHAR(')');
  1853. SERIAL_EOL;
  1854. }
  1855. #endif
  1856. }
  1857. #endif // BLTOUCH
  1858. // returns false for ok and true for failure
  1859. bool set_probe_deployed(bool deploy) {
  1860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1861. if (DEBUGGING(LEVELING)) {
  1862. DEBUG_POS("set_probe_deployed", current_position);
  1863. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1864. }
  1865. #endif
  1866. if (endstops.z_probe_enabled == deploy) return false;
  1867. #if ENABLED(BLTOUCH) && ENABLED(BLTOUCH_HEATERS_OFF)
  1868. set_heaters_for_bltouch(deploy);
  1869. #endif
  1870. // Make room for probe
  1871. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1872. // When deploying make sure BLTOUCH is not already triggered
  1873. #if ENABLED(BLTOUCH)
  1874. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1875. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1876. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1877. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1878. safe_delay(1500); // wait for internal self test to complete
  1879. // measured completion time was 0.65 seconds
  1880. // after reset, deploy & stow sequence
  1881. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1882. SERIAL_ERROR_START;
  1883. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1884. stop(); // punt!
  1885. return true;
  1886. }
  1887. }
  1888. #elif ENABLED(Z_PROBE_SLED)
  1889. if (axis_unhomed_error(true, false, false)) {
  1890. SERIAL_ERROR_START;
  1891. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1892. stop();
  1893. return true;
  1894. }
  1895. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1896. if (axis_unhomed_error(true, true, true )) {
  1897. SERIAL_ERROR_START;
  1898. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1899. stop();
  1900. return true;
  1901. }
  1902. #endif
  1903. const float oldXpos = current_position[X_AXIS],
  1904. oldYpos = current_position[Y_AXIS];
  1905. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1906. // If endstop is already false, the Z probe is deployed
  1907. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1908. // Would a goto be less ugly?
  1909. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1910. // for a triggered when stowed manual probe.
  1911. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1912. // otherwise an Allen-Key probe can't be stowed.
  1913. #endif
  1914. #if ENABLED(SOLENOID_PROBE)
  1915. #if HAS_SOLENOID_1
  1916. WRITE(SOL1_PIN, deploy);
  1917. #endif
  1918. #elif ENABLED(Z_PROBE_SLED)
  1919. dock_sled(!deploy);
  1920. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1921. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1922. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1923. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1924. #endif
  1925. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1926. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1927. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1928. if (IsRunning()) {
  1929. SERIAL_ERROR_START;
  1930. SERIAL_ERRORLNPGM("Z-Probe failed");
  1931. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1932. }
  1933. stop();
  1934. return true;
  1935. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1936. #endif
  1937. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1938. endstops.enable_z_probe(deploy);
  1939. return false;
  1940. }
  1941. static void do_probe_move(float z, float fr_mm_m) {
  1942. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1943. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1944. #endif
  1945. // Deploy BLTouch at the start of any probe
  1946. #if ENABLED(BLTOUCH)
  1947. set_bltouch_deployed(true);
  1948. #endif
  1949. // Move down until probe triggered
  1950. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1951. // Retract BLTouch immediately after a probe
  1952. #if ENABLED(BLTOUCH)
  1953. set_bltouch_deployed(false);
  1954. #endif
  1955. // Clear endstop flags
  1956. endstops.hit_on_purpose();
  1957. // Get Z where the steppers were interrupted
  1958. set_current_from_steppers_for_axis(Z_AXIS);
  1959. // Tell the planner where we actually are
  1960. SYNC_PLAN_POSITION_KINEMATIC();
  1961. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1962. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1963. #endif
  1964. }
  1965. // Do a single Z probe and return with current_position[Z_AXIS]
  1966. // at the height where the probe triggered.
  1967. static float run_z_probe() {
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1970. #endif
  1971. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1972. refresh_cmd_timeout();
  1973. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1974. // Do a first probe at the fast speed
  1975. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1977. float first_probe_z = current_position[Z_AXIS];
  1978. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1979. #endif
  1980. // move up by the bump distance
  1981. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1982. #else
  1983. // If the nozzle is above the travel height then
  1984. // move down quickly before doing the slow probe
  1985. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1986. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1987. #if ENABLED(DELTA)
  1988. z -= home_offset[Z_AXIS];
  1989. #endif
  1990. if (z < current_position[Z_AXIS])
  1991. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1992. #endif
  1993. // move down slowly to find bed
  1994. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1995. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1996. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1997. #endif
  1998. // Debug: compare probe heights
  1999. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2000. if (DEBUGGING(LEVELING)) {
  2001. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2002. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2003. }
  2004. #endif
  2005. return current_position[Z_AXIS] + zprobe_zoffset;
  2006. }
  2007. /**
  2008. * - Move to the given XY
  2009. * - Deploy the probe, if not already deployed
  2010. * - Probe the bed, get the Z position
  2011. * - Depending on the 'stow' flag
  2012. * - Stow the probe, or
  2013. * - Raise to the BETWEEN height
  2014. * - Return the probed Z position
  2015. */
  2016. float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
  2017. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2018. if (DEBUGGING(LEVELING)) {
  2019. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  2020. SERIAL_ECHOPAIR(", ", y);
  2021. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2022. SERIAL_ECHOLNPGM("stow)");
  2023. DEBUG_POS("", current_position);
  2024. }
  2025. #endif
  2026. const float old_feedrate_mm_s = feedrate_mm_s;
  2027. #if ENABLED(DELTA)
  2028. if (current_position[Z_AXIS] > delta_clip_start_height)
  2029. do_blocking_move_to_z(delta_clip_start_height);
  2030. #endif
  2031. // Ensure a minimum height before moving the probe
  2032. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2033. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2034. // Move the probe to the given XY
  2035. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2036. if (DEPLOY_PROBE()) return NAN;
  2037. const float measured_z = run_z_probe();
  2038. if (!stow)
  2039. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  2040. else
  2041. if (STOW_PROBE()) return NAN;
  2042. if (verbose_level > 2) {
  2043. SERIAL_PROTOCOLPGM("Bed X: ");
  2044. SERIAL_PROTOCOL_F(x, 3);
  2045. SERIAL_PROTOCOLPGM(" Y: ");
  2046. SERIAL_PROTOCOL_F(y, 3);
  2047. SERIAL_PROTOCOLPGM(" Z: ");
  2048. SERIAL_PROTOCOL_F(measured_z, 3);
  2049. SERIAL_EOL;
  2050. }
  2051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2052. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2053. #endif
  2054. feedrate_mm_s = old_feedrate_mm_s;
  2055. return measured_z;
  2056. }
  2057. #endif // HAS_BED_PROBE
  2058. #if PLANNER_LEVELING
  2059. /**
  2060. * Turn bed leveling on or off, fixing the current
  2061. * position as-needed.
  2062. *
  2063. * Disable: Current position = physical position
  2064. * Enable: Current position = "unleveled" physical position
  2065. */
  2066. void set_bed_leveling_enabled(bool enable/*=true*/) {
  2067. #if ENABLED(MESH_BED_LEVELING)
  2068. if (enable != mbl.active()) {
  2069. if (!enable)
  2070. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2071. mbl.set_active(enable && mbl.has_mesh());
  2072. if (enable && mbl.has_mesh()) planner.unapply_leveling(current_position);
  2073. }
  2074. #elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
  2075. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2076. const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
  2077. #else
  2078. constexpr bool can_change = true;
  2079. #endif
  2080. if (can_change && enable != planner.abl_enabled) {
  2081. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2082. // Force bilinear_z_offset to re-calculate next time
  2083. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2084. (void)bilinear_z_offset(reset);
  2085. #endif
  2086. planner.abl_enabled = enable;
  2087. if (!enable)
  2088. set_current_from_steppers_for_axis(
  2089. #if ABL_PLANAR
  2090. ALL_AXES
  2091. #else
  2092. Z_AXIS
  2093. #endif
  2094. );
  2095. else
  2096. planner.unapply_leveling(current_position);
  2097. }
  2098. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2099. ubl.state.active = enable;
  2100. //set_current_from_steppers_for_axis(Z_AXIS);
  2101. #endif
  2102. }
  2103. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2104. void set_z_fade_height(const float zfh) {
  2105. planner.z_fade_height = zfh;
  2106. planner.inverse_z_fade_height = RECIPROCAL(zfh);
  2107. if (
  2108. #if ENABLED(MESH_BED_LEVELING)
  2109. mbl.active()
  2110. #else
  2111. planner.abl_enabled
  2112. #endif
  2113. ) {
  2114. set_current_from_steppers_for_axis(
  2115. #if ABL_PLANAR
  2116. ALL_AXES
  2117. #else
  2118. Z_AXIS
  2119. #endif
  2120. );
  2121. }
  2122. }
  2123. #endif // LEVELING_FADE_HEIGHT
  2124. /**
  2125. * Reset calibration results to zero.
  2126. */
  2127. void reset_bed_level() {
  2128. set_bed_leveling_enabled(false);
  2129. #if ENABLED(MESH_BED_LEVELING)
  2130. if (mbl.has_mesh()) {
  2131. mbl.reset();
  2132. mbl.set_has_mesh(false);
  2133. }
  2134. #else
  2135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2136. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2137. #endif
  2138. #if ABL_PLANAR
  2139. planner.bed_level_matrix.set_to_identity();
  2140. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2141. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2142. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2143. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2144. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2145. z_values[x][y] = NAN;
  2146. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2147. ubl.reset();
  2148. #endif
  2149. #endif
  2150. }
  2151. #endif // PLANNER_LEVELING
  2152. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2153. /**
  2154. * Enable to produce output in JSON format suitable
  2155. * for SCAD or JavaScript mesh visualizers.
  2156. *
  2157. * Visualize meshes in OpenSCAD using the included script.
  2158. *
  2159. * buildroot/shared/scripts/MarlinMesh.scad
  2160. */
  2161. //#define SCAD_MESH_OUTPUT
  2162. /**
  2163. * Print calibration results for plotting or manual frame adjustment.
  2164. */
  2165. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2166. #ifndef SCAD_MESH_OUTPUT
  2167. for (uint8_t x = 0; x < sx; x++) {
  2168. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2169. SERIAL_PROTOCOLCHAR(' ');
  2170. SERIAL_PROTOCOL((int)x);
  2171. }
  2172. SERIAL_EOL;
  2173. #endif
  2174. #ifdef SCAD_MESH_OUTPUT
  2175. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2176. #endif
  2177. for (uint8_t y = 0; y < sy; y++) {
  2178. #ifdef SCAD_MESH_OUTPUT
  2179. SERIAL_PROTOCOLLNPGM(" ["); // open sub-array
  2180. #else
  2181. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2182. SERIAL_PROTOCOL((int)y);
  2183. #endif
  2184. for (uint8_t x = 0; x < sx; x++) {
  2185. SERIAL_PROTOCOLCHAR(' ');
  2186. const float offset = fn(x, y);
  2187. if (!isnan(offset)) {
  2188. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2189. SERIAL_PROTOCOL_F(offset, precision);
  2190. }
  2191. else {
  2192. #ifdef SCAD_MESH_OUTPUT
  2193. for (uint8_t i = 3; i < precision + 3; i++)
  2194. SERIAL_PROTOCOLCHAR(' ');
  2195. SERIAL_PROTOCOLPGM("NAN");
  2196. #else
  2197. for (uint8_t i = 0; i < precision + 3; i++)
  2198. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2199. #endif
  2200. }
  2201. #ifdef SCAD_MESH_OUTPUT
  2202. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2203. #endif
  2204. }
  2205. #ifdef SCAD_MESH_OUTPUT
  2206. SERIAL_PROTOCOLCHAR(' ');
  2207. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2208. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2209. #endif
  2210. SERIAL_EOL;
  2211. }
  2212. #ifdef SCAD_MESH_OUTPUT
  2213. SERIAL_PROTOCOLPGM("\n];"); // close 2D array
  2214. #endif
  2215. SERIAL_EOL;
  2216. }
  2217. #endif
  2218. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2219. /**
  2220. * Extrapolate a single point from its neighbors
  2221. */
  2222. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  2223. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2224. if (DEBUGGING(LEVELING)) {
  2225. SERIAL_ECHOPGM("Extrapolate [");
  2226. if (x < 10) SERIAL_CHAR(' ');
  2227. SERIAL_ECHO((int)x);
  2228. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2229. SERIAL_CHAR(' ');
  2230. if (y < 10) SERIAL_CHAR(' ');
  2231. SERIAL_ECHO((int)y);
  2232. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2233. SERIAL_CHAR(']');
  2234. }
  2235. #endif
  2236. if (!isnan(z_values[x][y])) {
  2237. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2238. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2239. #endif
  2240. return; // Don't overwrite good values.
  2241. }
  2242. SERIAL_EOL;
  2243. // Get X neighbors, Y neighbors, and XY neighbors
  2244. float a1 = z_values[x + xdir][y], a2 = z_values[x + xdir * 2][y],
  2245. b1 = z_values[x][y + ydir], b2 = z_values[x][y + ydir * 2],
  2246. c1 = z_values[x + xdir][y + ydir], c2 = z_values[x + xdir * 2][y + ydir * 2];
  2247. // Treat far unprobed points as zero, near as equal to far
  2248. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2249. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2250. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2251. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2252. // Take the average instead of the median
  2253. z_values[x][y] = (a + b + c) / 3.0;
  2254. // Median is robust (ignores outliers).
  2255. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2256. // : ((c < b) ? b : (a < c) ? a : c);
  2257. }
  2258. //Enable this if your SCARA uses 180° of total area
  2259. //#define EXTRAPOLATE_FROM_EDGE
  2260. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2261. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2262. #define HALF_IN_X
  2263. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2264. #define HALF_IN_Y
  2265. #endif
  2266. #endif
  2267. /**
  2268. * Fill in the unprobed points (corners of circular print surface)
  2269. * using linear extrapolation, away from the center.
  2270. */
  2271. static void extrapolate_unprobed_bed_level() {
  2272. #ifdef HALF_IN_X
  2273. const uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2274. #else
  2275. const uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2276. ctrx2 = GRID_MAX_POINTS_X / 2, // right-of-center
  2277. xlen = ctrx1;
  2278. #endif
  2279. #ifdef HALF_IN_Y
  2280. const uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2281. #else
  2282. const uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2283. ctry2 = GRID_MAX_POINTS_Y / 2, // bottom-of-center
  2284. ylen = ctry1;
  2285. #endif
  2286. for (uint8_t xo = 0; xo <= xlen; xo++)
  2287. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2288. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2289. #ifndef HALF_IN_X
  2290. const uint8_t x1 = ctrx1 - xo;
  2291. #endif
  2292. #ifndef HALF_IN_Y
  2293. const uint8_t y1 = ctry1 - yo;
  2294. #ifndef HALF_IN_X
  2295. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2296. #endif
  2297. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2298. #endif
  2299. #ifndef HALF_IN_X
  2300. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2301. #endif
  2302. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2303. }
  2304. }
  2305. static void print_bilinear_leveling_grid() {
  2306. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2307. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2308. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2309. );
  2310. }
  2311. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2312. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2313. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2314. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2315. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2316. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2317. int bilinear_grid_spacing_virt[2] = { 0 };
  2318. float bilinear_grid_factor_virt[2] = { 0 };
  2319. static void bed_level_virt_print() {
  2320. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2321. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2322. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2323. );
  2324. }
  2325. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2326. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2327. uint8_t ep = 0, ip = 1;
  2328. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2329. if (x) {
  2330. ep = GRID_MAX_POINTS_X - 1;
  2331. ip = GRID_MAX_POINTS_X - 2;
  2332. }
  2333. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2334. return LINEAR_EXTRAPOLATION(
  2335. z_values[ep][y - 1],
  2336. z_values[ip][y - 1]
  2337. );
  2338. else
  2339. return LINEAR_EXTRAPOLATION(
  2340. bed_level_virt_coord(ep + 1, y),
  2341. bed_level_virt_coord(ip + 1, y)
  2342. );
  2343. }
  2344. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2345. if (y) {
  2346. ep = GRID_MAX_POINTS_Y - 1;
  2347. ip = GRID_MAX_POINTS_Y - 2;
  2348. }
  2349. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2350. return LINEAR_EXTRAPOLATION(
  2351. z_values[x - 1][ep],
  2352. z_values[x - 1][ip]
  2353. );
  2354. else
  2355. return LINEAR_EXTRAPOLATION(
  2356. bed_level_virt_coord(x, ep + 1),
  2357. bed_level_virt_coord(x, ip + 1)
  2358. );
  2359. }
  2360. return z_values[x - 1][y - 1];
  2361. }
  2362. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2363. return (
  2364. p[i-1] * -t * sq(1 - t)
  2365. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2366. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2367. - p[i+2] * sq(t) * (1 - t)
  2368. ) * 0.5;
  2369. }
  2370. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2371. float row[4], column[4];
  2372. for (uint8_t i = 0; i < 4; i++) {
  2373. for (uint8_t j = 0; j < 4; j++) {
  2374. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2375. }
  2376. row[i] = bed_level_virt_cmr(column, 1, ty);
  2377. }
  2378. return bed_level_virt_cmr(row, 1, tx);
  2379. }
  2380. void bed_level_virt_interpolate() {
  2381. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2382. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2383. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2384. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2385. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2386. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2387. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2388. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2389. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2390. continue;
  2391. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2392. bed_level_virt_2cmr(
  2393. x + 1,
  2394. y + 1,
  2395. (float)tx / (BILINEAR_SUBDIVISIONS),
  2396. (float)ty / (BILINEAR_SUBDIVISIONS)
  2397. );
  2398. }
  2399. }
  2400. #endif // ABL_BILINEAR_SUBDIVISION
  2401. // Refresh after other values have been updated
  2402. void refresh_bed_level() {
  2403. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2404. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2405. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2406. bed_level_virt_interpolate();
  2407. #endif
  2408. }
  2409. #endif // AUTO_BED_LEVELING_BILINEAR
  2410. /**
  2411. * Home an individual linear axis
  2412. */
  2413. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2414. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2415. if (DEBUGGING(LEVELING)) {
  2416. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2417. SERIAL_ECHOPAIR(", ", distance);
  2418. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2419. SERIAL_CHAR(')');
  2420. SERIAL_EOL;
  2421. }
  2422. #endif
  2423. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2424. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2425. if (deploy_bltouch) set_bltouch_deployed(true);
  2426. #endif
  2427. // Tell the planner we're at Z=0
  2428. current_position[axis] = 0;
  2429. #if IS_SCARA
  2430. SYNC_PLAN_POSITION_KINEMATIC();
  2431. current_position[axis] = distance;
  2432. inverse_kinematics(current_position);
  2433. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2434. #else
  2435. sync_plan_position();
  2436. current_position[axis] = distance;
  2437. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2438. #endif
  2439. stepper.synchronize();
  2440. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2441. if (deploy_bltouch) set_bltouch_deployed(false);
  2442. #endif
  2443. endstops.hit_on_purpose();
  2444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2445. if (DEBUGGING(LEVELING)) {
  2446. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2447. SERIAL_CHAR(')');
  2448. SERIAL_EOL;
  2449. }
  2450. #endif
  2451. }
  2452. /**
  2453. * TMC2130 specific sensorless homing using stallGuard2.
  2454. * stallGuard2 only works when in spreadCycle mode.
  2455. * spreadCycle and stealthChop are mutually exclusive.
  2456. */
  2457. #if ENABLED(SENSORLESS_HOMING)
  2458. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2459. #if ENABLED(STEALTHCHOP)
  2460. if (enable) {
  2461. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2462. st.stealthChop(0);
  2463. }
  2464. else {
  2465. st.coolstep_min_speed(0);
  2466. st.stealthChop(1);
  2467. }
  2468. #endif
  2469. st.diag1_stall(enable ? 1 : 0);
  2470. }
  2471. #endif
  2472. /**
  2473. * Home an individual "raw axis" to its endstop.
  2474. * This applies to XYZ on Cartesian and Core robots, and
  2475. * to the individual ABC steppers on DELTA and SCARA.
  2476. *
  2477. * At the end of the procedure the axis is marked as
  2478. * homed and the current position of that axis is updated.
  2479. * Kinematic robots should wait till all axes are homed
  2480. * before updating the current position.
  2481. */
  2482. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2483. static void homeaxis(const AxisEnum axis) {
  2484. #if IS_SCARA
  2485. // Only Z homing (with probe) is permitted
  2486. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2487. #else
  2488. #define CAN_HOME(A) \
  2489. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2490. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2491. #endif
  2492. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2493. if (DEBUGGING(LEVELING)) {
  2494. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2495. SERIAL_CHAR(')');
  2496. SERIAL_EOL;
  2497. }
  2498. #endif
  2499. const int axis_home_dir =
  2500. #if ENABLED(DUAL_X_CARRIAGE)
  2501. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2502. #endif
  2503. home_dir(axis);
  2504. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2505. #if HOMING_Z_WITH_PROBE
  2506. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2507. #endif
  2508. // Set a flag for Z motor locking
  2509. #if ENABLED(Z_DUAL_ENDSTOPS)
  2510. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2511. #endif
  2512. // Disable stealthChop if used. Enable diag1 pin on driver.
  2513. #if ENABLED(SENSORLESS_HOMING)
  2514. #if ENABLED(X_IS_TMC2130)
  2515. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2516. #endif
  2517. #if ENABLED(Y_IS_TMC2130)
  2518. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2519. #endif
  2520. #endif
  2521. // Fast move towards endstop until triggered
  2522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2523. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2524. #endif
  2525. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2526. // When homing Z with probe respect probe clearance
  2527. const float bump = axis_home_dir * (
  2528. #if HOMING_Z_WITH_PROBE
  2529. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2530. #endif
  2531. home_bump_mm(axis)
  2532. );
  2533. // If a second homing move is configured...
  2534. if (bump) {
  2535. // Move away from the endstop by the axis HOME_BUMP_MM
  2536. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2537. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2538. #endif
  2539. do_homing_move(axis, -bump);
  2540. // Slow move towards endstop until triggered
  2541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2542. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2543. #endif
  2544. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2545. }
  2546. #if ENABLED(Z_DUAL_ENDSTOPS)
  2547. if (axis == Z_AXIS) {
  2548. float adj = fabs(z_endstop_adj);
  2549. bool lockZ1;
  2550. if (axis_home_dir > 0) {
  2551. adj = -adj;
  2552. lockZ1 = (z_endstop_adj > 0);
  2553. }
  2554. else
  2555. lockZ1 = (z_endstop_adj < 0);
  2556. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2557. // Move to the adjusted endstop height
  2558. do_homing_move(axis, adj);
  2559. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2560. stepper.set_homing_flag(false);
  2561. } // Z_AXIS
  2562. #endif
  2563. #if IS_SCARA
  2564. set_axis_is_at_home(axis);
  2565. SYNC_PLAN_POSITION_KINEMATIC();
  2566. #elif ENABLED(DELTA)
  2567. // Delta has already moved all three towers up in G28
  2568. // so here it re-homes each tower in turn.
  2569. // Delta homing treats the axes as normal linear axes.
  2570. // retrace by the amount specified in endstop_adj
  2571. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2572. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2573. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2574. #endif
  2575. do_homing_move(axis, endstop_adj[axis]);
  2576. }
  2577. #else
  2578. // For cartesian/core machines,
  2579. // set the axis to its home position
  2580. set_axis_is_at_home(axis);
  2581. sync_plan_position();
  2582. destination[axis] = current_position[axis];
  2583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2584. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2585. #endif
  2586. #endif
  2587. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2588. #if ENABLED(SENSORLESS_HOMING)
  2589. #if ENABLED(X_IS_TMC2130)
  2590. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2591. #endif
  2592. #if ENABLED(Y_IS_TMC2130)
  2593. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2594. #endif
  2595. #endif
  2596. // Put away the Z probe
  2597. #if HOMING_Z_WITH_PROBE
  2598. if (axis == Z_AXIS && STOW_PROBE()) return;
  2599. #endif
  2600. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2601. if (DEBUGGING(LEVELING)) {
  2602. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2603. SERIAL_CHAR(')');
  2604. SERIAL_EOL;
  2605. }
  2606. #endif
  2607. } // homeaxis()
  2608. #if ENABLED(FWRETRACT)
  2609. void retract(const bool retracting, const bool swapping = false) {
  2610. static float hop_height;
  2611. if (retracting == retracted[active_extruder]) return;
  2612. const float old_feedrate_mm_s = feedrate_mm_s;
  2613. set_destination_to_current();
  2614. if (retracting) {
  2615. feedrate_mm_s = retract_feedrate_mm_s;
  2616. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2617. sync_plan_position_e();
  2618. prepare_move_to_destination();
  2619. if (retract_zlift > 0.01) {
  2620. hop_height = current_position[Z_AXIS];
  2621. // Pretend current position is lower
  2622. current_position[Z_AXIS] -= retract_zlift;
  2623. SYNC_PLAN_POSITION_KINEMATIC();
  2624. // Raise up to the old current_position
  2625. prepare_move_to_destination();
  2626. }
  2627. }
  2628. else {
  2629. // If the height hasn't been altered, undo the Z hop
  2630. if (retract_zlift > 0.01 && hop_height == current_position[Z_AXIS]) {
  2631. // Pretend current position is higher. Z will lower on the next move
  2632. current_position[Z_AXIS] += retract_zlift;
  2633. SYNC_PLAN_POSITION_KINEMATIC();
  2634. }
  2635. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2636. const float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2637. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2638. sync_plan_position_e();
  2639. // Lower Z and recover E
  2640. prepare_move_to_destination();
  2641. }
  2642. feedrate_mm_s = old_feedrate_mm_s;
  2643. retracted[active_extruder] = retracting;
  2644. } // retract()
  2645. #endif // FWRETRACT
  2646. #if ENABLED(MIXING_EXTRUDER)
  2647. void normalize_mix() {
  2648. float mix_total = 0.0;
  2649. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2650. // Scale all values if they don't add up to ~1.0
  2651. if (!NEAR(mix_total, 1.0)) {
  2652. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2653. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2654. }
  2655. }
  2656. #if ENABLED(DIRECT_MIXING_IN_G1)
  2657. // Get mixing parameters from the GCode
  2658. // The total "must" be 1.0 (but it will be normalized)
  2659. // If no mix factors are given, the old mix is preserved
  2660. void gcode_get_mix() {
  2661. const char* mixing_codes = "ABCDHI";
  2662. byte mix_bits = 0;
  2663. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2664. if (code_seen(mixing_codes[i])) {
  2665. SBI(mix_bits, i);
  2666. float v = code_value_float();
  2667. NOLESS(v, 0.0);
  2668. mixing_factor[i] = RECIPROCAL(v);
  2669. }
  2670. }
  2671. // If any mixing factors were included, clear the rest
  2672. // If none were included, preserve the last mix
  2673. if (mix_bits) {
  2674. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2675. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2676. normalize_mix();
  2677. }
  2678. }
  2679. #endif
  2680. #endif
  2681. /**
  2682. * ***************************************************************************
  2683. * ***************************** G-CODE HANDLING *****************************
  2684. * ***************************************************************************
  2685. */
  2686. /**
  2687. * Set XYZE destination and feedrate from the current GCode command
  2688. *
  2689. * - Set destination from included axis codes
  2690. * - Set to current for missing axis codes
  2691. * - Set the feedrate, if included
  2692. */
  2693. void gcode_get_destination() {
  2694. LOOP_XYZE(i) {
  2695. if (code_seen(axis_codes[i]))
  2696. destination[i] = code_value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2697. else
  2698. destination[i] = current_position[i];
  2699. }
  2700. if (code_seen('F') && code_value_linear_units() > 0.0)
  2701. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2702. #if ENABLED(PRINTCOUNTER)
  2703. if (!DEBUGGING(DRYRUN))
  2704. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2705. #endif
  2706. // Get ABCDHI mixing factors
  2707. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2708. gcode_get_mix();
  2709. #endif
  2710. }
  2711. void unknown_command_error() {
  2712. SERIAL_ECHO_START;
  2713. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2714. SERIAL_CHAR('"');
  2715. SERIAL_EOL;
  2716. }
  2717. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2718. /**
  2719. * Output a "busy" message at regular intervals
  2720. * while the machine is not accepting commands.
  2721. */
  2722. void host_keepalive() {
  2723. const millis_t ms = millis();
  2724. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2725. if (PENDING(ms, next_busy_signal_ms)) return;
  2726. switch (busy_state) {
  2727. case IN_HANDLER:
  2728. case IN_PROCESS:
  2729. SERIAL_ECHO_START;
  2730. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2731. break;
  2732. case PAUSED_FOR_USER:
  2733. SERIAL_ECHO_START;
  2734. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2735. break;
  2736. case PAUSED_FOR_INPUT:
  2737. SERIAL_ECHO_START;
  2738. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2739. break;
  2740. default:
  2741. break;
  2742. }
  2743. }
  2744. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2745. }
  2746. #endif //HOST_KEEPALIVE_FEATURE
  2747. bool position_is_reachable(const float target[XYZ]
  2748. #if HAS_BED_PROBE
  2749. , bool by_probe=false
  2750. #endif
  2751. ) {
  2752. float dx = RAW_X_POSITION(target[X_AXIS]),
  2753. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2754. #if HAS_BED_PROBE
  2755. if (by_probe) {
  2756. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2757. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2758. }
  2759. #endif
  2760. #if IS_SCARA
  2761. #if MIDDLE_DEAD_ZONE_R > 0
  2762. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2763. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2764. #else
  2765. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2766. #endif
  2767. #elif ENABLED(DELTA)
  2768. return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
  2769. #else
  2770. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2771. return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
  2772. && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
  2773. && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
  2774. #endif
  2775. }
  2776. /**************************************************
  2777. ***************** GCode Handlers *****************
  2778. **************************************************/
  2779. /**
  2780. * G0, G1: Coordinated movement of X Y Z E axes
  2781. */
  2782. inline void gcode_G0_G1(
  2783. #if IS_SCARA
  2784. bool fast_move=false
  2785. #endif
  2786. ) {
  2787. if (IsRunning()) {
  2788. gcode_get_destination(); // For X Y Z E F
  2789. #if ENABLED(FWRETRACT)
  2790. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2791. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2792. // Is this move an attempt to retract or recover?
  2793. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2794. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2795. sync_plan_position_e(); // AND from the planner
  2796. retract(!retracted[active_extruder]);
  2797. return;
  2798. }
  2799. }
  2800. #endif //FWRETRACT
  2801. #if IS_SCARA
  2802. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2803. #else
  2804. prepare_move_to_destination();
  2805. #endif
  2806. }
  2807. }
  2808. /**
  2809. * G2: Clockwise Arc
  2810. * G3: Counterclockwise Arc
  2811. *
  2812. * This command has two forms: IJ-form and R-form.
  2813. *
  2814. * - I specifies an X offset. J specifies a Y offset.
  2815. * At least one of the IJ parameters is required.
  2816. * X and Y can be omitted to do a complete circle.
  2817. * The given XY is not error-checked. The arc ends
  2818. * based on the angle of the destination.
  2819. * Mixing I or J with R will throw an error.
  2820. *
  2821. * - R specifies the radius. X or Y is required.
  2822. * Omitting both X and Y will throw an error.
  2823. * X or Y must differ from the current XY.
  2824. * Mixing R with I or J will throw an error.
  2825. *
  2826. * Examples:
  2827. *
  2828. * G2 I10 ; CW circle centered at X+10
  2829. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2830. */
  2831. #if ENABLED(ARC_SUPPORT)
  2832. inline void gcode_G2_G3(bool clockwise) {
  2833. if (IsRunning()) {
  2834. #if ENABLED(SF_ARC_FIX)
  2835. const bool relative_mode_backup = relative_mode;
  2836. relative_mode = true;
  2837. #endif
  2838. gcode_get_destination();
  2839. #if ENABLED(SF_ARC_FIX)
  2840. relative_mode = relative_mode_backup;
  2841. #endif
  2842. float arc_offset[2] = { 0.0, 0.0 };
  2843. if (code_seen('R')) {
  2844. const float r = code_value_linear_units(),
  2845. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2846. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2847. if (r && (x2 != x1 || y2 != y1)) {
  2848. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2849. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2850. d = HYPOT(dx, dy), // Linear distance between the points
  2851. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2852. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2853. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2854. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2855. arc_offset[X_AXIS] = cx - x1;
  2856. arc_offset[Y_AXIS] = cy - y1;
  2857. }
  2858. }
  2859. else {
  2860. if (code_seen('I')) arc_offset[X_AXIS] = code_value_linear_units();
  2861. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_linear_units();
  2862. }
  2863. if (arc_offset[0] || arc_offset[1]) {
  2864. // Send an arc to the planner
  2865. plan_arc(destination, arc_offset, clockwise);
  2866. refresh_cmd_timeout();
  2867. }
  2868. else {
  2869. // Bad arguments
  2870. SERIAL_ERROR_START;
  2871. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2872. }
  2873. }
  2874. }
  2875. #endif
  2876. /**
  2877. * G4: Dwell S<seconds> or P<milliseconds>
  2878. */
  2879. inline void gcode_G4() {
  2880. millis_t dwell_ms = 0;
  2881. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2882. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2883. stepper.synchronize();
  2884. refresh_cmd_timeout();
  2885. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2886. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2887. while (PENDING(millis(), dwell_ms)) idle();
  2888. }
  2889. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2890. /**
  2891. * Parameters interpreted according to:
  2892. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2893. * However I, J omission is not supported at this point; all
  2894. * parameters can be omitted and default to zero.
  2895. */
  2896. /**
  2897. * G5: Cubic B-spline
  2898. */
  2899. inline void gcode_G5() {
  2900. if (IsRunning()) {
  2901. gcode_get_destination();
  2902. const float offset[] = {
  2903. code_seen('I') ? code_value_linear_units() : 0.0,
  2904. code_seen('J') ? code_value_linear_units() : 0.0,
  2905. code_seen('P') ? code_value_linear_units() : 0.0,
  2906. code_seen('Q') ? code_value_linear_units() : 0.0
  2907. };
  2908. plan_cubic_move(offset);
  2909. }
  2910. }
  2911. #endif // BEZIER_CURVE_SUPPORT
  2912. #if ENABLED(FWRETRACT)
  2913. /**
  2914. * G10 - Retract filament according to settings of M207
  2915. * G11 - Recover filament according to settings of M208
  2916. */
  2917. inline void gcode_G10_G11(bool doRetract=false) {
  2918. #if EXTRUDERS > 1
  2919. if (doRetract) {
  2920. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2921. }
  2922. #endif
  2923. retract(doRetract
  2924. #if EXTRUDERS > 1
  2925. , retracted_swap[active_extruder]
  2926. #endif
  2927. );
  2928. }
  2929. #endif //FWRETRACT
  2930. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2931. /**
  2932. * G12: Clean the nozzle
  2933. */
  2934. inline void gcode_G12() {
  2935. // Don't allow nozzle cleaning without homing first
  2936. if (axis_unhomed_error(true, true, true)) return;
  2937. const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
  2938. strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
  2939. objects = code_seen('T') ? code_value_ushort() : NOZZLE_CLEAN_TRIANGLES;
  2940. const float radius = code_seen('R') ? code_value_float() : NOZZLE_CLEAN_CIRCLE_RADIUS;
  2941. Nozzle::clean(pattern, strokes, radius, objects);
  2942. }
  2943. #endif
  2944. #if ENABLED(INCH_MODE_SUPPORT)
  2945. /**
  2946. * G20: Set input mode to inches
  2947. */
  2948. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2949. /**
  2950. * G21: Set input mode to millimeters
  2951. */
  2952. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2953. #endif
  2954. #if ENABLED(NOZZLE_PARK_FEATURE)
  2955. /**
  2956. * G27: Park the nozzle
  2957. */
  2958. inline void gcode_G27() {
  2959. // Don't allow nozzle parking without homing first
  2960. if (axis_unhomed_error(true, true, true)) return;
  2961. Nozzle::park(code_seen('P') ? code_value_ushort() : 0);
  2962. }
  2963. #endif // NOZZLE_PARK_FEATURE
  2964. #if ENABLED(QUICK_HOME)
  2965. static void quick_home_xy() {
  2966. // Pretend the current position is 0,0
  2967. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2968. sync_plan_position();
  2969. const int x_axis_home_dir =
  2970. #if ENABLED(DUAL_X_CARRIAGE)
  2971. x_home_dir(active_extruder)
  2972. #else
  2973. home_dir(X_AXIS)
  2974. #endif
  2975. ;
  2976. const float mlx = max_length(X_AXIS),
  2977. mly = max_length(Y_AXIS),
  2978. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2979. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2980. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2981. endstops.hit_on_purpose(); // clear endstop hit flags
  2982. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2983. }
  2984. #endif // QUICK_HOME
  2985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2986. void log_machine_info() {
  2987. SERIAL_ECHOPGM("Machine Type: ");
  2988. #if ENABLED(DELTA)
  2989. SERIAL_ECHOLNPGM("Delta");
  2990. #elif IS_SCARA
  2991. SERIAL_ECHOLNPGM("SCARA");
  2992. #elif IS_CORE
  2993. SERIAL_ECHOLNPGM("Core");
  2994. #else
  2995. SERIAL_ECHOLNPGM("Cartesian");
  2996. #endif
  2997. SERIAL_ECHOPGM("Probe: ");
  2998. #if ENABLED(PROBE_MANUALLY)
  2999. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3000. #elif ENABLED(FIX_MOUNTED_PROBE)
  3001. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3002. #elif ENABLED(BLTOUCH)
  3003. SERIAL_ECHOLNPGM("BLTOUCH");
  3004. #elif HAS_Z_SERVO_ENDSTOP
  3005. SERIAL_ECHOLNPGM("SERVO PROBE");
  3006. #elif ENABLED(Z_PROBE_SLED)
  3007. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3008. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3009. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3010. #else
  3011. SERIAL_ECHOLNPGM("NONE");
  3012. #endif
  3013. #if HAS_BED_PROBE
  3014. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3015. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3016. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3017. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3018. SERIAL_ECHOPGM(" (Right");
  3019. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3020. SERIAL_ECHOPGM(" (Left");
  3021. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3022. SERIAL_ECHOPGM(" (Middle");
  3023. #else
  3024. SERIAL_ECHOPGM(" (Aligned With");
  3025. #endif
  3026. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  3027. SERIAL_ECHOPGM("-Back");
  3028. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  3029. SERIAL_ECHOPGM("-Front");
  3030. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  3031. SERIAL_ECHOPGM("-Center");
  3032. #endif
  3033. if (zprobe_zoffset < 0)
  3034. SERIAL_ECHOPGM(" & Below");
  3035. else if (zprobe_zoffset > 0)
  3036. SERIAL_ECHOPGM(" & Above");
  3037. else
  3038. SERIAL_ECHOPGM(" & Same Z as");
  3039. SERIAL_ECHOLNPGM(" Nozzle)");
  3040. #endif
  3041. #if HAS_ABL
  3042. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3043. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3044. SERIAL_ECHOPGM("LINEAR");
  3045. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3046. SERIAL_ECHOPGM("BILINEAR");
  3047. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3048. SERIAL_ECHOPGM("3POINT");
  3049. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3050. SERIAL_ECHOPGM("UBL");
  3051. #endif
  3052. if (planner.abl_enabled) {
  3053. SERIAL_ECHOLNPGM(" (enabled)");
  3054. #if ABL_PLANAR
  3055. float diff[XYZ] = {
  3056. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3057. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3058. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3059. };
  3060. SERIAL_ECHOPGM("ABL Adjustment X");
  3061. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3062. SERIAL_ECHO(diff[X_AXIS]);
  3063. SERIAL_ECHOPGM(" Y");
  3064. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3065. SERIAL_ECHO(diff[Y_AXIS]);
  3066. SERIAL_ECHOPGM(" Z");
  3067. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3068. SERIAL_ECHO(diff[Z_AXIS]);
  3069. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3070. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3071. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3072. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3073. #endif
  3074. }
  3075. else
  3076. SERIAL_ECHOLNPGM(" (disabled)");
  3077. SERIAL_EOL;
  3078. #elif ENABLED(MESH_BED_LEVELING)
  3079. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3080. if (mbl.active()) {
  3081. float lz = current_position[Z_AXIS];
  3082. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
  3083. SERIAL_ECHOLNPGM(" (enabled)");
  3084. SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
  3085. }
  3086. else
  3087. SERIAL_ECHOPGM(" (disabled)");
  3088. SERIAL_EOL;
  3089. #endif // MESH_BED_LEVELING
  3090. }
  3091. #endif // DEBUG_LEVELING_FEATURE
  3092. #if ENABLED(DELTA)
  3093. /**
  3094. * A delta can only safely home all axes at the same time
  3095. * This is like quick_home_xy() but for 3 towers.
  3096. */
  3097. inline void home_delta() {
  3098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3099. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3100. #endif
  3101. // Init the current position of all carriages to 0,0,0
  3102. ZERO(current_position);
  3103. sync_plan_position();
  3104. // Move all carriages together linearly until an endstop is hit.
  3105. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  3106. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  3107. line_to_current_position();
  3108. stepper.synchronize();
  3109. endstops.hit_on_purpose(); // clear endstop hit flags
  3110. // At least one carriage has reached the top.
  3111. // Now re-home each carriage separately.
  3112. HOMEAXIS(A);
  3113. HOMEAXIS(B);
  3114. HOMEAXIS(C);
  3115. // Set all carriages to their home positions
  3116. // Do this here all at once for Delta, because
  3117. // XYZ isn't ABC. Applying this per-tower would
  3118. // give the impression that they are the same.
  3119. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3120. SYNC_PLAN_POSITION_KINEMATIC();
  3121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3122. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3123. #endif
  3124. }
  3125. #endif // DELTA
  3126. #if ENABLED(Z_SAFE_HOMING)
  3127. inline void home_z_safely() {
  3128. // Disallow Z homing if X or Y are unknown
  3129. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3130. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3131. SERIAL_ECHO_START;
  3132. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3133. return;
  3134. }
  3135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3136. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3137. #endif
  3138. SYNC_PLAN_POSITION_KINEMATIC();
  3139. /**
  3140. * Move the Z probe (or just the nozzle) to the safe homing point
  3141. */
  3142. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  3143. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  3144. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3145. if (position_is_reachable(
  3146. destination
  3147. #if HOMING_Z_WITH_PROBE
  3148. , true
  3149. #endif
  3150. )
  3151. ) {
  3152. #if HOMING_Z_WITH_PROBE
  3153. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3154. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3155. #endif
  3156. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3157. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3158. #endif
  3159. // This causes the carriage on Dual X to unpark
  3160. #if ENABLED(DUAL_X_CARRIAGE)
  3161. active_extruder_parked = false;
  3162. #endif
  3163. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3164. HOMEAXIS(Z);
  3165. }
  3166. else {
  3167. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3168. SERIAL_ECHO_START;
  3169. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3170. }
  3171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3172. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3173. #endif
  3174. }
  3175. #endif // Z_SAFE_HOMING
  3176. #if ENABLED(PROBE_MANUALLY)
  3177. bool g29_in_progress = false;
  3178. #else
  3179. constexpr bool g29_in_progress = false;
  3180. #endif
  3181. /**
  3182. * G28: Home all axes according to settings
  3183. *
  3184. * Parameters
  3185. *
  3186. * None Home to all axes with no parameters.
  3187. * With QUICK_HOME enabled XY will home together, then Z.
  3188. *
  3189. * Cartesian parameters
  3190. *
  3191. * X Home to the X endstop
  3192. * Y Home to the Y endstop
  3193. * Z Home to the Z endstop
  3194. *
  3195. */
  3196. inline void gcode_G28() {
  3197. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3198. if (DEBUGGING(LEVELING)) {
  3199. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3200. log_machine_info();
  3201. }
  3202. #endif
  3203. // Wait for planner moves to finish!
  3204. stepper.synchronize();
  3205. // Cancel the active G29 session
  3206. #if ENABLED(PROBE_MANUALLY)
  3207. g29_in_progress = false;
  3208. #endif
  3209. // Disable the leveling matrix before homing
  3210. #if PLANNER_LEVELING
  3211. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3212. const bool bed_leveling_state_at_entry = ubl.state.active;
  3213. #endif
  3214. set_bed_leveling_enabled(false);
  3215. #endif
  3216. // Always home with tool 0 active
  3217. #if HOTENDS > 1
  3218. const uint8_t old_tool_index = active_extruder;
  3219. tool_change(0, 0, true);
  3220. #endif
  3221. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3222. extruder_duplication_enabled = false;
  3223. #endif
  3224. setup_for_endstop_or_probe_move();
  3225. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3226. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3227. #endif
  3228. endstops.enable(true); // Enable endstops for next homing move
  3229. #if ENABLED(DELTA)
  3230. home_delta();
  3231. #else // NOT DELTA
  3232. const bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z'),
  3233. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3234. set_destination_to_current();
  3235. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3236. if (home_all_axis || homeZ) {
  3237. HOMEAXIS(Z);
  3238. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3239. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3240. #endif
  3241. }
  3242. #else
  3243. if (home_all_axis || homeX || homeY) {
  3244. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3245. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  3246. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3248. if (DEBUGGING(LEVELING))
  3249. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3250. #endif
  3251. do_blocking_move_to_z(destination[Z_AXIS]);
  3252. }
  3253. }
  3254. #endif
  3255. #if ENABLED(QUICK_HOME)
  3256. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  3257. #endif
  3258. #if ENABLED(HOME_Y_BEFORE_X)
  3259. // Home Y
  3260. if (home_all_axis || homeY) {
  3261. HOMEAXIS(Y);
  3262. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3263. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3264. #endif
  3265. }
  3266. #endif
  3267. // Home X
  3268. if (home_all_axis || homeX) {
  3269. #if ENABLED(DUAL_X_CARRIAGE)
  3270. // Always home the 2nd (right) extruder first
  3271. active_extruder = 1;
  3272. HOMEAXIS(X);
  3273. // Remember this extruder's position for later tool change
  3274. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  3275. // Home the 1st (left) extruder
  3276. active_extruder = 0;
  3277. HOMEAXIS(X);
  3278. // Consider the active extruder to be parked
  3279. COPY(raised_parked_position, current_position);
  3280. delayed_move_time = 0;
  3281. active_extruder_parked = true;
  3282. #else
  3283. HOMEAXIS(X);
  3284. #endif
  3285. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3286. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3287. #endif
  3288. }
  3289. #if DISABLED(HOME_Y_BEFORE_X)
  3290. // Home Y
  3291. if (home_all_axis || homeY) {
  3292. HOMEAXIS(Y);
  3293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3294. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3295. #endif
  3296. }
  3297. #endif
  3298. // Home Z last if homing towards the bed
  3299. #if Z_HOME_DIR < 0
  3300. if (home_all_axis || homeZ) {
  3301. #if ENABLED(Z_SAFE_HOMING)
  3302. home_z_safely();
  3303. #else
  3304. HOMEAXIS(Z);
  3305. #endif
  3306. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3307. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  3308. #endif
  3309. } // home_all_axis || homeZ
  3310. #endif // Z_HOME_DIR < 0
  3311. SYNC_PLAN_POSITION_KINEMATIC();
  3312. #endif // !DELTA (gcode_G28)
  3313. endstops.not_homing();
  3314. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3315. // move to a height where we can use the full xy-area
  3316. do_blocking_move_to_z(delta_clip_start_height);
  3317. #endif
  3318. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3319. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  3320. #endif
  3321. // Enable mesh leveling again
  3322. #if ENABLED(MESH_BED_LEVELING)
  3323. if (mbl.reactivate()) {
  3324. set_bed_leveling_enabled(true);
  3325. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  3326. #if ENABLED(MESH_G28_REST_ORIGIN)
  3327. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
  3328. set_destination_to_current();
  3329. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  3330. stepper.synchronize();
  3331. #endif
  3332. }
  3333. }
  3334. #endif
  3335. clean_up_after_endstop_or_probe_move();
  3336. // Restore the active tool after homing
  3337. #if HOTENDS > 1
  3338. tool_change(old_tool_index, 0, true);
  3339. #endif
  3340. report_current_position();
  3341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3342. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3343. #endif
  3344. }
  3345. #if HAS_PROBING_PROCEDURE
  3346. void out_of_range_error(const char* p_edge) {
  3347. SERIAL_PROTOCOLPGM("?Probe ");
  3348. serialprintPGM(p_edge);
  3349. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3350. }
  3351. #endif
  3352. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3353. inline void _manual_goto_xy(const float &x, const float &y) {
  3354. const float old_feedrate_mm_s = feedrate_mm_s;
  3355. #if MANUAL_PROBE_HEIGHT > 0
  3356. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3357. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3358. line_to_current_position();
  3359. #endif
  3360. feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  3361. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  3362. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  3363. line_to_current_position();
  3364. #if MANUAL_PROBE_HEIGHT > 0
  3365. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  3366. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + 0.2; // just slightly over the bed
  3367. line_to_current_position();
  3368. #endif
  3369. feedrate_mm_s = old_feedrate_mm_s;
  3370. stepper.synchronize();
  3371. }
  3372. #endif
  3373. #if ENABLED(MESH_BED_LEVELING)
  3374. // Save 130 bytes with non-duplication of PSTR
  3375. void say_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3376. void mbl_mesh_report() {
  3377. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3378. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3379. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3380. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3381. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3382. );
  3383. }
  3384. /**
  3385. * G29: Mesh-based Z probe, probes a grid and produces a
  3386. * mesh to compensate for variable bed height
  3387. *
  3388. * Parameters With MESH_BED_LEVELING:
  3389. *
  3390. * S0 Produce a mesh report
  3391. * S1 Start probing mesh points
  3392. * S2 Probe the next mesh point
  3393. * S3 Xn Yn Zn.nn Manually modify a single point
  3394. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3395. * S5 Reset and disable mesh
  3396. *
  3397. * The S0 report the points as below
  3398. *
  3399. * +----> X-axis 1-n
  3400. * |
  3401. * |
  3402. * v Y-axis 1-n
  3403. *
  3404. */
  3405. inline void gcode_G29() {
  3406. static int mbl_probe_index = -1;
  3407. #if HAS_SOFTWARE_ENDSTOPS
  3408. static bool enable_soft_endstops;
  3409. #endif
  3410. const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3411. if (!WITHIN(state, 0, 5)) {
  3412. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3413. return;
  3414. }
  3415. int8_t px, py;
  3416. switch (state) {
  3417. case MeshReport:
  3418. if (mbl.has_mesh()) {
  3419. SERIAL_PROTOCOLLNPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3420. mbl_mesh_report();
  3421. }
  3422. else
  3423. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3424. break;
  3425. case MeshStart:
  3426. mbl.reset();
  3427. mbl_probe_index = 0;
  3428. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3429. break;
  3430. case MeshNext:
  3431. if (mbl_probe_index < 0) {
  3432. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3433. return;
  3434. }
  3435. // For each G29 S2...
  3436. if (mbl_probe_index == 0) {
  3437. #if HAS_SOFTWARE_ENDSTOPS
  3438. // For the initial G29 S2 save software endstop state
  3439. enable_soft_endstops = soft_endstops_enabled;
  3440. #endif
  3441. }
  3442. else {
  3443. // For G29 S2 after adjusting Z.
  3444. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3445. #if HAS_SOFTWARE_ENDSTOPS
  3446. soft_endstops_enabled = enable_soft_endstops;
  3447. #endif
  3448. }
  3449. // If there's another point to sample, move there with optional lift.
  3450. if (mbl_probe_index < (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)) {
  3451. mbl.zigzag(mbl_probe_index, px, py);
  3452. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3453. #if HAS_SOFTWARE_ENDSTOPS
  3454. // Disable software endstops to allow manual adjustment
  3455. // If G29 is not completed, they will not be re-enabled
  3456. soft_endstops_enabled = false;
  3457. #endif
  3458. mbl_probe_index++;
  3459. }
  3460. else {
  3461. // One last "return to the bed" (as originally coded) at completion
  3462. current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
  3463. line_to_current_position();
  3464. stepper.synchronize();
  3465. // After recording the last point, activate the mbl and home
  3466. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3467. mbl_probe_index = -1;
  3468. mbl.set_has_mesh(true);
  3469. mbl.set_reactivate(true);
  3470. enqueue_and_echo_commands_P(PSTR("G28"));
  3471. BUZZ(100, 659);
  3472. BUZZ(100, 698);
  3473. }
  3474. break;
  3475. case MeshSet:
  3476. if (code_seen('X')) {
  3477. px = code_value_int() - 1;
  3478. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3479. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3480. return;
  3481. }
  3482. }
  3483. else {
  3484. SERIAL_CHAR('X'); say_not_entered();
  3485. return;
  3486. }
  3487. if (code_seen('Y')) {
  3488. py = code_value_int() - 1;
  3489. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3490. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3491. return;
  3492. }
  3493. }
  3494. else {
  3495. SERIAL_CHAR('Y'); say_not_entered();
  3496. return;
  3497. }
  3498. if (code_seen('Z')) {
  3499. mbl.z_values[px][py] = code_value_linear_units();
  3500. }
  3501. else {
  3502. SERIAL_CHAR('Z'); say_not_entered();
  3503. return;
  3504. }
  3505. break;
  3506. case MeshSetZOffset:
  3507. if (code_seen('Z')) {
  3508. mbl.z_offset = code_value_linear_units();
  3509. }
  3510. else {
  3511. SERIAL_CHAR('Z'); say_not_entered();
  3512. return;
  3513. }
  3514. break;
  3515. case MeshReset:
  3516. reset_bed_level();
  3517. break;
  3518. } // switch(state)
  3519. report_current_position();
  3520. }
  3521. #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  3522. #if ABL_GRID
  3523. #if ENABLED(PROBE_Y_FIRST)
  3524. #define PR_OUTER_VAR xCount
  3525. #define PR_OUTER_END abl_grid_points_x
  3526. #define PR_INNER_VAR yCount
  3527. #define PR_INNER_END abl_grid_points_y
  3528. #else
  3529. #define PR_OUTER_VAR yCount
  3530. #define PR_OUTER_END abl_grid_points_y
  3531. #define PR_INNER_VAR xCount
  3532. #define PR_INNER_END abl_grid_points_x
  3533. #endif
  3534. #endif
  3535. /**
  3536. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3537. * Will fail if the printer has not been homed with G28.
  3538. *
  3539. * Enhanced G29 Auto Bed Leveling Probe Routine
  3540. *
  3541. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3542. * or alter the bed level data. Useful to check the topology
  3543. * after a first run of G29.
  3544. *
  3545. * J Jettison current bed leveling data
  3546. *
  3547. * V Set the verbose level (0-4). Example: "G29 V3"
  3548. *
  3549. * Parameters With LINEAR leveling only:
  3550. *
  3551. * P Set the size of the grid that will be probed (P x P points).
  3552. * Example: "G29 P4"
  3553. *
  3554. * X Set the X size of the grid that will be probed (X x Y points).
  3555. * Example: "G29 X7 Y5"
  3556. *
  3557. * Y Set the Y size of the grid that will be probed (X x Y points).
  3558. *
  3559. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3560. * This is useful for manual bed leveling and finding flaws in the bed (to
  3561. * assist with part placement).
  3562. * Not supported by non-linear delta printer bed leveling.
  3563. *
  3564. * Parameters With LINEAR and BILINEAR leveling only:
  3565. *
  3566. * S Set the XY travel speed between probe points (in units/min)
  3567. *
  3568. * F Set the Front limit of the probing grid
  3569. * B Set the Back limit of the probing grid
  3570. * L Set the Left limit of the probing grid
  3571. * R Set the Right limit of the probing grid
  3572. *
  3573. * Parameters with DEBUG_LEVELING_FEATURE only:
  3574. *
  3575. * C Make a totally fake grid with no actual probing.
  3576. * For use in testing when no probing is possible.
  3577. *
  3578. * Parameters with BILINEAR leveling only:
  3579. *
  3580. * Z Supply an additional Z probe offset
  3581. *
  3582. * Extra parameters with PROBE_MANUALLY:
  3583. *
  3584. * To do manual probing simply repeat G29 until the procedure is complete.
  3585. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3586. *
  3587. * Q Query leveling and G29 state
  3588. *
  3589. * A Abort current leveling procedure
  3590. *
  3591. * W Write a mesh point. (Ignored during leveling.)
  3592. * X Required X for mesh point
  3593. * Y Required Y for mesh point
  3594. * Z Required Z for mesh point
  3595. *
  3596. * Without PROBE_MANUALLY:
  3597. *
  3598. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3599. * Include "E" to engage/disengage the Z probe for each sample.
  3600. * There's no extra effect if you have a fixed Z probe.
  3601. *
  3602. */
  3603. inline void gcode_G29() {
  3604. // G29 Q is also available if debugging
  3605. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3606. const bool query = code_seen('Q');
  3607. const uint8_t old_debug_flags = marlin_debug_flags;
  3608. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3609. if (DEBUGGING(LEVELING)) {
  3610. DEBUG_POS(">>> gcode_G29", current_position);
  3611. log_machine_info();
  3612. }
  3613. marlin_debug_flags = old_debug_flags;
  3614. #if DISABLED(PROBE_MANUALLY)
  3615. if (query) return;
  3616. #endif
  3617. #endif
  3618. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3619. const bool faux = code_seen('C') && code_value_bool();
  3620. #else
  3621. bool constexpr faux = false;
  3622. #endif
  3623. // Don't allow auto-leveling without homing first
  3624. if (axis_unhomed_error(true, true, true)) return;
  3625. // Define local vars 'static' for manual probing, 'auto' otherwise
  3626. #if ENABLED(PROBE_MANUALLY)
  3627. #define ABL_VAR static
  3628. #else
  3629. #define ABL_VAR
  3630. #endif
  3631. ABL_VAR int verbose_level;
  3632. ABL_VAR float xProbe, yProbe, measured_z;
  3633. ABL_VAR bool dryrun, abl_should_enable;
  3634. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3635. ABL_VAR int abl_probe_index;
  3636. #endif
  3637. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3638. ABL_VAR bool enable_soft_endstops = true;
  3639. #endif
  3640. #if ABL_GRID
  3641. #if ENABLED(PROBE_MANUALLY)
  3642. ABL_VAR uint8_t PR_OUTER_VAR;
  3643. ABL_VAR int8_t PR_INNER_VAR;
  3644. #endif
  3645. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3646. ABL_VAR float xGridSpacing, yGridSpacing;
  3647. #define ABL_GRID_MAX (GRID_MAX_POINTS_X) * (GRID_MAX_POINTS_Y)
  3648. #if ABL_PLANAR
  3649. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3650. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3651. ABL_VAR bool do_topography_map;
  3652. #else // 3-point
  3653. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3654. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3655. #endif
  3656. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3657. #if ABL_PLANAR
  3658. ABL_VAR int abl2;
  3659. #else // 3-point
  3660. int constexpr abl2 = ABL_GRID_MAX;
  3661. #endif
  3662. #endif
  3663. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3664. ABL_VAR float zoffset;
  3665. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3666. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3667. ABL_VAR float eqnAMatrix[ABL_GRID_MAX * 3], // "A" matrix of the linear system of equations
  3668. eqnBVector[ABL_GRID_MAX], // "B" vector of Z points
  3669. mean;
  3670. #endif
  3671. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3672. // Probe at 3 arbitrary points
  3673. ABL_VAR vector_3 points[3] = {
  3674. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3675. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3676. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3677. };
  3678. #endif // AUTO_BED_LEVELING_3POINT
  3679. /**
  3680. * On the initial G29 fetch command parameters.
  3681. */
  3682. if (!g29_in_progress) {
  3683. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3684. abl_probe_index = 0;
  3685. #endif
  3686. abl_should_enable = planner.abl_enabled;
  3687. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3688. if (code_seen('W')) {
  3689. if (!bilinear_grid_spacing[X_AXIS]) {
  3690. SERIAL_ERROR_START;
  3691. SERIAL_ERRORLNPGM("No bilinear grid");
  3692. return;
  3693. }
  3694. const float z = code_seen('Z') && code_has_value() ? code_value_float() : 99999;
  3695. if (!WITHIN(z, -10, 10)) {
  3696. SERIAL_ERROR_START;
  3697. SERIAL_ERRORLNPGM("Bad Z value");
  3698. return;
  3699. }
  3700. const float x = code_seen('X') && code_has_value() ? code_value_float() : 99999,
  3701. y = code_seen('Y') && code_has_value() ? code_value_float() : 99999;
  3702. int8_t i = code_seen('I') && code_has_value() ? code_value_byte() : -1,
  3703. j = code_seen('J') && code_has_value() ? code_value_byte() : -1;
  3704. if (x < 99998 && y < 99998) {
  3705. // Get nearest i / j from x / y
  3706. i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
  3707. j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
  3708. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  3709. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  3710. }
  3711. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  3712. set_bed_leveling_enabled(false);
  3713. z_values[i][j] = z;
  3714. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  3715. bed_level_virt_interpolate();
  3716. #endif
  3717. set_bed_leveling_enabled(abl_should_enable);
  3718. }
  3719. return;
  3720. } // code_seen('W')
  3721. #endif
  3722. #if PLANNER_LEVELING
  3723. // Jettison bed leveling data
  3724. if (code_seen('J')) {
  3725. reset_bed_level();
  3726. return;
  3727. }
  3728. #endif
  3729. verbose_level = code_seen('V') && code_has_value() ? code_value_int() : 0;
  3730. if (!WITHIN(verbose_level, 0, 4)) {
  3731. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3732. return;
  3733. }
  3734. dryrun = code_seen('D') && code_value_bool();
  3735. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3736. do_topography_map = verbose_level > 2 || code_seen('T');
  3737. // X and Y specify points in each direction, overriding the default
  3738. // These values may be saved with the completed mesh
  3739. abl_grid_points_x = code_seen('X') ? code_value_int() : GRID_MAX_POINTS_X;
  3740. abl_grid_points_y = code_seen('Y') ? code_value_int() : GRID_MAX_POINTS_Y;
  3741. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3742. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3743. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3744. return;
  3745. }
  3746. abl2 = abl_grid_points_x * abl_grid_points_y;
  3747. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3748. zoffset = code_seen('Z') ? code_value_linear_units() : 0;
  3749. #endif
  3750. #if ABL_GRID
  3751. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3752. left_probe_bed_position = code_seen('L') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION);
  3753. right_probe_bed_position = code_seen('R') ? (int)code_value_linear_units() : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION);
  3754. front_probe_bed_position = code_seen('F') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION);
  3755. back_probe_bed_position = code_seen('B') ? (int)code_value_linear_units() : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3756. const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3757. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3758. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3759. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3760. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3761. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3762. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3763. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3764. if (left_out || right_out || front_out || back_out) {
  3765. if (left_out) {
  3766. out_of_range_error(PSTR("(L)eft"));
  3767. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3768. }
  3769. if (right_out) {
  3770. out_of_range_error(PSTR("(R)ight"));
  3771. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3772. }
  3773. if (front_out) {
  3774. out_of_range_error(PSTR("(F)ront"));
  3775. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3776. }
  3777. if (back_out) {
  3778. out_of_range_error(PSTR("(B)ack"));
  3779. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3780. }
  3781. return;
  3782. }
  3783. // probe at the points of a lattice grid
  3784. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  3785. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3786. #endif // ABL_GRID
  3787. if (verbose_level > 0) {
  3788. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3789. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3790. }
  3791. stepper.synchronize();
  3792. // Disable auto bed leveling during G29
  3793. planner.abl_enabled = false;
  3794. if (!dryrun) {
  3795. // Re-orient the current position without leveling
  3796. // based on where the steppers are positioned.
  3797. set_current_from_steppers_for_axis(ALL_AXES);
  3798. // Sync the planner to where the steppers stopped
  3799. SYNC_PLAN_POSITION_KINEMATIC();
  3800. }
  3801. if (!faux) setup_for_endstop_or_probe_move();
  3802. //xProbe = yProbe = measured_z = 0;
  3803. #if HAS_BED_PROBE
  3804. // Deploy the probe. Probe will raise if needed.
  3805. if (DEPLOY_PROBE()) {
  3806. planner.abl_enabled = abl_should_enable;
  3807. return;
  3808. }
  3809. #endif
  3810. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3811. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3812. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3813. || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
  3814. || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
  3815. ) {
  3816. if (dryrun) {
  3817. // Before reset bed level, re-enable to correct the position
  3818. planner.abl_enabled = abl_should_enable;
  3819. }
  3820. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  3821. reset_bed_level();
  3822. // Initialize a grid with the given dimensions
  3823. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3824. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3825. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3826. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3827. // Can't re-enable (on error) until the new grid is written
  3828. abl_should_enable = false;
  3829. }
  3830. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3831. mean = 0.0;
  3832. #endif // AUTO_BED_LEVELING_LINEAR
  3833. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  3834. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3835. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3836. #endif
  3837. // Probe at 3 arbitrary points
  3838. points[0].z = points[1].z = points[2].z = 0;
  3839. #endif // AUTO_BED_LEVELING_3POINT
  3840. } // !g29_in_progress
  3841. #if ENABLED(PROBE_MANUALLY)
  3842. // Abort current G29 procedure, go back to ABLStart
  3843. if (code_seen('A') && g29_in_progress) {
  3844. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  3845. #if HAS_SOFTWARE_ENDSTOPS
  3846. soft_endstops_enabled = enable_soft_endstops;
  3847. #endif
  3848. planner.abl_enabled = abl_should_enable;
  3849. g29_in_progress = false;
  3850. }
  3851. // Query G29 status
  3852. if (code_seen('Q')) {
  3853. if (!g29_in_progress)
  3854. SERIAL_PROTOCOLLNPGM("Manual G29 idle");
  3855. else {
  3856. SERIAL_PROTOCOLPAIR("Manual G29 point ", abl_probe_index + 1);
  3857. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  3858. }
  3859. }
  3860. if (code_seen('A') || code_seen('Q')) return;
  3861. // Fall through to probe the first point
  3862. g29_in_progress = true;
  3863. if (abl_probe_index == 0) {
  3864. // For the initial G29 save software endstop state
  3865. #if HAS_SOFTWARE_ENDSTOPS
  3866. enable_soft_endstops = soft_endstops_enabled;
  3867. #endif
  3868. }
  3869. else {
  3870. // For G29 after adjusting Z.
  3871. // Save the previous Z before going to the next point
  3872. measured_z = current_position[Z_AXIS];
  3873. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3874. mean += measured_z;
  3875. eqnBVector[abl_probe_index] = measured_z;
  3876. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  3877. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  3878. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  3879. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3880. z_values[xCount][yCount] = measured_z + zoffset;
  3881. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3882. points[i].z = measured_z;
  3883. #endif
  3884. }
  3885. //
  3886. // If there's another point to sample, move there with optional lift.
  3887. //
  3888. #if ABL_GRID
  3889. // Find a next point to probe
  3890. // On the first G29 this will be the first probe point
  3891. while (abl_probe_index < abl2) {
  3892. // Set xCount, yCount based on abl_probe_index, with zig-zag
  3893. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  3894. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  3895. bool zig = (PR_OUTER_VAR & 1) != ((PR_OUTER_END) & 1);
  3896. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  3897. const float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3898. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3899. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3900. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3901. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3902. indexIntoAB[xCount][yCount] = abl_probe_index;
  3903. #endif
  3904. float pos[XYZ] = { xProbe, yProbe, 0 };
  3905. if (position_is_reachable(pos)) break;
  3906. ++abl_probe_index;
  3907. }
  3908. // Is there a next point to move to?
  3909. if (abl_probe_index < abl2) {
  3910. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  3911. ++abl_probe_index;
  3912. #if HAS_SOFTWARE_ENDSTOPS
  3913. // Disable software endstops to allow manual adjustment
  3914. // If G29 is not completed, they will not be re-enabled
  3915. soft_endstops_enabled = false;
  3916. #endif
  3917. return;
  3918. }
  3919. else {
  3920. // Then leveling is done!
  3921. // G29 finishing code goes here
  3922. // After recording the last point, activate abl
  3923. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  3924. g29_in_progress = false;
  3925. // Re-enable software endstops, if needed
  3926. #if HAS_SOFTWARE_ENDSTOPS
  3927. soft_endstops_enabled = enable_soft_endstops;
  3928. #endif
  3929. }
  3930. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3931. // Probe at 3 arbitrary points
  3932. if (abl_probe_index < 3) {
  3933. xProbe = LOGICAL_X_POSITION(points[i].x);
  3934. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3935. ++abl_probe_index;
  3936. #if HAS_SOFTWARE_ENDSTOPS
  3937. // Disable software endstops to allow manual adjustment
  3938. // If G29 is not completed, they will not be re-enabled
  3939. soft_endstops_enabled = false;
  3940. #endif
  3941. return;
  3942. }
  3943. else {
  3944. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  3945. g29_in_progress = false;
  3946. // Re-enable software endstops, if needed
  3947. #if HAS_SOFTWARE_ENDSTOPS
  3948. soft_endstops_enabled = enable_soft_endstops;
  3949. #endif
  3950. if (!dryrun) {
  3951. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3952. if (planeNormal.z < 0) {
  3953. planeNormal.x *= -1;
  3954. planeNormal.y *= -1;
  3955. planeNormal.z *= -1;
  3956. }
  3957. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3958. // Can't re-enable (on error) until the new grid is written
  3959. abl_should_enable = false;
  3960. }
  3961. }
  3962. #endif // AUTO_BED_LEVELING_3POINT
  3963. #else // !PROBE_MANUALLY
  3964. bool stow_probe_after_each = code_seen('E');
  3965. #if ABL_GRID
  3966. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3967. // Outer loop is Y with PROBE_Y_FIRST disabled
  3968. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3969. int8_t inStart, inStop, inInc;
  3970. if (zig) { // away from origin
  3971. inStart = 0;
  3972. inStop = PR_INNER_END;
  3973. inInc = 1;
  3974. }
  3975. else { // towards origin
  3976. inStart = PR_INNER_END - 1;
  3977. inStop = -1;
  3978. inInc = -1;
  3979. }
  3980. zig ^= true; // zag
  3981. // Inner loop is Y with PROBE_Y_FIRST enabled
  3982. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3983. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3984. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3985. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3986. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3987. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3988. indexIntoAB[xCount][yCount] = ++abl_probe_index;
  3989. #endif
  3990. #if IS_KINEMATIC
  3991. // Avoid probing outside the round or hexagonal area
  3992. const float pos[XYZ] = { xProbe, yProbe, 0 };
  3993. if (!position_is_reachable(pos, true)) continue;
  3994. #endif
  3995. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3996. if (isnan(measured_z)) {
  3997. planner.abl_enabled = abl_should_enable;
  3998. return;
  3999. }
  4000. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4001. mean += measured_z;
  4002. eqnBVector[abl_probe_index] = measured_z;
  4003. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4004. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4005. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4006. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4007. z_values[xCount][yCount] = measured_z + zoffset;
  4008. #endif
  4009. abl_should_enable = false;
  4010. idle();
  4011. } // inner
  4012. } // outer
  4013. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4014. // Probe at 3 arbitrary points
  4015. for (uint8_t i = 0; i < 3; ++i) {
  4016. // Retain the last probe position
  4017. xProbe = LOGICAL_X_POSITION(points[i].x);
  4018. yProbe = LOGICAL_Y_POSITION(points[i].y);
  4019. measured_z = points[i].z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4020. }
  4021. if (isnan(measured_z)) {
  4022. planner.abl_enabled = abl_should_enable;
  4023. return;
  4024. }
  4025. if (!dryrun) {
  4026. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4027. if (planeNormal.z < 0) {
  4028. planeNormal.x *= -1;
  4029. planeNormal.y *= -1;
  4030. planeNormal.z *= -1;
  4031. }
  4032. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4033. // Can't re-enable (on error) until the new grid is written
  4034. abl_should_enable = false;
  4035. }
  4036. #endif // AUTO_BED_LEVELING_3POINT
  4037. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4038. if (STOW_PROBE()) {
  4039. planner.abl_enabled = abl_should_enable;
  4040. return;
  4041. }
  4042. #endif // !PROBE_MANUALLY
  4043. //
  4044. // G29 Finishing Code
  4045. //
  4046. // Unless this is a dry run, auto bed leveling will
  4047. // definitely be enabled after this point
  4048. //
  4049. // Restore state after probing
  4050. if (!faux) clean_up_after_endstop_or_probe_move();
  4051. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4052. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4053. #endif
  4054. // Calculate leveling, print reports, correct the position
  4055. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4056. if (!dryrun) extrapolate_unprobed_bed_level();
  4057. print_bilinear_leveling_grid();
  4058. refresh_bed_level();
  4059. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4060. bed_level_virt_print();
  4061. #endif
  4062. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4063. // For LINEAR leveling calculate matrix, print reports, correct the position
  4064. /**
  4065. * solve the plane equation ax + by + d = z
  4066. * A is the matrix with rows [x y 1] for all the probed points
  4067. * B is the vector of the Z positions
  4068. * the normal vector to the plane is formed by the coefficients of the
  4069. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4070. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4071. */
  4072. float plane_equation_coefficients[3];
  4073. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  4074. mean /= abl2;
  4075. if (verbose_level) {
  4076. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4077. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4078. SERIAL_PROTOCOLPGM(" b: ");
  4079. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4080. SERIAL_PROTOCOLPGM(" d: ");
  4081. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4082. SERIAL_EOL;
  4083. if (verbose_level > 2) {
  4084. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4085. SERIAL_PROTOCOL_F(mean, 8);
  4086. SERIAL_EOL;
  4087. }
  4088. }
  4089. // Create the matrix but don't correct the position yet
  4090. if (!dryrun) {
  4091. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4092. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  4093. );
  4094. }
  4095. // Show the Topography map if enabled
  4096. if (do_topography_map) {
  4097. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4098. " +--- BACK --+\n"
  4099. " | |\n"
  4100. " L | (+) | R\n"
  4101. " E | | I\n"
  4102. " F | (-) N (+) | G\n"
  4103. " T | | H\n"
  4104. " | (-) | T\n"
  4105. " | |\n"
  4106. " O-- FRONT --+\n"
  4107. " (0,0)");
  4108. float min_diff = 999;
  4109. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4110. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4111. int ind = indexIntoAB[xx][yy];
  4112. float diff = eqnBVector[ind] - mean,
  4113. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4114. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4115. z_tmp = 0;
  4116. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4117. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4118. if (diff >= 0.0)
  4119. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4120. else
  4121. SERIAL_PROTOCOLCHAR(' ');
  4122. SERIAL_PROTOCOL_F(diff, 5);
  4123. } // xx
  4124. SERIAL_EOL;
  4125. } // yy
  4126. SERIAL_EOL;
  4127. if (verbose_level > 3) {
  4128. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4129. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4130. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4131. int ind = indexIntoAB[xx][yy];
  4132. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4133. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4134. z_tmp = 0;
  4135. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4136. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4137. if (diff >= 0.0)
  4138. SERIAL_PROTOCOLPGM(" +");
  4139. // Include + for column alignment
  4140. else
  4141. SERIAL_PROTOCOLCHAR(' ');
  4142. SERIAL_PROTOCOL_F(diff, 5);
  4143. } // xx
  4144. SERIAL_EOL;
  4145. } // yy
  4146. SERIAL_EOL;
  4147. }
  4148. } //do_topography_map
  4149. #endif // AUTO_BED_LEVELING_LINEAR
  4150. #if ABL_PLANAR
  4151. // For LINEAR and 3POINT leveling correct the current position
  4152. if (verbose_level > 0)
  4153. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  4154. if (!dryrun) {
  4155. //
  4156. // Correct the current XYZ position based on the tilted plane.
  4157. //
  4158. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4159. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4160. #endif
  4161. float converted[XYZ];
  4162. COPY(converted, current_position);
  4163. planner.abl_enabled = true;
  4164. planner.unapply_leveling(converted); // use conversion machinery
  4165. planner.abl_enabled = false;
  4166. // Use the last measured distance to the bed, if possible
  4167. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4168. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4169. ) {
  4170. float simple_z = current_position[Z_AXIS] - measured_z;
  4171. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4172. if (DEBUGGING(LEVELING)) {
  4173. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4174. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4175. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4176. }
  4177. #endif
  4178. converted[Z_AXIS] = simple_z;
  4179. }
  4180. // The rotated XY and corrected Z are now current_position
  4181. COPY(current_position, converted);
  4182. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4183. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4184. #endif
  4185. }
  4186. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4187. if (!dryrun) {
  4188. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4189. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4190. #endif
  4191. // Unapply the offset because it is going to be immediately applied
  4192. // and cause compensation movement in Z
  4193. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4194. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4195. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4196. #endif
  4197. }
  4198. #endif // ABL_PLANAR
  4199. #ifdef Z_PROBE_END_SCRIPT
  4200. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4201. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4202. #endif
  4203. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4204. stepper.synchronize();
  4205. #endif
  4206. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4207. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4208. #endif
  4209. report_current_position();
  4210. KEEPALIVE_STATE(IN_HANDLER);
  4211. // Auto Bed Leveling is complete! Enable if possible.
  4212. planner.abl_enabled = dryrun ? abl_should_enable : true;
  4213. if (planner.abl_enabled)
  4214. SYNC_PLAN_POSITION_KINEMATIC();
  4215. }
  4216. #endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
  4217. #if HAS_BED_PROBE
  4218. /**
  4219. * G30: Do a single Z probe at the current XY
  4220. *
  4221. * Parameters:
  4222. *
  4223. * X Probe X position (default current X)
  4224. * Y Probe Y position (default current Y)
  4225. * S0 Leave the probe deployed
  4226. */
  4227. inline void gcode_G30() {
  4228. const float xpos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  4229. ypos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  4230. pos[XYZ] = { xpos, ypos, LOGICAL_Z_POSITION(0) };
  4231. if (!position_is_reachable(pos, true)) return;
  4232. // Disable leveling so the planner won't mess with us
  4233. #if PLANNER_LEVELING
  4234. set_bed_leveling_enabled(false);
  4235. #endif
  4236. setup_for_endstop_or_probe_move();
  4237. const float measured_z = probe_pt(xpos, ypos, !code_seen('S') || code_value_bool(), 1);
  4238. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4239. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4240. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4241. clean_up_after_endstop_or_probe_move();
  4242. report_current_position();
  4243. }
  4244. #if ENABLED(Z_PROBE_SLED)
  4245. /**
  4246. * G31: Deploy the Z probe
  4247. */
  4248. inline void gcode_G31() { DEPLOY_PROBE(); }
  4249. /**
  4250. * G32: Stow the Z probe
  4251. */
  4252. inline void gcode_G32() { STOW_PROBE(); }
  4253. #endif // Z_PROBE_SLED
  4254. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4255. /**
  4256. * G33 - Delta '1-4-7-point' auto calibration (Requires DELTA)
  4257. *
  4258. * Usage:
  4259. * G33 <Vn> <Pn> <A> <O> <T>
  4260. *
  4261. * Vn = verbose level (n=0-2 default 1)
  4262. * n=0 dry-run mode: setting + probe results / no calibration
  4263. * n=1 settings
  4264. * n=2 setting + probe results
  4265. * Pn = n=-7 -> +7 : n*n probe points
  4266. * calibrates height ('1 point'), endstops, and delta radius ('4 points')
  4267. * and tower angles with n > 2 ('7+ points')
  4268. * n=1 probes center / sets height only
  4269. * n=2 probes center and towers / sets height, endstops and delta radius
  4270. * n=3 probes all points: center, towers and opposite towers / sets all
  4271. * n>3 probes all points multiple times and averages
  4272. * A = abort 1 point delta height calibration after 1 probe
  4273. * O = use oposite tower points instead of tower points with 4 point calibration
  4274. * T = do not calibrate tower angles with 7+ point calibration
  4275. */
  4276. inline void gcode_G33() {
  4277. stepper.synchronize();
  4278. #if PLANNER_LEVELING
  4279. set_bed_leveling_enabled(false);
  4280. #endif
  4281. int8_t pp = (code_seen('P') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS),
  4282. probe_mode = (WITHIN(pp, 1, 7) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS);
  4283. probe_mode = (code_seen('A') && probe_mode == 1 ? -probe_mode : probe_mode);
  4284. probe_mode = (code_seen('O') && probe_mode == 2 ? -probe_mode : probe_mode);
  4285. probe_mode = (code_seen('T') && probe_mode > 2 ? -probe_mode : probe_mode);
  4286. int8_t verbose_level = (code_seen('V') ? code_value_byte() : 1);
  4287. if (!WITHIN(verbose_level, 0, 2)) verbose_level = 1;
  4288. gcode_G28();
  4289. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4290. float test_precision,
  4291. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4292. e_old[XYZ] = {
  4293. endstop_adj[A_AXIS],
  4294. endstop_adj[B_AXIS],
  4295. endstop_adj[C_AXIS]
  4296. },
  4297. dr_old = delta_radius,
  4298. zh_old = home_offset[Z_AXIS],
  4299. alpha_old = delta_tower_angle_trim[A_AXIS],
  4300. beta_old = delta_tower_angle_trim[B_AXIS];
  4301. int8_t iterations = 0,
  4302. probe_points = abs(probe_mode);
  4303. const bool pp_equals_1 = (probe_points == 1),
  4304. pp_equals_2 = (probe_points == 2),
  4305. pp_equals_3 = (probe_points == 3),
  4306. pp_equals_4 = (probe_points == 4),
  4307. pp_equals_5 = (probe_points == 5),
  4308. pp_equals_6 = (probe_points == 6),
  4309. pp_equals_7 = (probe_points == 7),
  4310. pp_greather_2 = (probe_points > 2),
  4311. pp_greather_3 = (probe_points > 3),
  4312. pp_greather_4 = (probe_points > 4),
  4313. pp_greather_5 = (probe_points > 5);
  4314. // print settings
  4315. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4316. SERIAL_PROTOCOLPGM("Checking... AC");
  4317. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  4318. SERIAL_EOL;
  4319. LCD_MESSAGEPGM("Checking... AC");
  4320. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4321. if (!pp_equals_1) {
  4322. SERIAL_PROTOCOLPGM(" Ex:");
  4323. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4324. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4325. SERIAL_PROTOCOLPGM(" Ey:");
  4326. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4327. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4328. SERIAL_PROTOCOLPGM(" Ez:");
  4329. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4330. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4331. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4332. }
  4333. SERIAL_EOL;
  4334. if (probe_mode > 2) { // negative disables tower angles
  4335. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4336. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4337. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4338. SERIAL_PROTOCOLPGM(" Ty:");
  4339. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4340. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4341. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4342. SERIAL_EOL;
  4343. }
  4344. #if ENABLED(Z_PROBE_SLED)
  4345. DEPLOY_PROBE();
  4346. #endif
  4347. do {
  4348. float z_at_pt[13] = { 0 },
  4349. S1 = 0.0,
  4350. S2 = 0.0;
  4351. int16_t N = 0;
  4352. test_precision = zero_std_dev;
  4353. iterations++;
  4354. // probe the points
  4355. if (!pp_equals_3 && !pp_equals_6) { // probe the centre
  4356. setup_for_endstop_or_probe_move();
  4357. z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
  4358. clean_up_after_endstop_or_probe_move();
  4359. }
  4360. if (pp_greather_2) { // probe extra centre points
  4361. for (int8_t axis = (pp_greather_4 ? 11 : 9); axis > 0; axis -= (pp_greather_4 ? 2 : 4)) {
  4362. setup_for_endstop_or_probe_move();
  4363. z_at_pt[0] += probe_pt(
  4364. cos(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius),
  4365. sin(RADIANS(180 + 30 * axis)) * (0.1 * delta_calibration_radius), true, 1);
  4366. clean_up_after_endstop_or_probe_move();
  4367. }
  4368. z_at_pt[0] /= (pp_equals_5 ? 7 : probe_points);
  4369. }
  4370. if (!pp_equals_1) { // probe the radius
  4371. float start_circles = (pp_equals_7 ? -1.5 : pp_equals_6 || pp_equals_5 ? -1 : 0),
  4372. end_circles = -start_circles;
  4373. bool zig_zag = true;
  4374. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13;
  4375. axis += (pp_equals_2 ? 4 : pp_equals_3 || pp_equals_5 ? 2 : 1)) {
  4376. for (float circles = start_circles ; circles <= end_circles; circles++) {
  4377. setup_for_endstop_or_probe_move();
  4378. z_at_pt[axis] += probe_pt(
  4379. cos(RADIANS(180 + 30 * axis)) *
  4380. (1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius,
  4381. sin(RADIANS(180 + 30 * axis)) *
  4382. (1 + circles * 0.1 * (zig_zag ? 1 : -1)) * delta_calibration_radius, true, 1);
  4383. clean_up_after_endstop_or_probe_move();
  4384. }
  4385. start_circles += (pp_greather_5 ? (zig_zag ? 0.5 : -0.5) : 0);
  4386. end_circles = -start_circles;
  4387. zig_zag = !zig_zag;
  4388. z_at_pt[axis] /= (pp_equals_7 ? (zig_zag ? 4.0 : 3.0) :
  4389. pp_equals_6 ? (zig_zag ? 3.0 : 2.0) : pp_equals_5 ? 3 : 1);
  4390. }
  4391. }
  4392. if (pp_greather_3 && !pp_equals_5) // average intermediates to tower and opposites
  4393. for (uint8_t axis = 1; axis < 13; axis += 2)
  4394. z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
  4395. S1 += z_at_pt[0];
  4396. S2 += sq(z_at_pt[0]);
  4397. N++;
  4398. if (!pp_equals_1) // std dev from zero plane
  4399. for (uint8_t axis = (probe_mode == -2 ? 3 : 1); axis < 13; axis += (pp_equals_2 ? 4 : 2)) {
  4400. S1 += z_at_pt[axis];
  4401. S2 += sq(z_at_pt[axis]);
  4402. N++;
  4403. }
  4404. zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4405. // Solve matrices
  4406. if (zero_std_dev < test_precision) {
  4407. COPY(e_old, endstop_adj);
  4408. dr_old = delta_radius;
  4409. zh_old = home_offset[Z_AXIS];
  4410. alpha_old = delta_tower_angle_trim[A_AXIS];
  4411. beta_old = delta_tower_angle_trim[B_AXIS];
  4412. float e_delta[XYZ] = { 0.0 }, r_delta = 0.0,
  4413. t_alpha = 0.0, t_beta = 0.0;
  4414. const float r_diff = delta_radius - delta_calibration_radius,
  4415. h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
  4416. r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
  4417. a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
  4418. #define ZP(N,I) ((N) * z_at_pt[I])
  4419. #define Z1000(I) ZP(1.00, I)
  4420. #define Z1050(I) ZP(h_factor, I)
  4421. #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
  4422. #define Z0350(I) ZP(h_factor / 3.00, I)
  4423. #define Z0175(I) ZP(h_factor / 6.00, I)
  4424. #define Z2250(I) ZP(r_factor, I)
  4425. #define Z0750(I) ZP(r_factor / 3.00, I)
  4426. #define Z0375(I) ZP(r_factor / 6.00, I)
  4427. #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
  4428. #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
  4429. switch (probe_mode) {
  4430. case -1:
  4431. test_precision = 0.00;
  4432. case 1:
  4433. LOOP_XYZ(i) e_delta[i] = Z1000(0);
  4434. break;
  4435. case 2:
  4436. e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
  4437. e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
  4438. e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
  4439. r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
  4440. break;
  4441. case -2:
  4442. e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
  4443. e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
  4444. e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
  4445. r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
  4446. break;
  4447. default:
  4448. e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
  4449. e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
  4450. e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
  4451. r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
  4452. if (probe_mode > 0) { // negative disables tower angles
  4453. t_alpha = + Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
  4454. t_beta = - Z0888(1) + Z0444(5) + Z0444(9) - Z0888(7) + Z0444(11) + Z0444(3);
  4455. }
  4456. break;
  4457. }
  4458. LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
  4459. delta_radius += r_delta;
  4460. delta_tower_angle_trim[A_AXIS] += t_alpha;
  4461. delta_tower_angle_trim[B_AXIS] -= t_beta;
  4462. // adjust delta_height and endstops by the max amount
  4463. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  4464. home_offset[Z_AXIS] -= z_temp;
  4465. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  4466. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4467. }
  4468. else { // step one back
  4469. COPY(endstop_adj, e_old);
  4470. delta_radius = dr_old;
  4471. home_offset[Z_AXIS] = zh_old;
  4472. delta_tower_angle_trim[A_AXIS] = alpha_old;
  4473. delta_tower_angle_trim[B_AXIS] = beta_old;
  4474. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4475. }
  4476. // print report
  4477. if (verbose_level != 1) {
  4478. SERIAL_PROTOCOLPGM(". c:");
  4479. if (z_at_pt[0] > 0) SERIAL_CHAR('+');
  4480. SERIAL_PROTOCOL_F(z_at_pt[0], 2);
  4481. if (probe_mode == 2 || pp_greather_2) {
  4482. SERIAL_PROTOCOLPGM(" x:");
  4483. if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
  4484. SERIAL_PROTOCOL_F(z_at_pt[1], 2);
  4485. SERIAL_PROTOCOLPGM(" y:");
  4486. if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
  4487. SERIAL_PROTOCOL_F(z_at_pt[5], 2);
  4488. SERIAL_PROTOCOLPGM(" z:");
  4489. if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
  4490. SERIAL_PROTOCOL_F(z_at_pt[9], 2);
  4491. }
  4492. if (probe_mode != -2) SERIAL_EOL;
  4493. if (probe_mode == -2 || pp_greather_2) {
  4494. if (pp_greather_2) {
  4495. SERIAL_CHAR('.');
  4496. SERIAL_PROTOCOL_SP(13);
  4497. }
  4498. SERIAL_PROTOCOLPGM(" yz:");
  4499. if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
  4500. SERIAL_PROTOCOL_F(z_at_pt[7], 2);
  4501. SERIAL_PROTOCOLPGM(" zx:");
  4502. if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
  4503. SERIAL_PROTOCOL_F(z_at_pt[11], 2);
  4504. SERIAL_PROTOCOLPGM(" xy:");
  4505. if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
  4506. SERIAL_PROTOCOL_F(z_at_pt[3], 2);
  4507. SERIAL_EOL;
  4508. }
  4509. }
  4510. if (test_precision != 0.0) { // !forced end
  4511. if (zero_std_dev >= test_precision) { // end iterations
  4512. SERIAL_PROTOCOLPGM("Calibration OK");
  4513. SERIAL_PROTOCOL_SP(36);
  4514. SERIAL_PROTOCOLPGM("rolling back.");
  4515. SERIAL_EOL;
  4516. LCD_MESSAGEPGM("Calibration OK");
  4517. }
  4518. else { // !end iterations
  4519. char mess[15] = "No convergence";
  4520. if (iterations < 31)
  4521. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  4522. SERIAL_PROTOCOL(mess);
  4523. SERIAL_PROTOCOL_SP(36);
  4524. SERIAL_PROTOCOLPGM("std dev:");
  4525. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4526. SERIAL_EOL;
  4527. lcd_setstatus(mess);
  4528. }
  4529. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4530. if (!pp_equals_1) {
  4531. SERIAL_PROTOCOLPGM(" Ex:");
  4532. if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
  4533. SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
  4534. SERIAL_PROTOCOLPGM(" Ey:");
  4535. if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
  4536. SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
  4537. SERIAL_PROTOCOLPGM(" Ez:");
  4538. if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
  4539. SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
  4540. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4541. }
  4542. SERIAL_EOL;
  4543. if (probe_mode > 2) { // negative disables tower angles
  4544. SERIAL_PROTOCOLPGM(".Tower angle : Tx:");
  4545. if (delta_tower_angle_trim[A_AXIS] >= 0) SERIAL_CHAR('+');
  4546. SERIAL_PROTOCOL_F(delta_tower_angle_trim[A_AXIS], 2);
  4547. SERIAL_PROTOCOLPGM(" Ty:");
  4548. if (delta_tower_angle_trim[B_AXIS] >= 0) SERIAL_CHAR('+');
  4549. SERIAL_PROTOCOL_F(delta_tower_angle_trim[B_AXIS], 2);
  4550. SERIAL_PROTOCOLPGM(" Tz:+0.00");
  4551. SERIAL_EOL;
  4552. }
  4553. if (zero_std_dev >= test_precision)
  4554. serialprintPGM(save_message);
  4555. SERIAL_EOL;
  4556. }
  4557. else { // forced end
  4558. if (verbose_level == 0) {
  4559. SERIAL_PROTOCOLPGM("End DRY-RUN");
  4560. SERIAL_PROTOCOL_SP(39);
  4561. SERIAL_PROTOCOLPGM("std dev:");
  4562. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  4563. SERIAL_EOL;
  4564. }
  4565. else {
  4566. SERIAL_PROTOCOLLNPGM("Calibration OK");
  4567. LCD_MESSAGEPGM("Calibration OK");
  4568. SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
  4569. SERIAL_EOL;
  4570. serialprintPGM(save_message);
  4571. SERIAL_EOL;
  4572. }
  4573. }
  4574. stepper.synchronize();
  4575. gcode_G28();
  4576. } while (zero_std_dev < test_precision && iterations < 31);
  4577. #if ENABLED(Z_PROBE_SLED)
  4578. RETRACT_PROBE();
  4579. #endif
  4580. }
  4581. #endif // DELTA_AUTO_CALIBRATION
  4582. #endif // HAS_BED_PROBE
  4583. #if ENABLED(G38_PROBE_TARGET)
  4584. static bool G38_run_probe() {
  4585. bool G38_pass_fail = false;
  4586. // Get direction of move and retract
  4587. float retract_mm[XYZ];
  4588. LOOP_XYZ(i) {
  4589. float dist = destination[i] - current_position[i];
  4590. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  4591. }
  4592. stepper.synchronize(); // wait until the machine is idle
  4593. // Move until destination reached or target hit
  4594. endstops.enable(true);
  4595. G38_move = true;
  4596. G38_endstop_hit = false;
  4597. prepare_move_to_destination();
  4598. stepper.synchronize();
  4599. G38_move = false;
  4600. endstops.hit_on_purpose();
  4601. set_current_from_steppers_for_axis(ALL_AXES);
  4602. SYNC_PLAN_POSITION_KINEMATIC();
  4603. if (G38_endstop_hit) {
  4604. G38_pass_fail = true;
  4605. #if ENABLED(PROBE_DOUBLE_TOUCH)
  4606. // Move away by the retract distance
  4607. set_destination_to_current();
  4608. LOOP_XYZ(i) destination[i] += retract_mm[i];
  4609. endstops.enable(false);
  4610. prepare_move_to_destination();
  4611. stepper.synchronize();
  4612. feedrate_mm_s /= 4;
  4613. // Bump the target more slowly
  4614. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  4615. endstops.enable(true);
  4616. G38_move = true;
  4617. prepare_move_to_destination();
  4618. stepper.synchronize();
  4619. G38_move = false;
  4620. set_current_from_steppers_for_axis(ALL_AXES);
  4621. SYNC_PLAN_POSITION_KINEMATIC();
  4622. #endif
  4623. }
  4624. endstops.hit_on_purpose();
  4625. endstops.not_homing();
  4626. return G38_pass_fail;
  4627. }
  4628. /**
  4629. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  4630. * G38.3 - probe toward workpiece, stop on contact
  4631. *
  4632. * Like G28 except uses Z min probe for all axes
  4633. */
  4634. inline void gcode_G38(bool is_38_2) {
  4635. // Get X Y Z E F
  4636. gcode_get_destination();
  4637. setup_for_endstop_or_probe_move();
  4638. // If any axis has enough movement, do the move
  4639. LOOP_XYZ(i)
  4640. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  4641. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  4642. // If G38.2 fails throw an error
  4643. if (!G38_run_probe() && is_38_2) {
  4644. SERIAL_ERROR_START;
  4645. SERIAL_ERRORLNPGM("Failed to reach target");
  4646. }
  4647. break;
  4648. }
  4649. clean_up_after_endstop_or_probe_move();
  4650. }
  4651. #endif // G38_PROBE_TARGET
  4652. /**
  4653. * G92: Set current position to given X Y Z E
  4654. */
  4655. inline void gcode_G92() {
  4656. bool didXYZ = false,
  4657. didE = code_seen('E');
  4658. if (!didE) stepper.synchronize();
  4659. LOOP_XYZE(i) {
  4660. if (code_seen(axis_codes[i])) {
  4661. #if IS_SCARA
  4662. current_position[i] = code_value_axis_units((AxisEnum)i);
  4663. if (i != E_AXIS) didXYZ = true;
  4664. #else
  4665. #if HAS_POSITION_SHIFT
  4666. const float p = current_position[i];
  4667. #endif
  4668. float v = code_value_axis_units((AxisEnum)i);
  4669. current_position[i] = v;
  4670. if (i != E_AXIS) {
  4671. didXYZ = true;
  4672. #if HAS_POSITION_SHIFT
  4673. position_shift[i] += v - p; // Offset the coordinate space
  4674. update_software_endstops((AxisEnum)i);
  4675. #endif
  4676. }
  4677. #endif
  4678. }
  4679. }
  4680. if (didXYZ)
  4681. SYNC_PLAN_POSITION_KINEMATIC();
  4682. else if (didE)
  4683. sync_plan_position_e();
  4684. report_current_position();
  4685. }
  4686. #if HAS_RESUME_CONTINUE
  4687. /**
  4688. * M0: Unconditional stop - Wait for user button press on LCD
  4689. * M1: Conditional stop - Wait for user button press on LCD
  4690. */
  4691. inline void gcode_M0_M1() {
  4692. const char * const args = current_command_args;
  4693. millis_t codenum = 0;
  4694. bool hasP = false, hasS = false;
  4695. if (code_seen('P')) {
  4696. codenum = code_value_millis(); // milliseconds to wait
  4697. hasP = codenum > 0;
  4698. }
  4699. if (code_seen('S')) {
  4700. codenum = code_value_millis_from_seconds(); // seconds to wait
  4701. hasS = codenum > 0;
  4702. }
  4703. #if ENABLED(ULTIPANEL)
  4704. if (!hasP && !hasS && *args != '\0')
  4705. lcd_setstatus(args, true);
  4706. else {
  4707. LCD_MESSAGEPGM(MSG_USERWAIT);
  4708. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  4709. dontExpireStatus();
  4710. #endif
  4711. }
  4712. #else
  4713. if (!hasP && !hasS && *args != '\0') {
  4714. SERIAL_ECHO_START;
  4715. SERIAL_ECHOLN(args);
  4716. }
  4717. #endif
  4718. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4719. wait_for_user = true;
  4720. stepper.synchronize();
  4721. refresh_cmd_timeout();
  4722. if (codenum > 0) {
  4723. codenum += previous_cmd_ms; // wait until this time for a click
  4724. while (PENDING(millis(), codenum) && wait_for_user) idle();
  4725. }
  4726. else {
  4727. #if ENABLED(ULTIPANEL)
  4728. if (lcd_detected()) {
  4729. while (wait_for_user) idle();
  4730. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  4731. }
  4732. #else
  4733. while (wait_for_user) idle();
  4734. #endif
  4735. }
  4736. wait_for_user = false;
  4737. KEEPALIVE_STATE(IN_HANDLER);
  4738. }
  4739. #endif // HAS_RESUME_CONTINUE
  4740. /**
  4741. * M17: Enable power on all stepper motors
  4742. */
  4743. inline void gcode_M17() {
  4744. LCD_MESSAGEPGM(MSG_NO_MOVE);
  4745. enable_all_steppers();
  4746. }
  4747. #if IS_KINEMATIC
  4748. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  4749. #else
  4750. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
  4751. #endif
  4752. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4753. float resume_position[XYZE];
  4754. bool move_away_flag = false;
  4755. inline void move_back_on_resume() {
  4756. if (!move_away_flag) return;
  4757. move_away_flag = false;
  4758. // Set extruder to saved position
  4759. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  4760. planner.set_e_position_mm(current_position[E_AXIS]);
  4761. #if IS_KINEMATIC
  4762. // Move XYZ to starting position
  4763. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  4764. #else
  4765. // Move XY to starting position, then Z
  4766. destination[X_AXIS] = resume_position[X_AXIS];
  4767. destination[Y_AXIS] = resume_position[Y_AXIS];
  4768. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  4769. destination[Z_AXIS] = resume_position[Z_AXIS];
  4770. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  4771. #endif
  4772. stepper.synchronize();
  4773. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4774. filament_ran_out = false;
  4775. #endif
  4776. set_current_to_destination();
  4777. }
  4778. #endif // PARK_HEAD_ON_PAUSE
  4779. #if ENABLED(SDSUPPORT)
  4780. /**
  4781. * M20: List SD card to serial output
  4782. */
  4783. inline void gcode_M20() {
  4784. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  4785. card.ls();
  4786. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  4787. }
  4788. /**
  4789. * M21: Init SD Card
  4790. */
  4791. inline void gcode_M21() { card.initsd(); }
  4792. /**
  4793. * M22: Release SD Card
  4794. */
  4795. inline void gcode_M22() { card.release(); }
  4796. /**
  4797. * M23: Open a file
  4798. */
  4799. inline void gcode_M23() { card.openFile(current_command_args, true); }
  4800. /**
  4801. * M24: Start or Resume SD Print
  4802. */
  4803. inline void gcode_M24() {
  4804. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4805. move_back_on_resume();
  4806. #endif
  4807. card.startFileprint();
  4808. print_job_timer.start();
  4809. }
  4810. /**
  4811. * M25: Pause SD Print
  4812. */
  4813. inline void gcode_M25() {
  4814. card.pauseSDPrint();
  4815. print_job_timer.pause();
  4816. #if ENABLED(PARK_HEAD_ON_PAUSE)
  4817. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  4818. #endif
  4819. }
  4820. /**
  4821. * M26: Set SD Card file index
  4822. */
  4823. inline void gcode_M26() {
  4824. if (card.cardOK && code_seen('S'))
  4825. card.setIndex(code_value_long());
  4826. }
  4827. /**
  4828. * M27: Get SD Card status
  4829. */
  4830. inline void gcode_M27() { card.getStatus(); }
  4831. /**
  4832. * M28: Start SD Write
  4833. */
  4834. inline void gcode_M28() { card.openFile(current_command_args, false); }
  4835. /**
  4836. * M29: Stop SD Write
  4837. * Processed in write to file routine above
  4838. */
  4839. inline void gcode_M29() {
  4840. // card.saving = false;
  4841. }
  4842. /**
  4843. * M30 <filename>: Delete SD Card file
  4844. */
  4845. inline void gcode_M30() {
  4846. if (card.cardOK) {
  4847. card.closefile();
  4848. card.removeFile(current_command_args);
  4849. }
  4850. }
  4851. #endif // SDSUPPORT
  4852. /**
  4853. * M31: Get the time since the start of SD Print (or last M109)
  4854. */
  4855. inline void gcode_M31() {
  4856. char buffer[21];
  4857. duration_t elapsed = print_job_timer.duration();
  4858. elapsed.toString(buffer);
  4859. lcd_setstatus(buffer);
  4860. SERIAL_ECHO_START;
  4861. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  4862. #if ENABLED(AUTOTEMP)
  4863. thermalManager.autotempShutdown();
  4864. #endif
  4865. }
  4866. #if ENABLED(SDSUPPORT)
  4867. /**
  4868. * M32: Select file and start SD Print
  4869. */
  4870. inline void gcode_M32() {
  4871. if (card.sdprinting)
  4872. stepper.synchronize();
  4873. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  4874. if (!namestartpos)
  4875. namestartpos = current_command_args; // Default name position, 4 letters after the M
  4876. else
  4877. namestartpos++; //to skip the '!'
  4878. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  4879. if (card.cardOK) {
  4880. card.openFile(namestartpos, true, call_procedure);
  4881. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  4882. card.setIndex(code_value_long());
  4883. card.startFileprint();
  4884. // Procedure calls count as normal print time.
  4885. if (!call_procedure) print_job_timer.start();
  4886. }
  4887. }
  4888. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4889. /**
  4890. * M33: Get the long full path of a file or folder
  4891. *
  4892. * Parameters:
  4893. * <dospath> Case-insensitive DOS-style path to a file or folder
  4894. *
  4895. * Example:
  4896. * M33 miscel~1/armchair/armcha~1.gco
  4897. *
  4898. * Output:
  4899. * /Miscellaneous/Armchair/Armchair.gcode
  4900. */
  4901. inline void gcode_M33() {
  4902. card.printLongPath(current_command_args);
  4903. }
  4904. #endif
  4905. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  4906. /**
  4907. * M34: Set SD Card Sorting Options
  4908. */
  4909. inline void gcode_M34() {
  4910. if (code_seen('S')) card.setSortOn(code_value_bool());
  4911. if (code_seen('F')) {
  4912. int v = code_value_long();
  4913. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  4914. }
  4915. //if (code_seen('R')) card.setSortReverse(code_value_bool());
  4916. }
  4917. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  4918. /**
  4919. * M928: Start SD Write
  4920. */
  4921. inline void gcode_M928() {
  4922. card.openLogFile(current_command_args);
  4923. }
  4924. #endif // SDSUPPORT
  4925. /**
  4926. * Sensitive pin test for M42, M226
  4927. */
  4928. static bool pin_is_protected(uint8_t pin) {
  4929. static const int sensitive_pins[] = SENSITIVE_PINS;
  4930. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  4931. if (sensitive_pins[i] == pin) return true;
  4932. return false;
  4933. }
  4934. /**
  4935. * M42: Change pin status via GCode
  4936. *
  4937. * P<pin> Pin number (LED if omitted)
  4938. * S<byte> Pin status from 0 - 255
  4939. */
  4940. inline void gcode_M42() {
  4941. if (!code_seen('S')) return;
  4942. int pin_status = code_value_int();
  4943. if (!WITHIN(pin_status, 0, 255)) return;
  4944. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  4945. if (pin_number < 0) return;
  4946. if (pin_is_protected(pin_number)) {
  4947. SERIAL_ERROR_START;
  4948. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  4949. return;
  4950. }
  4951. pinMode(pin_number, OUTPUT);
  4952. digitalWrite(pin_number, pin_status);
  4953. analogWrite(pin_number, pin_status);
  4954. #if FAN_COUNT > 0
  4955. switch (pin_number) {
  4956. #if HAS_FAN0
  4957. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  4958. #endif
  4959. #if HAS_FAN1
  4960. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  4961. #endif
  4962. #if HAS_FAN2
  4963. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  4964. #endif
  4965. }
  4966. #endif
  4967. }
  4968. #if ENABLED(PINS_DEBUGGING)
  4969. #include "pinsDebug.h"
  4970. inline void toggle_pins() {
  4971. const bool I_flag = code_seen('I') && code_value_bool();
  4972. const int repeat = code_seen('R') ? code_value_int() : 1,
  4973. start = code_seen('S') ? code_value_int() : 0,
  4974. end = code_seen('E') ? code_value_int() : NUM_DIGITAL_PINS - 1,
  4975. wait = code_seen('W') ? code_value_int() : 500;
  4976. for (uint8_t pin = start; pin <= end; pin++) {
  4977. if (!I_flag && pin_is_protected(pin)) {
  4978. SERIAL_ECHOPAIR("Sensitive Pin: ", pin);
  4979. SERIAL_ECHOLNPGM(" untouched.");
  4980. }
  4981. else {
  4982. SERIAL_ECHOPAIR("Pulsing Pin: ", pin);
  4983. pinMode(pin, OUTPUT);
  4984. for (int16_t j = 0; j < repeat; j++) {
  4985. digitalWrite(pin, 0);
  4986. safe_delay(wait);
  4987. digitalWrite(pin, 1);
  4988. safe_delay(wait);
  4989. digitalWrite(pin, 0);
  4990. safe_delay(wait);
  4991. }
  4992. }
  4993. SERIAL_CHAR('\n');
  4994. }
  4995. SERIAL_ECHOLNPGM("Done.");
  4996. } // toggle_pins
  4997. inline void servo_probe_test() {
  4998. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  4999. SERIAL_ERROR_START;
  5000. SERIAL_ERRORLNPGM("SERVO not setup");
  5001. #elif !HAS_Z_SERVO_ENDSTOP
  5002. SERIAL_ERROR_START;
  5003. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5004. #else
  5005. const uint8_t probe_index = code_seen('P') ? code_value_byte() : Z_ENDSTOP_SERVO_NR;
  5006. SERIAL_PROTOCOLLNPGM("Servo probe test");
  5007. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  5008. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  5009. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  5010. bool probe_inverting;
  5011. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  5012. #define PROBE_TEST_PIN Z_MIN_PIN
  5013. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  5014. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  5015. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  5016. #if Z_MIN_ENDSTOP_INVERTING
  5017. SERIAL_PROTOCOLLNPGM("true");
  5018. #else
  5019. SERIAL_PROTOCOLLNPGM("false");
  5020. #endif
  5021. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  5022. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  5023. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  5024. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  5025. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  5026. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  5027. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  5028. SERIAL_PROTOCOLLNPGM("true");
  5029. #else
  5030. SERIAL_PROTOCOLLNPGM("false");
  5031. #endif
  5032. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  5033. #endif
  5034. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  5035. pinMode(PROBE_TEST_PIN, INPUT_PULLUP);
  5036. bool deploy_state;
  5037. bool stow_state;
  5038. for (uint8_t i = 0; i < 4; i++) {
  5039. servo[probe_index].move(z_servo_angle[0]); //deploy
  5040. safe_delay(500);
  5041. deploy_state = digitalRead(PROBE_TEST_PIN);
  5042. servo[probe_index].move(z_servo_angle[1]); //stow
  5043. safe_delay(500);
  5044. stow_state = digitalRead(PROBE_TEST_PIN);
  5045. }
  5046. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  5047. refresh_cmd_timeout();
  5048. if (deploy_state != stow_state) {
  5049. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  5050. if (deploy_state) {
  5051. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  5052. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  5053. }
  5054. else {
  5055. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  5056. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  5057. }
  5058. #if ENABLED(BLTOUCH)
  5059. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  5060. #endif
  5061. }
  5062. else { // measure active signal length
  5063. servo[probe_index].move(z_servo_angle[0]); // deploy
  5064. safe_delay(500);
  5065. SERIAL_PROTOCOLLNPGM("please trigger probe");
  5066. uint16_t probe_counter = 0;
  5067. // Allow 30 seconds max for operator to trigger probe
  5068. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  5069. safe_delay(2);
  5070. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  5071. refresh_cmd_timeout();
  5072. if (deploy_state != digitalRead(PROBE_TEST_PIN)) { // probe triggered
  5073. for (probe_counter = 1; probe_counter < 50 && deploy_state != digitalRead(PROBE_TEST_PIN); ++probe_counter)
  5074. safe_delay(2);
  5075. if (probe_counter == 50)
  5076. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  5077. else if (probe_counter >= 2)
  5078. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  5079. else
  5080. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  5081. servo[probe_index].move(z_servo_angle[1]); //stow
  5082. } // pulse detected
  5083. } // for loop waiting for trigger
  5084. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  5085. } // measure active signal length
  5086. #endif
  5087. } // servo_probe_test
  5088. /**
  5089. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  5090. *
  5091. * M43 - report name and state of pin(s)
  5092. * P<pin> Pin to read or watch. If omitted, reads all pins.
  5093. * I Flag to ignore Marlin's pin protection.
  5094. *
  5095. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  5096. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  5097. * I Flag to ignore Marlin's pin protection.
  5098. *
  5099. * M43 E<bool> - Enable / disable background endstop monitoring
  5100. * - Machine continues to operate
  5101. * - Reports changes to endstops
  5102. * - Toggles LED when an endstop changes
  5103. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  5104. *
  5105. * M43 T - Toggle pin(s) and report which pin is being toggled
  5106. * S<pin> - Start Pin number. If not given, will default to 0
  5107. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  5108. * I - Flag to ignore Marlin's pin protection. Use with caution!!!!
  5109. * R - Repeat pulses on each pin this number of times before continueing to next pin
  5110. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  5111. *
  5112. * M43 S - Servo probe test
  5113. * P<index> - Probe index (optional - defaults to 0
  5114. */
  5115. inline void gcode_M43() {
  5116. if (code_seen('T')) { // must be first ot else it's "S" and "E" parameters will execute endstop or servo test
  5117. toggle_pins();
  5118. return;
  5119. }
  5120. // Enable or disable endstop monitoring
  5121. if (code_seen('E')) {
  5122. endstop_monitor_flag = code_value_bool();
  5123. SERIAL_PROTOCOLPGM("endstop monitor ");
  5124. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  5125. SERIAL_PROTOCOLLNPGM("abled");
  5126. return;
  5127. }
  5128. if (code_seen('S')) {
  5129. servo_probe_test();
  5130. return;
  5131. }
  5132. // Get the range of pins to test or watch
  5133. const uint8_t first_pin = code_seen('P') ? code_value_byte() : 0,
  5134. last_pin = code_seen('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  5135. if (first_pin > last_pin) return;
  5136. const bool ignore_protection = code_seen('I') && code_value_bool();
  5137. // Watch until click, M108, or reset
  5138. if (code_seen('W') && code_value_bool()) {
  5139. SERIAL_PROTOCOLLNPGM("Watching pins");
  5140. byte pin_state[last_pin - first_pin + 1];
  5141. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5142. if (pin_is_protected(pin) && !ignore_protection) continue;
  5143. pinMode(pin, INPUT_PULLUP);
  5144. /*
  5145. if (IS_ANALOG(pin))
  5146. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  5147. else
  5148. //*/
  5149. pin_state[pin - first_pin] = digitalRead(pin);
  5150. }
  5151. #if HAS_RESUME_CONTINUE
  5152. wait_for_user = true;
  5153. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5154. #endif
  5155. for (;;) {
  5156. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  5157. if (pin_is_protected(pin)) continue;
  5158. const byte val =
  5159. /*
  5160. IS_ANALOG(pin)
  5161. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  5162. :
  5163. //*/
  5164. digitalRead(pin);
  5165. if (val != pin_state[pin - first_pin]) {
  5166. report_pin_state(pin);
  5167. pin_state[pin - first_pin] = val;
  5168. }
  5169. }
  5170. #if HAS_RESUME_CONTINUE
  5171. if (!wait_for_user) {
  5172. KEEPALIVE_STATE(IN_HANDLER);
  5173. break;
  5174. }
  5175. #endif
  5176. safe_delay(500);
  5177. }
  5178. return;
  5179. }
  5180. // Report current state of selected pin(s)
  5181. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  5182. report_pin_state_extended(pin, ignore_protection);
  5183. }
  5184. #endif // PINS_DEBUGGING
  5185. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5186. /**
  5187. * M48: Z probe repeatability measurement function.
  5188. *
  5189. * Usage:
  5190. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  5191. * P = Number of sampled points (4-50, default 10)
  5192. * X = Sample X position
  5193. * Y = Sample Y position
  5194. * V = Verbose level (0-4, default=1)
  5195. * E = Engage Z probe for each reading
  5196. * L = Number of legs of movement before probe
  5197. * S = Schizoid (Or Star if you prefer)
  5198. *
  5199. * This function assumes the bed has been homed. Specifically, that a G28 command
  5200. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  5201. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  5202. * regenerated.
  5203. */
  5204. inline void gcode_M48() {
  5205. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5206. bool bed_leveling_state_at_entry=0;
  5207. bed_leveling_state_at_entry = ubl.state.active;
  5208. #endif
  5209. if (axis_unhomed_error(true, true, true)) return;
  5210. const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  5211. if (!WITHIN(verbose_level, 0, 4)) {
  5212. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  5213. return;
  5214. }
  5215. if (verbose_level > 0)
  5216. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  5217. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  5218. if (!WITHIN(n_samples, 4, 50)) {
  5219. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  5220. return;
  5221. }
  5222. float X_current = current_position[X_AXIS],
  5223. Y_current = current_position[Y_AXIS];
  5224. bool stow_probe_after_each = code_seen('E');
  5225. float X_probe_location = code_seen('X') ? code_value_linear_units() : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  5226. #if DISABLED(DELTA)
  5227. if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
  5228. out_of_range_error(PSTR("X"));
  5229. return;
  5230. }
  5231. #endif
  5232. float Y_probe_location = code_seen('Y') ? code_value_linear_units() : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  5233. #if DISABLED(DELTA)
  5234. if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
  5235. out_of_range_error(PSTR("Y"));
  5236. return;
  5237. }
  5238. #else
  5239. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  5240. if (!position_is_reachable(pos, true)) {
  5241. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  5242. return;
  5243. }
  5244. #endif
  5245. bool seen_L = code_seen('L');
  5246. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  5247. if (n_legs > 15) {
  5248. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  5249. return;
  5250. }
  5251. if (n_legs == 1) n_legs = 2;
  5252. bool schizoid_flag = code_seen('S');
  5253. if (schizoid_flag && !seen_L) n_legs = 7;
  5254. /**
  5255. * Now get everything to the specified probe point So we can safely do a
  5256. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  5257. * we don't want to use that as a starting point for each probe.
  5258. */
  5259. if (verbose_level > 2)
  5260. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  5261. // Disable bed level correction in M48 because we want the raw data when we probe
  5262. #if HAS_ABL
  5263. const bool abl_was_enabled = planner.abl_enabled;
  5264. set_bed_leveling_enabled(false);
  5265. #endif
  5266. setup_for_endstop_or_probe_move();
  5267. // Move to the first point, deploy, and probe
  5268. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  5269. randomSeed(millis());
  5270. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  5271. for (uint8_t n = 0; n < n_samples; n++) {
  5272. if (n_legs) {
  5273. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  5274. float angle = random(0.0, 360.0),
  5275. radius = random(
  5276. #if ENABLED(DELTA)
  5277. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  5278. #else
  5279. 5, X_MAX_LENGTH / 8
  5280. #endif
  5281. );
  5282. if (verbose_level > 3) {
  5283. SERIAL_ECHOPAIR("Starting radius: ", radius);
  5284. SERIAL_ECHOPAIR(" angle: ", angle);
  5285. SERIAL_ECHOPGM(" Direction: ");
  5286. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  5287. SERIAL_ECHOLNPGM("Clockwise");
  5288. }
  5289. for (uint8_t l = 0; l < n_legs - 1; l++) {
  5290. double delta_angle;
  5291. if (schizoid_flag)
  5292. // The points of a 5 point star are 72 degrees apart. We need to
  5293. // skip a point and go to the next one on the star.
  5294. delta_angle = dir * 2.0 * 72.0;
  5295. else
  5296. // If we do this line, we are just trying to move further
  5297. // around the circle.
  5298. delta_angle = dir * (float) random(25, 45);
  5299. angle += delta_angle;
  5300. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  5301. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  5302. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  5303. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  5304. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  5305. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  5306. #if DISABLED(DELTA)
  5307. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  5308. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  5309. #else
  5310. // If we have gone out too far, we can do a simple fix and scale the numbers
  5311. // back in closer to the origin.
  5312. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  5313. X_current *= 0.8;
  5314. Y_current *= 0.8;
  5315. if (verbose_level > 3) {
  5316. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  5317. SERIAL_ECHOLNPAIR(", ", Y_current);
  5318. }
  5319. }
  5320. #endif
  5321. if (verbose_level > 3) {
  5322. SERIAL_PROTOCOLPGM("Going to:");
  5323. SERIAL_ECHOPAIR(" X", X_current);
  5324. SERIAL_ECHOPAIR(" Y", Y_current);
  5325. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  5326. }
  5327. do_blocking_move_to_xy(X_current, Y_current);
  5328. } // n_legs loop
  5329. } // n_legs
  5330. // Probe a single point
  5331. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  5332. /**
  5333. * Get the current mean for the data points we have so far
  5334. */
  5335. double sum = 0.0;
  5336. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  5337. mean = sum / (n + 1);
  5338. NOMORE(min, sample_set[n]);
  5339. NOLESS(max, sample_set[n]);
  5340. /**
  5341. * Now, use that mean to calculate the standard deviation for the
  5342. * data points we have so far
  5343. */
  5344. sum = 0.0;
  5345. for (uint8_t j = 0; j <= n; j++)
  5346. sum += sq(sample_set[j] - mean);
  5347. sigma = sqrt(sum / (n + 1));
  5348. if (verbose_level > 0) {
  5349. if (verbose_level > 1) {
  5350. SERIAL_PROTOCOL(n + 1);
  5351. SERIAL_PROTOCOLPGM(" of ");
  5352. SERIAL_PROTOCOL((int)n_samples);
  5353. SERIAL_PROTOCOLPGM(": z: ");
  5354. SERIAL_PROTOCOL_F(sample_set[n], 3);
  5355. if (verbose_level > 2) {
  5356. SERIAL_PROTOCOLPGM(" mean: ");
  5357. SERIAL_PROTOCOL_F(mean, 4);
  5358. SERIAL_PROTOCOLPGM(" sigma: ");
  5359. SERIAL_PROTOCOL_F(sigma, 6);
  5360. SERIAL_PROTOCOLPGM(" min: ");
  5361. SERIAL_PROTOCOL_F(min, 3);
  5362. SERIAL_PROTOCOLPGM(" max: ");
  5363. SERIAL_PROTOCOL_F(max, 3);
  5364. SERIAL_PROTOCOLPGM(" range: ");
  5365. SERIAL_PROTOCOL_F(max-min, 3);
  5366. }
  5367. SERIAL_EOL;
  5368. }
  5369. }
  5370. } // End of probe loop
  5371. if (STOW_PROBE()) return;
  5372. SERIAL_PROTOCOLPGM("Finished!");
  5373. SERIAL_EOL;
  5374. if (verbose_level > 0) {
  5375. SERIAL_PROTOCOLPGM("Mean: ");
  5376. SERIAL_PROTOCOL_F(mean, 6);
  5377. SERIAL_PROTOCOLPGM(" Min: ");
  5378. SERIAL_PROTOCOL_F(min, 3);
  5379. SERIAL_PROTOCOLPGM(" Max: ");
  5380. SERIAL_PROTOCOL_F(max, 3);
  5381. SERIAL_PROTOCOLPGM(" Range: ");
  5382. SERIAL_PROTOCOL_F(max-min, 3);
  5383. SERIAL_EOL;
  5384. }
  5385. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5386. SERIAL_PROTOCOL_F(sigma, 6);
  5387. SERIAL_EOL;
  5388. SERIAL_EOL;
  5389. clean_up_after_endstop_or_probe_move();
  5390. // Re-enable bed level correction if it has been on
  5391. #if HAS_ABL
  5392. set_bed_leveling_enabled(abl_was_enabled);
  5393. #endif
  5394. #if ENABLED(AUTO_BED_LEVELING_UBL)
  5395. set_bed_leveling_enabled(bed_leveling_state_at_entry);
  5396. ubl.state.active = bed_leveling_state_at_entry;
  5397. #endif
  5398. report_current_position();
  5399. }
  5400. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5401. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  5402. inline void gcode_M49() {
  5403. ubl.g26_debug_flag ^= true;
  5404. SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
  5405. serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
  5406. }
  5407. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  5408. /**
  5409. * M75: Start print timer
  5410. */
  5411. inline void gcode_M75() { print_job_timer.start(); }
  5412. /**
  5413. * M76: Pause print timer
  5414. */
  5415. inline void gcode_M76() { print_job_timer.pause(); }
  5416. /**
  5417. * M77: Stop print timer
  5418. */
  5419. inline void gcode_M77() { print_job_timer.stop(); }
  5420. #if ENABLED(PRINTCOUNTER)
  5421. /**
  5422. * M78: Show print statistics
  5423. */
  5424. inline void gcode_M78() {
  5425. // "M78 S78" will reset the statistics
  5426. if (code_seen('S') && code_value_int() == 78)
  5427. print_job_timer.initStats();
  5428. else
  5429. print_job_timer.showStats();
  5430. }
  5431. #endif
  5432. /**
  5433. * M104: Set hot end temperature
  5434. */
  5435. inline void gcode_M104() {
  5436. if (get_target_extruder_from_command(104)) return;
  5437. if (DEBUGGING(DRYRUN)) return;
  5438. #if ENABLED(SINGLENOZZLE)
  5439. if (target_extruder != active_extruder) return;
  5440. #endif
  5441. if (code_seen('S')) {
  5442. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5443. #if ENABLED(DUAL_X_CARRIAGE)
  5444. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5445. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5446. #endif
  5447. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5448. /**
  5449. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  5450. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  5451. * standby mode, for instance in a dual extruder setup, without affecting
  5452. * the running print timer.
  5453. */
  5454. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  5455. print_job_timer.stop();
  5456. LCD_MESSAGEPGM(WELCOME_MSG);
  5457. }
  5458. #endif
  5459. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5460. }
  5461. #if ENABLED(AUTOTEMP)
  5462. planner.autotemp_M104_M109();
  5463. #endif
  5464. }
  5465. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5466. void print_heaterstates() {
  5467. #if HAS_TEMP_HOTEND
  5468. SERIAL_PROTOCOLPGM(" T:");
  5469. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  5470. SERIAL_PROTOCOLPGM(" /");
  5471. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  5472. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5473. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  5474. SERIAL_PROTOCOLCHAR(')');
  5475. #endif
  5476. #endif
  5477. #if HAS_TEMP_BED
  5478. SERIAL_PROTOCOLPGM(" B:");
  5479. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  5480. SERIAL_PROTOCOLPGM(" /");
  5481. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  5482. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5483. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  5484. SERIAL_PROTOCOLCHAR(')');
  5485. #endif
  5486. #endif
  5487. #if HOTENDS > 1
  5488. HOTEND_LOOP() {
  5489. SERIAL_PROTOCOLPAIR(" T", e);
  5490. SERIAL_PROTOCOLCHAR(':');
  5491. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  5492. SERIAL_PROTOCOLPGM(" /");
  5493. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  5494. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  5495. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  5496. SERIAL_PROTOCOLCHAR(')');
  5497. #endif
  5498. }
  5499. #endif
  5500. SERIAL_PROTOCOLPGM(" @:");
  5501. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  5502. #if HAS_TEMP_BED
  5503. SERIAL_PROTOCOLPGM(" B@:");
  5504. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  5505. #endif
  5506. #if HOTENDS > 1
  5507. HOTEND_LOOP() {
  5508. SERIAL_PROTOCOLPAIR(" @", e);
  5509. SERIAL_PROTOCOLCHAR(':');
  5510. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  5511. }
  5512. #endif
  5513. }
  5514. #endif
  5515. /**
  5516. * M105: Read hot end and bed temperature
  5517. */
  5518. inline void gcode_M105() {
  5519. if (get_target_extruder_from_command(105)) return;
  5520. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  5521. SERIAL_PROTOCOLPGM(MSG_OK);
  5522. print_heaterstates();
  5523. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  5524. SERIAL_ERROR_START;
  5525. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  5526. #endif
  5527. SERIAL_EOL;
  5528. }
  5529. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  5530. static uint8_t auto_report_temp_interval;
  5531. static millis_t next_temp_report_ms;
  5532. /**
  5533. * M155: Set temperature auto-report interval. M155 S<seconds>
  5534. */
  5535. inline void gcode_M155() {
  5536. if (code_seen('S')) {
  5537. auto_report_temp_interval = code_value_byte();
  5538. NOMORE(auto_report_temp_interval, 60);
  5539. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5540. }
  5541. }
  5542. inline void auto_report_temperatures() {
  5543. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  5544. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  5545. print_heaterstates();
  5546. SERIAL_EOL;
  5547. }
  5548. }
  5549. #endif // AUTO_REPORT_TEMPERATURES
  5550. #if FAN_COUNT > 0
  5551. /**
  5552. * M106: Set Fan Speed
  5553. *
  5554. * S<int> Speed between 0-255
  5555. * P<index> Fan index, if more than one fan
  5556. */
  5557. inline void gcode_M106() {
  5558. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  5559. p = code_seen('P') ? code_value_ushort() : 0;
  5560. NOMORE(s, 255);
  5561. if (p < FAN_COUNT) fanSpeeds[p] = s;
  5562. }
  5563. /**
  5564. * M107: Fan Off
  5565. */
  5566. inline void gcode_M107() {
  5567. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  5568. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  5569. }
  5570. #endif // FAN_COUNT > 0
  5571. #if DISABLED(EMERGENCY_PARSER)
  5572. /**
  5573. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  5574. */
  5575. inline void gcode_M108() { wait_for_heatup = false; }
  5576. /**
  5577. * M112: Emergency Stop
  5578. */
  5579. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  5580. /**
  5581. * M410: Quickstop - Abort all planned moves
  5582. *
  5583. * This will stop the carriages mid-move, so most likely they
  5584. * will be out of sync with the stepper position after this.
  5585. */
  5586. inline void gcode_M410() { quickstop_stepper(); }
  5587. #endif
  5588. /**
  5589. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  5590. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  5591. */
  5592. #ifndef MIN_COOLING_SLOPE_DEG
  5593. #define MIN_COOLING_SLOPE_DEG 1.50
  5594. #endif
  5595. #ifndef MIN_COOLING_SLOPE_TIME
  5596. #define MIN_COOLING_SLOPE_TIME 60
  5597. #endif
  5598. inline void gcode_M109() {
  5599. if (get_target_extruder_from_command(109)) return;
  5600. if (DEBUGGING(DRYRUN)) return;
  5601. #if ENABLED(SINGLENOZZLE)
  5602. if (target_extruder != active_extruder) return;
  5603. #endif
  5604. const bool no_wait_for_cooling = code_seen('S');
  5605. if (no_wait_for_cooling || code_seen('R')) {
  5606. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  5607. #if ENABLED(DUAL_X_CARRIAGE)
  5608. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  5609. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  5610. #endif
  5611. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5612. /**
  5613. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  5614. * standby mode, (e.g., in a dual extruder setup) without affecting
  5615. * the running print timer.
  5616. */
  5617. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP) / 2) {
  5618. print_job_timer.stop();
  5619. LCD_MESSAGEPGM(WELCOME_MSG);
  5620. }
  5621. else
  5622. print_job_timer.start();
  5623. #endif
  5624. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  5625. }
  5626. else return;
  5627. #if ENABLED(AUTOTEMP)
  5628. planner.autotemp_M104_M109();
  5629. #endif
  5630. #if TEMP_RESIDENCY_TIME > 0
  5631. millis_t residency_start_ms = 0;
  5632. // Loop until the temperature has stabilized
  5633. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  5634. #else
  5635. // Loop until the temperature is very close target
  5636. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  5637. #endif
  5638. float target_temp = -1.0, old_temp = 9999.0;
  5639. bool wants_to_cool = false;
  5640. wait_for_heatup = true;
  5641. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5642. KEEPALIVE_STATE(NOT_BUSY);
  5643. #if ENABLED(PRINTER_EVENT_LEDS)
  5644. const float start_temp = thermalManager.degHotend(target_extruder);
  5645. uint8_t old_blue = 0;
  5646. #endif
  5647. do {
  5648. // Target temperature might be changed during the loop
  5649. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  5650. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  5651. target_temp = thermalManager.degTargetHotend(target_extruder);
  5652. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5653. if (no_wait_for_cooling && wants_to_cool) break;
  5654. }
  5655. now = millis();
  5656. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  5657. next_temp_ms = now + 1000UL;
  5658. print_heaterstates();
  5659. #if TEMP_RESIDENCY_TIME > 0
  5660. SERIAL_PROTOCOLPGM(" W:");
  5661. if (residency_start_ms) {
  5662. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5663. SERIAL_PROTOCOLLN(rem);
  5664. }
  5665. else {
  5666. SERIAL_PROTOCOLLNPGM("?");
  5667. }
  5668. #else
  5669. SERIAL_EOL;
  5670. #endif
  5671. }
  5672. idle();
  5673. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5674. const float temp = thermalManager.degHotend(target_extruder);
  5675. #if ENABLED(PRINTER_EVENT_LEDS)
  5676. // Gradually change LED strip from violet to red as nozzle heats up
  5677. if (!wants_to_cool) {
  5678. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  5679. if (blue != old_blue) set_led_color(255, 0, (old_blue = blue));
  5680. }
  5681. #endif
  5682. #if TEMP_RESIDENCY_TIME > 0
  5683. const float temp_diff = fabs(target_temp - temp);
  5684. if (!residency_start_ms) {
  5685. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  5686. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  5687. }
  5688. else if (temp_diff > TEMP_HYSTERESIS) {
  5689. // Restart the timer whenever the temperature falls outside the hysteresis.
  5690. residency_start_ms = now;
  5691. }
  5692. #endif
  5693. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  5694. if (wants_to_cool) {
  5695. // break after MIN_COOLING_SLOPE_TIME seconds
  5696. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  5697. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5698. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  5699. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  5700. old_temp = temp;
  5701. }
  5702. }
  5703. } while (wait_for_heatup && TEMP_CONDITIONS);
  5704. if (wait_for_heatup) {
  5705. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  5706. #if ENABLED(PRINTER_EVENT_LEDS)
  5707. #if ENABLED(RGBW_LED)
  5708. set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
  5709. #else
  5710. set_led_color(255, 255, 255); // Set LEDs All On
  5711. #endif
  5712. #endif
  5713. }
  5714. KEEPALIVE_STATE(IN_HANDLER);
  5715. }
  5716. #if HAS_TEMP_BED
  5717. #ifndef MIN_COOLING_SLOPE_DEG_BED
  5718. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  5719. #endif
  5720. #ifndef MIN_COOLING_SLOPE_TIME_BED
  5721. #define MIN_COOLING_SLOPE_TIME_BED 60
  5722. #endif
  5723. /**
  5724. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  5725. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  5726. */
  5727. inline void gcode_M190() {
  5728. if (DEBUGGING(DRYRUN)) return;
  5729. LCD_MESSAGEPGM(MSG_BED_HEATING);
  5730. const bool no_wait_for_cooling = code_seen('S');
  5731. if (no_wait_for_cooling || code_seen('R')) {
  5732. thermalManager.setTargetBed(code_value_temp_abs());
  5733. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  5734. if (code_value_temp_abs() > BED_MINTEMP)
  5735. print_job_timer.start();
  5736. #endif
  5737. }
  5738. else return;
  5739. #if TEMP_BED_RESIDENCY_TIME > 0
  5740. millis_t residency_start_ms = 0;
  5741. // Loop until the temperature has stabilized
  5742. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  5743. #else
  5744. // Loop until the temperature is very close target
  5745. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  5746. #endif
  5747. float target_temp = -1.0, old_temp = 9999.0;
  5748. bool wants_to_cool = false;
  5749. wait_for_heatup = true;
  5750. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  5751. KEEPALIVE_STATE(NOT_BUSY);
  5752. target_extruder = active_extruder; // for print_heaterstates
  5753. #if ENABLED(PRINTER_EVENT_LEDS)
  5754. const float start_temp = thermalManager.degBed();
  5755. uint8_t old_red = 255;
  5756. #endif
  5757. do {
  5758. // Target temperature might be changed during the loop
  5759. if (target_temp != thermalManager.degTargetBed()) {
  5760. wants_to_cool = thermalManager.isCoolingBed();
  5761. target_temp = thermalManager.degTargetBed();
  5762. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  5763. if (no_wait_for_cooling && wants_to_cool) break;
  5764. }
  5765. now = millis();
  5766. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  5767. next_temp_ms = now + 1000UL;
  5768. print_heaterstates();
  5769. #if TEMP_BED_RESIDENCY_TIME > 0
  5770. SERIAL_PROTOCOLPGM(" W:");
  5771. if (residency_start_ms) {
  5772. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  5773. SERIAL_PROTOCOLLN(rem);
  5774. }
  5775. else {
  5776. SERIAL_PROTOCOLLNPGM("?");
  5777. }
  5778. #else
  5779. SERIAL_EOL;
  5780. #endif
  5781. }
  5782. idle();
  5783. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  5784. const float temp = thermalManager.degBed();
  5785. #if ENABLED(PRINTER_EVENT_LEDS)
  5786. // Gradually change LED strip from blue to violet as bed heats up
  5787. if (!wants_to_cool) {
  5788. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  5789. if (red != old_red) set_led_color((old_red = red), 0, 255);
  5790. }
  5791. }
  5792. #endif
  5793. #if TEMP_BED_RESIDENCY_TIME > 0
  5794. const float temp_diff = fabs(target_temp - temp);
  5795. if (!residency_start_ms) {
  5796. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  5797. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  5798. }
  5799. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  5800. // Restart the timer whenever the temperature falls outside the hysteresis.
  5801. residency_start_ms = now;
  5802. }
  5803. #endif // TEMP_BED_RESIDENCY_TIME > 0
  5804. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  5805. if (wants_to_cool) {
  5806. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  5807. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  5808. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  5809. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  5810. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  5811. old_temp = temp;
  5812. }
  5813. }
  5814. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  5815. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  5816. KEEPALIVE_STATE(IN_HANDLER);
  5817. }
  5818. #endif // HAS_TEMP_BED
  5819. /**
  5820. * M110: Set Current Line Number
  5821. */
  5822. inline void gcode_M110() {
  5823. if (code_seen('N')) gcode_LastN = code_value_long();
  5824. }
  5825. /**
  5826. * M111: Set the debug level
  5827. */
  5828. inline void gcode_M111() {
  5829. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t)DEBUG_NONE;
  5830. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  5831. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  5832. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  5833. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  5834. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  5835. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5836. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  5837. #endif
  5838. const static char* const debug_strings[] PROGMEM = {
  5839. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  5840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5841. str_debug_32
  5842. #endif
  5843. };
  5844. SERIAL_ECHO_START;
  5845. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  5846. if (marlin_debug_flags) {
  5847. uint8_t comma = 0;
  5848. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  5849. if (TEST(marlin_debug_flags, i)) {
  5850. if (comma++) SERIAL_CHAR(',');
  5851. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  5852. }
  5853. }
  5854. }
  5855. else {
  5856. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  5857. }
  5858. SERIAL_EOL;
  5859. }
  5860. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5861. /**
  5862. * M113: Get or set Host Keepalive interval (0 to disable)
  5863. *
  5864. * S<seconds> Optional. Set the keepalive interval.
  5865. */
  5866. inline void gcode_M113() {
  5867. if (code_seen('S')) {
  5868. host_keepalive_interval = code_value_byte();
  5869. NOMORE(host_keepalive_interval, 60);
  5870. }
  5871. else {
  5872. SERIAL_ECHO_START;
  5873. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5874. }
  5875. }
  5876. #endif
  5877. #if ENABLED(BARICUDA)
  5878. #if HAS_HEATER_1
  5879. /**
  5880. * M126: Heater 1 valve open
  5881. */
  5882. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  5883. /**
  5884. * M127: Heater 1 valve close
  5885. */
  5886. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  5887. #endif
  5888. #if HAS_HEATER_2
  5889. /**
  5890. * M128: Heater 2 valve open
  5891. */
  5892. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  5893. /**
  5894. * M129: Heater 2 valve close
  5895. */
  5896. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  5897. #endif
  5898. #endif //BARICUDA
  5899. /**
  5900. * M140: Set bed temperature
  5901. */
  5902. inline void gcode_M140() {
  5903. if (DEBUGGING(DRYRUN)) return;
  5904. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  5905. }
  5906. #if ENABLED(ULTIPANEL)
  5907. /**
  5908. * M145: Set the heatup state for a material in the LCD menu
  5909. *
  5910. * S<material> (0=PLA, 1=ABS)
  5911. * H<hotend temp>
  5912. * B<bed temp>
  5913. * F<fan speed>
  5914. */
  5915. inline void gcode_M145() {
  5916. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  5917. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  5918. SERIAL_ERROR_START;
  5919. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  5920. }
  5921. else {
  5922. int v;
  5923. if (code_seen('H')) {
  5924. v = code_value_int();
  5925. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  5926. }
  5927. if (code_seen('F')) {
  5928. v = code_value_int();
  5929. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  5930. }
  5931. #if TEMP_SENSOR_BED != 0
  5932. if (code_seen('B')) {
  5933. v = code_value_int();
  5934. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  5935. }
  5936. #endif
  5937. }
  5938. }
  5939. #endif // ULTIPANEL
  5940. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5941. /**
  5942. * M149: Set temperature units
  5943. */
  5944. inline void gcode_M149() {
  5945. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  5946. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  5947. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  5948. }
  5949. #endif
  5950. #if HAS_POWER_SWITCH
  5951. /**
  5952. * M80: Turn on Power Supply
  5953. */
  5954. inline void gcode_M80() {
  5955. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  5956. /**
  5957. * If you have a switch on suicide pin, this is useful
  5958. * if you want to start another print with suicide feature after
  5959. * a print without suicide...
  5960. */
  5961. #if HAS_SUICIDE
  5962. OUT_WRITE(SUICIDE_PIN, HIGH);
  5963. #endif
  5964. #if ENABLED(HAVE_TMC2130)
  5965. delay(100);
  5966. tmc2130_init(); // Settings only stick when the driver has power
  5967. #endif
  5968. #if ENABLED(ULTIPANEL)
  5969. powersupply = true;
  5970. LCD_MESSAGEPGM(WELCOME_MSG);
  5971. #endif
  5972. }
  5973. #endif // HAS_POWER_SWITCH
  5974. /**
  5975. * M81: Turn off Power, including Power Supply, if there is one.
  5976. *
  5977. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  5978. */
  5979. inline void gcode_M81() {
  5980. thermalManager.disable_all_heaters();
  5981. stepper.finish_and_disable();
  5982. #if FAN_COUNT > 0
  5983. #if FAN_COUNT > 1
  5984. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  5985. #else
  5986. fanSpeeds[0] = 0;
  5987. #endif
  5988. #endif
  5989. safe_delay(1000); // Wait 1 second before switching off
  5990. #if HAS_SUICIDE
  5991. stepper.synchronize();
  5992. suicide();
  5993. #elif HAS_POWER_SWITCH
  5994. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5995. #endif
  5996. #if ENABLED(ULTIPANEL)
  5997. #if HAS_POWER_SWITCH
  5998. powersupply = false;
  5999. #endif
  6000. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  6001. #endif
  6002. }
  6003. /**
  6004. * M82: Set E codes absolute (default)
  6005. */
  6006. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  6007. /**
  6008. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  6009. */
  6010. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  6011. /**
  6012. * M18, M84: Disable all stepper motors
  6013. */
  6014. inline void gcode_M18_M84() {
  6015. if (code_seen('S')) {
  6016. stepper_inactive_time = code_value_millis_from_seconds();
  6017. }
  6018. else {
  6019. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  6020. if (all_axis) {
  6021. stepper.finish_and_disable();
  6022. }
  6023. else {
  6024. stepper.synchronize();
  6025. if (code_seen('X')) disable_X();
  6026. if (code_seen('Y')) disable_Y();
  6027. if (code_seen('Z')) disable_Z();
  6028. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  6029. if (code_seen('E')) disable_e_steppers();
  6030. #endif
  6031. }
  6032. }
  6033. }
  6034. /**
  6035. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  6036. */
  6037. inline void gcode_M85() {
  6038. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  6039. }
  6040. /**
  6041. * Multi-stepper support for M92, M201, M203
  6042. */
  6043. #if ENABLED(DISTINCT_E_FACTORS)
  6044. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  6045. #define TARGET_EXTRUDER target_extruder
  6046. #else
  6047. #define GET_TARGET_EXTRUDER(CMD) NOOP
  6048. #define TARGET_EXTRUDER 0
  6049. #endif
  6050. /**
  6051. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  6052. * (Follows the same syntax as G92)
  6053. *
  6054. * With multiple extruders use T to specify which one.
  6055. */
  6056. inline void gcode_M92() {
  6057. GET_TARGET_EXTRUDER(92);
  6058. LOOP_XYZE(i) {
  6059. if (code_seen(axis_codes[i])) {
  6060. if (i == E_AXIS) {
  6061. const float value = code_value_per_axis_unit(E_AXIS + TARGET_EXTRUDER);
  6062. if (value < 20.0) {
  6063. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  6064. planner.max_jerk[E_AXIS] *= factor;
  6065. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  6066. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  6067. }
  6068. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  6069. }
  6070. else {
  6071. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  6072. }
  6073. }
  6074. }
  6075. planner.refresh_positioning();
  6076. }
  6077. /**
  6078. * Output the current position to serial
  6079. */
  6080. static void report_current_position() {
  6081. SERIAL_PROTOCOLPGM("X:");
  6082. SERIAL_PROTOCOL(current_position[X_AXIS]);
  6083. SERIAL_PROTOCOLPGM(" Y:");
  6084. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  6085. SERIAL_PROTOCOLPGM(" Z:");
  6086. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  6087. SERIAL_PROTOCOLPGM(" E:");
  6088. SERIAL_PROTOCOL(current_position[E_AXIS]);
  6089. stepper.report_positions();
  6090. #if IS_SCARA
  6091. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  6092. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  6093. SERIAL_EOL;
  6094. #endif
  6095. }
  6096. /**
  6097. * M114: Output current position to serial port
  6098. */
  6099. inline void gcode_M114() { stepper.synchronize(); report_current_position(); }
  6100. /**
  6101. * M115: Capabilities string
  6102. */
  6103. inline void gcode_M115() {
  6104. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  6105. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  6106. // EEPROM (M500, M501)
  6107. #if ENABLED(EEPROM_SETTINGS)
  6108. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  6109. #else
  6110. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  6111. #endif
  6112. // AUTOREPORT_TEMP (M155)
  6113. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  6114. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  6115. #else
  6116. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  6117. #endif
  6118. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  6119. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  6120. // AUTOLEVEL (G29)
  6121. #if HAS_ABL
  6122. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  6123. #else
  6124. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  6125. #endif
  6126. // Z_PROBE (G30)
  6127. #if HAS_BED_PROBE
  6128. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  6129. #else
  6130. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  6131. #endif
  6132. // MESH_REPORT (M420 V)
  6133. #if PLANNER_LEVELING
  6134. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  6135. #else
  6136. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  6137. #endif
  6138. // SOFTWARE_POWER (G30)
  6139. #if HAS_POWER_SWITCH
  6140. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  6141. #else
  6142. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  6143. #endif
  6144. // TOGGLE_LIGHTS (M355)
  6145. #if HAS_CASE_LIGHT
  6146. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  6147. #else
  6148. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  6149. #endif
  6150. // EMERGENCY_PARSER (M108, M112, M410)
  6151. #if ENABLED(EMERGENCY_PARSER)
  6152. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  6153. #else
  6154. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  6155. #endif
  6156. #endif // EXTENDED_CAPABILITIES_REPORT
  6157. }
  6158. /**
  6159. * M117: Set LCD Status Message
  6160. */
  6161. inline void gcode_M117() {
  6162. lcd_setstatus(current_command_args);
  6163. }
  6164. /**
  6165. * M119: Output endstop states to serial output
  6166. */
  6167. inline void gcode_M119() { endstops.M119(); }
  6168. /**
  6169. * M120: Enable endstops and set non-homing endstop state to "enabled"
  6170. */
  6171. inline void gcode_M120() { endstops.enable_globally(true); }
  6172. /**
  6173. * M121: Disable endstops and set non-homing endstop state to "disabled"
  6174. */
  6175. inline void gcode_M121() { endstops.enable_globally(false); }
  6176. #if ENABLED(PARK_HEAD_ON_PAUSE)
  6177. /**
  6178. * M125: Store current position and move to filament change position.
  6179. * Called on pause (by M25) to prevent material leaking onto the
  6180. * object. On resume (M24) the head will be moved back and the
  6181. * print will resume.
  6182. *
  6183. * If Marlin is compiled without SD Card support, M125 can be
  6184. * used directly to pause the print and move to park position,
  6185. * resuming with a button click or M108.
  6186. *
  6187. * L = override retract length
  6188. * X = override X
  6189. * Y = override Y
  6190. * Z = override Z raise
  6191. */
  6192. inline void gcode_M125() {
  6193. if (move_away_flag) return; // already paused
  6194. const bool job_running = print_job_timer.isRunning();
  6195. // there are blocks after this one, or sd printing
  6196. move_away_flag = job_running || planner.blocks_queued()
  6197. #if ENABLED(SDSUPPORT)
  6198. || card.sdprinting
  6199. #endif
  6200. ;
  6201. if (!move_away_flag) return; // nothing to pause
  6202. // M125 can be used to pause a print too
  6203. #if ENABLED(SDSUPPORT)
  6204. card.pauseSDPrint();
  6205. #endif
  6206. print_job_timer.pause();
  6207. // Save current position
  6208. COPY(resume_position, current_position);
  6209. set_destination_to_current();
  6210. // Initial retract before move to filament change position
  6211. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  6212. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  6213. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  6214. #endif
  6215. ;
  6216. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  6217. // Lift Z axis
  6218. const float z_lift = code_seen('Z') ? code_value_linear_units() :
  6219. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  6220. FILAMENT_CHANGE_Z_ADD
  6221. #else
  6222. 0
  6223. #endif
  6224. ;
  6225. if (z_lift > 0) {
  6226. destination[Z_AXIS] += z_lift;
  6227. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  6228. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  6229. }
  6230. // Move XY axes to filament change position or given position
  6231. destination[X_AXIS] = code_seen('X') ? code_value_linear_units() : 0
  6232. #ifdef FILAMENT_CHANGE_X_POS
  6233. + FILAMENT_CHANGE_X_POS
  6234. #endif
  6235. ;
  6236. destination[Y_AXIS] = code_seen('Y') ? code_value_linear_units() : 0
  6237. #ifdef FILAMENT_CHANGE_Y_POS
  6238. + FILAMENT_CHANGE_Y_POS
  6239. #endif
  6240. ;
  6241. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  6242. if (active_extruder > 0) {
  6243. if (!code_seen('X')) destination[X_AXIS] += hotend_offset[X_AXIS][active_extruder];
  6244. if (!code_seen('Y')) destination[Y_AXIS] += hotend_offset[Y_AXIS][active_extruder];
  6245. }
  6246. #endif
  6247. clamp_to_software_endstops(destination);
  6248. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  6249. set_current_to_destination();
  6250. stepper.synchronize();
  6251. disable_e_steppers();
  6252. #if DISABLED(SDSUPPORT)
  6253. // Wait for lcd click or M108
  6254. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6255. wait_for_user = true;
  6256. while (wait_for_user) idle();
  6257. KEEPALIVE_STATE(IN_HANDLER);
  6258. // Return to print position and continue
  6259. move_back_on_resume();
  6260. if (job_running) print_job_timer.start();
  6261. move_away_flag = false;
  6262. #endif
  6263. }
  6264. #endif // PARK_HEAD_ON_PAUSE
  6265. #if HAS_COLOR_LEDS
  6266. /**
  6267. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  6268. *
  6269. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  6270. *
  6271. * Examples:
  6272. *
  6273. * M150 R255 ; Turn LED red
  6274. * M150 R255 U127 ; Turn LED orange (PWM only)
  6275. * M150 ; Turn LED off
  6276. * M150 R U B ; Turn LED white
  6277. * M150 W ; Turn LED white using a white LED
  6278. *
  6279. */
  6280. inline void gcode_M150() {
  6281. set_led_color(
  6282. code_seen('R') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6283. code_seen('U') ? (code_has_value() ? code_value_byte() : 255) : 0,
  6284. code_seen('B') ? (code_has_value() ? code_value_byte() : 255) : 0
  6285. #if ENABLED(RGBW_LED)
  6286. , code_seen('W') ? (code_has_value() ? code_value_byte() : 255) : 0
  6287. #endif
  6288. );
  6289. }
  6290. #endif // BLINKM || RGB_LED
  6291. /**
  6292. * M200: Set filament diameter and set E axis units to cubic units
  6293. *
  6294. * T<extruder> - Optional extruder number. Current extruder if omitted.
  6295. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  6296. */
  6297. inline void gcode_M200() {
  6298. if (get_target_extruder_from_command(200)) return;
  6299. if (code_seen('D')) {
  6300. // setting any extruder filament size disables volumetric on the assumption that
  6301. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6302. // for all extruders
  6303. volumetric_enabled = (code_value_linear_units() != 0.0);
  6304. if (volumetric_enabled) {
  6305. filament_size[target_extruder] = code_value_linear_units();
  6306. // make sure all extruders have some sane value for the filament size
  6307. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  6308. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  6309. }
  6310. }
  6311. calculate_volumetric_multipliers();
  6312. }
  6313. /**
  6314. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  6315. *
  6316. * With multiple extruders use T to specify which one.
  6317. */
  6318. inline void gcode_M201() {
  6319. GET_TARGET_EXTRUDER(201);
  6320. LOOP_XYZE(i) {
  6321. if (code_seen(axis_codes[i])) {
  6322. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6323. planner.max_acceleration_mm_per_s2[a] = code_value_axis_units((AxisEnum)a);
  6324. }
  6325. }
  6326. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6327. planner.reset_acceleration_rates();
  6328. }
  6329. #if 0 // Not used for Sprinter/grbl gen6
  6330. inline void gcode_M202() {
  6331. LOOP_XYZE(i) {
  6332. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  6333. }
  6334. }
  6335. #endif
  6336. /**
  6337. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  6338. *
  6339. * With multiple extruders use T to specify which one.
  6340. */
  6341. inline void gcode_M203() {
  6342. GET_TARGET_EXTRUDER(203);
  6343. LOOP_XYZE(i)
  6344. if (code_seen(axis_codes[i])) {
  6345. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  6346. planner.max_feedrate_mm_s[a] = code_value_axis_units((AxisEnum)a);
  6347. }
  6348. }
  6349. /**
  6350. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  6351. *
  6352. * P = Printing moves
  6353. * R = Retract only (no X, Y, Z) moves
  6354. * T = Travel (non printing) moves
  6355. *
  6356. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  6357. */
  6358. inline void gcode_M204() {
  6359. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  6360. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  6361. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  6362. }
  6363. if (code_seen('P')) {
  6364. planner.acceleration = code_value_linear_units();
  6365. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  6366. }
  6367. if (code_seen('R')) {
  6368. planner.retract_acceleration = code_value_linear_units();
  6369. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  6370. }
  6371. if (code_seen('T')) {
  6372. planner.travel_acceleration = code_value_linear_units();
  6373. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  6374. }
  6375. }
  6376. /**
  6377. * M205: Set Advanced Settings
  6378. *
  6379. * S = Min Feed Rate (units/s)
  6380. * T = Min Travel Feed Rate (units/s)
  6381. * B = Min Segment Time (µs)
  6382. * X = Max X Jerk (units/sec^2)
  6383. * Y = Max Y Jerk (units/sec^2)
  6384. * Z = Max Z Jerk (units/sec^2)
  6385. * E = Max E Jerk (units/sec^2)
  6386. */
  6387. inline void gcode_M205() {
  6388. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  6389. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  6390. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  6391. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_linear_units();
  6392. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_linear_units();
  6393. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_linear_units();
  6394. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_linear_units();
  6395. }
  6396. #if HAS_M206_COMMAND
  6397. /**
  6398. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  6399. */
  6400. inline void gcode_M206() {
  6401. LOOP_XYZ(i)
  6402. if (code_seen(axis_codes[i]))
  6403. set_home_offset((AxisEnum)i, code_value_linear_units());
  6404. #if ENABLED(MORGAN_SCARA)
  6405. if (code_seen('T')) set_home_offset(A_AXIS, code_value_linear_units()); // Theta
  6406. if (code_seen('P')) set_home_offset(B_AXIS, code_value_linear_units()); // Psi
  6407. #endif
  6408. SYNC_PLAN_POSITION_KINEMATIC();
  6409. report_current_position();
  6410. }
  6411. #endif // HAS_M206_COMMAND
  6412. #if ENABLED(DELTA)
  6413. /**
  6414. * M665: Set delta configurations
  6415. *
  6416. * H = diagonal rod // AC-version
  6417. * L = diagonal rod
  6418. * R = delta radius
  6419. * S = segments per second
  6420. * A = Alpha (Tower 1) diagonal rod trim
  6421. * B = Beta (Tower 2) diagonal rod trim
  6422. * C = Gamma (Tower 3) diagonal rod trim
  6423. */
  6424. inline void gcode_M665() {
  6425. if (code_seen('H')) {
  6426. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6427. current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
  6428. home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
  6429. update_software_endstops(Z_AXIS);
  6430. }
  6431. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  6432. if (code_seen('R')) delta_radius = code_value_linear_units();
  6433. if (code_seen('S')) delta_segments_per_second = code_value_float();
  6434. if (code_seen('B')) delta_calibration_radius = code_value_float();
  6435. if (code_seen('X')) delta_tower_angle_trim[A_AXIS] = code_value_linear_units();
  6436. if (code_seen('Y')) delta_tower_angle_trim[B_AXIS] = code_value_linear_units();
  6437. if (code_seen('Z')) { // rotate all 3 axis for Z = 0
  6438. delta_tower_angle_trim[A_AXIS] -= code_value_linear_units();
  6439. delta_tower_angle_trim[B_AXIS] -= code_value_linear_units();
  6440. }
  6441. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  6442. }
  6443. /**
  6444. * M666: Set delta endstop adjustment
  6445. */
  6446. inline void gcode_M666() {
  6447. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6448. if (DEBUGGING(LEVELING)) {
  6449. SERIAL_ECHOLNPGM(">>> gcode_M666");
  6450. }
  6451. #endif
  6452. LOOP_XYZ(i) {
  6453. if (code_seen(axis_codes[i])) {
  6454. endstop_adj[i] = code_value_linear_units();
  6455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6456. if (DEBUGGING(LEVELING)) {
  6457. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  6458. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  6459. }
  6460. #endif
  6461. }
  6462. }
  6463. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6464. if (DEBUGGING(LEVELING)) {
  6465. SERIAL_ECHOLNPGM("<<< gcode_M666");
  6466. }
  6467. #endif
  6468. // normalize endstops so all are <=0; set the residue to delta height
  6469. const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
  6470. home_offset[Z_AXIS] -= z_temp;
  6471. LOOP_XYZ(i) endstop_adj[i] -= z_temp;
  6472. }
  6473. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  6474. /**
  6475. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  6476. */
  6477. inline void gcode_M666() {
  6478. if (code_seen('Z')) z_endstop_adj = code_value_linear_units();
  6479. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  6480. }
  6481. #endif // !DELTA && Z_DUAL_ENDSTOPS
  6482. #if ENABLED(FWRETRACT)
  6483. /**
  6484. * M207: Set firmware retraction values
  6485. *
  6486. * S[+units] retract_length
  6487. * W[+units] retract_length_swap (multi-extruder)
  6488. * F[units/min] retract_feedrate_mm_s
  6489. * Z[units] retract_zlift
  6490. */
  6491. inline void gcode_M207() {
  6492. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  6493. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6494. if (code_seen('Z')) retract_zlift = code_value_linear_units();
  6495. #if EXTRUDERS > 1
  6496. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  6497. #endif
  6498. }
  6499. /**
  6500. * M208: Set firmware un-retraction values
  6501. *
  6502. * S[+units] retract_recover_length (in addition to M207 S*)
  6503. * W[+units] retract_recover_length_swap (multi-extruder)
  6504. * F[units/min] retract_recover_feedrate_mm_s
  6505. */
  6506. inline void gcode_M208() {
  6507. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  6508. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  6509. #if EXTRUDERS > 1
  6510. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  6511. #endif
  6512. }
  6513. /**
  6514. * M209: Enable automatic retract (M209 S1)
  6515. * For slicers that don't support G10/11, reversed extrude-only
  6516. * moves will be classified as retraction.
  6517. */
  6518. inline void gcode_M209() {
  6519. if (code_seen('S')) {
  6520. autoretract_enabled = code_value_bool();
  6521. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  6522. }
  6523. }
  6524. #endif // FWRETRACT
  6525. /**
  6526. * M211: Enable, Disable, and/or Report software endstops
  6527. *
  6528. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  6529. */
  6530. inline void gcode_M211() {
  6531. SERIAL_ECHO_START;
  6532. #if HAS_SOFTWARE_ENDSTOPS
  6533. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  6534. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6535. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  6536. #else
  6537. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  6538. SERIAL_ECHOPGM(MSG_OFF);
  6539. #endif
  6540. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  6541. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  6542. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  6543. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  6544. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  6545. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  6546. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  6547. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  6548. }
  6549. #if HOTENDS > 1
  6550. /**
  6551. * M218 - set hotend offset (in linear units)
  6552. *
  6553. * T<tool>
  6554. * X<xoffset>
  6555. * Y<yoffset>
  6556. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  6557. */
  6558. inline void gcode_M218() {
  6559. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  6560. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_linear_units();
  6561. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_linear_units();
  6562. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6563. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_linear_units();
  6564. #endif
  6565. SERIAL_ECHO_START;
  6566. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  6567. HOTEND_LOOP() {
  6568. SERIAL_CHAR(' ');
  6569. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  6570. SERIAL_CHAR(',');
  6571. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  6572. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  6573. SERIAL_CHAR(',');
  6574. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  6575. #endif
  6576. }
  6577. SERIAL_EOL;
  6578. }
  6579. #endif // HOTENDS > 1
  6580. /**
  6581. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  6582. */
  6583. inline void gcode_M220() {
  6584. if (code_seen('S')) feedrate_percentage = code_value_int();
  6585. }
  6586. /**
  6587. * M221: Set extrusion percentage (M221 T0 S95)
  6588. */
  6589. inline void gcode_M221() {
  6590. if (get_target_extruder_from_command(221)) return;
  6591. if (code_seen('S'))
  6592. flow_percentage[target_extruder] = code_value_int();
  6593. }
  6594. /**
  6595. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  6596. */
  6597. inline void gcode_M226() {
  6598. if (code_seen('P')) {
  6599. int pin_number = code_value_int(),
  6600. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  6601. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  6602. int target = LOW;
  6603. stepper.synchronize();
  6604. pinMode(pin_number, INPUT);
  6605. switch (pin_state) {
  6606. case 1:
  6607. target = HIGH;
  6608. break;
  6609. case 0:
  6610. target = LOW;
  6611. break;
  6612. case -1:
  6613. target = !digitalRead(pin_number);
  6614. break;
  6615. }
  6616. while (digitalRead(pin_number) != target) idle();
  6617. } // pin_state -1 0 1 && pin_number > -1
  6618. } // code_seen('P')
  6619. }
  6620. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6621. /**
  6622. * M260: Send data to a I2C slave device
  6623. *
  6624. * This is a PoC, the formating and arguments for the GCODE will
  6625. * change to be more compatible, the current proposal is:
  6626. *
  6627. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  6628. *
  6629. * M260 B<byte-1 value in base 10>
  6630. * M260 B<byte-2 value in base 10>
  6631. * M260 B<byte-3 value in base 10>
  6632. *
  6633. * M260 S1 ; Send the buffered data and reset the buffer
  6634. * M260 R1 ; Reset the buffer without sending data
  6635. *
  6636. */
  6637. inline void gcode_M260() {
  6638. // Set the target address
  6639. if (code_seen('A')) i2c.address(code_value_byte());
  6640. // Add a new byte to the buffer
  6641. if (code_seen('B')) i2c.addbyte(code_value_byte());
  6642. // Flush the buffer to the bus
  6643. if (code_seen('S')) i2c.send();
  6644. // Reset and rewind the buffer
  6645. else if (code_seen('R')) i2c.reset();
  6646. }
  6647. /**
  6648. * M261: Request X bytes from I2C slave device
  6649. *
  6650. * Usage: M261 A<slave device address base 10> B<number of bytes>
  6651. */
  6652. inline void gcode_M261() {
  6653. if (code_seen('A')) i2c.address(code_value_byte());
  6654. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  6655. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  6656. i2c.relay(bytes);
  6657. }
  6658. else {
  6659. SERIAL_ERROR_START;
  6660. SERIAL_ERRORLN("Bad i2c request");
  6661. }
  6662. }
  6663. #endif // EXPERIMENTAL_I2CBUS
  6664. #if HAS_SERVOS
  6665. /**
  6666. * M280: Get or set servo position. P<index> [S<angle>]
  6667. */
  6668. inline void gcode_M280() {
  6669. if (!code_seen('P')) return;
  6670. int servo_index = code_value_int();
  6671. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  6672. if (code_seen('S'))
  6673. MOVE_SERVO(servo_index, code_value_int());
  6674. else {
  6675. SERIAL_ECHO_START;
  6676. SERIAL_ECHOPAIR(" Servo ", servo_index);
  6677. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  6678. }
  6679. }
  6680. else {
  6681. SERIAL_ERROR_START;
  6682. SERIAL_ECHOPAIR("Servo ", servo_index);
  6683. SERIAL_ECHOLNPGM(" out of range");
  6684. }
  6685. }
  6686. #endif // HAS_SERVOS
  6687. #if HAS_BUZZER
  6688. /**
  6689. * M300: Play beep sound S<frequency Hz> P<duration ms>
  6690. */
  6691. inline void gcode_M300() {
  6692. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  6693. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  6694. // Limits the tone duration to 0-5 seconds.
  6695. NOMORE(duration, 5000);
  6696. BUZZ(duration, frequency);
  6697. }
  6698. #endif // HAS_BUZZER
  6699. #if ENABLED(PIDTEMP)
  6700. /**
  6701. * M301: Set PID parameters P I D (and optionally C, L)
  6702. *
  6703. * P[float] Kp term
  6704. * I[float] Ki term (unscaled)
  6705. * D[float] Kd term (unscaled)
  6706. *
  6707. * With PID_EXTRUSION_SCALING:
  6708. *
  6709. * C[float] Kc term
  6710. * L[float] LPQ length
  6711. */
  6712. inline void gcode_M301() {
  6713. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  6714. // default behaviour (omitting E parameter) is to update for extruder 0 only
  6715. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  6716. if (e < HOTENDS) { // catch bad input value
  6717. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  6718. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  6719. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  6720. #if ENABLED(PID_EXTRUSION_SCALING)
  6721. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  6722. if (code_seen('L')) lpq_len = code_value_float();
  6723. NOMORE(lpq_len, LPQ_MAX_LEN);
  6724. #endif
  6725. thermalManager.updatePID();
  6726. SERIAL_ECHO_START;
  6727. #if ENABLED(PID_PARAMS_PER_HOTEND)
  6728. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  6729. #endif // PID_PARAMS_PER_HOTEND
  6730. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  6731. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  6732. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  6733. #if ENABLED(PID_EXTRUSION_SCALING)
  6734. //Kc does not have scaling applied above, or in resetting defaults
  6735. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  6736. #endif
  6737. SERIAL_EOL;
  6738. }
  6739. else {
  6740. SERIAL_ERROR_START;
  6741. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  6742. }
  6743. }
  6744. #endif // PIDTEMP
  6745. #if ENABLED(PIDTEMPBED)
  6746. inline void gcode_M304() {
  6747. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  6748. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  6749. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  6750. thermalManager.updatePID();
  6751. SERIAL_ECHO_START;
  6752. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  6753. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  6754. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  6755. }
  6756. #endif // PIDTEMPBED
  6757. #if defined(CHDK) || HAS_PHOTOGRAPH
  6758. /**
  6759. * M240: Trigger a camera by emulating a Canon RC-1
  6760. * See http://www.doc-diy.net/photo/rc-1_hacked/
  6761. */
  6762. inline void gcode_M240() {
  6763. #ifdef CHDK
  6764. OUT_WRITE(CHDK, HIGH);
  6765. chdkHigh = millis();
  6766. chdkActive = true;
  6767. #elif HAS_PHOTOGRAPH
  6768. const uint8_t NUM_PULSES = 16;
  6769. const float PULSE_LENGTH = 0.01524;
  6770. for (int i = 0; i < NUM_PULSES; i++) {
  6771. WRITE(PHOTOGRAPH_PIN, HIGH);
  6772. _delay_ms(PULSE_LENGTH);
  6773. WRITE(PHOTOGRAPH_PIN, LOW);
  6774. _delay_ms(PULSE_LENGTH);
  6775. }
  6776. delay(7.33);
  6777. for (int i = 0; i < NUM_PULSES; i++) {
  6778. WRITE(PHOTOGRAPH_PIN, HIGH);
  6779. _delay_ms(PULSE_LENGTH);
  6780. WRITE(PHOTOGRAPH_PIN, LOW);
  6781. _delay_ms(PULSE_LENGTH);
  6782. }
  6783. #endif // !CHDK && HAS_PHOTOGRAPH
  6784. }
  6785. #endif // CHDK || PHOTOGRAPH_PIN
  6786. #if HAS_LCD_CONTRAST
  6787. /**
  6788. * M250: Read and optionally set the LCD contrast
  6789. */
  6790. inline void gcode_M250() {
  6791. if (code_seen('C')) set_lcd_contrast(code_value_int());
  6792. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  6793. SERIAL_PROTOCOL(lcd_contrast);
  6794. SERIAL_EOL;
  6795. }
  6796. #endif // HAS_LCD_CONTRAST
  6797. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6798. /**
  6799. * M302: Allow cold extrudes, or set the minimum extrude temperature
  6800. *
  6801. * S<temperature> sets the minimum extrude temperature
  6802. * P<bool> enables (1) or disables (0) cold extrusion
  6803. *
  6804. * Examples:
  6805. *
  6806. * M302 ; report current cold extrusion state
  6807. * M302 P0 ; enable cold extrusion checking
  6808. * M302 P1 ; disables cold extrusion checking
  6809. * M302 S0 ; always allow extrusion (disables checking)
  6810. * M302 S170 ; only allow extrusion above 170
  6811. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  6812. */
  6813. inline void gcode_M302() {
  6814. bool seen_S = code_seen('S');
  6815. if (seen_S) {
  6816. thermalManager.extrude_min_temp = code_value_temp_abs();
  6817. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  6818. }
  6819. if (code_seen('P'))
  6820. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  6821. else if (!seen_S) {
  6822. // Report current state
  6823. SERIAL_ECHO_START;
  6824. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  6825. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  6826. SERIAL_ECHOLNPGM("C)");
  6827. }
  6828. }
  6829. #endif // PREVENT_COLD_EXTRUSION
  6830. /**
  6831. * M303: PID relay autotune
  6832. *
  6833. * S<temperature> sets the target temperature. (default 150C)
  6834. * E<extruder> (-1 for the bed) (default 0)
  6835. * C<cycles>
  6836. * U<bool> with a non-zero value will apply the result to current settings
  6837. */
  6838. inline void gcode_M303() {
  6839. #if HAS_PID_HEATING
  6840. int e = code_seen('E') ? code_value_int() : 0;
  6841. int c = code_seen('C') ? code_value_int() : 5;
  6842. bool u = code_seen('U') && code_value_bool();
  6843. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  6844. if (WITHIN(e, 0, HOTENDS - 1))
  6845. target_extruder = e;
  6846. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  6847. thermalManager.PID_autotune(temp, e, c, u);
  6848. KEEPALIVE_STATE(IN_HANDLER);
  6849. #else
  6850. SERIAL_ERROR_START;
  6851. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  6852. #endif
  6853. }
  6854. #if ENABLED(MORGAN_SCARA)
  6855. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  6856. if (IsRunning()) {
  6857. forward_kinematics_SCARA(delta_a, delta_b);
  6858. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  6859. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  6860. destination[Z_AXIS] = current_position[Z_AXIS];
  6861. prepare_move_to_destination();
  6862. return true;
  6863. }
  6864. return false;
  6865. }
  6866. /**
  6867. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  6868. */
  6869. inline bool gcode_M360() {
  6870. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  6871. return SCARA_move_to_cal(0, 120);
  6872. }
  6873. /**
  6874. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  6875. */
  6876. inline bool gcode_M361() {
  6877. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  6878. return SCARA_move_to_cal(90, 130);
  6879. }
  6880. /**
  6881. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  6882. */
  6883. inline bool gcode_M362() {
  6884. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  6885. return SCARA_move_to_cal(60, 180);
  6886. }
  6887. /**
  6888. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  6889. */
  6890. inline bool gcode_M363() {
  6891. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  6892. return SCARA_move_to_cal(50, 90);
  6893. }
  6894. /**
  6895. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  6896. */
  6897. inline bool gcode_M364() {
  6898. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  6899. return SCARA_move_to_cal(45, 135);
  6900. }
  6901. #endif // SCARA
  6902. #if ENABLED(EXT_SOLENOID)
  6903. void enable_solenoid(const uint8_t num) {
  6904. switch (num) {
  6905. case 0:
  6906. OUT_WRITE(SOL0_PIN, HIGH);
  6907. break;
  6908. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6909. case 1:
  6910. OUT_WRITE(SOL1_PIN, HIGH);
  6911. break;
  6912. #endif
  6913. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6914. case 2:
  6915. OUT_WRITE(SOL2_PIN, HIGH);
  6916. break;
  6917. #endif
  6918. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6919. case 3:
  6920. OUT_WRITE(SOL3_PIN, HIGH);
  6921. break;
  6922. #endif
  6923. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6924. case 4:
  6925. OUT_WRITE(SOL4_PIN, HIGH);
  6926. break;
  6927. #endif
  6928. default:
  6929. SERIAL_ECHO_START;
  6930. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  6931. break;
  6932. }
  6933. }
  6934. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  6935. void disable_all_solenoids() {
  6936. OUT_WRITE(SOL0_PIN, LOW);
  6937. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  6938. OUT_WRITE(SOL1_PIN, LOW);
  6939. #endif
  6940. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  6941. OUT_WRITE(SOL2_PIN, LOW);
  6942. #endif
  6943. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  6944. OUT_WRITE(SOL3_PIN, LOW);
  6945. #endif
  6946. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  6947. OUT_WRITE(SOL4_PIN, LOW);
  6948. #endif
  6949. }
  6950. /**
  6951. * M380: Enable solenoid on the active extruder
  6952. */
  6953. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  6954. /**
  6955. * M381: Disable all solenoids
  6956. */
  6957. inline void gcode_M381() { disable_all_solenoids(); }
  6958. #endif // EXT_SOLENOID
  6959. /**
  6960. * M400: Finish all moves
  6961. */
  6962. inline void gcode_M400() { stepper.synchronize(); }
  6963. #if HAS_BED_PROBE
  6964. /**
  6965. * M401: Engage Z Servo endstop if available
  6966. */
  6967. inline void gcode_M401() { DEPLOY_PROBE(); }
  6968. /**
  6969. * M402: Retract Z Servo endstop if enabled
  6970. */
  6971. inline void gcode_M402() { STOW_PROBE(); }
  6972. #endif // HAS_BED_PROBE
  6973. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6974. /**
  6975. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  6976. */
  6977. inline void gcode_M404() {
  6978. if (code_seen('W')) {
  6979. filament_width_nominal = code_value_linear_units();
  6980. }
  6981. else {
  6982. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  6983. SERIAL_PROTOCOLLN(filament_width_nominal);
  6984. }
  6985. }
  6986. /**
  6987. * M405: Turn on filament sensor for control
  6988. */
  6989. inline void gcode_M405() {
  6990. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  6991. // everything else, it uses code_value_int() instead of code_value_linear_units().
  6992. if (code_seen('D')) meas_delay_cm = code_value_int();
  6993. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  6994. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  6995. const int temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  6996. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  6997. measurement_delay[i] = temp_ratio;
  6998. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  6999. }
  7000. filament_sensor = true;
  7001. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7002. //SERIAL_PROTOCOL(filament_width_meas);
  7003. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  7004. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  7005. }
  7006. /**
  7007. * M406: Turn off filament sensor for control
  7008. */
  7009. inline void gcode_M406() { filament_sensor = false; }
  7010. /**
  7011. * M407: Get measured filament diameter on serial output
  7012. */
  7013. inline void gcode_M407() {
  7014. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  7015. SERIAL_PROTOCOLLN(filament_width_meas);
  7016. }
  7017. #endif // FILAMENT_WIDTH_SENSOR
  7018. void quickstop_stepper() {
  7019. stepper.quick_stop();
  7020. stepper.synchronize();
  7021. set_current_from_steppers_for_axis(ALL_AXES);
  7022. SYNC_PLAN_POSITION_KINEMATIC();
  7023. }
  7024. #if PLANNER_LEVELING
  7025. /**
  7026. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  7027. *
  7028. * S[bool] Turns leveling on or off
  7029. * Z[height] Sets the Z fade height (0 or none to disable)
  7030. * V[bool] Verbose - Print the leveling grid
  7031. *
  7032. * With AUTO_BED_LEVELING_UBL only:
  7033. *
  7034. * L[index] Load UBL mesh from index (0 is default)
  7035. */
  7036. inline void gcode_M420() {
  7037. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7038. // L to load a mesh from the EEPROM
  7039. if (code_seen('L')) {
  7040. const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
  7041. const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
  7042. if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
  7043. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
  7044. return;
  7045. }
  7046. ubl.load_mesh(storage_slot);
  7047. ubl.state.eeprom_storage_slot = storage_slot;
  7048. }
  7049. #endif // AUTO_BED_LEVELING_UBL
  7050. // V to print the matrix or mesh
  7051. if (code_seen('V')) {
  7052. #if ABL_PLANAR
  7053. planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
  7054. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7055. if (bilinear_grid_spacing[X_AXIS]) {
  7056. print_bilinear_leveling_grid();
  7057. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7058. bed_level_virt_print();
  7059. #endif
  7060. }
  7061. #elif ENABLED(MESH_BED_LEVELING)
  7062. if (mbl.has_mesh()) {
  7063. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  7064. mbl_mesh_report();
  7065. }
  7066. #endif
  7067. }
  7068. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7069. // L to load a mesh from the EEPROM
  7070. if (code_seen('L') || code_seen('V')) {
  7071. ubl.display_map(0); // Currently only supports one map type
  7072. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  7073. SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
  7074. }
  7075. #endif
  7076. bool to_enable = false;
  7077. if (code_seen('S')) {
  7078. to_enable = code_value_bool();
  7079. set_bed_leveling_enabled(to_enable);
  7080. }
  7081. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  7082. if (code_seen('Z')) set_z_fade_height(code_value_linear_units());
  7083. #endif
  7084. const bool new_status =
  7085. #if ENABLED(MESH_BED_LEVELING)
  7086. mbl.active()
  7087. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  7088. ubl.state.active
  7089. #else
  7090. planner.abl_enabled
  7091. #endif
  7092. ;
  7093. if (to_enable && !new_status) {
  7094. SERIAL_ERROR_START;
  7095. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  7096. }
  7097. SERIAL_ECHO_START;
  7098. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  7099. }
  7100. #endif
  7101. #if ENABLED(MESH_BED_LEVELING)
  7102. /**
  7103. * M421: Set a single Mesh Bed Leveling Z coordinate
  7104. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  7105. */
  7106. inline void gcode_M421() {
  7107. int8_t px = 0, py = 0;
  7108. float z = 0;
  7109. bool hasX, hasY, hasZ, hasI, hasJ;
  7110. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_linear_units());
  7111. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_linear_units());
  7112. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7113. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7114. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7115. if (hasX && hasY && hasZ) {
  7116. if (px >= 0 && py >= 0)
  7117. mbl.set_z(px, py, z);
  7118. else {
  7119. SERIAL_ERROR_START;
  7120. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7121. }
  7122. }
  7123. else if (hasI && hasJ && hasZ) {
  7124. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_Y - 1))
  7125. mbl.set_z(px, py, z);
  7126. else {
  7127. SERIAL_ERROR_START;
  7128. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7129. }
  7130. }
  7131. else {
  7132. SERIAL_ERROR_START;
  7133. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7134. }
  7135. }
  7136. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
  7137. /**
  7138. * M421: Set a single Mesh Bed Leveling Z coordinate
  7139. *
  7140. * M421 I<xindex> J<yindex> Z<linear>
  7141. */
  7142. inline void gcode_M421() {
  7143. int8_t px = 0, py = 0;
  7144. float z = 0;
  7145. bool hasI, hasJ, hasZ;
  7146. if ((hasI = code_seen('I'))) px = code_value_linear_units();
  7147. if ((hasJ = code_seen('J'))) py = code_value_linear_units();
  7148. if ((hasZ = code_seen('Z'))) z = code_value_linear_units();
  7149. if (hasI && hasJ && hasZ) {
  7150. if (WITHIN(px, 0, GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, GRID_MAX_POINTS_X - 1)) {
  7151. #if ENABLED(AUTO_BED_LEVELING_UBL)
  7152. ubl.z_values[px][py] = z;
  7153. #else
  7154. z_values[px][py] = z;
  7155. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7156. bed_level_virt_interpolate();
  7157. #endif
  7158. #endif
  7159. }
  7160. else {
  7161. SERIAL_ERROR_START;
  7162. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  7163. }
  7164. }
  7165. else {
  7166. SERIAL_ERROR_START;
  7167. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  7168. }
  7169. }
  7170. #endif
  7171. #if HAS_M206_COMMAND
  7172. /**
  7173. * M428: Set home_offset based on the distance between the
  7174. * current_position and the nearest "reference point."
  7175. * If an axis is past center its endstop position
  7176. * is the reference-point. Otherwise it uses 0. This allows
  7177. * the Z offset to be set near the bed when using a max endstop.
  7178. *
  7179. * M428 can't be used more than 2cm away from 0 or an endstop.
  7180. *
  7181. * Use M206 to set these values directly.
  7182. */
  7183. inline void gcode_M428() {
  7184. bool err = false;
  7185. LOOP_XYZ(i) {
  7186. if (axis_homed[i]) {
  7187. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  7188. diff = current_position[i] - LOGICAL_POSITION(base, i);
  7189. if (WITHIN(diff, -20, 20)) {
  7190. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  7191. }
  7192. else {
  7193. SERIAL_ERROR_START;
  7194. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  7195. LCD_ALERTMESSAGEPGM("Err: Too far!");
  7196. BUZZ(200, 40);
  7197. err = true;
  7198. break;
  7199. }
  7200. }
  7201. }
  7202. if (!err) {
  7203. SYNC_PLAN_POSITION_KINEMATIC();
  7204. report_current_position();
  7205. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  7206. BUZZ(100, 659);
  7207. BUZZ(100, 698);
  7208. }
  7209. }
  7210. #endif // HAS_M206_COMMAND
  7211. /**
  7212. * M500: Store settings in EEPROM
  7213. */
  7214. inline void gcode_M500() {
  7215. (void)settings.save();
  7216. }
  7217. /**
  7218. * M501: Read settings from EEPROM
  7219. */
  7220. inline void gcode_M501() {
  7221. (void)settings.load();
  7222. }
  7223. /**
  7224. * M502: Revert to default settings
  7225. */
  7226. inline void gcode_M502() {
  7227. (void)settings.reset();
  7228. }
  7229. /**
  7230. * M503: print settings currently in memory
  7231. */
  7232. inline void gcode_M503() {
  7233. (void)settings.report(code_seen('S') && !code_value_bool());
  7234. }
  7235. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  7236. /**
  7237. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  7238. */
  7239. inline void gcode_M540() {
  7240. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  7241. }
  7242. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  7243. #if HAS_BED_PROBE
  7244. void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
  7245. static float last_zoffset = NAN;
  7246. if (!isnan(last_zoffset)) {
  7247. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
  7248. const float diff = zprobe_zoffset - last_zoffset;
  7249. #endif
  7250. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7251. // Correct bilinear grid for new probe offset
  7252. if (diff) {
  7253. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  7254. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  7255. z_values[x][y] -= diff;
  7256. }
  7257. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  7258. bed_level_virt_interpolate();
  7259. #endif
  7260. #endif
  7261. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7262. if (!no_babystep && planner.abl_enabled)
  7263. thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
  7264. #else
  7265. UNUSED(no_babystep);
  7266. #endif
  7267. #if ENABLED(DELTA) // correct the delta_height
  7268. home_offset[Z_AXIS] -= diff;
  7269. #endif
  7270. }
  7271. last_zoffset = zprobe_zoffset;
  7272. }
  7273. inline void gcode_M851() {
  7274. SERIAL_ECHO_START;
  7275. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
  7276. if (code_seen('Z')) {
  7277. const float value = code_value_linear_units();
  7278. if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  7279. zprobe_zoffset = value;
  7280. refresh_zprobe_zoffset();
  7281. SERIAL_ECHO(zprobe_zoffset);
  7282. }
  7283. else
  7284. SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  7285. }
  7286. else
  7287. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  7288. SERIAL_EOL;
  7289. }
  7290. #endif // HAS_BED_PROBE
  7291. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7292. void filament_change_beep(const bool init=false) {
  7293. static millis_t next_buzz = 0;
  7294. static uint16_t runout_beep = 0;
  7295. if (init) next_buzz = runout_beep = 0;
  7296. const millis_t ms = millis();
  7297. if (ELAPSED(ms, next_buzz)) {
  7298. if (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS + 5) { // Only beep as long as we're supposed to
  7299. next_buzz = ms + (runout_beep <= FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS ? 2500 : 400);
  7300. BUZZ(300, 2000);
  7301. runout_beep++;
  7302. }
  7303. }
  7304. }
  7305. static bool busy_doing_M600 = false;
  7306. /**
  7307. * M600: Pause for filament change
  7308. *
  7309. * E[distance] - Retract the filament this far (negative value)
  7310. * Z[distance] - Move the Z axis by this distance
  7311. * X[position] - Move to this X position, with Y
  7312. * Y[position] - Move to this Y position, with X
  7313. * L[distance] - Retract distance for removal (manual reload)
  7314. *
  7315. * Default values are used for omitted arguments.
  7316. *
  7317. */
  7318. inline void gcode_M600() {
  7319. if (!DEBUGGING(DRYRUN) && thermalManager.tooColdToExtrude(active_extruder)) {
  7320. SERIAL_ERROR_START;
  7321. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  7322. return;
  7323. }
  7324. busy_doing_M600 = true; // Stepper Motors can't timeout when this is set
  7325. // Pause the print job timer
  7326. const bool job_running = print_job_timer.isRunning();
  7327. print_job_timer.pause();
  7328. // Show initial message and wait for synchronize steppers
  7329. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  7330. stepper.synchronize();
  7331. // Save current position of all axes
  7332. float lastpos[XYZE];
  7333. COPY(lastpos, current_position);
  7334. set_destination_to_current();
  7335. // Initial retract before move to filament change position
  7336. destination[E_AXIS] += code_seen('E') ? code_value_axis_units(E_AXIS) : 0
  7337. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  7338. - (FILAMENT_CHANGE_RETRACT_LENGTH)
  7339. #endif
  7340. ;
  7341. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  7342. // Lift Z axis
  7343. float z_lift = code_seen('Z') ? code_value_linear_units() :
  7344. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  7345. FILAMENT_CHANGE_Z_ADD
  7346. #else
  7347. 0
  7348. #endif
  7349. ;
  7350. if (z_lift > 0) {
  7351. destination[Z_AXIS] += z_lift;
  7352. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  7353. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7354. }
  7355. // Move XY axes to filament exchange position
  7356. if (code_seen('X')) destination[X_AXIS] = code_value_linear_units();
  7357. #ifdef FILAMENT_CHANGE_X_POS
  7358. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  7359. #endif
  7360. if (code_seen('Y')) destination[Y_AXIS] = code_value_linear_units();
  7361. #ifdef FILAMENT_CHANGE_Y_POS
  7362. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  7363. #endif
  7364. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7365. stepper.synchronize();
  7366. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  7367. idle();
  7368. // Unload filament
  7369. destination[E_AXIS] += code_seen('L') ? code_value_axis_units(E_AXIS) : 0
  7370. #if FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  7371. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  7372. #endif
  7373. ;
  7374. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  7375. // Synchronize steppers and then disable extruders steppers for manual filament changing
  7376. stepper.synchronize();
  7377. disable_e_steppers();
  7378. safe_delay(100);
  7379. const millis_t nozzle_timeout = millis() + (millis_t)(FILAMENT_CHANGE_NOZZLE_TIMEOUT) * 1000UL;
  7380. bool nozzle_timed_out = false;
  7381. float temps[4];
  7382. // Wait for filament insert by user and press button
  7383. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7384. #if HAS_BUZZER
  7385. filament_change_beep(true);
  7386. #endif
  7387. idle();
  7388. HOTEND_LOOP() temps[e] = thermalManager.target_temperature[e]; // Save nozzle temps
  7389. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7390. wait_for_user = true; // LCD click or M108 will clear this
  7391. while (wait_for_user) {
  7392. if (nozzle_timed_out)
  7393. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7394. #if HAS_BUZZER
  7395. filament_change_beep();
  7396. #endif
  7397. if (!nozzle_timed_out && ELAPSED(millis(), nozzle_timeout)) {
  7398. nozzle_timed_out = true; // on nozzle timeout remember the nozzles need to be reheated
  7399. HOTEND_LOOP() thermalManager.setTargetHotend(0, e); // Turn off all the nozzles
  7400. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  7401. }
  7402. idle(true);
  7403. }
  7404. KEEPALIVE_STATE(IN_HANDLER);
  7405. if (nozzle_timed_out) // Turn nozzles back on if they were turned off
  7406. HOTEND_LOOP() thermalManager.setTargetHotend(temps[e], e);
  7407. // Show "wait for heating"
  7408. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  7409. wait_for_heatup = true;
  7410. while (wait_for_heatup) {
  7411. idle();
  7412. wait_for_heatup = false;
  7413. HOTEND_LOOP() {
  7414. if (abs(thermalManager.degHotend(e) - temps[e]) > 3) {
  7415. wait_for_heatup = true;
  7416. break;
  7417. }
  7418. }
  7419. }
  7420. // Show "insert filament"
  7421. if (nozzle_timed_out)
  7422. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  7423. #if HAS_BUZZER
  7424. filament_change_beep(true);
  7425. #endif
  7426. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7427. wait_for_user = true; // LCD click or M108 will clear this
  7428. while (wait_for_user && nozzle_timed_out) {
  7429. #if HAS_BUZZER
  7430. filament_change_beep();
  7431. #endif
  7432. idle(true);
  7433. }
  7434. KEEPALIVE_STATE(IN_HANDLER);
  7435. // Show "load" message
  7436. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  7437. // Load filament
  7438. destination[E_AXIS] += code_seen('L') ? -code_value_axis_units(E_AXIS) : 0
  7439. #if FILAMENT_CHANGE_LOAD_LENGTH > 0
  7440. + FILAMENT_CHANGE_LOAD_LENGTH
  7441. #endif
  7442. ;
  7443. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  7444. stepper.synchronize();
  7445. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  7446. do {
  7447. // "Wait for filament extrude"
  7448. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  7449. // Extrude filament to get into hotend
  7450. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  7451. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  7452. stepper.synchronize();
  7453. // Show "Extrude More" / "Resume" menu and wait for reply
  7454. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7455. wait_for_user = false;
  7456. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  7457. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  7458. KEEPALIVE_STATE(IN_HANDLER);
  7459. // Keep looping if "Extrude More" was selected
  7460. } while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_EXTRUDE_MORE);
  7461. #endif
  7462. // "Wait for print to resume"
  7463. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  7464. // Set extruder to saved position
  7465. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  7466. planner.set_e_position_mm(current_position[E_AXIS]);
  7467. #if IS_KINEMATIC
  7468. // Move XYZ to starting position
  7469. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  7470. #else
  7471. // Move XY to starting position, then Z
  7472. destination[X_AXIS] = lastpos[X_AXIS];
  7473. destination[Y_AXIS] = lastpos[Y_AXIS];
  7474. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  7475. destination[Z_AXIS] = lastpos[Z_AXIS];
  7476. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  7477. #endif
  7478. stepper.synchronize();
  7479. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7480. filament_ran_out = false;
  7481. #endif
  7482. // Show status screen
  7483. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  7484. // Resume the print job timer if it was running
  7485. if (job_running) print_job_timer.start();
  7486. busy_doing_M600 = false; // Allow Stepper Motors to be turned off during inactivity
  7487. }
  7488. #endif // FILAMENT_CHANGE_FEATURE
  7489. #if ENABLED(DUAL_X_CARRIAGE)
  7490. /**
  7491. * M605: Set dual x-carriage movement mode
  7492. *
  7493. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  7494. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  7495. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  7496. * units x-offset and an optional differential hotend temperature of
  7497. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  7498. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  7499. *
  7500. * Note: the X axis should be homed after changing dual x-carriage mode.
  7501. */
  7502. inline void gcode_M605() {
  7503. stepper.synchronize();
  7504. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  7505. switch (dual_x_carriage_mode) {
  7506. case DXC_FULL_CONTROL_MODE:
  7507. case DXC_AUTO_PARK_MODE:
  7508. break;
  7509. case DXC_DUPLICATION_MODE:
  7510. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_linear_units(), X2_MIN_POS - x_home_pos(0));
  7511. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  7512. SERIAL_ECHO_START;
  7513. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7514. SERIAL_CHAR(' ');
  7515. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  7516. SERIAL_CHAR(',');
  7517. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  7518. SERIAL_CHAR(' ');
  7519. SERIAL_ECHO(duplicate_extruder_x_offset);
  7520. SERIAL_CHAR(',');
  7521. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  7522. break;
  7523. default:
  7524. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  7525. break;
  7526. }
  7527. active_extruder_parked = false;
  7528. extruder_duplication_enabled = false;
  7529. delayed_move_time = 0;
  7530. }
  7531. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  7532. inline void gcode_M605() {
  7533. stepper.synchronize();
  7534. extruder_duplication_enabled = code_seen('S') && code_value_int() == (int)DXC_DUPLICATION_MODE;
  7535. SERIAL_ECHO_START;
  7536. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  7537. }
  7538. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  7539. #if ENABLED(LIN_ADVANCE)
  7540. /**
  7541. * M900: Set and/or Get advance K factor and WH/D ratio
  7542. *
  7543. * K<factor> Set advance K factor
  7544. * R<ratio> Set ratio directly (overrides WH/D)
  7545. * W<width> H<height> D<diam> Set ratio from WH/D
  7546. */
  7547. inline void gcode_M900() {
  7548. stepper.synchronize();
  7549. const float newK = code_seen('K') ? code_value_float() : -1;
  7550. if (newK >= 0) planner.extruder_advance_k = newK;
  7551. float newR = code_seen('R') ? code_value_float() : -1;
  7552. if (newR < 0) {
  7553. const float newD = code_seen('D') ? code_value_float() : -1,
  7554. newW = code_seen('W') ? code_value_float() : -1,
  7555. newH = code_seen('H') ? code_value_float() : -1;
  7556. if (newD >= 0 && newW >= 0 && newH >= 0)
  7557. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  7558. }
  7559. if (newR >= 0) planner.advance_ed_ratio = newR;
  7560. SERIAL_ECHO_START;
  7561. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  7562. SERIAL_ECHOPGM(" E/D=");
  7563. const float ratio = planner.advance_ed_ratio;
  7564. ratio ? SERIAL_ECHO(ratio) : SERIAL_ECHOPGM("Auto");
  7565. SERIAL_EOL;
  7566. }
  7567. #endif // LIN_ADVANCE
  7568. #if ENABLED(HAVE_TMC2130)
  7569. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  7570. SERIAL_CHAR(name);
  7571. SERIAL_ECHOPGM(" axis driver current: ");
  7572. SERIAL_ECHOLN(st.getCurrent());
  7573. }
  7574. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  7575. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  7576. tmc2130_get_current(st, name);
  7577. }
  7578. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  7579. SERIAL_CHAR(name);
  7580. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  7581. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  7582. SERIAL_EOL;
  7583. }
  7584. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  7585. st.clear_otpw();
  7586. SERIAL_CHAR(name);
  7587. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  7588. }
  7589. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  7590. SERIAL_CHAR(name);
  7591. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  7592. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  7593. }
  7594. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  7595. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  7596. tmc2130_get_pwmthrs(st, name, spmm);
  7597. }
  7598. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  7599. SERIAL_CHAR(name);
  7600. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  7601. SERIAL_ECHOLN(st.sgt());
  7602. }
  7603. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  7604. st.sgt(sgt_val);
  7605. tmc2130_get_sgt(st, name);
  7606. }
  7607. /**
  7608. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  7609. * Report driver currents when no axis specified
  7610. *
  7611. * S1: Enable automatic current control
  7612. * S0: Disable
  7613. */
  7614. inline void gcode_M906() {
  7615. uint16_t values[XYZE];
  7616. LOOP_XYZE(i)
  7617. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7618. #if ENABLED(X_IS_TMC2130)
  7619. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  7620. else tmc2130_get_current(stepperX, 'X');
  7621. #endif
  7622. #if ENABLED(Y_IS_TMC2130)
  7623. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  7624. else tmc2130_get_current(stepperY, 'Y');
  7625. #endif
  7626. #if ENABLED(Z_IS_TMC2130)
  7627. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  7628. else tmc2130_get_current(stepperZ, 'Z');
  7629. #endif
  7630. #if ENABLED(E0_IS_TMC2130)
  7631. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  7632. else tmc2130_get_current(stepperE0, 'E');
  7633. #endif
  7634. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  7635. if (code_seen('S')) auto_current_control = code_value_bool();
  7636. #endif
  7637. }
  7638. /**
  7639. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  7640. * The flag is held by the library and persist until manually cleared by M912
  7641. */
  7642. inline void gcode_M911() {
  7643. const bool reportX = code_seen('X'), reportY = code_seen('Y'), reportZ = code_seen('Z'), reportE = code_seen('E'),
  7644. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  7645. #if ENABLED(X_IS_TMC2130)
  7646. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  7647. #endif
  7648. #if ENABLED(Y_IS_TMC2130)
  7649. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  7650. #endif
  7651. #if ENABLED(Z_IS_TMC2130)
  7652. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  7653. #endif
  7654. #if ENABLED(E0_IS_TMC2130)
  7655. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  7656. #endif
  7657. }
  7658. /**
  7659. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  7660. */
  7661. inline void gcode_M912() {
  7662. const bool clearX = code_seen('X'), clearY = code_seen('Y'), clearZ = code_seen('Z'), clearE = code_seen('E'),
  7663. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  7664. #if ENABLED(X_IS_TMC2130)
  7665. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  7666. #endif
  7667. #if ENABLED(Y_IS_TMC2130)
  7668. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  7669. #endif
  7670. #if ENABLED(Z_IS_TMC2130)
  7671. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  7672. #endif
  7673. #if ENABLED(E0_IS_TMC2130)
  7674. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  7675. #endif
  7676. }
  7677. /**
  7678. * M913: Set HYBRID_THRESHOLD speed.
  7679. */
  7680. #if ENABLED(HYBRID_THRESHOLD)
  7681. inline void gcode_M913() {
  7682. uint16_t values[XYZE];
  7683. LOOP_XYZE(i)
  7684. values[i] = code_seen(axis_codes[i]) ? code_value_int() : 0;
  7685. #if ENABLED(X_IS_TMC2130)
  7686. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  7687. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  7688. #endif
  7689. #if ENABLED(Y_IS_TMC2130)
  7690. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  7691. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  7692. #endif
  7693. #if ENABLED(Z_IS_TMC2130)
  7694. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  7695. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  7696. #endif
  7697. #if ENABLED(E0_IS_TMC2130)
  7698. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  7699. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  7700. #endif
  7701. }
  7702. #endif // HYBRID_THRESHOLD
  7703. /**
  7704. * M914: Set SENSORLESS_HOMING sensitivity.
  7705. */
  7706. #if ENABLED(SENSORLESS_HOMING)
  7707. inline void gcode_M914() {
  7708. #if ENABLED(X_IS_TMC2130)
  7709. if (code_seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', code_value_int());
  7710. else tmc2130_get_sgt(stepperX, 'X');
  7711. #endif
  7712. #if ENABLED(Y_IS_TMC2130)
  7713. if (code_seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', code_value_int());
  7714. else tmc2130_get_sgt(stepperY, 'Y');
  7715. #endif
  7716. }
  7717. #endif // SENSORLESS_HOMING
  7718. #endif // HAVE_TMC2130
  7719. /**
  7720. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  7721. */
  7722. inline void gcode_M907() {
  7723. #if HAS_DIGIPOTSS
  7724. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  7725. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  7726. if (code_seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  7727. #elif HAS_MOTOR_CURRENT_PWM
  7728. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  7729. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  7730. #endif
  7731. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  7732. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  7733. #endif
  7734. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  7735. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  7736. #endif
  7737. #endif
  7738. #if ENABLED(DIGIPOT_I2C)
  7739. // this one uses actual amps in floating point
  7740. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  7741. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  7742. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  7743. #endif
  7744. #if ENABLED(DAC_STEPPER_CURRENT)
  7745. if (code_seen('S')) {
  7746. const float dac_percent = code_value_float();
  7747. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  7748. }
  7749. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  7750. #endif
  7751. }
  7752. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7753. /**
  7754. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  7755. */
  7756. inline void gcode_M908() {
  7757. #if HAS_DIGIPOTSS
  7758. stepper.digitalPotWrite(
  7759. code_seen('P') ? code_value_int() : 0,
  7760. code_seen('S') ? code_value_int() : 0
  7761. );
  7762. #endif
  7763. #ifdef DAC_STEPPER_CURRENT
  7764. dac_current_raw(
  7765. code_seen('P') ? code_value_byte() : -1,
  7766. code_seen('S') ? code_value_ushort() : 0
  7767. );
  7768. #endif
  7769. }
  7770. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7771. inline void gcode_M909() { dac_print_values(); }
  7772. inline void gcode_M910() { dac_commit_eeprom(); }
  7773. #endif
  7774. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7775. #if HAS_MICROSTEPS
  7776. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7777. inline void gcode_M350() {
  7778. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  7779. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  7780. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  7781. stepper.microstep_readings();
  7782. }
  7783. /**
  7784. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  7785. * S# determines MS1 or MS2, X# sets the pin high/low.
  7786. */
  7787. inline void gcode_M351() {
  7788. if (code_seen('S')) switch (code_value_byte()) {
  7789. case 1:
  7790. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  7791. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  7792. break;
  7793. case 2:
  7794. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  7795. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  7796. break;
  7797. }
  7798. stepper.microstep_readings();
  7799. }
  7800. #endif // HAS_MICROSTEPS
  7801. #if HAS_CASE_LIGHT
  7802. uint8_t case_light_brightness = 255;
  7803. void update_case_light() {
  7804. WRITE(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? HIGH : LOW);
  7805. analogWrite(CASE_LIGHT_PIN, case_light_on != INVERT_CASE_LIGHT ? case_light_brightness : 0);
  7806. }
  7807. #endif // HAS_CASE_LIGHT
  7808. /**
  7809. * M355: Turn case lights on/off and set brightness
  7810. *
  7811. * S<bool> Turn case light on or off
  7812. * P<byte> Set case light brightness (PWM pin required)
  7813. */
  7814. inline void gcode_M355() {
  7815. #if HAS_CASE_LIGHT
  7816. if (code_seen('P')) case_light_brightness = code_value_byte();
  7817. if (code_seen('S')) case_light_on = code_value_bool();
  7818. update_case_light();
  7819. SERIAL_ECHO_START;
  7820. SERIAL_ECHOPGM("Case lights ");
  7821. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  7822. #else
  7823. SERIAL_ERROR_START;
  7824. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  7825. #endif // HAS_CASE_LIGHT
  7826. }
  7827. #if ENABLED(MIXING_EXTRUDER)
  7828. /**
  7829. * M163: Set a single mix factor for a mixing extruder
  7830. * This is called "weight" by some systems.
  7831. *
  7832. * S[index] The channel index to set
  7833. * P[float] The mix value
  7834. *
  7835. */
  7836. inline void gcode_M163() {
  7837. const int mix_index = code_seen('S') ? code_value_int() : 0;
  7838. if (mix_index < MIXING_STEPPERS) {
  7839. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  7840. NOLESS(mix_value, 0.0);
  7841. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  7842. }
  7843. }
  7844. #if MIXING_VIRTUAL_TOOLS > 1
  7845. /**
  7846. * M164: Store the current mix factors as a virtual tool.
  7847. *
  7848. * S[index] The virtual tool to store
  7849. *
  7850. */
  7851. inline void gcode_M164() {
  7852. const int tool_index = code_seen('S') ? code_value_int() : 0;
  7853. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  7854. normalize_mix();
  7855. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7856. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  7857. }
  7858. }
  7859. #endif
  7860. #if ENABLED(DIRECT_MIXING_IN_G1)
  7861. /**
  7862. * M165: Set multiple mix factors for a mixing extruder.
  7863. * Factors that are left out will be set to 0.
  7864. * All factors together must add up to 1.0.
  7865. *
  7866. * A[factor] Mix factor for extruder stepper 1
  7867. * B[factor] Mix factor for extruder stepper 2
  7868. * C[factor] Mix factor for extruder stepper 3
  7869. * D[factor] Mix factor for extruder stepper 4
  7870. * H[factor] Mix factor for extruder stepper 5
  7871. * I[factor] Mix factor for extruder stepper 6
  7872. *
  7873. */
  7874. inline void gcode_M165() { gcode_get_mix(); }
  7875. #endif
  7876. #endif // MIXING_EXTRUDER
  7877. /**
  7878. * M999: Restart after being stopped
  7879. *
  7880. * Default behaviour is to flush the serial buffer and request
  7881. * a resend to the host starting on the last N line received.
  7882. *
  7883. * Sending "M999 S1" will resume printing without flushing the
  7884. * existing command buffer.
  7885. *
  7886. */
  7887. inline void gcode_M999() {
  7888. Running = true;
  7889. lcd_reset_alert_level();
  7890. if (code_seen('S') && code_value_bool()) return;
  7891. // gcode_LastN = Stopped_gcode_LastN;
  7892. FlushSerialRequestResend();
  7893. }
  7894. #if ENABLED(SWITCHING_EXTRUDER)
  7895. inline void move_extruder_servo(uint8_t e) {
  7896. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  7897. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  7898. safe_delay(500);
  7899. }
  7900. #endif
  7901. inline void invalid_extruder_error(const uint8_t &e) {
  7902. SERIAL_ECHO_START;
  7903. SERIAL_CHAR('T');
  7904. SERIAL_ECHO_F(e, DEC);
  7905. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  7906. }
  7907. /**
  7908. * Perform a tool-change, which may result in moving the
  7909. * previous tool out of the way and the new tool into place.
  7910. */
  7911. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  7912. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7913. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  7914. return invalid_extruder_error(tmp_extruder);
  7915. // T0-Tnnn: Switch virtual tool by changing the mix
  7916. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  7917. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  7918. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  7919. #if HOTENDS > 1
  7920. if (tmp_extruder >= EXTRUDERS)
  7921. return invalid_extruder_error(tmp_extruder);
  7922. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  7923. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  7924. if (tmp_extruder != active_extruder) {
  7925. if (!no_move && axis_unhomed_error(true, true, true)) {
  7926. SERIAL_ECHOLNPGM("No move on toolchange");
  7927. no_move = true;
  7928. }
  7929. // Save current position to destination, for use later
  7930. set_destination_to_current();
  7931. #if ENABLED(DUAL_X_CARRIAGE)
  7932. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7933. if (DEBUGGING(LEVELING)) {
  7934. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  7935. switch (dual_x_carriage_mode) {
  7936. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  7937. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  7938. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  7939. }
  7940. }
  7941. #endif
  7942. const float xhome = x_home_pos(active_extruder);
  7943. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  7944. && IsRunning()
  7945. && (delayed_move_time || current_position[X_AXIS] != xhome)
  7946. ) {
  7947. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  7948. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7949. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  7950. #endif
  7951. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7952. if (DEBUGGING(LEVELING)) {
  7953. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  7954. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  7955. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  7956. }
  7957. #endif
  7958. // Park old head: 1) raise 2) move to park position 3) lower
  7959. for (uint8_t i = 0; i < 3; i++)
  7960. planner.buffer_line(
  7961. i == 0 ? current_position[X_AXIS] : xhome,
  7962. current_position[Y_AXIS],
  7963. i == 2 ? current_position[Z_AXIS] : raised_z,
  7964. current_position[E_AXIS],
  7965. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  7966. active_extruder
  7967. );
  7968. stepper.synchronize();
  7969. }
  7970. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  7971. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  7972. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  7973. // Activate the new extruder
  7974. active_extruder = tmp_extruder;
  7975. // This function resets the max/min values - the current position may be overwritten below.
  7976. set_axis_is_at_home(X_AXIS);
  7977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7978. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  7979. #endif
  7980. // Only when auto-parking are carriages safe to move
  7981. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  7982. switch (dual_x_carriage_mode) {
  7983. case DXC_FULL_CONTROL_MODE:
  7984. // New current position is the position of the activated extruder
  7985. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  7986. // Save the inactive extruder's position (from the old current_position)
  7987. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  7988. break;
  7989. case DXC_AUTO_PARK_MODE:
  7990. // record raised toolhead position for use by unpark
  7991. COPY(raised_parked_position, current_position);
  7992. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  7993. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  7994. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7995. #endif
  7996. active_extruder_parked = true;
  7997. delayed_move_time = 0;
  7998. break;
  7999. case DXC_DUPLICATION_MODE:
  8000. // If the new extruder is the left one, set it "parked"
  8001. // This triggers the second extruder to move into the duplication position
  8002. active_extruder_parked = (active_extruder == 0);
  8003. if (active_extruder_parked)
  8004. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  8005. else
  8006. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  8007. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  8008. extruder_duplication_enabled = false;
  8009. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8010. if (DEBUGGING(LEVELING)) {
  8011. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  8012. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  8013. }
  8014. #endif
  8015. break;
  8016. }
  8017. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8018. if (DEBUGGING(LEVELING)) {
  8019. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  8020. DEBUG_POS("New extruder (parked)", current_position);
  8021. }
  8022. #endif
  8023. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  8024. #else // !DUAL_X_CARRIAGE
  8025. #if ENABLED(SWITCHING_EXTRUDER)
  8026. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  8027. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  8028. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  8029. // Always raise by some amount (destination copied from current_position earlier)
  8030. current_position[Z_AXIS] += z_raise;
  8031. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  8032. stepper.synchronize();
  8033. move_extruder_servo(active_extruder);
  8034. #endif
  8035. /**
  8036. * Set current_position to the position of the new nozzle.
  8037. * Offsets are based on linear distance, so we need to get
  8038. * the resulting position in coordinate space.
  8039. *
  8040. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  8041. * - With mesh leveling, update Z for the new position
  8042. * - Otherwise, just use the raw linear distance
  8043. *
  8044. * Software endstops are altered here too. Consider a case where:
  8045. * E0 at X=0 ... E1 at X=10
  8046. * When we switch to E1 now X=10, but E1 can't move left.
  8047. * To express this we apply the change in XY to the software endstops.
  8048. * E1 can move farther right than E0, so the right limit is extended.
  8049. *
  8050. * Note that we don't adjust the Z software endstops. Why not?
  8051. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  8052. * because the bed is 1mm lower at the new position. As long as
  8053. * the first nozzle is out of the way, the carriage should be
  8054. * allowed to move 1mm lower. This technically "breaks" the
  8055. * Z software endstop. But this is technically correct (and
  8056. * there is no viable alternative).
  8057. */
  8058. #if ABL_PLANAR
  8059. // Offset extruder, make sure to apply the bed level rotation matrix
  8060. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  8061. hotend_offset[Y_AXIS][tmp_extruder],
  8062. 0),
  8063. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  8064. hotend_offset[Y_AXIS][active_extruder],
  8065. 0),
  8066. offset_vec = tmp_offset_vec - act_offset_vec;
  8067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8068. if (DEBUGGING(LEVELING)) {
  8069. tmp_offset_vec.debug("tmp_offset_vec");
  8070. act_offset_vec.debug("act_offset_vec");
  8071. offset_vec.debug("offset_vec (BEFORE)");
  8072. }
  8073. #endif
  8074. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  8075. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8076. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  8077. #endif
  8078. // Adjustments to the current position
  8079. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  8080. current_position[Z_AXIS] += offset_vec.z;
  8081. #else // !ABL_PLANAR
  8082. const float xydiff[2] = {
  8083. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  8084. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  8085. };
  8086. #if ENABLED(MESH_BED_LEVELING)
  8087. if (mbl.active()) {
  8088. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8089. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  8090. #endif
  8091. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  8092. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  8093. z1 = current_position[Z_AXIS], z2 = z1;
  8094. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  8095. planner.apply_leveling(x2, y2, z2);
  8096. current_position[Z_AXIS] += z2 - z1;
  8097. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8098. if (DEBUGGING(LEVELING))
  8099. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  8100. #endif
  8101. }
  8102. #endif // MESH_BED_LEVELING
  8103. #endif // !HAS_ABL
  8104. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8105. if (DEBUGGING(LEVELING)) {
  8106. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  8107. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  8108. SERIAL_ECHOLNPGM(" }");
  8109. }
  8110. #endif
  8111. // The newly-selected extruder XY is actually at...
  8112. current_position[X_AXIS] += xydiff[X_AXIS];
  8113. current_position[Y_AXIS] += xydiff[Y_AXIS];
  8114. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  8115. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  8116. #if HAS_POSITION_SHIFT
  8117. position_shift[i] += xydiff[i];
  8118. #endif
  8119. update_software_endstops((AxisEnum)i);
  8120. }
  8121. #endif
  8122. // Set the new active extruder
  8123. active_extruder = tmp_extruder;
  8124. #endif // !DUAL_X_CARRIAGE
  8125. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8126. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  8127. #endif
  8128. // Tell the planner the new "current position"
  8129. SYNC_PLAN_POSITION_KINEMATIC();
  8130. // Move to the "old position" (move the extruder into place)
  8131. if (!no_move && IsRunning()) {
  8132. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8133. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  8134. #endif
  8135. prepare_move_to_destination();
  8136. }
  8137. #if ENABLED(SWITCHING_EXTRUDER)
  8138. // Move back down, if needed. (Including when the new tool is higher.)
  8139. if (z_raise != z_diff) {
  8140. destination[Z_AXIS] += z_diff;
  8141. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
  8142. prepare_move_to_destination();
  8143. }
  8144. #endif
  8145. } // (tmp_extruder != active_extruder)
  8146. stepper.synchronize();
  8147. #if ENABLED(EXT_SOLENOID)
  8148. disable_all_solenoids();
  8149. enable_solenoid_on_active_extruder();
  8150. #endif // EXT_SOLENOID
  8151. feedrate_mm_s = old_feedrate_mm_s;
  8152. #else // HOTENDS <= 1
  8153. // Set the new active extruder
  8154. active_extruder = tmp_extruder;
  8155. UNUSED(fr_mm_s);
  8156. UNUSED(no_move);
  8157. #endif // HOTENDS <= 1
  8158. SERIAL_ECHO_START;
  8159. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  8160. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  8161. }
  8162. /**
  8163. * T0-T3: Switch tool, usually switching extruders
  8164. *
  8165. * F[units/min] Set the movement feedrate
  8166. * S1 Don't move the tool in XY after change
  8167. */
  8168. inline void gcode_T(uint8_t tmp_extruder) {
  8169. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8170. if (DEBUGGING(LEVELING)) {
  8171. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  8172. SERIAL_CHAR(')');
  8173. SERIAL_EOL;
  8174. DEBUG_POS("BEFORE", current_position);
  8175. }
  8176. #endif
  8177. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  8178. tool_change(tmp_extruder);
  8179. #elif HOTENDS > 1
  8180. tool_change(
  8181. tmp_extruder,
  8182. code_seen('F') ? MMM_TO_MMS(code_value_linear_units()) : 0.0,
  8183. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  8184. );
  8185. #endif
  8186. #if ENABLED(DEBUG_LEVELING_FEATURE)
  8187. if (DEBUGGING(LEVELING)) {
  8188. DEBUG_POS("AFTER", current_position);
  8189. SERIAL_ECHOLNPGM("<<< gcode_T");
  8190. }
  8191. #endif
  8192. }
  8193. /**
  8194. * Process a single command and dispatch it to its handler
  8195. * This is called from the main loop()
  8196. */
  8197. void process_next_command() {
  8198. current_command = command_queue[cmd_queue_index_r];
  8199. if (DEBUGGING(ECHO)) {
  8200. SERIAL_ECHO_START;
  8201. SERIAL_ECHOLN(current_command);
  8202. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8203. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  8204. M100_dump_routine(" Command Queue:", &command_queue[0][0], &command_queue[BUFSIZE][MAX_CMD_SIZE]);
  8205. #endif
  8206. }
  8207. // Sanitize the current command:
  8208. // - Skip leading spaces
  8209. // - Bypass N[-0-9][0-9]*[ ]*
  8210. // - Overwrite * with nul to mark the end
  8211. while (*current_command == ' ') ++current_command;
  8212. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  8213. current_command += 2; // skip N[-0-9]
  8214. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  8215. while (*current_command == ' ') ++current_command; // skip [ ]*
  8216. }
  8217. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  8218. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  8219. char *cmd_ptr = current_command;
  8220. // Get the command code, which must be G, M, or T
  8221. char command_code = *cmd_ptr++;
  8222. // Skip spaces to get the numeric part
  8223. while (*cmd_ptr == ' ') cmd_ptr++;
  8224. // Allow for decimal point in command
  8225. #if ENABLED(G38_PROBE_TARGET)
  8226. uint8_t subcode = 0;
  8227. #endif
  8228. uint16_t codenum = 0; // define ahead of goto
  8229. // Bail early if there's no code
  8230. bool code_is_good = NUMERIC(*cmd_ptr);
  8231. if (!code_is_good) goto ExitUnknownCommand;
  8232. // Get and skip the code number
  8233. do {
  8234. codenum = (codenum * 10) + (*cmd_ptr - '0');
  8235. cmd_ptr++;
  8236. } while (NUMERIC(*cmd_ptr));
  8237. // Allow for decimal point in command
  8238. #if ENABLED(G38_PROBE_TARGET)
  8239. if (*cmd_ptr == '.') {
  8240. cmd_ptr++;
  8241. while (NUMERIC(*cmd_ptr))
  8242. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  8243. }
  8244. #endif
  8245. // Skip all spaces to get to the first argument, or nul
  8246. while (*cmd_ptr == ' ') cmd_ptr++;
  8247. // The command's arguments (if any) start here, for sure!
  8248. current_command_args = cmd_ptr;
  8249. KEEPALIVE_STATE(IN_HANDLER);
  8250. // Handle a known G, M, or T
  8251. switch (command_code) {
  8252. case 'G': switch (codenum) {
  8253. // G0, G1
  8254. case 0:
  8255. case 1:
  8256. #if IS_SCARA
  8257. gcode_G0_G1(codenum == 0);
  8258. #else
  8259. gcode_G0_G1();
  8260. #endif
  8261. break;
  8262. // G2, G3
  8263. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  8264. case 2: // G2 - CW ARC
  8265. case 3: // G3 - CCW ARC
  8266. gcode_G2_G3(codenum == 2);
  8267. break;
  8268. #endif
  8269. // G4 Dwell
  8270. case 4:
  8271. gcode_G4();
  8272. break;
  8273. #if ENABLED(BEZIER_CURVE_SUPPORT)
  8274. // G5
  8275. case 5: // G5 - Cubic B_spline
  8276. gcode_G5();
  8277. break;
  8278. #endif // BEZIER_CURVE_SUPPORT
  8279. #if ENABLED(FWRETRACT)
  8280. case 10: // G10: retract
  8281. case 11: // G11: retract_recover
  8282. gcode_G10_G11(codenum == 10);
  8283. break;
  8284. #endif // FWRETRACT
  8285. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  8286. case 12:
  8287. gcode_G12(); // G12: Nozzle Clean
  8288. break;
  8289. #endif // NOZZLE_CLEAN_FEATURE
  8290. #if ENABLED(INCH_MODE_SUPPORT)
  8291. case 20: //G20: Inch Mode
  8292. gcode_G20();
  8293. break;
  8294. case 21: //G21: MM Mode
  8295. gcode_G21();
  8296. break;
  8297. #endif // INCH_MODE_SUPPORT
  8298. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8299. case 26: // G26: Mesh Validation Pattern generation
  8300. gcode_G26();
  8301. break;
  8302. #endif // AUTO_BED_LEVELING_UBL
  8303. #if ENABLED(NOZZLE_PARK_FEATURE)
  8304. case 27: // G27: Nozzle Park
  8305. gcode_G27();
  8306. break;
  8307. #endif // NOZZLE_PARK_FEATURE
  8308. case 28: // G28: Home all axes, one at a time
  8309. gcode_G28();
  8310. break;
  8311. #if PLANNER_LEVELING || ENABLED(AUTO_BED_LEVELING_UBL)
  8312. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  8313. // or provides access to the UBL System if enabled.
  8314. gcode_G29();
  8315. break;
  8316. #endif // PLANNER_LEVELING
  8317. #if HAS_BED_PROBE
  8318. case 30: // G30 Single Z probe
  8319. gcode_G30();
  8320. break;
  8321. #if ENABLED(Z_PROBE_SLED)
  8322. case 31: // G31: dock the sled
  8323. gcode_G31();
  8324. break;
  8325. case 32: // G32: undock the sled
  8326. gcode_G32();
  8327. break;
  8328. #endif // Z_PROBE_SLED
  8329. #if ENABLED(DELTA_AUTO_CALIBRATION)
  8330. case 33: // G33: Delta Auto Calibrate
  8331. gcode_G33();
  8332. break;
  8333. #endif // DELTA_AUTO_CALIBRATION
  8334. #endif // HAS_BED_PROBE
  8335. #if ENABLED(G38_PROBE_TARGET)
  8336. case 38: // G38.2 & G38.3
  8337. if (subcode == 2 || subcode == 3)
  8338. gcode_G38(subcode == 2);
  8339. break;
  8340. #endif
  8341. case 90: // G90
  8342. relative_mode = false;
  8343. break;
  8344. case 91: // G91
  8345. relative_mode = true;
  8346. break;
  8347. case 92: // G92
  8348. gcode_G92();
  8349. break;
  8350. }
  8351. break;
  8352. case 'M': switch (codenum) {
  8353. #if HAS_RESUME_CONTINUE
  8354. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  8355. case 1: // M1: Conditional stop - Wait for user button press on LCD
  8356. gcode_M0_M1();
  8357. break;
  8358. #endif // ULTIPANEL
  8359. case 17: // M17: Enable all stepper motors
  8360. gcode_M17();
  8361. break;
  8362. #if ENABLED(SDSUPPORT)
  8363. case 20: // M20: list SD card
  8364. gcode_M20(); break;
  8365. case 21: // M21: init SD card
  8366. gcode_M21(); break;
  8367. case 22: // M22: release SD card
  8368. gcode_M22(); break;
  8369. case 23: // M23: Select file
  8370. gcode_M23(); break;
  8371. case 24: // M24: Start SD print
  8372. gcode_M24(); break;
  8373. case 25: // M25: Pause SD print
  8374. gcode_M25(); break;
  8375. case 26: // M26: Set SD index
  8376. gcode_M26(); break;
  8377. case 27: // M27: Get SD status
  8378. gcode_M27(); break;
  8379. case 28: // M28: Start SD write
  8380. gcode_M28(); break;
  8381. case 29: // M29: Stop SD write
  8382. gcode_M29(); break;
  8383. case 30: // M30 <filename> Delete File
  8384. gcode_M30(); break;
  8385. case 32: // M32: Select file and start SD print
  8386. gcode_M32(); break;
  8387. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  8388. case 33: // M33: Get the long full path to a file or folder
  8389. gcode_M33(); break;
  8390. #endif
  8391. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  8392. case 34: //M34 - Set SD card sorting options
  8393. gcode_M34(); break;
  8394. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  8395. case 928: // M928: Start SD write
  8396. gcode_M928(); break;
  8397. #endif //SDSUPPORT
  8398. case 31: // M31: Report time since the start of SD print or last M109
  8399. gcode_M31(); break;
  8400. case 42: // M42: Change pin state
  8401. gcode_M42(); break;
  8402. #if ENABLED(PINS_DEBUGGING)
  8403. case 43: // M43: Read pin state
  8404. gcode_M43(); break;
  8405. #endif
  8406. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  8407. case 48: // M48: Z probe repeatability test
  8408. gcode_M48();
  8409. break;
  8410. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  8411. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  8412. case 49: // M49: Turn on or off G26 debug flag for verbose output
  8413. gcode_M49();
  8414. break;
  8415. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
  8416. case 75: // M75: Start print timer
  8417. gcode_M75(); break;
  8418. case 76: // M76: Pause print timer
  8419. gcode_M76(); break;
  8420. case 77: // M77: Stop print timer
  8421. gcode_M77(); break;
  8422. #if ENABLED(PRINTCOUNTER)
  8423. case 78: // M78: Show print statistics
  8424. gcode_M78(); break;
  8425. #endif
  8426. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  8427. case 100: // M100: Free Memory Report
  8428. gcode_M100();
  8429. break;
  8430. #endif
  8431. case 104: // M104: Set hot end temperature
  8432. gcode_M104();
  8433. break;
  8434. case 110: // M110: Set Current Line Number
  8435. gcode_M110();
  8436. break;
  8437. case 111: // M111: Set debug level
  8438. gcode_M111();
  8439. break;
  8440. #if DISABLED(EMERGENCY_PARSER)
  8441. case 108: // M108: Cancel Waiting
  8442. gcode_M108();
  8443. break;
  8444. case 112: // M112: Emergency Stop
  8445. gcode_M112();
  8446. break;
  8447. case 410: // M410 quickstop - Abort all the planned moves.
  8448. gcode_M410();
  8449. break;
  8450. #endif
  8451. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  8452. case 113: // M113: Set Host Keepalive interval
  8453. gcode_M113();
  8454. break;
  8455. #endif
  8456. case 140: // M140: Set bed temperature
  8457. gcode_M140();
  8458. break;
  8459. case 105: // M105: Report current temperature
  8460. gcode_M105();
  8461. KEEPALIVE_STATE(NOT_BUSY);
  8462. return; // "ok" already printed
  8463. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8464. case 155: // M155: Set temperature auto-report interval
  8465. gcode_M155();
  8466. break;
  8467. #endif
  8468. case 109: // M109: Wait for hotend temperature to reach target
  8469. gcode_M109();
  8470. break;
  8471. #if HAS_TEMP_BED
  8472. case 190: // M190: Wait for bed temperature to reach target
  8473. gcode_M190();
  8474. break;
  8475. #endif // HAS_TEMP_BED
  8476. #if FAN_COUNT > 0
  8477. case 106: // M106: Fan On
  8478. gcode_M106();
  8479. break;
  8480. case 107: // M107: Fan Off
  8481. gcode_M107();
  8482. break;
  8483. #endif // FAN_COUNT > 0
  8484. #if ENABLED(PARK_HEAD_ON_PAUSE)
  8485. case 125: // M125: Store current position and move to filament change position
  8486. gcode_M125(); break;
  8487. #endif
  8488. #if ENABLED(BARICUDA)
  8489. // PWM for HEATER_1_PIN
  8490. #if HAS_HEATER_1
  8491. case 126: // M126: valve open
  8492. gcode_M126();
  8493. break;
  8494. case 127: // M127: valve closed
  8495. gcode_M127();
  8496. break;
  8497. #endif // HAS_HEATER_1
  8498. // PWM for HEATER_2_PIN
  8499. #if HAS_HEATER_2
  8500. case 128: // M128: valve open
  8501. gcode_M128();
  8502. break;
  8503. case 129: // M129: valve closed
  8504. gcode_M129();
  8505. break;
  8506. #endif // HAS_HEATER_2
  8507. #endif // BARICUDA
  8508. #if HAS_POWER_SWITCH
  8509. case 80: // M80: Turn on Power Supply
  8510. gcode_M80();
  8511. break;
  8512. #endif // HAS_POWER_SWITCH
  8513. case 81: // M81: Turn off Power, including Power Supply, if possible
  8514. gcode_M81();
  8515. break;
  8516. case 82: // M83: Set E axis normal mode (same as other axes)
  8517. gcode_M82();
  8518. break;
  8519. case 83: // M83: Set E axis relative mode
  8520. gcode_M83();
  8521. break;
  8522. case 18: // M18 => M84
  8523. case 84: // M84: Disable all steppers or set timeout
  8524. gcode_M18_M84();
  8525. break;
  8526. case 85: // M85: Set inactivity stepper shutdown timeout
  8527. gcode_M85();
  8528. break;
  8529. case 92: // M92: Set the steps-per-unit for one or more axes
  8530. gcode_M92();
  8531. break;
  8532. case 114: // M114: Report current position
  8533. gcode_M114();
  8534. break;
  8535. case 115: // M115: Report capabilities
  8536. gcode_M115();
  8537. break;
  8538. case 117: // M117: Set LCD message text, if possible
  8539. gcode_M117();
  8540. break;
  8541. case 119: // M119: Report endstop states
  8542. gcode_M119();
  8543. break;
  8544. case 120: // M120: Enable endstops
  8545. gcode_M120();
  8546. break;
  8547. case 121: // M121: Disable endstops
  8548. gcode_M121();
  8549. break;
  8550. #if ENABLED(ULTIPANEL)
  8551. case 145: // M145: Set material heatup parameters
  8552. gcode_M145();
  8553. break;
  8554. #endif
  8555. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  8556. case 149: // M149: Set temperature units
  8557. gcode_M149();
  8558. break;
  8559. #endif
  8560. #if HAS_COLOR_LEDS
  8561. case 150: // M150: Set Status LED Color
  8562. gcode_M150();
  8563. break;
  8564. #endif // BLINKM
  8565. #if ENABLED(MIXING_EXTRUDER)
  8566. case 163: // M163: Set a component weight for mixing extruder
  8567. gcode_M163();
  8568. break;
  8569. #if MIXING_VIRTUAL_TOOLS > 1
  8570. case 164: // M164: Save current mix as a virtual extruder
  8571. gcode_M164();
  8572. break;
  8573. #endif
  8574. #if ENABLED(DIRECT_MIXING_IN_G1)
  8575. case 165: // M165: Set multiple mix weights
  8576. gcode_M165();
  8577. break;
  8578. #endif
  8579. #endif
  8580. case 200: // M200: Set filament diameter, E to cubic units
  8581. gcode_M200();
  8582. break;
  8583. case 201: // M201: Set max acceleration for print moves (units/s^2)
  8584. gcode_M201();
  8585. break;
  8586. #if 0 // Not used for Sprinter/grbl gen6
  8587. case 202: // M202
  8588. gcode_M202();
  8589. break;
  8590. #endif
  8591. case 203: // M203: Set max feedrate (units/sec)
  8592. gcode_M203();
  8593. break;
  8594. case 204: // M204: Set acceleration
  8595. gcode_M204();
  8596. break;
  8597. case 205: //M205: Set advanced settings
  8598. gcode_M205();
  8599. break;
  8600. #if HAS_M206_COMMAND
  8601. case 206: // M206: Set home offsets
  8602. gcode_M206();
  8603. break;
  8604. #endif
  8605. #if ENABLED(DELTA)
  8606. case 665: // M665: Set delta configurations
  8607. gcode_M665();
  8608. break;
  8609. #endif
  8610. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  8611. case 666: // M666: Set delta or dual endstop adjustment
  8612. gcode_M666();
  8613. break;
  8614. #endif
  8615. #if ENABLED(FWRETRACT)
  8616. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  8617. gcode_M207();
  8618. break;
  8619. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  8620. gcode_M208();
  8621. break;
  8622. case 209: // M209: Turn Automatic Retract Detection on/off
  8623. gcode_M209();
  8624. break;
  8625. #endif // FWRETRACT
  8626. case 211: // M211: Enable, Disable, and/or Report software endstops
  8627. gcode_M211();
  8628. break;
  8629. #if HOTENDS > 1
  8630. case 218: // M218: Set a tool offset
  8631. gcode_M218();
  8632. break;
  8633. #endif
  8634. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  8635. gcode_M220();
  8636. break;
  8637. case 221: // M221: Set Flow Percentage
  8638. gcode_M221();
  8639. break;
  8640. case 226: // M226: Wait until a pin reaches a state
  8641. gcode_M226();
  8642. break;
  8643. #if HAS_SERVOS
  8644. case 280: // M280: Set servo position absolute
  8645. gcode_M280();
  8646. break;
  8647. #endif // HAS_SERVOS
  8648. #if HAS_BUZZER
  8649. case 300: // M300: Play beep tone
  8650. gcode_M300();
  8651. break;
  8652. #endif // HAS_BUZZER
  8653. #if ENABLED(PIDTEMP)
  8654. case 301: // M301: Set hotend PID parameters
  8655. gcode_M301();
  8656. break;
  8657. #endif // PIDTEMP
  8658. #if ENABLED(PIDTEMPBED)
  8659. case 304: // M304: Set bed PID parameters
  8660. gcode_M304();
  8661. break;
  8662. #endif // PIDTEMPBED
  8663. #if defined(CHDK) || HAS_PHOTOGRAPH
  8664. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  8665. gcode_M240();
  8666. break;
  8667. #endif // CHDK || PHOTOGRAPH_PIN
  8668. #if HAS_LCD_CONTRAST
  8669. case 250: // M250: Set LCD contrast
  8670. gcode_M250();
  8671. break;
  8672. #endif // HAS_LCD_CONTRAST
  8673. #if ENABLED(EXPERIMENTAL_I2CBUS)
  8674. case 260: // M260: Send data to an i2c slave
  8675. gcode_M260();
  8676. break;
  8677. case 261: // M261: Request data from an i2c slave
  8678. gcode_M261();
  8679. break;
  8680. #endif // EXPERIMENTAL_I2CBUS
  8681. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8682. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  8683. gcode_M302();
  8684. break;
  8685. #endif // PREVENT_COLD_EXTRUSION
  8686. case 303: // M303: PID autotune
  8687. gcode_M303();
  8688. break;
  8689. #if ENABLED(MORGAN_SCARA)
  8690. case 360: // M360: SCARA Theta pos1
  8691. if (gcode_M360()) return;
  8692. break;
  8693. case 361: // M361: SCARA Theta pos2
  8694. if (gcode_M361()) return;
  8695. break;
  8696. case 362: // M362: SCARA Psi pos1
  8697. if (gcode_M362()) return;
  8698. break;
  8699. case 363: // M363: SCARA Psi pos2
  8700. if (gcode_M363()) return;
  8701. break;
  8702. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  8703. if (gcode_M364()) return;
  8704. break;
  8705. #endif // SCARA
  8706. case 400: // M400: Finish all moves
  8707. gcode_M400();
  8708. break;
  8709. #if HAS_BED_PROBE
  8710. case 401: // M401: Deploy probe
  8711. gcode_M401();
  8712. break;
  8713. case 402: // M402: Stow probe
  8714. gcode_M402();
  8715. break;
  8716. #endif // HAS_BED_PROBE
  8717. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8718. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  8719. gcode_M404();
  8720. break;
  8721. case 405: // M405: Turn on filament sensor for control
  8722. gcode_M405();
  8723. break;
  8724. case 406: // M406: Turn off filament sensor for control
  8725. gcode_M406();
  8726. break;
  8727. case 407: // M407: Display measured filament diameter
  8728. gcode_M407();
  8729. break;
  8730. #endif // FILAMENT_WIDTH_SENSOR
  8731. #if PLANNER_LEVELING
  8732. case 420: // M420: Enable/Disable Bed Leveling
  8733. gcode_M420();
  8734. break;
  8735. #endif
  8736. #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8737. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  8738. gcode_M421();
  8739. break;
  8740. #endif
  8741. #if HAS_M206_COMMAND
  8742. case 428: // M428: Apply current_position to home_offset
  8743. gcode_M428();
  8744. break;
  8745. #endif
  8746. case 500: // M500: Store settings in EEPROM
  8747. gcode_M500();
  8748. break;
  8749. case 501: // M501: Read settings from EEPROM
  8750. gcode_M501();
  8751. break;
  8752. case 502: // M502: Revert to default settings
  8753. gcode_M502();
  8754. break;
  8755. case 503: // M503: print settings currently in memory
  8756. gcode_M503();
  8757. break;
  8758. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8759. case 540: // M540: Set abort on endstop hit for SD printing
  8760. gcode_M540();
  8761. break;
  8762. #endif
  8763. #if HAS_BED_PROBE
  8764. case 851: // M851: Set Z Probe Z Offset
  8765. gcode_M851();
  8766. break;
  8767. #endif // HAS_BED_PROBE
  8768. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8769. case 600: // M600: Pause for filament change
  8770. gcode_M600();
  8771. break;
  8772. #endif // FILAMENT_CHANGE_FEATURE
  8773. #if ENABLED(DUAL_X_CARRIAGE)
  8774. case 605: // M605: Set Dual X Carriage movement mode
  8775. gcode_M605();
  8776. break;
  8777. #endif // DUAL_X_CARRIAGE
  8778. #if ENABLED(LIN_ADVANCE)
  8779. case 900: // M900: Set advance K factor.
  8780. gcode_M900();
  8781. break;
  8782. #endif
  8783. #if ENABLED(HAVE_TMC2130)
  8784. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8785. gcode_M906();
  8786. break;
  8787. #endif
  8788. case 907: // M907: Set digital trimpot motor current using axis codes.
  8789. gcode_M907();
  8790. break;
  8791. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8792. case 908: // M908: Control digital trimpot directly.
  8793. gcode_M908();
  8794. break;
  8795. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8796. case 909: // M909: Print digipot/DAC current value
  8797. gcode_M909();
  8798. break;
  8799. case 910: // M910: Commit digipot/DAC value to external EEPROM
  8800. gcode_M910();
  8801. break;
  8802. #endif
  8803. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8804. #if ENABLED(HAVE_TMC2130)
  8805. case 911: // M911: Report TMC2130 prewarn triggered flags
  8806. gcode_M911();
  8807. break;
  8808. case 912: // M911: Clear TMC2130 prewarn triggered flags
  8809. gcode_M912();
  8810. break;
  8811. #if ENABLED(HYBRID_THRESHOLD)
  8812. case 913: // M913: Set HYBRID_THRESHOLD speed.
  8813. gcode_M913();
  8814. break;
  8815. #endif
  8816. #if ENABLED(SENSORLESS_HOMING)
  8817. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  8818. gcode_M914();
  8819. break;
  8820. #endif
  8821. #endif
  8822. #if HAS_MICROSTEPS
  8823. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8824. gcode_M350();
  8825. break;
  8826. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  8827. gcode_M351();
  8828. break;
  8829. #endif // HAS_MICROSTEPS
  8830. case 355: // M355 Turn case lights on/off
  8831. gcode_M355();
  8832. break;
  8833. case 999: // M999: Restart after being Stopped
  8834. gcode_M999();
  8835. break;
  8836. }
  8837. break;
  8838. case 'T':
  8839. gcode_T(codenum);
  8840. break;
  8841. default: code_is_good = false;
  8842. }
  8843. KEEPALIVE_STATE(NOT_BUSY);
  8844. ExitUnknownCommand:
  8845. // Still unknown command? Throw an error
  8846. if (!code_is_good) unknown_command_error();
  8847. ok_to_send();
  8848. }
  8849. /**
  8850. * Send a "Resend: nnn" message to the host to
  8851. * indicate that a command needs to be re-sent.
  8852. */
  8853. void FlushSerialRequestResend() {
  8854. //char command_queue[cmd_queue_index_r][100]="Resend:";
  8855. MYSERIAL.flush();
  8856. SERIAL_PROTOCOLPGM(MSG_RESEND);
  8857. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  8858. ok_to_send();
  8859. }
  8860. /**
  8861. * Send an "ok" message to the host, indicating
  8862. * that a command was successfully processed.
  8863. *
  8864. * If ADVANCED_OK is enabled also include:
  8865. * N<int> Line number of the command, if any
  8866. * P<int> Planner space remaining
  8867. * B<int> Block queue space remaining
  8868. */
  8869. void ok_to_send() {
  8870. refresh_cmd_timeout();
  8871. if (!send_ok[cmd_queue_index_r]) return;
  8872. SERIAL_PROTOCOLPGM(MSG_OK);
  8873. #if ENABLED(ADVANCED_OK)
  8874. char* p = command_queue[cmd_queue_index_r];
  8875. if (*p == 'N') {
  8876. SERIAL_PROTOCOL(' ');
  8877. SERIAL_ECHO(*p++);
  8878. while (NUMERIC_SIGNED(*p))
  8879. SERIAL_ECHO(*p++);
  8880. }
  8881. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  8882. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  8883. #endif
  8884. SERIAL_EOL;
  8885. }
  8886. #if HAS_SOFTWARE_ENDSTOPS
  8887. /**
  8888. * Constrain the given coordinates to the software endstops.
  8889. */
  8890. void clamp_to_software_endstops(float target[XYZ]) {
  8891. if (!soft_endstops_enabled) return;
  8892. #if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  8893. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  8894. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  8895. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  8896. #endif
  8897. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  8898. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  8899. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  8900. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  8901. #endif
  8902. }
  8903. #endif
  8904. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8905. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8906. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  8907. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  8908. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  8909. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  8910. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  8911. #else
  8912. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  8913. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  8914. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  8915. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  8916. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  8917. #endif
  8918. // Get the Z adjustment for non-linear bed leveling
  8919. float bilinear_z_offset(const float logical[XYZ]) {
  8920. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  8921. last_x = -999.999, last_y = -999.999;
  8922. // Whole units for the grid line indices. Constrained within bounds.
  8923. static int8_t gridx, gridy, nextx, nexty,
  8924. last_gridx = -99, last_gridy = -99;
  8925. // XY relative to the probed area
  8926. const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
  8927. y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
  8928. if (last_x != x) {
  8929. last_x = x;
  8930. ratio_x = x * ABL_BG_FACTOR(X_AXIS);
  8931. const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - 1);
  8932. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  8933. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  8934. gridx = gx;
  8935. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  8936. }
  8937. if (last_y != y || last_gridx != gridx) {
  8938. if (last_y != y) {
  8939. last_y = y;
  8940. ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
  8941. const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - 1);
  8942. ratio_y -= gy;
  8943. NOLESS(ratio_y, 0);
  8944. gridy = gy;
  8945. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  8946. }
  8947. if (last_gridx != gridx || last_gridy != gridy) {
  8948. last_gridx = gridx;
  8949. last_gridy = gridy;
  8950. // Z at the box corners
  8951. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  8952. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  8953. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  8954. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  8955. }
  8956. // Bilinear interpolate. Needed since y or gridx has changed.
  8957. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  8958. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  8959. D = R - L;
  8960. }
  8961. const float offset = L + ratio_x * D; // the offset almost always changes
  8962. /*
  8963. static float last_offset = 0;
  8964. if (fabs(last_offset - offset) > 0.2) {
  8965. SERIAL_ECHOPGM("Sudden Shift at ");
  8966. SERIAL_ECHOPAIR("x=", x);
  8967. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  8968. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  8969. SERIAL_ECHOPAIR(" y=", y);
  8970. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  8971. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  8972. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  8973. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  8974. SERIAL_ECHOPAIR(" z1=", z1);
  8975. SERIAL_ECHOPAIR(" z2=", z2);
  8976. SERIAL_ECHOPAIR(" z3=", z3);
  8977. SERIAL_ECHOLNPAIR(" z4=", z4);
  8978. SERIAL_ECHOPAIR(" L=", L);
  8979. SERIAL_ECHOPAIR(" R=", R);
  8980. SERIAL_ECHOLNPAIR(" offset=", offset);
  8981. }
  8982. last_offset = offset;
  8983. //*/
  8984. return offset;
  8985. }
  8986. #endif // AUTO_BED_LEVELING_BILINEAR
  8987. #if ENABLED(DELTA)
  8988. /**
  8989. * Recalculate factors used for delta kinematics whenever
  8990. * settings have been changed (e.g., by M665).
  8991. */
  8992. void recalc_delta_settings(float radius, float diagonal_rod) {
  8993. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  8994. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  8995. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
  8996. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
  8997. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
  8998. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
  8999. delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
  9000. delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
  9001. delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
  9002. delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
  9003. delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
  9004. }
  9005. #if ENABLED(DELTA_FAST_SQRT)
  9006. /**
  9007. * Fast inverse sqrt from Quake III Arena
  9008. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  9009. */
  9010. float Q_rsqrt(float number) {
  9011. long i;
  9012. float x2, y;
  9013. const float threehalfs = 1.5f;
  9014. x2 = number * 0.5f;
  9015. y = number;
  9016. i = * ( long * ) &y; // evil floating point bit level hacking
  9017. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  9018. y = * ( float * ) &i;
  9019. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  9020. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  9021. return y;
  9022. }
  9023. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  9024. #else
  9025. #define _SQRT(n) sqrt(n)
  9026. #endif
  9027. /**
  9028. * Delta Inverse Kinematics
  9029. *
  9030. * Calculate the tower positions for a given logical
  9031. * position, storing the result in the delta[] array.
  9032. *
  9033. * This is an expensive calculation, requiring 3 square
  9034. * roots per segmented linear move, and strains the limits
  9035. * of a Mega2560 with a Graphical Display.
  9036. *
  9037. * Suggested optimizations include:
  9038. *
  9039. * - Disable the home_offset (M206) and/or position_shift (G92)
  9040. * features to remove up to 12 float additions.
  9041. *
  9042. * - Use a fast-inverse-sqrt function and add the reciprocal.
  9043. * (see above)
  9044. */
  9045. // Macro to obtain the Z position of an individual tower
  9046. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  9047. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  9048. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  9049. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  9050. ) \
  9051. )
  9052. #define DELTA_RAW_IK() do { \
  9053. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  9054. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  9055. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  9056. } while(0)
  9057. #define DELTA_LOGICAL_IK() do { \
  9058. const float raw[XYZ] = { \
  9059. RAW_X_POSITION(logical[X_AXIS]), \
  9060. RAW_Y_POSITION(logical[Y_AXIS]), \
  9061. RAW_Z_POSITION(logical[Z_AXIS]) \
  9062. }; \
  9063. DELTA_RAW_IK(); \
  9064. } while(0)
  9065. #define DELTA_DEBUG() do { \
  9066. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  9067. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  9068. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  9069. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  9070. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  9071. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  9072. } while(0)
  9073. void inverse_kinematics(const float logical[XYZ]) {
  9074. DELTA_LOGICAL_IK();
  9075. // DELTA_DEBUG();
  9076. }
  9077. /**
  9078. * Calculate the highest Z position where the
  9079. * effector has the full range of XY motion.
  9080. */
  9081. float delta_safe_distance_from_top() {
  9082. float cartesian[XYZ] = {
  9083. LOGICAL_X_POSITION(0),
  9084. LOGICAL_Y_POSITION(0),
  9085. LOGICAL_Z_POSITION(0)
  9086. };
  9087. inverse_kinematics(cartesian);
  9088. float distance = delta[A_AXIS];
  9089. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  9090. inverse_kinematics(cartesian);
  9091. return abs(distance - delta[A_AXIS]);
  9092. }
  9093. /**
  9094. * Delta Forward Kinematics
  9095. *
  9096. * See the Wikipedia article "Trilateration"
  9097. * https://en.wikipedia.org/wiki/Trilateration
  9098. *
  9099. * Establish a new coordinate system in the plane of the
  9100. * three carriage points. This system has its origin at
  9101. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  9102. * plane with a Z component of zero.
  9103. * We will define unit vectors in this coordinate system
  9104. * in our original coordinate system. Then when we calculate
  9105. * the Xnew, Ynew and Znew values, we can translate back into
  9106. * the original system by moving along those unit vectors
  9107. * by the corresponding values.
  9108. *
  9109. * Variable names matched to Marlin, c-version, and avoid the
  9110. * use of any vector library.
  9111. *
  9112. * by Andreas Hardtung 2016-06-07
  9113. * based on a Java function from "Delta Robot Kinematics V3"
  9114. * by Steve Graves
  9115. *
  9116. * The result is stored in the cartes[] array.
  9117. */
  9118. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  9119. // Create a vector in old coordinates along x axis of new coordinate
  9120. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  9121. // Get the Magnitude of vector.
  9122. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  9123. // Create unit vector by dividing by magnitude.
  9124. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  9125. // Get the vector from the origin of the new system to the third point.
  9126. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  9127. // Use the dot product to find the component of this vector on the X axis.
  9128. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  9129. // Create a vector along the x axis that represents the x component of p13.
  9130. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  9131. // Subtract the X component from the original vector leaving only Y. We use the
  9132. // variable that will be the unit vector after we scale it.
  9133. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  9134. // The magnitude of Y component
  9135. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  9136. // Convert to a unit vector
  9137. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  9138. // The cross product of the unit x and y is the unit z
  9139. // float[] ez = vectorCrossProd(ex, ey);
  9140. float ez[3] = {
  9141. ex[1] * ey[2] - ex[2] * ey[1],
  9142. ex[2] * ey[0] - ex[0] * ey[2],
  9143. ex[0] * ey[1] - ex[1] * ey[0]
  9144. };
  9145. // We now have the d, i and j values defined in Wikipedia.
  9146. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  9147. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  9148. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  9149. Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  9150. // Start from the origin of the old coordinates and add vectors in the
  9151. // old coords that represent the Xnew, Ynew and Znew to find the point
  9152. // in the old system.
  9153. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  9154. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  9155. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  9156. }
  9157. void forward_kinematics_DELTA(float point[ABC]) {
  9158. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  9159. }
  9160. #endif // DELTA
  9161. /**
  9162. * Get the stepper positions in the cartes[] array.
  9163. * Forward kinematics are applied for DELTA and SCARA.
  9164. *
  9165. * The result is in the current coordinate space with
  9166. * leveling applied. The coordinates need to be run through
  9167. * unapply_leveling to obtain the "ideal" coordinates
  9168. * suitable for current_position, etc.
  9169. */
  9170. void get_cartesian_from_steppers() {
  9171. #if ENABLED(DELTA)
  9172. forward_kinematics_DELTA(
  9173. stepper.get_axis_position_mm(A_AXIS),
  9174. stepper.get_axis_position_mm(B_AXIS),
  9175. stepper.get_axis_position_mm(C_AXIS)
  9176. );
  9177. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9178. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9179. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  9180. #elif IS_SCARA
  9181. forward_kinematics_SCARA(
  9182. stepper.get_axis_position_degrees(A_AXIS),
  9183. stepper.get_axis_position_degrees(B_AXIS)
  9184. );
  9185. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  9186. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  9187. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9188. #else
  9189. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  9190. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  9191. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  9192. #endif
  9193. }
  9194. /**
  9195. * Set the current_position for an axis based on
  9196. * the stepper positions, removing any leveling that
  9197. * may have been applied.
  9198. */
  9199. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  9200. get_cartesian_from_steppers();
  9201. #if PLANNER_LEVELING && DISABLED(AUTO_BED_LEVELING_UBL)
  9202. planner.unapply_leveling(cartes);
  9203. #endif
  9204. if (axis == ALL_AXES)
  9205. COPY(current_position, cartes);
  9206. else
  9207. current_position[axis] = cartes[axis];
  9208. }
  9209. #if ENABLED(MESH_BED_LEVELING)
  9210. /**
  9211. * Prepare a mesh-leveled linear move in a Cartesian setup,
  9212. * splitting the move where it crosses mesh borders.
  9213. */
  9214. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  9215. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
  9216. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
  9217. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  9218. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  9219. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  9220. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  9221. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  9222. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  9223. if (cx1 == cx2 && cy1 == cy2) {
  9224. // Start and end on same mesh square
  9225. line_to_destination(fr_mm_s);
  9226. set_current_to_destination();
  9227. return;
  9228. }
  9229. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9230. float normalized_dist, end[XYZE];
  9231. // Split at the left/front border of the right/top square
  9232. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9233. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9234. COPY(end, destination);
  9235. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
  9236. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9237. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  9238. CBI(x_splits, gcx);
  9239. }
  9240. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9241. COPY(end, destination);
  9242. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
  9243. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9244. destination[X_AXIS] = MBL_SEGMENT_END(X);
  9245. CBI(y_splits, gcy);
  9246. }
  9247. else {
  9248. // Already split on a border
  9249. line_to_destination(fr_mm_s);
  9250. set_current_to_destination();
  9251. return;
  9252. }
  9253. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  9254. destination[E_AXIS] = MBL_SEGMENT_END(E);
  9255. // Do the split and look for more borders
  9256. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9257. // Restore destination from stack
  9258. COPY(destination, end);
  9259. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  9260. }
  9261. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  9262. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  9263. /**
  9264. * Prepare a bilinear-leveled linear move on Cartesian,
  9265. * splitting the move where it crosses grid borders.
  9266. */
  9267. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  9268. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  9269. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  9270. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  9271. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  9272. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  9273. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  9274. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  9275. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  9276. if (cx1 == cx2 && cy1 == cy2) {
  9277. // Start and end on same mesh square
  9278. line_to_destination(fr_mm_s);
  9279. set_current_to_destination();
  9280. return;
  9281. }
  9282. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  9283. float normalized_dist, end[XYZE];
  9284. // Split at the left/front border of the right/top square
  9285. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  9286. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  9287. COPY(end, destination);
  9288. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
  9289. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  9290. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  9291. CBI(x_splits, gcx);
  9292. }
  9293. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  9294. COPY(end, destination);
  9295. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
  9296. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  9297. destination[X_AXIS] = LINE_SEGMENT_END(X);
  9298. CBI(y_splits, gcy);
  9299. }
  9300. else {
  9301. // Already split on a border
  9302. line_to_destination(fr_mm_s);
  9303. set_current_to_destination();
  9304. return;
  9305. }
  9306. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  9307. destination[E_AXIS] = LINE_SEGMENT_END(E);
  9308. // Do the split and look for more borders
  9309. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9310. // Restore destination from stack
  9311. COPY(destination, end);
  9312. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  9313. }
  9314. #endif // AUTO_BED_LEVELING_BILINEAR
  9315. #if IS_KINEMATIC
  9316. /**
  9317. * Prepare a linear move in a DELTA or SCARA setup.
  9318. *
  9319. * This calls planner.buffer_line several times, adding
  9320. * small incremental moves for DELTA or SCARA.
  9321. */
  9322. inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
  9323. // Get the top feedrate of the move in the XY plane
  9324. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  9325. // If the move is only in Z/E don't split up the move
  9326. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  9327. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9328. return false;
  9329. }
  9330. // Get the cartesian distances moved in XYZE
  9331. float difference[XYZE];
  9332. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  9333. // Get the linear distance in XYZ
  9334. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  9335. // If the move is very short, check the E move distance
  9336. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  9337. // No E move either? Game over.
  9338. if (UNEAR_ZERO(cartesian_mm)) return true;
  9339. // Minimum number of seconds to move the given distance
  9340. float seconds = cartesian_mm / _feedrate_mm_s;
  9341. // The number of segments-per-second times the duration
  9342. // gives the number of segments
  9343. uint16_t segments = delta_segments_per_second * seconds;
  9344. // For SCARA minimum segment size is 0.25mm
  9345. #if IS_SCARA
  9346. NOMORE(segments, cartesian_mm * 4);
  9347. #endif
  9348. // At least one segment is required
  9349. NOLESS(segments, 1);
  9350. // The approximate length of each segment
  9351. const float inv_segments = 1.0 / float(segments),
  9352. segment_distance[XYZE] = {
  9353. difference[X_AXIS] * inv_segments,
  9354. difference[Y_AXIS] * inv_segments,
  9355. difference[Z_AXIS] * inv_segments,
  9356. difference[E_AXIS] * inv_segments
  9357. };
  9358. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  9359. // SERIAL_ECHOPAIR(" seconds=", seconds);
  9360. // SERIAL_ECHOLNPAIR(" segments=", segments);
  9361. #if IS_SCARA
  9362. // SCARA needs to scale the feed rate from mm/s to degrees/s
  9363. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  9364. feed_factor = inv_segment_length * _feedrate_mm_s;
  9365. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  9366. oldB = stepper.get_axis_position_degrees(B_AXIS);
  9367. #endif
  9368. // Get the logical current position as starting point
  9369. float logical[XYZE];
  9370. COPY(logical, current_position);
  9371. // Drop one segment so the last move is to the exact target.
  9372. // If there's only 1 segment, loops will be skipped entirely.
  9373. --segments;
  9374. // Calculate and execute the segments
  9375. for (uint16_t s = segments + 1; --s;) {
  9376. LOOP_XYZE(i) logical[i] += segment_distance[i];
  9377. #if ENABLED(DELTA)
  9378. DELTA_LOGICAL_IK(); // Delta can inline its kinematics
  9379. #else
  9380. inverse_kinematics(logical);
  9381. #endif
  9382. ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
  9383. #if IS_SCARA
  9384. // For SCARA scale the feed rate from mm/s to degrees/s
  9385. // Use ratio between the length of the move and the larger angle change
  9386. const float adiff = abs(delta[A_AXIS] - oldA),
  9387. bdiff = abs(delta[B_AXIS] - oldB);
  9388. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9389. oldA = delta[A_AXIS];
  9390. oldB = delta[B_AXIS];
  9391. #else
  9392. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
  9393. #endif
  9394. }
  9395. // Since segment_distance is only approximate,
  9396. // the final move must be to the exact destination.
  9397. #if IS_SCARA
  9398. // For SCARA scale the feed rate from mm/s to degrees/s
  9399. // With segments > 1 length is 1 segment, otherwise total length
  9400. inverse_kinematics(ltarget);
  9401. ADJUST_DELTA(logical);
  9402. const float adiff = abs(delta[A_AXIS] - oldA),
  9403. bdiff = abs(delta[B_AXIS] - oldB);
  9404. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  9405. #else
  9406. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  9407. #endif
  9408. return false;
  9409. }
  9410. #else // !IS_KINEMATIC
  9411. /**
  9412. * Prepare a linear move in a Cartesian setup.
  9413. * If Mesh Bed Leveling is enabled, perform a mesh move.
  9414. *
  9415. * Returns true if the caller didn't update current_position.
  9416. */
  9417. inline bool prepare_move_to_destination_cartesian() {
  9418. // Do not use feedrate_percentage for E or Z only moves
  9419. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  9420. line_to_destination();
  9421. }
  9422. else {
  9423. #if ENABLED(MESH_BED_LEVELING)
  9424. if (mbl.active()) {
  9425. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9426. return true;
  9427. }
  9428. else
  9429. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  9430. if (ubl.state.active) {
  9431. ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
  9432. return true;
  9433. }
  9434. else
  9435. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  9436. if (planner.abl_enabled) {
  9437. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  9438. return true;
  9439. }
  9440. else
  9441. #endif
  9442. line_to_destination(MMS_SCALED(feedrate_mm_s));
  9443. }
  9444. return false;
  9445. }
  9446. #endif // !IS_KINEMATIC
  9447. #if ENABLED(DUAL_X_CARRIAGE)
  9448. /**
  9449. * Prepare a linear move in a dual X axis setup
  9450. */
  9451. inline bool prepare_move_to_destination_dualx() {
  9452. if (active_extruder_parked) {
  9453. switch (dual_x_carriage_mode) {
  9454. case DXC_FULL_CONTROL_MODE:
  9455. break;
  9456. case DXC_AUTO_PARK_MODE:
  9457. if (current_position[E_AXIS] == destination[E_AXIS]) {
  9458. // This is a travel move (with no extrusion)
  9459. // Skip it, but keep track of the current position
  9460. // (so it can be used as the start of the next non-travel move)
  9461. if (delayed_move_time != 0xFFFFFFFFUL) {
  9462. set_current_to_destination();
  9463. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  9464. delayed_move_time = millis();
  9465. return true;
  9466. }
  9467. }
  9468. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  9469. for (uint8_t i = 0; i < 3; i++)
  9470. planner.buffer_line(
  9471. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  9472. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  9473. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  9474. current_position[E_AXIS],
  9475. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  9476. active_extruder
  9477. );
  9478. delayed_move_time = 0;
  9479. active_extruder_parked = false;
  9480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9481. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  9482. #endif
  9483. break;
  9484. case DXC_DUPLICATION_MODE:
  9485. if (active_extruder == 0) {
  9486. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9487. if (DEBUGGING(LEVELING)) {
  9488. SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
  9489. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  9490. }
  9491. #endif
  9492. // move duplicate extruder into correct duplication position.
  9493. planner.set_position_mm(
  9494. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  9495. current_position[Y_AXIS],
  9496. current_position[Z_AXIS],
  9497. current_position[E_AXIS]
  9498. );
  9499. planner.buffer_line(
  9500. current_position[X_AXIS] + duplicate_extruder_x_offset,
  9501. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  9502. planner.max_feedrate_mm_s[X_AXIS], 1
  9503. );
  9504. SYNC_PLAN_POSITION_KINEMATIC();
  9505. stepper.synchronize();
  9506. extruder_duplication_enabled = true;
  9507. active_extruder_parked = false;
  9508. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9509. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  9510. #endif
  9511. }
  9512. else {
  9513. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9514. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  9515. #endif
  9516. }
  9517. break;
  9518. }
  9519. }
  9520. return false;
  9521. }
  9522. #endif // DUAL_X_CARRIAGE
  9523. /**
  9524. * Prepare a single move and get ready for the next one
  9525. *
  9526. * This may result in several calls to planner.buffer_line to
  9527. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  9528. */
  9529. void prepare_move_to_destination() {
  9530. clamp_to_software_endstops(destination);
  9531. refresh_cmd_timeout();
  9532. #if ENABLED(PREVENT_COLD_EXTRUSION)
  9533. if (!DEBUGGING(DRYRUN)) {
  9534. if (destination[E_AXIS] != current_position[E_AXIS]) {
  9535. if (thermalManager.tooColdToExtrude(active_extruder)) {
  9536. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9537. SERIAL_ECHO_START;
  9538. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  9539. }
  9540. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  9541. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  9542. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  9543. SERIAL_ECHO_START;
  9544. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  9545. }
  9546. #endif
  9547. }
  9548. }
  9549. #endif
  9550. #if IS_KINEMATIC
  9551. if (prepare_kinematic_move_to(destination)) return;
  9552. #else
  9553. #if ENABLED(DUAL_X_CARRIAGE)
  9554. if (prepare_move_to_destination_dualx()) return;
  9555. #endif
  9556. if (prepare_move_to_destination_cartesian()) return;
  9557. #endif
  9558. set_current_to_destination();
  9559. }
  9560. #if ENABLED(ARC_SUPPORT)
  9561. /**
  9562. * Plan an arc in 2 dimensions
  9563. *
  9564. * The arc is approximated by generating many small linear segments.
  9565. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  9566. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  9567. * larger segments will tend to be more efficient. Your slicer should have
  9568. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  9569. */
  9570. void plan_arc(
  9571. float logical[XYZE], // Destination position
  9572. float *offset, // Center of rotation relative to current_position
  9573. uint8_t clockwise // Clockwise?
  9574. ) {
  9575. float r_X = -offset[X_AXIS], // Radius vector from center to current location
  9576. r_Y = -offset[Y_AXIS];
  9577. const float radius = HYPOT(r_X, r_Y),
  9578. center_X = current_position[X_AXIS] - r_X,
  9579. center_Y = current_position[Y_AXIS] - r_Y,
  9580. rt_X = logical[X_AXIS] - center_X,
  9581. rt_Y = logical[Y_AXIS] - center_Y,
  9582. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  9583. extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
  9584. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  9585. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  9586. if (angular_travel < 0) angular_travel += RADIANS(360);
  9587. if (clockwise) angular_travel -= RADIANS(360);
  9588. // Make a circle if the angular rotation is 0
  9589. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  9590. angular_travel += RADIANS(360);
  9591. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  9592. if (mm_of_travel < 0.001) return;
  9593. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  9594. if (segments == 0) segments = 1;
  9595. /**
  9596. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  9597. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  9598. * r_T = [cos(phi) -sin(phi);
  9599. * sin(phi) cos(phi)] * r ;
  9600. *
  9601. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  9602. * defined from the circle center to the initial position. Each line segment is formed by successive
  9603. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  9604. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  9605. * all double numbers are single precision on the Arduino. (True double precision will not have
  9606. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  9607. * tool precision in some cases. Therefore, arc path correction is implemented.
  9608. *
  9609. * Small angle approximation may be used to reduce computation overhead further. This approximation
  9610. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  9611. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  9612. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  9613. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  9614. * issue for CNC machines with the single precision Arduino calculations.
  9615. *
  9616. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  9617. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  9618. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  9619. * This is important when there are successive arc motions.
  9620. */
  9621. // Vector rotation matrix values
  9622. float arc_target[XYZE];
  9623. const float theta_per_segment = angular_travel / segments,
  9624. linear_per_segment = linear_travel / segments,
  9625. extruder_per_segment = extruder_travel / segments,
  9626. sin_T = theta_per_segment,
  9627. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  9628. // Initialize the linear axis
  9629. arc_target[Z_AXIS] = current_position[Z_AXIS];
  9630. // Initialize the extruder axis
  9631. arc_target[E_AXIS] = current_position[E_AXIS];
  9632. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  9633. millis_t next_idle_ms = millis() + 200UL;
  9634. int8_t count = 0;
  9635. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  9636. thermalManager.manage_heater();
  9637. if (ELAPSED(millis(), next_idle_ms)) {
  9638. next_idle_ms = millis() + 200UL;
  9639. idle();
  9640. }
  9641. if (++count < N_ARC_CORRECTION) {
  9642. // Apply vector rotation matrix to previous r_X / 1
  9643. const float r_new_Y = r_X * sin_T + r_Y * cos_T;
  9644. r_X = r_X * cos_T - r_Y * sin_T;
  9645. r_Y = r_new_Y;
  9646. }
  9647. else {
  9648. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  9649. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  9650. // To reduce stuttering, the sin and cos could be computed at different times.
  9651. // For now, compute both at the same time.
  9652. const float cos_Ti = cos(i * theta_per_segment),
  9653. sin_Ti = sin(i * theta_per_segment);
  9654. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  9655. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  9656. count = 0;
  9657. }
  9658. // Update arc_target location
  9659. arc_target[X_AXIS] = center_X + r_X;
  9660. arc_target[Y_AXIS] = center_Y + r_Y;
  9661. arc_target[Z_AXIS] += linear_per_segment;
  9662. arc_target[E_AXIS] += extruder_per_segment;
  9663. clamp_to_software_endstops(arc_target);
  9664. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  9665. }
  9666. // Ensure last segment arrives at target location.
  9667. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  9668. // As far as the parser is concerned, the position is now == target. In reality the
  9669. // motion control system might still be processing the action and the real tool position
  9670. // in any intermediate location.
  9671. set_current_to_destination();
  9672. }
  9673. #endif
  9674. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9675. void plan_cubic_move(const float offset[4]) {
  9676. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  9677. // As far as the parser is concerned, the position is now == destination. In reality the
  9678. // motion control system might still be processing the action and the real tool position
  9679. // in any intermediate location.
  9680. set_current_to_destination();
  9681. }
  9682. #endif // BEZIER_CURVE_SUPPORT
  9683. #if HAS_CONTROLLERFAN
  9684. void controllerFan() {
  9685. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  9686. nextMotorCheck = 0; // Last time the state was checked
  9687. const millis_t ms = millis();
  9688. if (ELAPSED(ms, nextMotorCheck)) {
  9689. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  9690. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  9691. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  9692. #if E_STEPPERS > 1
  9693. || E1_ENABLE_READ == E_ENABLE_ON
  9694. #if HAS_X2_ENABLE
  9695. || X2_ENABLE_READ == X_ENABLE_ON
  9696. #endif
  9697. #if E_STEPPERS > 2
  9698. || E2_ENABLE_READ == E_ENABLE_ON
  9699. #if E_STEPPERS > 3
  9700. || E3_ENABLE_READ == E_ENABLE_ON
  9701. #if E_STEPPERS > 4
  9702. || E4_ENABLE_READ == E_ENABLE_ON
  9703. #endif // E_STEPPERS > 4
  9704. #endif // E_STEPPERS > 3
  9705. #endif // E_STEPPERS > 2
  9706. #endif // E_STEPPERS > 1
  9707. ) {
  9708. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  9709. }
  9710. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  9711. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  9712. // allows digital or PWM fan output to be used (see M42 handling)
  9713. WRITE(CONTROLLERFAN_PIN, speed);
  9714. analogWrite(CONTROLLERFAN_PIN, speed);
  9715. }
  9716. }
  9717. #endif // HAS_CONTROLLERFAN
  9718. #if ENABLED(MORGAN_SCARA)
  9719. /**
  9720. * Morgan SCARA Forward Kinematics. Results in cartes[].
  9721. * Maths and first version by QHARLEY.
  9722. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9723. */
  9724. void forward_kinematics_SCARA(const float &a, const float &b) {
  9725. float a_sin = sin(RADIANS(a)) * L1,
  9726. a_cos = cos(RADIANS(a)) * L1,
  9727. b_sin = sin(RADIANS(b)) * L2,
  9728. b_cos = cos(RADIANS(b)) * L2;
  9729. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  9730. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  9731. /*
  9732. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  9733. SERIAL_ECHOPAIR(" b=", b);
  9734. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  9735. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  9736. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  9737. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  9738. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  9739. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  9740. //*/
  9741. }
  9742. /**
  9743. * Morgan SCARA Inverse Kinematics. Results in delta[].
  9744. *
  9745. * See http://forums.reprap.org/read.php?185,283327
  9746. *
  9747. * Maths and first version by QHARLEY.
  9748. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  9749. */
  9750. void inverse_kinematics(const float logical[XYZ]) {
  9751. static float C2, S2, SK1, SK2, THETA, PSI;
  9752. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  9753. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  9754. if (L1 == L2)
  9755. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  9756. else
  9757. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  9758. S2 = sqrt(sq(C2) - 1);
  9759. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  9760. SK1 = L1 + L2 * C2;
  9761. // Rotated Arm2 gives the distance from Arm1 to Arm2
  9762. SK2 = L2 * S2;
  9763. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  9764. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  9765. // Angle of Arm2
  9766. PSI = atan2(S2, C2);
  9767. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  9768. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  9769. delta[C_AXIS] = logical[Z_AXIS];
  9770. /*
  9771. DEBUG_POS("SCARA IK", logical);
  9772. DEBUG_POS("SCARA IK", delta);
  9773. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  9774. SERIAL_ECHOPAIR(",", sy);
  9775. SERIAL_ECHOPAIR(" C2=", C2);
  9776. SERIAL_ECHOPAIR(" S2=", S2);
  9777. SERIAL_ECHOPAIR(" Theta=", THETA);
  9778. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  9779. //*/
  9780. }
  9781. #endif // MORGAN_SCARA
  9782. #if ENABLED(TEMP_STAT_LEDS)
  9783. static bool red_led = false;
  9784. static millis_t next_status_led_update_ms = 0;
  9785. void handle_status_leds(void) {
  9786. if (ELAPSED(millis(), next_status_led_update_ms)) {
  9787. next_status_led_update_ms += 500; // Update every 0.5s
  9788. float max_temp = 0.0;
  9789. #if HAS_TEMP_BED
  9790. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  9791. #endif
  9792. HOTEND_LOOP() {
  9793. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  9794. }
  9795. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  9796. if (new_led != red_led) {
  9797. red_led = new_led;
  9798. #if PIN_EXISTS(STAT_LED_RED)
  9799. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  9800. #if PIN_EXISTS(STAT_LED_BLUE)
  9801. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  9802. #endif
  9803. #else
  9804. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  9805. #endif
  9806. }
  9807. }
  9808. }
  9809. #endif
  9810. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  9811. void handle_filament_runout() {
  9812. if (!filament_ran_out) {
  9813. filament_ran_out = true;
  9814. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  9815. stepper.synchronize();
  9816. }
  9817. }
  9818. #endif // FILAMENT_RUNOUT_SENSOR
  9819. #if ENABLED(FAST_PWM_FAN)
  9820. void setPwmFrequency(uint8_t pin, int val) {
  9821. val &= 0x07;
  9822. switch (digitalPinToTimer(pin)) {
  9823. #ifdef TCCR0A
  9824. case TIMER0A:
  9825. case TIMER0B:
  9826. //_SET_CS(0, val);
  9827. break;
  9828. #endif
  9829. #ifdef TCCR1A
  9830. case TIMER1A:
  9831. case TIMER1B:
  9832. //_SET_CS(1, val);
  9833. break;
  9834. #endif
  9835. #ifdef TCCR2
  9836. case TIMER2:
  9837. case TIMER2:
  9838. _SET_CS(2, val);
  9839. break;
  9840. #endif
  9841. #ifdef TCCR2A
  9842. case TIMER2A:
  9843. case TIMER2B:
  9844. _SET_CS(2, val);
  9845. break;
  9846. #endif
  9847. #ifdef TCCR3A
  9848. case TIMER3A:
  9849. case TIMER3B:
  9850. case TIMER3C:
  9851. _SET_CS(3, val);
  9852. break;
  9853. #endif
  9854. #ifdef TCCR4A
  9855. case TIMER4A:
  9856. case TIMER4B:
  9857. case TIMER4C:
  9858. _SET_CS(4, val);
  9859. break;
  9860. #endif
  9861. #ifdef TCCR5A
  9862. case TIMER5A:
  9863. case TIMER5B:
  9864. case TIMER5C:
  9865. _SET_CS(5, val);
  9866. break;
  9867. #endif
  9868. }
  9869. }
  9870. #endif // FAST_PWM_FAN
  9871. float calculate_volumetric_multiplier(float diameter) {
  9872. if (!volumetric_enabled || diameter == 0) return 1.0;
  9873. return 1.0 / (M_PI * sq(diameter * 0.5));
  9874. }
  9875. void calculate_volumetric_multipliers() {
  9876. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  9877. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  9878. }
  9879. void enable_all_steppers() {
  9880. enable_X();
  9881. enable_Y();
  9882. enable_Z();
  9883. enable_E0();
  9884. enable_E1();
  9885. enable_E2();
  9886. enable_E3();
  9887. enable_E4();
  9888. }
  9889. void disable_e_steppers() {
  9890. disable_E0();
  9891. disable_E1();
  9892. disable_E2();
  9893. disable_E3();
  9894. disable_E4();
  9895. }
  9896. void disable_all_steppers() {
  9897. disable_X();
  9898. disable_Y();
  9899. disable_Z();
  9900. disable_e_steppers();
  9901. }
  9902. #if ENABLED(HAVE_TMC2130)
  9903. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  9904. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  9905. const bool is_otpw = st.checkOT();
  9906. // Report if a warning was triggered
  9907. static bool previous_otpw = false;
  9908. if (is_otpw && !previous_otpw) {
  9909. char timestamp[10];
  9910. duration_t elapsed = print_job_timer.duration();
  9911. const bool has_days = (elapsed.value > 60*60*24L);
  9912. (void)elapsed.toDigital(timestamp, has_days);
  9913. SERIAL_ECHO(timestamp);
  9914. SERIAL_ECHO(": ");
  9915. SERIAL_ECHO(axisID);
  9916. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  9917. }
  9918. previous_otpw = is_otpw;
  9919. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  9920. // Return if user has not enabled current control start with M906 S1.
  9921. if (!auto_current_control) return;
  9922. /**
  9923. * Decrease current if is_otpw is true.
  9924. * Bail out if driver is disabled.
  9925. * Increase current if OTPW has not been triggered yet.
  9926. */
  9927. uint16_t current = st.getCurrent();
  9928. if (is_otpw) {
  9929. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  9930. #if ENABLED(REPORT_CURRENT_CHANGE)
  9931. SERIAL_ECHO(axisID);
  9932. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  9933. #endif
  9934. }
  9935. else if (!st.isEnabled())
  9936. return;
  9937. else if (!is_otpw && !st.getOTPW()) {
  9938. current += CURRENT_STEP;
  9939. if (current <= AUTO_ADJUST_MAX) {
  9940. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  9941. #if ENABLED(REPORT_CURRENT_CHANGE)
  9942. SERIAL_ECHO(axisID);
  9943. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  9944. #endif
  9945. }
  9946. }
  9947. SERIAL_EOL;
  9948. #endif
  9949. }
  9950. void checkOverTemp() {
  9951. static millis_t next_cOT = 0;
  9952. if (ELAPSED(millis(), next_cOT)) {
  9953. next_cOT = millis() + 5000;
  9954. #if ENABLED(X_IS_TMC2130)
  9955. automatic_current_control(stepperX, "X");
  9956. #endif
  9957. #if ENABLED(Y_IS_TMC2130)
  9958. automatic_current_control(stepperY, "Y");
  9959. #endif
  9960. #if ENABLED(Z_IS_TMC2130)
  9961. automatic_current_control(stepperZ, "Z");
  9962. #endif
  9963. #if ENABLED(X2_IS_TMC2130)
  9964. automatic_current_control(stepperX2, "X2");
  9965. #endif
  9966. #if ENABLED(Y2_IS_TMC2130)
  9967. automatic_current_control(stepperY2, "Y2");
  9968. #endif
  9969. #if ENABLED(Z2_IS_TMC2130)
  9970. automatic_current_control(stepperZ2, "Z2");
  9971. #endif
  9972. #if ENABLED(E0_IS_TMC2130)
  9973. automatic_current_control(stepperE0, "E0");
  9974. #endif
  9975. #if ENABLED(E1_IS_TMC2130)
  9976. automatic_current_control(stepperE1, "E1");
  9977. #endif
  9978. #if ENABLED(E2_IS_TMC2130)
  9979. automatic_current_control(stepperE2, "E2");
  9980. #endif
  9981. #if ENABLED(E3_IS_TMC2130)
  9982. automatic_current_control(stepperE3, "E3");
  9983. #endif
  9984. #if ENABLED(E4_IS_TMC2130)
  9985. automatic_current_control(stepperE4, "E4");
  9986. #endif
  9987. #if ENABLED(E4_IS_TMC2130)
  9988. automatic_current_control(stepperE4);
  9989. #endif
  9990. }
  9991. }
  9992. #endif // HAVE_TMC2130
  9993. /**
  9994. * Manage several activities:
  9995. * - Check for Filament Runout
  9996. * - Keep the command buffer full
  9997. * - Check for maximum inactive time between commands
  9998. * - Check for maximum inactive time between stepper commands
  9999. * - Check if pin CHDK needs to go LOW
  10000. * - Check for KILL button held down
  10001. * - Check for HOME button held down
  10002. * - Check if cooling fan needs to be switched on
  10003. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  10004. */
  10005. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  10006. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10007. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  10008. handle_filament_runout();
  10009. #endif
  10010. if (commands_in_queue < BUFSIZE) get_available_commands();
  10011. const millis_t ms = millis();
  10012. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  10013. SERIAL_ERROR_START;
  10014. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, current_command);
  10015. kill(PSTR(MSG_KILLED));
  10016. }
  10017. // Prevent steppers timing-out in the middle of M600
  10018. #if ENABLED(FILAMENT_CHANGE_FEATURE) && ENABLED(FILAMENT_CHANGE_NO_STEPPER_TIMEOUT)
  10019. #define M600_TEST !busy_doing_M600
  10020. #else
  10021. #define M600_TEST true
  10022. #endif
  10023. if (M600_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  10024. && !ignore_stepper_queue && !planner.blocks_queued()) {
  10025. #if ENABLED(DISABLE_INACTIVE_X)
  10026. disable_X();
  10027. #endif
  10028. #if ENABLED(DISABLE_INACTIVE_Y)
  10029. disable_Y();
  10030. #endif
  10031. #if ENABLED(DISABLE_INACTIVE_Z)
  10032. disable_Z();
  10033. #endif
  10034. #if ENABLED(DISABLE_INACTIVE_E)
  10035. disable_e_steppers();
  10036. #endif
  10037. }
  10038. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  10039. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  10040. chdkActive = false;
  10041. WRITE(CHDK, LOW);
  10042. }
  10043. #endif
  10044. #if HAS_KILL
  10045. // Check if the kill button was pressed and wait just in case it was an accidental
  10046. // key kill key press
  10047. // -------------------------------------------------------------------------------
  10048. static int killCount = 0; // make the inactivity button a bit less responsive
  10049. const int KILL_DELAY = 750;
  10050. if (!READ(KILL_PIN))
  10051. killCount++;
  10052. else if (killCount > 0)
  10053. killCount--;
  10054. // Exceeded threshold and we can confirm that it was not accidental
  10055. // KILL the machine
  10056. // ----------------------------------------------------------------
  10057. if (killCount >= KILL_DELAY) {
  10058. SERIAL_ERROR_START;
  10059. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  10060. kill(PSTR(MSG_KILLED));
  10061. }
  10062. #endif
  10063. #if HAS_HOME
  10064. // Check to see if we have to home, use poor man's debouncer
  10065. // ---------------------------------------------------------
  10066. static int homeDebounceCount = 0; // poor man's debouncing count
  10067. const int HOME_DEBOUNCE_DELAY = 2500;
  10068. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  10069. if (!homeDebounceCount) {
  10070. enqueue_and_echo_commands_P(PSTR("G28"));
  10071. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  10072. }
  10073. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  10074. homeDebounceCount++;
  10075. else
  10076. homeDebounceCount = 0;
  10077. }
  10078. #endif
  10079. #if HAS_CONTROLLERFAN
  10080. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  10081. #endif
  10082. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  10083. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  10084. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  10085. bool oldstatus;
  10086. #if ENABLED(SWITCHING_EXTRUDER)
  10087. oldstatus = E0_ENABLE_READ;
  10088. enable_E0();
  10089. #else // !SWITCHING_EXTRUDER
  10090. switch (active_extruder) {
  10091. case 0: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  10092. #if E_STEPPERS > 1
  10093. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  10094. #if E_STEPPERS > 2
  10095. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  10096. #if E_STEPPERS > 3
  10097. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  10098. #if E_STEPPERS > 4
  10099. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  10100. #endif // E_STEPPERS > 4
  10101. #endif // E_STEPPERS > 3
  10102. #endif // E_STEPPERS > 2
  10103. #endif // E_STEPPERS > 1
  10104. }
  10105. #endif // !SWITCHING_EXTRUDER
  10106. previous_cmd_ms = ms; // refresh_cmd_timeout()
  10107. const float olde = current_position[E_AXIS];
  10108. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  10109. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  10110. current_position[E_AXIS] = olde;
  10111. planner.set_e_position_mm(olde);
  10112. stepper.synchronize();
  10113. #if ENABLED(SWITCHING_EXTRUDER)
  10114. E0_ENABLE_WRITE(oldstatus);
  10115. #else
  10116. switch (active_extruder) {
  10117. case 0: E0_ENABLE_WRITE(oldstatus); break;
  10118. #if E_STEPPERS > 1
  10119. case 1: E1_ENABLE_WRITE(oldstatus); break;
  10120. #if E_STEPPERS > 2
  10121. case 2: E2_ENABLE_WRITE(oldstatus); break;
  10122. #if E_STEPPERS > 3
  10123. case 3: E3_ENABLE_WRITE(oldstatus); break;
  10124. #if E_STEPPERS > 4
  10125. case 4: E4_ENABLE_WRITE(oldstatus); break;
  10126. #endif // E_STEPPERS > 4
  10127. #endif // E_STEPPERS > 3
  10128. #endif // E_STEPPERS > 2
  10129. #endif // E_STEPPERS > 1
  10130. }
  10131. #endif // !SWITCHING_EXTRUDER
  10132. }
  10133. #endif // EXTRUDER_RUNOUT_PREVENT
  10134. #if ENABLED(DUAL_X_CARRIAGE)
  10135. // handle delayed move timeout
  10136. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  10137. // travel moves have been received so enact them
  10138. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  10139. set_destination_to_current();
  10140. prepare_move_to_destination();
  10141. }
  10142. #endif
  10143. #if ENABLED(TEMP_STAT_LEDS)
  10144. handle_status_leds();
  10145. #endif
  10146. #if ENABLED(HAVE_TMC2130)
  10147. checkOverTemp();
  10148. #endif
  10149. planner.check_axes_activity();
  10150. }
  10151. /**
  10152. * Standard idle routine keeps the machine alive
  10153. */
  10154. void idle(
  10155. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10156. bool no_stepper_sleep/*=false*/
  10157. #endif
  10158. ) {
  10159. lcd_update();
  10160. host_keepalive();
  10161. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  10162. auto_report_temperatures();
  10163. #endif
  10164. manage_inactivity(
  10165. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  10166. no_stepper_sleep
  10167. #endif
  10168. );
  10169. thermalManager.manage_heater();
  10170. #if ENABLED(PRINTCOUNTER)
  10171. print_job_timer.tick();
  10172. #endif
  10173. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  10174. buzzer.tick();
  10175. #endif
  10176. }
  10177. /**
  10178. * Kill all activity and lock the machine.
  10179. * After this the machine will need to be reset.
  10180. */
  10181. void kill(const char* lcd_msg) {
  10182. SERIAL_ERROR_START;
  10183. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  10184. thermalManager.disable_all_heaters();
  10185. disable_all_steppers();
  10186. #if ENABLED(ULTRA_LCD)
  10187. kill_screen(lcd_msg);
  10188. #else
  10189. UNUSED(lcd_msg);
  10190. #endif
  10191. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  10192. cli(); // Stop interrupts
  10193. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  10194. thermalManager.disable_all_heaters(); //turn off heaters again
  10195. #if HAS_POWER_SWITCH
  10196. SET_INPUT(PS_ON_PIN);
  10197. #endif
  10198. suicide();
  10199. while (1) {
  10200. #if ENABLED(USE_WATCHDOG)
  10201. watchdog_reset();
  10202. #endif
  10203. } // Wait for reset
  10204. }
  10205. /**
  10206. * Turn off heaters and stop the print in progress
  10207. * After a stop the machine may be resumed with M999
  10208. */
  10209. void stop() {
  10210. thermalManager.disable_all_heaters();
  10211. if (IsRunning()) {
  10212. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  10213. SERIAL_ERROR_START;
  10214. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  10215. LCD_MESSAGEPGM(MSG_STOPPED);
  10216. safe_delay(350); // allow enough time for messages to get out before stopping
  10217. Running = false;
  10218. }
  10219. }
  10220. /**
  10221. * Marlin entry-point: Set up before the program loop
  10222. * - Set up the kill pin, filament runout, power hold
  10223. * - Start the serial port
  10224. * - Print startup messages and diagnostics
  10225. * - Get EEPROM or default settings
  10226. * - Initialize managers for:
  10227. * • temperature
  10228. * • planner
  10229. * • watchdog
  10230. * • stepper
  10231. * • photo pin
  10232. * • servos
  10233. * • LCD controller
  10234. * • Digipot I2C
  10235. * • Z probe sled
  10236. * • status LEDs
  10237. */
  10238. void setup() {
  10239. #ifdef DISABLE_JTAG
  10240. // Disable JTAG on AT90USB chips to free up pins for IO
  10241. MCUCR = 0x80;
  10242. MCUCR = 0x80;
  10243. #endif
  10244. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  10245. setup_filrunoutpin();
  10246. #endif
  10247. setup_killpin();
  10248. setup_powerhold();
  10249. #if HAS_STEPPER_RESET
  10250. disableStepperDrivers();
  10251. #endif
  10252. MYSERIAL.begin(BAUDRATE);
  10253. SERIAL_PROTOCOLLNPGM("start");
  10254. SERIAL_ECHO_START;
  10255. // Check startup - does nothing if bootloader sets MCUSR to 0
  10256. byte mcu = MCUSR;
  10257. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  10258. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  10259. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  10260. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  10261. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  10262. MCUSR = 0;
  10263. SERIAL_ECHOPGM(MSG_MARLIN);
  10264. SERIAL_CHAR(' ');
  10265. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  10266. SERIAL_EOL;
  10267. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  10268. SERIAL_ECHO_START;
  10269. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  10270. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  10271. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  10272. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  10273. #endif
  10274. SERIAL_ECHO_START;
  10275. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  10276. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  10277. // Send "ok" after commands by default
  10278. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  10279. // Load data from EEPROM if available (or use defaults)
  10280. // This also updates variables in the planner, elsewhere
  10281. (void)settings.load();
  10282. #if HAS_M206_COMMAND
  10283. // Initialize current position based on home_offset
  10284. COPY(current_position, home_offset);
  10285. #else
  10286. ZERO(current_position);
  10287. #endif
  10288. // Vital to init stepper/planner equivalent for current_position
  10289. SYNC_PLAN_POSITION_KINEMATIC();
  10290. thermalManager.init(); // Initialize temperature loop
  10291. #if ENABLED(USE_WATCHDOG)
  10292. watchdog_init();
  10293. #endif
  10294. stepper.init(); // Initialize stepper, this enables interrupts!
  10295. servo_init();
  10296. #if HAS_PHOTOGRAPH
  10297. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  10298. #endif
  10299. #if HAS_CASE_LIGHT
  10300. update_case_light();
  10301. #endif
  10302. #if HAS_BED_PROBE
  10303. endstops.enable_z_probe(false);
  10304. #endif
  10305. #if HAS_CONTROLLERFAN
  10306. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  10307. #endif
  10308. #if HAS_STEPPER_RESET
  10309. enableStepperDrivers();
  10310. #endif
  10311. #if ENABLED(DIGIPOT_I2C)
  10312. digipot_i2c_init();
  10313. #endif
  10314. #if ENABLED(DAC_STEPPER_CURRENT)
  10315. dac_init();
  10316. #endif
  10317. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  10318. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  10319. #endif
  10320. setup_homepin();
  10321. #if PIN_EXISTS(STAT_LED_RED)
  10322. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  10323. #endif
  10324. #if PIN_EXISTS(STAT_LED_BLUE)
  10325. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  10326. #endif
  10327. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  10328. SET_OUTPUT(RGB_LED_R_PIN);
  10329. SET_OUTPUT(RGB_LED_G_PIN);
  10330. SET_OUTPUT(RGB_LED_B_PIN);
  10331. #if ENABLED(RGBW_LED)
  10332. SET_OUTPUT(RGB_LED_W_PIN);
  10333. #endif
  10334. #endif
  10335. lcd_init();
  10336. #if ENABLED(SHOW_BOOTSCREEN)
  10337. #if ENABLED(DOGLCD)
  10338. safe_delay(BOOTSCREEN_TIMEOUT);
  10339. #elif ENABLED(ULTRA_LCD)
  10340. bootscreen();
  10341. #if DISABLED(SDSUPPORT)
  10342. lcd_init();
  10343. #endif
  10344. #endif
  10345. #endif
  10346. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  10347. // Initialize mixing to 100% color 1
  10348. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10349. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  10350. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  10351. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  10352. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  10353. #endif
  10354. #if ENABLED(BLTOUCH)
  10355. bltouch_command(BLTOUCH_RESET); // Just in case the BLTouch is in the error state, try to
  10356. set_bltouch_deployed(true); // reset it. Also needs to deploy and stow to clear the
  10357. set_bltouch_deployed(false); // error condition.
  10358. #endif
  10359. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  10360. i2c.onReceive(i2c_on_receive);
  10361. i2c.onRequest(i2c_on_request);
  10362. #endif
  10363. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  10364. setup_endstop_interrupts();
  10365. #endif
  10366. }
  10367. /**
  10368. * The main Marlin program loop
  10369. *
  10370. * - Save or log commands to SD
  10371. * - Process available commands (if not saving)
  10372. * - Call heater manager
  10373. * - Call inactivity manager
  10374. * - Call endstop manager
  10375. * - Call LCD update
  10376. */
  10377. void loop() {
  10378. if (commands_in_queue < BUFSIZE) get_available_commands();
  10379. #if ENABLED(SDSUPPORT)
  10380. card.checkautostart(false);
  10381. #endif
  10382. if (commands_in_queue) {
  10383. #if ENABLED(SDSUPPORT)
  10384. if (card.saving) {
  10385. char* command = command_queue[cmd_queue_index_r];
  10386. if (strstr_P(command, PSTR("M29"))) {
  10387. // M29 closes the file
  10388. card.closefile();
  10389. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  10390. ok_to_send();
  10391. }
  10392. else {
  10393. // Write the string from the read buffer to SD
  10394. card.write_command(command);
  10395. if (card.logging)
  10396. process_next_command(); // The card is saving because it's logging
  10397. else
  10398. ok_to_send();
  10399. }
  10400. }
  10401. else
  10402. process_next_command();
  10403. #else
  10404. process_next_command();
  10405. #endif // SDSUPPORT
  10406. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  10407. if (commands_in_queue) {
  10408. --commands_in_queue;
  10409. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  10410. }
  10411. }
  10412. endstops.report_state();
  10413. idle();
  10414. }