My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G26_Mesh_Validation_Tool.cpp 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "MarlinConfig.h"
  26. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  27. #include "ubl.h"
  28. #include "Marlin.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "ultralcd.h"
  33. #define EXTRUSION_MULTIPLIER 1.0
  34. #define RETRACTION_MULTIPLIER 1.0
  35. #define NOZZLE 0.4
  36. #define FILAMENT 1.75
  37. #define LAYER_HEIGHT 0.2
  38. #define PRIME_LENGTH 10.0
  39. #define BED_TEMP 60.0
  40. #define HOTEND_TEMP 205.0
  41. #define OOZE_AMOUNT 0.3
  42. #define SIZE_OF_INTERSECTION_CIRCLES 5
  43. #define SIZE_OF_CROSSHAIRS 3
  44. #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
  45. #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
  46. #endif
  47. /**
  48. * G26 Mesh Validation Tool
  49. *
  50. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  51. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  52. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  53. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  54. * the intersections of those lines (respectively).
  55. *
  56. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  57. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  58. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  59. * focus on a particular area of the Mesh where attention is needed.
  60. *
  61. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  62. *
  63. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  64. * as the base for any distance comparison.
  65. *
  66. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  67. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  68. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  69. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  70. * it is on.
  71. *
  72. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  73. *
  74. * F # Filament Used to specify the diameter of the filament being used. If not specified
  75. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  76. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  77. * of filament that is being extruded during the printing of the various lines on the bed.
  78. *
  79. * K Keep-On Keep the heaters turned on at the end of the command.
  80. *
  81. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  82. *
  83. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  84. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  85. *
  86. * N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  87. *
  88. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  89. * is over kill, but using this parameter will let you get the very first 'cicle' perfect
  90. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  91. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  92. *
  93. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  94. * given, no prime action will take place. If the parameter specifies an amount, that much
  95. * will be purged before continuing. If no amount is specified the command will start
  96. * purging filament until the user provides an LCD Click and then it will continue with
  97. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  98. * pliers while holding the LCD Click wheel in a depressed state.
  99. *
  100. * R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  101. * undrawn cicle is still done. But the distance to the location for each circle has a
  102. * random number of the size specified added to it. Specifying R50 will give an interesting
  103. * deviation from the normal behaviour on a 10 x 10 Mesh.
  104. *
  105. * X # X coordinate Specify the starting location of the drawing activity.
  106. *
  107. * Y # Y coordinate Specify the starting location of the drawing activity.
  108. */
  109. // External references
  110. extern float feedrate;
  111. extern Planner planner;
  112. #if ENABLED(ULTRA_LCD)
  113. extern char lcd_status_message[];
  114. #endif
  115. extern float destination[XYZE];
  116. void set_destination_to_current();
  117. void set_current_to_destination();
  118. float code_value_float();
  119. float code_value_linear_units();
  120. float code_value_axis_units(const AxisEnum axis);
  121. bool code_value_bool();
  122. bool code_has_value();
  123. void lcd_init();
  124. void lcd_setstatuspgm(const char* const message, const uint8_t level);
  125. bool prepare_move_to_destination_cartesian();
  126. void line_to_destination();
  127. void line_to_destination(float);
  128. void sync_plan_position_e();
  129. void chirp_at_user();
  130. // Private functions
  131. void un_retract_filament(float where[XYZE]);
  132. void retract_filament(float where[XYZE]);
  133. void look_for_lines_to_connect();
  134. bool parse_G26_parameters();
  135. void move_to(const float&, const float&, const float&, const float&) ;
  136. void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
  137. bool turn_on_heaters();
  138. bool prime_nozzle();
  139. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
  140. float g26_e_axis_feedrate = 0.020,
  141. random_deviation = 0.0,
  142. layer_height = LAYER_HEIGHT;
  143. static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
  144. // retracts/recovers won't result in a bad state.
  145. float valid_trig_angle(float);
  146. mesh_index_pair find_closest_circle_to_print(const float&, const float&);
  147. static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
  148. retraction_multiplier = RETRACTION_MULTIPLIER,
  149. nozzle = NOZZLE,
  150. filament_diameter = FILAMENT,
  151. prime_length = PRIME_LENGTH,
  152. x_pos, y_pos,
  153. ooze_amount = OOZE_AMOUNT;
  154. static int16_t bed_temp = BED_TEMP,
  155. hotend_temp = HOTEND_TEMP;
  156. static int8_t prime_flag = 0;
  157. static bool keep_heaters_on = false;
  158. /**
  159. * G26: Mesh Validation Pattern generation.
  160. *
  161. * Used to interactively edit UBL's Mesh by placing the
  162. * nozzle in a problem area and doing a G29 P4 R command.
  163. */
  164. void gcode_G26() {
  165. SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
  166. float tmp, start_angle, end_angle;
  167. int i, xi, yi;
  168. mesh_index_pair location;
  169. // Don't allow Mesh Validation without homing first,
  170. // or if the parameter parsing did not go OK, abort
  171. if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return;
  172. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  173. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  174. stepper.synchronize();
  175. set_current_to_destination();
  176. }
  177. if (turn_on_heaters()) goto LEAVE;
  178. current_position[E_AXIS] = 0.0;
  179. sync_plan_position_e();
  180. if (prime_flag && prime_nozzle()) goto LEAVE;
  181. /**
  182. * Bed is preheated
  183. *
  184. * Nozzle is at temperature
  185. *
  186. * Filament is primed!
  187. *
  188. * It's "Show Time" !!!
  189. */
  190. ZERO(circle_flags);
  191. ZERO(horizontal_mesh_line_flags);
  192. ZERO(vertical_mesh_line_flags);
  193. // Move nozzle to the specified height for the first layer
  194. set_destination_to_current();
  195. destination[Z_AXIS] = layer_height;
  196. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
  197. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
  198. ubl.has_control_of_lcd_panel = true;
  199. //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
  200. /**
  201. * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
  202. * the CPU load and make the arc drawing faster and more smooth
  203. */
  204. float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
  205. for (i = 0; i <= 360 / 30; i++) {
  206. cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
  207. sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
  208. }
  209. do {
  210. if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
  211. #if ENABLED(ULTRA_LCD)
  212. lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
  213. lcd_quick_feedback();
  214. #endif
  215. while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
  216. idle(); // Encoder Wheel if that is why we are leaving
  217. lcd_reset_alert_level();
  218. lcd_setstatuspgm(PSTR(""));
  219. }
  220. while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
  221. idle(); // Encoder Wheel if that is why we are leaving
  222. lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
  223. }
  224. goto LEAVE;
  225. }
  226. location = continue_with_closest
  227. ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
  228. : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
  229. if (location.x_index >= 0 && location.y_index >= 0) {
  230. const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
  231. circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
  232. // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
  233. #ifdef DELTA
  234. if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
  235. SERIAL_ERROR_START;
  236. SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
  237. goto LEAVE;
  238. }
  239. #endif
  240. // TODO: Change this to use `position_is_reachable`
  241. if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) {
  242. SERIAL_ERROR_START;
  243. SERIAL_ERRORLNPGM("Attempt to print off the bed.");
  244. goto LEAVE;
  245. }
  246. xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
  247. yi = location.y_index;
  248. if (ubl.g26_debug_flag) {
  249. SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
  250. SERIAL_ECHOPAIR(", yi=", yi);
  251. SERIAL_CHAR(')');
  252. SERIAL_EOL;
  253. }
  254. start_angle = 0.0; // assume it is going to be a full circle
  255. end_angle = 360.0;
  256. if (xi == 0) { // Check for bottom edge
  257. start_angle = -90.0;
  258. end_angle = 90.0;
  259. if (yi == 0) // it is an edge, check for the two left corners
  260. start_angle = 0.0;
  261. else if (yi == GRID_MAX_POINTS_Y - 1)
  262. end_angle = 0.0;
  263. }
  264. else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
  265. start_angle = 90.0;
  266. end_angle = 270.0;
  267. if (yi == 0) // it is an edge, check for the two right corners
  268. end_angle = 180.0;
  269. else if (yi == GRID_MAX_POINTS_Y - 1)
  270. start_angle = 180.0;
  271. }
  272. else if (yi == 0) {
  273. start_angle = 0.0; // only do the top side of the cirlce
  274. end_angle = 180.0;
  275. }
  276. else if (yi == GRID_MAX_POINTS_Y - 1) {
  277. start_angle = 180.0; // only do the bottom side of the cirlce
  278. end_angle = 360.0;
  279. }
  280. for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
  281. int tmp_div_30 = tmp / 30.0;
  282. if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
  283. if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
  284. float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
  285. y = circle_y + sin_table[tmp_div_30],
  286. xe = circle_x + cos_table[tmp_div_30 + 1],
  287. ye = circle_y + sin_table[tmp_div_30 + 1];
  288. #ifdef DELTA
  289. if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
  290. continue; // the 'circle' is on the bed. If
  291. #else // not, we need to skip
  292. x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  293. y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  294. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  295. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  296. #endif
  297. //if (ubl.g26_debug_flag) {
  298. // char ccc, *cptr, seg_msg[50], seg_num[10];
  299. // strcpy(seg_msg, " segment: ");
  300. // strcpy(seg_num, " \n");
  301. // cptr = (char*) "01234567890ABCDEF????????";
  302. // ccc = cptr[tmp_div_30];
  303. // seg_num[1] = ccc;
  304. // strcat(seg_msg, seg_num);
  305. // debug_current_and_destination(seg_msg);
  306. //}
  307. print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
  308. }
  309. //debug_current_and_destination(PSTR("Looking for lines to connect."));
  310. look_for_lines_to_connect();
  311. //debug_current_and_destination(PSTR("Done with line connect."));
  312. }
  313. //debug_current_and_destination(PSTR("Done with current circle."));
  314. } while (location.x_index >= 0 && location.y_index >= 0);
  315. LEAVE:
  316. lcd_reset_alert_level();
  317. lcd_setstatuspgm(PSTR("Leaving G26"));
  318. retract_filament(destination);
  319. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
  320. //debug_current_and_destination(PSTR("ready to do Z-Raise."));
  321. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
  322. //debug_current_and_destination(PSTR("done doing Z-Raise."));
  323. destination[X_AXIS] = x_pos; // Move back to the starting position
  324. destination[Y_AXIS] = y_pos;
  325. //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  326. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
  327. //debug_current_and_destination(PSTR("done doing X/Y move."));
  328. ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
  329. if (!keep_heaters_on) {
  330. #if HAS_TEMP_BED
  331. thermalManager.setTargetBed(0);
  332. #endif
  333. thermalManager.setTargetHotend(0, 0);
  334. }
  335. }
  336. float valid_trig_angle(float d) {
  337. while (d > 360.0) d -= 360.0;
  338. while (d < 0.0) d += 360.0;
  339. return d;
  340. }
  341. mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
  342. float closest = 99999.99;
  343. mesh_index_pair return_val;
  344. return_val.x_index = return_val.y_index = -1;
  345. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  346. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  347. if (!is_bit_set(circle_flags, i, j)) {
  348. const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed
  349. my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
  350. // Get the distance to this intersection
  351. float f = HYPOT(X - mx, Y - my);
  352. // It is possible that we are being called with the values
  353. // to let us find the closest circle to the start position.
  354. // But if this is not the case, add a small weighting to the
  355. // distance calculation to help it choose a better place to continue.
  356. f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
  357. // Add in the specified amount of Random Noise to our search
  358. if (random_deviation > 1.0)
  359. f += random(0.0, random_deviation);
  360. if (f < closest) {
  361. closest = f; // We found a closer location that is still
  362. return_val.x_index = i; // un-printed --- save the data for it
  363. return_val.y_index = j;
  364. return_val.distance = closest;
  365. }
  366. }
  367. }
  368. }
  369. bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  370. return return_val;
  371. }
  372. void look_for_lines_to_connect() {
  373. float sx, sy, ex, ey;
  374. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  375. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  376. if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
  377. // This is already a half circle because we are at the edge of the bed.
  378. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  379. if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
  380. //
  381. // We found two circles that need a horizontal line to connect them
  382. // Print it!
  383. //
  384. sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
  385. ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
  386. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
  387. sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
  388. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  389. if (ubl.g26_debug_flag) {
  390. SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
  391. SERIAL_ECHOPAIR(", sy=", sy);
  392. SERIAL_ECHOPAIR(") -> (ex=", ex);
  393. SERIAL_ECHOPAIR(", ey=", ey);
  394. SERIAL_CHAR(')');
  395. SERIAL_EOL;
  396. //debug_current_and_destination(PSTR("Connecting horizontal line."));
  397. }
  398. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
  399. bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  400. }
  401. }
  402. if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
  403. // This is already a half circle because we are at the edge of the bed.
  404. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  405. if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
  406. //
  407. // We found two circles that need a vertical line to connect them
  408. // Print it!
  409. //
  410. sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
  411. ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
  412. sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
  413. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  414. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  415. if (ubl.g26_debug_flag) {
  416. SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
  417. SERIAL_ECHOPAIR(", sy=", sy);
  418. SERIAL_ECHOPAIR(") -> (ex=", ex);
  419. SERIAL_ECHOPAIR(", ey=", ey);
  420. SERIAL_CHAR(')');
  421. SERIAL_EOL;
  422. debug_current_and_destination(PSTR("Connecting vertical line."));
  423. }
  424. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
  425. bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  426. }
  427. }
  428. }
  429. }
  430. }
  431. }
  432. }
  433. void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
  434. float feed_value;
  435. static float last_z = -999.99;
  436. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  437. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
  438. if (z != last_z) {
  439. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
  440. last_z = z;
  441. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  442. destination[X_AXIS] = current_position[X_AXIS];
  443. destination[Y_AXIS] = current_position[Y_AXIS];
  444. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  445. destination[E_AXIS] = current_position[E_AXIS];
  446. ubl_line_to_destination(feed_value, 0);
  447. stepper.synchronize();
  448. set_destination_to_current();
  449. //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() done with Z move"));
  450. }
  451. // Check if X or Y is involved in the movement.
  452. // Yes: a 'normal' movement. No: a retract() or un_retract()
  453. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  454. if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
  455. destination[X_AXIS] = x;
  456. destination[Y_AXIS] = y;
  457. destination[E_AXIS] += e_delta;
  458. //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() doing last move"));
  459. ubl_line_to_destination(feed_value, 0);
  460. //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() after last move"));
  461. stepper.synchronize();
  462. set_destination_to_current();
  463. }
  464. void retract_filament(float where[XYZE]) {
  465. if (!g26_retracted) { // Only retract if we are not already retracted!
  466. g26_retracted = true;
  467. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
  468. move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
  469. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
  470. }
  471. }
  472. void un_retract_filament(float where[XYZE]) {
  473. if (g26_retracted) { // Only un-retract if we are retracted.
  474. move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
  475. g26_retracted = false;
  476. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
  477. }
  478. }
  479. /**
  480. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  481. * to the other. But there are really three sets of coordinates involved. The first coordinate
  482. * is the present location of the nozzle. We don't necessarily want to print from this location.
  483. * We first need to move the nozzle to the start of line segment where we want to print. Once
  484. * there, we can use the two coordinates supplied to draw the line.
  485. *
  486. * Note: Although we assume the first set of coordinates is the start of the line and the second
  487. * set of coordinates is the end of the line, it does not always work out that way. This function
  488. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  489. * a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
  490. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  491. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  492. * cases where the optimization comes into play.
  493. */
  494. void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
  495. const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
  496. dy_s = current_position[Y_AXIS] - sy,
  497. dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
  498. // to save computation time
  499. dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
  500. dy_e = current_position[Y_AXIS] - ey,
  501. dist_end = HYPOT2(dx_e, dy_e),
  502. line_length = HYPOT(ex - sx, ey - sy);
  503. // If the end point of the line is closer to the nozzle, flip the direction,
  504. // moving from the end to the start. On very small lines the optimization isn't worth it.
  505. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
  506. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
  507. return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  508. }
  509. // Decide whether to retract.
  510. if (dist_start > 2.0) {
  511. retract_filament(destination);
  512. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
  513. }
  514. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
  515. const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
  516. un_retract_filament(destination);
  517. //if (ubl.g26_debug_flag) {
  518. // SERIAL_ECHOLNPGM(" doing printing move.");
  519. // debug_current_and_destination(PSTR("doing final move_to() inside print_line_from_here_to_there()"));
  520. //}
  521. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  522. }
  523. /**
  524. * This function used to be inline code in G26. But there are so many
  525. * parameters it made sense to turn them into static globals and get
  526. * this code out of sight of the main routine.
  527. */
  528. bool parse_G26_parameters() {
  529. extrusion_multiplier = EXTRUSION_MULTIPLIER;
  530. retraction_multiplier = RETRACTION_MULTIPLIER;
  531. nozzle = NOZZLE;
  532. filament_diameter = FILAMENT;
  533. layer_height = LAYER_HEIGHT;
  534. prime_length = PRIME_LENGTH;
  535. bed_temp = BED_TEMP;
  536. hotend_temp = HOTEND_TEMP;
  537. ooze_amount = OOZE_AMOUNT;
  538. prime_flag = 0;
  539. keep_heaters_on = false;
  540. if (code_seen('B')) {
  541. bed_temp = code_value_temp_abs();
  542. if (!WITHIN(bed_temp, 15, 140)) {
  543. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
  544. return UBL_ERR;
  545. }
  546. }
  547. if (code_seen('C')) continue_with_closest++;
  548. if (code_seen('L')) {
  549. layer_height = code_value_linear_units();
  550. if (!WITHIN(layer_height, 0.0, 2.0)) {
  551. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  552. return UBL_ERR;
  553. }
  554. }
  555. if (code_seen('Q')) {
  556. if (code_has_value()) {
  557. retraction_multiplier = code_value_float();
  558. if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
  559. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  560. return UBL_ERR;
  561. }
  562. }
  563. else {
  564. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  565. return UBL_ERR;
  566. }
  567. }
  568. if (code_seen('N')) {
  569. nozzle = code_value_float();
  570. if (!WITHIN(nozzle, 0.1, 1.0)) {
  571. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  572. return UBL_ERR;
  573. }
  574. }
  575. if (code_seen('K')) keep_heaters_on++;
  576. if (code_seen('O') && code_has_value())
  577. ooze_amount = code_value_linear_units();
  578. if (code_seen('P')) {
  579. if (!code_has_value())
  580. prime_flag = -1;
  581. else {
  582. prime_flag++;
  583. prime_length = code_value_linear_units();
  584. if (!WITHIN(prime_length, 0.0, 25.0)) {
  585. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  586. return UBL_ERR;
  587. }
  588. }
  589. }
  590. if (code_seen('F')) {
  591. filament_diameter = code_value_linear_units();
  592. if (!WITHIN(filament_diameter, 1.0, 4.0)) {
  593. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  594. return UBL_ERR;
  595. }
  596. }
  597. extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
  598. // scale up or down the length needed to get the
  599. // same volume of filament
  600. extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
  601. if (code_seen('H')) {
  602. hotend_temp = code_value_temp_abs();
  603. if (!WITHIN(hotend_temp, 165, 280)) {
  604. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  605. return UBL_ERR;
  606. }
  607. }
  608. if (code_seen('R')) {
  609. randomSeed(millis());
  610. random_deviation = code_has_value() ? code_value_float() : 50.0;
  611. }
  612. x_pos = current_position[X_AXIS];
  613. y_pos = current_position[Y_AXIS];
  614. if (code_seen('X')) {
  615. x_pos = code_value_axis_units(X_AXIS);
  616. if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) {
  617. SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
  618. return UBL_ERR;
  619. }
  620. }
  621. else
  622. if (code_seen('Y')) {
  623. y_pos = code_value_axis_units(Y_AXIS);
  624. if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) {
  625. SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
  626. return UBL_ERR;
  627. }
  628. }
  629. /**
  630. * We save the question of what to do with the Unified Bed Leveling System's Activation until the very
  631. * end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
  632. * alter the system's status. We wait until we know everything is correct before altering the state
  633. * of the system.
  634. */
  635. ubl.state.active = !code_seen('D');
  636. return UBL_OK;
  637. }
  638. bool exit_from_g26() {
  639. //strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
  640. lcd_reset_alert_level();
  641. lcd_setstatuspgm(PSTR("Leaving G26"));
  642. while (ubl_lcd_clicked()) idle();
  643. return UBL_ERR;
  644. }
  645. /**
  646. * Turn on the bed and nozzle heat and
  647. * wait for them to get up to temperature.
  648. */
  649. bool turn_on_heaters() {
  650. millis_t next;
  651. #if HAS_TEMP_BED
  652. #if ENABLED(ULTRA_LCD)
  653. if (bed_temp > 25) {
  654. lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
  655. lcd_quick_feedback();
  656. #endif
  657. ubl.has_control_of_lcd_panel = true;
  658. thermalManager.setTargetBed(bed_temp);
  659. next = millis() + 5000UL;
  660. while (abs(thermalManager.degBed() - bed_temp) > 3) {
  661. if (ubl_lcd_clicked()) return exit_from_g26();
  662. if (PENDING(millis(), next)) {
  663. next = millis() + 5000UL;
  664. print_heaterstates();
  665. }
  666. idle();
  667. }
  668. #if ENABLED(ULTRA_LCD)
  669. }
  670. lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
  671. lcd_quick_feedback();
  672. #endif
  673. #endif
  674. // Start heating the nozzle and wait for it to reach temperature.
  675. thermalManager.setTargetHotend(hotend_temp, 0);
  676. while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
  677. if (ubl_lcd_clicked()) return exit_from_g26();
  678. if (PENDING(millis(), next)) {
  679. next = millis() + 5000UL;
  680. print_heaterstates();
  681. }
  682. idle();
  683. }
  684. #if ENABLED(ULTRA_LCD)
  685. lcd_reset_alert_level();
  686. lcd_setstatuspgm(PSTR(""));
  687. lcd_quick_feedback();
  688. #endif
  689. return UBL_OK;
  690. }
  691. /**
  692. * Prime the nozzle if needed. Return true on error.
  693. */
  694. bool prime_nozzle() {
  695. float Total_Prime = 0.0;
  696. if (prime_flag == -1) { // The user wants to control how much filament gets purged
  697. ubl.has_control_of_lcd_panel = true;
  698. lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
  699. chirp_at_user();
  700. set_destination_to_current();
  701. un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  702. while (!ubl_lcd_clicked()) {
  703. chirp_at_user();
  704. destination[E_AXIS] += 0.25;
  705. #ifdef PREVENT_LENGTHY_EXTRUDE
  706. Total_Prime += 0.25;
  707. if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
  708. #endif
  709. ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
  710. stepper.synchronize(); // Without this synchronize, the purge is more consistent,
  711. // but because the planner has a buffer, we won't be able
  712. // to stop as quickly. So we put up with the less smooth
  713. // action to give the user a more responsive 'Stop'.
  714. set_destination_to_current();
  715. idle();
  716. }
  717. while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
  718. #if ENABLED(ULTRA_LCD)
  719. strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
  720. // So... We cheat to get a message up.
  721. lcd_setstatuspgm(PSTR("Done Priming"), 99);
  722. lcd_quick_feedback();
  723. #endif
  724. ubl.has_control_of_lcd_panel = false;
  725. }
  726. else {
  727. #if ENABLED(ULTRA_LCD)
  728. lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
  729. lcd_quick_feedback();
  730. #endif
  731. set_destination_to_current();
  732. destination[E_AXIS] += prime_length;
  733. ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
  734. stepper.synchronize();
  735. set_destination_to_current();
  736. retract_filament(destination);
  737. }
  738. return UBL_OK;
  739. }
  740. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING